
Conversion and Proxy Functions for Symmetric Key Ciphers

Debra L. Cook Angelos D. Keromytis
Department of Computer Science, Columbia University

{dcook,angelos}@cs.columbia.edu

Abstract
As a general design criterion, a symmetric key cipher

should not be closed under functional composition due to
the implications on the security of the cipher. However,
there are scenarios in which this property is desirable and
can be obtained without reducing the security of a cipher by
increasing the computational workload of the cipher. We ex-
pand the idea of a symmetric key cipher being closed under
functional composition to a more general scenario where
there exists a function that converts the ciphertext resulting
from encryption under a specific key to the ciphertext cor-
responding to encryption with another key. We show how
to perform such a conversion without exposing the plain-
text. We discuss the tradeoff between the computational
workload and security, and the relationship between such
conversions and proxy cryptography. We conclude with a
description of some practical applications of our results.

Keywords: Symmetric Key Cipher Design, Functional
Composition, Proxy Cryptography

1 Introduction
We expand the idea of a symmetric key cipher being

closed under functional composition to a more general sce-
nario in which there exists a function that converts the ci-
phertext resulting from encrypting with a specific key to the
ciphertext corresponding to encrypting with another key. As
a general design criterion, a symmetric key cipher should
not be closed under functional composition due to the im-
plications on the security of the cipher. However, there are
scenarios in which this property is desirable and can be ob-
tained without reducing the security of a cipher by increas-
ing the computational workload of the cipher. We discuss
the tradeoff between the computational workload and secu-
rity. We show how to construct from any symmetric key
cipher a cipher that allows an entity to convert ciphertexts
between two keys without exposing the plaintext and de-
scribe practical applications of the results. We also discuss
the relationship between such conversions and proxy cryp-
tography.

The motivation for our work arises from a conversion
problem. Is it possible to define a symmetric key cipher
that allows for converting the encryption of text, Ek1(P),

under one key to the encryption of the text under another
key, Ek2(P), with fewer computations than what is required
for decrypting with key k1 then encrypting with key k2?
Consider the case of a virtual private network (VPN) gate-
way transmitting data between users A and B. The gate-
way shares k1 with A and k2 with B. A and B do not
share any key material. With existing symmetric key ci-
phers, the gateway must perform the conversion by decrypt-
ing with k1 then encrypting with k2. Specifically, A com-
putes C1 = Ek1(P) and sends C1 to the gateway. The
gateway computes C2 = Ek2(Dk1(C1)) and sends C2 to
B who computes P = Dk2(C2). Is there a conversion
function G taking a key kg such that

(I) Gkg(Ek1(P)) = Ek2(P) ∀P

where kg depends on k1 and k2, and G requires less work
than applying both E and D with some acceptable trade-
offs? In this application, the goal is to decrease the conver-
sion time. The gateway may have sufficient information to
obtain P and may or may not expose P during the conver-
sion; in some situations it is desirable for part of P to be
obtainable for inspection. The existence of a function G as
shown in (I) has significant implications on the security of
the cipher, which we will discuss.

We are also interested in conversions that prohibit the
gateway from obtaining the ciphertext in situations where
there is no need for it to have access to the plaintext. While
proxy cryptography is oriented towards ensuring the inter-
mediate entity (the proxy) performing the conversion can-
not obtain the plaintext, the work that exists in this area is
focused on public key ciphers; whereas, we require a sym-
metric key cipher in order for the conversion to be appli-
cable in situations involving larger quantities of data and
faster processing than what can be supported with public
key ciphers. Okamoto and Mambo [8] introduced the no-
tion of proxy cryptography. This was further explored by
Blaze, et al. in [1]. Proxy cryptography allows two parties
to publish a key that the proxy will use to convert cipher-
text received from one party into ciphertext that can be de-
crypted with the other party’s private key without the proxy
being able to decrypt the text. Okamoto and Mambo pro-
vide a means of conversion for El Gamal [2] and RSA [9]
that is more efficient than decrypting and re-encrypting. A

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

related problem dealing with ”re-encryption” is discussed
in [3]. In [6], Ivan and Dodis restated the definition from
[1]. While [6] includes a generic form of proxy cryptogra-
phy that works with symmetric key systems, we point out
that the construction is merely the encryption mechanism
used in onion routing [5] with symmetric keys. For entity A
to send data to entity B through a proxy, A performs dou-
ble encryption using two different keys on the plaintext. A
shares the key used for the first encryption with B and the
key used for the second encryption with the proxy entity.
Upon receiving the data from A, the proxy performs one
application of decryption and forwards the data to B, which
performs one decryption to retrieve the plaintext. This con-
struction does not solve our original problem of reducing
the workload, it only moves the work from the gateway to
the originating entity A. Furthermore, it creates an undesir-
able situation in which A and B are required to share key
material. If A and B can securely share a secret key, it is
not necessary for them to communicate via a proxy except
in cases where they are trying to hide the fact that they are
communicating and for which solutions exist.

The contributions of our work are the following. First,
we extend the results in [7] concerning the security of a
symmetric key cipher that is closed under functional com-
position to the more general scenario of a symmetric key ci-
pher for which there exists a conversion function. Second,
we introduce the term secure conversion crypto-system to
refer to a symmetric key cipher combined with a conver-
sion function which allows converting between encryptions
under different keys without exposing the plaintext. We
construct secure conversion crypto-systems from any exist-
ing symmetric key cipher. Third, we prove our conversion
crypto-system constructions are optimal in terms of the or-
der of computational work compared to the security of the
underlying cipher utilized in the construction, and discuss
tradeoffs between the workload and security in terms of the
underlying cipher. Finally, we discuss possible applications
of conversion and secure conversion crypto-systems.

Paper Organization: In Section 2 we define our nota-
tion and introduce the terms for conversion crypto-systems.
In Section 3 we review the attacks from [7] on symmetric
key ciphers which are closed under functional composition.
In Section 4 we generalize the attacks from [7] to symmet-
ric key ciphers for which conversion functions exist. In Sec-
tions 5 and 6 we present constructions and applications of
conversion crypto-systems. Section 7 concludes the paper.

2 Notation

We use the following notation. i indicates any alpha-
numeric symbol.

• P denotes plaintext.

• C, Ci denotes ciphertext.

• S denotes a symmetric key cipher.

• K denotes the key space for a cipher.

• |K| denotes the size of the key space.

• k, ki, ki denote keys.

• E, D denote encryption and decryption, respectively.

• Ek(P), Dk(C) denote encryption and decryption, re-
spectively, using key k.

• Gkg(X) denotes a function G that takes key kg and
input X .

• KS, KSi denotes a key stream

We introduce the terms (secure) conversion function and
(secure) conversion crypto-system. Unless otherwise stated,
our use of the following terms is limited to symmetric key
ciphers within the context of this paper.

• Conversion function refers to a function Gkg(X) that
converts Ek1(P) to Ek2(P) ∀P for any keys k1, k2.
Specifically, Gkg(Ek1(P)) = Ek2(P) ∀P where kg
is dependent on k1 and k2. There is no restriction
on whether the conversion function exposes P during
the conversion and on whether the entity performing
the conversion has sufficient information to obtain P .
Without loss of generality, kg is a single parameter. If
G requires multiple parameters that are dependent on
k1 and/or k2, all parameters are concatenated to form
kg.

• Conversion crypto-system refers to a cipher for which
a conversion function exists along with the conversion
function.

• Secure conversion function refers to a conversion func-
tion that does not expose P during the conversion.
There is no restriction on whether or not the entity
performing the conversion has sufficient information
to obtain P .

• Secure conversion crypto-system refers to a cipher for
which a secure conversion function exists along with
the secure conversion function.

• Proxy function refers to a function Gkg(X) that con-
verts Ek1(P) to Ek2(P) ∀P for any keys k1, k2 with-
out exposing P during the conversion and which does
not provide the entity performing the conversion suffi-
cient information to obtain P . This is a special case of
secure conversion functions.

• Proxy crypto-system refers to a cipher for which a
proxy function exists combined with the proxy func-
tion. Proxy crypto-systems are a subset of secure con-
version crypto-systems.

• Conversion entity and converter will be used inter-
changeably to refer to the entity performing G.

• Proxy refers to the entity performing G in a proxy
crypto-system. This is a special class of conversion
entities.

• Effective key length: Keff is a parameter defined
in terms of the key length, |k|, which indicates the
amount of work required to successfully attack the ci-
pher compared to that of an exhaustive search of all
keys. A cipher for which an exhaustive search of the
keys is the best known attack requires ©(2|k|) work
and has an effective key length of |k|.

3 Closure Under Function Composition

Before describing conversion systems, we review why
closure under functional composition is an undesirable
property for symmetric key ciphers. Within the context
of determining whether not DES [4] is a group, Kaliski,
et al. proved in [7] that any symmetric key cipher that
is closed under functional composition is vulnerable to a
known plaintext attack requiring ©(2|k|/2) work as op-
posed to ©(2|k|) work required for an exhaustive key
search. We will write ©(2|k|/2) as ©(|K|1/2), where K
is the keyspace. Two methods of known plaintext attacks
were described in [7], with a tradeoff between the mem-
ory and the time required to decrypt additional ciphertexts.
We provide a brief summary of these attacks. They do not
provide the actual secret key, but instead provide a series of
keys which, when applied in order, produce the same results
as the secret key.

Assume a symmetric key cipher, S, with keyspace, K, is
closed under functional composition. E and D are the en-
cryption and decryption functions for S, respectively. Then
∀ k1, k2 ∈ K, ∃ k3 ∈ K such that:

(II) Ek3(Ek1(P)) = Ek2(P) ∀ P

The first attack produces a pair of keys, (k1, k3), which
can be used in place of k2 as indicated by (II). Choose
two sets of r keys KA = {ka1, ka2, ...kar} and KB =
{kb1, kb2, ...kbr} from K. For all pairs (kai, kbi), deter-
mine if (II) holds via a meet in the middle attack. Let
C = Ek2(P). Compute Ekai

(P) ∀ kai and Dkbj
(C) ∀

kbj and search for matches. Set k1 to the kai and k3 to
the kbj that produce the match. Test with additional plain-
texts to ensure the match does not hold for only a specific
P . This attack will produce a pair of keys that are equiva-
lent to the single key k2 as opposed to finding k2. The key
pair can be used to decrypt additional ciphertexts that have
been encrypted with k2. Obviously if either Ekai

(P) = C
or Dkbj

(C) = P is found during the search, then k2 has
been found.

The result derives from a meet-in-the-middle variation
of the Birthday Paradox using two samples X and Y . If X
and Y are of size r, and are drawn at random from |K| ele-
ments with each element drawn independently with proba-
bility 1

|K| , then there are
(

|K|
r

)

ways to select X and
(

|K|−r
r

)

ways to select Y such that X
⋂

Y = ∅ and
(

|K|
r

)2
ways to

select X and Y . Thus, the chance that X and Y do not
intersect is:

(III) Pr(X
⋂

Y = ∅) = [(|K|)(|K|−1)...(|K|−2r+1)]
[((|K|)(|K|−1)...(|K|−r+1))2]

If r = α(|K|1/2) for some constant α > 0, then
Pr(X

⋂

Y = ∅) ≈ e−3α2

for sufficiently large |K|. The
cipher S is transformed into this variation of the Birthday
Paradox by using KA and KB as the two samples and
defining intersection to mean there is a k1 ∈ KA and a
k3 ∈ KB such that Ek3(Ek1(P)) = Ek2(P)∀P . The
probability of finding a (k1, k3) is approximately 1−e−3α2

and can be made as close to 1 as desired by increasing α.
The attack requires ©(|K|1/2) time and memory.

The second attack in [7] is referred to as a cycling at-
tack. While it requires less memory than the first attack, it
produces a series of keys that require ©(|K|1/2) time for
decryption in contrast to the two keys produced by the first
method. The idea is to obtain some series of encryptions
and decryptions that started with P and C, respectively, and
intersect. Specifically, Ekai

(Ekai−1
...(Eka2

(Eka1
(P))))

= Dkbj
(Dkbj−1

...(Dkb2
(Dkb1

(C)))) for randomly chosen
kai, kbj ∈ K. The result can be verified by testing
with a few additional plaintexts. An average of |K|1/2

steps are needed before the two sides match. Like the
first attack, k2 is not found. However, the equivalent
key for k2 that is produced this time is the series of
kai’s and kbj’s. To decrypt additional ciphertexts en-
crypted with k2, Dka1

(Dka2
...(Dkai−1

(Dkai
(Dkbj

(Dkbj−1

... (Dkb2
(Dkb1

(C))))))) must be computed. ©(|K|1/2)
space is needed for storing the keys. Overall, the algorithm
requires ©(|K|(1+w)/2) time and space for small w.

4 Generalization of Attacks to Conversion
Functions

We now generalize the first attack from [7] to an attack
on a symmetric key cipher for which a conversion function
exists. A symmetric key cipher which is closed under func-
tional composition (which [7] addressed) is a special case
of a symmetric key cipher for which a conversion function
exists, specifically the case where the conversion function is
the cipher. Notice that if a conversion function exists, then
|KG| ≥ |K|. If not, then the existence of a kg for every
pair of keys k1, k2 ∈ K requires at least one kg to map a
k1 to more than one k2.

Lemma I: For a symmetric key cipher S with keyspace
K and encryption function E, if there exists a function G
taking parameter kg ∈ KG, |KG| = |K|, and ∀k1, k2 ∈
K, ∃ a kg for which Gkg(Ek1(P)) = Ek2(P) ∀P then
there exists a ©(|K|1/2) known plaintext attack on S.

Proof: The cipher S is transformed as before into the
variation of the Birthday Paradox by using KA and KB as
the two samples and defining intersection to mean there is a
kai in KA and a kbj in KB such that Gkbj

(Ekai
(P)) =

Ek2(P). Now KB is from KG instead of K. Since
|KG| = |K|, (III) holds with X = KA and Y = KB.

Lemma II: For a symmetric key cipher S with keyspace
K and encryption function E, if there exists a function G
taking parameter kg ∈ G, |KG| ≥ |K|, ∀k1, k2 ∈ K ∃
one and only one kg for which Gkg(Ek1(P)) = Ek2(P)
∀P , and the work of G is ©(work of E), then there exists a
known plaintext attack on S that is ©(|K|1/2).

Proof: Let KA denote the set of r keys chosen from
K and let KB denote the set of r keys chosen from KG.
When |KG| ≥ |K|, for any element in KB, there may or
may not be an element in K that we can combine with it
to obtain a key equivalent to k2. Without loss of generality,
choose KA first. There are r elements in KG that can cre-
ate a match with some element of K and

(

|KG|−r
r

)

ways to
select r elements from KG such that no match is formed.
Let Pr[k1, k3] be the probability of finding a k1 from KA
and a k3 from KB, and let Pr[(k1, k3)] denote the proba-
bility of not finding such a pair.

Pr[k1, k3] = 1 − Pr[(k1, k3)]

Pr[(k1, k3)] =
(

|K|
r

)(

|KG|−r
r

)

/
(

|KG|
r

)(

|K|
r

)

≥
(

|K|
r

)(

|K|−r
r

)

/
(

|K|
r

)2

with equality holding when |KG| = |K|, and

Pr[(k1, k3)| |KG| ≥ |K|] =

1 − Pr[(k1, k3)| |KG| ≥ |K|]

≤ 1 − Pr[(k1, k3)| |KG| = |K|]

As the probability of success decreases, the number of keys
to try on average before finding a match increases from the
(|K|1/2) average obtained when |KG| = |K|.

Lemma I implies that for any symmetric key cipher with
a conversion function taking parameters (keys) of the same
length as the key length, |k|, of the cipher, the effective key
length of the cipher is less than or equal to 1

2 |k|. Equality
may not hold due to the possibility that G may require less
work than E or provide some other speedup aside from the
square root reduction in the number of keys to try to the
extent that a brute force attack is ©(2

1

2
|k|−w) as opposed to

©(2
1

2
|k|) for some w > 0. To obtain security comparable

to a brute force attack over all keys of length k,©(2|k|), the
key length must at least be doubled to 2|k|.

5 Conversion Crypto-systems

5.1 Secure Conversion Construction

We now define a general construction for symmetric key
secure conversion crypto-systems. First, we consider all
symmetric key ciphers and provide two variations for the
defining keys. The variations differ in the workload re-
quired of each entity and in which entities share key ma-
terial. Second, we provide a variation that is restricted to
stream ciphers and offers advantages over the general con-
struction. A conversion function can be constructed (triv-

ially) for any symmetric key cipher by defining Gkg(C) to
be Ek2

(Dk1
(C)) to convert Ek1

(P) to Ek2
(X). This is not

a secure system under our definition due to the fact that the
plaintext is exposed during the conversion.

We define the following key format and function for use
in our constructions:

• Let k = (k1, k2, f lag1, f lag2) for keys k1, k2 with
|k1| = |k2| and single bit flags flag1, f lag2. The
flagi and ki values will be used to denote whether to
encrypt, decrypt or do nothing. A flagi value of 0 in-
dicates to encrypt with key ki and a value of 1 indicates
to decrypt with key ki. If ki is null, do nothing.

• Let Fk(X) denote F (E, D, X, k) and be defined as
applying E or D, as indicated by k, to X . From k, k1

and flag1 are used for the first application, and k2 and
flag2 are used for the second application of E or D.

The first method for defining the keys requires each pair
of the three entities to share some key material. For any
symmetric key cipher, Fk(X) is a symmetric key secure
conversion crypto-system with keys kA = (kab, ka, 0, 0),
kg = (ka, kb, 1, 0) and kB = (kb, kab, 1, 1). To send plain-
text P from A to B via a converter, A computes C1 =
FkA(P), which is the equivalent of the double encryption
Eka

(Ekab
(P)), and sends C1 to the converter. The con-

verter computes C2 = Fkg(C1), which is the equivalent
of Ekb

(Dka
(C1)), and sends C2 to B. To obtain P , B

computes FkB(C2), which is the equivalent of the double
decryption Dkab

(Dkb
(C2)).

The second method for defining the keys is basically
onion routing. It does not require any shared key material
between the converter and B in order for B to receive mes-
sages from A. The key values are kA = (kab, ka, 0, 0),
kg = (ka, null, 1, 0) and kB = (kab, null, 1, 0).

There are subtle differences between the two sets of keys.
Even though the first construction imposes twice the work-
load on each entity compared to a single application of a
cipher, whereas the second construction only increases the
workload of one entity, the first construction offers a po-
tential advantage in how the key material is shared. While
in both cases A and B must share some key material, in
the first case no entity has the entire key of any other en-
tity. In the second case, A has the entire key used by each
of the other two entities. B must share some key material
with every entity with which it exchanges data. In the first
case, B and the converter share kb for use in all communi-
cations and B can use kab with some A′ 6= A if desired.
In the extreme case, kab can be public, though this has a
downside in that if it is possible for an adversary to ac-
cess memory within the converter as Fkg(C1) is being com-
puted and obtain Dka

(C1), then the adversary can compute
Dkab

(Dka
(C1)) and obtain P . In the second case B must

establish a shared secret key with every entity with which

it wishes to communicate (eliminating the need for a con-
version entity). B cannot re-use kab with some A′ 6= A
because then A can decrypt every message A′ sends to B.
While the construction does not require shared key mate-
rial between B and the converter for B to receive messages,
they must share key material if B is also allowed to send
messages.

An alternative way of viewing the first construction re-
quires a symmetric key cipher that has r rounds. In the first
method, let Er1,r2

k1,k2 denote running r1 rounds of encryption
using key k1 followed by r2 rounds of encryption using
key k2. Let F and the keys be defined as before. Each en-
tity will compute two key expansions, one for each part of
its key, use the first key expansion for a specified number of
rounds and use the second key expansion for the remaining
number of rounds. For example, A will run r1 rounds of en-
cryption with the expanded kab and r2 = r − r1 rounds of
encryption with the expanded ka. The converter will run r2
rounds of decryption using the expanded ka and r2 rounds
of encryption using the expanded kb. B will decrypt by run-
ning r1 rounds with the expanded kab and r2 rounds with
the expanded kb. The converter requires a total of 2 ∗ (r2)
rounds. Setting r1 = r2 results in each entity running r
rounds. Specifically,

(IV) A computes C1 = Er1,r2
kab,ka

(P), the converter
computes C1 = Er2

kb
(Dr2

ka
(C1)), and B computes P =

Dr2,r1
kb,kab

(C2).
In this case, instead of viewing the resulting system as hav-
ing twice the work of the underlying cipher but the security
equivalent to that of the underlying cipher, the system can
be thought of as having the same amount of work as the
underlying cipher with an effective key length of 1

2 the key
length of the underlying cipher. This construction is equiv-
alent to using two applications of a reduced round version
of the underlying cipher, thus the number of rounds cho-
sen for each step must be large enough avoid making the
reduced round version susceptible to other attacks, such as
differential and linear cryptanalysis.

If the cipher is a stream cipher (or a block cipher run
in a stream cipher mode, for example, OFB or CTR) such
that C = KS ⊕ P , where KS is the key stream, then it
is not necessary for A and B to share any key material
if the keys are kA = (ka, null, 0, 0), kg = (kb, ka, 1, 1)
and kB = (kb, null, 1, 0). Let KSa and KSb denote the
key streams produced by E when using ka and kb respec-
tively. A computes C1 = FkA

(P), which is the equivalent
of KSa ⊕ P . The converter computes C2 = Fkg(C1),
which is the equivalent of KSa ⊕ KSb ⊕ C1. B computes
FkA

(P), which is the equivalent to KSb ⊕ C2. The con-
verter can compute KSa ⊕KSb ⊕C1 either by computing
KSb ⊕ C1 or KSa ⊕ KSb first. There are several advan-
tages to this construction. First, A and B do not share any
key material. Second, P is not revealed during the conver-

sion, though the converter does have the information needed
to obtain P . Third, it is not necessary that A and B incur the
minor overhead related to utilizing F in place of the under-
lying stream cipher. F may be run only by the converter. A
and B can just apply the stream cipher directly. We discuss
the potential use of the stream cipher version in Section 6

Since secure conversion functions are special cases of
conversion functions, by Lemma 1, if the secure conversion
function takes key material kg of length |k| for the sym-
metric key cipher (or is the same function as the cipher),
then |KG| = |K| and an attack of ©(|K|1/2) exists and
Keff ≤ 1

2 |k|. In our constructions, the key length for both
the encryption and conversion functions are twice that of
the underlying cipher’s key length (excluding the flag bits
in KG), resulting in Keff = |k| and thus are the best pos-
sible in terms of security versus key length.

5.2 Symmetric Key Proxy Crypto-Systems

Our general construction of a symmetric key crypto-
system satisfies the definition of a proxy crypto-system.
However, since it requires A and B to share key material, it
is not obvious what benefit this system provides outside of
scenarios aimed at preventing traffic analysis. The bounds
we provide for conversion crypto-systems apply to symmet-
ric key proxy crypto-systems because the proxy case is a
subset of the general conversion case.

The stream cipher specific version does not satisfy the
definition of a proxy crypto-system because the converter
has enough information to obtain the plaintext even though
it does not do so by definition of the crypto-system. The
converter is a proxy if it can be told kg without knowing
kA and/or kB . This may be possible if the crypto-system
is defined in a manner in which kg is not merely the con-
catenation of key material from the endpoints. Through the
use of an external device, such as a smart card or a secure
crypto processor, which given kA and kB , (or already con-
tains ka and kb and is provided some identifying informa-
tion indicating to use the keys for A and B), returns kg , it
may be possible to provide the appropriate key to the con-
verter without revealing key material from A and B.

6 Applications
In regards to our original motivation of reducing the con-

verter’s workload, the generic symmetric key secure conver-
sion crypto-system construction solves this when the sys-
tem is written in the form defined in (IV) and the number of
rounds required of the converter is below that of the original
cipher (at a cost of reduced security). Furthermore, even in
its general form (as opposed to requiring a cipher consist-
ing of rounds), it offers the advantage that the plaintext is
not exposed during the conversion. In existing applications
that convert ciphertext via the basic mode of decrypting then
encrypting, whether or not the plaintext is accessible tem-
porarily during the conversion (in part due to intermediate

results being written to memory), depends on the applica-
tion and implementation. With a secure conversion crypto-
system, it is not a concern if intermediate results are written
to temporary files or insecure memory during the conver-
sion because it is still encrypted under one key.

The main disadvantage of the construction is that A and
B must share key material, which results in implementation
issues. If the converter needs to inspect some of the pack-
ets, it must establish the key material shared between A and
B. Otherwise, if A and B can establish shared key mate-
rial on their own, one of them must send the shared key to
the converter. However, if A and B can establish a shared
key, it can be argued there is no need for a conversion entity
unless it is used in preventing traffic analysis. If the con-
verter does not need to inspect any packets, but establishes
the shared key material between A and B, then the con-
verter can obtain the plaintext even though it does not do so
if the algorithm is applied as specified. This is not preferred
in any application that requires a proxy as opposed to just
a secure converter. Scenarios where a converter may need
to inspect packets include VPN gateways and firewalls. In
some applications, the gateway or firewall replaces parts of
the contents, such as in application aware NAT where IP
addresses embedded in the application data are replaced. A
scenario where the converter does not need to inspect pack-
ets is a file system in which the files are encrypted under one
key and sent to a requesting user encrypted with the user’s
key.

The construction specific to stream ciphers does not re-
quire A and B to share key material. It also provides the ad-
vantage of being a secure conversion system, with the con-
verter being able to inspect data if required but otherwise
not exposing the plaintext during the conversion. There is
no overhead for A and B, as they both continue to perform
a single application of the stream cipher. There are mech-
anisms by which the converter cannot obtain the plaintext.
For example, a hardware implementation that runs two in-
stances of the key stream generator and XORs their outputs
then makes the resulting key stream available for XORing
with the data. The keys may be configurable in hardware
and not accessible by any software applications on the con-
verter.

7 Conclusions

We have shown that for any symmetric key cipher S with
key space K, if there exists a conversion function requiring
a key whose length is the same as the length of the ele-
ments of K and whose work is ©(S) then there exists an
©(|K|1/2) attack. If the key length for the conversion func-
tion is greater than the length of the keys in K and/or the
work of the conversion function is Ω(Sc) for some c > 1,
then the existence of an attack requiring less work than an
exhaustive key search on K depends on the size of the con-

version function’s key space and its workload. Our work
poses the question of whether or not an actual symmet-
ric key cipher can be designed with a conversion function
(other than decrypt and encrypt) such that a variable tradeoff
between workload and security (effective key length) can be
set per application.

We provided methods for constructing a secure conver-
sion crypto-system from any symmetric key cipher that can
convert text between the ciphertext corresponding to en-
cryption under one key to that corresponding to encryption
under a second key without exposing the plaintext during
the conversion. The work of the resulting system is twice
that of the underlying cipher with an effective key length of
that of the underlying cipher. If the underlying cipher con-
sists of multiple rounds, the conversion crypto-system can
be defined such that the number of rounds performed by the
sender, converter and receiver vary according to the desired
level of security and workload. If the underlying cipher is a
stream cipher, the conversion can be implemented in a man-
ner requiring no additional work on the sending and receiv-
ing entities, and either allowing or disallowing the converter
access to the plaintext. The security is unchanged from that
of the basic stream cipher with the added benefit that the
plaintext is not exposed during the conversion.

References

[1] M. Blaze, G. Bleumer, and M. Strauss. Atomic Proxy Cryp-
tography and Protocol Divertibility. In Proceedings of EU-
ROCRYPT ’98, LNCS 1403, Springer-Verlag, May 1998.

[2] T. ElGamal. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985.

[3] P. Fairbrother. An Improved Construction for Universal Re-
encryption. In Workshop in Privacy Enhancing Technologies,
May 2004.

[4] FIPS 46-3. Data Encryption Standard (DES), 1999.
[5] D. Goldschlag, M. Reed, and P. Syverson. Onion Routing for

Anonymous and Private Internet Connections. Communica-
tions of the ACM (USA), 42(2):39–41, 1999.

[6] A. Ivan and Y. Dodis. Proxy Cryptography Revisted. In
Proceedings of the Network and Distributed Systems Security
Symposium (NDSS), February 2003.

[7] B. Kaliski, R. Rivest, and A. Sherman. Is the Data Encryption
Standard a Group? Journal of Cryptology, pages 3–36, 1988.

[8] Okamoto and Mambo. Proxy Cryptosystems: Delegation of
Power to Decrypt Ciphertexts. IEICE Trans. Fund. Eletronic
Communications and Comp Sci. E80-A/1, pages 54–63, 1997.

[9] RSA Laboratories. PKCS #1: RSA Encryption Standard, ver-
sion 1.5 edition, November 1993.

