View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

An Email Worm Vaccine Architecture

Stelios Sidiroglou, John Ioannidis, Angelos D. Keromytis, and Salvatore J. Stolfo

Department of Computer Science, Columbia University
{stelios, ji, angelos, sal}@cs.columbia.edu

Abstract. We present an architecture for detecting “zero-day” worms and viruses
in incoming email. Our main idea is to intercept every incoming message, pre-
scan it for potentially dangerous attachments, and only deliver messages that are
deemed safe. Unlike traditional scanning techniques that rely on some form of
pattern matching (signatures), we use behavior-based anomaly detection. Under
our approach, we “open” all suspicious attachments inside an instrumented vir-
tual machine looking for dangerous actions, such as writing to the Windows reg-
istry, and flag suspicious messages. The attachment processing can be offloaded
to a cluster of ancillary machines (as many as are needed to keep up with a site’s
email load), thus not imposing any computational load on the mail server. Mes-
sages flagged are put in a “quarantine” area for further, more labor-intensive pro-
cessing. Our implementation shows that we can use a large number of malware-
checking VMs operating in parallel to cope with high loads. Finally, we show
that we are able to detect the actions of all malicious software we tested, while
keeping the false positive rate to under 5%.

1 Introduction

Recent incidents have demonstrated the ability of email-based worms and viruses (‘“mal-
ware”) to infect large numbers of hosts very rapidly [1,2]. Email malware propagates
as executable attachments that users are tricked into opening, thus causing the malig-
nant code to run and propagate, usually by sending copies of itself to all the entries in
the user’s address file. While email attachments are not the only vector by which mal-
ware propagates, they pose a substantial threat that merits special treatment, especially
since attachments have the advantage (from the defender’s perspective) that they can be
caught before they hit the user’s machine. There are numerous approaches to defending
against malicious software, the usual example being the various antivirus packages.

Virus scanners are predominately signature-based, identifying security threats by
scanning files for certain byte sequences that match already known patterns of mali-
cious code. This translates to a constant need for maintaining an up-to-date signature
database. The problem is further exacerbated by the lag in the cycle of detecting a new
attack and the deployment of the corresponding signature, especially when humans are
involved in the process. Many modern email-borne viruses do not rely on software bugs;
rather, they rely on humans to click on the attachments, thus activating them.

The need for frequent updates and the inherent delay between the creation of ma-
licious software, and the detection and deployment of signatures or patches relegate
signature-based techniques to a secondary role in the active security of systems.

https://core.ac.uk/display/161440949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Behavior-based mechanisms characterize software based on the perceived effects
that the program has on the examined system, instead of relying on distinct signatures
of that software. The obvious benefit of this approach is that it can detect new attacks
(no prior knowledge or signatures required) as long as there is some differentiation
between the behavior of a malicious and normal piece of software. The majority of
these behavior-based systems rely on anomaly detection algorithms for their classifi-
cation and thus detection of malignant code. Anomaly-detection algorithms work by
constructing models of normal behavior and subsequently checking observed behavior
against these models for any statistically significant variations that may hint at malicious
behavior. The success of an anomaly detection algorithm depends on the choice of an
accurate behavior model. Current host-based IDS systems employ anomaly detection
algorithms that are based on network activity, system call, and file system monitoring.
The reason behind the absence of reliable host-based IDS that are based on the fore-
mentioned models has primarily to do with the overbearing computational overhead
associated with extracting behavior models from irregular and high-volume events. In
particular, analyzing all system calls in a system imposes a considerable overhead due
to the sheer volume of events; correlating this with the highly irregular nature of sys-
tem calls in general imposes a considerable computational overhead with a high false
positive rate as a further disadvantage.

Our approach combines the ability of a host-based IDS to detect previously unseen
malware with the concept of a mail-server based filtering solution. To wit, we scan each
incoming mail message at the mail server for potentially dangerous attachments. Every
such attachment is sent to one of a set of protected environments running various mail
readers (MUAs — Mail User Agents) along with a host-based IDS. In our particular
instance, the IDS looks for registry accesses which the MUA is not likely to perform.
Using the Windows registry allows for a more accurate correlation of events given that
it is an integral component of the Windows operating system and helps reduce the false
positive rate associated with detecting malicious behavior. The protected environment
opens each executable attachment, runs it, and if the IDS detects suspicious behavior, it
notifies the mailserver to discard the corresponding email message. The entire environ-
ment is running under VMware so that no clean-up needs to be performed; the VM is
discarded and a new one is spawned for each new check.

The advantage of such an approach is that adding compute power (faster and/or
more machines) to the checking components allows a site to customize the resources
needed for defense to its needs. Different environments can be set up running different
MUAs, selected based on the local user population. Such an approach also does not
preclude using traditional techniques such as pattern-matching to catch known viruses.

Our implementation shows that we can use a large number of malware-checking
VMs operating in parallel to cope with high loads. The average time for downloading
the message, detecting the attack and updating the MTA message queue was 28 sec-
onds. Finally, we show that we are able to detect the actions of all malicious software
we tested, while keeping the false positive rate to under 5%. Combining additional de-
tectors will enable the use of data correlation algorithms that can be used, in turn, to
reduce the false positive rate.

2 System Architecture

(5) If mail did not contain malicious
attachments, it is forwarded to user

Internet

{
(4) If worm detected, drop

() MatArvps email, otherwise forward

sends response.

/\(3) Email worm detector,

Mail Server Virtual Machine Cluster

(2) If it contains attachment,
forward to VM cluster

Fig. 1. System Architecture

Our architecture makes use of several components that have been developed for
other purposes. Its novelty lies in the combination of all the components in detecting and
deterring zero-day email worms from propagating using an entirely automated process.
As illustrated in Figure 1, our system consists of three main components:

— A virtual machine cluster, which houses protected environments that run instances
of different Mail User Agents (MUAs) and operating systems.

— A host-based IDS that is responsible for detecting anomalous behavior.

— An email-worm-vaccine aware Mail Transport Agent (MTA) that classifies and
manages potentially malicious email messages.

In the following sections we discuss the individual components in detail.

2.1 Virtual Machine

Host-based Intrusion Detection Systems (IDS) must, by definition, run the potentially
malicious application on the host machine. Allowing the attack to run locally renders
that particular machine useless for further use. For this reason, the malicious software
is tested on an isolated, controlled environment that will provide the level of protection
required. An ideal candidate is a virtual machine environment that can be effectively
flushed after each use without further impact to the underlying system. Specifically, we
use VMware images that contain the base system that we use across the VM-cluster,
which has the advantage of providing an identical test case for use with the host-based
IDS. An additional benefit of using a centralized VM-based architecture is that we avoid
the need to deploy IDS and mail filtering software on large numbers of desktops.

2.2 Host-based Intrusion Detection

In order to be able to detect zero-day email worms, we need a non signature-based
approach. For this purpose, we employ a behavior based mechanism as the anomaly
detection component of our architecture.

Behavior-based mechanisms extract and characterize software based on the per-
ceived effects that the program has on the examined system in lieu of relying on distinct
signatures of that software. The obvious benefit of this approach is that it can detect new
attacks (no prior knowledge or signatures required) as long as there is some differentia-
tion between the behavior of a malicious and the behavior of a normal piece of software.
The majority of these behavior-based systems rely on anomaly detection algorithms for
their classification and thus detection of malignant code. Anomaly detection algorithms
work by constructing models of normal behavior and subsequently checking observed
behavior against these models for any variations that may hint at malicious behavior. As
mentioned earlier, the success of an anomaly- detection algorithm is contingent upon the
choice of behavior model. Current host-based IDS systems employ anomaly detection
algorithms that are based on network activity, system call and file system monitoring.
The reason behind the absence of reliable host-based IDS that are based on the afore-
mentioned models has primarily to do with the high computational overhead associated
with extracting behavior models from irregular and high-volume events. In particular,
analyzing all system calls in a system imposes an considerable overhead due to the
sheer volume of events; correlating this with the highly irregular nature of system calls
in general imposes a considerable computational overhead with the a high false positive
rate as appendage.

23 MTA

Another critical component of our architecture is an email-worm-vaccine aware Mail
Transfer Agent (MTA). The purpose of this augmented MTA’s components are:

— Classification and filtering of potentially malicious email
— Communication with the host-based IDS cluster
— Maintenance of message queue

The MTA, as a first line of defense, will be responsible for imposing message classi-
fication and filtering. A tightly-coupled learning component will facilitate the decision
process by receiving feedback from the host-based IDS. The filtering component of the
MTA will conceptually reside in front of the classification component. Filtering will be
the primary means by which to avoid denial-of-service attacks on the underlying sys-
tem. For example, in the case of a mass email-worm outbreak, once the IDS component
identifies a message as containing a malicious payload all subsequent email containing
identical payloads will be sent directly to the quarantine component, bypassing the rest
of the system. This case becomes much more difficult to solve for polymorphic and
metamorphic email-worms; Spinellis [3] shows that it is an NP-hard problem. The only
viable plan of action in the presence of a high-volume polymorphic outbreak would be
to filter all incoming email that fit the high-level characteristics (having an attachment

or originating from a particular source) by either pushing them directly to the quarantine
or replying with a 451 (“transient error, try again later”’) message.

Classification of messages would be performed on the basis of a set of heuristics
such as the presence of attachments or embedded URLs. Once a message has been
classified as suspicious, it is sent to the host-based IDS VM cluster. At that point, the
messages are placed in temporary queues waiting for a decision from the IDS.

2.4 Mail User Agent

The final component of the system architecture is the Mail User Agent (MUA). The
primary purpose of the MUA is the retrieval and execution of potentially malicious
email. The MUA, in turn, simulates the behavior of a naiive user by opening all email
attachments and clicking on all available URLs. The reason that we use an MUA instead
of simply downloading the email directly is so that we can expose any vulnerabilities
that are directly related to using the particular MUA.

3 Implementation

Vmware Image

(1) Message downloaded by
running Windows XP MUA

pr
ut| T

o]
(2) Attachment extracted and run by
“user’

= .
P Clown
Message Received

Postfix MTA

Registry Anorfialy Detection
Windows Registry

(3) Application runs and updates the N
registry §) Inform MTA that email may ‘*f—/”‘

be malicious

O3 posiony
Pythor| Seript (1) RAD detects anomalous
behavior

Fig. 2. System Implementation (left), with MTA details (right)

Our prototype implementation, shown in Figure 2(left) consists of four components:
RAD [4], VMware [5], Postfix [6] and Microsoft Outlook [7]. These components inter-
act to provide a secure environment, detect anomalous behavior, manage email queues
and simulate naive user behavior respectively. In Section 4 we evaluate the performance
of our approach. Here, we introduce the components and discuss the implementation.

3.1 RAD

In order to detect anomalous behavior, namely email worms, we employ a RAD (Reg-
istry Anomaly Detection) [4], which monitors in real-time accesses to the Windows
registry and detects malicious behavior.

The Windows Registry is an integral component of the Windows operating system,
frequently used by a majority of programs. These characteristics elevate the Registry to
prime candidate position as source of audit data. RAD attaches a sensor on the Registry
and applies the acquired information to an anomaly detector that can correlate activity
that corresponds to malicious software.

The main advantage of using RAD is its ability to accurately detect anomalous be-
havior with a low computational overhead. The low overhead makes it a viable solution
for real-time detection of malicious software.

RAD constructs a data model from five features extracted directly from the registry
sensor. These features are: the name of the process accessing the registry, the type of
query sent to the registry, the key that is being accessed, the response from the registry,
and the value of the key that is being accessed.

Using the features thus monitored from the registry accesses, RAD builds a model
from normal (non-attack) data. This model is then used to classify registry accesses as
either normal or malicious.

3.2 VMware

VMware allows multiple virtual machines, each running its own operating system, to
co-exist on a single real machine. Potentially dangerous applications can thus be iso-
lated from each other by running them in separate virtual machines. We prepare a single
VMware image that contains an already trained model for our host-based IDS and the
applications that we are testing, namely, standard Microsoft products (Office, Outlook,
Outlook express, Messenger) and various other popular applications.

The image is used for a single detection session; testing a single email attachment
at a time. For this purpose we set the VMware disk mode to “non-persistent, so that
any changes made to “disk” are lost when the virtual machine is terminated. Having the
disk in nonpersistent mode allows for one additional advantage, the use of the repeatable
resume feature. Repeatable resume allows for a virtual machine to quickly start from a
resumed state bypassing the need to reboot the operating system any time a new virtual
machine environment is needed.

3.3 MTA

We based our implementation on the smtp.proxy open-source package as a front-
end for any MTA. Figure 2(right) shows the components of this implementation. Smtp .
proxy is a relatively simple piece of code that listens on the SMTP port (port 25), wait-
ing for incoming SMTP connections. When a connection arrives, the proxy contacts the
real MTA (in our case, Postfix [6]) and goes through the initial HELO/MAIL/RCPT phase

with both sides. Thus, our proxy does not have to know any special site-specific restric-
tions on acceptable domains, anti-spam measures, and so on, that the Postfix administra-
tor may have set up. Configuration details such as preventing open-relays or maximiz-
ing concurrency are beyond the scope of this paper — ours is a proof-of-concept, not
a highly-optimized implementation. When the remote MTA sends the DATA command,
followed by the body of the email message, the proxy saves it in a uniquely-named tem-
porary file, and invokes a script which we wrote, clown, after it has received the entire
message, but before it responds to the DATA command of the remote MTA.

A copy of clown is forked for every message received; it therefore keeps a tally of
how many copies of itself are currently running, waiting for the cleanup VMs to return.
If a limit, chosen so that the queue of unprocessed messages does not grow steadily, is
exceeded, clown returns a 451 (“transient error, try again later”’) message, which causes
smtp.proxy to pass that on to the remote MTA so that the mail message can be processed
later. The local copy is then removed.

Once clown receives control, it runs the file with the contents of the email mes-
sage through a MIME normalizer (a separate big problem in itself, and outside the
scope of this paper); it then passes a copy of the message on to one of the cleanup
virtual machines and waits for the VM to finish processing. The copy passed to the
VM includes an extra header with the IP address and port to contact (e.g., X—Clown:
128.59.16.20:12588). The VM will respond with an indication as to whether the
message is acceptable or not. If the message is deemed safe, clown will simply return
with a 0 exit code, at which point smp.proxy will pass the file on to the real MTA for
eventual delivery. Otherwise, a 554 (“permanent error”) response will be given to the
proxy, which will pass it on to the remote MTA. The copy of the message is discarded,
clown exits, and another queued message is processed.

We had a choice between a pull-model and a push-model for passing the messages
on to the VM cluster. We opted for the pull-model, as it made implementation easier.
To wit, clown deposits every message in a POP3 repository, which, for the particular
POP3 server we use, happens to be the Unix mail file format. As each VM becomes
available, it pulls the topmost (oldest) message from the POP3 server, processes it, and
then connects to the TCP port specified in the X-Clown : header.

To ward against VM cluster failures or excessive load, each blocked clown process
times out after a preset amount of time. If this timeout occurs, the corresponding mes-
sage is removed from the POP3 server (if it is still there), and a 451 error code is sent
to the remote MTA to indicate a transient error, so that the latter can attempt to re-send
the message at a later time.

34 MUA

The Mail User Agent is the software that the user usually interacts with when dealing
with email. In our architecture, the MUA is responsible for simulating the behavior of
a naive user, opening every attachment and clicking on every link. Specifically, we use
the popular Microsoft Outlook MUA [7] and the EZdetach [8] plug-in. EZdetach can
extract and save Outlook attachments from messages, as well as run custom scripts on
these attachments.

Outlook connects to the email-worm MTA through a secure IMAP connection and
downloads suspicious messages from the server. As soon as a message is downloaded,
attachments are extracted and run with administrator privileges. If these attachments
contain malicious logic, RAD will detect anomalous behavior and notify clown.

4 Evaluation and Results

In this section we discuss the preliminary results of our proof-of-concept implemen-
tation. The results presented in this section are a coarse indication of overall system
performance. The optimization of the system for deployment in large-scale organiza-
tions is the subject of future work.

ROC Curves for Regisiry Record Data Set

08 | T

06

Detection Rate

ot

02

L L
0 001 0.02 0.03 0.04 0.05 0.06
False Positive Rate

Fig. 3. Figure showing results of varying the threshold on the data set.

4.1 RAD

In order to evaluate the RAD system, we used the publicly available data set that can be
foundat http://www.cs.columbia.edu/ids/rad. The training data we used
were collected over two days of “standard” user usage. Standard usage is defined as
logging in, surfing the web, reading email, using a word processor, then logging off.

This simulated use of Windows produced a training data set (clean of attacks) con-
sisting of 500,000 records. The attack data set (mixture of regular usage and embedded
attacks) consisted of 300,000 records. The attack data set includes an array of pub-
licly available attacks such as Back Orifice, aimrecover, browlist, [0phtcrack, runattack,
whackmole and setuptrojan.

The natural way to evaluate the performance of an IDS is to compute the detection
rate and the false positive rate. Detection rate is defined as the percentage of malicious
programs that are correctly identified as anomalous by the system. The false positive
rate is, in turn, defined as the percentage of normal programs diagnosed as malignant.

As illustrated in Figure 3, in order to achieve 100% detection rate, a false positive rate
of 5% needs to be tolerated.

4.2 Timing

To test the efficacy of our system, we evaluated the performance of our system, in terms
of detection latency, against real-world exploits. The tests were conducted on a PC with
a 2GHz Intel P4 processor and 1GB of RAM, running windows XP Professional as the
host operating system and Windows XP Professional as the guest OS under VM Ware
Workstation version 4.0.5.

The average time for downloading the message, detecting the attack and updating
the MTA message queue was 28 seconds. Downloading the message and detecting us-
ing RAD all happen in sub-second times. The additional latency is imposed by the
Microsoft Outlook MUA, as this is the minimum checking period allowed.

We can avoid this performance overhead by using a lighter-weight MUA (we im-
plemented a simple IMAP client written in Python) but we would like to maintain the
ability of detecting client-specific attacks. A hybrid approach can be used in cases where
the extra overhead is not acceptable. In this scenario, the light-weight client would be
used to check for suspicious attachments as a first step, and if none are found, continue
with using a more widely used MUA.

Of further interest to the overall system performance is the cost of instantiating
pristine VMWare images. To avoid the cost of moving around very large VMWare
images which are in the range of 3GB, we set VMWare disks in non persistent mode
and use the “repeatable resume” feature to quickly restart from a ready state. Restarting
VMWare when using these features takes approximately 4 seconds.

Message Avg|Virus Avg|Spam Avg|Delivered Avg
84966 4922 29726 50317

Table 1. Daily average email statistics collected from the Columbia Univerisity Computer
Science department.

In order to get a rough estimate on the scalability of our system, we collected statis-
tics from the mail server at Columbia University’s Computer Science department. Ta-
ble 1 illustrates the daily average email characteristics for the time period of December
25th 2005 to January 24th 2005 as collected from the Sophos PureMessage email man-
agement solution. From the 50000 email messages received, approximately 8% contain
attachments [9]. This translates to 4025 email attachments that need to be processed
by our system. Given that processing time per email attachment is approximately 30
seconds, the system can process 3000 email attachments per day per VM. As VM Ware
ESX server can scale up to 80 powered-on virtual machines, our organization can rely
on a single machine to handle daily email processing requirements. Obviously, these
back-of-the-envelope calculations do not take into account the arrival rates and expected

delay per message but they serve as a rough estimate of what resources are required to
deal with an enterprise environment.

5 Discussion

The two major goals of our architecture are scalability and reliability. Scalability will
enable the use of the email worm detection architecture in a large-scale enterprise envi-
ronment. To achieve this requirement, we need to minimize the rate of false positives in
the host-based IDS, and speed up the detection stage on the virtual machine. Reducing
the rate of false positives can be achieved by combining the RAD system with addi-
tional detectors such as the Windows Event Log data. This combination will allow for
the use of data correlation algorithms that can be used, in turn, to produce more accurate
behavior models. Reducing the time needed to detect malicious activity can be achieved
by retrofitting MUASs to minimize the delay of checking and downloading messages.

Reliability will help our architecture in dealing with more complex issues such as
targeted attacks against the system and encrypted email. One of the fundamental as-
sumptions that our system makes is that the virtual machine can mimic the exact be-
havior of an operating system. If a worm can detect the presence of a virtual machine,
it could potentially vary its behavior avoiding detection. The virtual machine that we
choose for deployment in our system should successfully conceal its presence to the
guest operating system as much as possible. In the absence of obvious clues from the
VM, there are other techniques that an attacker can use (although not as reliable) to
detect the presence of a virtual machine such as timing attacks efc. For this purpose, we
can insert logic that identifies this sort of attempts.

The advent of end-to-end encryption mandates that our architecture should include
a solution to address this problem. Storing all user keys on the mail server is not the
best solution to this problem. However many organizations already require all email to
be decryptable by them for legal reasons (e.g., SEC regulations that cover all financial
institutions in the US). Providing hooks to the MUAs in the virtual machine is one
possible solution. This problem remains open for future consideration.

6 Related Work

Computer viruses have been studied extensively over the last several years. Cohen was
the first to define and describe computer viruses in their present form. In [10], he gave
a theoretical basis for the spread of computer viruses. The strong analogy between bi-
ological and computer viruses led Kephart ez al. [11] to investigate the propogation of
computer viruses based on epidemiological models. They extend the standard epidemi-
ological model by placing it on a directed graph, and use a combination of analysis and
simulation to study its behavior. They conclude that if the rate at which defense mecha-
nisms detect and remove viruses is sufficiently high, relative to the rate at which viruses
spread, they can prevent widespread virus propagation. [12] describes a filesystem layer
designed specifically for efficient virus scanning and removal.

Also by Zou et al. [13], is the work that present an email worm model that takes
into account the behavior of email users, specifically, email checking frequency and

the probability of opening an email attachment. They observe that the node degrees,
as a logical network defined by email addresses, have heavy-tailed distributions. Their
results indicate that email worms spread more quickly on a power law topology but
are also easier to contain through immunization. In [14], the authors analyze network
traffic traces collected for college campus environments and present an analysis of two
major email-worm outbreaks, SoBig and MyDoom. Their work focuses on the effects
of mass mailing worms on a single subnet. They show that both worms analyzed exhibit
noticeable abnormalities in the traffic of the infected hosts.

The author of [15] proposes an automated email virus detection and control scheme
using the attachment chain tracing (ACT) technique. This technique is based on epi-
demiological models that are used in infections disease analysis and control. The author
shows how these techniques can be used for detecting and immunizing an email virus.

One approach for detecting new email viruses was described in [16], which keeps
track of email attachments as they exchanged between users through a set of collabo-
rating email servers that forward a subset of their data to a central data warehouse and
correlation server. Only attachments with a high frequency of appearance are deemed
suspicious; furthermore, the email exchange patterns among users are used to create
models of normal behavior. Deviation from such behavior (e.g, a user sending a par-
ticular attachment to a large number of other users at the same site, to which she has
never sent email before) raises an alarm. Information about dangerous attachments can
be sent to the email servers, which then filter these out. One interesting result is that
their system only needs to be deployed to a small number of email servers, such that it
can examine a miniscule amount of email traffic (relative to all email exchanged to the
Internet) — they claim 0.1% — before they can determine virus outbreaks and be able
to build good user behavior models.

MEEF [17] is a UNIX mail filter that detects known and uknown malicious windows
executables. By employing data-mining techniques on a database of known malicious
executables, a generalized model is extracted that can, in turn, be used to detect future
instances.

The work presented by Zou et al. [18] is probably the most closely related work. The
authors present a feedback email worm defense system that uses a multi-step system
for detecting new attacks. They also discuss the idea of using a honeypot system to
detect outgoing traffic. Unfortunately, they provide no implementation details and do
not address any of the apparent systems issues.

7 Conclusion

We have a described a novel approach for scanning incoming email messages for zero-
day worms and viruses. Briefly, we intercept all incoming messages, pre-scan them for
suspicious content, and only deliver messages that are deemed safe. Instead of rely-
ing on a traditional signature-based approach, we employ a behavior approach where
we actually “open” attachments inside an instrumented virtual machine looking for
anomalous behavior.

We have implemented this architecture in a proof-of-conceptimplementation where
we observe the behavior of different application on the Windows registry in real-time.

We show that we are able to detect the actions of all malicious software we tested at
a false positive rate of 5%. Furthermore, we show that our implementation can be of-
floaded to any number of ancillary machines thus minimizing the computational over-
head on the mail server.

Acknowledgements

We wish to thank Viktor Dukhovni for his invaluable help with Postfix.

References

1. :

2.

N

o

10.
11.

12.

13.

14.

15.

16.

17.

18.

US-CERT Incident Note IN-2003-03: Sobig Worm . http://www.cert.org/
incident_notes/IN-2003-03.html (2003)
: US-CERT Technical Cyber Security Alert TA04-028A: MyDoom Virus. http://www.
us—cert.gov/cas/techalerts/TA04-028A.html (2004)
Spinellis, D.: Reliable identification of bounded-length viruses is NP-complete. IEEE Trans-
actions on Information Theory 49 (2003) 280-284
Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting Malicious Software by
Monitoring Anomalous Windows Registry Accesses. In: Proceedings of the 5" International
Symposium on Recent Advances in Intrusion Detection (RAID). (2002)
: VMware. http://www.vmware . com (2004)
: Postfix. http://www.postfix.org(2004)

Microsoft Outlook 2003. http://office.microsoft.com/en-us/
FX010857931033.aspx (2004)
: EZdetach. http://www.techhit.com/ezdetach/ (2004)
Stolfo, S.J., Li, W.J., Hershkop, S., Wang, K., Hu, C.W., Nimeskern, O.: Detecting Viral
Propagations Using Email Behavior Profiles. In: ACM TOIT 2005. (2005)
Cohen, F.: Computer Viruses: Theory and Practice. Computers & Security 6 (1987) 22-35
Kephart, J.O.: A Biologically Inspired Immune System for Computers. In: Artificial Life
IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, MIT Press (1994) 130-139
Miretskiy, Y., Das, A., Wright, C.P., Zadok, E.: Avfs: An On-Access Anti-Virus File System.
In: Proceedings of the 13t USENIX Security Symposium. (2004) 73-88
Zou, C.C., Towsley, D., Gong, W.: Email Worm Modeling and Defense. In: Proceedings
of the 3"¢ International Conference on Computer Communications and Networks (ICCCN).
(2004)
Wong, C., Bielski, S., McCune, J.M., Wang, C.: A Study of Mass-Mailing Worms. In:
Proceedings of the ACM Workshop on Rapid Malcode (WORM). (2004) 1-10
Xiong, J.: ACT: Attachment Chain Tracing Scheme for Email Virus Detection and Control.
In: Proceedings of the ACM Workshop on Rapid Malcode (WORM). (2004) 11-22
Bhattacharyya, M., Schultz, M.G., Eskin, E., Hershkop, S., Stolfo, S.J.: MET: An Ex-
perimental System for Malicious Email Tracking. In: Proceedings of the New Security
Paradigms Workshop (NSPW). (2002) 1-12
Schultz, M.G., Eskin, E., Zadok, E., Bhattacharyya, M., Stolfo, S.J.: Mef: Malicious email
filter - a unix mail filter that detects malicious windows executables. In: Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference. (2001)
Zou, C.C., Gong, W., Towsley, D.: Feedback Email Worm Defense System for Enterprise
Networks. Technical Report TR-04-CSE-05, Univ. of Massachussetts, ECE Department
(2004)

