View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Columbia University Academic Commons

Porting a Network Cryptographic Service to the RM C2000:
A Case Study in Embedded Softwar e Development

Stephen Jan

Paolo de Dios

Stephen A. Edwards

Department of Computer Science, Columbia University
1214 Amsterdam Avenue, New York, New York, 10027
{5178, pd119} @columbia.edu sedwards@cs.columbia.edu

Abstract

This paper describes our experience porting a transport-
layer cryptography service to an embedded microcontroller.
We describe some key development issues and techniques
involved in porting networked software to a connected, lim-
ited resource device such as the Rabbit RMC2000 we chose
for this case study. We examine the effectiveness of a few
proposed porting strategies by examining important pro-
gram and run-time characteristics.

1 Introduction

Embedded systems present a different software engineering
problem. These systems are unique in that the hardware and
the software are tightly integrated. The limited nature of an
embedded systems operating environment requires a differ-
ent approach to developing and porting software. In this pa-
per, we discuss the key issues in developing and porting a
Unix system-level transport-level security (TLS) service to
an embedded microcontroller. We discuss our design deci-
sions and experience porting this service using Dynamic C,
a C variant, on the RMC2000 microcontroller from Rabbit
Semiconductor®. The main challenges came when APIs for
operating-system services such as networking were either
substantially different or simply absent.

Porting software across platforms is such a common and
varied software engineering exercise that much commercial
and academic research has been dedicated to identifying pit-
falls, techniques, and component analogues for it. Porting
software has been addressed by high level languages [2, 12],
modular programming [11], and component based abstrac-
tion, analysis and design techniques [17]. Despite the pop-
ularity of these techniques, they are of limited use when
dealing with the limited and rather raw resources of a typi-
cal embedded system. In fact, these abstraction mechanisms
tend to consume more resources, especially memory, mak-

http://www.rabbitsemi conductor.com

ing them impractical for microcontrollers. Though some
have tried to migrate some of these abstractions to the world
of embedded systems [9], porting applications in a resource-
constrained system still requires much reengineering.

This paper presents our experiences porting a small net-
working service to an embedded microcontroller with an
eye toward illustrating what the main problems actually are.
Section 2 introduces the network cryptographic service we
ported. Section 3 describes some relevant related work, and
Section 4 describes the target of our porting efforts, the
RMC 2000 development board.

Section 5 describes issues we encountered while port-
ing the cryptographic network service to the development
board, Section 6 describes the performance experiments we
conducted; we summarize our findings in Section 7.

2 Network cryptographic services

For our case study, we ported iSSL,? a public-domain im-
plementation of the Secure Sockets Layer (SSL) proto-
col [6], a Transport-Layer Security (TLS) standard pro-
posed by the IETF [5]. SSL is a protocol that layers on top
of TCP/IP to provide secure communications, e.g., to en-
crypt web pages with sensitive information.

Security, sadly, is not cheap. Establishing and maintain-
ing a secure connection is a computationally-intensive task;
negotiating an SSL session can degrade server performance.
Goldberg et al. [10] observed SSL reducing throughput by
an order of magnitude.

iSSL is a cryptographic library that layers on top of the
Unix sockets layer to provide secure point-to-point commu-
nications. After a normal unencrypted socket is created, the
iSSL API allows a user to bind to the socket and then do
secure read/writes on it.

To gain experience using the library, we first imple-
mented a simple Unix service that used the iSSL library to
establish a secure redirector. Later, we ported this service to
the RMC2000.

2http://sourceforge.net/projects/issl

https://core.ac.uk/display/161440707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Because SSL forms a layer above TCP, it is easily moved
from the server to other hardware. For performance, many
commercial systems use coprocessor cards that perform
SSL functions. Our case study implements such a service.

The iSSL package uses the RSA and AES cipher algo-
rithms and can generate session keys and exchange public
keys. Because the RSA algorithm uses a difficult-to-port
bignum package, we only ported the AES cipher, which
uses the Rijndael algorithm [3]. By default, iSSL supports
key lengths of 128, 192, or 256 bits and block lengths of
128, 192, and 256 bits, but to keep our implementation sim-
ple, we only implemented 128-bit keys and blocks. During
porting, we also referred to the AESCrypt implementation
developed by Eric Green and Randy Kaelber®.

3 Reated work

Cryptographic services for transport layer security (TLS)
have long been available as operating system and applica-
tion server services [15]. The concept of an embedded TLS
service or custom ASIC for stream ciphering are commer-
cially available as SSL/TLS accelerator products from ven-
dors such as Sun Microsystems and Cisco. They operate as
black boxes and the development issues to make these ser-
vices available to embedded devices have been rarely dis-
cussed. Though the performance of various cryptographic
algorithms such as AES and DES have been examined on
many systems [16], including embedded devices [18], a dis-
cussion on the challenges of porting complete services to a
device have not received such a treatment.

The scope of embedded systems development has been
covered in a number of books and articles [7, 8]. Opti-
mization techniques at the hardware design level and at the
pre-processor and compiler level are well-researched and
benchmarked topics [8, 14, 19]. Guidelines for optimizing
and improving the style and robustness of embedded pro-
grams have been proposed for specific languages such as
ANSI C [1]. Design patterns have also been proposed to
increase portability and leverage reuse among device con-
figurations for embedded software [4].

Overall, we found the issues involved in porting soft-
ware to the embedded world have not been written about
extensively, and are largely considered “just engineering”
doomed to be periodically reinvented. Our hope is that this
paper will help engineers be more prepared in the future.

4 The RMC2000 environment

Typical for a small embedded system, the RMC2000
TCP/IP Development Kit includes 512k of flash RAM,
128k SRAM, and runs a 30 MHz, 8-bit Z80-based micro-
controller (a Rabbit 2000). While the Rabbit 2000, like the
Z80, manipulates 16-bit addresses, it can access up to 1 MB
through bank switching.

Shttp://aescrypt.sourceforge.net

The kit also includes a 10Base-T network interface
and comes with software implementing TCP/IP, UDP and
ICMP. The development environment includes compilers
and diagnostic tools, and the board has a 10-pin program-
ming port to interface with the development environment.

4.1 Dynamic C

The Dynamic C language, developed along with the Rabbit
microcontrollers, is an ANSI C variant with extensions that
support the Rabbit 2000 in embedded system applications.
For example, the language supports cooperative and pre-
emptive multitasking, battery-backed variables, and atom-
icity guarantees for shared multibyte variables.

Unlike ANSI C, local variables in Dynamic C are
st at i ¢ by default. This can dramatically change program
behavior, although it can be overridden by a directive.

Dynamic C does not support the #i ncl ude directive,
using instead #use, which gathers precompiled function
prototypes from libraries. Deciding which #use direc-
tives should replace the many #i ncl ude directives in the
source files took some effort.

Dynamic C omits and modifies some ANSI C behavior.
Bit fields and enumerated types are not supported. There are
also minor differencesinthe ext er nandr egi st er key-
words. As mentioned earlier, the default storage class for
variables is st ati ¢, not aut o, which can dramatically
change the behavior of recursively-called functions. Vari-
ables initialized in a declaration are stored in flash memory
and cannot be changed.

Dynamic C’s support for inline assembly is more com-
prehensive than most C implementations, and it can also
integrate C into assembly code, as in the following:

#asm nodebug

I nitVal ues::
I'd hl, Oxa0;
c start _tine = 0; // Inline C
c counter = 256; /1l Inline C
ret
#endasm

We used the inline assembly feature in the error han-
dling routines that caught exceptions thrown by the hard-
ware or libraries, such as divide-by-zero. We could not rely
on an operating system to handle these errors, so instead we
specified an error handler using the def i neEr r or Han-
dl er(void *errfcn) system call. Whenever the sys-
tem encounters an error, the hardware passes information
about the source and type of error on the stack and calls this
user-defined error handler. In our implementation, we used
(simple) inline assembly statements to retrieve this infor-
mation. Because our application was not designed for high
reliability, we simply ignored most errors.

4.2 Multitasking in Dynamic C

Dynamic C provides both cooperative multitasking, through
costatements and cofunctions, and preemptive multitasking
through either the sl i ce statement or a port of Labrosse’s
MC/OS-I1 real-time operating system [13].

Dynamic C’s costatements provide multiple threads of
control through independent program counters that may be
switched among explicitly, such as in this example:

for (;;) {
costate {
wai tfor(tcp_packet_port_21());
/I handle FTP connection
yi el d; // Force context switch

}

costate {
wai tfor(tcp_packet_port_23());
// handle telnet connection

}

Theyi el d statement immediately passes control to an-
other costatement. When control returns to the costatement
that has yielded, it resumes at the statement following the
yi el d. The statementwai t f or (expr), which provides
a convenient mechanism for waiting for a condition to hold,
isequivalenttowhi I e (!expr) yield;.

Cofunctions are similar, but also take arguments and may
return a result.

In our port, we used costatements to handle multiple con-
nections with multiple processes. We did not use pC/OS-I1.

4.3 Storage class specifiers

To avoid certain race conditions, Dynamic C generates code
that disables interrupts while multibyte variables marked
shar ed are being changed, guaranteeing atomic updates.

For variables marked pr ot ect ed, Dynamic C gener-
ates extra code that copies their value to battery-backed
RAM before every modification. Backup values are copied
to main memory when when system is restarted or when
_sysl sSof t Reset () is called. We did not need this fea-
ture in this port.

The Rabbit 2000 microcontroller has a 64K address
space but uses bank-switching to access 1M of total mem-
ory. The lower 50K is fixed, “root” memory, the middle 6K
is 1/0, and the top 8K is bank-switched access to the re-
maining memory. A user can explicitly request a function
to be located in either root or extended memory using the
storage class specifiers r oot and xnmem(Figure 1).

We explicitly located certain functions, such as the error
handler, in root memory, but we let the compiler locate the
others.

Il Interrupts disabled during changesto a, b, and ¢
/I Updates guaranteed atomic
shared float a, b, c;

mai n() {
protected int statel; // Battery-backed

/I restore protected variables
_sysl f Soft Reset ()

}
// Place funcl in root memory
root int funcl() { ... }

/I Place following assembly code in root memory
#menmmap r oot
#asm r oot

#endasm
/I Place func2 in extended memory
xmemint func2() { ... }

Figure 1. Fragment illustrating various
Dynamic-C-specific storage class specifiers.

4.4 Function chaining

Dynamic C provides function chaining, which allows seg-
ments of code to be embedded within one or more functions.
Invoking a named function chain causes all the segments
belonging to that chain to execute. Such chains enable ini-
tialization, data recovery, or other kinds of tasks on request.
Our port did not use this feature.

/I Create a chain named ‘ ‘recover’’ and add three functions
#makechai n recover

#f uncchai n recover free_nenory

#f uncchai n recover decl are_nenory
#funcchain recover initialize

/I lnvoke al three functions in the chain in some sequence
recover ();

5 Porting and development issues

A program rarely runs unchanged on a dramatically differ-
ent platform; something always has to change. The funda-
mental question is, then, how much must be changed or
rewritten, and how difficult these rewrites will be.

We encountered three broad classes of porting prob-
lems that demanded code rewrites. The first, and most com-
mon, was the absence of certain libraries and operating
system facilities. This ranged from fairly simple (e.g., Dy-
namic C does not provide the standard r andomfunction),

int echo_server() {
int sock, newsock, |en; {
struct sockaddr_in addr;
char buf[LEN];

if ((sock = socket (AF_I NET, SOCK_STREAM 0)) < 0)
return -1;

nmenset (&addr, O,
addr.sin_famly =
addr. si n_addr.s_addr = htonl (| NADDR_ANY) ;
addr. si n_port = ht ons(MYPORT) ;
if (bind(sock, (struct sockaddr *) &addr,

si zeof (struct sockaddr_in)) < 0) return -1;
if (listen(sock, LISTENQ < O) return -1;

si zeof (addr));
AF_| NET;

for (;;) {
if ((newsock = accept(sock, NULL, NULL)) < 0)
return -1; }
if ((len = recv(newsock, buf, LEN, 0)) < 0)
return -1;

if (send(newsock, buf,
cl ose(conn_s);
}
}

len, 0) < 0) return -1;

(@)

int echo_server()

tcp_Socket sock;
int status;
char buf[LEN];

sock_init();
for (13) {
tcp_listen(&ock, PORT, 0, 0, NULL, 0);
sock_wai t _establ i shed(&sock, 0, NULL, &status);
sock_node(&ock, TCP_MODE_ASCI 1) ;
while (tcp_tick(&sock)) {
sock_wai t _i nput (&ock, 0, NULL, &status);

if (sock_gets(&sock, buf, LEN))
sock_put s(&sock, buf);
}
}
(b)

Figure 2. A comparison of (a) traditional BSD sockets-based code and (b) equivalent code in the
Dynamic C environment illustrating the significant differences in API.

to fairly difficult (e.g., the protocols include timeouts, but
Dynamic C does not have a timer), to virtually impossi-
ble (e.g., the iSSL library makes some use of a filesystem,
something not provided by the RMC2000 environment).
Our solutions to these ranged from creating a new imple-
mentation of the library function (e.g., writing a r andom
function) to working around the problem (e.g., changing the
program logic so it no longer read a hash value from a file)
to abandoning functionality altogether (e.g., our final port
did not implement the RSA cipher because it relied on a
fairly complex bignum library that we considered too com-
plicated to rework).

A second class of problem stemmed from differing APIs
with similar functionality. For example, the protocol for ac-
cessing the RMC2000°s TCP/IP stack differs quite a bit
from the BSD sockets used within iSSL. Figure 2 illustrates
some of these differences. While solving such problems is
generally much easier than, say, porting a whole library, re-
working the code is tedious.

A third class of problem required the most thought. Of-
ten, fundamental assumptions made in code designed to
run on workstations or servers, such as the existence of a
filesystem with nearly unlimited capacity (e.g., for keeping
a log), are impractical in an embedded systems. Logging
and somewhat sloppy memory management that assumes
the program will be restarted occasionally to cure memory
leaks are examples of this. The solutions to such problems
are either to remove the offending functionality at the ex-
pense of features (e.g., remove logging altogether), or a se-
rious reworking of the code (e.g., to make logging write to
a circular buffer rather than a file).

5.1 Interrupts

We used the serial port on the RMC2000 board for debug-
ging. We configured the serial interface to interrupt the pro-
cessor when a character arrived. In response, the system ei-
ther replied with a status messages or reset the application,
possibly maintaining program state.

A Unix environment provides a high-level mechanism
for handling software interrupts:

mein() {
signal (SI G NT,
}

voi d sigproc() { /*Handlethesigna */ }

sigproc); // Register signa handler

In Dynamic C, we had to handle the details ourselves.
For example, to set up the interrupt from the serial port,
we had to enable interrupts from the serial port, register the
interrupt routine, and enable the interrupt receiver.

main() {
// Set serial port A asinput interrupt
W Portl (SADR, &SADRShadow, 0x00);
I/ Register interrupt service routine
Set Vect Ext er n2000(1, my_isr);
/I Enable external INTO on SA4, rising edge
W Portl(I0CR, NULL, 0x2B);

/I Disable interrupt O
W Portl (I0CR, NULL, 0x00);

}

nodebug root interrupt void ny_isr() { ... }

We could have avoided interrupts had we used another
network connection for debugging, but this would have
made it impossible to debug a system having network com-
munication problems.

5.2 Memory

A significant difference between general platform develop-
ment and embedded system development is memory. Most
embedded devices have little memory compared to a typical
modern workstation. Expecting to run into memory issues,
we used a well-defined taxonomy [20] to plan out memory
requirements. This proved unnecessary, however, because
out application had very modest memory requirements.

Dynamic C does not support the standard library func-
tions mal | oc and f r ee. Instead, it provides the xal | oc
function that allocates extended memory only (arithmetic,
therefore, cannot be performed on the returned pointer).
More seriously, there is no analogue to f r ee; allocated
memory cannot be returned to a pool.

Instead of implementing our own memory management
system (which would have been awkward given the Rab-
bit’s bank-switched memory map), we chose to remove all
references to mal | oc and statically allocate all variables.
This prompted us to drop support of multiple key and block
sizes in the iSSL library.

5.3 Program structure

As we often found during the porting process, the origi-
nal implementation made use of high-level operating sys-
tem functions such as f or k that were not provided by the
RMC2000 environment. This forced us to restructure the
program significantly.

The original TLS implementation handles an arbitrary
number of connections using the typical BSD sockets ap-
proach shown below. It firstcalls | i st en to begin listening
for incoming connections, then calls accept to wait for a
new incoming connection. Each request returns a new file
descriptor passed to a newly-f or ked process that handles
the request. Meanwhile, the main loop immediately calls
accept to get the next request.

listen(listen_fd)

for (;;) {
accept _fd = accept(listen_fd);
if ((childpid = fork()) == 0) {

/I process request on accept_fd
exit(0); //terminate process

}
}

The Dynamic C environment provides neither the stan-
dard Unix f ork nor an equivalent of accept. In the
RMC 2000’s TCP implementation, the socket bound to the
port also handles the request, so each connection is required
to have a correspondingcalltot cp_l i st en. Furthermore,

for (53) {
costate {
tcp_listen(socketl, TLS PORT, ...);
whi |l e (sock_established(socket 1) == 0) yield;
/I handle request

costate {
tep_| |sten(socket2 TLS PORT, ...);
whil e((0 == sock_established(socket2))) vyield;
/I handle request

costate {
tcp_listen(socket2, TLS PORT, ...);
whil e((0 == sock_establi shed(socket 2))) yield;
/I 'handle request

}
costate {
/I drive TCP stack
tcp_tick(NULL);
}
}

Figure 3. The structure of the main loop of
the TLS server, which can handle at most
three requests because it is limited to four
processes.

Dynamic C effectively limits the number of simultaneous
connections by limiting the number of costatements.

Thus, to handle multiple connections and processes, we
split the application into four processes: three processes
to handle requests (allowing a maximum of three connec-
tions), and one to drive the TCP stack (Figure 3). We could
easily increase the number of processes (and hence simul-
taneous connections) by adding more costatements, but the
program would have to be re-compiled.

6 Experimental results

To gauge which optimization techniques were worthwhile,
we compared the C implementation of the AES algorithm
(Rijndael) included with the iSSL library with a hand-
coded assembly version supplied by Rabbit Semiconductor.
A testbench that pumped keys through the two implementa-
tions of the AES cipher showed the assembly implementa-
tion ran faster than the C port by a factor of 15-20.

We tried a variety of optimizations on the C code, in-
cluding moving data to root memory, unrolling loops, dis-
abling debugging, and enabling compiler optimization, but
this only improved run time by perhaps 20%.

Code size appeared uncorrelated to execution speed. The
assembly implementation was 9% smaller than the C, but
ran more than an order of magnitude faster.

Debugging and testing consumed the majority of the de-
velopment time. Many of these problems came from our
lack of experience with Dynamic C and the RMC2000 plat-
form, but unexpected, undocumented, or simply contradic-
tory behavior of the hardware or software and its specifica-
tions also presented challenges.

7 Conclusions

We described our experiences porting a library and server
for transport-level security protocol—iSSL—onto a small
embedded development board: the RMC 2000, based on the
Z80-inspired Rabbit 2000 microcontroller. While the Dy-
namic C development environment supplied with the board
gave useful, necessary support for some hardware idiosyn-
crasies (e.g., its bank-switched memory architecture) its
concurrent programming model (cooperative multitasking
with language-level support for costatements and cofunc-
tions) and its API for TCP/IP both differed substantially
from the Unix-like behavior the service originally used,
making porting difficult.

Different or missing APIs proved to be the biggest chal-
lenge, such as the substantial difference between BSD-like
sockets and the provided TCP/IP implementation or the
simple absence of a filesystem. Our solutions to these prob-
lems involved either writing substantial amounts of addi-
tional code to implement the missing library functions or
reworking the original code to use or simply avoid the API.

We compared the speed of our direct port of a C im-
plementation of the RSA (Rijndael) ciper with a hand-
optimized assembly version and found a disturbing factor
of 15-20 in performance in favor of the assembly.

From all of this, we conclude that there must be a better
way. Understanding and dealing with differences in oper-
ating environment (effectively, the API) is a tedious, error-
prone task that should be automated, yet we know of no
work beyond high-level language compilers that confront
this problem directly.

References

[1] M. Barr. Programming Embedded Systemsin C and C++.
O'Reilly & Associates, Inc., Sebastopol, California, 1999.

[2] P.J.Brown. Levels of language for portable software. Com-
munications of the ACM, 15(12):1059-1062, Dec. 1972.

[3] J. Daemen and V. Rijmen. The block cipher Rijndael. In
Proceedings of the Third Smart Card Research and Ad-
vanced Applications Conference, 1998.

[4] M. de Champlain. Patternsto ease the port of micro-kernels
in embedded systems. In Proceedings of the 3rd Annual
Conference on Pattern Languages of Programs (PLoP’ 96),
Allterton Park, Illinois, June 1996.

[5] T. Dierksand C. Allen. The TLS protocol. Internet draft,
Transport Layer Security Working Group, May 1997.

[6] A.O. Freier, P. Karlton, and P. C. Kocher. The SSL proto-
col. Internet draft, Transport Layer Security Working Group,
Nov. 1996.

[7] J. Gassle. Dumb mistakes. The Embedded Muse Newsl etter,
August 7 1997.

[8] J. G. Gassle. The Art of Programming Embedded Systems.
Academic Press, 1992.

[9] A. Gokhale and D. C. Schmidt. Techniques for optimizing
CORBA middleware for distributed embedded systems. In
Proceedings of INFOCOM '99, Mar. 1999.

[10] A. Goldberg, R. Buff, and A. Schmitt. Secure web server
performance using SSL session keys. In Workshop on Inter-
net Server Performance, held in conjunction with SGMET-
RICS 98, June 1998.

[11] D. R. Hanson.
Techniques for Creating Reusable Software.
Wesley, Reading, Massachussets, 1997.

[12] B. W. Kernighan and D. M. Ritchie. The C Programming
Langage. Prentice Hall, Englewood Cliffs, New Jersey, sec-
ond edition, 1988.

[13] J.Labrosse. MicroC/OS 1. CMP Books, Lawrence, Kansas,
1998.

[14] R. Leupers. Code Optimization Techniques for Embedded
Processors: Methods, Algorithms, and Tools. Kluwer Aca
demic Publishers, 2000.

[15] mod sd. Documentation at http://www.modssl.org, 2000.
Better-documented derivative of the Apache SSL secure web
server.

[16] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and
N. Ferguson. Performance comparison of the AES submis-
sions. In Proceedings of the Second AES Candidate Confer-
ence, pages 15-34, NIST, Mar. 1999.

[17] S.Vinoski. CORBA: Integrating diverse applications within
distributed heterogeneous environments. |EEE Communica-
tions Magazine, 14(2), Feb. 1997.

[18] C. Yang. Performance evaluation of AES/DES/Camellia
on the 6805 and H8/300 CPUs. In Proceedings of the
2001 Symposium on Cryptography and Information Secu-
rity, pages 727-730, Oiso, Japan, Jan. 2001.

[19] V. Zivajnovic, C. Schlager, and H. Meyr. DSPStone: A DSP-
oriented benchmarking methodology. In International Con-
ference on Sgnal Processing, 1995.

[20] K. Zurell. C Programming for Embedded Systems. CMP
Books, 2000.

C Interfaces and Implementations-
Addison-

