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ABSTRACT
Cyclic circuits that do not hold state or oscillate are often the most
convenient representation for certain functions, such as arbiters,
and can easily be produced inadvertently in high-level synthesis,
yet are troublesome for most circuit analysis tools.

This paper presents an algorithm that generates an acyclic circuit
that computes the same function as a given cyclic circuit for those
inputs where the cyclic circuit does not oscillate or hold state. The
algorithm identifies all patterns on inputs and internal nodes that
lead to acyclic evaluation orders for the cyclic circuit, which are
represented as acyclic circuit fragments, then combines these to
produce an acyclic circuit that can exhibit all of these behaviors.

Experimental results suggest this potentially exponential algo-
rithm is practical for small circuits and may be improved to han-
dle larger circuits. This algorithm should make dealing with cyclic
combinational circuits nearly as easy as dealing with their acyclic
counterparts.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids

General Terms
Cyclic Circuits, Resynthesis, Acyclic circuits, Constructiveness

1. INTRODUCTION
The algorithm presented in this paper takes a cyclic circuit that

neither oscillates nor holds state for certain inputs and builds a
small acyclic circuit that computes the same function for these in-
puts. Cyclic circuits are minimal representations for certain func-
tions [5, 7, 8] and can be produced by high-level synthesis tools [1,
13]. Yet many circuit analysis tools simply prohibit cyclic circuits.

This paper uses a definition due to Malik [6]: a circuit is com-
binational for a particular input vector if three-valued simulation
of the circuit starting with all internal nodes set to X resolves the
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output of every gate in the circuit to either 0 or 1. For example, the
output of every gate in circuit in Fig. 1a resolves to 0 or 1 when
input x is 0 or when input z is 0, as suggested by the truth table in
Fig. 1b. Otherwise, some of the gates output an X.

This definition is attractive because it is mathematically strong
(0, 1, and X comprise a Scott domain and three-valued simulation
computes the unique least fixed point of the circuit) and abstracts
a physical model: Shiple et al. [9, 12] show that a circuit is stable
under Malik’s definition if and only if it stabilizes in a unique way
under every delay assignment in Brzozowski and Seger’s [4] up-
bounded inertial delay model. For these reasons, Berry adopted it
as the semantics for his synchronous language Esterel [2].

The two-stage algorithm in this paper builds an acyclic circuit
that reproduces a cyclic circuit’s combinational behavior. The al-
gorithm first looks for a small collection of sets of assignments
to inputs and internal nodes that produce all combinational be-
havior. The main insight (Theorem 1) is that it only necessary to
consider applying controlling values to the inputs of each strongly-
connected group of gates in the circuit. In the second stage, the
acyclic circuit fragments implied by each set of assignments are
merged using a heuristic to produce an equivalent acyclic circuit
with a minimal number of gates. Identifying all patterns can be ex-
ponential in the size of the circuit, but the number of patterns is
often quite small. Determining how to merge the acyclic fragments
to produce the smallest circuit appears to be NP-complete, so a
quadratic heuristic is used.

Below is a simple example. The contrived cyclic circuit on the
left behaves combinationally unless both inputs are 1, as illustrated
by the truth table. The algorithm generates the acyclic circuit on the
right, which reproduces only the non-oscillatory behavior.

a
r

qb
a b q r
0 0 1 1
0 1 0 1
1 0 1 0
1 1 X X
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The algorithm only reproduces the behavior of combinational in-
put patterns and implicitly assumes that all others are not of inter-
est. Determining whether a circuit with state-holding elements can
ever reach a state with non-combinational behavior can be diffi-
cult. Shiple et al. [10, 11] use BDDs to calculate the reachable state
space of a cyclic circuit containing flip-flops to determine whether
any state produces non-combinational behavior. Toma [14] imple-
mented this algorithm in the Esterel V5 compiler to check whether
an apparently cyclic program could ever deadlock. If not, Toma’s
algorithm builds an equivalent acyclic circuit from the BDDs.

The remaining sections of this paper present how the algorithm
works on the example in Fig. 1, describe the algorithm in detail,
present some experimental results, and come to some conclusions.
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Figure 1: An example. (a) A cyclic circuit and (b) its truth ta-
ble generated by three-valued simulation. The algorithm first
places controlling values on inputs x, y, and z, producing two
acyclic fragments (c,e), and a cyclic one (d) that does not lead
to any new fragments. Fragments (c) and (e) can be merged in
two ways (f,g). (g) is smaller, and can be further reduced by
setting the (unlabeled) don’t-care inputs to 0, producing (h).
By construction, this much smaller circuit computes the same
function as the circuit in (a) when the gate outputs are not X.

2. AN EXAMPLE
Fig. 1 shows how the algorithm works on a simple circuit. It first

determines when (i.e., under what input conditions) the circuit is
combinational, which amounts to asking which input values pro-
duce completely-defined gate outputs or equivalently, which break
the strong connectivity. The following theorem is the key to an-
swering this efficiently.

THEOREM 1. For a circuit with a strongly-connected compo-
nent (SCC) to behave combinationally, at least one input to a gate
in the SCC must be driven to a controlling value.

PROOF. Assume that each external input to each gate in the
strongly-connected component has a non-controlling value. By def-
inition, this means the output of each of these gates is determined
by its other inputs, which are internal to the strongly-connected
component. Since there are no other sources of 0s and 1s in the
circuit (constants are treated as inputs), the output of the gates
in the component must simulate to all X’s and therefore be non-
combinational. It follows that for the circuit to behave combination-
ally at least one input to the SCC must take a controlling value.

This theorem tells us combinational behavior demands we apply
a controlling input to each strongly-connected component, suggest-
ing a way to search for combinational behavior.

We start searching for combinational behavior in Fig. 1a by ap-
plying the controlling value 0 to inputs x, y, and z. Fig. 1c shows the
effect of setting x = 0 and propagating it as far as possible. Because
x = 0 is a controlling value, gate a ignores the output of gate e (the
input on a becomes a don’t-care), the output of a is 0, and the out-
put of b is 1. The result is an acyclic circuit fragment. Setting z = 0
similarly produces another acyclic fragment, shown in Fig. 1e. This
time, the top inputs on gates d and e become don’t-cares.

In Fig. 1d, setting y = 0 removes the dependency from b to c, but
results in a still-cyclic fragment.

Further analysis of Fig. 1d will produce no new combinational
behavior. It is strongly connected and therefore subject to Theo-
rem 1, however, the only two uncontrolled inputs to its SCC are x
and z, either of which we know can produce combinational behav-
ior by themselves. The one other input to the SCC, the output of
gate c, has been set to the non-controlling value 1 by the y = 0 as-
signment, so we are not free to change it. We are finished searching
for combinational behavior.

The search procedure found that together, Fig. 1c and Fig. 1e are
enough to produce all combinational behavior, so the next step is to
generate a circuit that behaves like both of them by fusing the two
fragments. When fusing the two circuits, a gate with identical in-
puts in each fragment can be shared, and don’t-care gate inputs can
be assigned as desired to produce behavior from either fragment.

The simple merging procedure used by the algorithm produces
two circuits: Fig. 1f and g. Fig. 1f comes from appending Fig. 1e
to the end of Fig. 1c, and Fig. 1g is Fig. 1c appended to Fig. 1e.
Fig. 1g is smaller (seven gates versus eight), so we discard Fig. 1f.

The two unlabeled inputs to Fig. 1g are don’t-cares because we
know the other inputs on their gates will be set to controlling values
when combinational input patterns are applied, so we may set them
as we like. Setting both to 0 is the judicious choice, giving the very
small circuit in Fig. 1h. Note that as desired, this circuit follows the
truth table in Fig. 1b when no gate’s output is X.

3. THE ALGORITHM
Fig. 2 shows the two-part algorithm that derives an acyclic cir-

cuit with a minimal number of duplicated gates from a cyclic one. It
first finds a small set acyclic circuit fragments that produce all com-
binational behavior, then merges these to produce the final circuit.
The search procedure is worst-case exponential, but grows slowly
in practice. Furthermore, merging fragments optimally appears to
be NP-complete, so a quadratic heuristic is used instead.

3.1 Finding Combinational Behavior
The first part of the algorithm uses a breadth-first search to find a

“covering” for all the circuit’s combinational behavior. Specifically,
it finds partial assignments to inputs and internal nodes that imply
combinational behavior. A partial assignment is a set of assign-
ments to primary inputs or internal wires, e.g., {x = 0, y = 1}. The
algorithm determines the effect of a partial assignment by propagat-
ing the information as far as it will go and severing non-controlling
gate inputs. This produces a circuit fragment (such as Fig. 1c) that
is combinational if and only if it is acyclic.

The algorithm considers partial assignments that control both
primary inputs and internal nodes, but does not attempt to deter-
mine whether they are self-consistent. The structure of the circuit
may prevent certain patterns, but this only leads to the algorithm
considering more behavior than actually possible and may produce
a larger, but not incorrect, final circuit.

The search minimizes the number of partial assignments it con-
siders by only assigning controlling values to strongly-connected
components, which Theorem 1 implies are sufficient, and by con-
sidering assignments in a breadth-first order, which allows it to
prune the search space according to the following theorem.

THEOREM 2. If a partial assignment p is combinational, then
any further assignments that do not contradict any in p can also be
computed combinationally by the fragment implied by p.

PROOF. If a partial assignment implies an acyclic circuit frag-
ment, there is an order for evaluating gates such that enough infor-
mation is known about the inputs to each gate to compute its out-
put when the gate appears in the schedule. Additional assignments
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{Compute the set of combinational partial assignments C}
C = /0 {Combinational partial assignments}
P = {{}} {A single, vacuous partial assignment.}
while P contains at least one partial assignment do

E = P {set of existing partial assignments}
P = /0 {set of new partial assignments}
for each partial assignment p in E do

if p implies a circuit fragment f with a nontrivial SCC then
for each controlling input n = v on the first SCC in f do

Create p′ by adding n = v to p
if there is no p′′ ∈C such that p′′ ⊂ p′ then

Add p′ to P
if p′ implies combinational behavior then

Add p′ to C

{Assemble fragments induced by partial assignments in C}
s = schedule for first partial assignment in C
for each other partial assignment p in C do

s1 = merge(schedule for p, s)
s2 = merge(s, schedule for p)
s = smaller of s1,s2

{s is the schedule that will produce the acyclic circuit}

Figure 2: The algorithm. It searches for small set of par-
tial assignments that produce all combinational behavior, then
merges the evaluation orders these imply into a small schedule
from which the final acyclic circuit is produced.

may add information about the value of a previously-unknown in-
put, but once the output of a gate is established, setting the value
of previously-unknown inputs cannot change it. This follows from
the monotonic three-valued functions of logic gates.

This theorem implies there is no need to consider any partial
assignment that is a superset of a known-acyclic one. So in ad-
dition to not trying to add any assignments to an already known-
combinational partial assignment, the algorithm also stops when
it reaches a superset of any known-combinational partial assign-
ment. Considering partial assignments in a breadth-first order (i.e.,
considering all partial assignments with one assignment before any
with two assignments, before any with three, etc.) exposes such su-
perset relationships because all partial assignments with less than n
assignments are tested before any with n assignments.

This is why the algorithm does not consider Fig. 1d any further.
For Fig. 1, the algorithm first considers {x = 0}, {y = 0}, and {z =
0}. The first and third produce acyclic fragments, so the algorithm
does not consider adding any further assignments to these two. The
algorithm briefly considers the partial assignments {y = 0, x = 0}
and {y = 0, z = 0}, but both are supersets of known-combinational
partial assignments so the algorithm discards them.

During the search, the algorithm only considers the first SCC in
a cyclic circuit (i.e., the first one in some topological sort of the
SCCs, which can be nondeterministic). While it could consider ap-
plying controlling inputs to every SCC, this would be wasteful be-
cause later SCCs are automatically considered after earlier ones be-
come combinational. Furthermore, applying inputs to earlier SCCs
can affect inputs on later SCCs to reduce the number of partial as-
signments that must be considered on later SCCs.

3.2 Merging Acyclic Circuit Fragments
Once the first part of the algorithm has identified a set of partial

assignments that cover all combinational behavior of the cyclic cir-
cuit, the algorithm merges the acyclic circuit fragments these imply.

function merge(s,s′)
Clear mapping m
for each gate g′ in s′ in scheduled order do

for each gate g = g′ in s in scheduled order do
if for all drivers d′ of g′, m(d′) appears earlier than g in s
then

Set m(g′) = g
Done searching, continue with next g′

{We did not find a suitable match for g′}
Append g′ to s
Set m(g′) to this newly-added gate

Figure 3: The schedule merging algorithm. The algorithm in
Fig. 2 uses this to combine two circuits (actually, linear evalua-
tion orders of the gates in the circuit) into a result that covers
the behavior of both.

The second part of the algorithm manipulates schedules implied
by the partial assignments found in the first part. A schedule is a
linear evaluation order for all the gates in the circuit that ensures
the output of each gate can be computed when it appears, i.e., when
a gate is to be evaluated, either one of its inputs is known to take a
controlling value or all its inputs are known to be non-controlling.
Any partial assignment that implies combinational behavior has at
least one schedule. For example, the circuit fragment in Fig. 1e has
the schedule deabc.

The second part of the algorithm uses a greedy technique to find
a short schedule that covers all the schedules implied by the combi-
national partial assignments found in the first part. It builds a final
schedule s by trying to merge the schedule for each partial assign-
ment first before and then after s. To keep the final circuit small, the
shorter of these two schedules becomes the new s.

Fig. 3 is the algorithm for merging schedule s′ to the end of
schedule s. It strives to use existing gates in s to implement the
function of schedule s′ without introducing a cycle. For each gate
in s′, it finds the earliest identical one in s whose use would not
create a cycle, and otherwise adds a copy of the gate to the end.
The merging algorithm is not optimal because in general, a cor-
rect merge could add a new copy of a gate in many places in the
schedule, not just at the end, but the best place is not obvious.

The mapping m records the most-recently-used copy of each gate
g to avoid introducing a cycle. The if test guarantees that every
input wire to the gate g′ comes from gates earlier in the schedule.
Thus, the schedule s always implies an acyclic netlist since a gate’s
inputs always come from gates earlier in the schedule.

3.3 Generating a Circuit from a Schedule
Constructing an acyclic circuit from a schedule is a mechanical

procedure that steps through the gates in the final schedule s in
order, adding a copy of each corresponding gate in the cyclic circuit
to the acyclic circuit under construction. The inputs of this new gate
are connected to the most-recent-added copies of the corresponding
gates in the acyclic circuit. So if a gate in the cyclic circuit is driven
by the outputs of gates a and b, then its copy in the acyclic circuit
is driven by the most recent copies of a and b.

Consider how this algorithm generates Fig. 1g from the schedule
deabcde. It first copies gate d and connects its bottom input to the
primary input z. Its top input comes from gate b, which has not yet
been copied, so this input stays a don’t-care. Gates e, a, b, and c
are copied next, each driven by the last. The second time gate d is
copied, there is a copy of gate b to which to connect its top input.
Finally, when gate e is copied, there is a copy of c to drive its top
input and its bottom input is driven by the most recent copy of d.
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Table 1: For some circuits, the number of gates in the cyclic
circuit, in the SCC, and the generated acyclic circuit; the num-
ber of partial assignments tested; the number of acyclic partial
assignments found; and the time taken.

Name Gates SCC Acyclic Total Acyclic. Time
Size Gates PAs PAs

cy8 16 3 20 3 2 0.5s
cy7 21 4 28 3 2 0.5s
cy1 99 6 187 7 6 0.7s
arb2 94 10 138 15 6 0.7s
arb4 176 20 245 93 12 1.2s
arb6 246 30 340 745 16 6.0s
arb7 281 35 389 2205 18 51s

4. EXPERIMENTAL RESULTS
I implemented a prototype of the algorithm to test its behavior

on some examples generated from Esterel [3]. Although I give ex-
ecution times, the speed of the implementation could be improved.

Table 1 shows the results for a few small circuits generated from
Esterel programs. cy1, 7, and 8 are all small circuits. arb2 through 7
are cyclic arbiters that contain an SCC that looks like . The
gates at the tips of the diamonds are the challenge for the algorithm
because it tries all combinations of tips on different diamonds, even
after finding that two tips on the same diamond is sufficient. Es-
terel’s hardware synthesis procedure [1] generates this odd struc-
ture, which is effectively a simple loop: the inputs to the gates at
the tips of each diamond always take the same value.

The algorithm currently does not attempt to further reduce cir-
cuit size by applying constants to don’t-care inputs, which could
substantially reduce the size of the circuit. For example, the algo-
rithm currently returns Fig. 1g instead of Fig. 1h.

Although the exponentially-growing number of partial assign-
ments the algorithm considers is disturbing, the fairly small num-
ber of acyclic partial assignments it produces is encouraging since
it suggests many acyclic circuits have small acyclic equivalents.

5. CONCLUSIONS AND FUTURE WORK
This paper presented an algorithm for constructing an acyclic

circuit that computes the same function as a cyclic one for inputs
where the cyclic circuit behaves combinationally, i.e., when it can-
not exhibit oscillatory or state-holding behavior. It finds a set of
partial assignments to both primary inputs and internal nodes that
imply combinational behavior, then builds an acyclic circuit that
contains all this behavior. The search space is pruned by stopping
at subsets of already-identified behavior and by only applying con-
trolling values to inputs of gates in strongly-connected components,
which a theorem shows is sufficient.

Preliminary experimental results suggest that while it appears the
number of partial assignments considered can grow exponentially
with the size of a strongly-connected component, the number of
acyclic partial assignments grows much more slowly, suggesting
it is fairly easy to produce small acyclic equivalents. Additional
algorithmic and implementation improvements are also possible.

This paper does not establish whether a circuit always behaves
combinationally (due, perhaps, to states it cannot reach or environ-
mental constraints), but the algorithm could be applied to aid this
test. The algorithm derives necessary conditions for the circuit to
be cyclic: one of the acyclic partial assignments must hold for the
circuit to be combinational. This could be treated as an invariant
that must hold for the circuit to be combinational. Showing that the

circuit starts in a combinational state and that that combinational
states only transition to other states would suffice, eliminating the
need to compute the exact set of reachable states. But such an in-
variant may be too weak.

The algorithm implicitly assumes that there always exists some
input pattern that can independently put any controlling value on
any input to each SCC, which is not true in general because of the
structure of the circuit. While this does not affect the algorithm’s
correctness, it may cause it to search longer and produce larger
circuits. An obvious next step is to add SAT/ATPG-like reasoning
to the algorithm to avoid this case.

Overall, this appears to be a promising approach to handling
well-behaved acyclic circuits. Further algorithm improvements and
a more careful implementation promise to make it more practical.
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