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ABSTRACT

Sparse Selection in Cox Models with
Functional Predictors

Yulei Zhang

This thesis investigates sparse selection in the Cox regression models with functional

predictors. Interest in sparse selection with functional predictors (Lindquist and M-

cKeague [24]; McKeague and Sen [29]) can arise in biomedical studies. A functional

predictor is a predictor with a trajectory which is usually indexed by time, location

or other factors. When the trajectory of a covariate is observed for each subject,

and we need to identify a common "sensitive" point of these trajectories which drives

outcome, the problem can be formulated as sparse selection with functional predic-

tors. For example, we may locate a gene that is associated to cancer risk along a

chromosome.

The functional linear regression [37] method is widely used for the analysis of

functional covariates. However, it could lack interpretability. The method we develop

in this thesis has straightforward interpretation since it relates the hazard to some

sensitive components of functional covariates.

The Cox regression model has been extensively studied in the analysis of time-to-

event data. In this thesis, we extend it to allow for sparse selection with functional

predictors. Using the partial likelihood as the criterion function, and following the

3-step procedure for M-estimators established in van der Vaart and Wellner [54],

the consistency, rate of convergence and asymptotic distribution are obtained for

M-estimators of the sensitive point and the regression coe�cients. In this thesis, to

study these large sample properties of the estimators, the fractional Brownian motion



assumption is posed for the trajectories for mathematical tractability.

Simulations are conducted to evaluate the �nite sample performance of the meth-

ods, and a way to construct the con�dence interval for the location parameter, i.e.,

the sensitive point, is proposed.

The proposed method is applied to an adult brain cancer study and a breast cancer

study to �nd the sensitive point, here the locus of a chromosome, which is closely

related to cancer mortality. Since the breast cancer data set has missing values,

we investigate the impact of varying proportions of missingness in the data on the

accuracy of our estimator as well.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This thesis proposes a novel variant of the Cox model, to allow for sparse selection

with functional predictors. The Cox model ([10]) is a widely used statistical model

in surival analysis. It models the hazard of experiencing events in a semiparametric

way, the product of a baseline hazard function which is the unspeci�ed nonparametric

part and a parametric part which involves the covariates of interest. The covariates of

interest can be either functional covariate or non-functional covariate. The classical

Cox models with non-functional covariates have been extensively studied and widely

used in medical research. A functional covariate is a covariate with a continuously

observed trajectory which can be indexed by time, location among others. A non-

functional covariate is a random variable which takes scalar values.

When functional covariates are correlated to a scalar outcome, the functional

linear regression method (see [37]) can be used to study the varying e�ect of the

functional covariate along the trajectory. The resulting model can have good �tting

but is often hard to interpret. To overcome this drawback, some alternative methods

are proposed, e.g., the functional linear regression that is interpretable [17] and the

Point Impact model [29], which assume the response variable is correlated to some

"sensitive" regions/points of the trajectories. In this thesis, we will extend the Point

Impact model in the linear regression setting to the Cox model setting.
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We are interested in �nding the sensitive location of the functional covariate and

its impact strength, allowing for other non-functional covariates to appear in the

Cox model as well. To investigate the parameters of interest, the maximum partial

likelihood principle is used to get the estimators. The large sample properties of the

estimators including the consistency, rate of convergence, and asymptotic distribution

are proved under assumptions about the trajectories. We also propose methods to

construct con�dence intervals for the maximum partial likelihood estimators.

The proposed methods can be used in a wide range of �elds including genetics,

environmental science, network tra�c and �nance, as long as the study interest is

to locate the most sensitive point of the trajectories for a covariate. Here the "most

sensitive" means that among all the points, this point provides the best prediction of

the time-to-event outcome.

A brief outline of the thesis is as follows. In the �rst chapter, we introduce the

background and motivation of this thesis. Then our model is proposed and its the-

oretical properties are studied in Chapter 2. To make the theoretical development

in Chapter 2 more accessible, a simpli�ed model is explored �rst before an extended

model is fully investigated. The proofs are presented in Chapter 2 except for some

more technical proof steps (which are collected in Appendices). To make the con-

struction of Wald-type con�dence intervals feasible, Chapter 3 is devoted to the Monte

Carlo calibration of quantiles. A survey of the proposed procedure is given at the

end of Chapter 3. We perform extensive simulations in Chapter 4 to study the �nite

sample performance of the proposed methods. Our methods are applied to an adult

brain cancer study and a breast cancer study in Chapter 5. Chapter 6 summarizes

the thesis and discusses possible further research. The thesis ends with Appendices,

which collect proofs of lemmas used in Chapter 2, and some more technical proof

steps omitted in Chapter 2.

In this chapter, we start with the biomedical background and motivation of our

thesis. Then we present the survival analysis background, propose our model, and
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review some related literature. We conclude this chapter with an introduction of the-

orems in empirical process theory that will be used in Chapter 2 and the Appendices.

1.1 Biomedical background

With the development of modern medicine, targeted therapies are becoming popular

in cancer treatment. Targeted cancer therapies aim to "block the growth and spread

of cancer by interfering with speci�c molecules involved in tumor growth and pro-

gression", and "may be more e�ective than current treatments and less harmful to

normal cells" (National Cancer Institute [30]).

To make targeted cancer therapies feasible, the speci�c biomarkers which are most

closely related to cancer risk have to be identi�ed. Biologists seek sensitive biomarkers

by testing and comparing healthy tissues and tumor tissues. We statisticians develop

statistical methods to identify predictive biomarkers for cancer risk.

A biomarker is a characteristic that is objectively measured and evaluated as

an indicator of normal biologic processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention ([6]). Traditional biomarkers include body

temperature, blood pressure, and blood test. New technologies in genomics and

proteomics help scientists �nd molecular biomarkers for diseases including cancers.

These new technologies have received increasing attention in recent years.

In 2008, a team in Washington University at St. Louis discovered ten genes with

acquired mutations by sequencing a typical acute myeloid leukemia genome, and its

matched normal counterpart from the same patient ([22]). Researchers in Canada

sequenced a lobular breast cancer genome and found 5 prevalent somatic mutations

in DNA from the primary tumour ([43]). In 2009, a research consortium led by the

Wellcome Trust Sanger Institute found more than 23000 mutations caused by smoking

in the DNA of a lung cancer ([35]) and 33000 mutations in the DNA of a skin cancer

([34]). Now the consortium is focusing on �nding the key genetic mutations that
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fueled these cancers. All these indicate the importance of extracting key elements

out of high dimensional (functional) information. Our method is proposed to meet

this challenge from a statistical perspective.

Biomarker discovery provides promising prospects for health care. With biomark-

ers determined, subjects can be screened or surveilled for diseases using established di-

agnostic biomarkers, and/or targeted therapy can be applied to therapeutic biomark-

ers. In breast cancer surveillance, serum tumor markers such as CA 15-3, carcinoem-

byonic antigen (CEA), and CA 27-29 are widely used today ([9]). Experiments are

conducted to explore targeted therapy based on genetic biomarkers. E.g., in 2010,

a targeted therapy study was conducted on rodents with spinal cord injuries at the

University of Maryland School of Medicine in Baltimore ([44]). A speci�c single s-

trand of DNA was given to the rodents to block Abcc8 gene activity. The Abcc8 gene

activates SUR1 protein, which allows sodium into cells, increases the risk for cells to

in�ate, explode, and die in severe injury. Injured rodents given the new gene-targeted

therapy had lesions that were one-fourth to one-third the size of lesions in those not

treated. They also recovered much better. This experiment demonstrates the poten-

tial usefulness of targeted therapy at the DNA level, and inspires the exploration of

disease-sensitive biomarkers in genomics.

1.2 Motivation

This thesis is motivated by the interest to locate genes related to cancers. We now

give two biomedical examples to be analyzed later in this thesis. One of the examples

concerns an adult brain cancer study ([48]), and the other a breast cancer study ([45]).

In the adult brain cancer study, the complete gene expression pro�le is available for

each subject. In the breast cancer study, on the other hand, the gene expression

pro�les for some subjects are not completely observed. In each study, we are interested

in locating the locus on a chromosome that is related to the risk of dying of cancer.
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Glioblastoma is the most common primary brain tumor for adults ([14]). The

median survival of newly diagnosed patients is only about 1 year. If sensitive genes

for glioblastoma can be identi�ed through genome-wide pro�ling studies, subjects can

be strati�ed by the sensitive genes into subgroups. Then di�erent treatment regimes

can be applied to these subgroups, with the goal of improving treatment outcome.

This is the idea of "personalized medicine" and "strati�ed medicine". We do not

discuss it further here. For more information, see [51].

In the glioblastoma study [48], the complete gene expression pro�le for each sub-

ject is collected, and the survival outcome is also obtained. We will develop statistical

methods to locate the sensitive locus on a chromosome that predicts the patients' risk

of dying of glioblastoma.

Breast cancer is the second leading cause of death from cancer for American

women, and one of the major causes of death from cancer worldwide. Finding the

key locus on a chromosome that is sensitive to the risk of dying of breast cancer is

urgent. If the key locus can be determined, scientists can target it to �nd ways to

lessen the risk of dying of breast cancer.

This breast cancer study has 78 carcinomas and 3 �broadenomas breast tissues

collected. Each tissue corresponds to a subject except for 2 carcinomas breast tissues

from one patient diagnosed at di�erent times (one of the two will be excluded in

the data analysis). Each subject's gene expression pro�le and clinical outcome are

available. An important scienti�c question is which locus on a chromosome has the

most signi�cant in�uence on the subjects' risk of dying of breast cancer.

The biological problem is what location of the trajectory best predicts the risk of

dying of cancer. For each subject, the gene expression levels of all the loci along a

chromosome can be viewed as a trajectory of a stochastic process. In other words,

the gene expression process is indexed by the location along the chromosome. Then

the question becomes locating this point along the trajectory that is associated with

risk of death from cancer. In this way, statistical strategies can be posed to answer
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the scienti�c question.

This thesis proposes statistical methods to select the sensitive location. We will

study their large sample properties by theoretical derivation and �nite sample per-

formance by simulation studies.

1.3 Survival Analysis background

In this section, we will give background on the Cox model, the maximum partial

likelihood estimator, and the counting process approach to the Cox model. They are

frequently used in survival analysis.

1.3.1 Cox model

The Cox regression model ([10]), also known as the proportional hazards model, has

been widely used in the analysis of time-to-event data. We review the Cox model and

some notation which will be used frequently in this thesis. More results on the Cox

model can be found in classical books on survival analysis, e.g., [2] and [19].

Denote the failure time as T 0 and the censoring time as C. Instead of observing T 0

and C, we can only observe the follow-up time T = min(T 0, C) and the non-censoring

indicator δ = 1T 0≤C , where 1A is an indicator function of event A.

Assume that T 0 and C are conditionally independent given a p-vector of pre-

dictable covariates X(t). For each subject i, we observe Ti, δi, {Xi(t) : t ∈ [0, Ti]}.

Instead of modeling the time-to-event T 0 directly, the Cox model sets up the rela-

tionship between the hazard function of T 0, λ(t|X) = lim∆→0+
P (t≤T 0<t+∆|T 0≥t;X)

∆
and

the covariate X(t) in a semiparametric form,

λ(t|X) = λ0(t) exp{βTX(t)}.

The hazard function λ(t), the failure intensity of failure times, is modeled as the

product of the baseline hazard function λ0(t) and an exponential regression function
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with regression coe�cient vector β and covariate vector X(t), and βT means the

transpose of β. The baseline hazard function λ0(t) is unspeci�ed except that it is

non-negative. The cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du.

1.3.2 Partial likelihood

Statistical inference for the Cox model is usually based on maximizing the partial

likelihood function. The partial likelihood, originally unnamed, was used in Cox [10]

where D. R. Cox proposed the Cox proportional hazards model. Kalb�eisch and

Prentice [18] examined the Cox model with covariates not depending on time, and

without censoring. They found that if there were no ties in event times, the formula

that Cox [10] used was the marginal likelihood of the ranks of the event times, not

dependent upon the speci�c time values themselves. Then D. R. Cox [11] justi�ed

the use of his formula and named it the partial likelihood. The same formula applies

to time-dependent covariates.

The partial likelihood function for the Cox model is

PL(β) =
n∏

j=1

(
exp {βTXj(tj)}∑n

i=1 1Ti≥Tj
exp {βTXi(tj)}

)δj

.

In this formula, the nonparametric element, i.e. the baseline hazard function λ0(t)

has been eliminated, and hence the partial likelihood can be used for inference of the

parametric element of the Cox regression model.

Efron [13] and Oakes [32] considered the e�ciency of the partial likelihood esti-

mator β̂PL versus the maximum likelihood estimator β̂MLE of parametric submodels.

In parametric submodels, λ0(·) is speci�ed up to certain unknown parameters. They

argued that the asymptotic variance of β̂PL will be close to that of β̂MLE given that

the parametric family is reasonably rich. Efron [13] concluded that the asymptotic

variance of β̂MLE approaches that of β̂PL if the number of independent parameters

in the parametric setting goes to in�nity. This implies that the e�ciency of the es-

timator of β can not be improved from the partial likelihood estimator β̂PL without
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constraints on λ0(·).

Thus the maximum partial likelihood estimator β̂PL (which will be abbreviated

as β̂ hereafter) is a good choice to estimate the regression parameters β. To estimate

the baseline hazard function λ0(t), Breslow ([7] and [8]) gave an estimator of the

cumulative baseline hazard function Λ0(t) which is called the Nelson�Aalen estimator

or Breslow estimator.

Λ̂0(t) =
∑
Tj≤t

δj∑n
i=1 1Ti≥Tj

exp{β̂TZi(Tj)}
.

1.3.3 Counting process approach

The Cox regression model was extended by Anderson and Gill [1] with a counting

process approach. They used a predictable at-risk process Y (t) = 1T≥t and a counting

process N(t) = δ1T≤t as an alternative to record T and δ, and obtained

M(t) = N(t)−
∫ t

0

Y (u)λ0(u)e
βTXdu

as a local square integrable martingale. Using a martingale central limit theorem, they

proved the asymptotics of the maximum partial likelihood estimator β̂ under mild

conditions. See Anderson and Gill [1] for more details. We will adopt the counting

process approach to develop our theoretical results throughout this thesis.

1.4 Proposed model

For a time-to-event outcome, to �nd the most in�uential point of the trajectories for

a functional covariate, we set up the following Cox regression model,

λ(t|Z;X) = λ0(t) exp{βZ(θ) + γTX}.

The baseline hazard function, λ0(t), is unspeci�ed except that it is non-negative.

Here θ is our key interest, the most important point of the trajectories that drives

the subjects' event risk. The covariate Z(θ) is the sensitive point with location θ,
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where θ is unknown. The regression coe�cient β captures the impact strength of the

sensitive point and the regression coe�cient vector γ captures the impact strength of

the other non-functional covariate vector X.

Even though we observe the realized trajectory of the stochastic process Z ≡

{Z(θ̃) : θ̃ ∈ [0, θM ]} for each subject, the proposed model considers only one point

on the trajectory, Z(θ) where θ is shared by every subject, to be correlated to the

time-to-event outcome.

Since θ is unknown when we set up the model and needs to be estimated from

data, the parameter estimation process performs sparse selection of the functional

predictor {Z(θ̃) : θ̃ ∈ [0, θM ]}. After the selection, only Z(θ) is left and the values

of all other locations {Z(θ̃) : 0 ≤ θ̃ < θ or θ < θ̃ ≤ θM} are eliminated from the

model. This explains the title of this thesis.

Except for the sparsely selected functional predictor Z(θ), the proposed model

allows for a non-functional covariate vectorX as well. These non-functional covariates

are random variables, independent of the stochastic process Z. There is no intercept

term in the exponential part of the Cox model since it is already absorbed into the

λ0(·).

In later development in Chapter 2, we will see that in deriving the large sample

properties, a key assumption we make is that Z follows a 1-dimensional fractional

Brownian motion (abbreviated as fBm hereafter) with Hurst parameter H starting

from θ (i.e. Z(·+ θ)−Z(θ) follows a standard 1-dimensional 2-sided fBm with Hurst

parameter H), where Z(θ) is a random variable independent of the fBm. We observe

the trajectory of Z(·) from location 0 to θM for each subject.

Now we explain why the fBm assumption is made. Fractional Brownian motion is

a model of fractal phenomena (Mandelbrot [28], [27]) and has been successfully used

in environmental science, �nance and network tra�c studies. Since gene expression

data along a chromosome also displays a fractal pattern (see Figure 1.1), which is

consistent with results by Lieberman et al. [23], we make this assumption in our
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Figure 1.1: Log(gene expression level) at 518 loci along Chromosome 17 from one

breast cancer tissue

model setting. Another reason is for mathematical tractability in the investigation of

the proposed model.

We emphasize here that the fBm assumption is used only to derive the large sample

properties, but not a prerequisite for the statistical method to work. When the fBm

assumption does not hold, we can still use the maximum partial likelihood principle

to obtain the estimates of the parameters (θ, β, γ). However, the statistical inference,

e.g. con�dence interval construction and hypothesis testing, can't be based on the

large sample properties derived in Chapter 2. In such cases, alternative methods

may be posed to address the statistical inferences, e.g., a bayesian method is brie�y

discussed in Chapter 4.

Since we need to refer to the properties of the fBm frequently in the theoretical

development of our model, we now introduce the de�nition and the basic properties



CHAPTER 1. INTRODUCTION 11

of fBm.

A standard fBm with Hurst parameter H ∈ (0, 1) is a Gaussian process GH =

{GH(t) : t ∈ R} with continuous sample paths, having zero mean and covariance

function

Cov (GH(s), GH(t)) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
.

The fBm has a self similarity property: for any c > 0, GH(ct) =d cHGH(t) as pro-

cesses, where d mean equal in distribution. Brownian motion is a special case of the

fBm (H = 1
2
). H is an index indicating the trajectory roughness of the fBm, where

higher H corresponds to smoother sample paths.

Assume that we observe n i.i.d. copies of {T, δ,Z,X}. Our inference will be based

on these data.

1.5 Related literature

We review some literature of point impact models. Point impact models were intro-

duced by McKeague and Sen [29] in the linear regression setting, and extended to

the generalized linear model setting by Lindquist and McKeague [24]. The model

proposed in this thesis extends these two papers to the Cox model setting. Becoming

familiar with these related literature can help us understanding this thesis. We also

need to know these results so that we can compare them to our results in subsequent

chapters.

McKeague and Sen [29] considers a scalar outcome for a point impact model,

Y = α+ βX(θ) + ϵ,

where θ is the parameter of interest. To estimate all the unknown parameters (α, β, θ),

the least squares method is used,(
α̂n, β̂n, θ̂n

)
= argmin

α,β,θ

n∑
i=1

[Yi − α− βXi(θ)]
2 .
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Suppose that (Xi, Yi), i = 1, ..., n, are independent and identically distributed

(i.i.d.) satisfying the model, with unknown parameters (α, β, θ) ∈ R2 × [0, 1], where

the true values are (α0, β0, θ0).

The following conditions are used to obtain the asymptotic distribution of the

least square estimators:

(1) X follows a fractional Brownian motion with Hurst exponent H ∈ (0, 1),

(2) 0 < θ0 < 1 and β0 ̸= 0,

(3) E|ϵ|2+δ < ∞ for some δ > 0.

Under conditions (1) and (2), the estimator
(
β̂n, γ̂n, θ̂n

)
is consistent. With the

additional condition (3),(√
n(α̂n − α0),

√
n(β̂n − β0), n

1/(2H)(θ̂n − θ0)
)

→ d

(
σZ1, |θ0|−HσZ2, argmin

t∈R
{2 σ

|β0|
BH(t) + |t|2H}

)
,

where Z1 and Z2 are i.i.d. N(0, 1) and independent of the fBm BH .

Since the asymptotic distribution involves the nuisance parameter H, we need to

estimate H from data in order to apply the asymptotic distribution for inference.

A residual-based bootstrap was proposed to avoid estimating H, which made the

application of the method easier and more appealing.

Lindquist and McKeague [24] extends this to the generalized linear model setting,

where the conditional density of a scalar response Y givenX is modeled by a canonical

exponential family

p(y|X) = exp ([X(θ)y − b(X(θ))]/a(ϕ) + r(y, ϕ))

for some known functions a(·), b(·), and r(·, ·).

They obtained a similar asymptotic distribution to that of McKeague and Sen

[29], and applied the method to two real data sets. One is a functional magnetic

resonance imaging (fMRI) study to locate an anxiety-provoking period for subjects,

and the other is a gene expression study to estimate the most sensitive locus along a

chromosome to classify breast cancer patients and normal subjects.
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1.6 Theorems in Empirical Process Theory

In this section, we review the 3-step procedure in van der Vaart and Wellner (hereafter

abbreviated as VW) [54] to establish the asymptotics of the M-estimators using the

empirical process theory. The �rst part discusses M-estimation theorems to be used

in each of the three steps. The second part presents three fundamental theorems

from the empirical process theory which are powerful tools to justify the conditions

in these M-estimation theorems.

To understand the following theorems from the empirical process theory, it is

necessary to familiarize ourselves with some de�nitions and notation in Chapter 2 of

VW [54], including empirical measure, empirical process, outer probability, bracketing

number, entropy with bracketing, the Glivenko−Cantelli class and the Donsker class.

1.6.1 M-estimation theorems

AnM-estimator θ̂n is the value of θ that maximizes a random criterion functionMn(θ),

which is usually an empirical version of a criterion function, i.e. Mn(θ) = Pnm(θ).

To derive the asymptotic distribution of an M-estimator, there is an elegant 3-step

procedure: prove its consistency, then obtain its rate of convergence, and �nally derive

its limiting distribution.

Consistency

To prove consistency, two common practices are the (generalized) Wald's method and

the method based on establishing the uniform convergence property of the empirical

criterion function. We will adopt the latter one to establish consistency of the M-

estimator by Corollary 3.2.3 in VW [54].

In the case of i.i.d data and the empirical criterion function Mn(θ) = Pnmθ, the

uniform convergence condition in Corollary 3.2.3 in VW [54] is equivalent to the

condition that {mθ : θ ∈ Θ} is a Glivenko−Cantelli class.
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Rate of convergence

To obtain the rate of convergence for the maximizer θ̂n of the random criterion func-

tion Mn(θ), we assume that θ0 maximizes the non-random criterion function M(θ).

To make θ0 the maximizer, we expect M(θ) to have a local quadratic property near

θ0,

M(θ)−M(θ0) . −d2(θ, θ0),

where . means less than or equal to up to a universal constant. Given this, we can

get an upper bound for the convergence rate of θ̂n based on the modulus of continuity

of Mn−M at θ0. Theorem 3.2.5 in VW [54] provides a powerful tool for this purpose.

In Chapter 3.4 of VW [54], this theorem is generalized to apply to sieved M-

estimators, where sieves Θn(n ≥ 1) is a sequence of subsets of the parameter space.

The sieved M-estimator θ̂n is de�ned as the maximizer of Mn(θ) over the sieve Θn.

Generally, for the sieved M-estimator θ̂n to be consistent, the sieves Θn(n ≥ 1) must

be constructed to grow dense in Θ as n → ∞. The simplest sieves series with this

property is the whole space, i.e., Θn = Θ for every n ≥ 1.

We will use another slightly generalized version of this theorem. De�ne an event

sequence Ωn as a sequence of event sets on the sample space such that P ∗(Ωn) → 1,

where P ∗ is the outer probability. If the modulus of continuity condition in the

theorem holds on Ωn, the conclusion of the theorem still holds. This generalization

helps in the calculation of the modulus of continuity when applying this theorem, and

has been used in Banerjee and McKeague [4] as well.

Asymptotic distribution

Once we obtain the convergence rate r̃n of the M-estimator θ̂n (i.e. r̃n(θ̂n − θ0) =

O∗
P (1)), the next step is to establish its limiting distribution.

First we show that a suitably rescaled version of the empirical criterion function,

Qn(h) ≡ sn

(
Mn(θ0 +

h
r̃n
)−Mn(θ0)

)
converges in distribution to a process Q in the

space l∞(h : ∥h∥ ≤ K) for every K, where θ0 is the true parameter.
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Then if the sample paths h 7→ Q(h) of the limit process are upper semicontinuous

and possess a unique maximizer ĥ, we conclude that the sequence r̃n(θ̂n−θ0) converges

in distribution to ĥ by Theorem 3.2.2 in VW [54].

1.6.2 Fundamental theorems

The following fundamental theorems from empirical process theory are expected to

play key roles in verifying the conditions of the M-estimation theorems mentioned in

Chapter 1.6.1.

Glivenko−Cantelli Theorem

The Glivenko−Cantelli Theorem is the uniform version of the Strong Law of Large

Numbers over a class of functions. It is often used to verify the uniform convergence

condition for the consistency theorem in Chapter 1.6.1. We will use Theorem 2.4.1

in VW [54], the version based on entropy with bracketing, in this thesis.

Maximal Inequality for empirical process

Various maximal inequalities are presented in Chapter 2.14 of VW [54]. They are

often used to verify the modulus of continuity condition for the rate of convergence

theorem in Chapter 1.6.1. Theorem 2.14.2 and Theorem 2.14.5 in VW [54] will be

used in our study. By these theorems, we can bound the L1(P ) and L2(P ) norms of

the supremum of the empirical processes Gn over a class of functions F that possesses

a �nite bracketing entropy integral.

Lindeberg�Feller Theorem for stochastic processes

Theorem 2.11.9 in VW [54] is often used to verify the convergence in l∞(F) con-

dition of the rescaled criterion functions of Theorem 3.2.2 in VW [54] to obtain the

asymptotic distribution of the M-estimators. We call it the Lindeberg�Feller Theorem
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for stochastic processes here since it parallels the Lindeberg�Feller Theorem for ran-

dom variables. The stochastic processes need to be independent but not necessarily

identically distributed to apply this theorem.
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Chapter 2

Large sample properties

In this chapter, we will study the proposed model in two stages. In the �rst stage,

we explore a special case of our general model. In this case, we set the coe�cient of

Z(θ) to be 1 and consider no other non-functional covariates. In this way, we focus

on the essential element of interest, to select a sensitive point on the trajectories of

a stochastic process that predicts time-to-event outcomes. This stage helps us both

capture the essential feature of the proposed model and keep the proof from being

formidable. In the second stage, the special-case model is extended to the full model,

adding both the coe�cient for Z(θ) and other non-functional covariates.

We focus on the large sample properties of the maximum partial likelihood esti-

mator for the proposed model in both stages. The structures of the two stages are

the same. In each stage, following the 3-step procedure for M-estimators in Chapter

3 of VW [54], the consistency, rate of convergence and asymptotic distribution of the

maximum partial likelihood estimator are obtained. Each section ends with proofs of

these large sample properties.

To learn about the �nite sample performance of the maximum partial likelihood

estimator of this model, Monte Carlo simulations are conducted and the corresponding

results are collected in Chapter 3.
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2.1 Model setting

Suppose for each subject, we observe his/her gene expression level pro�le Z(·) over

[0, θM ] on a chromosome with length θM , survival time (possibly right censored) T ,

non-censoring indicator variable δ (δ = 0 means being right censored). The followup

time for all the patients is set to be τ , a prespeci�ed �xed time.

Neither the survival time T 0 nor the censoring time C is always observed. Instead

we observe T = T 0 ∧C, δ = 1T 0≤C , where T
0 ∧C ≡ min{T 0, C}. Using the counting

process approach in Chapter 1.3.3 to record them, we observe the at risk process

Y (t) = 1T≥t and the counting process N(t) = 1(δ=1,T≤t). Note the relationship Y (t) =

1(T 0≥t,C≥t) and N(t) = 1(T 0≤C,T 0≤t) hold. Notice that in practice, the values of Z(·)

over [0, θM ] are commonly observed on a grid �ne enough instead of continuously on

[0, θM ].

Even though we observe the whole gene expression pro�le along a chromosome

for each subject, we assume that subjects' event risk depends on only one unknown

locus on the chromosome, θ (0 ≤ θ ≤ θM). The hazard function

λ(t|Z;X) = λ0(t) exp{βZ(θ) + γTX}.

By estimating the model parameter θ, we can pick out the speci�c location from

the gene expression pro�le. This idea of extracting a single point from the functional

data (here the gene expression levels at continuous loci along a chromosome formed a

functional data),is named the point impact model, and its relationship to the widely

used functional linear regression model has been discussed by McKeague and Sen [29].

The point impact model could be extended to include multiple impact points,

which is a compromise between point impact model that emphasizes model inter-

pretability and functional linear model that emphasizes �tting accuracy.

A well-known method for sparse selection and shrinkage estimation is the LASSO

([49], [50]). The LASSO selects important variables out of a set of covariates which

could be either dependent or independent. For the model of this thesis, the variables
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to be selected from are correlated to each other, with higher correlation for closer

distance.

2.2 Simpli�ed model

In this section, we will study a special case of the proposed model. The exploration in

the simpli�ed model can reveal the key property of the proposed model by including

the key feature, while keep the proof from being formidable. Once we understand the

simpli�ed model, we have been familiar with the study tools and got some prospect

for the results of the general model (i.e., full model) as well, both of which will help

our investigation of the general model.

To keep things simple but retain the essential element of our interest, we assume

β = 1 and omit other non-functional covariates X in this section. Then we have a

simpli�ed model with hazard function

λ(t|Z) = λ0(t)e
Z(θ), t ≥ 0. (2.1)

To estimate the unknown parameter θ, we will use the partial likelihood principle

and adopt the M-estimation framework. For this model, the log partial likelihood

function is used as the empirical criterion function,

Mn(θ) = Pn

[∫ τ

0

Z(θ)dN(s)−
∫ τ

0

log[Pn(Y (u)eZ(θ))]dN(u)

]
= Pn

[
Z(θ)N(τ)−

∫ τ

0

log[Pn(Y (u)eZ(θ))]dN(u)

]
.

The maximum partial likelihood estimator of θ̂n = argmaxθMn(θ).

Consider

M(θ) = P

[
Z(θ)N(τ)−

∫ τ

0

log[P (Y (u)eZ(θ))]dN(u)

]
and suppose the true value of θ is θ0 (i.e., the underlying probability measure that

generates data {δi, Ti}i=1,...,n corresponds to parameter θ0), then by Lemma 2.2.4,
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θ0 = argmaxθM(θ). By this way, the MPLE of θ is put into the framework of the

M-estimators.

In order to study the large sample properties of the MPLE for this model, we need

to make some assumptions.

Assumptions 2.2.1.

1. Z(·) is a 2-sided Brownian motion starting from θ (i.e. Z(· + θ) − Z(θ) is a

2-sided Brownian motion starting from 0) scaled by σ, i.e. W (·) ≡ Z(·+θ)−Z(θ)
σ

follows 2-sided standard Brownian motion (abbreviated as S.B.M. in the sequel)

starting from 0. The trajectory of {Z(θ̃) : 0 ≤ θ̃ ≤ θM} is observed.

2. Z(θ) is independent of the process Z(· + θ) − Z(θ) and satis�es PZ2(θ) < ∞,

Pe2Z(θ) < ∞.

3. Both the distributions of T 0 and C depend on Z(θ) only; T 0 and C are condi-

tionally independent given Z(θ).

4. P (C > τ |Z(θ)) > 0.

5.
∫ τ

0
λ0(u)du < ∞.

The �rst assumption, i.e., the fractional Brownian motion assumption, does cap-

ture the fractal feature of many functional data observed in practice, e.g., gene ex-

pression data, �nancial data, and so on. However, the assumption is too strong to

be fully satis�ed for data collected in practice. We have two reasons to make this

assumption. One is that it is convenient for mathematical and statistical handling.

Another is that (fractional) Brownian motion is the most fundamental one in stochas-

tic process which is the counterpart to the normal distribution in probability theory.

So the fBm assumption is at least a good starting point to study the proposed model.

The second assumption is a technical one which is used to facilitate the proof. The

�rst statement in the third assumption is the essential idea of the proposed model,
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the hazard of experiencing events depends on only one component of a functional

covariate. The second statement, i.e., the conditional independence of event time and

censoring time, is a widely used assumption in survival analysis. Both the forth and

�fth assumptions are commonly used assumptions in survival analysis.

Notation

We will use the following notation in Chapter 2.2.

S(θ, u) ≡ Pn [Y (u) exp(Z(θ))] =
1

n

n∑
i=1

Yi(u) exp(Zi(θ)),

s(θ, u) ≡ P [Y (u) exp(Z(θ))] = P [Y (u) exp(Z(θ))] .

2.2.1 Main Results

In this subsection, we will summarize the large sample properties for the MPLE of θ

and make some comments.

Relying on the empirical processes theory, the consistency, rate of convergence

and asymptotic distribution are obtained for the MPLE of θ in this model.

Theorem 2.2.2. Under Assumptions 2.2.1, θ̂n →P ∗ θ0, n(θ̂n − θ0) = O∗
P (1),

n(θ̂n − θ0)
W−→ argmax

h

(
W (h)− |h|

2
σ
√
PN(τ)

)
,

where W (·) is a 2-sided standard Brownian motion starting from zero with unit

variance scale (i.e., W (1) =d W (−1) ∼ N(0, 1)).

Comparing Theorem 2.2.2 above to Theorem 2.1 in McKeague and Sen [29], we

�nd our Theorem 2.2.2 is similar to their result except for two aspects. One is there

is a coe�cient PN(τ) in front of the drift term in our Theorem 2.2.2; another is the

σ instead of 1/σ appeared in the coe�cient of the drift term in our Theorem 2.2.2.

The reason for the second di�erence is simple: the same notation σ means di�erent

things in these two works.

Investigating the probability distribution function of argmaxh
(
W (h)− 1

2
c|h|
)
for

c > 0 �nds that smaller c results in wider spread distribution for positive c.
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Remark 2.2.3.

1. Note that PN(τ) corresponds to the expected proportion of uncensored events

among all subjects under the proposed model. The closer to 1 it is, the more

information the data carries about the relationship between Z(θ) and event risk.

Larger PN(τ) corresponds to larger c, and hence the asymptotic distribution

of θ̂n is less spread out, which implies more information about θ̂n. In the ex-

treme case that PN(τ) approaches 1, which means all subjects experience events

without being censored before the follow up endpoint τ , the asymptotic distribu-

tion of the MPLE (Maximum Partial Likelihood Estimator) θ̂n approaches its

counterpart in the linear regression setting (if we do not consider the e�ect of

σ for the moment). However, this limit scenario is not covered by our model

since by our model assumption, PN(τ) = P (T 0 ≤ τ, T 0 ≤ C) ≤ P (T 0 ≤ τ) =

1 − P (T 0 > τ) = 1 − P
[
exp

(
−eZ(θ0)

∫ τ

0
λ0(s)ds

)]
< 1 which means there is

always a non-ignorable proportion of subjects at risk by time τ .

2. Larger σ corresponds to larger c and hence less spread out asymptotic distribu-

tion for θ̂n. Since σ2 is the Brownian motion's in�nitesimal variance, so larger

σ means bigger di�erence between the value of Z(θ) and values of Z(·) (other

than Z(θ)), hence easier to extract θ out of [0, θM ], which implies less spread

out asymptotic distribution of θ̂n.

Denote c = σ
√
PN(τ), then the analytic formula of distribution function F of

argmaxh Q(h) can be obtained from Bhattacharya and Brockwell [5] and Henrik [46].

Its P.D.F. (probability distribution function) is symmetric about zero and can be

written as

f(x) =
3

2
c2ec

2xΦ(
−3c

√
x

2
)− 1

2
c2Φ(

−c
√
x

2
)

for x ≥ 0; its C.D.F. (cumulative distribution function) can be expressed as

F (x) = 1 + c

√
x

2π
e

−c2x
8 +

3

2
ec

2xΦ(
−3c

√
x

2
)− c2x+ 5

2
Φ(

−c
√
x

2
)

for x ≥ 0, where Φ is the C.D.F. of the standard normal distribution.
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2.2.1.1 Non-identi�ability of (θM , σ)

By the self-similarity of Brownian motion, the distributional property of Brownian

motion Z(θ) on θ ∈ [0, θM ] with in�nitesimal variance σ2, is not distinguishable from

that of Brownian motion Z(θ̃) on θ̃ ∈ [0, θ̃M ] with in�nitesimal variance σ̃2, if

θMσ2 = θ̃M σ̃2.

Thus to make model (2.1) identi�able, we can always set θM = 1 during the

parameter estimation process.

2.2.1.2 Wald-type con�dence interval

By the asymptotic distribution obtained in Theorem 2.2.2, we can construct Wald-

type con�dence intervals for θ. Thanks to the analytical form of the asymptotic

distribution's C.D.F. F (x), its quantiles can be determined easily. With consistent

estimates of σ and PN(τ), the Wald-type con�dence interval of θ can be constructed.

2.2.2 Proofs

Without loss of generality, we assume σ = 1 and hence W (·) ≡ Z(·+θ)−Z(θ) follows

2-sided S.B.M. starting from 0. The case for general σ > 0 can be deduced in exactly

the same way.

2.2.2.1 Local quadratic property

To apply Corollary 3.2.3 (i) in [54] to prove consistency, we need to show θ0 is the

unique maximizer of M over [0, θM ].

Lemma 2.2.4 (local quadratic property). Under Assumptions 2.2.1, there exists

a metric d(θ1, θ2) =
√

|θ1 − θ2|, such that for any θ ∈ [0, θM ], M(θ) − M(θ0) .
−d2(θ, θ0).
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Proof.

M(θ)−M(θ0) = P [(Z(θ)− Z(θ0))N(τ)]−
∫ τ

0

log

[
P (Y (u)eZ(θ))

P (Y (u)eZ(θ0))

]
P (dN(u)) .

(2.2)

Note that N(u) = 1(T 0≤C,T 0∧C≤u) = 1(T 0≤C,T 0≤u) for 0 ≤ u ≤ τ,

we have P [(Z(θ)− Z(θ0))N(τ)] = P (P [(Z(θ)− Z(θ0))N(τ)|Z])

=P [(Z(θ)− Z(θ0))P (N(τ)|Z)] = P
[
(Z(θ)− Z(θ0))P

(
1(T 0≤C,T 0≤τ)|Z

)]
.

By Assumptions 2.2.1, T 0 and C's marginal distributions only depend on Z(θ0), and

T 0 and C are conditionally independent given Z(θ0), we have

P
(
1(T 0≤C,T 0≤τ)|Z

)
= P

(
1(T 0≤C,T 0≤τ)|Z(θ0)

)
.

Then P [(Z(θ)− Z(θ0))N(τ)] = P
[
(Z(θ)− Z(θ0))P

(
1(T 0≤C,T 0≤τ)|Z(θ0)

)]
= P [Z(θ)− Z(θ0)]P

[
P
(
1(T 0≤C,T 0≤τ)|Z(θ0)

)]
= 0, (2.3)

where we used the independence of Z(θ)− Z(θ0) and Z(θ0) from Assumptions 2.2.1

in the second to last equality, and mean zero property of Brownian motion in the last

equality.

On the other hand,

P
[
Y (u)eZ(θ)

]
= P

[
P (Y (u)eZ(θ)|Z)

]
= P

[
eZ(θ)P (Y (u)|Z)

]
= P

[
eZ(θ)P (1{T 0∧C≥u}|Z)

]
= P

[
eZ(θ)P (1{T 0∧C≥u}|Z(θ0))

]
by the assumptions that T 0 and C are conditionally independent given Z(θ0), and

that the marginal distributions of T 0 and C depend on only Z(θ0) (out of the whole

process Z = {Z(θ) : 0 ≤ θ ≤ θM}).



CHAPTER 2. LARGE SAMPLE PROPERTIES 25

Decompose eZ(θ)P (1{T 0∧C≥u}|Z(θ0)) into the product of eZ(θ0)P (1{T 0∧C≥u}|Z(θ0))

(depending on Z(θ0)) and eZ(θ)−Z(θ0) (depending on Z(θ) − Z(θ0)); due to the inde-

pendence of Z(θ)− Z(θ0) and Z(θ0),

P
[
Y (u)eZ(θ)

]
=P

[
eZ(θ0)P (1{T 0∧C≥u}|Z(θ0))

]
P
[
eZ(θ)−Z(θ0)

]
=P

[
Y (u)eZ(θ0)

]
P
[
eZ(θ)−Z(θ0)

]
= P

[
Y (u)eZ(θ0)

]
· e

|θ−θ0|
2 .

Here we used the property of Brownian motion Z(·+ θ0)− Z(θ0).

Thus we obtain a relationship to be used frequently in the sequel,

P
[
Y (u)eZ(θ)

]
= e

|θ−θ0|
2 · P

[
Y (u)eZ(θ0)

]
, for 0 ≤ θ ≤ θM ; (2.4)

or equivalently,

s(0)(θ, u) = e
|θ−θ0|

2 · s(0)(θ0, u), for 0 ≤ θ ≤ θM .

Suppose the underlying counting process for T 0 is N0(t), which is not always

completely observed, in contrast to the counting process N(t) for T . Then by the

second paragraph on P.151 of Kalb�eisch and Prentice [19],

N(t) =

∫ t

0

Y (u)dN0(u).

It follows that dN(u) = Y (u)dN0(u) and

P (dN(u)) = P
(
Y (u)dN0(u)

)
= P

(
1(T 0∧C≥u)d1(T 0≤u)

)
= P

(
1(C≥u)1(T 0≥u)d1(T 0≤u)

)
= P

(
1(C≥u)d1(T 0≤u)

)
.

The last equality holds since d1(T 0≤u) = 1 if and only if T 0 = u which implies T 0 ≥ u
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and otherwise d1(T 0≤u) is 0. It can further be written as

P (dN(u)) = P
(
1(C≥u)d1(T 0≤u)

)
= P

[
P
(
1(C≥u)d1(T 0≤u)|Z(θ0)

)]
= P

[
P (C ≥ u|Z(θ0)) dP

(
T 0 ≤ u|Z(θ0)

)]
= P

[
P (C ≥ u|Z(θ0))λ0(u)e

Z(θ0)e−
∫ u
0 λ0(s)eZ(θ0)dsdu

]
= λ0(u) · P

[
P (C ≥ u|Z(θ0))eZ(θ0)e−

∫ u
0 λ0(s)eZ(θ0)dsdu

]
, (2.5)

where the third equality holds by the conditional independence of T 0 and C given

Z(θ0) and the forth equality holds by formula (2.11) of Kalb�eisch and Prentice [19].

Consider that

s(0)(θ0, u) = P
[
Y (u)eZ(θ0)

]
= P

[
1(T 0∧C≥u)e

Z(θ0)
]

= P
(
P
[
1(T 0≥u)1(C≥u)e

Z(θ0)|Z
])

= P
(
P
[
1(T 0≥u)1(C≥u)e

Z(θ0)|Z(θ0)
])

= P
[
eZ(θ0) · P

(
T 0 ≥ u|Z(θ0)

)
P (C ≥ u|Z(θ0))

]
= P

[
eZ(θ0)e−

∫ u
0 λ0(s)eZ(θ0)ds · P (C ≥ u|Z(θ0))

]
, (2.6)

where we used the the conditional independence of T 0 and C given Z(θ0) in the second

to last equality and the property of hazard function in the last equality.

Compare (2.5) with (2.6), we obtain

P (dN(u)) = λ0(u)s
(0)(θ0, u)du. (2.7)

To summarize (2.3), (2.4) and (2.7) and considering (2.2), we have

M(θ)−M(θ0) = −1

2
|θ − θ0|

∫ τ

0

s(0)(θ0, u)λ0(u)du.

Since
∫ τ

0
s(0)(θ0, u)λ0(u)du > 0, check with the local quadratic condition in the

rate of convergence theorem, i.e., Theorem 3.2.5 in VW [54], we can choose the metric

d(θ, θ0) =
√
|θ − θ0|.
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Remark 2.2.5. : An alternative way to prove this lemma is to argue by the fact

that N(t) −
∫ t

0
Y (u)λ0(u)e

Z(θ0)du is a local martingale whose distributional property

depends only on Z(θ0) and independent of Z(θ)− Z(θ0).

Now by Lemma 2.2.4, it follows θ0 is the unique maximizer of M over [0, θM ], and

M(θ0) > supθ/∈G M(θ), for every open set G that contains θ0. If we can obtain the

uniform convergence of Mn −M to 0 in outer probability P ∗, then by Corollary 3.2.3

of VW [54], the consistency of θ̂n is proved.

2.2.2.2 Consistency

Since Mn(θ)−M(θ) can be decomposed into

Mn(θ)−M(θ) =(Pn − P )(Z(θ)N(τ)) +

∫ τ

0

log

[
PnY (u)eZ(θ)

PY (u)eZ(θ)

]
PndN(u)

+

∫ τ

0

log s(0)(θ, u)(Pn − P )dN(u),

it su�ces to prove the uniform convergence to 0 in P ∗-probability or in L1(P
∗) of the

three terms.

For the �rst term,

P ∗ sup
θ∈[0,θM ]

|(Pn − P )(Z(θ)N(τ))| = 1√
n
P ∗ sup

θ∈[0,θM ]

|Gn(Z(θ)N(τ))| ,

where Gn =
√
n(Pn − P ).

Since {Z(θ) : θ ∈ R} is a 2-sided Brownian motion starting from θ0, we can bound

P ∗ supθ∈[0,θM ] |Gn(Z(θ)N(τ))| by

P |Gn[Z(θ0)N(τ)]|+ P ∗ sup
θ∈[0,θM ]

|Gn[(Z(θ)− Z(θ0))N(τ)]|

≤
(
P (Gn[Z(θ0)N(τ)])2

) 1
2
+ P ∗ sup

t∈[−θ0,θM−θ0]

|Gn[W (t)N(τ)]| ,

where {W (t) : W (t) ≡ Z(t+ θ0)− Z(θ0), t ∈ R} is a 2-sided S.B.M. starting from 0.
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It is easy to show

P (Gn[Z(θ0)N(τ)])2 = P [Z(θ0)N(τ)− P (Z(θ0)N(τ))]2

≤ P [Z(θ0)N(τ)]2 ≤ P [Z2(θ0)],

and P ∗ supt∈[−θ0,θM−θ0] |Gn[W (t)N(τ)]| can be controlled by

P ∗ sup
t∈[−θ0,0]

|Gn[W (t)N(τ)]|+ P ∗ sup
t∈[0,θM−θ0]

|Gn[W (t)N(τ)]|

= P ∗ sup
t∈[0,θ0]

|Gn[W (t)N(τ)]|+ P ∗ sup
t∈[0,θM−θ0]

|Gn[W (t)N(τ)]|

≤ 2P ∗ sup
t∈[0,θM ]

|Gn[W (t)N(τ)]| ,

where the equality holds by the symmetry of 2-sided S.B.M. W (·).

Since {W (t) : 0 ≤ t ≤ θM} has bounded bracketing entropy by example 3.2.12

of [54] and the Lipschitz property of W (t) (see the proof of Lemma 8.1 in [29]), the

class formed by multiplying it to a function N(τ) which is bounded by 1, MWN,θM ≡

{W (t)N(τ) : 0 ≤ t ≤ θM}, still has bounded bracketing entropy (by changing brackets

from [li, ui] to [li ·N(τ), ui ·N(τ)], it follows that J[](1,MWN,θM , L2(P )) < ∞ ). Then

by Theorem 2.14.2 of [54],

P ∗ sup
t∈[0,θM ]

|Gn[W (t)N(τ)]|

≤ J[](1,MWN,θM , L2(P ))
√
P ∗ sup

t∈[0,θM ]

W 2(t)N2(1) .
√

P ∗ sup
t∈[0,θM ]

W 2(θ),

with . meaning ≤ up to a universal constant.

Since {W (t) : t ≥ 0} is a martingale, by Doob's maximal inequality (Theorem

2.1.7 in [38]),

P ∗ sup
t∈[0,θM ]

W 2(t) ≤ 4 sup
t∈[0,θM ]

P [W 2(t)] = 4θM .

So altogether, for the supremum of the �rst term in the decomposition of Mn(θ) −

M(θ), we have

P ∗ sup
θ∈[0,θM ]

|(Pn − P )(Z(θ)N(τ))| . 1√
n

(√
P (Z2(θ0)) +

√
θM

)
.
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Obviously the �rst term in the decomposition of Mn(θ)−M(θ) converges uniformly

to 0 in L1(P
∗) and hence in P ∗-probability.

Now consider the second term,∫ τ

0

log

[
PnY (u)eZ(θ)

PY (u)eZ(θ)

]
PndN(u).

First we aim to prove supθ,u
|(Pn−P )Y (u)eZ(θ)|

PY (u)eZ(θ) converge to 0 P ∗-a.s.. Since

PY (u)eZ(θ) ≥ PY (τ)eZ(θ) = e
|θ−θ0|

2 PY (τ)eZ(θ0) ≥ PY (τ)eZ(θ0)

= P
[
eZ(θ0)e−

∫ τ
0 λ0(s)eZ(θ0)dsP (C > τ |Z(θ0))

]
≡ B(θ0),

(2.8)

where the �rst equality holds by (2.4) and the second equality holds by (2.6).

Considering the condition P (C > τ |Z(θ0)) > 0 in Assumptions 2.2.1, PY (u)eZ(θ)

is bounded away from 0 by (2.8). Hence if {Y (u)eZ(θ) : u ∈ [0, τ ], θ ∈ [0, θM ]} is a

P -Glivenko−Cantelli class, then

lim
n→∞

sup
θ,u

|(Pn − P )Y (u)eZ(θ)|
PY (u)eZ(θ)

≤ lim
n→∞

sup
θ,u

|(Pn − P )Y (u)eZ(θ)|
B(θ0)

= 0 P ∗-a.s.. (2.9)

Furthermore,

lim
n→∞

sup
θ∈[0,θM ]

∣∣∣∣∣
∫ τ

0

log

[
PnY (u)eZ(θ)

PY (u)eZ(θ)

]
PndN(u)

∣∣∣∣∣
≤ lim

n→∞
sup
θ,u

∣∣∣∣∣log PnY (u)eZ(θ)

PY (u)eZ(θ)

∣∣∣∣∣PnN(τ) ≤ lim
n→∞

sup
θ,u

∣∣∣∣∣log PnY (u)eZ(θ)

PY (u)eZ(θ)

∣∣∣∣∣ .
Since the supremum value is equal to either log (1 + supu,θ

|(Pn−P )Y (u)eZ(θ)|
PY (u)eZ(θ) ) or

− log (1− supu,θ
|(Pn−P )Y (u)eZ(θ)|

PY (u)eZ(θ) ), whose values both go to 0 P ∗-a.s. as n → ∞ (by

continuous mapping theorem and (2.9)), so the P ∗-a.s. uniform convergence of the

second item in the decomposition of Mn(θ) − M(θ) is obtained, then its uniform

convergence in P ∗-probability is proved.

Now it su�ces to prove {Y (u)eZ(θ) : u ∈ [0, τ ], θ ∈ [0, θM ]} is a P -Glivenko−Cantelli

class. According to page 82 of VW [54], every Donsker class is a Glivenko−Cantelli
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class almost surely. The P -Glivenko−Cantelli property of the class {Y (u)eZ(θ) : u ∈

[0, τ ], θ ∈ [0, θM ]} follows from Lemma A.0.1 in Appendix A and the �rst Donsker

theorem on page 85 of VW [54].

For the third term
∫ τ

0
log s(0)(θ, u)(Pn − P )dN(u),

P ∗ sup
θ∈[0,θM ]

∣∣∣∣∫ τ

0

log s(0)(θ, u)(Pn − P )dN(u)

∣∣∣∣ = 1√
n
P ∗ sup

θ∈[0,θM ]

|Gnfθ| ,

where fθ = 1(T≤C)1(0<T≤τ) log s
(0)(θ, T )− eZ(θ0)

∫ τ

0

1(T≥u)λ0(u) log s
(0)(θ, u)du.

Since s(0)(θ, u) = e
|θ−θ0|

2 s(0)(θ0, u) by (2.4),∣∣∣∣∣log s(0)(θ1, u)

s(0)(θ2, u)

∣∣∣∣∣ = 1/2 ||θ1 − θ0| − |θ2 − θ0|| ≤ 1/2|θ1 − θ2|,

then |fθ1 − fθ2 |

≤

∣∣∣∣∣1(T≤C)1(0<T≤τ) log
s(0)(θ1, T )

s(0)(θ2, T )

∣∣∣∣∣+
∣∣∣∣∣eZ(θ0)

∫ τ

0

1(T≥u)λ0(u) log
s(0)(θ1, u)

s(0)(θ2, u)
du

∣∣∣∣∣
≤1/2|θ1 − θ2|1(T≤C)1(0<T≤τ) + 1/2|θ1 − θ2|eZ(θ0)

∫ τ

0

1(T≥u)λ0(u)du

≤1/2
(
1 + eZ(θ0)Λ0(τ)

)
|θ1 − θ2| ≡ Lf · |θ1 − θ2|,

where Λ0(τ) =
∫ τ

0
λ0(u)du and Lf ≡ 1/2

(
1 + eZ(θ0)Λ0(τ)

)
.

Since P (L2
f ) ≤

(
1 + Λ2

0(τ)P [e2Z(θ0)]
)
< ∞ by the conditions

∫ τ

0
λ0(u)du < ∞ and

P [e2Z(θ0)] < ∞ in Assumptions 2.2.1, then fθ is �Lipschitz in parameter� and hence

J[](1,Mf , L2(P )) < ∞ (p.294 of [54]), where Mf = {fθ, θ ∈ [0, θM ]}. Now we prove

its envelope function, supθ∈[0,θM ] f
2
θ , has �nite second moment. Due to the Lipschitz

property, we have ∣∣∣∣∣ sup
θ∈[0,θM ]

fθ

∣∣∣∣∣ ≤ |fθ0 |+ Lf · θM ,

P sup
θ∈[0,θM ]

f 2
θ . θ2M · P sup

θ∈[0,θM ]

(L2
f ) + Pf 2

θ0
. (2.10)
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On one hand,

P sup
θ∈[0,θM ]

(L2
f ) ≤ θ2M

(
1 + Λ2

0(τ)Pe2Z(θ0)
)
< ∞;

on the other hand,

Pf 2
θ0
≤ sup

u

∣∣∣log s(0)(θ0, u)∣∣∣2 · P (1 + Λ0(τ)e
Z(θ0)

)2
≤ 2 sup

u

∣∣∣logP (Y (u)eZ(θ0)
)∣∣∣2 · P (1 + Λ2

0(τ)e
2Z(θ0)

)
≤ 2

[∣∣∣logPeZ(θ0)
∣∣∣2 + ∣∣∣logPY (τ)eZ(θ0)

∣∣∣2] · P (1 + Λ2
0(τ)e

2Z(θ0)
)
< ∞,

where we used Y (τ) ≤ Y (u) ≤ 1 in the third inequality and 0 < P (eZ(θ0)) < ∞,

0 < P (Y (τ)eZ(θ0)) < ∞ which follow from Assumptions 2.2.1 in the last inequality.

Since both P supθ∈[0,θM ](L
2
f ) and Pf 2

θ0
are �nite, summarizing them and consider-

ing (2.10), we obtained that

P sup
θ∈[0,θM ]

f 2
θ < ∞.

Then by Theorem 2.14.2 of [54],

1√
n
P ∗ sup

θ∈[0,θM ]

|Gnfθ| ≤
1√
n
J[](1,Mf , L

2(P ))
√
P sup

θ∈[0,θM ]

f 2
θ . 1√

n
.

It follows that the third term in the decomposition of Mn(θ) −M(θ) converges uni-

formly to zero in L1(P
∗) and hence in P ∗-probability as n → ∞.

So to summarize the results in this section, as n → ∞, the summation of the three

terms converges to 0 in P ∗-probability uniformly over θ ∈ [0, θM ], i.e.,

sup
θ∈[0,θM ]

|Mn(θ)−M(θ)| → 0 in P ∗-probability.

We had proved that θ0 is the unique maximizer of M over [0, θM ], and M(θ0) >

supθ/∈GM(θ), for every open set G that contains θ0 in Chapter 2.2.2.1. Now we have

proved the uniform convergence ofMn−M to 0 in outer probability P ∗ in this section,

so the consistency of θ̂n follows by Corollary 3.2.3 of VW [54].
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2.2.2.3 Rate of Convergence

In Chapter 2.2.2.1, we already found a metric d, such that

M(θ)−M(θ0) . −d2(θ, θ0).

The next step would be to �nd out a suitable function ϕn(δ) which can satisfy the

modulus of continuity condition in the rate of convergence theorem. Then by this

theorem, an upper bound for the convergence rate r̃n of θ̂n is established.

The proof of this part is too techinical and lengthy, so we put it into Appendix A.

In Appendix A, we �nally get an upper bound for the rate of converge of θ̂n, r̃n = n.

2.2.2.4 Asymptotics of rescaled criterion function

Consider r̃n(θ̂n − θ0), and rewrite it as r̃n(θ̂n − θ0) = ĥn = argmaxh∈R Qn(h).

Write Qn(h) as the form of

Qn(h) = sn

(
Mn

(
θ0 +

h

r̃n

)
−Mn(θ0)

)
.

If the uniform weak convergence of Qn(h) can be established, i.e. Qn
W−→ Q, then

apply the Argmax Continuous Mapping Theorem, the asymptotic distribution of ĥn

can be established, ĥn
W−→ argmaxh Q(h). So r̃n(θ̂n − θ0)

W−→ argmaxh Q(h). The

asymptotic distribution of θ̂n is established.

Now let's consider Qn(h) = sn(Mn(θ0 + h/r̃n)−Mn(θ0)), ∀h ∈ [−K,K], ∀K > 0,

where we use sn = n and r̃n = n.

Qn(h) = n(Mn(θ0 + h/n)−Mn(θ0))

= n

(
Pn

[∫ τ

0

Z(θ0 +
h

n
)dN(s)−

∫ τ

0

log[PnY (u)eZ(θ0+
h
n
)]dN(u)

]
−Pn

[∫ τ

0

Z(θ0)dN(s)−
∫ τ

0

log[PnY (u)eZ(θ0)]dN(u)

])
= nPn

∫ τ

0

[Z(θ0 + h/n)− Z(θ0)] dN(s)− n

∫ τ

0

log

[
PnY (u)eZ(θ0+

h
n
)

PnY (u)eZ(θ0)

]
PndN(u).



CHAPTER 2. LARGE SAMPLE PROPERTIES 33

If we rewrite it using the S.B.M. W (t) ≡ Z(t+ θ0)− Z(θ0), then

Qn(h) = nPnW (h/n)N(τ)− n

∫ τ

0

log

1 + PnY (u)eZ(θ0)
(
eW ( h

n
) − 1

)
PnY (u)eZ(θ0)

PndN(u).

By similar arguments to that on MZ,δ in Appendix A,

lim
n→∞

sup
u∈[0,τ ]

|(Pn − P )Y (u)eZ(θ0)| = 0, P ∗-a.s.,

lim
n→∞

sup
|h|≤K,u∈[0,τ ]

∣∣∣(Pn − P )Y (u)eZ(θ0)
(
eW ( h

n
) − 1

)∣∣∣ = 0, P ∗-a.s..

Then

PnY (u)eZ(θ0)
(
eW ( h

n
) − 1

)
= PY (u)eZ(θ0)

(
eW ( h

n
) − 1

)
+ ouP (1) = ouP (1),

PnY (u)eZ(θ0) = PY (u)eZ(θ0) + ouP (1).

Notice that PY (u)eZ(θ0) is bounded away from zero by (2.8), it follows that

PnY (u)eZ(θ0)
(
eW ( h

n
) − 1

)
PnY (u)eZ(θ0)

= ouP (1),

where Ah,n = ouP (1) means Ah,n = oP (1) uniformly over (h, u) ∈ [−K,K]× [0, τ ].

Since by Taylor expansion, log (1 + x) = x+ o(x) = x(1 + o(1)) as x → 0,

log

1 + PnY (u)eZ(θ0)
(
eW ( h

n
) − 1

)
PnY (u)eZ(θ0)

 =
PnY (u)eZ(θ0)

(
eW ( h

n
) − 1

)
PnY (u)eZ(θ0)

[1 + ouP (1)]

=
PnY (u)eZ(θ0)

(
eW ( h

n
) − 1

)
PY (u)eZ(θ0) + ouP (1)

[1 + ouP (1)] =
PnY (u)eZ(θ0)

(
eW ( h

n
) − 1

)
PY (u)eZ(θ0)

[1 + ouP (1)] .

Since in this section, we are only interested in the asymptotics, we can omit those



CHAPTER 2. LARGE SAMPLE PROPERTIES 34

ouP (1) terms. Then Qn(h) can be decomposed as

So Qn(h) = nPnW (h/n)N(τ)− n

∫ τ

0

PnY (u)eZ(θ0)
(
eW (h/n) − 1

)
PY (u)eZ(θ0)

PndN(u)

= nPnW (
h

n
)N(τ)− n

∫ τ

0

PnY (u)eZ(θ0)W (h
n
)

PY (u)eZ(θ0)
PndN(u)

− n

∫ τ

0

PnY (u)eZ(θ0)
(
eW ( h

n
) − 1−W (h

n
)
)

PY (u)eZ(θ0)
PndN(u)

We have transformed the nonlinear log function into a linear term plus a remain-

der term, which make it easier to utilize the empirical process tools to prove the

asymptotic properties.

On one hand,

nPnW (h/n)N(τ)− n

∫ τ

0

PnY (u)eZ(θ0)W (h
n
)

PY (u)eZ(θ0)
PndN(u)

=d

√
nPnW (h)N(τ)−

√
n

∫ τ

0

PnY (u)eZ(θ0)W (h)

PY (u)eZ(θ0)
PndN(u)

=
√
nPnW (h)N(τ)−

√
n

∫ τ

0

PY (u)eZ(θ0)W (h) + ouP (1)

PY (u)eZ(θ0)
PndN(u)

=
√
nPnW (h)N(τ)−

√
n

∫ τ

0

0 + ouP (1)

PY (u)eZ(θ0)
PndN(u)

=
√
nPnW (h)N(τ)− ouP (1)

√
n

∫ τ

0

PndN(u)

PY (u)eZ(θ0)

=
√
nPnW (h)N(τ)− ouP (1) ·OuP (1) =

√
nPnW (h)N(τ)− ouP (1),

where we used the self-similarity property of Brownian motion in the �rst equality (in

distribution), the independence between (Y (u), Z(θ0)) andW (h) ≡ Z(θ0+h)−Z(θ0),

and the mean-zero property of Brownian motion W (h) in the third equality.

On the other hand,

n

∫ τ

0

PnY (u)eZ(θ0)
(
eW ( h

n
) − 1−W (h

n
)
)

PY (u)eZ(θ0)
PndN(u)

=
√
n

∫ τ

0

PnY (u)eZ(θ0)
√
n
(
eW ( h

n
) − 1−W (h

n
)
)

PY (u)eZ(θ0)
PndN(u)
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=
√
n

∫ τ

0

PY (u)eZ(θ0)
√
n
(
eW ( h

n
) − 1−W (h

n
)
)
+ ouP (1)

PY (u)eZ(θ0)
PndN(u)

=
√
n

∫ τ

0

PY (u)eZ(θ0)
√
nP
(
eW ( h

n
) − 1−W (h

n
)
)
+ ouP (1)

PY (u)eZ(θ0)
PndN(u)

=
√
n

∫ τ

0

PY (u)eZ(θ0)
√
n
(
e

|h|
2n − 1

)
+ ouP (1)

PY (u)eZ(θ0)
PndN(u)

=

∫ τ

0

[√
n
(
e

|h|
2n − 1

)
+ ouP (1)

√
n
]
PndN(u)

=n
(
e

|h|
2n − 1

)
PnN(τ) + ouP (1)

√
nPnN(τ)

=n
(
e

|h|
2n − 1

)
PnN(τ) + ouP (1) ·OuP (1) = n

(
e

|h|
2n − 1

)
PnN(τ) + ouP (1)

=n
(
e

|h|
2n − 1

)
(PN(τ) + ouP (1)) + ouP (1) = n

(
e

|h|
2n − 1

)
PN(τ) + ouP (1),

where we used the Glivenko−Cantelli property of the class of functions

{Y (u)eZ(θ0)
√
n
(
eW ( h

n
) − 1−W (h/n)

)
: u ∈ [0, τ ], h ∈ [−θ0, θM − θ0]}

in the second equality, the independence between (Y (u), Z(θ0)) and W (h) ≡ Z(θ0 +

h) − Z(θ0) in the third equality, and the property of Brownian motion W (h) in the

forth equality. The Glivenko−Cantelli property of the class of functions

{Y (u)eZ(θ0)
√
n
(
eW ( h

n
) − 1−W (h/n)

)
: u ∈ [0, τ ], h ∈ [−θ0, θM − θ0]}

can be proved similarly to that of M in Lemma A.0.1 in Appendix A. We omit it

here.

Then putting them together, we have

Qn(h) =d

√
nPnW (h)N(τ)− n

(
e

|h|
2n − 1

)
PN(τ) + ouP (1).

For the �rst term,

√
nPnW (h)N(τ) =

√∑n
i=1Ni(τ)

n

1√∑n
i=1Ni(τ)

n∑
i=1

Wi(h)Ni(τ)

=
√
PnN(τ)

√√√√ n∑
i=1

Ni(τ)P∑n
i=1 Ni(τ)W (h).
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By the independence of (Wi(·), Ni(τ)) (i = 1, .., n) and properties of Brownian motion,√√√√ n∑
i=1

Ni(τ)P∑n
i=1 Ni(τ)W (h) =d W (h).

Since limn→∞ PnN(τ) = PN(τ), then

lim
n→∞

√
nPnW (h)N(τ) =d lim

n→∞

√
PnN(τ)W (h) =

√
PN(τ) ·W (h).

For the second term, we have

lim
n→∞

sup
h∈[−K,K]

∣∣∣∣n(e |h|
2n − 1

)
PN(τ)− |h|

2
PN(τ)

∣∣∣∣ = 0,

Summing them up, we have Qn(h) converges uniformly to the process
√
PN(τ) ·

W (h)− |h|
2
PN(τ).

2.2.2.5 Asymptotic distribution of estimator θ̂n

By the Argmax Continuous Mapping Theorem (i.e., Theorem 3.2.2 of VW [54]), ĥn
W−→

argmaxh Q(h). So

n(θ̂n − θ0)
W−→ argmaxhQ(h).

Because argmaxhQ(h) = argmaxh

[√
PN(τ) ·W (h)− |h|

2
PN(τ)

]
= argmaxh

(
W (h)− |h|

2

√
PN(τ)

)
,

the asymptotic distribution of θ̂n can be established.

For the case of general σ > 0, following the lines throughout Chapter 2.2.2, we

will obtain Qn(h) converges uniformly to the process Q(h) =
√

PN(τ) · σW (h) −
|h|
2
σ2PN(τ), and

argmaxhQ(h) = argmaxh

[√
PN(τ) · σW (h)− |h|

2
σ2PN(τ)

]
= argmaxh

(
W (h)− |h|

2
σ
√

PN(τ)

)
,

where W (·) is a 2-sided standard Brownian motion starting from zero with unit

variance scale (i.e.W (1) =d W (−1) ∼ N(0, 1)).
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2.3 Extended model

In this section, we extend the simpli�ed model to the general model, i.e., the full

model. The extensions are in two aspects. First, the trajectories of the functional

covariate follow fractional Brownian motion with Hurst parameter H instead of Brow-

nian motion. Such an extension from B.M. to fBm allows the functional covariate to

have varied roughness, i.e., the extended model covers a wider range of functional co-

variate types. Second, the extended model allows for other non-functional covariates

besides the functional covariate. Using the extended model, we can study the the

e�ects of both the functional covariate and other non-functional covariates together

in the Cox model.

These two extensions make the proposed model more applicable in data analysis.

The extended model has more �exibility, however, deriving the large sample properties

of its estimators is more challenging.

We will present the setting of the model, then state the model assumptions and

study the large sample properties of the proposed estimators based on these assump-

tions. Most proofs are relegated to the last subsection, and some others are put into

Appendix B.

Simulations to evaluate the �nite sample performance of the estimators for the

extended model can be found in Chapter 3.2.

2.3.1 Extended model setting

Consider a more complicated working model:

λ(t|Z;X) = λ0(t) exp{βZ(θ) + γTX}.

Even though we observe a functional covariate, i.e., the realized trajectory of a

stochastic process {Z(θ̃) : θ̃ ∈ [0, θM ]} for each subject, only one common location θ

(shared by every subject) on the trajectories predicts the subjects' risk of experiencing

the event of interest.
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Note that in practice, the realized trajectories are not always observed continu-

ously. They are commonly observed on grids that are �ne enough instead. Besides

the functional predictor {Z(θ̃) : θ̃ ∈ [0, θM ]}, other non-functional covariates X are

also included in the model.

By estimating the parameters in this model, we make a sparse selection of the

functional predictor {Z(θ̃) : θ̃ ∈ [0, θM ]}. After the sparse selection, only one element

of the functional predictor, Z(θ) (0 ≤ θ ≤ θM), is retained in the model. To better

understand this model, refer to Chapter 1.4 for more explanations.

Parameter estimation for this model is based on the partial likelihood principle.

For every grid θ̃ on the trajectory {Z(θ̃) : θ̃ ∈ [0, θM ]}, we can treat Z(θ̃) as a non-

functional covariate and �t the Cox proportional hazards model using
(
Z(θ̃),X

)
. As

a byproduct of the model �tting process, we obtain the partial likelihood value for

the �tted Cox model. We do this for every grid on the trajectory. Compare their

partial likelihood values to �nd the grid that has the maximum partial likelihood

value. This grid is the maximum partial likelihood estimator of the sensitive location

on the trajectory. The corresponding �tted Cox model based on this chosen grid is

the �nal Cox model estimated from data. The estimates of (β, γ) can be obtained

within this �tted model.

This idea of parameter estimation is simple and can be applied to any stochastic

process Z and other non-functional covariates X. However, to derive the large sam-

ple properties of the maximum partial likelihood estimators, we have to make some

assumptions.

Before we state the model assumptions, to make notation simple in this chapter,

we include only one non-functional covariate, i.e., X, in the model. We also give a

subscript H to Z(θ), which will be referred to in the following Assumptions.

λ(t|ZH ,X) = λ0(t) exp(βZH(θ) + γX).

All the theoretical results based on this model with one non-functional covariate can

be extended to the model with multiple non-functional covariates.
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All the model assumptions are almost the same as those of Chapter 2.2 besides

those adjustments to adapt to the model complexity.

Assumptions 2.3.1.

1. ZH(·) is a 2-sided fractional Brownian motion (abbreviated as fBm in the sequel)

with Hurst parameter H starting from θ scaled by σ, i.e. WH(·) ≡ ZH(·+θ)−ZH(θ)
σ

follows 2-sided standard fBm with Hurst parameter H starting from 0. The

trajectory of {ZH(θ̃) : 0 ≤ θ̃ ≤ θM} is observed.

2. (ZH(θ), X) is independent of the process ZH(·+θ)−ZH(θ), ZH(θ) is independent

of X, and they satisfy Pe2βZH(θ) < ∞, Pe2γX < ∞.

3. Both the distributions of T 0 and C depend on (ZH(θ), X) only; T 0 and C are

conditionally independent given (ZH(θ), X).

4. P [Z2
H(θ̃)e

β̃ZH(θ̃)+γ̃X ] < ∞, P [X2eβ̃ZH(θ̃)+γ̃X ] < ∞ for all (β̃, γ̃, θ̃) ∈ [−βM , βM ]×

[−γM , γM ]× [0, θM ].

5. P (C > τ |ZH(θ), X) > 0.

6.
∫ τ

0
λ0(u)du < ∞.

7. 0 < |β| ≤ βM , |γ| ≤ γM .

All these assumptions are similar to their counterparts in the simpli�ed model

except for some necessary extensions. Notice that in the second assumption, we need

the independence of Z(θ) and X. There are two reasons to have this assumption. The

�rst is it will make the model simpler and the investigation of the theoretical proper-

ties easier. The second is that if the correlation between Z(θ) and X is high, then the

variable Z(θ) already includes part of the information about X; hence adding X into

the model will not bring much more information. So to assume the independence of

Z(θ) and X is reasonable.
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Note that by the seventh assumption, γ can be zero in this model but β can not

be zero. If β = 0, not only the parameter θ in this model can not be identi�ed, but

also the model will lose its key feature proposed by this thesis, becoming the classical

Cox model.

Notation

We will assume the true value of (θ, β, γ) is (θ0, β0, γ0) and use the following notation

in this chapter. Denote π ≡ (β, γ, θ), N(u) = 1δ=1,T 0∧C≤u, Y (u) = 1T 0∧C≥u. For any

π ∈ [−βM , βM ]× [−γM , γM ]× [0, θM ], we set

mπ(T
0, C, δ) = (βZH(θ) + γX)N(τ)−

∫ τ

0

log [PY (u) exp(βZH(θ) + γX)] dN(u),

M(π) = P

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log [PY (u) exp(βZH(θ) + γX)] dN(u)

]
,

Mn(π) = Pn

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log [PnY (u) exp(βZH(θ) + γX)] dN(u)

]
,

U(β, γ, θ, u) = Y (u) exp(βZH(θ) + γX),

F (β, γ, u) = exp

(
βZH(θ0) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds

)
· P (C ≥ u|ZH(θ0), X) ,

f(β, γ, u) = logF (β, γ, u),

S(π, u) ≡ Pn [Y (u) exp(βZH(θ) + γX)] =
1

n

n∑
i=1

Yi(u) exp(βZH,i(θ) + γXi),

s(π, u) ≡ P [Y (u) exp(βZH(θ) + γX)] = P [Y (u) exp(βZH(θ) + γX)] .

2.3.2 Main Results

Theorem 2.3.2. Under Assumptions 2.3.1, for H ∈ [1/2, 1),

β̂n →P ∗ β0, γ̂n →P ∗ γ0, θ̂n →P ∗ θ0.

With additional moment conditions B.2.1 in Appendix B.2 satis�ed, for H ∈

[1/2, 1),

√
n(β̂n − β0) = O∗

P (1),
√
n(γ̂n − γ0) = O∗

P (1), n1/(2H)(θ̂n − θ0) = O∗
P (1);
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and the asymptotic distributions of (
√
n(β̂n − β0),

√
n(γ̂n − γ0)) and n1/(2H)(θ̂n − θ0)

are independent, with √
n(β̂n − β0)

√
n(γ̂n − γ0)

→w N

 0

0

 ,

 s21 ρs1s2

ρs1s2 s22

 ,

n1/(2H)(θ̂n − θ0)
W−→ argmaxh

(
WH(h)−

|h|2H

2
|β0|σ

√
PN(τ)

)
,

where s21 =
P (X2N(τ))

P (Z2
H(θ0)N(τ))P (X2N(τ))− P 2(ZH(θ0)XN(τ))

,

s22 =
P (Z2

H(θ0)N(τ))

P (Z2
H(θ0)N(τ))P (X2N(τ))− P 2(ZH(θ0)XN(τ))

,

ρ =
−P (ZH(θ0)XN(τ))√

P (X2N(τ))P (Z2
H(θ0)N(τ))

,

while WH(·) is a standard 2-sided fractional Brownian motion with Hurst parameter

H starting from zero with unit variance scale (i.e., WH(1) =d WH(−1) ∼ N(0, 1)).

Comparing to PN(τ) in Remark 2.2.1, here

PN(τ) = 1− P

[
exp

(
−eβ0ZH(θ0)+γ0X

∫ τ

0

λ0(s)ds

)]
.

For general H other than H = 0.5, we do not have closed form C.D.F. for the

asymptotic distribution argmaxh

(
WH(h)− |h|2H

2
|β0|σ

√
PN(τ)

)
. However, we can

use simulations (see Chapter 3.2) to learn about its properties.

In Chapter 2.2, we have made some remarks on the theoretical results of the

simpli�ed model. Now, we add some additional remarks based on Theorem 2.3.2.

Remark 2.3.3. 1. The rates of convergence for the regression coe�cients estima-

tors β̂n, γ̂n are both
√
n, while the rate of convergence of location estimator θ̂n

is n1/(2H) (0 < H < 1). It means as n → ∞, θ̂n converges to θ0 in a faster

rate compared to β̂n and γ̂n. Due to the roughness of fBm's paths, a small shift

of location on the trajectory of fBm can lead to a big change of the value of the

trajectory. So it is easy to capture the location of interest. The smaller H is,
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the rougher the trajectory, and hence it is easier to estimate the location. This

explains why the convergence rate of θ̂n is regulated by H, the Hurst parameter

which describes the roughness of fBm's trajectories.

2. The estimation of (β, γ) is based on the estimation of θ. Especially, β is the

regression coe�cient of ZH(θ) where θ is unknown as well. So it is not a surprise

if the convergence rate of β̂n is slower than those of γ̂n. However, thanks to

the fast convergence of θ̂n, the convergence rate of β̂n is not impacted (by the

uncertainty of θ) compared to that of γ̂n.

2.3.3 The case H strictly less than 0.5

The theoretical results presented above require H ∈ [1/2, 1). Such a restriction

comes from the unavailability of a maximal inequality for the exponential function of

fractional Brownian motion in the case H ∈ (0, 1/2). Such a maximal inequality is

used in the proof of Lemma C.2.3 in Appendix C.

However, our simulation results imply these theoretical results probably still apply

for the case H ∈ (0, 1/2), even though it is not mathematically justi�ed by our proof

due to the absence of the maximal inequality.

2.3.3.1 Non-identi�ability of (θM , σ)

Similarly to the counterpart in the simpli�ed model, to resolve the problem caused by

the self-similarity of fractional Brownian motion and to make model (2.1) identi�able,

we always set θM = 1 when we estimate parameters for this model.

2.3.3.2 Wald-type con�dence interval for θ

Comparing to its counterpart for the simpli�ed model, the Wald-type con�dence

interval construction for the extended model is more involved. Since for general H,

there is no analytical C.D.F. for the asymptotic distribution of n1/(2H)(θ̂n − θ0), to
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get its quantile is a challenge. Even simulation methods won't work here since they

require generating a fractional Brownian motion with drift on an in�nite interval. For

an in�nite interval, it is not executable in simulations.

To get Wald-type con�dence interval for θ in practice, we will modify the asymp-

totic distribution with the actual sample size information incorporated. The details

are put into Chapter 3.2.

2.3.4 Proofs

We will use the procedure in Chapter 3 of VW [54] to establish the asymptotic

properties of our M-estimators. Same as for the simpli�ed model, WLOG we will

assume σ = 1.

2.3.4.1 Local quadratic property

In this section, we will prove three results. The �rst is the strict concavity of the

function M(π). The second is π0 is the unique global maximum point. The third is

the local quadratic property of M(π) at π0. The proofs of the �rst and second results

are done in the subsection Strict Concavity and Unique Global Maximum

Point and the proof of the third will appear in the subsection Local Quadratic

Property at π0.

M(π) = P

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log [PY (u) exp(βZH(θ) + γX)] dN(u)

]
.

In this section, we need to take derivatives of expectations. We give an example in

Appendix D to show how to justify the exchange of di�erentiation and expectation.

Take d(π, π0) to be a function of |β−β0|, |γ−γ0|, |θ−θ0|, in order to check the local

quadratic property of M(π) in the neighborhood of π0, we investigate the di�erence
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of M(π) and M(π0).

M(π)−M(π0)

=P

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log [PY (u) exp(βZH(θ) + γX)] dN(u)

]
− P

[
(β0ZH(θ0) + γ0X)N(τ)−

∫ τ

0

log [PY (u) exp(β0ZH(θ0) + γ0X)] dN(u)

]
=P [(βZH(θ) + γX − (β0ZH(θ0) + γ0X))N(τ)]

− P

[∫ τ

0

log

[
PY (u) exp(βZH(θ) + γX)

PY (u) exp(β0ZH(θ0) + γ0X)

]
dN(u)

]
To deal with the last term of this decomposition,

PY (u) exp(βZH(θ) + γX)

= P (C ≥ u|ZH(θ0), X) exp

(
βZH(θ) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds

)
= P (C ≥ u|ZH(θ0), X) · P exp(β(ZH(θ)− ZH(θ0)))

·P exp

(
βZH(θ0) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds

)
= exp(−1/2β2|θ − θ0|2H)PY (u) exp(βZH(θ0) + γX), (2.11)

where we used the distributional property of fBm ZH(θ)−ZH(θ0) in the last equality.

So M(π)−M(π0) can be further written as

=(β − β0)P [ZH(θ0)N(τ)] + (γ − γ0)P [XN(τ)]− 1/2β2|θ − θ0|2HPN(τ)

− P

[∫ τ

0

log

[
PY (u) exp(βZH(θ0) + γX)

PY (u) exp(β0ZH(θ0) + γ0X)

]
dN(u)

]
,

where P [β(ZH(θ)− ZH(θ0))N(τ)] disappeared since

P [β(ZH(θ)− ZH(θ0))N(τ)] = P [β(ZH(θ)− ZH(θ0))1T 0≤C,T 0≤τ ]

= P [β(ZH(θ)− ZH(θ0))]P [1T 0≤C,T 0≤τ ] = 0,

where the second equality holds because the vector (T 0, C) depends on (ZH(θ0), X)

only and hence is independent of ZH(θ) − ZH(θ0) by model assumption, the last

equality holds by the zero-mean property of fractional Brownian motion ZH(θ) −

ZH(θ0).
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Strict concavity and unique global maximum point

In this subsection, we will prove that the function M(π) is strictly concave, and that

π0 is the unique global maximum point of M(π).

Using the notation F (β, γ, u) set earlier in Chapter 2.3.1, we have

PY (u) exp(βZH(θ0) + γX) = PF (β, γ, u).

The �rst and second order derivatives of M(π) w.r.t. β are (in all the following

derivatives calculation, we need to justify the exchange of di�erentiation and expec-

tation as that in Appendix D, which we omit here not to obscure our focus)

∂M(π)

∂β
= PZH(θ0)N(τ)−

∫ τ

0

PZH(θ0)F (β, γ, u)

PF (β, γ, u)
dPN(u),

∂2M(π)

∂2β
=

∫ τ

0

(PZH(θ0)F (β, γ, u))2 − P
(
Z2

H(θ0)F (β, γ, u)
)
PF (β, γ, u)

(PF (β, γ, u))2
dPN(u),

and ∂M(π)
∂γ

, ∂
2M(π)
∂2γ

can be obtained with similar formulas. Notice that in deriving

∂2M(π)
∂2β

, we need P
(
Z2

H(θ0)F (β, γ, u)
)
< ∞ which is guaranteed by Assumptions 2.3.1.

The term ∂2M(π)
∂2β

can be proved to be strictly negative deterministic functions of

β by using Cauchy�Schwartz Inequality for the integrand; be equal to zero-valued

function only if model are degenerated: ZH(θ0) is a degenerated random variable.

Similar results holds for ∂2M(π)
∂2γ

.

∂2M(π)

∂β∂γ
=

∫ τ

0

P
(
ZH(θ0)Fβ,γ,u

)
P (X)− P

(
ZH(θ0)XFβ,γ,u

)
PFβ,γ,u(

PFβ,γ,u

)2 dPN(u),

where we denote F (β, γ, u) as Fβ,γ,u due to space limit.

We want to prove

∂2M(π)

∂2γ
· ∂

2M(π)

∂2β
−
(
∂2M(π)

∂β∂γ

)2

> 0.
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To make notation simpler, denote Z ≡ ZH(θ0), F ≡ F (β, γ, u), it su�ces to prove[∫ τ

0

P (Z2F )P (F )− P 2(ZF )

P 2F
dPN(u)

] [∫ τ

0

P (X2F )P (F )− P 2(XF )

P 2F
dPN(u)

]
−
[∫ τ

0

P (ZXF )P (F )− P (ZF )P (XF )

P 2F
dPN(u)

]2
> 0.

(2.12)

The proof can be done as follows.

For any random variable U , we have P (U2F )P (F ) ≥ P 2(UF ) by Cauchy�Schwartz

Inequality with equality holds only if U = c for a constant c, P -a.s..

Let U = X+aZ, where a is any real number, we will have P ((X+aZ)2F )P (F ) ≥

P 2[(X + aZ)F ], with equality holds only if X + aZ = c for a constant c, P -a.s..

Since the condition for equality, X + aZ = c for a constant c, P -a.s., does not

hold by the independence of ZH(θ0) and X, it follows that P ((X + aZ)2F )P (F ) >

P 2[(X + aZ)F ]. By the monotonically increasing property of PN(u), we have∫ τ

0

P [(X + aZ)2F ]P (F )

P 2F
dPN(u) >

∫ τ

0

P 2[(X + aZ)F )

P 2F
dPN(u).

Expand and reorganize the inequality,[∫ τ

0

P (Z2
HF )P (F )− P 2(ZF )

P 2F
dPN(u)

]
a2 +

[∫ τ

0

P (X2F )P (F )− P 2(XF )

P 2F
dPN(u)

]
+ 2

[∫ τ

0

P (ZXF )P (F )− P (ZF )P (XF )

P 2F
dPN(u)

]
a > 0, ∀a ∈ R.

By discriminant of a quadratic, (2.12) holds; and hence

∂2M(π)

∂2γ
· ∂

2M(π)

∂2β
−
(
∂2M(π)

∂β∂γ

)2

> 0.

Besides, it is obvious that ∂2M(π)
∂2β

< 0 and ∂2M(π)
∂2γ

< 0. All the three conditions hold

throughout (β, γ) ∈ [−βM , βM ]× [−γM , γM ], so M(π) is a strictly concave function of

(β, γ).

By the derived expression of M(π)−M(π0) which has −1/2β2|θ− θ0|2HPN(τ) as

the only term that includes θ, it follows that for any given value of (β, γ), M(π) takes

a unique maximum at (β, γ, θ0) for all θ.
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It follows that to look for the global maximum of M(π), we just �x θ0 and look

for the (β, γ) that maximize M(β, γ, θ0).

The �rst derivative of M(π) w.r.t. β at π0

∂M(π)

∂β
|π=π0 = PZH(θ0)N(τ)− P

[∫ τ

0

PZH(θ0)F (β0, γ0, u)

PF (β0, γ0, u)
dN(u)

]
= 0

by direct calculation, and the same equality holds for ∂M(π)
∂γ

|π=π0 .

By ∂M(π)
∂β

|π=π0 =
∂M(π)
∂γ

|π=π0 = 0, M(β, γ, θ)−M(β, γ, θ0) = 1/2β2|θ− θ0|2HPN(τ)

and considering its strict concavity w.r.t. (β, γ), it follows that π0 = (β0, γ0, θ0) is the

unique global maximum point of M(π), and supπ:d(π,π0)≥ϵ M(π) < M(π0).

Local quadratic property at π0

To obtain the local quadratic property ofM(π) at π0, we want to �nd a metric (or more

general, a semi-metric) d(π, π0), such that for π near π0, M(π)−M(π0) . −d2(π, π0).

Looking at the di�erence of M(π) and M(π0), and also considering Taylor expansion

about β, γ near π0, it can be decomposed as

∂M(π)

∂β
|π=π0(β − β0) +

∂M(π)

∂γ
|π=π0(γ − γ0) +

∂2M(π)

∂β∂γ
|π=π0(β − β0)(γ − γ0)

+
1

2

∂2M(π)

∂2β
|π=π0(β − β0)

2 +
1

2

∂2M(π)

∂2γ
|π=π0(γ − γ0)

2 − 1

2
|β(θ − θ0)|2HPN(τ)

+ o
(
(β − β0)

2
)
+ o

(
(γ − γ0)

2
)

=
∂2M(π)

∂β∂γ
|π=π0(β − β0)(γ − γ0) +

1

2

∂2M(π)

∂2β
|π=π0(β − β0)

2 +
1

2

∂2M(π)

∂2γ
|π=π0(γ − γ0)

2

− 1

2
|β(θ − θ0)|2HPN(τ) + o

(
(β − β0)

2
)
+ o

(
(γ − γ0)

2
)
.

Reorganize ∂2M(π)
∂β∂γ

|π=π0(β−β0)(γ−γ0)+
1
2
∂2M(π)
∂2β

|π=π0(β−β0)
2+ 1

2
∂2M(π)
∂2γ

|π=π0(γ−γ0)
2

as the form of

−1

2
c1(β − β0)

2 − 1

2
c1(γ − γ0)

2 − 1

2
(c2(β − β0)−

∂2M(π)
∂β∂γ

|π=π0

c2
(γ − γ0))

2,
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let c1 + c22 = −∂2M(π)
∂2β

|π=π0 and c1 +

(
∂2M(π)
∂β∂γ

|π=π0

c2

)2

= −∂2M(π)
∂2γ

|π=π0 , and solve the

equations, we obtain the solution as real numbers:

c1 =
1

2

(
a+ b−

√
(a− b)2 + 4c2

)
,

c22 =
a− b+

√
(a− b)2 + 4c2

2
,

where a = −∂2M(π)
∂2β

|π=π0 , b = −∂2M(π)
∂2γ

|π=π0 , c =
∂2M(π)
∂β∂γ

|π=π0 .

Note: The preceding inequality ab− c2 > 0 proved earlier guarantees that c1 > 0.

∂2M(π)

∂β∂γ
|π=π0(β − β0)(γ − γ0) +

1

2

∂2M(π)

∂2β
|π=π0(β − β0)

2 +
1

2

∂2M(π)

∂2γ
|π=π0(γ − γ0)

2

− 1

2
|β(θ − θ0)|2HPN(τ)

=− 1

2
c1
[
(β − β0)

2 + (γ − γ0)
2
]
− 1

2
(c2(β − β0)−

∂2M(π)
∂β∂γ

|π=π0

c2
(γ − γ0))

2

− 1

2
|β(θ − θ0)|2HPN(τ)

≤− 1

2
c1
[
(β − β0)

2 + (γ − γ0)
2
]
− 1

2
|β(θ − θ0)|2HPN(τ)

Since β0 ̸= 0 by Assumptions 2.3.1, when the neighborhood is small enough,

we can always make all the β in the neighborhood to be bounded away from zero

(|β| ≥ βm > 0), e.g., βm = |β0|
2

is one possible choice.

Take constant c̃ ≡ c1∧β2H
m PN(τ)
2

, then

M(θ)−M(θ0) ≤ −c̃d2(π, π0) . −d2(π, π0),

where d2(π, π0) = (β− β0)
2 +(γ− γ0)

2 + |θ− θ0|2H , and c̃ does not depend on β, γ, θ.

2.3.4.2 Consistency

The next step is to prove π̂n →P ∗ π0, the consistency of π̂n. We already proved the

local quadratic property of M(π) at π0, π0 as its unique global maximizing point of

M(π), and the strict concavity ofM(π) over the whole domain of (β, γ) ∈ [−βM , βM ]×
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[−γM , γM ], and supπ:d(π,π0)≥ϵ M(π) < M(π0). By Theorem 5.7 of van der Vaart [53], to

prove supπ∈Φ |Mn(π)−M(π)| → 0 in P ∗ su�ces, where Φ ≡ [−βM , βM ]× [−γM , γM ]×

[0, θM ].

∀ϵ > 0, P ∗
(
sup
π∈Φ

|Mn(π)−M(π)| ≥ ϵ

)
= P ∗

(
sup
π∈Φ

|(Pn − P ) ((βZH(θ) + γX)N(τ))

−
[∫ τ

0

log
[
PnY (u)eβZH(θ)+γX

]
PndN(u)−

∫ τ

0

log s(0)(π, u)PdN(u)

]∣∣∣∣ ≥ ϵ

)

≤ P ∗
(
sup
π∈Φ

|(Pn − P ) ((βZH(θ) + γX)N(τ))|

+sup
π∈Φ

∣∣∣∣∣
∫ τ

0

log

[
PnY (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX

]
PndN(u)

∣∣∣∣∣
+sup

π∈Φ

∣∣∣∣∫ τ

0

log s(0)(π, u)(Pn − P )dN(u)

∣∣∣∣ ≥ ϵ

)
≤ P ∗

(
sup
π∈Φ

|(Pn − P ) ((βZH(θ) + γX)N(τ))| > ϵ

3

)
+ P ∗

(
sup
π∈Φ

∣∣∣∣∣
∫ τ

0

log

[
PnY (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX

]
PndN(u)

∣∣∣∣∣ > ϵ

3

)

+ P ∗
(
sup
π∈Φ

∣∣∣∣∫ τ

0

log s(0)(π, u)(Pn − P )dN(u)

∣∣∣∣ ≥ ϵ

3

)
≤ 3

ϵ
P ∗ sup

π∈Φ
|(Pn − P ) ((βZH(θ) + γX)N(τ))|

+ P ∗

(
sup
π∈Φ

∣∣∣∣∣
∫ τ

0

log

[
PnY (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX

]
PndN(u)

∣∣∣∣∣ ≥ ϵ

)

+
3

ϵ
P ∗ sup

π∈Φ

∣∣∣∣∫ τ

0

log s(0)(π, u)(Pn − P )dN(u)

∣∣∣∣
≡ I1 + I2 + I3.

I1 =
3√
nϵ

P ∗ sup
π∈Φ

|Gn ((βZH(θ) + γX)N(τ)) |.

Since Q ≡ {βZH(θ) + γX : |β| ≤ βM , θ ∈ [0, θM ], |γ| ≤ γM} has �nite integral of

L2(P ) entropy with bracketing (see Lemma C.3.1 in Appendix C) , the class formed by
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multiplying it to a function N(τ) which is bounded by 1, QN = {(βZH(θ)+γX)N(τ) :

π ∈ Φ}, still has bounded bracketing entropy and J[](1,QN , L2(P )) < ∞ as well

(multiplying the brackets of Q by N(τ) provides brackets for QN), then by Theorem

2.14.2 of VW [54],

P ∗ sup
π∈Φ

|Gn ((βZH(θ) + γX)N(τ))|

≤ J[](1,QN , L2(P ))P ∗
√
sup
π∈Φ

(βZH(θ) + γX)2N2(1) . P ∗
√

sup
π∈Φ

(βZH(θ) + γX)2

.
√

2
(
4β2

MC2,Hθ2HM + γ2
MPX2

)
.
√
β2
Mθ2HM + γ2

MPX2,

where we used the maximal inequality for fractional Brownian motion from Novikov

and Valkeila [31] in the second to last inequality. It follows that I1 → 0 as n → ∞.

I2 = P ∗

(
sup
π∈Φ

∣∣∣∣∣
∫ τ

0

log

[
PnY (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX

]
PndN(u)

∣∣∣∣∣ ≥ ϵ

)
.

To prove limn→∞ I2 = 0, it su�ces to prove the supremum term in the preceding

display converges to 0 P ∗-a.s. as n → ∞.

Following the same lines as that of the simpli�ed model, we only need to prove

the P ∗-Glivenko−Cantelli a.s. of N ≡ {Y (u)eβZH(θ)+γX : u ∈ [0, τ ], |β| ≤ βM , θ ∈

[0, θM ], |γ| ≤ γM} and �nd out the lower bound of PY (u)eβZH(θ)+γX over (u, β, γ, θ) ∈

[0, τ ]× [−βM , βM ]× [−γM , γM ]× [0, θM ].

By Lemma C.2.1, N has �nite integral of L2(P ) entropy with bracketing, hence

N is P ∗-Glivenko−Cantelli a.s..

On the other hand, PY (u)eβZH(θ)+γX = e−1/2β2|θ−θ0|2HPF (β, γ, u). We can obtain

its continuity over (β, γ, θ) ∈ [−βM , βM ]× [−γM , γM ]× [0, θM ]. Its monotonicity w.r.t.

u is also obvious. So its minimum value, denoted as Cm, is attained in the bounded

and closed region (u, β, γ, θ) ∈ [0, τ ]× [−βM , βM ]× [−γM , γM ]× [0, θM ]. Since

PY (u)eβZH(θ)+γX = P
[
eβZH(θ)+γXe−

∫ τ
0 λ0(s)e

β0ZH (θ0)+γ0XdsP (C ≥ u|ZH(θ0), X)
]

≥ P
[
eβZH(θ)+γXe−

∫ τ
0 λ0(s)e

β0ZH (θ0)+γ0XdsP (C ≥ τ |ZH(θ0), X)
]
,
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where the right hand side of the inequality is strictly positive throughout the region by

the condition P (C ≥ τ |ZH(θ0), X) > 0 from Assumptions 2.3.1, the attained in�mum

Cm > 0 is bounded away from 0. (Note that Cm does not depend on (u, θ, β, γ).)

I3 =
3

ϵ
P ∗ sup

π∈Φ

∣∣∣∣∫ τ

0

log s(0)(π, u)(Pn − P )dN(u)

∣∣∣∣ ≤ 3√
nϵ

P ∗ sup
π∈Φ

|Gngπ|,

where gπ = 1(T≤C)1(0<T≤τ) log s
(0)(π, T )− eβ0ZH(θ0)+γ0X

∫ τ

0
1(T≥u)λ0(u) log s

(0)(π, u)du.

It also converges to zero as n goes to in�nity. The detailed proof is put in Appendix

B.1.

So altogether, as n → ∞, I1 + I2 + I3 → 0, and hence

∀ϵ > 0, P ∗
(
sup
π∈Φ

|Mn(π)−M(π)| ≥ ϵ

)
→ 0. (2.13)

In Chapter 2.3.4.1, it has been proved that M(π) is strictly concave on its whole

domain of (β, γ) ∈ [−βM , βM ] × [−γM , γM ], , has unique global maximum point

π0 = (β0, γ0, θ0) and local quadratic property holds for M(π) at π0, and M(π0) >

supd(π,π0)>ϵM(π). By Theorem 5.7 of van der Vaart [53] and (2.13), the consistency

of π̂n = (β̂n, γ̂n, θ̂n) is proved.

2.3.4.3 Rate of convergence

By Theorem 3.2.5 in VW [54], the upper bounds for the convergence rates of β̂n, γ̂n, θ̂n

are
√
n,

√
n, n1/(2H) respectively. Details of the proof are too lengthy and put into

Appendix B.2.

2.3.4.4 Asymptotics of rescaled criterion function

We have obtained the rates of convergence in the previous section. Following the

three-step procedure for M-estimators, the next step is to establish the uniform con-

vergence of a rescaled localized criterion function.
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Let βn = β0 +
hβ√
n
, γn = γ0 +

hγ√
n
, θn = θ0 + hθ/n

1/(2H). Denote hπ = (hθ, hβ, hγ),

hπrn
=
(
hθ/n

1/(2H),
hβ√
n
, hγ√

n

)
. Now consider Qn(hπrn

) = sn(Mn(π0 + hπrn
)−Mn(π0)),

where hπ ∈ [−K,K]3,∀K > 0 and sn = n.

n(Mn(π0 + hπrn
)−Mn(π0))

=n

(
Pn

[∫ τ

0

(βnZH(θn) + γnX) dN(s)−
∫ τ

0

log
[
PnY (u)eβnZH(θn)+γnX

]
dN(u)

]
−Pn

[∫ τ

0

[β0ZH(θ0) + γ0X] dN(s)−
∫ τ

0

log[PnY (u)eβ0ZH(θ0)+γ0X ]dN(u)

])
= nPn

[(
βn (ZH(θn)− ZH(θ0)) +

hβ√
n
ZH(θ0) +

hγ√
n
X

)
N(τ)

]
− n

∫ τ

0

log

[
PnY (u) exp (βnZH(θn) + γnX)

PnY (u)eβ0ZH(θ0)+γ0X

]
PndN(u)

≡ I8 − I9,

where I8 = nPn

([
βn (ZH(θn)− ZH(θ0)) +

hβ√
n
ZH(θ0) +

hγ√
n
X

]
N(τ)

)
= nPn

([
βnW

(
hθ/n

1/(2H)
)
+

hβ√
n
ZH(θ0) +

hγ√
n
X

]
N(τ)

)
,

I9 = n

∫ τ

0

log

(
PnY (u) exp [βnZH(θn) + γnX]

PnY (u)eβ0ZH(θ0)+γ0X

)
PndN(u).

The numerator of the integrand can be decomposed as

PnY (u) exp

[(
β0 +

hβ√
n

)
ZH

(
θ0 + hθ/n

1/(2H)
)
+

(
γ0 +

hγ√
n

)
X

]
=PnY (u)eβ0ZH(θ0)+γ0X

(
exp

[
βn (ZH(θn)− ZH(θ0)) +

hβ√
n
ZH(θ0) +

hγ√
n
X

])
=PnY (u)eβ0ZH(θ0)+γ0X

(
exp

[
βnWH

(
hθ/n

1/(2H)
)
+

hβ√
n
ZH(θ0) +

hγ√
n
X

])
,

where WH

(
hθ/n

1/(2H)
)
≡ ZH(θn)− ZH(θ0).

Denote ∆n ≡ βnWH

(
hθ/n

1/(2H)
)
+

hβ√
n
ZH(θ0) +

hγ√
n
X, then

I9 =n

∫ τ

0

log

[
PnY (u)eβ0ZH(θ0)+γ0X exp (∆n)

PnY (u)eβ0ZH(θ0)+γ0X

]
PndN(u)

=

∫ τ

0

log

[
1 +

PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

PnY (u)eβ0ZH(θ0)+γ0X

]
nPndN(u).
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Considering lim
n→∞

∣∣∣(Pn − P )Y (u)eβ0ZH(θ0)+γ0X
∣∣∣ = 0 and

lim
n→∞

sup
(hβ ,hγ ,hθ)∈[−K,K]3

|(Pn − P )Y (u) exp [βnZH (θn) + γnX]| = 0,

which follow by similar argument as that on Nδ,− in Appendix B.2, then

PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

= PY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1) + ouP (1) = ouP (1),

PnY (u)eβ0ZH(θ0)+γ0X = PY (u)eβ0ZH(θ0)+γ0X + ouP (1).

Notice that PY (u)eβ0ZH(θ0)+γ0X(≥ Cm) is bounded away from zero, it follows that

PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

PnY (u)eβ0ZH(θ0)+γ0X
= ouP (1),

where Ahπ ,n = ouP (1) means Ahπ ,n = oP (1) uniformly over hπ ∈ [−K,K]3.

Taylor expansion

Since log (1 + x) = x+O(x2) = x(1 +O(x)) = x(1 + o(1)) as x → 0,

log

[
1 +

PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

PnY (u)eβ0ZH(θ0)+γ0X

]

=
PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

PnY (u)eβ0ZH(θ0)+γ0X
[1 + ouP (1)] .

For the denominator, PnY (u)eβ0ZH(θ0)+γ0X = PY (u)eβ0ZH(θ0)+γ0X + ouP (1).

For the numerator, since ex − 1 = x + 1
2
x2 + O(x3) = x + 1

2
x2(1 + O(x)) =

x+ 1
2
x2(1 + o(1)) as x → 0,

PnY (u)eβ0ZH(θ0)+γ0X (exp (∆n)− 1)

=Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆n

]
+ 1/2Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆2

n

]
[1 + ouP (1)] .



CHAPTER 2. LARGE SAMPLE PROPERTIES 54

Since in this section, we are interested in asymptotics only, all those ouP (1) terms

are uniformly negligible and can be omitted. Then

I9 =

∫ τ

0

Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆n

]
+ 1

2
Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆2

n

]
PY (u)eβ0ZH(θ0)+γ0X

nPndN(u).

Combine I8 and I9 to get

n(Mn(π0 + hπrn
)−Mn(π0)) = I8 − I9

= nPn [∆nN(τ)]−
∫ τ

0

Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆n

]
PY (u)eβ0ZH(θ0)+γ0X

nPndN(u)

−
∫ τ

0

1
2
Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆2

n

]
PY (u)eβ0ZH(θ0)+γ0X

nPndN(u)

=d

√
nPn

[((
β0 +

hβ√
n

)
WH(hθ) + hβZH (θ0) + hγX

)
N(τ)

]

−
∫ τ

0

PnY (u)eβ0ZH(θ0)+γ0X
[(

β0 +
hβ√
n

)
WH(hθ)− hβZH(θ0) + hγX

]
PY (u)eβ0ZH(θ0)+γ0X

√
nPndN(u)

−
∫ τ

0

1
2
PnY (u)eβ0ZH(θ0)+γ0X

[(
β0 +

hβ√
n

)
WH(hθ)− hβZH(θ0) + hγX

]2
PY (u)eβ0ZH(θ0)+γ0X

PndN(u),

where the second equality (in distribution) holds by the self-similarity property of

fractional Brownian motion.

The right hand side of the last equality (in distribution) can be further written as

√
nPn

[(
β0WH(hθ) + hβZH (θ0) + hγX

)
N(τ)

]
−
∫ τ

0

PnY (u)eβ0ZH(θ0)+γ0X
[
β0WH(hθ) + hβZH(θ0) + hγX

]
PY (u)eβ0ZH(θ0)+γ0X

√
nPndN(u)

−
∫ τ

0

1
2
PnY (u)eβ0ZH(θ0)+γ0X

[
β0WH(hθ) + hβZH(θ0) + hγX

]2
PY (u)eβ0ZH(θ0)+γ0X

PndN(u),

(2.14)

where we omitted all the
hβ√
n
terms. Since we are interested in asymptotics, all the

hβ√
n
terms are uniformly negligible. We also used PY (u)eβ0ZH(θ0)+γ0XWH(hθ) = 0,

PWH(hθ)N(τ) = 0 and Glivenko−Cantelli Theorem here.
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Denote ∆ ≡ β0WH(hθ) + hβZH(θ0) + hγX, then (2.14) can be rewritten as

√
nPn [N(τ)∆]−

∫ τ

0

Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆

]
PY (u)eβ0ZH(θ0)+γ0X

√
nPndN(u)

−
∫ τ

0

1
2
Pn

[
Y (u)eβ0ZH(θ0)+γ0X∆2

]
PY (u)eβ0ZH(θ0)+γ0X

PndN(u).

(2.15)

Further simpli�cation by approximation

The last term of (2.15) converges uniformly (by Glivenko−Cantelli Theorem) to a

deterministic function∫ τ

0

1
2
P
[
Y (u)eβ0ZH(θ0)+γ0X∆2

]
P
[
Y (u)eβ0ZH(θ0)+γ0X

] PdN(u) =
1

2

∫ τ

0

λ0(u)P
[
Y (u)eβ0ZH(θ0)+γ0X∆2

]
du.

The �rst and second terms of (2.15) can be written in the following form and

further decomposed into empirical process part and expectation part.

√
nPn

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
PndN(u)

])

=
√
n(Pn − P )

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
PndN(u)

])

+
√
nP

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
PndN(u)

])
.

The expectation part

√
nP

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
PndN(u)

])

=
√
nP

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
dN(u)

])

=
√
nP

(
∆ ·
[
N(τ)−

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

])
= 0,

where conditioning argument is used to get through the second equality.
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The empirical process part (the leading term) can be approximated by

√
n(Pn − P )

(
∆ ·

[
N(τ)−

∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
PdN(u)

])

=
√
n(Pn − P )

(
∆ ·
[
N(τ)−

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

])
,

and the approximation error

√
n(Pn − P )

(
∆ ·

[∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
(Pn − P )dN(u)

])

can be shown to converge uniformly to 0 by a slight generalization of Theorem 2.1

in van der Vaart and Wellner [55]. To apply Theorem 2.1, let H0 = [0, 1] so that

PnN(u) ∈ H0 for any u ∈ [0, τ ], we just need to verify two conditions. One is the

class of functions{(
β0WH(hθ) + hβZH (θ0) + hγX

) [
N(τ)−

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

]
:

|hθ| ≤ K, |hβ| ≤ K, |hγ| ≤ K
}

is P -Donsker, which will be proved later in next section (Empirical process part).

Another is

sup
|hθ|≤K,|hβ |≤K,|hγ |≤K

P

(
∆ ·
∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
(Pn − P )dN(u)

)2

→ 0.

We verify the second condition as follows.

sup
|hθ|≤K,|hβ |≤K,|hγ |≤K

P

(
∆ ·
∫ τ

0

Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X
(Pn − P )dN(u)

)2

= sup
|hθ|≤K,|hβ |≤K,|hγ |≤K

P

∆2 · P

∫ τ

0

(
Y (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X

)2
dN(u)

n
| ZH(θ0), X


= sup

|hθ|≤K,|hβ |≤K,|hγ |≤K

P

(
∆2

n
·
∫ τ

0

P (Y (u)dN(u)|ZH(θ0), X)

(PY (u)|ZH(θ0), X)2

)
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= sup
|hθ|≤K,|hβ |≤K,|hγ |≤K

P

(
∆2

n

∫ τ

0

P (dN(u)|ZH(θ0), X)

[P (Y (u)|ZH(θ0), X)]2

)

= sup
|hθ|≤K,|hβ |≤K,|hγ |≤K

P

(
∆2

n
eβ0ZH(θ0)+γ0X

∫ τ

0

λ0(u)du

P (Y (u)|ZH(θ0), X)

)
∼n−1, which goes to 0 as n → ∞ uniformly over Hπrn

.

Here

P (Y (u)|ZH(θ0), X) = P (T ≥ u,C ≥ u|ZH(θ0), X)

= exp(−eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds)P (C ≥ u|ZH(θ0), X).

Now the rescaled localized criterion function is uniformly approximated by

√
n(Pn − P ) (∆ ·M(τ))− 1

2
P

(
∆2 ·

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

)
,

where M(τ) ≡
[
N(τ)−

∫ τ

0
Y (u)λ0(u)e

β0ZH(θ0)+γ0Xdu
]
.

The deterministic part of this approximation

− 1

2
P

(
∆2 ·

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

)
= −1/2β2

0 |hθ|2HPN(τ)− 1/2h2
βP [Z2

H(θ0)N(τ)]− 1/2h2
γP [X2N(τ)]

− hβhγP [ZH(θ0)XN(τ)].

The empirical process part of this approximation will be handled in the next

section.

Empirical process part

We will prove the empirical process part converges to a mean-zero Gaussian process

by the Donsker property of the collection of functions{(
β0WH(hθ) + hβZH (θ0) + hγX

) [
N(τ)−

∫ τ

0

Y (u)λ0(u)e
β0ZH(θ0)+γ0Xdu

]
:

|hθ| ≤ K, |hβ| ≤ K, |hγ| ≤ K
}
.

The �nite entropy integral property with L2(P ) bracketing for the collection of func-

tions {
β0WH(hθ) + hβZH (θ0) + hγX : |hθ| ≤ K, |hβ| ≤ K, |hγ| ≤ K

}
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can be obtained similarly as Lemma C.3.1 in Appendix C, so by adjusting its brackets

(timing a function
[
N(τ)−

∫ τ

0
Y (u)λ0(u)e

β0ZH(θ0)+γ0Xdu
]
), it follows that the collec-

tion of functions in the preceding paragraph also has �nite entropy integral with

L2(P ) bracketing. The L2(P ) norm of its envelope is also bounded (which is easy to

show), hence the uniform convergence to a mean-zero Gaussian process is justi�ed.

To determine the asymptotic distribution of the empirical process part, we can

just show

Gn [(WH(hθ)M(τ), ZH(θ0)M(τ), XM(τ))]

→w

(√
PN(τ)WH(hθ),

√
P (Z2

H(θ0)M
2(τ))Z1,

√
P (X2M2(τ))X1

)
,

where (Z1, X1) follows 2-dimensional normal distribution with mean (0, 0), variance

(1, 1) and covariance
P
[
ZH(θ0)XM2(τ)

]√
P [Z2

H(θ0)M
2(τ)]P [X2M2(τ)]

and independent of 2-sided standard fBm WH(hθ) starting from zero with unit vari-

ance.

Since WH(hθ) is independent of M(τ), by the property of fBm,

Gn [WH(hθ)M(τ)] =d WH(hθ)
√

PnM2(τ) →
√
PN(τ)WH(hθ),

where we used the result PM2(τ) = PN(τ) from counting process theory.

The covariance structure of the joint asymptotic distribution is justi�ed by the

covariance terms between the three terms

Cov(WH(hθ)M(τ), ZH(θ0)M(τ)) = P
[
ZH(θ0)M

2(τ)
]
P [WH(hθ)] = 0, (2.16)

Cov(WH(hθ)M(τ), XM(τ)) = P
[
XM2(τ)

]
P [WH(hθ)] = 0, (2.17)

Cov(ZH(θ0)M(τ), XM(τ)) = P
[
ZH(θ0)XM2(τ)

]
.
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2.3.4.5 Asymptotics of (θ̂n, β̂n, γ̂n)

We �nd θ̂n is asymptotically independent of (β̂n, γ̂n), becasue the corresponding co-

variance terms in (2.16) and (2.17) vanish.

For the sum of the asymptotic distribution of the empirical process part and the

deterministic part, we extract the terms which are relevant to hθ. They are

β0

√
PN(τ)WH(hθ)− 1/2β2

0 |hθ|2HPN(τ).

By the Argmax Continuous Mapping theorem and the symmetry of WH(·) about

zero, we obtain the estimator θ̂n has asymptotic distribution

n1/(2H)(θ̂n − θ0)
W−→ argmaxh

(
WH(h)−

|β0||h|2H

2

√
PN(τ)

)
.

For the case of general σ > 0, following the lines starting from Chapter 2.3.4.1,

we will obtain

n1/(2H)(θ̂n − θ0)
W−→ argmaxh

(
WH(h)−

|β0||h|2H

2
σ
√

PN(τ)

)
,

whereWH(·) is a standard 2-sided fractional Brownian motion starting from zero with

unit variance scale (i.e. WH(1) =d WH(−1) ∼ N(0, 1)).

Besides the terms relevant to hθ, all other parts are relevant to hβ and hγ and

converges uniformly to a process which is equivalent (in distribution) to(
hβ

√
P (Z2

H(θ0)M
2(τ))Z1 + hγ

√
P (X2M2(τ))X1

)
−1/2h2

βP [Z2
H(θ0)N(τ)]− 1/2h2

γP [X2N(τ)]− hβhγP [ZH(θ0)XN(τ)],

(2.18)

where (Z1, X1) follows 2-dimensional normal distribution with mean (0, 0), variance

(1, 1) and covariance
P
[
ZH(θ0)XM2(τ)

]√
P [Z2

H(θ0)M
2(τ)]P [X2M2(τ)]

.

It is easy to show the strict concavity of (2.18) w.r.t. (hβ, hγ), so there is a unique

maximizer of the process for each realized sample path of the limit process. By setting
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the �rst derivatives to be zero, hβP [Z2
H(θ0)N(τ)] + hγP [ZH(θ0)XN(τ)] =

√
P (Z2

H(θ0)M
2(τ))Z1;

hγP [X2N(τ)] + hβP [ZH(θ0)XN(τ)] =
√
P (X2M2(τ))X1.

Solving the equations jointly, we obtain


hβ =

√
−P [X2M2(τ)]P [ZH(θ0)XN ]X1+

√
P [Z2

H(θ0)M2(τ)]P [X2N ]Z1

P [Z2
H(θ0)N(τ)]P [X2N(τ)]−P 2[ZH(θ0)XN(τ)]

;

hγ =

√
P [X2M2(τ)]P [Z2

H(θ0)N ]X1−
√

P [Z2
H(θ0)M2(τ)]P [ZH(θ0)XN ]Z1

P [Z2
H(θ0)N(τ)]P [X2N(τ)]−P 2[ZH(θ0)XN(τ)]

.

By the Argmax Continuous Mapping Theorem, the asymptotic distribution of the

vector (
√
n(β̂n − β),

√
n(γ̂n − γ)) converges to that of(√

−P [X2M2(τ)]P [ZH(θ0)XN ]X1 +
√

P [Z2
H(θ0)M

2(τ)]P [X2N ]Z1

P [Z2
H(θ0)N(τ)]P [X2N(τ)]− P 2 [ZH(θ0)XN(τ)]

,√
P [X2M2(τ)]P [Z2

H(θ0)N ]X1 −
√

P [Z2
H(θ0)M

2(τ)]P [ZH(θ0)XN ]Z1

P [Z2
H(θ0)N(τ)]P [X2N(τ)]− P 2 [ZH(θ0)XN(τ)]

)
.

Since (Z1, X1) follows 2-dimensional normal distribution with mean (0, 0), variance

(1, 1) and covariance
P
[
ZH(θ0)XM2(τ)

]√
P [Z2

H(θ0)M
2(τ)]P [X2M2(τ)]

,

let (Y1, Y2) follow the asymptotic distribution of
(√

n(β̂n − β),
√
n(γ̂n − γ)

)
, then it

is 2-dimensional normal distribution with mean (0, 0) and variance-covariance com-

ponents
Var1 =

P (X2M2)P 2(ZXN)+P (Z2M2)P 2(X2N)−2P (X2N)P (ZXN)P (ZXM2)
(P (Z2N)P (X2N)−P 2(ZXN))2

,

Var2 =
P (X2M2)P 2(Z2N)+P (Z2M2)P 2(ZXN)−2P (Z2N)P (ZXN)P (ZXM2)

(P (Z2N)P (X2N)−P 2(ZXN))2
,

Cov = P (ZXM2)[P 2(ZXN)+P (X2N)P (Z2N)]−P (ZXN)[P (X2M2)P (Z2N)−P (Z2M2)P (X2N)]
(P (Z2N)P (X2N)−P 2(ZXN))2

,

where we abbreviated (ZH(θ0),M(τ)) as (Z,M), and (Var(Y1),Var(Y2),Cov(Y1, Y2))

as (Var1,Var2,Cov) respectively.

Using the property of counting process and conditioning argument, we have

P [f(ZH(θ0), X)(N(τ)−M2(τ))] = 0,
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for f(x1, x2) = x1 or f(x1, x2) = x2 or f(x1, x2) = x2
1 or f(x1, x2) = x2

2 or f(x1, x2) =

x1x2. Plugging in the formulas for Var(Y1),Var(Y2),Cov(Y1, Y2), we have
Var(Y1) =

P (X2N(τ))
P (Z2N)P (X2N)−P 2(ZXN)

,

Var(Y2) =
P (Z2N(τ))

P (Z2N)P (X2N)−P 2(ZXN)
,

Cov(Y1, Y2) =
−P (ZXN(τ))

P (Z2N)P (X2N)−P 2(ZXN)
.

Denote s21 =
P (X2N(τ))

P (Z2
H(θ0)N(τ))P (X2N(τ))− P 2(ZH(θ0)XN(τ))

,

s22 =
P (Z2

H(θ0)N(τ))

P (Z2
H(θ0)N(τ))P (X2N(τ))− P 2(ZH(θ0)XN(τ))

,

ρ =
−P (ZH(θ0)XN(τ))√

P (X2N(τ))P (Z2
H(θ0)N(τ))

,

then

 √
n(β̂n − β)

√
n(γ̂n − γ)

→w N

 0

0

 ,

 s21 ρs1s2

ρs1s2 s22

 .
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Chapter 3

CI calibrated by Monte Carlo

To construct the Wald-type con�dence intervals for θ, we need to determine the

quantiles of the asymptotic distribution of θ̂n in Theorems 2.2.2 and 2.3.2.

For the asymptotic distribution in Theorem 2.2.2, there is a closed form C.D.F.

which can be used to obtain the quantiles and hence the con�dence intervals, easily

and accurately. For the asymptotic distribution in Theorem 2.3.2, however, there is no

such closed form C.D.F. in general to the author's best knowledge. One possible way

is to get the quantiles and hence the con�dence intervals, by Monte Carlo calibration.

For reasons to be discussed in Chapter 4.1.2, instead of calibrating the quantiles

of the asymptotic distribution, we use Monte Carlo method to calibrate the quan-

tiles of the "Domain-Restricted Asymptotic Distribution" (abbreviated as "DRAD"

hereafter). The motivation and de�nition of the DRAD can be found in Chapter

4.1.2.

At the end of this chapter, we give a survey of the proposed procedure.

3.1 Quantiles for the simple case of the Cox model

Even though the analytical distribution function is available for the asymptotic distri-

bution of θ̂n in the simpli�ed model, the analytical distribution function for the DRAD
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Figure 3.1: Histograms of n(θ̂n − θ0) for simulated random variable θ̂n that follows

the domain-restricted asymptotic C.D.F. for �nite sample size n, (θ0, σ) = (0.5, 1) for

the upper row, (0.1, 1) for the middle row, (0.1, 3) for the lower row
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is unavailable to the author's best knowledge. However, we can run simulations to

learn about the DRAD.

For each of θ = 0.5, 0.3 and 0.1, each of n = 40, 60 and 80, we generate 10,000

replicates of the trajectory {W (h)− |h|
2
σ
√
PN(τ) : h ∈ [−nθ0, n(1−θ0)]} on a �ne grid

with J = 240 evenly spaced points. For each replicate of the trajectory, compare the

240 grid points to �nd the grid point that has the maximum value of the trajectory.

Then we obtain 10,000 simulated random variables that follow the DRAD.

Looking at their histograms in Figure 3.1, we �nd their distributions capture the

features of the empirical distributions of θ̂n (i.e., asymmetry and boundary-cluster

phenomena) that we obtained for the estimates of the simple Cox model in Chapter

4.1.2. Numerical results in Table 3.1, i.e., the empirical tail probabilities of quan-

tiles based on the asymptotic distribution and the DRAD show that DRAD is more

preferable for the purpose of con�dence interval construction.

Table 3.1 shows that for θ = 0.5, which is in the middle of [0, 1], the two quantiles'

empirical tail coverage probabilities are comparable. For θ which deviates from 0.5,

for the tail which is further away from θ, the DRADs' quantiles and the asymptotic

distribution's quantiles have comparable empirical tail coverage proabilities. However,

on the tail which is on the same side as of θ0, the DRADs' quantiles have more

reasonable empirical tail coverage probabilities. Such an advantage is more obvious

for smaller n.

3.2 Quantiles for the extended case of the Cox model

In Chapter 4.1.2, we observe that the empirical distributions (the histograms of the

estimates obtained from simulated Cox model) are asymmetric, which is contrary

to the symmetric distribution of the asymptotic distribution. In the extended Cox

model, similar situation appears for n1/(2H)(θ̂n − θ0) as well. So we need to consider

the DRAD.
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Table 3.1: (H=0.5) Empirical tail coverage probabilities of (simulated) DRADs' quan-

tiles (the upper part) and (analytical) asymptotic distribution's quantiles (the lower

part) for �nite sample sizes

θ0 σ n q.975 q.95 q.05 q.025

0.5 1 40 .046 .073 .080 .047

60 .041 .075 .075 .046

80 .033 .061 .075 .041

0.3 1 40 .054 .093 .085 .040

60 .048 .077 .060 .029

80 .042 .075 .072 .040

0.1 1 40 .063 .095 .056 .029

60 .052 .079 .055 .022

80 .054 .080 .068 .028

0.5 1 40 .040 .067 .072 .038

60 .041 .075 .073 .041

80 .033 .066 .073 .041

0.3 1 40 .048 .092 .038 .000

60 .050 .080 .051 .016

80 .041 .077 .068 .035

0.1 1 40 .062 .095 .000 .000

60 .050 .079 .000 .000

80 .051 .081 .000 .000
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There is yet another incentive to investigate the DRAD for the extended Cox

model. If we choose the asymptotic distribution as the benchmark distribution, for

inference purposes, we have to obtain the quantiles of the asymptotic distribution

argmaxh

(
WH(h)−

|h|2H

2
|β|σ

√
PN(τ)

)
.

For general H (instead of the special case H = 1/2), however, we do not have closed-

form C.D.F. for this distribution. Hence we can't solve an analytic equation to get

the quantiles. An alternative way is to get the quantiles through Monte Carlo. To

run Monte Carlo, it is technically not feasible to maximize the trajectory of the

WH(h)− |h|2H
2

|β|σ
√
PN(τ) over an in�nite interval. So we have to restrict the domain

to be of �nite length. Hence the DRAD is more appealing compared to the asymptotic

distribution for the purpose of determining quantiles as well.

We study the quantiles of the DRAD

argmaxh∈[−n1/(2H)θ0,n1/(2H)(1−θ0)]

(
WH(h)−

|h|2H

2
|β|σ

√
PN(τ)

)
,

by Monte Carlo.

We simulate 10,000 replicates for each of H = 0.5, 0.7, n = 120, 180, 240, θ0 =

0.5, 0.3, 0.1 and σ = 1, 2, 3. To make the calibrated quantiles useful for the simulation

setting described in Chapter 4.2.1, we take (β0, γ0) = (1, 0).

To simulate this distribution, we need the value of PN(τ). PN(τ) can be calcu-

lated based on the given parameters.

To match the setting of steps 3 and 5 of the simulation procedure in Chapter

4.2.1, Z(θ0) ∼ U [−0.75, 0.75], X ∼ U [−1, 1], T 0 ∼ Exp (exp(βZ(θ0) + γX)) with

(β, γ) = (1, 0). C ∼ Exp (|Z(θ0)|), τ = 50 which are the same as of the simulation

procedure of the simple model in Chapter 4.1.1.
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Then

P [N(τ)] = P [1T 0≤τ,T 0≤C ] = P
[
P
(
T 0 ≤ τ, T 0 ≤ C|Z(θ0), X

)]
= P

[∫ τ

0

eZ(θ0)e−eZ(θ0)u · e−u|Z(θ0)|du

]
= P

[
·eZ(θ0)

1− e−τ(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]

= P

[
eZ(θ0)

1− e−τ(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]
= P

[
eZ(θ0)

1− e−50(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]
,

where we used the properties of the distribution of T 0, C in the third equality.

Here Z(θ0) ∼ U [−0.75, 0.75], there is no analytical answer to P [N(τ)]. Using

10,000,000 Monte-Carlo replicates we obtain the estimate of P [N(u)] = 0.7404991.

To obtain precise quantiles of the DRADs requires a dense grid on its domain, and

hence the number of grid points J on the interval [−n1/(2H)θ0, n
1/(2H)(1−θ0)] needs to

be large. Since the interval length grow with the decrease of H, it requires larger J for

smaller H. To obtain acceptable precision under the computing ability constraint,

the number of grid points are taken to be J = 720 for H = 0.5 and J = 240 for

H = 0.7.

Their quantiles are listed in Tables 3.2 (for H = 0.5) and 3.3 (for H = 0.7). For

H = 0.3, to obtain quantiles with acceptable precision poses formidable computing

challenge, so we do not calculate their quantiles here.

3.3 Summary of the proposed procedure

1. For each component Z(θj)(j = 1, . . . , J, where J is the number of grid points

observed) of the functional covariate Z, we choose it as the predictor and may

add other non-functional covariates (either scalar or vector) X as another pre-

dictor for time-to-event risk. Then we can �t the classical Cox model using(
Z(θj), X

)
as predictors by the "coxph" function in R, using the package "sur-

vival". As a result, we obtain a log-partial-likelihood value log PL(θj), and the

estimated coe�cients
(
β̂j, γ̂j

)
.
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Table 3.2: (H=0.5) Quantiles of the DRADs for �nite sample sizes by Monte Carlo

θ0 σ n q.95 q.975 q.05 q.025

0.5 1 120 10.33 15.00 -10.17 -14.33

180 10.75 15.26 -10.50 -15.25

240 10.67 15.67 -10.67 -15.00

2 120 2.50 3.50 -2.50 -3.83

180 2.50 3.75 -2.75 -3.75

240 2.67 3.67 -2.33 -3.67

3 120 1.17 1.67 -1.17 -1.67

180 1.25 1.75 -1.25 -1.75

240 1.00 1.67 -1.00 -1.67

0.3 1 120 10.01 14.17 -10.17 -14.34

180 10.25 14.75 -11.00 -15.25

240 10.33 15.00 -10.33 -14.33

2 120 2.50 3.67 -2.83 -3.83

180 2.50 3.75 -2.50 -3.50

240 2.33 3.33 -2.67 -3.67

3 120 1.17 1.67 -1.17 -1.67

180 1.25 1.75 -1.00 -1.75

240 1.00 1.67 -1.00 -1.67

0.1 1 120 9.83 14.50 -8.17 -10.17

180 10.25 15.00 -9.25 -12.25

240 10.67 15.67 -10.00 -13.67

2 120 2.67 3.83 -2.67 -3.67

180 2.50 3.50 -2.50 -3.75

240 2.67 3.33 -2.67 -3.67

3 120 1.17 1.67 -1.17 -1.67

180 1.00 1.75 -1.25 -1.75

240 1.33 1.67 -1.00 -1.67
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Table 3.3: (H=0.7) Quantiles of the DRADs for �nite sample sizes by Monte Carlo

θ0 σ n q.95 q.975 q.05 q.025

0.5 1 120 3.82 5.35 -3.95 -5.22

180 3.91 5.10 -3.91 -5.27

240 3.97 5.22 -3.97 -5.01

2 120 1.53 1.91 -1.53 -1.91

180 1.53 1.87 -1.53 -2.04

240 1.46 1.88 -1.46 -1.88

3 120 0.76 1.15 -0.89 -1.15

180 0.85 1.19 -0.85 -1.02

240 0.84 1.04 -0.84 -1.04

0.3 1 120 3.95 5.35 -4.20 -5.35

180 3.91 5.27 -3.91 -5.27

240 3.97 5.22 -3.97 -5.22

2 120 1.53 2.04 -1.53 -1.91

180 1.53 2.04 -1.53 -2.04

240 1.46 2.09 -1.46 -2.09

3 120 0.76 1.15 -0.89 -1.15

180 0.85 1.02 -0.85 -1.02

240 0.84 1.04 -0.84 -1.04

0.1 1 120 4.07 5.48 -2.67 -3.06

180 3.91 5.27 -3.23 -3.91

240 3.97 5.22 -3.55 -4.38

2 120 1.53 2.04 -1.40 -1.91

180 1.53 2.04 -1.53 -2.04

240 1.46 1.88 -1.46 -1.88

3 120 0.89 1.15 -0.76 -1.15

180 0.85 1.02 -0.85 -1.02

240 0.84 1.04 -0.84 -1.04
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2. Compare log PL(θj)(j = 1, . . . , J), locate the maximizer θj∗ among them, and

denote it as θ̂n (here n is the sample size, i.e., the number of subjects in the

data set). The corresponding
(
β̂j∗ , γ̂j∗

)
can be denoted as

(
β̂n, γ̂n

)
.

3. The maximum partial likelihood estimator of (θ, β, γ) is obtained as
(
θ̂n, β̂n, γ̂n

)
.

4. To prepare for statistical inference, we estimate the nuisance parameters (H, σ2)

in the following way.

5. The estimate of the Hurst exponent H can be obtained using the function

"pengFit()" in the package "fArma" of R. For each subject's trajectory, we get

an estimate of H. Take the mean of these n estimated Hs, we can get an

estimate of H, Ĥn.

6. The parameter σ2 can be estimated by quadratic variation method:

σ̂2
n =

1

n

n∑
i=1

J−1∑
j=1

(
Zi(θj+1)− Zi(θj)

)2
.

7. The value of PN(τ) can be estimated by PnN(τ), the proportion of subjects

who experienced events in the data set.

8. By Monte Carlo calibration, we get the .025 and .975 quantiles of the distribu-

tion

argmaxh∈[−n1/(2Ĥn)θ̂n,n1/(2Ĥn)(1−θ̂n)]

(
W Ĥn(h)− |h|2Ĥn

2
|β̂n|σ̂n

√
PnN(τ)

)
.

9. Denote the quantiles obtained in the previous step as q.025 and q.975, the 95%

con�dence interval of θ is [θ̂n + q.025 · n−1/(2Ĥ), θ̂n + q.975 · n−1/(2Ĥ)].

10. The con�dence intervals of β and γ can be obtained easily using the quan-

tiles of normal distributions by checking the quantile table of standard normal

distribution, if we can estimate the covariance matrix in Theorem 2.3.2. The

covariance matrix can be estimated by replacing all the P [·] with Pn[·]. For

example, P (X2N(τ)), the numerator of s21, can be estimated by Pn(X
2N(τ)).
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Chapter 4

Simulations

The large sample properties of the maximum partial likelihood estimators for the

proposed model have been explored in Chapter 2. In this chapter, we will evaluate

the �nite sample performance of these estimators by simulation studies.

For �nite sample sizes, the asymptotic distribution of the location estimator θ̂n

is symmetric, while the empirical distribution of θ̂n is asymmetric. To seek a more

reasonable, i.e. asymmetric, approximation for �nite sample size empirical distribu-

tion, we restrict the domain of the asymptotic distribution to de�ne the (asymmetric)

"Domain-Restricted Asymptotic Distribution" (abbreviated as "DRAD"). The .025,

.05, .95 and .975 quantiles of the DRADs can be obtained through Monte Carlo cali-

bration as shown in Chapter 3, and we call them empirical critical values or empirical

con�dence limits.

For both the simple model and the extended model, we simulate data sets from

speci�ed model parameters and get the estimates of (θ, β, γ) by the maximum partial

likelihood method.

The empirical distributions of n1/(2H)(θ̂n − θ) are compared to the DRADs. Sim-

ulation results show that the DRADs provide a reasonable approximation for the

empirical distributions when the sample size is relatively large.

The empirical distributions of
√
n(β̂n − β) and

√
n(γ̂n − γ) are compared to their
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asymptotic distributions (obtained in Theorem 3.2.3) respectively. Simulation results

for
√
n(β̂n − β) show that the approximations are still poor even for relatively large

sample sizes (although the trend of better approximations with larger sample sizes is

obvious). In contrast, simulation results for
√
n(γ̂n−γ) show that the approximations

are reasonable for all the sample sizes no less than 120.

All the simulations in this chapter and throughout this thesis are conducted using

the statistical software R (version 2.13.0).

4.1 Simple case of the Cox model

For the simpli�ed model proposed in Chapter 2.2, we describe the simulation proce-

dure in Chapter 4.1.1. In Chapter 4.1.2, the histograms of θ̂n are displayed which are

estimated from the data simulated from the Cox model. These empirical distributions

(i.e., histograms) show asymmetry, in contrast to the symmetric property of asymp-

totic distributions obtained in Chapter 2.2. To resolve this issue, for �nite n, we

propose the "Domain-Restricted Asymptotic Distribution" to replace the asymptotic

distribution.

4.1.1 Simulation procedure

In this section, we will describe how to simulate data sets from the simpli�ed Cox

model and obtain the estimates of θ.

For each of n subjects, we generate random variables Z(θ0) and X, the trajectory

of stochastic process Z(·) on a �ne grid. then according to the simpli�ed Cox model in

Chapter 2.2, we generate its censoring time and time-to-event outcome. Then by the

maximum partial likelihood principle, we can get an estimate of θ for the simpli�ed

Cox model based on these n subjects' data.

The procedure of simulations:

1. Without loss of generality, set the length of the interval [0, θM ] to be θM = 1,
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so that we observe the value of covariate trajectory from 0 to 1, even though

only to the �neness of grid size equal to 1/240 (i.e., the number of grid points

on which we can observe the value of Z is J = 240).

2. Set the relative location of θ0 on the whole interval [0, θM ], i.e. θ0 : θM = 0.5

(or 0.3, 0.1).

3. Generate n = 40 (or 60, 80) I.I.D. random variables Z1(θ0), · · · , Zn(θ0) which

follows uniform distribution on [−0.75, 0.75].

4. For the ith of the n subjects, generate 2 independent 1-sided S.B.M.s Wl,i,Wr,i

starting from 0 (also independent of Zi(θ0)), and by transformation Zi(θ) =

Zi(θ0) + Wr,i(θ − θ0) for θ > θ0 and Zi(θ) = Zi(θ0) + Wl,i(θ0 − θ) for θ < θ0,

get a 2-sided S.B.M. Z(·) starting from θ0 with variance σ2 = 1 (or 22, 32) (i.e.,

Wl(1) =d Wr(1) ∼ N(0, σ2)). Do this step for i = 1, · · · , n independently. The

simulation of S.B.M.s in this step is conducted by the function "fbmSim()" in

package "fArma" in R.

5. For the ith of the n subjects, generate the censoring time Ci which follows ex-

ponential distribution with parameter |Zi(θ0)| and event time T 0
i which follows

exponential distribution with parameter exp(Zi(θ0)). So the censoring time T 0
i

and event time Ci are conditionally independent given Zi(θ0). Do this step

for i = 1, · · · , n independently. The followup time τ = 50. We observe only

(T 0
i ∧ Ci ∧ τ, 1T 0

i ≤Ci,Ti≤τ ).

6. For each grid point j = 1, · · · , J , we calculate the corresponding value of the

partial likelihood function, and compare them to get the j∗ which maximize the

partial likelihood.

7. Repeat the steps 3-6 for Rep=1000 times to obtain 1000 replicates of θ̂n.
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Figure 4.1: Histograms of n(θ̂n − θ0) for θ̂n that speci�ed by the simple Cox model,

(θ0, σ) = (0.5, 1) for the upper row, (0.3, 1) for the middle row, (0.1, 1) for the lower

row
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4.1.2 Simulation results

For di�erent parameter settings, the histograms of estimated θ̂n are shown in Figure

3.1.

The histograms show that as θ0 (i.e., the true value of θ) deviates from 0.5 (i.e., the

middle of the interval), the empirical distributions of the rescaled estimates n(θ̂n−θ0)

become more asymmetric. We can observe the "boundary cluster" phenomena on the

left boundary if the true θ are close to the left end of the interval [0, 1]. Similar

phenomena will be observed on the right boundary if θ0 gets close to the right end of

the interval [0, 1].

This phenomena can be explained as follows. The estimates θ̂n tend to lie around

the true θ. If the interval length is in�nite, the empirical distribution of θ̂n will

be symmetric about θ. However, since the interval [0, 1] has �nite length, due to the

constraint that θ̂n has to lie within [0, 1], the half probability (which should have been

assigned to the left of the true θ on the histogram of θ̂n if no constraint) that θ̂n < θ0

has to be distributed within a short interval [0, θ] (for θ close to 0). This results in the

boundary cluster phenomena on the left boundary of [0, 1] (i.e., those values which

should have been beyond the left end of the interval if no constraint exists are forced

to cluster around the left end of the interval). Looking at the histograms of n(θ̂n−θ),

we can see the distributions are truncated at −nθ0.

The asymmetric empirical distributions suggest the asymptotic distribution de-

rived in Chapter 2.2 does not provide a reasonable approximation for n(θ̂n − θ) with

�nite sample sizes.

To resolve this issue, we refer to the proof of the asymptotic distribution in Chap-

ter 2.2.2.4-2.2.2.5. For asymptotics, we considered Qn(h) = sn(Mn(θ0 + h/n) −

Mn(θ0)), ∀h ∈ [−K,K],∀K > 0. For �nite sample size, if we incorporate the con-

straint that θ0 + h/n ∈ [0, 1], then h ∈ [−nθ0, n(1− θ0)].
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Then in the �nite sample scenario, we can replace the asymptotic distribution

argmaxh∈(−∞,∞)

(
W (h)− |h|

2
σ
√

PN(τ)

)
,

by its domain-restricted version

argmaxh∈[−nθ0,n(1−θ0)]

(
W (h)− |h|

2
σ
√
PN(τ)

)
,

and expect the DRAD to provide a more reasonable, i.e., asymmetric, approximation

to empirical distributions of simulated estimates.

Figure 3.1 shows the shape of the approximate distributions of n(θ̂n − θ0) for

di�erent n and also implies that of the analytical asymptotic distribution as the limit

case (i.e., n goes to in�nity). Examining further reveals the ranges of the random

variables are wider for larger n, which are predetermined by the de�nition of DRAD.

4.2 Extended case of the Cox model

For the extended model in Chapter 2.3, we follow the similar simulation procedure

to the simpli�ed model. Some adjustments to adapt the complexity of the extended

model are described in Chapter 4.2.1.

The asymptotic distributions of β̂n and γ̂n for a speci�c parameter setting in

Chapter 4.2.1 are further studied and compared to their corresponding empirical

distributions of β̂n and γ̂n in Chapter 4.2.3.

4.2.1 Simulation procedure

We follow the same procedure as that of Chapter 4.1.1 except for the following

changes.

1. The �neness of grid is set to be grid size equal to 1/100. So the number of grid

points on which we can observe the value of Z is J = 100. We change it from

240 as of Chapter 4.1.1 to 100 due to the computing ability constraint.
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2. Sample sizes n = 120, 180, 240 replaced n = 40, 60, 80 as of Chapter 4.1. Since

in the extended Cox model, with more parameters to estimate, larger sam-

ple sizes are necessary for the asymptotic distribution to provide a reasonable

approximation to the empirical distributions.

3. Besides Z1(θ0), . . . , Zn(θ0) which follow uniform distribution on [−0.75, 0.75],

we also generate n replicates of another covariate X1, . . . , Xn (independent of

Z1(θ0), . . . , Zn(θ0)) which follow uniform distribution on [−1, 1].

4. S.B.M. is changed to be fBm with Hurst parameter H = 0.3, 0.5, 0.7 to allow

more �exible depiction of trajectories' roughness.

5. Simulate event times T 0
1 , . . . , T

0
n which follow exponential distribution with pa-

rameters exp(βZ1(θ0)+γX1), . . . , exp(βZn(θ0)+γXn) respectively. In this sim-

ulation we set (β, γ) = (1, 0) to make our results more comparable to those

obtained in Chapter 4.1. Generate the censoring times C1, . . . , Cn which follow

exponential distribution with parameter |Z1(θ0)|, . . . , |Zn(θ0)|. So the censoring

time T 0
i and event time Ci are conditionally independent given Zi(θ0). The fol-

lowup time τ = 50. For the ith subject, we observe only (T 0
i ∧Ci∧τ, 1T 0

i ≤Ci,Ti≤τ ).

6. For each grid point j = 1, . . . , J , we obtain (β̂j
n, γ̂

j
n) by maximizing partial

likelihood function using (Z(θj), X) as covariates, and corresponding partial

likelihood value PLj.

7. By picking the maximum PLj out of j = 1, . . . , J , the maximizer index j∗ and

corresponding (β̂j∗
n , γ̂j∗

n ) is obtained. The estimator of (θ, β, γ) is (j∗/J, β̂j∗
n , γ̂j∗

n ).

An elaboration on the algorithm of looking for the maximizer of the partial like-

lihood function PL(θ, β, γ) is as follows.

In the step 6 above, for each �xed grid point j, we have covariates (Z(θj), X) and

survival outcomes (T 0∧C ∧ τ, 1T 0≤C,T≤τ ) observed for every subject. The problem of

estimating parameters (β, γ) is achieved by maximizing the partial likelihood function
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PL(θj; β, γ). This can be easily solved by the "coxph" function in the R package

"survival", and the corresponding partial likelihood value PLj is obtained from the

"coxph" function.

After we obtain PLj for every j = 1, . . . , J , we can follow step 7 and get the

maximizer j∗ and the corresponding (β̂j∗
n , γ̂j∗

n ).

By step 6 and step 7, we transformed the problem of maximizing the partial

likelihood function PL(θ, β, γ) in the three dimensional space [0, 1] × (−∞,+∞) ×

(−∞,+∞) into a problem easily solved by 2 steps. Since we only observe �nite grid

points for θ ∈ [0, 1], the �rst element θ∗ of the three element maximizer (θ∗, β∗, γ∗)

must be among {θ1, . . . , θJ}. So the maximizer of PL(θ, β, γ) is no larger than the

supremum of {PL(θj, β, γ) : j = 1, . . . , J, β ∈ (−∞,+∞), γ ∈ (−∞,+∞)}. If we

divide the set into J subset (without overlap) {PL(θj, β, γ) : β ∈ (−∞,+∞), γ ∈

(−∞,+∞)}, (j=1,. . . ,J), the supremum of the original set is the maximum of the J

subsets' supremums. The PLj obtained in step 6 is exactly the jth subset's supremum.

So the maximum obtained in step 7 is exactly the maximum value of PL(θ, β, γ).

4.2.2 Con�dence intervals of θ̂n

To evaluate the �nite sample performance of θ̂n, we need a benchmark distribution,

which is usually the asymptotic distribution, and see how close the empirical distri-

butions of simulated results are to the benchmark distribution. The closer they are,

statistical inferences based on the benchmark distribution perform better for data

sets with �nite sample sizes.

As the symmetric asymptotic distribution of n1/(2H)(θ̂n− θ0) does not capture the

features of empirical distributions (see Figures 4.2 and 4.3) well, we choose "Domain-

Restricted Asymptotic Distribution" as the benchmark distribution. Statistical in-

ferences can be based on the DRAD.

The investigation of the benchmark distribution, i.e., DRAD, is done in Chapter

3.2.
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4.2.2.1 Simulation study of n1/(2H)(θ̂n − θ0)

The simulation results for n1/(2H)(θ̂n−θ0) following the procedure in Chapter 4.2.1 are

presented in Table 4.1, Figure 4.2 (for H=0.5), Table 4.2 and Figure 4.3 (for H=0.7),

and Figure 4.4 (as comparison of H=0.3, 0.5, 0.7).

From Tables 4.1 and 4.2, as sample size n increases, the empirical tail probabilities

of the nominal quantiles based on the simulated DRADs (and hence the empirical

coverage probabilities of the nominal con�dence intervals) approach their nominal

levels.

Overall speaking, the approximation of the asymptotic distribution to the empir-

ical distributions is not ideal, however, it is reasonable for sample sizes as big as 240.

Note that some neighboring values in Table 4.1 are the same (for example, empirical

tail probabilities for (θ0, σ, n) = (0.5, 3, 240) are the same for > q.05 and > q.025) is

due to the fact the grid with grid size 1/100 is not �ne enough. Due to the computing

ability constraint, we can not use a �ner grid.

The "boundary-cluster" phenomena for n1/(2H)(θ̂n − θ0) appears as expected (see

the lower row of Figures 4.2, 4.3) however, it weakens gradually with the decrease of

H and/or |θ0 − 0.5|, and/or increase of n.

Comparison of θ̂n for di�erent H

Examining Figure 4.4 reveals that convergence rate n1/(2H) becomes slower as H

increases. It also implies that the main results in Chapter 2.3 hold not only for

H ∈ [1/2, 1), but also are expected to hold for (0, 1/2).

Remark 4.2.1.

1. Lots of simulations are conducted for H = 0.3 as well, even though they are

not reported here. It is hard to get the quantiles (actually, the empirical critical

values) with acceptable precision of the benchmark distribution (i.e., the DRAD)

in H = 0.3 case because to get quantiles with a given precision by simulation,
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Figure 4.2: (H=0.5): Histograms of n(θ̂n−θ0) for θ̂n estimated for Cox model,(θ0, σ) =

(0.5, 1) for the upper row, (θ0, σ) = (0.3, 1) for the middle row, (0.1, 1) for the lower

row
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Table 4.1: (H=0.5): Empirical tail probabilities of nominal .025, .05, .95, .975 quan-

tiles for θ̂n; data simulated from extended Cox model

θ0 σ n > q.95 > q.975 < q.05 < q.025

0.5 1 120 .120 .086 .113 .081

180 .106 .066 .110 .071

240 .077 .044 .081 .056

2 120 .127 .101 .122 .106

180 .095 .068 .093 .061

240 .059 .059 .062 .062

3 120 .200 .106 .180 .103

180 .093 .093 .111 .111

240 .057 .057 .068 .068

0.3 1 120 .124 .084 .103 .076

180 .119 .077 .070 .032

240 .076 .054 .073 .036

2 120 .120 .098 .098 .083

180 .089 .055 .096 .063

240 .063 .063 .054 .054

3 120 .193 .117 .190 .110

180 .098 .098 .104 .104

240 .064 .064 .071 .071

0.1 1 120 .125 .088 .080 .068

180 .111 .072 .074 .061

240 .076 .045 .071 .051

2 120 .122 .097 .094 .071

180 .091 .075 .089 .048

240 .062 .034 .058 .045

3 120 .164 .105 .148 .073

180 .106 .095 .091 .091

240 .061 .061 .041 .041
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Figure 4.3: (H=0.7): Histograms of n1/(2H)(θ̂n − θ0) for θ̂n estimated for Cox model,

(θ0, σ) = (0.5, 1) for the upper row, (θ0, σ) = (0.3, 1) for the middle row, (0.1, 1) for

the lower row
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Table 4.2: (H=0.7): Empirical tail probabilities of nominal .025, .05, .95, .975 quan-

tiles for θ̂n; data simulated from extended Cox model

θ0 σ n > q.95 > q.975 < q.05 < q.025

0.5 1 120 .109 .072 .088 .057

180 .085 .062 .083 .049

240 .087 .050 .069 .051

2 120 .081 .066 .086 .071

180 .080 .061 .088 .033

240 .091 .056 .102 .062

3 120 .114 .078 .125 .093

180 .065 .065 .064 .064

240 .080 .034 .101 .046

0.3 1 120 .100 .064 .077 .051

180 .085 .058 .076 .051

240 .089 .056 .070 .033

2 120 .094 .078 .079 .063

180 .086 .044 .100 .048

240 .102 .046 .096 .041

3 120 .111 .088 .112 .068

180 .064 .064 .062 .062

240 .080 .039 .057 .023

0.1 1 120 .106 .080 .073 .049

180 .078 .055 .072 .045

240 .079 .049 .056 .037

2 120 .076 .060 .089 .053

180 .085 .067 .081 .057

240 .072 .057 .072 .053

3 120 .093 .063 .093 .063

180 .061 .061 .069 .069

240 .077 .038 .072 .041
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it requires �ner grid for small H (number of grid points ∼ n1/(2H)). Hence it is

hard to report any quantitative results for simulations conducted for H = 0.3.

However, their shapes (not shown in this thesis in general, except for θ0 = 0.5

case in Figure 4.4) has exactly the same trend and features as those of H = 0.5

and H = 0.7, which implies all the large sample properties presented in Theorem

2.3.2 are expected to hold for H ∈ (0, 1/2).

2. Considering the asymmetry of left and right con�dence limits for θ, we adopt

the so-called Domain-Restricted Asymptotic Distribution as the benchmark dis-

tribution, which has better performance than the asymptotic distribution. Pro-

fessor Tsai suggests another idea. That is to make a tranformation f(θ) for

θ (θ ∈ (0, 1)), such that the asymptotic distribution of transformed estimated

parameter f(θ̂n) has some symmetric distribution. Then we can construct con-

�dence interval based on this symmetric distribution, and then transform back

to obtain the con�dence interval. This idea is very promising considering it is

convenient and do not involve extra Monte Carlo calibration for the quantiles

of the DRADs. A natural candidate for the transformation is the logit function,

f(θ) = log(θ/(1− θ)). We test its use with "delta method" in both H = 0.5 and

H = 0.7 cases. For H = 0.5 case, it works as accurately as the DRAD method

and is more desirable. However, in the H = 0.7 case, it performs worse com-

pared to the DRAD method. Further studies are needed to evaluate the potential

of the transformation method.

3. Examining the simulation results in Tables 4.1 and 4.2, the sample sizes 120,

180, 240 do not warrant accurate approximation of the coverage probability to

the nominal levels. It is desirable to show the coverage probability converges to

the nominal level when the sample size increases further. Due to the computing

facility constraint, we simulate only one scenario: θ0 = 0.5 and σ = 1. The

sample size n = 720 and the number of grid points J = 1000 on the interval
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[0, 1] (if the grid size keeps �xed at 100 and merely increase sample size, we will

get cruder rescaled empirical distribution of n1/(2H)(θ̂n−θ0), which does not help

much improving the approximation accuracy). The empirical tail probabilities of

nominal .95,.975,.05,.025 quantiles are .061,.036,.068,.037 respectively. These

results are much closer to the nominal levels (.05,.025,.05,.025) compared to

the n = 240 and number of grid points J = 100 case, where these values are

.077, .044,.081,.056. To achieve better approximation, we expect to have larger

sample size which may be conducted on faster computers in the future.

4. The evaluation of the empirical tail probabilities in Tables 4.1 and 4.2 are based

on the calibrated quantiles of the DRAD with restricted domain [−nθ0, n(1−θ0)].

In practice, the true value θ0 is unknown and θ̂n is used instead. It is computa-

tionally too expensive to calibrate the quantiles of the DRAD with each value of

θ̂n. To roughly check the impact of this simpli�ed handling, we choose the sce-

nario (θ0, σ, n) = (0.5, 1, 120), use among {0.1, 0.3, 0.5, 0.7, 0.9} the closest value

to θ̂n to get the calibrated quantiles, and then calculate the empirical tail proba-

bilities. The results show it improved the approximation accuracy comparing to

the table. It implies that the simpli�ed handling (i.e., replacing [−nθ̂n, n(1− θ̂n)]

by [−nθ0, n(1− θ0)]) gives a conservative evaluation of the proposed method.

4.2.3 Con�dence intervals of β̂n and γ̂n

To evaluate the �nite sample performance of β̂n and γ̂n, we can just choose their

asymptotic distributions as the benchmark distributions, and see how the empirical

distributions of the simulated results approach their asymptotic distributions. The

closer they are, statistical inferences based on their asymptotic distributions performs

better for data sets with �nite sample sizes.

We begin with the investigation of the asymptotic distributions of β̂n and γ̂n.
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Figure 4.4: (H=0.3,0.5,0.7): Histograms of non-rescaled θ̂n for θ̂n estimated for Cox

model, (θ0, σ) = (0.5, 1), H=(0.3,0.5,0.7) for the upper, middle, lower row respectively
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4.2.3.1 Wald-type con�dence intervals of
√
n(β̂n−β0) and

√
n(γ̂n−γ0) based

on the asymptotic distributions

In this subsection, we will calculate the asymptotic distributions of
√
n(β̂n − β0) and

√
n(γ̂n − γ0) based on the parameters set by the simulation procedure in Chapter

4.2.1.

By Theorem 2.3.2, the asymptotic distribution of
(√

n(β̂n − β0),
√
n(γ̂n − γ0)

)
is

a 2-dimensional normal distribution. To determine this distribution, we only need

the values of s21, s
2
2 and ρ.

By steps 3 and 5 of the simulation procedure in Chapter 4.2.1, X ∼ U [−1, 1],

Z(θ0) ∼ U [−0.75, 0.75], T 0 ∼ Exp (exp(βZ(θ0) + γX)) with (β, γ) = (1, 0). C ∼

Exp (|Z(θ0)|), τ = 50 which are the same as of the simulation procedure of the simple

model in Chapter 4.1.1.

Then

P [X2N(τ)] = P [X21T 0≤τ,T 0≤C ] = P
[
X2P

(
T 0 ≤ τ, T 0 ≤ C|Z(θ0), X

)]
= P

[
X2

∫ τ

0

eZ(θ0)e−eZ(θ0)u · e−u|Z(θ0)|du

]
= P

[
X2 · eZ(θ0)

1− e−τ(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]

= P [X2] · P

[
eZ(θ0)

1− e−τ(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]

=
1

3
P

[
eZ(θ0)

1− e−50(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]
,

where we used the properties of the distribution of T 0, C in the third equality and

the property of the distribution of X in the last equality.

Here Z(θ0) ∼ U [−0.75, 0.75], there is no analytical solution to P [X2N(τ)]. Us-

ing 10,000,000 Monte-Carlo simulations we obtain the estimate of P [X2N(u)] =

0.246833033.
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P [Z2(θ0)N(τ)] = P [Z2(θ0)1T 0≤τ,T 0≤C ] = P
[
Z2(θ0)P

(
T 0 ≤ τ, T 0 ≤ C|Z(θ0), X

)]
= P

[
Z2(θ0)

∫ τ

0

eZ(θ0)e−eZ(θ0)u · e−u|Z(θ0)|du

]
= P

[
Z2(θ0) · eZ(θ0)

1− e−50(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]
There is no analytical solution to P [Z2(θ0)N(τ)] as well. Using 10,000,000 Monte-

Carlo simulations we obtain the estimate of P [Z2(θ0)N(u)] = 0.1195684.

P [Z(θ0)XN(τ)] = P [Z(θ0)X1T 0≤τ,T 0≤C ] = P
[
Z2(θ0)P

(
T 0 ≤ τ, T 0 ≤ C|Z(θ0), X

)]
= P

[
Z(θ0)X

∫ τ

0

eZ(θ0)e−eZ(θ0)u · e−u|Z(θ0)|du

]
= P

[
XZ(θ0) · eZ(θ0)

1− e−50(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]

= P [X]P

[
Z(θ0) · eZ(θ0)

1− e−50(eZ(θ0)+|Z(θ0)|)

eZ(θ0) + |Z(θ0)|

]
= 0,

where the last equality comes from PX = 0 (since X ∼ U [−1, 1]) and the second-to-

last equality comes from the independence of Z(θ0) andX. Notice that P [Z(θ0)XN(τ)]

is equal to 0 here because we set γ = 0 for simulations conducted in Chapter 4.2.

Putting the values of P [Z2(θ0)N(τ)], P [X2N(τ)] and P [Z(θ0)XN(τ)] back to the

formulas for s21, s
2
2 and ρ ,

s21 =
1

P [Z2(θ0)N(τ)]
= 8.36341, s22 =

1

P [X2N(τ)]
= 4.05132, ρ = 0.

The 0.95 and 0.975 quantiles of the standard normal distribution are 1.645 and

1.96 respectively,

1.96 ·
√
8.36341 = 5.67, 1.645 ·

√
8.36341 = 4.76;

1.96 ·
√
4.05132 = 3.94, 1.645 ·

√
4.05132 = 3.31.

Then the 0.95 and 0.975 quantiles of the asymptotic distribution of
√
n(β̂n − β0)

are 4.76 and 5.67; the 0.95 and 0.975 quantiles of the asymptotic distribution of
√
n(γ̂n − γ0) are 3.31 and 3.94.
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4.2.3.2 Simulation study of
√
n(β̂n − β0) and

√
n(γ̂n − γ0)

For (θ0, σ, β, γ) = (0.5, 1, 1, 0) and H = 0.3, 0.5, 0.7, the histograms of
√
n(β̂n − β0)

and
√
n(γ̂n − γ0) (with data simulated from the extended Cox model with these

speci�ed parameters) are shown in Figure 4.5 (for
√
n(β̂n − β0)) and Figure 4.6 (for

√
n(γ̂n − γ0)).

We did not present their histograms in the case of (θ0, σ) = (0.3, 1) or (θ0, σ) =

(0.1, 1) since they did not change much compared to those in the case (θ0, σ) = (0.5, 1).

Tables 4.3 and 4.4 show the empirical coverage probabilities of the nominal 90%

and 95% con�dence intervals of β and γ respectively.

By Table 4.3, there is obvious under coverage for the con�dence intervals of β,

especially for small H (H = 0.3 or 0.5). With the increase of H, there are signi�cant

gains of the coverage probabilities. With the increase of sample sizes, there are gradual

gains of the coverage probabilities as well. Overall speaking, the con�dence intervals

based on the asymptotic normal distribution of β do not perform satisfactorily. It

requires quite large sample sizes (n much larger than 240) to make the coverage

probabilities of the con�dence intervals approach their nominal levels.

In contrast, the con�dence intervals of γ (see Table 4.4) show quite accurate

coverage probabilities compared to their nominal levels in all the cases listed in the

table.

The di�erence in the �nite sample performance of β and γ could be due to the

fact that β is the coe�cient of Z(θ) where θ is unknown, while β is the coe�cient of

X which is observed. Such a di�erence could lead to a better higher order accuracy

of γ̂n compared to β̂n even though they have the same
√
n-order accuracy.

Remark 4.2.2. In this section, we used the nominal con�dence intervals calculated

from the true parameters' values. We could also consider to use the nominal con-

�dence intervals constructed from estimated parameters' values. That looks at the

problem from a slightly di�erent perspective. However, we expect to see similar trends

regarding the approximation accuracy.
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Table 4.3: Coverage probabilities of nominal 90% and 95% con�dence intervals for β;

data simulated from the extended Cox model, θ0 = 0.5

σ n H = 0.3 H = 0.5 H = 0.7

90% 95% 90% 95% 90% 95%

1 120 .786 .870 .816 .902 .845 .912

180 .789 .854 .824 .894 .872 .918

240 .791 .858 .846 .910 .871 .921

2 120 .682 .758 .824 .893 .853 .904

180 .773 .837 .822 .884 .874 .925

240 .840 .896 .848 .903 .867 .923

3 120 .720 .767 .777 .844 .839 .891

180 .847 .893 .818 .871 .847 .911

240 .876 .926 .834 .889 .847 .908
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Figure 4.5: Histograms of
√
n(β̂n−β0) for β̂n; data simulated from the extended Cox

model, (θ0, σ) = (0.5, 1), H=(0.3,0.5,0.7) for the upper, middle, lower row respectively
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Figure 4.6: Histograms of
√
n(γ̂n − γ0) for γ̂n; data simulated from the extended Cox

model, (θ0, σ) = (0.5, 1), H=(0.3,0.5,0.7) for the upper, middle, lower row respectively
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Table 4.4: Coverage probabilities of nominal 90% and 95% con�dence intervals for γ;

data simulated from the extended Cox model, θ0 = 0.5

σ n H = 0.3 H = 0.5 H = 0.7

90% 95% 90% 95% 90% 95%

1 120 .870 .929 .876 .928 .872 .929

180 .857 .913 .875 .933 .866 .923

240 .871 .932 .892 .945 .859 .921

2 120 .882 .927 .866 .924 .868 .923

180 .876 .934 .874 .932 .866 .929

240 .877 .929 .899 .942 .901 .948

3 120 .875 .930 .862 .918 .866 .924

180 .884 .933 .887 .941 .866 .923

240 .888 .943 .877 .934 .880 .942
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Chapter 5

Analysis of genomic data

In this chapter, we will apply the methods developed in this thesis to two real data

sets, one from an adult brain cancer study and another from a breast cancer study.

For the adult brain cancer study, complete data is observed; for the breast cancer

study, however, partial data is missing. They are studied in the �rst and second

sections respectively. In the last section, we will summarize the basic algorithm of

applying the proposed method for real data analysis.

In the �rst section, relying on the MPLE method and the DRAD developed in

earlier chapters, we get the point estimates and con�dence intervals of the sensitive

locus on Chromosome 1 and its impact strength on hazard of dying of adult brain

cancer. Simulations are conducted to evaluate the empirical coverage probability of

the Wald-type con�dence intervals based on the DRAD.

In the second section, to handle missing values in the functional covariate, inverse

probability weighting method is used. We get the point estimates and con�dence

intervals for the sensitive locus on Chromosome X, the impact strength of this locus,

and the impact strength of a non-functional covariate: tumor category.

Furthermore, the inverse probability weighting method is studied using simulated

data.
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5.1 Adult brain cancer study

Glioblastoma, the most common brain cancer in adults, is the �rst cancer studied

by The Cancer Genome Atlas (TCGA). There are 174 subjects in this study, with

156 subjects experiencing death, 17 subjects survival times censored and 1 subject

survival information missing. Their complete gene expression pro�les are observed on

1599 loci of Chromosomes 1-22. Some of the chromosomes were found to be closely

related to the risk of glioblastoma occurrence ([16], [20], [14] and [26]). As an example,

we will use our proposed model to select the most sensitive locus to the risk of dying

of glioblastoma on Chromosome 1.

Chromosome 1 has J = 181 locus in this data set. We can use the survival and

gene expression pro�le data from the n = 173 subjects (we exclude the subject whose

survival information is missing) to estimate the most sensitive locus. By implementing

the MPL estimating procedure for our model, we get the estimate of (θ, β), with

θ̂n = 40/181 and β̂n = 0.287. The name of the 40th locus on Chromosome 1 is

"DIRAS3".

5.1.1 Wald-type con�dence intervals

In order to obtain the Wald-type con�dence intervals for θ and β, we have to estimate

the nuisance parameters in our model, H and σ2. To estimate the Hurst parameter

H, we adopt the function "pengFit()" in the R-package "fArma". This function

estimates the Hurst parameter by Peng's variance of residuals method [33]. It divides

the time series into blocks of size m. The cumulated sums within each block are

computed up to time t, then least-square method is used to �t the cumulated sums

by a+bt. The sample variance of these residuals is proportional to m2H . The "mean"

or "median" are computed over these blocks. The slope 2H from the least square

provides an estimate for the Hurst parameter H.

By Peng's method, for each subject's gene expression pro�le, an estimate of H is
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obtained. For the 173 estimates, the mean is 0.535 and 80% percent of them falls

within [0.41, 0.66]. So we can use 0.535 as the H estimate.

To estimate σ2, we can adopt the quadratic variation method. For each subject,

we can get an estimate of σ2. Take an average of these estimates, we get an estimate

σ̂2 =
1

173

173∑
i=1

180∑
j=1

(
Zi

(
j + 1

181

)
− Zi

(
j

181

))2

≈ 236.14, hence σ̂ ≈ 15.37.

To construct the Wald-type con�dence intervals for θ and β, by Theorem 2.3.2, it

remains to get the quantiles of

argmaxh∈[−n1/(2H)θ0,n1/(2H)(1−θ0)]

(
WH(h)− |h|2H

2
|β|σ

√
PN(τ)

)
and the value of 1/P (Z2(θ0)N(τ)).

Since θ0, β,H, PN(τ), P (Z2(θ0)N(τ)) are unknown, we replace them by their es-

timates. The MPLEs of θ0 and β are θ̂n = 40/181, β̂n = 0.287. The estimate of H is

0.535. The empirical estimates of PN(τ), P (Z2(θ0)N(τ)) are

PnN(τ) = 156/173, Pn(Z
2(θ0)N(τ)) = 0.0598.

To get the quantiles of

argmaxh∈[−n1/(2H)θ0,n1/(2H)(1−θ0)]

(
WH(h)− |h|2H

2
|β|σ

√
PN(τ)

)
,

we resort to the Monte Carlo simulation. Through 10,000 sample paths generation

and maximum index search for each path, we get the desired 0.975 and 0.025 quantiles:

0.74 and -0.74. Then we can easily get the 95% con�dence interval of θ as[
40/181− 0.74/1731/(2·0.535), 40/181 + 0.74/1731/(2·0.535)

]
= [0.215, 0.227].

It means the 95% con�dence interval of the locus is the 39th, 40th and 41st loci (with

slight undercoverage since the grids are not �ne enough).

By Theorem 2.3.2,
√
n(β̂n − β0) follows a normal distribution with variance given

by 1/P (Z2(θ0)N(τ)). Then the 95% Wald-type con�dence interval for β is[
β̂n − 1.96/

√
173 · 0.0598, β̂n + 1.96/

√
173 · 0.0598

]
,

which turns out to be [−0.322, 0.896].
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5.1.2 Assess the accuracy of the theoretical Wald-type con�-

dence interval by simulation

Since the Wald-type con�dence intervals are based on theoretical results in Chapter

2 which depends on assumptions, part of which could be unrealistic. So we can't

take it for granted that the actual coverage would be close to its nominal level. To

evaluate the 95% con�dence interval for θ assuming that the true θ corresponds to

the 40th locus, one possible method is to simulate survival outcomes of subjects

based on their gene expression levels at 40th locus and the corresponding hazard

ratio is set as 0.287. In other words, we are pretending that the �tted Cox model

is the actual data generating process. The purpose is to assess the actual coverage

probability of the constructed con�dence interval without thinking of the possibility of

model misspeci�cation. We will elaborate on the simulation method in the following

paragraphs.

For the ith subject, we simulate its time-to-event outcome with hazard function

λ̂0(t) exp(β̂nZi(θ̂n)). Since β̂n = 0.287, Zi(θ̂n) is directly observed from the original

gene expression level data set, we only need to set λ̂0(t).

When estimating the Cox model with covariate as the 40th locus gene expression

level, besides β̂n, the estimate of the cumulative baseline hazard function is also

obtained, which is displayed in Figure 5.1.

The �gure shows the estimated cumulative baseline hazard function Λ̂0(t) =∫ t

0
λ̂0(u)du and its pointwise 95% con�dence interval. Since the baseline hazard func-

tion is the derivative of the cumulative baseline hazard function, we have to make some

assumption about their smoothness. We can assume the baseline hazard function is

piecewise constant and hence the cumulative baseline hazard function is a piecewise

linear function. From Figure 5.1, it seems reasonable to smooth the cumulative base-

line hazard function to be 3-phase piecewise linear. The baseline hazard function λ̂0(t)

is piecewise linear with 3 di�erent values h1, h2 and h3 for t ∈ [0, 28.5], t ∈ [28.5, 89.6],

and t ∈ [89.6, 100] respectively. The estimated h1 = 0.059, h2 = 0.023, h3 = 0.185.
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Figure 5.1: The estimated cumulative baseline hazard function and its pointwise 95%

con�dence interval of the brain cancer study
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Now we have the ith subject's hazard function λ̂0(t) exp(β̂nZi(θ̂n)). Its survival

function Si(t) = exp(−
∫ t

0
λ̂0(u) exp(β̂nZi(θ̂n))du) and the C.D.F. for the time-to-

event variable is Fi(t) = 1 − Si(t). By the monotonicity of Fi, it is easy to solve for

its inverse function F−1
i .

By a well known result in simulation, if we generate a random variable U with

uniform distribution on [0, 1], then F−1
i (U) follows the distribution with C.D.F. Fi(·).

So now it is easy to simulate the time-to-event outcome for the ith subject with

hazard function λ̂0(t) exp(β̂nZi(θ̂n)).

We can make the censoring proportion to be comparable to the actual one by

tuning the parameter of the censoring variable's distribution (for simplicity, we use

the exponential distribution for the simulation of the censoring variable).



CHAPTER 5. ANALYSIS OF GENOMIC DATA 99

We made Rep=1000 simulations and get the estimates of (θ, β) for each replicate.

Their histograms are shown in Figure 5.2.

In this simulation, there are 630 out of 1000 estimated θ taking value 39,40 or

41, much less than the nominal coverage of around 95%. This is because in deriving

the asymptotic distribution, we used the fBm assumption, which is not realistic. The

simulation study can help us get a more realistic evaluation about the con�dence

interval of θ.

As for β, its distribution is approximately normal except for some negative values.

It implies that not all loci on Chromosome 1 are positively correlated to subjects'

hazard of dying of brain cancer. When the estimation of θ fall on those loci which are

negatively correlated to the hazard, the estimation of β would be negative. Founding

these loci might be of interest for physicians as well. Even though not an excellent �t

to normal distribution, the nominal 95% con�dence interval [−0.322, 0.896], derived in

last section based on the asymptotic distribution, has reasonable coverage probability

93.9%.

The strong contrast of the actual coverage probabilities of θ and β's nominal 95%

con�dence intervals implies that the asymptotic distribution of θ is highly dependent

on the unrealistic fBm assumption, while the the asymptotic distribution of β may not.

To keep us from abusing the asymptotic distribution of θ̂n, which is highly dependent

on the fBm assumption, simulation is a way to evaluate the actual coverage of θ's

nominal con�dence intervals.

5.2 Breast cancer study

In this section, we will study a breast cancer data set by methods developed in

this thesis. We aim to �nd the most sensitive locus to breast cancer death disk

on Chromosome X. After brie�y introducing the data set, we will focus on dealing

with missing values in the gene expression pro�les. Besides getting the estimates and
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Figure 5.2: Histograms of θ̂n and β̂n from simulation
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con�dence intervals for parameters in the proposed Cox model, the impact of di�erent

proportions of missingness in the data is also explored by simulation.

5.2.1 Description of the data set

The breast cancer study has 84 subjects. To evaluate the in�uence of the genes

on survival outcome, we need both clinical data (i.e. survival length, status, tumor

category) and complete gene expression data on the chromosome we are interested

in.

The data set can be found in the supporting information on the website of P-

NAS, http://www.pnas.org/cgi/doi/10.1073/pnas.162471999. The clinical data and

gene expression data are listed in di�erent tables. To match them by subject ID and

leave out those subjects without survival outcome data, we have 36 subjects left. In
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the clinical data table, the variables collected include age, patient survival, survival

months, event for relapse free survival, relapse free survival months, p53 status, clin-

ical ER, tumor category, node status, met, grade, histology and special comments.

In the gene expression table, the gene expression levels of di�erent loci on each chro-

mosome (chromosome 1-22 and X) are collected for each subject, even though some

values are missing.

5.2.2 Data analysis

For the clinical data table, we �rst pick up one variable as the non-functional covariate

X in the extended Cox model, tumor category. It takes values 1, 2, 3, 4 and is expected

to in�uence the risk of dying of breast cancer. The endpoint of interest is survival

months and the event status. Event status comes from the column "patient survival"

which takes 4 values, 0=no evidence of disease, 1=alive with disease, 2=dead of

disease, 3=dead of other causes. Event status is set to be 1 for "patient survival"

taking values 2 and to be 0 otherwise.

In the gene expression table, we choose chromosome X as our interest since a recent

paper suggests its relationship to breast cancer ([39]). For the gene expression levels

along chromosome X, missing values are observed on some loci.

5.2.2.1 Missing values handling

Missing values occurs on 69 out of all 206 loci on chromosome X for the gene expression

data. The count of missing values among these 69 loci varies from 1 to 17. 40 loci

have 1 subject's expression level missing, 13 loci have 2 missings, the distribution of

count of missingness is shown in Table 5.1 and Figure 5.3.

Table 5.1: Distribution of count of missingness among the 69 loci

count of missingness 1 2 3 4 5 6 10 17

counts of loci 40 13 6 2 2 4 1 1
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Figure 5.3: Distribution of count of missingness among the 69 loci
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We can see that the missingness are not severe except for two loci, the 148th locus

(with 17 subjects' gene expression level values missing) and the 155th locus (with 10

subjects' missing). Note that we have altogether 36 subjects.

Assume the missings are completely at random (MCAR, see [41]), i.e. the prob-

ability of missing is equal among di�erent loci for each subject, among di�erent sub-

jects, not depending on the survival outcome, other covariate of the subject, and the

(unobserved) gene expression level.

Suppose we have J di�erent loci {θ1, . . . , θJ} and n subjects. For each locus θj, if

there is no missing values at all, the log-partial-likelihood function would be

log PL(β, γ, θj) =
n∑

i=1

log PLi(β, γ, θj).

For each θj, we treat Z(θj) as a non-functional covariate, and �t a Cox model
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with covariates Z(θj) and X, get the MPLE (Maximum Partial Likelihood Estimator)

(β∗
j , γ

∗
j ) of the regression coe�cients vector (β, γ). For this �tted Cox model, we also

obtain the log-partial-likelihood value

log PL(β∗
j , γ

∗
j , θj) =

n∑
i=1

log PLi(β
∗
j , γ

∗
j , θj).

According to the maximum likelihood principle, we choose the θj∗ which maximizes

log PL(β∗
j , γ

∗
j , θj) out of j = 1, 2, . . . , J . The large sample properties of this estimator

have been studied in Chapter 3 and its �nite sample performance has been evaluated

by simulations in Chapter 4.

However, now the log-partial-likelihood value is not available; we only have

log PLM(β, γ, θj) =
n∑

i=1

δij log PLi(β, γ, θj).

Here δij = 1 if gene expression level Zi(θj) of the locus θj is observed for subject i,

and 0 if Zi(θj) is missing.

Even though we do not have log PL(β, γ, θj), if the missing is completely random

and not severe (as that of our data, except for 148th and 155th loci), we can expect

a reasonably good and unbiased estimate of log PL(β, γ, θj) by

p̂−1
. log PLM(β, γ, θj), where p̂. =

1

n

n∑
i=1

δij.

Comparing such values for di�erent θj(j = 1, . . . , J), the maximizing θj∗∗ would

be a reasonable estimate. (We need to be cautious about the estimate if it is equal

to 148th or 155th locus.)

The procedure described above is the widely used "inverse probability weighting"

(abbreviated as IPW hereafter) method. The IPW method was originally proposed

by Horvitz and Thompson [15], and introduced to the Cox model setting by Pugh et

al. [36] and further developed by Robins et al. [40] and Xu et al. [56], to name a few.

We call the estimator produced by the "IPW" procedure described above the IPW

MPL estimator as opposed to the original MPL estimator without missing data.
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Actually besides the IPW method, there are many more missing data methods

available for Cox models. A survey of these methods is available in [52]. As long as

these methods can be used for the classical Cox models, it can also be used for the

method developed in this thesis. The key is that once we �x an individual grid point

of the trajectories, our model can be estimated as a classical Cox model.

5.2.2.2 Application of the IPW method

The IPW MPL method is used to estimate the most sensitive locus for the risk of

dying of breast cancer. The most sensitive locus is found to be the 199th, out of 206

loci. The name of the locus is "chrX|nt160764988|Xq28|R87497|2.19|2.19 gene".

θ̂n = 199/206, β̂n = −4.97, γ̂n = 0.69.

For this given θ̂n = 199/206, the standard errors of β̂n and γ̂n obtained from the

Cox model estimation are 2.268 and 0.602 respectively. So for the 199th locus, its

impact on patients' risk of dying of breast cancer is signi�cant. Higher gene expression

levels of the 199th locus are associated with lower risk of dying of breast cancer.

To estimate the Hurst parameter H, the function "pengFit()" in package "fArma"

in the statistical software R is used for each subject's chromosome X gene expression

level sequence. For each subject, we get an estimate of H. Altogether we have 36

estimates with mean 0.532, 80% falling in (0.42, 0.64). So we take H = 0.532 as the

estimate of the Hurst parameter.

To estimate σ2, we still adopt the quadratic variation method.

σ̂2 =
1

36

36∑
i=1

205∑
j=1

SD2(Zi((j + 1)/206)− Zi(j/206)) ≈ 29.2, hence σ̂ ≈ 5.4.

The estimate of PN(τ) is 11/36, the proportion of uncensored events among all

these subjects.

To construct the Wald-type con�dence interval for θ, β and γ, by Theorem 2.3.2,
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it remains to get the quantiles of

argmaxh∈[−n1/(2H)θ0,n1/(2H)(1−θ0)]

(
WH(h)− |h|2H

2
|β|σ

√
PN(τ)

)
and the values of s21, s

2
2 and ρ in Theorem 2.3.2.

Since θ0, β, PN(τ), P (X2N(τ)), P (ZH(θ0)
2N(τ)), P (ZH(θ0)XN(τ)) are unknown,

we replace them by their estimates. The MPLEs of θ0 and β are θ̂n = 199/206, β̂n =

−4.97. The estimate of H is 0.532. The empirical estimates of the other terms are

PnN(τ) = 11/36, Pn(Z
2(θ0)N(τ)) = 1.1565/34 = 0.034,

Pn(X
2N(τ)) = 134/36 = 3.722, Pn(XZ(θ0)N(τ)) = −10/34 = −0.294.

Then using the Monte Carlo simulation, by 10,000 replicates, we get the 0.975 and

0.025 quantiles of n1/(2H)(θ̂n − θ)'s asymptotic distribution as -0.07 and 0.06. Then

we can get the 95% con�dence interval for θ as

[199/206− 0.07/361/(2·0.532), 199/206 + 0.06/361/(2·0.532)] = [0.9636, 0.9681].

Then 95% con�dence interval for the loci is [198.5, 199.4]. Due to the coarse grids,

we can choose 199th loci as the 95% con�dence interval of θ.

The Wald-type con�dence intervals for β and γ can also be obtained by their

asymptotic normal distributions. Their 95% con�dence intervals are [−8.12,−1.82]

and [0.39, 0.99] respectively.

5.2.2.3 Empirical study of proposed IPW method

To evaluate whether the new estimator proposed for the missing data has the similar

small sample performance to the original one (without missing data), we conduct

some simulations under the scenario which mimics the real data set. The statistical

software R (version 2.13.0) is used for this simulation.

The simulation conducted here will be di�erent from that in Chapter 5.1.2. In

Chapter 5.1.2, we used the true gene expression pro�les to generate survival outcomes.



CHAPTER 5. ANALYSIS OF GENOMIC DATA 106

Here, this would not be feasible due to the missing values. If we use the true gene

expression pro�les to generate survival outcomes, the MCAR (i.e., Missing Completely

At Random) assumption does not hold, hence the IPW MPLE method is not valid

to estimate θ anymore. In fact, if we still use the IPW MPLE method, all the

estimated θ̂n from such simulations would be those loci with most severe missings. So

in this section, we will simulate the gene expression pro�les from randomly generated

trajectories of fBm.

The simulation procedure is as follows:

1. Generate a data set which has comparable characteristics to the real data.

We have the �tted model parameters (θ̂n, β̂n, γ̂n) from the previous section.

According to the corresponding estimated cumulative baseline hazard function

Λ̂0(t) (see Figure 5.4), we can estimate a 2-phase piecewise constant baseline

hazard function λ̂0(t). The empirical values of H, σ, PN(τ) is known as well,

we can mimic the distribution of Z(θ0) and X by �tted normal distributions

N(−0.12, 0.222) and N(3, 0.752). The generated data set also have 206 �ne

grid points on each covariate trajectory for 36 subjects. Given the simulated

trajectories, the mechanism to generate time-to-event outcome and censoring

variable is the same as that of Chapter 5.1.2.

2. Generate a permutation of count of missingness from the true distribution of

the count of missingness (137 zeros, 40 ones, 13 twos, 6 threes, 2 fours, 2 �ves, 4

sixes, 1 ten and 1 seventeen ), and assign them to loci 1,2,3 ,...,206 respectively.

3. For each locus, assign the assigned count of missingness to the 36 subjects with

equal probability.

4. Adopt the IPW MPL method to obtain the estimate of (θ, β, γ).

5. Repeat steps 1-4 for 1000 times.
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Figure 5.4: The estimated cumulative baseline hazard function and its pointwise 95%

con�dence interval of the breast cancer study
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To obtain the small sample property of the original MPL estimator without miss-

ing, we just do step 1 and calculate the estimate of (θ, β, γ), and repeat for Rep=1000

times.

The histograms of 1,000 estimates of (n1/(2H)(θ̂n − θ0),
√
n(β̂n − β),

√
n(γ̂n − γ0))

for the MPLE without missing and IPW MPLE with missing are presented in the left

column and middle column in Figure 5.5. Signi�cant change is observed between the

histograms of θ̂n in these two scenarios.

A question is to what extent such a big change is due to the two severe missing grid

points, 10 missings (on 155th locus) and 17 missings (on 148th locus). We changed

both of them to 6 missings (the maximum missing besides), so we permutate a missing

distribution with 137 zeros, 40 ones, 13 twos, 6 threes, 2 fours, 2 �ves, 6(=4+2) sixes

for Rep=1,000 times, and the histograms of (n1/(2H)(θ̂n−θ0),
√
n(β̂n−β),

√
n(γ̂n−γ0))

for the IPW MPLE with such a modi�ed missing is shown in the third column.

The shape shows the histogram of n1/(2H)(θ̂n − θ0) does not really change much

compared to its counterpart in the middle column (the IPW MPLE with missing),

which implies that the much �atter distribution of n1/(2H)(θ̂n − θ0) under the IPW

MPL is more due to the overall missing e�ect instead of the two severe missings (i.e.

10 and 17 missings).

An interesting feature of the histograms of
√
n(β̂n − β) under missing data sce-

narios (the second and third histograms in the middle row) is that besides the cluster

centered around zero, there is another cluster around the right tail with a higher

peak. For the cluster, its center corresponds to the value of θ̂n being zero. Due to the

prevalence of missing values, with higher chance that the estimate θ̂n is far from the

true value, hence the corresponding Z(θ̂n) is not correlated to the survival outcome,

and the estimate β̂n tends to be close to zero.

We are also interested in the actual con�dence limits for (θ, β, γ) when we esti-

mate these parameters by MPLE method and the true values of (θ, β, γ) in the data

generating process is (199/206, -4.97, 0.69). The empirical con�dence limits obtained
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Figure 5.5: Comparison of the IPW MPL estimators under missing and original MPL

estimator without missing, upper row n1/(2H)(θ̂− θ0), middle row
√
n(β̂n − β0), lower

row
√
n(γ̂n − γ0)
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from the simulated IPW MPL estimators (middle column in Figure 5.5) provides

some insights in this respect.

The 0.025 and 0.975 quantiles for (n1/(2H)(θ̂n − θ0),
√
n(β̂n − β),

√
n(γ̂n − γ0))

are [-24.4, 0], [-19.6, 30.7], [-4.2, 4.4] respectively. It follows that the .95 con�dence

intervals for θ, β, γ are [.127, .966],[−8.24, 0.15] and [−0.01, 1.42] respectively.

We �nd the 95% con�dence interval for θ, [.127,.966], covers almost all the domain

of θ. In contrast, if there is no missing values in the dataset, by the histogram of

θ in the �rst column of Figure 5.5, the 95% con�dence interval is [0.964, 0.968]. So

missing values in this dataset lead to di�culty for the inference of θ.

5.2.3 In�uence of di�erent proportions of missingness

To understand more about the in�uence of di�erent proportions of missingness in

the data (i.e., count of missing values), simulations are conducted. For θ0 = 0.5,

β0 = −5, γ0 = 0.7, J = 200, H = 0.5, σ = 0.3, n = 40, Z(θ0) ∼ N(−0.12, 0.222) and

X ∼ N(3, 0.752), we simulated Rep=1,000 replicates for the missingness size bound

equal to 0,1,2,3,...,20. Notice that we adopted similar values to the breast cancer data

except for the θ and σ. Here we set θ = 0.5 because we are interested in the length of

con�dence limits instead of the asymmetry of the con�dence interval w.r.t. the point

estimate. σ is set to be 0.3 since for larger σ, it requires �ner grids, and hence more

computing power to obtain con�dence limits with reasonable precision.

For missingness count bound equal to K(0 ≤ K ≤ 20), we generate n = 40

random numbers, M1,M2, ...,Mn from uniform distribution on the integers from 0 to

K and assign these numbers to subjects 1,2,...,40. Each subject i randomly select Mi

points on its J = 200 grid points and set them as missing values.

Then the IPW MPL estimator is used to estimate (θ, β, γ). In each scenario (i.e.

missingness count bound), we have histograms and empirical con�dence limits for the

estimator's distribution. Obviously the scenario that missingness count bound equal

to zero corresponds to the original MPL estimator without missing data. Comparing
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Figure 5.6: Comparison of IPW MPL estimator under di�erent proportions of miss-

ingness
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all these results will show the impact of di�erent levels of missingness.

The adjusted empirical con�dence limits come from average of the absolute values

of upper-tail and lower-tail ones. Since the distribution of θ̂n is expected to be sym-

metric about zero, taking average can reduce the estimation error of the estimated

con�dence limits.

Table 5.2 and Figures 5.6, 5.7 show the distributions of the IPW MPL estimator

θ̂n become �atter with the increase of missing proportions, which means the adjusted

empirical con�dence limits increase with the increase of missing proportions. The

speed of the increase, however, decreases gradually (see Figure 5.7). Eventually, with

severer loss of information, the con�dence limits will approximate those of the uniform

distribution on [−20, 20], 18 and 19 (since the 90% and 95% con�dence intervals of

the uniform distribution on [−20, 20] are 20·0.90 = 18 and 20·0.95 = 19 respectively).

Note in each scenario of missingness count bounds, the average proportion of

missingness is 1/2 · missing bound

full sample size
.

So Figure 5.7 also presents the trend of adjusted empirical con�dence limits with

the increase of in�ation ratio, where in�ation ratio is de�ned as the ratio of full

sample size vs. the expected observed sample size under the missing count bound

and represent the in�ation of sample size caused by the IPW method.

in�ation ratio =
full sample size

full sample size− 1/2 ·missingness count bound
.
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Table 5.2: Empirical con�dence limits under di�erent proportions of missingness

K EC.95 EC.975 EC.05 EC.025 adjusted adjusted

EC.95 EC.975

0 10.0 15.2 -10.6 -14.4 10.3 14.8

1 12.0 14.6 -9.6 -13.4 10.8 14.0

2 11.0 15.0 -12.4 -14.6 11.7 14.8

3 13.0 16.2 -14.4 -16.8 13.7 16.5

4 13.8 17.4 -13.8 -16.8 13.8 17.1

5 14.0 16.2 -14.0 -16.4 14.0 16.3

6 14.6 17.0 -14.0 -16.6 14.3 16.8

7 15.8 17.6 -14.0 -16.8 14.9 17.2

8 15.6 17.4 -16.0 -17.8 15.8 17.6

9 16.0 18.0 -15.6 -17.6 15.8 17.8

10 16.4 18.4 -16.6 -18.0 16.5 18.2

11 16.8 18.4 -15.8 -17.2 16.3 17.8

12 16.4 18.2 -15.6 -17.6 16.0 17.9

13 16.2 18.0 -16.0 -18.0 16.1 18.0

14 15.6 17.6 -17.6 -19.0 16.6 18.3

15 16.4 18.4 -15.6 -17.8 16.0 18.1

16 16.6 18.6 -16.6 -18.0 16.6 18.3

17 16.4 19.0 -16.6 -18.0 16.5 18.5

18 16.8 18.4 -16.6 -18.0 16.7 18.2

19 17.4 19.0 -16.6 -18.4 17.0 18.7

20 17.2 18.8 -16.4 -18.2 16.8 18.5
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Figure 5.7: Trends of adjusted empirical con�dence limits under di�erent missing

sizes
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Chapter 6

Summary and Discussion

This chapter summarizes the thesis and discusses its applicability and limitations.

Possible directions for future research are discussed as well.

6.1 Summary

The thesis starts with an introduction to the �eld of biomarker discovery in cancer

research which motivated the project. Cox models are widely used in cancer research

for statistical analysis. Biomarker discovery can be formalized in terms of estimat-

ing location parameters in functional predictors for Cox models. Finding "optimal"

estimators of such parameters is the goal of this thesis.

Formulating this problem in the framework of M-estimation, we establish large

sample properties for the proposed estimator, including consistency, rates of conver-

gence, and asymptotic distributions. The �nite sample performance is studied using

extensive simulations. Due to the asymmetry of the �nite sample distribution of the

proposed estimator, we introduce a Domain-Restricted Asymptotic Distribution as a

way of providing more accurate calibration for the inferential procedures.

The proposed approach is applied to gene expression data from two cancer mortal-

ity studies. To deal with missing gene expression data, an Inverse Proability Weighted
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Maximum Partial Likelihood estimator is introduced and its performance is studied.

Besides the approach developed in this thesis, another way to incorporate func-

tional predictor is the extension of the functional linear regression to the Cox model

framework. As such an extension models varying e�ects of the whole predictor pro-

cess, it may lack interpretability. The approach developed in this thesis captures

the most predictive components of the functional covariate, hence it has better inter-

pretability, although it may be less �exible. The proposed approach is more suitable

in some applications. For example, in cancer research, instead of estimating the con-

tribution of every gene to the cancer mortality, it is more informative to locate the

most sensitive genes to make targeted therapies feasible.

We investigate the proposed method thoroughly from both theoretical and prac-

tical perspectives. From the theoretical point of view, the large sample properties of

the proposed estimator are studied using empirical processes theory. To construct ac-

curate con�dence intervals in �nite sample cases, the approach uses a truncated form

of the asymptotic distribution, the Domain-Restricted Asymptotic Distribution. The

impact of missingness in the functional predictor is evaluated using simulated data.

In this thesis, the proposed method is applied to two genomic data sets as a way

of locating biomarkers which are predictive of cancer mortality. Other possible uses

could be economics and �nance, environmental science and network tra�c studies.

6.2 Discussion and future research

This section discusses possible limitations of the proposed approach, and some ideas

for future research in this area.

6.2.1 The fBm assumption

A key assumption in developing the large sample theory for the proposed model is that

the functional predictor is a 2-sided fractional Brownian motion. FBm is a simple and
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natural way to represent fractal-like trajectories, and a good starting point. However,

we feel the assumption is too restrictive.

There are various ways in which the assumption may be changed or relaxed. The

1-dimensional 2-sided fBm could be extended to higher dimensions, like 2-dimensional

or 3-dimensional fBm, or it could be extended to 1-sided fBm.

We can also consider the possibility of extending the model by using other stochas-

tic processes such as the O−U process, the Lévy process or the ARIMA process.

However, even if such extensions are feasible, to develop the corresponding theories

will be much more challenging.

6.2.2 Sensitive region, independence, missing data, the Boot-

strap and others

Restricting attention to using one sensitive point in the proposed model is needed

for studying the large sample properties. This is a simpli�cation of the more general

situation where a sensitive region is correlated to the time-to-event risk. If a sensitive

region is incorporated into the Cox model, what can we do? This was discussed in [24]

for the logistic regression setting and similar arguments applies here as well. We can

allow multiple covariates in the Cox model, where the multiple covariates form the

sensitive region of the functional covariate. For any given length of sensitive region,

by maximizing the partial likelihood function, we can estimate the sensitive region

of the given length. Since the length is generally unknown in practice, we can add

some penalty function to penalize the length of the sensitive region so that we can

estimate the length of the sensitive region and the region itself at the same time.

In this thesis, we assume all the subjects in the sample are independent. In prac-

tice, they could be correlated. In such scenarios, putting a correlation structure into

the model will better describe the data. The frailty model is one way to incorporate

the correlation information into the model.

Missing data is expected to appear in such high volume data collection. Besides
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the simple IPW method of handling missing data, it is desirable to study some alter-

native methods which can be implemented under di�erent missing mechanisms. As

mentioned in Chapter 5.2.2.1, various missing data methods surveyed in [52] can be

used in our setting as long as they can be used in the classical Cox model setting.

Another aspect worthy of further investigation is the bootstrap. Since our main

interest is θ (and β, γ), there are nuisance parameters like (H, σ) involved in this

model. Using the bootstrap could help us circumvent the problem of estimating

nuisance parameters. However, like in the linear regression setting with the fBm

assumption which was discussed in [29], we do not expect Efron's bootstrap to provide

valid inference. Whether a martingale residual bootstrap [25] or a weighted bootstrap

[12] works deserves further investigation.

For applications, there are other practical considerations.

We only consider the cross sectional measurement of the functional covariate at

certain time point, or we assume it won't change over time. In fact, the function-

al covariate's value could be time varying. For example, the gene expression level

would change if measured at di�erent time points. To study the time-varying impact

systematically is beyond the scope of the thesis. However, it would be interesting

to estimate the sensitive point and its con�dence interval sequentially for a series of

measurements of the functional covariates at di�erent time, and see how the sensitive

point and region change over time.

Another practical consideration is that the sensitive point itself could be missed in

the data collection process. If the missing is partial, i.e., not all the subjects missed

the measurement of the functional covariate at the sensitive point, the e�ciency of

the proposed method would be impaired. The degree of impairment depends on the

proportion of missingness as shown in Chapter 5.2.3. As for what proportion of miss-

ingness would render the proposed method hopeless to capture the signal, it depends

on too many factors to have a rule of thumb. For any speci�c problem, to evaluate the

impact of missingness, we can conduct simulation following the example of Chapter
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5.2.3. However, if all the subjects missed the measurement of the functional covariate

at the sensitive time point, not just our method, essentially there is no way to �nd

out the sensitive time point by statistical techniques.

The last point to be addressed is the computational feasibility of the proposed

method. Fitting Cox models is computationally more costly than linear model. To

calibrate the quantiles of the DRAD is much more expensive than �tting the Cox

model itself. When the functional covariate is observed on a dense grid of points,

implementing the proposed method would be challenging computationally. If the

number of grid points is J , the number of subjects (i.e., sample size) is n, it seems

feasible only if n · J < 107 on a desktop computer.
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Appendix A

Additional proof details for Chapter

2.2

As mentioned in Chapter 2.2.2.3, we will prove the rate of convergence for the sim-

pli�ed model here. To obtain the rate of convergence for the M-estimator of θ, we

can use Theorem 3.2.5 in VW [54]. The key step is get the modulus of continuity.

Modulus of continuity

To apply the rate of convergence Theorem, we will try to �nd the modulus of conti-

nuity in this section, i.e., to bound P ∗ supd(θ,θ0)<δ

√
n|(Mn −M)(θ)− (Mn −M)(θ0)|,

where

Mn(θ) =
1

n

n∑
i=1

[
Zi(θ)Ni(τ)−

∫ τ

0

log S(0)(θ, u)dNi(u)

]
,

M(θ) = P

[
Z(θ)N(τ)−

∫ τ

0

logP [Y (u)eZ(θ)]dN(u)

]
.

Write Mn(θ) in empirical process form,

Mn(θ) = Pn

[
Z(θ)N(τ)−

∫ τ

0

logPn[Y (u)eZ(θ)]dN(u)

]
.

√
n [(Mn −M)(θ)− (Mn −M)(θ0)]
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=
√
nPn

[
Z(θ)N(τ)−

∫ τ

0

log [PnY (u)eZ(θ)]dN(u)

]
−
√
nP

[
Z(θ)N(τ)−

∫ τ

0

log s(0)(θ, u)dN(u)

]
−
√
nPn

[
Z(θ0)N(τ)−

∫ τ

0

log [PnY (u)eZ(θ0)]dN(u)

]
+
√
nP

[
Z(θ0)N(τ)−

∫ τ

0

log s(0)(θ0, u)dN(u)

]
=

√
n(Pn − P ) [(Z(θ)− Z(θ0))N(τ)]

+
√
n

∫ τ

0

[
log s(0)(θ, u)− log s(0)(θ0, u)

]
PdN(u)

−
√
n

∫ τ

0

[logPnY (u)eZ(θ) − logPnY (u)eZ(θ0)]PndN(u)

=
√
n(Pn − P ) [(Z(θ)− Z(θ0))N(τ)]

−
∫ τ

0

(log s(0)(θ, u)− log s(0)(θ0, u))
√
n(Pn − P )dN(u)

−
√
n

∫ τ

0

[
logPnY (u)eZ(θ) − log s(0)(θ, u)

]
PndN(u)

+
√
n

∫ τ

0

[
logPnY (u)eZ(θ0) − log s(0)(θ0, u)

]
PndN(u)

≡ I1 − I2 − I3 + I4,

where the third equality follows by subtracting

√
n

∫ τ

0

[
log s(0)(θ, u)− log s(0)(θ0, u)

]
PndN(u)

from the second item while adding them into the third item.

By Theorem 5.2 in Banerjee and McKeague [3], a slight extension of Theorem

3.2.5 of [54], to derive an upper bound for the rate of convergence of θ̂n, it su�ces to

bound

P ∗ sup
d(θ,θ0)<δ

√
n|(Mn −M)(θ)− (Mn −M)(θ0)|1Ωn ,

where {Ωn}n≥1 is a sequence of subsets of the sample space, such that P ∗(Ωn) → 1

as n → ∞ . The Ωn could be appropriately chosen to make the calculation of the

modulus of continuity easier.
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P ∗ sup
d(θ,θ0)<δ

√
n|(Mn −M)(θ)− (Mn −M)(θ0)|1Ωn

= P ∗ sup
d(θ,θ0)<δ

|I1 − I2 − I3 + I4|1Ωn

≤ P ∗ sup
d(θ,θ0)<δ

|I1|+ P ∗ sup
d(θ,θ0)<δ

|I2|+ P ∗ sup
d(θ,θ0)<δ

|I3 − I4|1Ωn

Now we deal with each term separately.

The �rst term

P ∗ sup
d(θ,θ0)<δ

|I1| = P ∗ sup
d(θ,θ0)<δ

|Gn [W (θ − θ0)N(τ)]| ,

can be written as

P ∗ sup√
|x|<δ

|Gn [W (x)N(τ)]| ≤ 2P ∗ sup
0≤x<δ2

|Gn [W (x)N(τ)]|

Similar to MZN,θM , MWN,δ2 = {W (x)N(τ) : 0 ≤ x < δ2}, also has bounded

bracketing entropy, i.e. J[](1,MWN,δ2 , L2(P )) < ∞. Then by Theorem 2.14.2 of [54],

it can be further bounded by

J[](1,MWN,δ2 , L2(P ))
√

P ∗ sup
0≤x<δ2

W 2(x)N2(1) .
√
P ∗ sup

0≤x<δ2
W 2(x)

.
√

4P [W 2(δ2)] .
√
4δ2 . δ,

where we used N(1) ≤ 1 in the �rst inequality and Doob's maximal inequality in the

second inequality.

For the second term,

P ∗ sup
d(θ,θ0)<δ

|I2| = P ∗ sup
d(θ,θ0)<δ

∣∣∣∣∫ τ

0

log e
|θ−θ0|

2
√
n(Pn − P )dN(u)

∣∣∣∣
= P ∗ sup

d(θ,θ0)<δ

|θ − θ0|
2

∣∣√n(Pn − P )N(τ)
∣∣

≤ δ2

2

(
P ∗|

√
n(Pn − P )N(τ)|2

) 1
2 ≤ δ2

2

[
P ∗N2(τ)

] 1
2 ≤ δ2

2
.
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Now consider I3 =
√
n

∫ τ

0

[
logPnY (u)eZ(θ) − log s(0)(θ, u)

]
PndN(u) and

I4 =
√
n

∫ τ

0

[
logPnY (u)eZ(θ0) − log s(0)(θ0, u)

]
PndN(u).

Since function log(x) is continuously di�erentiable with derivative 1
x
, by Mean Value

Theorem (page 108 of [42]), we have

I3 =

∫ τ

0

S(0)(θ, u)− s(0)(θ, u)

S̃(0)(θ, u)

√
nPndN(u),

I4 =

∫ τ

0

S(0)(θ0, u)− s(0)(θ0, u)

S̃(0)(θ0, u)

√
nPndN(u),

where

S̃(0)(θ, u) ≡ Kθ,u(ω)S
(0)(θ, u) + (1−Kθ,u(ω))s

(0)(θ, u),

S̃(0)(θ0, u) ≡ Kθ0,u(ω)S
(0)(θ0, u) + (1−Kθ0,u(ω))s

(0)(θ0, u),

with Kθ,u(ω), Kθ0,u(ω) ∈ (0, 1). Note that Kθ,u, Kθ0,u are all random variables, and

we write out ω in the two preceding displayed equations to stress this point.

I3 − I4 =

∫ τ

0

[
S(0)(θ, u)− s(0)(θ, u)

S̃(0)(θ, u)
− S(0)(θ0, u)− s(0)(θ0, u)

S̃(0)(θ0, u)

]
√
nPndN(u)

=

∫ τ

0

[S(0)(θ, u)− s(0)(θ, u)]− [S(0)(θ0, u)− s(0)(θ0, u)]

S̃(0)(θ, u)

√
nPndN(u)

+

∫ τ

0

(
1

S̃(0)(θ, u)
− 1

S̃(0)(θ0, u)

)[
S(0)(θ0, u)− s(0)(θ0, u)

]√
nPndN(u)

≡ I
′

3 + I
′

4

Since the numerator of I
′
3's integrand can be written as empirical process form,

[S(0)(θ, u)− s(0)(θ, u)]− [S(0)(θ0, u)− s(0)(θ0, u)] = (Pn − P )
[
Y (u)

(
eZ(θ) − eZ(θ0)

)]
,

we now consider the bracketing entropy property of {Y (u)
(
eZ(θ) − eZ(θ0)

)
: u ∈

[0, τ ], θ ∈ [0, θM ]} in order to apply Theorem 2.14.2 in [54] to bound the L1(P )

norm of
√
n(Pn − P )

[
Y (u)

(
eZ(θ) − eZ(θ0)

)]
.
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Now we have a Lemma to present, as the tool to study the bracketing entropy

property of {Y (u)
(
eZ(θ) − eZ(θ0)

)
: u ∈ [0, τ ], θ ∈ [0, θM ]}.

Lemma A.0.1. Under Assumptions 2.2.1, the class of functions M = {Y (u)eZ(θ) :

u ∈ [0, τ ], θ ∈ [0, θM ]} has �nite bracketing entropy.

The proof can be found in Appendix C.1.

Notice that by Theorem 2.14.2 of VW [54],

P ∗ supu,θ

∣∣√n(Pn − P )
(
Y (u)eZ(θ)

)∣∣ ≤ J[](1,M, L2(P ))
√
P ∗ supu,θ

(
Y (u)eZ(θ)

)2
.

(A.1)

By Lemma A.0.1, J[](1,M, L2(P )) < ∞.

Considering the independence of Z(θ) − Z(θ0) and Z(θ0) by Assumptions 2.2.1, the

distributional property of Brownian motion and maximal inequality for submartin-

gales,

P ∗ sup
u,θ

(
Y (u)eZ(θ)

)2
≤ P

[
e2Z(θ0)

]
· 4P

[
e2W (θM )

]
< ∞.

Then divide both sides of (A.1) by n1/6, we have

P ∗ sup
u,θ

∣∣∣n1/3(Pn − P )
(
Y (u)eZ(θ)

)∣∣∣ . n−1/6,

lim
n→∞

P ∗ sup
u,θ

∣∣∣n1/3(Pn − P )
(
Y (u)eZ(θ)

)∣∣∣ = 0.

By Markov Inequality,

P ∗

(
sup
u,θ

∣∣∣n1/3(Pn − P )
(
Y (u)eZ(θ)

)∣∣∣ ≥ 1

)
≤ P ∗ sup

u,θ

∣∣∣n1/3(Pn − P )
(
Y (u)eZ(θ)

)∣∣∣ . n−1/6.
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If we de�ne

Ωn ≡ {ω : sup
u,θ

n
1
3 |S(0)(θ, u)− s(0)(θ, u)| ≤ 1}

= {ω : sup
u,θ

|S(0)(θ, u)− s(0)(θ, u)| ≤ n− 1
3},

then P ∗ (Ωn) = 1−P ∗ (supu,θ

∣∣n1/3(Pn − P )
(
Y (u)eZ(θ)

)∣∣ ≥ 1
)
≥ 1− c ·n−1/6 → 1, as

n → ∞. We have designed a sequence of subsets, Ωn, of the sample space such that

P ∗ (Ωn) → 1 as n → ∞.

Note here S(0)(θ, u) depends on n.

Now recall (2.4) and (2.9) for use in the following arguments.

∀n >
(

2
B(θ0)

)3
, we have n− 1

3 < 1
2
B(θ0), then on Ωn for all n >

(
2

B(θ0)

)3
,

S(0)(θ, u) ≥ s(0)(θ, u)− 1
2
B(θ0) ≥ 1

2
B(θ0). (A.2)

We have that Ωn satis�es P ∗ (Ωn) → 1, and for those n >
(

2
B(θ0)

)3
≡ Nθ0 , S

(0)(θ, u)

has the positive lower bound 1
2
B(θ0) on Ωn.

P ∗ sup
d(θ,θ0)<δ

|I ′

3|1Ωn1n>Nθ0

= P ∗ sup
d(θ,θ0)<δ

∫ τ

0

√
n|(Pn − P )Y (u)(eZ(θ) − eZ(θ0))|

S̃(0)(θ, u)
1Ωn1n>Nθ0

PndN(u)

≤ P ∗ sup
d(θ,θ0)<δ

∫ τ

0

√
n|(Pn − P )Y (u)(eZ(θ) − eZ(θ0))|

1
2
B(θ0)

PndN(u)

≤ P ∗ sup
d(θ,θ0)<δ,u∈[0,τ ]

√
n
∣∣∣(Pn − P )Y (u)(eZ(θ) − eZ(θ0))

∣∣∣ ∫ τ

0

2PndN(u)

B(θ0)

= P ∗ sup
d(θ,θ0)<δ,u∈[0,τ ]

∣∣∣GnY (u)(eZ(θ) − eZ(θ0))
∣∣∣ 2PnN(τ)

B(θ0)

≤ 2

B(θ0)
P ∗ sup

d(θ,θ0)<δ,u∈[0,τ ]

∣∣∣GnY (u)(eZ(θ) − eZ(θ0))
∣∣∣ ,

where the �rst inequality utilizes the lower bound of the denominator S̃(0)(θ, u) on

Ωn for large n and the last inequality follows from N(τ) ≤ 1.
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Denote MZ,δ ≡ {Y (u)(eZ(θ) − eZ(θ0)) : u ∈ [0, τ ], d(θ, θ0) < δ}, then by Theorem

2.14.2 of VW [54],

P ∗ sup
d(θ,θ0)<δ,u∈[0,τ ]

∣∣∣GnY (u)(eZ(θ) − eZ(θ0))
∣∣∣

≤ J[](1,MZ,δ, L2(P ))
√

P ∗ sup
d(θ,θ0)<δ,u∈[0,τ ]

Y 2(u)(eZ(θ) − eZ(θ0))2

≤ J[](1,MZ,δ, L2(P ))
√

P ∗ sup
d(θ,θ0)<δ

(eZ(θ) − eZ(θ0))2. (A.3)

We make some transformations for the class of functions MZ,δ.

MZ,δ = {Y (u)eZ(θ0)(eZ(θ)−Z(θ0) − 1) : u ∈ [0, τ ], d(θ, θ0) < δ}

= {eZ(θ0)Y (u)(eW (θ−θ0) − 1) : u ∈ [0, τ ], d(θ, θ0) < δ}

= {eZ(θ0)Y (u)(eW (x) − 1) : u ∈ [0, τ ], |x| < δ2} ≡ eZ(θ0)MW−,δ,

where MW−,δ = {Y (u)(eW (x) − 1) : u ∈ [0, τ ], |x| < δ2},W (·) = Z(θ0 + ·) − Z(θ0) is

a 2-sided S.B.M. starting from 0. Since P (e2Z(θ0)) < ∞ from Assumptions 2.2.1, by

transformation of brackets,

J[]
(
1,MZ,δ, L2(P )

)
. J[]

(
1,MW−,δ, L2(P )

)
. (A.4)

MW−,δ ={Y (u)(eB(x) − 1) : u ∈ [0, τ ], 0 ≤ x < δ2}

∪ {Y (u)(eB(x) − 1) : u ∈ [0, τ ],−δ2 < x ≤ 0}

≡ M+
B−,δ ∪M−

B−,δ, where B(x) is 1-sided S.B.M. starting from 0.

By Lemma C.1.1 and symmetry,

J[]
(
1,MW−,δ, L2(P )

)
. J[]

(
1,M+

B−,δ, L2(P )
)
. (A.5)

Since M ≡ {Y (u)eB(x) : u ∈ [0, τ ], 0 ≤ x < θM} has bounded bracketing entropy

integral by Lemma A.0.1, by the same way of proving Lemma A.0.1, we have M− ≡

{Y (u)(eB(x) − 1) : u ∈ [0, τ ], 0 ≤ x < θM} also has bounded bracketing entropy
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integral, it follows that M+
B−,δ has bounded bracketing entropy integral by M+

B−,δ ⊂

M−, i.e.,

J[]

(
1,M+

B−,δ, L2(P )
)
< ∞. (A.6)

Then by (A.4), (A.5) and (A.6), J[](1,MZ,δ, L2(P )) < ∞ has been proved.

P ∗ sup
d(θ,θ0)<δ

|I ′

3|1Ωn1n≥Nθ0
(continued)

≤ J[](1,MZ,δ, L2(P ))
√

P ∗ sup
d(θ,θ0)<δ

(eZ(θ) − eZ(θ0))2
2

B(θ0)

.
√
Ee2Z(θ0)

√
P ∗ sup

d(θ,θ0)<δ

(eZ(θ)−Z(θ0) − 1)2
2

B(θ0)

=
√
Ee2Z(θ0)

√
P ∗ sup

d(θ,θ0)<δ

(eW (θ−θ0) − 1)2
2

B(θ0)

=
√
Ee2Z(θ0)

√
P ∗ sup

|x|<δ2
(eW (x) − 1)2

2

B(θ0)

≤
√

P ∗ sup
0≤x<δ2

(eB(x) − 1)2
4E(eZ(θ0))

B(θ0)
(by symmetry),

where the second inequality holds by the independence of Z(θ) − Z(θ0) and Z(θ0)

according to Assumptions 2.2.1.

Since f(x) = (ex − 1)2, (x ≥ 0) is a convex function and {B(x) : x ≥ 0} is a

martingale, {(eB(x) − 1)2}x≥0 is a submartingale by Jensen's Inequality (and it is

nonnegative as well). By Doob's maximal inequality,

√
P ∗ sup

0≤x<δ2
(eB(x) − 1)2

4
√
Ee2Z(θ0)

B(θ0)
≤
√

4E(eB(δ2) − 1)2
4
√
Ee2Z(θ0)

B(θ0)

= 8
√

e2δ2 − 2e1/2δ2 + 1

√
Ee2Z(θ0)

B(θ0)
≤ 16δ

√
Ee2Z(θ0)

B(θ0)
. δ, (for δ small).

And we deal with I
′
41Ωn1n>N(θ0). By (A.2),

0 <
1Ωn1n>N(θ0)

S̃(0)(θ, u)
≡

1Ωn1n>N(θ0)

Kθ,uS(0)(θ, u) + (1−Kθ,u)s(0)(θ, u)
≤ 1

1
2
B(θ0)

,

0 <
1Ωn1n>N(θ0)

S̃(0)(θ0, u)
≡

1Ωn1n>N(θ0)

Kθ0,uS
(0)(θ0, u) + (1−Kθ0,u)s

(0)(θ0, u)
1Ωn ≤ 1

1
2
B(θ0)

;
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and

(
1

S̃(0)(θ, u)
− 1

S̃(0)(θ0, u)

)
1Ωn1n>N(θ0) =

S̃(0)(θ0, u)− S̃(0)(θ, u)

S̃(0)(θ, u)S̃(0)(θ0, u)
1Ωn1n>N(θ0).

It follows that∣∣∣∣∣ 1

S̃(0)(θ, u)
− 1

S̃(0)(θ0, u)

∣∣∣∣∣ 1Ωn1n>N(θ0) =

∣∣∣S̃(0)(θ0, u)− S̃(0)(θ, u)
∣∣∣

S̃(0)(θ, u)S̃(0)(θ0, u)1Ωn1n>N(θ0)

=
|Kθ(Sθ − sθ) + sθ −Kθ0(Sθ0 − sθ0)− sθ0 |

S̃(0)(θ, u)S̃(0)(θ0, u)1Ωn1n>N(θ0)

=
|Kθ(Sθ − sθ) + sθ −Kθ0(Sθ0 − sθ0)− sθ0 |

1
4
B2(θ0)

=
|Kθ0 [(Sθ − sθ)− (Sθ0 − sθ0)] + sθ − sθ0 + (Kθ −Kθ0)(Sθ0 − sθ0)|

1
4
B2(θ0)

≤ 4

B2(θ0)
(|(Sθ − sθ)− (Sθ0 − sθ0)|+ |sθ − sθ0 |+ 2|Sθ0 − sθ0 |)

. |(Sθ − sθ)− (Sθ0 − sθ0)|+ |sθ − sθ0 |+ |Sθ0 − sθ0|.

Notice that Sθ, sθ, Sθ0 and sθ0 all depend on u. We omit u in their expressions to

make the notation simpler in the displayed inequalities.

Therefore, P ∗ supd(θ,θ0)<δ |I
′
4|1Ωn1n>N(θ0) can be controlled by summation of three

terms.

P ∗ sup
d(θ,θ0)<δ

|I ′

4|1Ωn1n>N(θ0)

. P ∗ sup
d(θ,θ0)<δ

∫ τ

0

|(Sθ − sθ)− (Sθ0 − sθ0)|
√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣PndN(u)

+ P ∗ sup
d(θ,θ0)<δ

(e|θ−θ0| − 1)

∫ τ

0

sθ0 ·
√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣PndN(u)

+ E

∫ τ

0

√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣2 PndN(u)

≡ I4,a + I4,b + I4,c.

We deal with each of them separately.

I4,a ≤ P ∗

[
sup

d(θ,θ0)<δ,u∈[0,τ ]
|(Sθ − sθ)− (Sθ0 − sθ0)| · sup

u∈[0,τ ]

√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣]
≤
√
P ∗ sup

d(θ,θ0)<δ,u∈[0,τ ]
|(Sθ − sθ)− (Sθ0 − sθ0)|

2
√

P ∗ sup
u∈[0,τ ]

n
∣∣(Pn − P )Y (u)eZ(θ0)

∣∣2,
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by Cauchy�Schwartz Inequality.

On one hand, by Theorem 2.14.2 and Theorem 2.14.5 (for p = 2) of van der Vaart

and Wellner (1996),

√
P ∗ sup

d(θ,θ0)<δ,u∈[0,τ ]
|(Sθ − sθ)− (Sθ0 − sθ0)|

2

≤
(
J[](1,MZ,δ, L2(P )) + 1

)√
P ∗ sup

d(θ,θ0)<δ,u∈[0,τ ]
Y 2(u)(eZ(θ) − eZ(θ0))2

≤
(
J[](1,MZ,δ, L2(P )) + 1

)√
P ∗ sup

d(θ,θ0)<δ

(eZ(θ) − eZ(θ0))2 . δ,

where the last inequality is obtained following the steps for I31Ωn1n≥Nθ0
starting from

(A.3);

on the other hand,√
P ∗ sup

u∈[0,τ ]
n
∣∣(Pn − P )Y (u)eZ(θ0)

∣∣2 =√P ∗ sup
u∈[0,τ ]

∣∣GnY (u)eZ(θ0)
∣∣2

≤ J[](1,MY , L2(P ))

√
P sup

u

[
Y (u)eZ(θ0)

]2 . √
Pe2Z(θ0) < ∞, (A.7)

whereMY ≡ {Y (u)eZ(θ0) : u ∈ [0, τ ]}, the �rst inequality follows from Theorem 2.14.1

in VW [54], J[](1,MY , L2(P )) < ∞ follows fromMY ⊂ M and J[](1,M, L2(P )) < ∞

(by Lemma A.0.1), Pe2Z(θ0) < ∞ follows from Assumptions 2.2.1.

Thus the product of them is bounded by a constant times δ, and hence I4,a . δ.

For the other two terms I4,b and I4,c, we have

I4,b = P ∗ sup
d(θ,θ0)<δ

(e|θ−θ0| − 1)

∫ τ

0

sθ0 ·
√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣PndN(u)

. δ2 · E
∫ τ

0

sθ0 ·
√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣PndN(u)

. δ2 · P (eZ(θ0)) · P (eW (θM )) ·
√

P ∗ sup
u∈[0,τ ]

n
∣∣(Pn − P )Y (u)eZ(θ0)

∣∣2 . δ2,

by Taylor expansion eδ
2 − 1 = δ2 + o(δ2) for small δ in the �rst inequality and the

independence of Z(θ)− Z(θ0) and Z(θ0) in the second inequality; the last inequality

follows from Pe2Z(θ0) < ∞ according to Assumptions 2.2.1, the property of 2-sided
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Brownian motion W (·) ≡ Z(θ)−Z(θ0) and
√
P ∗ supu∈[0,τ ] n

∣∣(Pn − P )Y (u)eZ(θ0)
∣∣2 <

∞ from (A.7).

I4,c = E

∫ τ

0

√
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣2 PndN(u)

≤ 1√
n

[
P ∗ sup

u∈[0,τ ]
n
∣∣∣(Pn − P )Y (u)eZ(θ0)

∣∣∣2] . 1√
n
,

where we used
√

P ∗ supu∈[0,τ ] n
∣∣(Pn − P )Y (u)eZ(θ0)

∣∣2 < ∞ from (A.7).

Summing them up, we have

P ∗ sup
d(θ,θ0)<δ

|I ′

4|1Ωn1n≥Nθ0
. δ + δ2 +

1√
n
.

So up to now, we have obtained that on Ωn with P ∗(Ωn) → 1,

P ∗ sup
d(θ,θ0)<δ

|I1 − I2 − I3 + I4|1Ωn1n≥Nθ0

= P ∗ sup
d(θ,θ0)<δ

|I1 − I2 − I
′

3 + I
′

4|1Ωn1n≥Nθ0

. δ + δ2 +
1√
n
. δ +

1√
n
= ϕn(δ), for small δ.

Since we have proved θ̂n →P ∗ θ0 in Chapter 2.3.3, then solve r2nϕn(
1
rn
) ≤

√
n, get

rn =
√
n.

√
nd(θ̂n, θ0) = O∗

P (1) ⇒ n(θ̂n − θ0) = O∗
P (1).

We get an upper bound for the rate of converge of θ̂n, r̃n = n.
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Appendix B

Additional proof details for Chapter

2.3

As mentioned in Chapter 2.3.4.2 and Chapter 2.3.4.3, we put the lengthy proof details

here.

B.1 Proof of the convergence of I3 (in Chapter 2.3.4.2)

to zero

If we can obtain Lipschitz property of gπ, it is easy to bound P ∗ supπ∈Φ |Gnfπ|. Take

the di�erence of fπ at π1 and π2,

gπ1 − gπ2 (B.1)

= 1(T≤C)1(0<T≤τ) log
s(0)(π1, T )

s(0)(π2, T )
− eβ0ZH(θ0)+γ0X

∫ τ

0

1(T≥u)λ0(u) log
s(0)(π1, u)

s(0)(π2, u)
du.

Since ∀π, π0 ∈ Φ,

log
s(0)(π, u)

s(0)(π0, u)
= −1

2
β2|θ − θ0|2HPN(τ)

−P

[∫ τ

0

log
P exp(βZH(θ0) + γX − eβ0ZH(θ0)+γ0X

∫ u

0
λ0(s)ds)

P exp(β0ZH(θ0) + γ0X − eβ0ZH(θ0)+γ0X
∫ u

0
λ0(s)ds)

dN(u)

]
,
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log
s(0)(π1, u)

s(0)(π2, u)

= −1

2

(
β2
1 |θ1 − θ0|2H − β2

2 |θ2 − θ0|2H
)
PN(τ)

− P

[∫ τ

0

log
P exp(β1ZH(θ0) + γ1X − eβ0ZH(θ0)+γ0X

∫ u

0
λ0(s)ds)

P exp(β2ZH(θ0) + γ2X − eβ0ZH(θ0)+γ0X
∫ u

0
λ0(s)ds)

dN(u)

]
= −1

2

(
β2
1 − β2

2

)
|θ1 − θ0|2HPN(τ)− 1

2

(
|θ1 − θ0|2H − |θ2 − θ0|2H

)
β2
2PN(τ)

− P

[∫ τ

0

log
P exp(β1ZH(θ0) + γ1X − eβ0ZH(θ0)+γ0X

∫ u

0
λ0(s)ds)

P exp(β2ZH(θ0) + γ2X − eβ0ZH(θ0)+γ0X
∫ u

0
λ0(s)ds)

dN(u)

]
.

We will deal with the three terms in the decomposition of log s(0)(π1,u)

s(0)(π2,u)
separately.

For the �rst term,
∣∣β2

1 − β2
2

∣∣ |θ1− θ0|2HPN(τ) ≤ 2βMθ2HM · |β1−β2|, by |β1−β2| ≤

2βM , |θ1 − θ0| ≤ θM and PN(τ) ≤ 1.

For the second term, consider

|θ1 − θ0|2H − |θ2 − θ0|2H

|θ1 − θ2|H

=
|θ1 − θ0|2H − |θ2 − θ0|2H

|θ1 − θ0|H − |θ2 − θ0|H
· |θ1 − θ0|H − |θ2 − θ0|H

|θ1 − θ2|H

=
(
|θ1 − θ0|H + |θ2 − θ0|H

)
· |θ1 − θ0|H − |θ2 − θ0|H

|θ1 − θ2|H
. (B.2)

We deal with |θ1−θ0|H−|θ2−θ0|H
|θ1−θ2|H �rst. Since function k(x) = xH(0 < H < 1) is

concave on [0,∞) and k(0) = 0, it is easy to show k(a)−k(0)
a−0

≥ k(a+b)−k(b)
(a+b)−b

for ∀a >

0, b ≥ 0. then k(a) + k(b) ≥ k(a + b) + k(0) = k(a + b). Take a = |θ2 − θ0| and

b = |θ1 − θ2|, we have

k(|θ2 − θ0|) + k(|θ1 − θ2|) ≥ k(|θ2 − θ0|+ |θ1 − θ2|). (B.3)

By monotonicity of k(x) and Triangle Inequality |θ2 − θ0| + |θ1 − θ2| ≥ |θ1 − θ0|,

we have

k(|θ2 − θ0|+ |θ1 − θ2|) ≥ k(|θ1 − θ0|). (B.4)
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Then by (B.3) and (B.4),

k(|θ2 − θ0|) + k(|θ1 − θ2|) ≥ k(|θ1 − θ0|). (B.5)

By symmetry between θ1 and θ2,

k(|θ1 − θ0|) + k(|θ1 − θ2|) ≥ k(|θ2 − θ0|). (B.6)

By (B.5) and (B.6), we have

k(|θ1−θ2|) ≥ k(|θ1−θ0|)−k(|θ2−θ0|) and k(|θ1−θ2|) ≥ k(|θ2−θ0|)−k(|θ1−θ0|).

It follows that |k(|θ1−θ0|)−k(|θ2−θ0|)| ≤ k(|θ1−θ2|).

Hence

∣∣|θ1 − θ0|H − |θ2 − θ0|H
∣∣

|θ1 − θ2|H
≤ 1.

Furthermore, |θ1− θ0|H + |θ2− θ0|H ≤ 2θHM by θ, θ1, θ2 ∈ [0, θM ]. Then from (B.2),

we have ∣∣|θ1 − θ0|2H − |θ2 − θ0|2H
∣∣ ≤ 2θHM |θ1 − θ2|H .

Use this inequality for the second term in the decomposition of log s(0)(π1,u)

s(0)(π2,u)
and

notice β2
2 ≤ β2

M , it follows that

∣∣|θ1 − θ0|2H − |θ2 − θ0|2H
∣∣ β2

2PN(τ) ≤ 2β2
MθHM |θ1 − θ2|H .

Note: we can't get
||θ1−θ0|2H−|θ2−θ0|2H|

|θ1−θ2|2H ≤ 1 in the same way as what we did for

||θ1−θ0|H−|θ2−θ0|H|
|θ1−θ2|H ≤ 1 since k2(x) = x2H(0 < H < 1) is not guaranteed a concave

function.

To deal with the third term in the decomposition of log s(0)(π1,u)

s(0)(π2,u)
, consider

f(β, γ, u) ≡ logPF (β, γ, u)

= logP exp(βZH(θ0) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds).
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By the same way as that of Chapter 2.3.4.1, we have

∂2f

∂2β
> 0,

∂2f

∂2γ
> 0,

(
∂2f

∂β∂γ

)2

− ∂2f

∂2β
· ∂

2f

∂2γ
< 0.

Now we verify the Lipschitz condition for f(β, γ, u).

|f(β1, γ1, u)− f(β2, γ2, u)| ≤ |f(β1, γ1, u)− f(β2, γ1, u)|+ |f(β2, γ1, u)− f(β2, γ2, u)|.

For the �rst part, we have

|f(β1, γ1, u)− f(β2, γ1, u)| ≤ sup
|β|=βM ,γ=γ1

∣∣∣∣∂f∂β
∣∣∣∣ |β1 − β2|

≤ sup
|β|=βM ,|γ|≤γM ,0≤u≤τ

|P (ZH(θ0)F (β, γ, u))|
PF (β, γ, u)

|β1 − β2|,

where the �rst inequality holds by the monotonic ∂2f
∂2β

> 0).

Similarly for the second part,

|f(β2, γ1, u)− f(β2, γ2, u)| ≤ sup
|γ|=γM ,|β|≤βM ,0≤u≤τ

|P (XF (β, γ, u))|
PF (β, γ, u)

|γ1 − γ2|.

Summing three terms of the decomposition of log s(0)(π1,u)

s(0)(π2,u)
, we have∣∣∣∣∣log s(0)(π1, u)

s(0)(π2, u)

∣∣∣∣∣ ≤βMθ2HM |β1 − β2|+ β2
MθHM |θ1 − θ2|H

+ sup
|β|=βM ,|γ|≤γM ,0≤u≤τ

|P (ZH(θ0)F (β, γ, u))|
PF (β, γ, u)

|β1 − β2|

+ sup
|γ|=γM ,|β|≤βM ,0≤u≤τ

|P (XF (β, γ, u))|
PF (β, γ, u)

|γ1 − γ2|.

Then we evaluate (B.1),

|gπ1 − gπ2 |

≤

∣∣∣∣∣1(T≤C)1(0<T≤τ) log
s(0)(π1, T )

s(0)(π2, T )

∣∣∣∣∣+
∣∣∣∣∣eβ0ZH(θ0)+γ0X

∫ τ

0

1(T≥u)λ0(u) log
s(0)(π1, u)

s(0)(π2, u)
du

∣∣∣∣∣
≤
[
1 + eβ0ZH(θ0)+γ0XΛ0(τ)

]
·(

βMθ2HM |β1 − β2|+ sup
|β|=βM ,|γ|≤γM ,0≤u≤τ

|P (ZH(θ0)F (β, γ, u))|
PF (β, γ, u)

|β1 − β2|

+ β2
MθHM |θ1 − θ2|H + sup

|γ|=γM ,|β|≤βM ,0≤u≤τ

|P (XF (β, γ, u))|
PF (β, γ, u)

|γ1 − γ2|

)
,
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where Λ0(τ) ≡
∫ τ

0
λ0(u)du.

The leading term

P
[
1 + eβ0ZH(θ0)+γ0XΛ0(τ)

]2
. 1 + Λ2

0(τ)P
[
e2(β0ZH(θ0)+γ0X)

]
< ∞ (B.7)

by the conditions from Assumptions 2.3.1.

Then to obtain the Lipschitz property of gπ, it remains to prove that

sup
|β|=βM ,|γ|≤γM ,0≤u≤τ

|P (ZH(θ0)F (β, γ, u))|
PF (β, γ, u)

|β1 − β2| < ∞ (B.8)

and sup
|γ|=γM ,|β|≤βM ,0≤u≤τ

|P (XF (β, γ, u))|
PF (β, γ, u)

|γ1 − γ2| < ∞. (B.9)

It is easy to show that P (ZH(θ0)F (β,γ,u))
PF (β,γ,u)

and P (XF (β,γ,u))
PF (β,γ,u)

are both continuous functions

of (β, γ, u), so are |P (ZH(θ0)F (β,γ,u))|
PF (β,γ,u)

and |P (XF (β,γ,u))|
PF (β,γ,u)

. Their supremums on {(β, γ, u) :

|β| = βM , |γ| ≤ γM , 0 ≤ u ≤ τ} and {(β, γ, u) : |β| ≤ βM , |γ| = γM , 0 ≤ u ≤ τ}

(which are both closed and bounded sets) respectively are both achieved. Hence

(B.8) and (B.9) are proved.

Now it follows that gπ is �Lipschitz in parameter� and hence J[](1,Mg,H , L2(P )) <

∞ (p.294, VW [54]), where Mg,H = {gπ, π ∈ Φ}.

Now we prove the envelope function ofMg,H , supπ∈Φ g2π, has �nite second moment.

By Lipschitz property of the function gπ, supπ∈Φ gπ ≤ |gπ0 | + Lg · d(π, π0), where

d(π, π0) =
√
|β − β0|2 + |γ − γ0|2 + |θ − θ0|2H , Lg =

[
1 + eβ0ZH(θ0)+γ0X

∫ τ

0
λ0(u)du

]
·
(
βMθ2HM |β1 − β2|+ sup|β|=βM ,|γ|≤γM ,0≤u≤τ

|P (ZH(θ0)F (β,γ,u))|
PF (β,γ,u)

|β1 − β2|

+ β2
MθHM |θ1 − θ2|H + sup|γ|=γM ,|β|≤βM ,0≤u≤τ

|P (XF (β,γ,u))|
PF (β,γ,u)

|γ1 − γ2|
)
.

Hence P sup
π∈Φ

g2π . sup
π∈Φ

d2(π, π0) · P [L2
g] + Pg2π0

. (B.10)

On one hand,

sup
π∈Φ

d2(π, π0) · P [L2
g] ≤

(
θ2HM + 4β2

M + 4γ2
M

)
P [L2

g] < ∞

where P [L2
g] < ∞ follows from (B.7), (B.8) and (B.9);
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on the other hand,

Pg2π0
≤ sup

u

∣∣log s0(π0, u)
∣∣2 · P (1 + Λ0(τ)e

ZH(θ0)
)2

≤ 2 sup
u

∣∣∣logP (Y (u)eβ0ZH(θ0)+γ0X
)∣∣∣2 · P (1 + Λ2

0(τ)e
2ZH(θ0)

)
≤ 2

[∣∣∣logPeβ0ZH(θ0)+γ0X
∣∣∣2 + ∣∣∣logPY (τ)eβ0ZH(θ0)+γ0X

∣∣∣2]P (1 + Λ2
0(τ)e

2ZH(θ0)
)

< ∞,

where we used Y (τ) ≤ Y (u) ≤ 1 in the third inequality and 0 < P (eβ0ZH(θ0)+γ0X) <

∞, 0 < P (Y (τ)eβ0ZH(θ0)+γ0X) < ∞ which follow from Assumptions 2.3.1 in the last

inequality.

Since both P supπ∈Φ d2(π, π0) · P [L2
g] and Pg2π0

are �nite, by (B.10),

P sup
π∈Φ

g2π < ∞.

By Theorem 2.14.2 of VW [54],

3√
nϵ

P ∗ sup
π∈Φ

|Gngπ| ≤
3√
nϵ

J[](1,Mg,H , L
2(P ))

√
P sup

π∈Φ
g2π . 1√

nϵ

It follows that, as n → ∞, I3 → 0.
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B.2 Proof of the Rate of Convergence (in Chapter

2.3.4.3)

To obtain the convergence rates of π̂n = (β̂n, γ̂n, θ̂n) , the next step is to check the

modulus of continuity.

√
n [(Mn −M)(π)− (Mn −M)(π0)]

=
√
nPn

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log [PnY (u)eβZH(θ)+γX ]dN(u)

]
−
√
nP

[
(βZH(θ) + γX)N(τ)−

∫ τ

0

log s(0)(π, u)dN(u)

]
−
√
nPn

[
(β0ZH(θ0) + γ0X)N(τ)−

∫ τ

0

log [PnY (u)e(β0ZH(θ0)+γ0X)]dN(u)

]
+
√
nP

[
(β0ZH(θ0) + γ0X)N(τ)−

∫ τ

0

log s(0)(π0, u)dN(u)

]

=
√
n(Pn − P ) [((βZH(θ) + γX)− (β0ZH(θ0) + γ0X))N(τ)]

+
√
n

∫ τ

0

[
log s(0)(π, u)− log s(0)(π0, u)

]
PdN(u)

−
√
n

∫ τ

0

[logPnY (u)eβZH(θ)+γX − logPnY (u)eβ0ZH(θ0)+γ0X ]PndN(u)

=
√
n(Pn − P ) [((βZH(θ) + γX)− (β0ZH(θ0) + γ0X))N(τ)]

+
√
n

∫ τ

0

[
log s(0)(π, u)− log s(0)(π0, u)

]
(Pn − P )dN(u)

−
√
n

∫ τ

0

[
log s(0)(π, u)− log s(0)(π0, u)

]
PndN(u)

+
√
n

∫ τ

0

[logPnY (u)eβZH(θ)+γX − logPnY (u)eβ0ZH(θ0)+γ0X ]PndN(u)

=
√
n(Pn − P ) [((βZH(θ) + γX)− (β0ZH(θ0) + γ0X))N(τ)]

+
√
n

∫ τ

0

[
log s(0)(π, u)− log s(0)(π0, u)

]
(Pn − P )dN(u)

+
√
n

∫ τ

0

[
log

PnY (u)eβZH(θ)+γX

PnY (u)eβ0ZH(θ0)+γ0X

s(0)(π0, u)

s(0)(π, u)

]
PndN(u)

≡ I4 − I5 − I6,
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To bound P ∗ supd(π,π0)<δ

√
n |(Mn −M)(π)− (Mn −M)(π0)|, it su�ces to bound

the supremum's outer expectations separately for |I4|, |I5|, and |I6|.

We start with P ∗ supd(π,π0)<δ |I4|.

P ∗ sup
d(π,π0)<δ

∣∣√n(Pn − P ) [((βZH(θ) + γX)− (β0ZH(θ0) + γ0X))N(τ)]
∣∣

=P ∗ sup
d(π,π0)<δ

|Gn [((β(ZH(θ)− ZH(θ0)) + (β − β0)ZH(θ0) + (γ − γ0)X))N(τ)]|

≤|β|P ∗ sup
d(π,π0)<δ

|GnWH(θ − θ0)N(τ)|+ P ∗ sup
d(π,π0)<δ

|(γ − γ0)GnXN(τ)|

+ P ∗ sup
d(π,π0)<δ

|(β − β0)GnZH(θ0)N(τ)| .

The �rst term

P ∗ sup
|θ−θ0|2H<δ

|GnWH(θ − θ0)N(τ)| ≤ 2P ∗ sup
o≤x<δ1/2H

|GnWH(x)N(τ)| .

Since WH(x) is fBm starting from 0 with Hurst parameter H, by Lemma 8.1 in

McKeague and Sen [29] and similar argument as that in Chapter 2.2.2.2,

. P ∗ sup
o≤x<δ1/2H

W 2(x)N2(1) . 2P ∗ sup
o≤x<δ1/2H

W 2(x) .
(
δ1/2H

)2H
= δ,

where the last inequality follows from Theorem 1.1 in Novikov and Valkeila [31].

The second term

P ∗ sup
d(π,π0)<δ

|(β − β0)GnZH(θ0)N(τ)| ≤ δP |GnZH(θ0)N(τ)| . δ.

The third term

P ∗ sup
d(π,π0)<δ

|(γ − γ0)GnXN(τ)| ≤ δP |GnXN(τ)| . δ.

So summing up the three terms, we obtain P ∗ sup
d(π,π0)<δ

|I4| . δ.
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Consider P ∗ sup
d(π,π0)<δ

|I5|

=P ∗ sup
d(π,π0)<δ

∣∣∣∣√n

∫ τ

0

[
log s(0)(π, u)− log s(0)(π0, u)

]
(Pn − P )dN(u)

∣∣∣∣
= sup

d(π,π0)<δ

∣∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣∣ · |PGnN(τ)|

. sup
d(π,π0)<δ

∣∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣∣ ·√P [GnN(τ)]2

. sup
d(π,π0)<δ

∣∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣∣ ,

where the second equality holds since supd(π,π0)<δ

∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣ is a

deterministic function and the last inequality holds by√
P [GnN(τ)]2 =

√
P (N(τ)− PN(τ))2 ≤ 1.

We control
∣∣log s(0)(π, u)− log s(0)(π0, u)

∣∣ by decomposing it into three parts.∣∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣∣

≤
∣∣∣logPY (u)eβZH(θ)+γX − logPY (u)eβZH(θ0)+γX

∣∣∣
+
∣∣∣logPY (u)eβZH(θ0)+γX − logPY (u)eβ0ZH(θ0)+γX

∣∣∣
+
∣∣∣logPY (u)eβ0ZH(θ0)+γX − logPY (u)eβ0ZH(θ0)+γ0X

∣∣∣ .
The �rst term

∣∣logPY (u)eβZH(θ)+γX − logPY (u)eβZH(θ0)+γX
∣∣ = 1/2|θ − θ0|2H by

(2.11).

The second term∣∣∣logPY (u)eβZH(θ0)+γX − logPY (u)eβ0ZH(θ0)+γX
∣∣∣

≤ sup
|β−β0|≤δ,|γ−γ0|≤δ

∣∣∣∣ ∂∂β logPeβZH(θ0)+γX

∣∣∣∣ |β − β0|

≤ sup
|β|≤βM ,|γ|≤γM

∣∣∣∣∣P
[
ZH(θ0)e

βZH(θ0)+γX
]

PeβZH(θ0)+γX

∣∣∣∣∣ |β − β0| ,
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where sup|β|≤βM ,|γ|≤γM

∣∣∣∣P [ZH(θ0)e
βZH (θ0)+γX]

PeβZH (θ0)+γX

∣∣∣∣ < ∞ since the supremum of a continuous

function in a closed and bounded region is always achieved. Similar arguments apply

to the third term, ∣∣∣logPY (u)eβ0ZH(θ0)+γX − logPY (u)eβ0ZH(θ0)+γ0X
∣∣∣

≤ sup
|β|≤βM ,|γ|≤γM

∣∣∣∣∣P
[
ZH(θ0)e

βZH(θ0)+γX
]

PeβZH(θ0)+γX

∣∣∣∣∣ |γ − γ0| .

To sum up these three terms, we get

sup
d(π,π0)<δ

∣∣∣log s(0)(π, u)− log s(0)(π0, u)
∣∣∣ ≤ sup

d(π,π0)<δ

1/2|θ − θ0|2H

+ sup
|β|≤βM ,|γ|≤γM

∣∣∣∣∣P
[
ZH(θ0)e

βZH(θ0)+γX
]

PeβZH(θ0)+γX

∣∣∣∣∣ · sup
d(π,π0)<δ

|β − β0|

+ sup
|β|≤βM ,|γ|≤γM

∣∣∣∣∣P
[
ZH(θ0)e

βZH(θ0)+γX
]

PeβZH(θ0)+γX

∣∣∣∣∣ · sup
d(π,π0)<δ

|γ − γ0| .

. δ2 + δ . δ, for small δ.

Hence P ∗ sup
d(π,π0)<δ

|I5| . δ for small δ.

We control I6 by the following way.

sup
d(π,π0)<δ

|I6| = sup
πδ

∣∣∣∣∣√n

∫ τ

0

[
log

PnY (u)eβZH(θ)+γX

PnY (u)eβ0ZH(θ0)+γ0X

s(0)(π0, u)

s(0)(π, u)

]
PndN(u)

∣∣∣∣∣
≤ sup

πδ

√
n

∫ τ

0

∣∣∣∣∣log PnY (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX
− log

PnY (u)eβ0ZH(θ0)+γ0X

PY (u)eβ0ZH(θ0)+γ0X

∣∣∣∣∣PndN(u)

≡ sup
πδ

√
n

∫ τ

0

∣∣∣∣log PnU(β, θ, γ, u)

PU(β, θ, γ, u)
− log

PnU(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)

∣∣∣∣PndN(u),

if we denote U(β, θ, γ, u) ≡ Y (u)eβZH(θ)+γX and πδ ≡ {π : d(π, π0) < δ} in this

section.

Since for any continuously di�erentiable function g(x), x ∈ [a, b], |g(x1)− g(x2)| ≤
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supx∈[a,b] |g′(x)| · |x1 − x2|, take g(x) = log x, then

sup
d(π,π0)<δ

|I6|

≤
∫ τ

0

√
n sup

πδ

PU(β, θ, γ, u)

PnU(β, θ, γ, u)
· sup

πδ

∣∣∣∣PnU(β, θ, γ, u)

PU(β, θ, γ, u)
− PnU(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)

∣∣∣∣PndN(u)

≤ sup
πδ,u∈[0,τ ]

PU(β, θ, γ, u)

PnU(β, θ, γ, u)
·
√
n sup

πδ,u∈[0,τ ]

∣∣∣∣PnU(β, θ, γ, u)

PU(β, θ, γ, u)
− PnU(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)

∣∣∣∣ ,
where we used Pn(N(τ)−N(0)) = PnN(τ) ≤ 1 in the last inequality.

For modulus of continuity, it su�ces to prove supπδ
|I6| 1Ωn is bounded by a func-

tion of δ, where P ∗(Ωn) → 1 as n → ∞. We can set

Ωn =

{
ω : sup

πδ,u∈[0,τ ]

∣∣∣∣∣(Pn − P )Y (u)eβZH(θ)+γX

PY (u)eβZH(θ)+γX

∣∣∣∣∣ ≤ 1

2

}
.

Since {Y (u)eβZH(θ)+γX : u ∈ [0, τ ], |β| ≤ βM , |γ| ≤ γM , θ ∈ [0, θM ]} is a P-Donsker

class by Lemma C.2.1, it is P-Glivenko−Cantelli a.s. (see page 82 of VW [54]),

lim
n→∞

sup
πδ,u∈[0,τ ]

∣∣∣(Pn − P )Y (u)eβZH(θ)+γX
∣∣∣ = 0. P ∗-a.s..

Considering PY (u)eβZH(θ)+γX has positive lower bound Cm for u ∈ [0, τ ], |β| ≤

βM , |γ| ≤ γM , θ ∈ [0, θM ] as proved in Chapter 2.3.4.2, it follows

lim
n→∞

sup
πδ,u∈[0,τ ]

|(Pn − P )U(β, θ, γ, u)|
PU(β, θ, γ, u)

= 0, P ∗-a.s.,

and hence P ∗(Ωn) → 1 as n → ∞ for Ωn.

By de�nition of Ωn, we have that for samples in Ωn,

1

2
≤ PnU(β, θ, γ, u)

PU(β, θ, γ, u)
≤ 3

2
, and hence

PU(β, θ, γ, u)

PnU(β, θ, γ, u)
≤ 2.
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Then P ∗ sup
πδ

|I6| 1Ωn ≤ 2P ∗ sup
πδ,u∈[0,τ ]

√
n

∣∣∣∣PnU(β, θ, γ, u)

PU(β, θ, γ, u)
− PnU(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)

∣∣∣∣
=P ∗ sup

πδ,u∈[0,τ ]

√
n

∣∣∣∣(Pn − P )U(β, θ, γ, u)

PU(β, θ, γ, u)
− (Pn − P )U(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)

∣∣∣∣
≤P ∗ sup

πδ,u∈[0,τ ]

∣∣∣∣Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]

PU(β, θ, γ, u)

∣∣∣∣
+ P ∗ sup

πδ,u∈[0,τ ]

∣∣∣∣GnU(β0, θ0, γ0, u)

PU(β0, θ0, γ0, u)
· P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]

PU(β, θ, γ, u)

∣∣∣∣ .
Hence P ∗ sup

πδ

|I6| 1Ωn

. P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]|

+ sup
πδ,u∈[0,τ ]

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| · P |GnU(β0, θ0, γ0, u)|

. P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]|

+ sup
πδ,u∈[0,τ ]

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| ,

where we used that PU(β, θ, γ, u) = PY (u)eβZH(θ)+γX has a positive lower bound Cm

(proved in Chapter 2.3.4.2) in the �rst inequality and P |GnU(β0, θ0, γ0, u)| < ∞ in

the second inequality.

Now we prove P |GnU(β0, θ0, γ0, u)| < ∞.

P |GnU(β0, θ0, γ0, u)| ≤
√
P |GnU(β0, θ0, γ0, u)|2

≤
√
P [U(β0, θ0, γ0, u)− PU(β0, θ0, γ0, u)]2 ≤

√
PU2(β0, θ0, γ0, u)

≤
√
Pe2β0ZH(θ0)+2γ0X < ∞ (by Assumptions 2.3.1).

So to bound P ∗ supπδ
|I6| 1Ωn , we just need to bound

P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]|

and sup
πδ,u∈[0,τ ]

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| .
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For the second term,

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]|

=
∣∣∣PY (u)

(
eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

)∣∣∣ ≤ P
∣∣∣eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

∣∣∣
= P

∣∣∣eβ0ZH(θ0)+γ0X
(
eβZH(θ)+γX−β0ZH(θ0)−γ0X − 1

)∣∣∣
≤
√
Pe2β0ZH(θ0)+2γ0XP

(
eβZH(θ)+γX−β0ZH(θ0)−γ0X − 1

)2
.

Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

P
(
eβZH(θ)+γX−β0ZH(θ0)−γ0X − 1

)2
≤ 3P

[(
eβ(ZH(θ)−ZH(θ0)) − 1

)
e(β−β0)ZH(θ0)+(γ−γ0)X

]2
+3P

[
e(β−β0)ZH(θ0)

(
e(γ−γ0)X − 1

)]2
+ 3P

(
e(β−β0)ZH(θ0) − 1

)2
.

We handle the three components on the right hand side of the inequality sepa-

rately.

The �rst component

P
[(

eβ(ZH(θ)−ZH(θ0)) − 1
)
e(β−β0)ZH(θ0)+(γ−γ0)X

]2
= P

(
eβ(ZH(θ)−ZH(θ0)) − 1

)2
Pe2(β−β0)ZH(θ0)+2(γ−γ0)X (by independence)

. P
(
e2β

2|θ−θ0|2H − 2e1/2β
2|θ−θ0|2H + 1

)
. |θ − θ0|2H ,

by P
(
e2β

2|θ−θ0|2H − 2e1/2β
2|θ−θ0|2H + 1

)
=2β2|θ − θ0|2H(1 + o(1))− 1/2β2|θ − θ0|2H(1 + o(1)) = 3/2β2|θ − θ0|2H(1 + o(1))

and Pe2(β−β0)ZH(θ0)+2(γ−γ0)X = Pe2(β−β0)ZH(θ0)Pe2(γ−γ0)X

≤ P
[
e2(βM−β0)ZH(θ0) + e2(−βM−β0)ZH(θ0)

]
P
[
e2(γM−γ0)X + e2(−γM−γ0)X

]
< ∞.

(The �rst inequality holds by monotonicity, the last inequality holds by Conditions

B.2.1 (to be presented later in this section).)

The second component

P
[
e(β−β0)ZH(θ0)

(
e(γ−γ0)X − 1

)]2
= Pe2(β−β0)ZH(θ0)P

(
e(γ−γ0)X − 1

)2
≤ P

(
e2(βM−β0)ZH(θ0) + e2(−βM−β0)ZH(θ0)

)
P
(
|(γ − γ0)X|e0∨[(γ−γ0)X]

)2
. (γ − γ0)

2P
[
X2
(
e2(γM−γ0)X + e2(−γM−γ0)X

)]
. (γ − γ0)

2,
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where the �rst inequality holds by monotonity, the second and third inequalities holds

by Conditions B.2.1 and Cauchy�Schwartz Inequality.

The third component

P
(
e(β−β0)ZH(θ0) − 1

)2
≤ (β − β0)

2P
[
Z2

H(θ0)
(
e2(βM−β0)ZH(θ0) + e2(−βM−β0)ZH(θ0)

)]
. (β − β0)

2,

where the �rst inequality holds by monotonity, the second and third inequalities holds

by Conditions B.2.1 and Cauchy Schwartz Inequality.

So summing up the three components,

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| . |θ − θ0|2H + (γ − γ0)
2 + (β − β0)

2 . d2(π, π0).

It follows that

sup
πδ,u∈[0,τ ]

|P [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| . sup
πδ

d2(π, π0) . δ2.

Now to bound P ∗ supπδ
|I6| 1Ωn , it remains to bound

P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| .

Since

Nδ,− ≡ {Y (u)
(
eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

)
: u ∈ [0, τ ], d(π, π0) < δ, } is a subset of

N− ≡ {Y (u)
(
eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

)
: u ∈ [0, τ ], |β| ≤ βM , |γ| ≤ γM , θ ∈ [0, θM ]}

which has the same number of bracketing as that of N ≡ {Y (u)eβZH(θ)+γX : u ∈

[0, τ ], |β| ≤ βM , |γ| ≤ γM , θ ∈ [0, θM ]}, then by Lemma C.2.1 in Appendix C,

J[](1,Nδ,−, L2(P )) < ∞.
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By Theorem 2.14.2 in VW [54],

P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]|

≤ J[](1,Nδ,−, L2(P ))
√

P ∗ sup
πδ,u∈[0,τ ]

[
Y (u)

(
eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

)]2
.
√

P ∗ sup
πδ

(
eβZH(θ)+γX − eβ0ZH(θ0)+γ0X

)2
. 4

√
Pe4β0ZH(θ0)+4γ0XP ∗ sup

πδ

(
eβZH(θ)+γX−β0ZH(θ0)−γ0X − 1

)4
. 4

√
P ∗ sup

πδ

(
eβZH(θ)+γX−β0ZH(θ0)−γ0X − 1

)4
. 4

√
P ∗ sup

πδ

(
|βZH(θ) + γX − β0ZH(θ0)− γ0X|e(βZH(θ)+γX−β0ZH(θ0)−γ0X)∨0

)4
. 8

√
P ∗ sup

πδ

[βZH(θ) + γX − β0ZH(θ0)− γ0X]8P ∗ sup
πδ

(
e(βZH(θ)+γX−β0ZH(θ0)−γ0X)∨0

)8
,

where the second inequality holds by J[](1,Nδ,−, L2(P )) < ∞ and Y (u) ≤ 1, the

third and sixth holds by Cauchy�Schwartz Inequality, the forth holds by Conditions

B.2.1 and the �fth holds by |f(a) − f(b)| ≤ supx∈[a,b] f
′(x) · |a − b| for continuously

di�erentiable function f(x).

Furthermore,

P ∗ sup
πδ

[βZH(θ) + γX − β0ZH(θ0)− γ0X]8

=P ∗ sup
πδ

[β(ZH(θ)− ZH(θ0)) + (β − β0)ZH(θ0) + (γ − γ0)X]8

.P ∗ sup
πδ

[β(ZH(θ)− ZH(θ0))]
8 + P ∗ sup

πδ

[(β − β0)ZH(θ0)]
8 + P ∗ sup

πδ

[(γ − γ0)X]8 ,

.β2
M sup

πδ

(θ − θ0)
8H + sup

πδ

(β − β0)
8P
[
Z8

H(θ0)
]
+ sup

πδ

(γ − γ0)
8P (X8),

which is bounded by δ8 up to a constant using PZ8
H(θ0) < ∞ and PX8 < ∞ from

Conditions B.2.1 and the maximal inequality for fractional Brownian motion ZH(θ)−
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ZH(θ0) from Novikov and Valkeila [31];

and P ∗ sup
πδ

(
e(βZH(θ)+γX−β0ZH(θ0)−γ0X)∨0

)8
= 1 + P

(
e8(βMZH(θ)+γMX−β0ZH(θ0)−γ0X) + e8(βMZH(θ)−γMX−β0ZH(θ0)−γ0X)

+e8(−βMZH(θ)+γMX−β0ZH(θ0)−γ0X) + e8(−βMZH(θ)−γMX−β0ZH(θ0)−γ0X)
)

. 1 + P
(
e8((βM−β0)ZH(θ0)+(γM−γ0)X) + e8((βM−β0)ZH(θ0)−(γM+γ0)X)

+e8(−(βM+β0)ZH(θ0)+(γM−γ0)X) + e8(−(βM+β0)ZH(θ0)−(γMX+γ0)X)
)
< ∞,

where we use the monotonity and Conditions B.2.1.

It follows that P ∗ sup
πδ,u∈[0,τ ]

|Gn [U(β, θ, γ, u)− U(β0, θ0, γ0, u)]| ≤ δ.

Hence P ∗ sup
πδ

|I6| 1Ωn . δ2 + δ . δ for small δ.

In the proof of this section, we used the following moment conditions:

Conditions B.2.1.

1. P (e4β0ZH(θ0)) < ∞, Pe4γ0X < ∞.

2. P (Z8
H(θ0)) < ∞, P (X8) < ∞.

3. P (e8(βM−β0)ZH(θ0)) < ∞, P (e−8(βM+β0)ZH(θ0)) < ∞,

P (e8(γM−γ0)X) < ∞, P (e−8(γM+γ0)X) < ∞.

These conditions are by no means the best conditions, but are su�cient conditions.

Summing up all the results for P ∗ supπδ
|I4| , P ∗ supπδ

|I5| and P ∗ supπδ
|I6| 1Ωn in

this section, we obtain

P ∗ sup
d(π,π0)<δ

√
n |(Mn −M)(π)− (Mn −M)(π0)| 1Ωn . δ for small δ.
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Then considering Theorem 3.2.5, ϕn(δ) = δ. Since π̂n →P ∗ π0 is proved in the previous

section, then solve r2nϕn(
1
rn
) ≤

√
n, get rn =

√
n.

√
nd(π̂n, π0) = O∗

P (1) ⇒ n
[
(β − β0)

2 + (γ − γ0)
2 + (θ − θ0)

2H
]
= O∗

P (1).

We get the upper bounds
√
n,

√
n, n1/(2H) for the rates of convergence of β̂n, γ̂n, θ̂n

respectively.
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Appendix C

Finite entropy integral with

bracketing

C.1 Proof of Lemma A.0.1

Now to prove M ≡ {Y (u)eZ(θ) : u ∈ [0, τ ], θ ∈ [0, θM ]} has �nite integral of L2(P )

entropy with bracketing, we make a transformation,

M = {eZ(θ0) · Y (u)eZ(θ−θ0) : u ∈ [0, τ ], θ ∈ [0, θM ]}

≡ {eZ(θ0) · Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [−θ0, θM − θ0]},

where W (·) ≡ Z(·+ θ0)− Z(θ0) is a 2-sided S.B.M. starting from 0.

Suppose that MW,0 ≡ {Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [−θ0, θM − θ0]} has �nite

integral of L2(P ) entropy with bracketing. We assume the L2(P ) ϵ-sized brackets

are {(li(ϵ), ui(ϵ)) : i = 1, · · · , N[](ϵ,MW,0, L2(P ))} with li(ϵ) ≥ 0, then a natural

choice of brackets to cover

{Y (u)eZ(θ) : u ∈ [0, τ ], θ ∈ [0, θM ]}

is {(eZ(θ0) · li(ϵ), eZ(θ0) · ui(ϵ)) : i = 1, · · · , N[](ϵ,MW,0, L2(P ))}. Its L2(P ) size is√
P (eZ(θ0)(ui(ϵ)− li(ϵ)))2 =

√
P (e2Z(θ0))P (ui(ϵ)− li(ϵ))2

=
√

P (e2Z(θ0)) · P (ui(ϵ)− li(ϵ))2 ≤
√

P (e2Z(θ0)) · ϵ,
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where the independence of {(li(ϵ), ui(ϵ)) : i = 1, · · · , N[](ϵ,MW,0, L2(P ))} and eZ(θ0)

is used in the �rst equality. They are independent since the former ones only depend

on W (·) which are independent of Z(θ0). By the construction of MW,0's brackets, we

have

N[](
√
P (e2Z(θ0)) · ϵ,M, L2(P )) ≤ N[](ϵ,MW,0, L2(P )).

(Note: Actually equality holds since we can construct the brackets of MW,0 by a

reverse transformation from that of M.) Then the entropy integral∫ ∞

0

√
logN[](ϵ̃,M, L2(P ))dϵ̃

=
1√

P (e2Z(θ0))
·
∫ ∞

0

√
logN[](

√
P (e2Z(θ0)) · ϵ,M, L2(P ))dϵ

≤ 1√
P (e2Z(θ0))

·
∫ ∞

0

√
logN[](ϵ,MW,0, L2(P ))dϵ < ∞.

Now the problem is transformed into proving the integral of L2(P ) entropy with

bracketing is �nite for MW,0. MW,0 can be further written as {Y (u)eW (θ) : u ∈

[0, τ ], θ ∈ [−θ0, 0]} ∪ {Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [0, θM − θ0]}. Now we introduce a

lemma to reduce the problem into prove that for {Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [−θ0, 0]}

and {Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [0, θM − θ0]]} separately.

Lemma C.1.1. If F1 and F2 each has �nite integral of L2(P ) entropy with bracketing,

then F1 ∪ F2 has �nite integral of L2(P ) entropy with bracketing.

Proof. Since F1 and F2 each has �nite integral of L2(P ) entropy with bracketing,

then for each of i = 1, 2, there exist δ∗i > 0 and a single bracket (li, ui) covering Fi

such that ∫ δ∗i

0

√
logN[](ϵ,Fi, L2(P ))dϵ < ∞,√

P (u2
i ) < ∞,

√
P (l2i ) < ∞,

√
P (ui − li)2 ≤ δ∗i , and N[](ϵ,Fi, L2(P )) ≥ 2 for ϵ < δ∗i .

Firstly we �nd such a single bracket and δ for F1 ∪ F2. Since (li, ui) covers Fi

for i = 1, 2, it follows that (l1 ∧ l2, u1 ∨ u2) covers F1 ∪ F2, with
√

P ((u1 ∨ u2)2) <
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√
2P (u2

1 + u2
2) < ∞,

√
P ((l1 ∧ l2)2) <

√
2P (l21 + l22) < ∞, and its L2(P ) size√

P ((u1 ∨ u2 − l1 ∧ l2)2) ≤
√
P (|u1|+ |u2|+ |l1|+ |l2|)2

≤ 2
√

P (u2
1 + u2

2 + l21 + l22) < ∞

Then for any ϵ ≥ 2
√

P (u2
1 + u2

2 + l21 + l22), N[](ϵ,F1 ∪ F2, L2(P )) ≤ 1.

For any ϵ > 0, by de�nition of bracketing numbers, it is trivial to see

N[](ϵ,F1 ∪ F2, L2(P )) ≤ N[](ϵ,F1, L2(P )) +N[](ϵ,F2, L2(P )).

Since for any 0 < ϵ < δ∗1 ∨ δ∗2,

N[](ϵ,F1, L2(P )) ∨N[](ϵ,F2, L2(P )) ≥ 2,

and a+ b ≤ (ab)2 for any natural numbers a, b s.t. a ∨ b ≥ 2, then

N[](ϵ,F1 ∪ F2, L2(P )) ≤
(
N[](ϵ,F1, L2(P )) ·N[](ϵ,F2, L2(P ))

)2
.

For ϵ > δ∗1 ∨ δ∗2,

N[](ϵ,F1, L2(P )) = N[](ϵ,F2, L2(P )) = 1,

and hence

N[](ϵ,F1 ∪ F2, L2(P )) ≤ 1 + 1 = 2.

To summarize, we have∫ ∞

0

√
logN[](ϵ,F1 ∪ F2, L2(P ))dϵ

≤

∫ δ∗1∨δ∗2

0

+

∫ 2
√

P (u2
1+u2

2+l21+l22)

δ∗1∨δ∗2
+

∫ ∞

2
√

P (u2
1+u2

2+l21+l22)

√logN[](ϵ,F1 ∪ F2, L2(P ))dϵ

≤
∫ δ∗1∨δ∗2

0

√
log
(
N[](ϵ,F1, L2(P )) ·N[](ϵ,F2, L2(P ))

)2
dϵ

+

∫ 2
√

P (u2
1+u2

2+l21+l22)

δ∗1∨δ∗2

√
log 2dϵ+

∫ ∞

2
√

P (u2
1+u2

2+l21+l22)

√
log 1dϵ
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≤
∫ δ∗1∨δ∗2

0

√
2
(
logN[](ϵ,F1, L2(P )) + logN[](ϵ,F2, L2(P ))

)
dϵ

+
√
log 2 ·

(
2
√
P (u2

1 + u2
2 + l21 + l22)− δ∗1 ∨ δ∗2

)
≤
∫ δ∗1∨δ∗2

0

√
2

(√
logN[](ϵ,F1, L2(P )) +

√
logN[](ϵ,F2, L2(P ))

)2

dϵ

+
√
log 2 ·

(
2
√
P (u2

1 + u2
2 + l21 + l22)− δ∗1 ∨ δ∗2

)
=

√
2

∫ δ∗1

0

√
logN[](ϵ,F1, L2(P ))dϵ+

√
2

∫ δ∗2

0

√
logN[](ϵ,F2, L2(P ))dϵ

+
√

log 2 ·
(
2
√

P (u2
1 + u2

2 + l21 + l22)− δ∗1 ∨ δ∗2

)
< ∞.

Remark C.1.2. : It is trivial to extend this lemma to �nite many sets' union, and

whether it holds for Lr(P ) norm with r ≥ 1 can be investigated.

By symmetry of 2-sided Brownian motion, as long as we prove that for {Y (u)eW (θ) :

u ∈ [0, τ ], θ ∈ [0, θ0]} and {Y (u)eW (θ) : u ∈ [0, τ ], θ ∈ [0, θM − θ0]}, we are done. By

de�nition of bracketing numbers, any subset of a functional class with �nite integral

of L2(P ) entropy with bracketing is a functional class with �nite integral of L2(P ) en-

tropy with bracketing; it su�ces to prove MY,B ≡ {Y (u)eB(θ) : u ∈ [0, τ ], θ ∈ [0, θM ]}

has �nite integral of L2(P ) entropy with bracketing, where {B(θ)}θ≥0 is a 1-sided

S.B.M. starting from 0.

Lemma C.1.3. MY,B has �nite integral of L2(P ) entropy with bracketing.

To obtain the bracketing number of MY,B, consider MY,B = FY · GB, where

FY ≡ {Y (u) : u ∈ [0, τ ]}, GB ≡ {eB(θ) : θ ∈ [0, θM ]}. We will try to get brackets and

bracketing numbers for MY,B from those of FY and GB.
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In order to apply Theorem 2.7.11 of VW [54] to bound the bracketing number of

GB, we verify its Lipschitz property �rst.

Lemma C.1.4. The trajectory of eB(θ) satisfy the Lipschitz condition in Chapter

2.7.4 of VW (1996).

Proof. For x, y bounded in absolute value by C > 0, |ex − ey| ≤ eC |x− y|, then

∀θ1, θ2 ∈ [0, θM ], |eB(θ1) − eB(θ2)| ≤ esupθ∈[0,θM ] B(θ)|B(θ1)−B(θ2)|,

so ∀t > 0, |eB(θ1) − eB(θ2)|t ≤ sup
θ∈[0,θM ]

et·B(θ)|B(θ1)−B(θ2)|t.

Denote U(θ) ≡ etB(θ). Since convex function of a martingale is submartingale un-

der certain conditions (see p.13 of Karatzas and Shreve (1991)), {U(θ)}θ∈[0,θM ] is sub-

martingale (and nonnegative), by Doob's maximal inequality, P [supθ∈[0,θM ] U(θ)] ≤

P [4U(θM)]. So

P

(
sup

θ∈[0,θM ]

etB(θ)

)
≤ P

[
4etB(θM )

]
= 4 exp(1/2t2θM) < ∞.

∀t > 0, P

[∣∣∣eB(θ1) − eB(θ2)
∣∣∣t] ≤√P

(
esupθ∈[0,θM ] B(θ)

)2t
· P (B(θ1)−B(θ2))

2t

≤
√

4 exp(1/2(2t)2θM) · C2t|θ1 − θ2|t = 2
√
C2t exp(t

2θM)|θ1 − θ2|t/2,

where we used P [B(θ1)−B(θ2)]
2t = C2t|θ1 − θ2|t (p.28, Revuz and Yor (2006)) in

the second inequality.

By Theorem 1.2.2 of Revuz and Yor ([38]),

P

( sup
θ1 ̸=θ2

|eB(θ1) − eB(θ2)|
|θ1 − θ2|α

)t
 < ∞, ∀α ∈ [0, 1/2), ∀t > 0.

So
∣∣∣eB(θ1) − eB(θ2)

∣∣∣ ≤ L|θ1 − θ2|α, ∀α ∈ [0, 1/2),

where P [Lt] < ∞, ∀t > 0.

So up to now, we have established the Lipschitz property
∣∣eB(θ1) − eB(θ2)

∣∣ ≤ L ·

d(θ1, θ2) for the trajectory of eB(θ), where d(θ1, θ2) = |θ1 − θ2|α and P (Lt) < ∞ for

any t > 0. This result holds for any α ∈ [0, 1/2).
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Then by a slight modi�cation of Theorem 2.7.11 of VW [54], for GB and GB− ≡

{eB(θ)−1 : θ ∈ [0, θM ]}, for the true underlying probability measure P , for any r ≥ 1,

their bracketing numbers

N[](ϵ∥esupθ∈[0,θM ] B(θ)∥P,r,GB, Lr(P )) ≤ N(ϵ, [0, θM ], d)

N[](ϵ∥esupθ∈[0,θM ] B(θ)∥P,r,GB−, Lr(P )) ≤ N(ϵ, [0, θM ], d).

for ∀α ∈ [0, 1/2), where d(θ1, θ2) = |θ1 − θ2|α. Because N(ϵ, [0, θM ], d) ≤ ⌈θM/ϵ1/α⌉,

where ⌈a⌉ is de�ned as the smallest integer that is no less than a.

N[](ϵ∥esupθ∈[0,θM ] B(θ)∥P,r,GB, Lr(P )) ≤ ⌈θMϵ−1/α⌉, (C.1)

N[](ϵ∥esupθ∈[0,θM ] B(θ)∥P,r,GB−, Lr(P )) ≤ ⌈θMϵ−1/α⌉ (C.2)

Now we can prove Lemma C.1.3.

Proof. Since FY is a class of monotone functions not exceeding 1, by Theorem 2.7.5

of VW (1996), it has �nite bracketing entropy integral with envelope 1,

logN[](ϵ,FY , Lr(Q)) ≤ K
1

ϵ

for every probability measure Q, every r ≥ 1, and a constant K that depends on r

only.

Then for any ϵ > 0, we can choose no more than eK/ϵ brackets (lfi , u
f
i ), s.t. 0 ≤

lfi ≤ uf
i ≤ 1 (since otherwise we can take (lfi ∨ 0, uf

i ∧ 1), which still forms brackets

covering FY ) and [P (uf
i − lfi )

r]
1
r ≤ ϵ for any r ≥ 1. Here we omitted ϵ in (lfi (ϵ), u

f
i (ϵ))

for notational convenience. We will do the same thing for the brackets of GB in the

following paragraphs.

Remark C.1.5. : Actually we can choose no more than K/ϵ brackets satisfying all

these conditions since Y (·) is an indicator function and monotone, whose brackets

can be constructed similarly as that of C.D.F. (but the bracketing numbers here do
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not need change for di�erent norm Lr(Q)). But for the proof of Lemma C.1.3, the

bracketing number eK/ϵ su�ces.

Consider the case r = 4 for (C.1), we can choose no more than ⌈θMϵ−1/α⌉ brackets

(lgj , u
g
j ) for GB, s.t. [P (ug

j − lgj )
4]

1
4 ≤ ϵ∥esupθ∈[0,θM ] B(θ)∥P,4, where ϵ is the same as that

used for brackets of class FY ≡ {Y (u) : u ∈ [0, τ ]}. It is obvious that we can choose

all the bracket functions for GB to fall within [0, supθ∈[0,θM ] e
B(θ)] (since otherwise we

can take (lgj ∨ 0, ug
j ∧ supθ∈[0,θM ] e

B(θ)), which still forms brackets covering GB).

Obviously all the brackets formed by (lfi · l
g
j , u

f
i · u

g
j ) can cover class MY,B. If the

bracketing entropy integral of MY,B is �nite, then Lemma C.1.3 is done.

The L2(P ) size of the bracket (lfi · l
g
j , u

f
i · u

g
j )√

P
(
uf
i · u

g
j − lfi · l

g
j

)2
=

√
P
(
uf
i (u

g
j − lgj ) + lgj (u

f
i − lfi )

)2
≤
√

2P
(
uf
i (u

g
j − lgj )

)2
+ 2P

(
lgj (u

f
i − lfi )

)2
≤

√
2

[
P
(
1 · (ug

j − lgj )
)2

+ P
(
lgi (u

f
i − lfi )

)2]
(0 ≤ uf

i ≤ 1)

≤

√
2

[(
P (ug

j − lgj )
4
) 1

2
+
(
P (lgj )

4P (uf
i − lfi )

4
) 1

2

]
(Cauchy�Schwartz inequality)

≤

√
2

[(
ϵ∥esupθ∈[0,θM ] B(θ)∥P,4

)2
+
(
∥esupθ∈[0,θM ] B(θ)∥4P,4 · ϵ4

) 1
2

]

≤

√
2

[(
ϵ∥esupθ∈[0,θM ] B(θ)∥P,4

)2
+ ∥esupθ∈[0,θM ] B(θ)∥2P,4ϵ2

]
= 2∥esupθ∈[0,θM ] B(θ)∥P,4 · ϵ

Then the number of brackets (lfi · l
g
j , u

f
i · u

g
j ) can be written as

N[]

(
2∥esupθ∈[0,θM ] B(θ)∥P,4ϵ,MY,B, ∥ · ∥P,2

)
≤ N[](ϵ,FY , L4(P )) ·N[](ϵ∥esupθ∈[0,θM ] B(θ)∥P,r,GB, L4(P )),

≤ e
K
ϵ ⌈θMϵ−1/α⌉ . e

K
ϵ · ϵ−1/α,

logN[]

(
2∥esupθ∈[0,θM ] B(θ)∥P,4ϵ,MY,B, ∥ · ∥P,2

)
. K

ϵ
+ α log

1

ϵ
. 1

ϵ
,∫ 1

0

√
logN[]

(
2∥esupθ∈[0,θM ] B(θ)∥P,4ϵ,MY,B, ∥ · ∥P,2

)
dϵ < ∞.
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Then ∫ 2∥esupθ∈[0,θM ] B(θ)∥P,4

0

√
logN[]

(
ϵ̃,MY,B, ∥ · ∥P,2

)
dϵ̃ < ∞.

So up to now we have proved the �nite entropy integral property of MY,B, and hence

that of M. Lemma 2.2.4 is proved.

C.2 Proof of the functional set (I) for Chapter 2.3

Lemma C.2.1. N ≡ {Y (u)eβZH(θ)+γX : u ∈ [0, τ ], |β| ≤ βM , θ ∈ [0, θM ], |γ| ≤ γM}

has �nite integral of L2(P ) entropy with bracketing.

In this section, we adopt the same procedure and will directly apply some results

obtained from the previous section. To prove N has �nite integral of L2(P ) entropy

with bracketing, we make a transformation,

N = {eβZH(θ0)+γX · Y (u)eβ(ZH(θ−θ0)) : u ∈ [0, τ ], |β| ≤ βM , θ ∈ [0, θM ], |γ| ≤ γM}

≡ {eβZH(θ0)+γX · Y (u)eβWH(θ) : u ∈ [0, τ ], |β| ≤ βM , θ ∈ [−θ0, θM − θ0], |γ| ≤ γM},

where WH(·) ≡ ZH(·+θ0)−ZH(θ0) is a 2-sided S.B.M.starting from 0. Consider N =

P0 · NW,0, where P0 ≡ {eβZH(θ0)+γX : |β| ≤ βM , |γ| ≤ γM} and NW,0 ≡ {Y (u)eβWH(θ) :

u ∈ [0, τ ], |β| ≤ βM , θ ∈ [−θ0, θM − θ0]}. We aim to get brackets and bracketing

numbers of N from those of P0 and NW,0.

For P0, we use the Lipschitz property of eβZH(θ0)+γX to obtain its bracketing

number. Since |ex − ey| ≤ ex∨y · |x− y|, it follows that

|eβ1ZH(θ0)+γ1X − eβ2ZH(θ0)+γ2X | ≤ eβM |ZH(θ0)|+γM |X| · |(β1 − β2)ZH(θ0) + (γ1 − γ2)X|.

The bracketing numbers of {β : |β| ≤ βM} and {γ : |γ| ≤ γM} are N(ϵ, [−βM , βM ], d)

and N(ϵ, [−γM , γM ], d) respectively (with d(β1, β2) = |β1 − β2| and d(γ1, γ2) = |γ1 −

γ2|), then we denote their brackets by (lβi , u
β
i )(i = 1, ..., N(ϵ, [−βM , βM ], d)) and

(lγj , u
γ
j )(j = 1, ..., N(ϵ, [−γM , γM ], d)). Notice that the brackets constructed have

|uβ
i − lβi | ≤ ϵ and |uγ

i − lγi | ≤ ϵ.



APPENDIX C. FINITE ENTROPY INTEGRAL WITH BRACKETING 162

Then we can construct no more than N(ϵ, [0, βM ], d) ·N(ϵ, [−γM , γM ], d) brackets

for P0 using eβM |ZH(θ0)|+γM |X|(lβi · ZH(θ0) + lγj ·X, uβ
i · ZH(θ0) + uγ

j ·X) with bracket

size bounded byn
eβM |ZH(θ0)|+γM |X|

(
(uβ

i − lβi )ZH(θ0) + (uγ
j − lγj )X

)n
for norm ∥ · ∥.

In particular, for L2(P ) norm, the bracket size is bounded by√
P
(
eβM |ZH(θ0)|+γM |X|

(
(uβ

i − lβi )ZH(θ0) + (uγ
j − lγj )X

))2
≤
√

P
(
eβM |ZH(θ0)|+γM |X| (|ZH(θ0)|+ |X|) ϵ

)2
= ϵ∥(|ZH(θ0)|+ |X|) · eβM |ZH(θ0)|+γM |X|∥P,2.

Since P (Z2
H(θ0)e

2βM |ZH(θ0)|) < ∞,P (X2e2γM |X|) < ∞, and ZH(θ0), X are indepen-

dent, it is easy to deduce

PZ0,X ≡ ∥(|ZH(θ0)|+ |X|) · eβM |ZH(θ0)|+γM |X|∥P,2 < ∞,

and hence N[](ϵ·PZ0,X ,P0, L2(P )) ≤ N(ϵ, [−βM , βM ], d)·N(ϵ, [−γM , γM ], d),

N[](ϵ · PZ0,X ,P0, L2(P )) ≤ ⌈2βM

ϵ
⌉⌈2γM

ϵ
⌉. (C.3)

Then we can choose no more than ⌈2βM

ϵ
⌉⌈2γM

ϵ
⌉ brackets {(lpi (ϵ), u

p
i (ϵ)) : i =

1, ..., N[](ϵ·PZ0,X ,P0, L2(P ))} that cover P0 with lpi ≥ 0, up
i ≤ sup|β|≤βM ,|γ|≤γM

eβZ(θ0)+γX

and
√
P (up

i (ϵ)− lpi (ϵ))
2 ≤ ϵ · PZ0,X for i = 1, ..., N[](ϵ · PZ0,X ,P0, L2(P )).

Suppose thatNW,0 has �nite integral of L2(P ) entropy with bracketing. We assume

the L2(P ) ϵ-sized brackets are {(lni (ϵ), un
i (ϵ)) : i = 1, · · · , N[](ϵ,NW,0, L2(P ))} with

lni (ϵ) ≥ 0, un
i (ϵ) ≤ supu∈[0,τ ],|β|≤βM ,θ∈[−θ0,θM−θ0] Y (u)eβWH(θ), then a natural choice of

brackets to cover N is {(lpi (ϵ) · lni (ϵ), u
p
i (ϵ) ·un

i (ϵ)) : i = 1, · · · , N[](ϵ,NW,0, L2(P ))}. Its

L2(P ) size is√
P (up

i · un
i − lpi · lni )2 =

√
P ((up

i − lpi )u
n
i + lpi (u

n
i − lni ))

2

≤
√
2
[
P ((up

i − lpi )u
n
i )

2 + P (lpi (u
n
i − lni ))

2
]

=
√

2 [P (up
i − lpi )

2P (un
i )

2 + P (lpi )
2P (un

i − lni )
2]
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≤

√√√√2

[(
ϵ · PZ0,X

)2 · P sup
u,β,θ

(
Y (u)eβWH(θ)

)2
+ P sup

β,γ

(
eβZH(θ0)+γX

)2 · ϵ2]

=

√√√√2

[(
PZ0,X

)2 · P sup
u,β,θ

(
Y (u)eβWH(θ)

)2
+ P sup

β,γ

(
eβZH(θ0)+γX

)2] · ϵ
≡ PZ0,X,W · ϵ

where we abbreviated the notation of supremums since they are evident here. The

independence of {(li(ϵ), ui(ϵ)) : i = 1, · · · , N[](ϵ,NW,0, L2(P ))} and eZH(θ0) are used in

the second equality. They are independent since the brackets of NW,0 only depend on

WH(·), the brackets of P0 only depend on (ZH(θ0), X), and WH(·) are independent

of (ZH(θ0), X).

It is easy to prove PZ0,X,W < ∞.

By the construction of N 's brackets, we have

N[](PZ0,X,W · ϵ,N , L2(P )) ≤ N[](ϵ · PZ0,X ,P0, L2(P )) ·N[](ϵ,NW,0, L2(P )).

Then the entropy integral∫ ∞

0

√
logN[](ϵ̃,N , L2(P ))dϵ̃

=
1

PZ0,X,W

·
∫ ∞

0

√
logN[](PZ0,X,W · ϵ,N , L2(P ))dϵ

≤ 1

PZ0,X,W

·
∫ ∞

0

√
logN[](ϵ · PZ0,X ,P0, L2(P )) + logN[](ϵ,NW,0, L2(P ))dϵ

≤ 1

PZ0,X,W

·
∫ ∞

0

(√
logN[](ϵ · PZ0,X ,P0, L2(P )) +

√
logN[](ϵ,NW,0, L2(P ))

)
dϵ

≤ 1

PZ0,X,W

·
∫ ∞

0

√log

(
⌈2βM

ϵ
⌉⌈2γM

ϵ
⌉
)
+
√
logN[](ϵ,NW,0, L2(P ))

 dϵ.

Since
∫∞
0

√
log
(
⌈2βM

ϵ
⌉⌈2γM

ϵ
⌉
)
dϵ < ∞, now the problem is transformed into proving

the integral of L2(P ) entropy with bracketing is �nite for NW,0. Following the lines

of Appendix C.1, it su�ces to prove NY,B ≡ {Y (u)eβB(θ) : u ∈ [0, τ ], |β| ≤ βM , θ ∈

[0, θM ]} has �nite integral of L2(P ) entropy with bracketing, where {B(θ)}θ≥0 is a

1-sided fBm starting from 0 with Hurst parameter H.



APPENDIX C. FINITE ENTROPY INTEGRAL WITH BRACKETING 164

Lemma C.2.2. NY,B has �nite integral of L2(P ) entropy with bracketing.

To obtain the bracketing number of NY,B, consider NY,B = FY · HB, where

FY ≡ {Y (u) : u ∈ [0, τ ]}, HB ≡ {eβB(θ) : |β| ≤ βM , θ ∈ [0, θM ]}. We will try to

get brackets and bracketing numbers for NY,B from those of FY and HB.

In order to apply Theorem 2.7.11 of VW [54] to bound the bracketing number of

HB, we verify its Lipschitz property �rst.

Lemma C.2.3. The trajectory of eβB(θ) satisfy the Lipschitz condition in chapter

2.7.4 of VW (1996).

Proof. For x, y bounded in absolute value by C > 0, |ex − ey| ≤ eC |x− y|, then

∀θ1, θ2 ∈ [0, θM ], β1,β2 ∈ [−βM , βM ],

|eβ1B(θ1) − eβ2B(θ2)| ≤ eβ1B(θ1)∨β2B(θ2)|β1B(θ1)− β2B(θ2)|,

≤ esup|β|≤βM,θ∈[0,θM ] βB(θ)|(β1 − β2)B(θ1) + β2(B(θ1)−B(θ2))|.

By Theorem 1.2.2 of Revuz and Yor ([38]) and fBm's property,

|B(θ1)−B(θ2)| ≤ L|θ1 − θ2|α, ∀α ∈ [0, H), where P [Lt] < ∞, ∀t > 0.

Then

|eβ1B(θ1) − eβ2B(θ2)| ≤ sup
θ

|B(θ)|esupβ,θ βB(θ)|β1 − β2|+ βMesupβ,θ βB(θ)L|θ1 − θ2|α

≡ Lβ · dβ(β1, β2) + Lθ · dθ(θ1, θ2).

∀α ∈ [0, H), where P [Lt] < ∞, ∀t > 0.

Since ∀t > 0, P supθ |B(θ)|t ≤
√
P supθ B

2t(θ) < ∞ by Theorem 1.1 of Novikov

and Valkeila [31], and

P
(
esupβ,θ βB(θ)

)t
≤ Pesupθ tβM |B(θ)| ≤ Pesupθ tβMB(θ) + Pesupθ tβM (−B(θ))

≤ 2Pesupθ tβMB(θ) ≤ 2 · 4e1/2(tβM )2β2H
M ,
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by Lemma 3.2 of Lee [21] for ∀H ∈ (1/2, 1) (see Lemma C.2.4 in the end of Appendix

C.2) and Doob's maximal inequality for H = 1/2.

Then by Cauchy�Schwartz Inequality, for ∀t > 0, PLt
β < ∞ and PLt

θ < ∞.

So up to now, we have established the Lipschitz property
∣∣eβ1B(θ1) − eβ2B(θ2)

∣∣ ≤
Lβ ·dβ(β1, β2)+Lθ ·dθ(θ1, θ2) for the trajectory of eβB(θ), where dθ(θ1, θ2) = |θ1−θ2|α,

dβ(β1, β2) = |β1 − β2| and P (Lt
β) < ∞, PLt

θ < ∞ for any t > 0. This result holds for

any α ∈ [0, H) and H ∈ [1/2, 1).

Then by the same way we did for P0, for HB and HB− ≡ {eβB(θ) − 1 : |β| ≤

βM , θ ∈ [0, θM ]}, for the true underlying probability measure P , for any r ≥ 1, their

bracketing numbers

N[](ϵ
1/α∥Lβ + Lθ∥P,r,HB, Lr(P )) ≤ N(ϵ, [0, θM ], dθ) ·N(ϵ, [−βM , βM ], dβ),

N[](ϵ∥Lβ + Lθ∥P,r,HB, Lr(P )) ≤ N(ϵα, [0, θM ], dθ) ·N(ϵα, [−βM , βM ], dβ),

for an α ∈ [0, H). Because N(ϵα, [0, θM ], dθ) ≤ ⌈θM/ϵ⌉, and N(ϵα, [−βM , βM ], dβ) ≤

⌈2βM/ϵα⌉,

N[](ϵ∥Lβ + Lθ∥P,r,HB, Lr(P )) ≤ ⌈θMϵ⌉⌈2βM/ϵα⌉, (C.4)

The same result holds for HB− as well.

Now we can prove Lemma C.1.3.

Consider the case r = 4 for (C.1), we can choose no more than ⌈θMϵ−1/α⌉⌈2βM/ϵα⌉

brackets (lgj , u
g
j ) for HB, s.t. [P (ug

j − lgj )
4]

1
4 ≤ ϵ1/α∥Lβ + Lθ∥P,4, where ϵ is the same

as that used for brackets of class FY ≡ {Y (u) : u ∈ [0, τ ]}. It is obvious that we can

choose all the bracket functions for GB to fall within [0, sup|β|≤βM ,θ∈[0,θM ] e
βB(θ)] (since

otherwise we can take (lgj ∨ 0, ug
j ∧ sup|β|≤βM ,θ∈[0,θM ] e

βB(θ)), which still forms brackets

covering HB).

Obviously all the brackets formed by (lfi · lgj , u
f
i · u

g
j ) can cover class NY,B. If the

bracketing entropy integral of NY,B is �nite, then Lemma C.1.3 is done.
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The L2(P ) size of the bracket (lfi · l
g
j , u

f
i · u

g
j )√

P
(
uf
i · u

g
j − lfi · l

g
j

)2
=

√
P
(
uf
i (u

g
j − lgj ) + lgj (u

f
i − lfi )

)2
≤
√

2P
(
uf
i (u

g
j − lgj )

)2
+ 2P

(
lgj (u

f
i − lfi )

)2
≤

√
2

[
P
(
1 · (ug

j − lgj )
)2

+ P
(
lgi (u

f
i − lfi )

)2]
(0 ≤ uf

i ≤ 1)

≤

√
2

[(
P (ug

j − lgj )
4
) 1

2
+
(
P (lgj )

4P (uf
i − lfi )

4
) 1

2

]
(Cauchy�Schwartz inequality)

≤

√
2

[(
ϵ1/α∥Lβ + Lθ∥P,4

)2
+
(
∥Lβ + Lθ∥4P,4 · ϵ4

) 1
2

]
≤ 2∥Lβ + Lθ∥P,4 · ϵ1/α,

where we used the fact that 0 < α < H < 1.

Then the number of brackets (lfi · l
g
j , u

f
i · u

g
j ) can be written as

N[]

(
2∥Lβ + Lθ∥P,4ϵ1/α,NY,B, ∥ · ∥P,2

)
≤ N[](ϵ,FY , L4(P )) ·N[](ϵ

1/α∥Lβ + Lθ∥P,4,HB, L4(P )),

N[]

(
2∥Lβ + Lθ∥P,4ϵ,NY,B, ∥ · ∥P,2

)
≤ N[](ϵ

α,FY , L4(P )) ·N[](ϵ∥Lβ + Lθ∥P,4,HB, L4(P )),

N[]

(
2∥Lβ + Lθ∥P,4ϵ,NY,B, ∥ · ∥P,2

)
≤ e

K
ϵα ⌈θMϵ−1⌉⌈2βM/ϵα⌉ . e

K
ϵα · ϵ−1−α,

logN[]

(
2∥Lβ + Lθ∥P,4ϵ,NY,B, ∥ · ∥P,2

)
. K

ϵα
+ (1 + α) log

1

ϵ
. 1

ϵ
,∫ 1

0

√
logN[]

(
2∥Lβ + Lθ∥P,4ϵ,NY,B, ∥ · ∥P,2

)
dϵ < ∞.

Then ∫ 2∥Lβ+Lθ∥P,4

0

√
logN[]

(
ϵ̃,NY,B, ∥ · ∥P,2

)
dϵ̃ < ∞.

So up to now we have proved the �nite entropy integral property of NY,B, and hence

that of N .
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Lemma 3.2 of Lee [21]

Before presenting Lemma 3.2 of Lee [21], we quote the de�nition of multi-dimensional

fBm from Lee [21].

Let d ∈ N. A stochastic process BH = {BH(t) = (B
(1)
H (t), ..., B

(d)
H (t)), t ≥ 0}

de�ned on some �ltered probability space (Ω,F , (Ft)t≥0,P), is called a d-dimensional

fBm of Hurst parameter H ∈ (0, 1), starting from BH(0) ∈ Rd, and associated matrix

Λ, if it satis�es the following conditions: The process BH is a continuous Gaussian

process with initial condition BH(0) P− a.s. and its covariance function is given by

Cov(BH(t), BH(s)) = P((BH(t)−BH(0)(BH(t)−BH(0))
T )) = ΛH(s, t)Λ,

for any s, t ≥ 0, where Λ is a d× d positive de�nite matrix and

ΛH(s, t) ≡
1

2
(t2H + s2H − |t− s|2H).

Without loss of generality, we assume that the diagonal entries of Λ are all ones. Also,

it is assumed that BH is adapted to the �ltration (Ft)t≥0. We will say that BH is a

d-dimensional fBm with associated data (BH(0), H,Λ).

Lemma C.2.4 (Lemma 3.2 of Lee [21]). Let h ∈ (0,∞) be a constant. For n ∈ N,

let νn be de�ned as follows:

νn = sup{|BH(s)−BH((n− 1)h)| : (n− 1)h ≤ s ≤ nh},

where BH(·) is a d-dimensional fBm with data (0, H,Λ) and Hurst parameter H ∈

(1/2, 1). Then, for any γ ∈ (0,∞) and n ∈ N,

P[eγνn ] ≤ 4de1/2γ
2d2h2H

,

where d is the dimension of the fBm BH .

C.3 Proof of the functional set (II) for Chapter 2.3

Lemma C.3.1. Q ≡ {βZH(θ) + γX : |β| ≤ βM , θ ∈ [0, θM ], |γ| ≤ γM} has �nite

integral of L2(P ) entropy with bracketing.
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To prove Q has �nite integral of L2(P ) entropy with bracketing, we will use the

Lipschitz property of βZH(θ) + γX.

|(β1ZH(θ1) + γ1X)− (β2ZH(θ2) + γ2X)|

= |(β1 − β2)ZH(θ1) + β2(ZH(θ1)− ZH(θ2)) + (γ1 − γ2)X|

≤ |β1 − β2||ZH(θ1)|+ |β2||ZH(θ1)− ZH(θ2)|+ |γ1 − γ2||X|

≤ |β1 − β2||ZH(θ1)|+ βML|θ1 − θ2|α + |γ1 − γ2||X|

Same as in the previous section, the bracketing numbers of {β : |β| ≤ βM},{θ :

θ ∈ [0, βM ]} and {γ : |γ| ≤ γM} are N(ϵ, [−βM , βM ], dβ), N(ϵ, [0, θM ], dθ) and

N(ϵ, [−γM , γM ], dγ) respectively (with dβ(β1, β2) = |β1 − β2|, dθ(θ1, θ2) = |θ1 − θ2|α

and dγ(γ1, γ2) = |γ1 − γ2|).

Then we can denote each of their brackets by (lβi , u
β
i )(i = 1, ..., N(ϵ, [−βM , βM ], dβ)),

(lθk, u
θ
k)(k = 1, ..., N(ϵ, [−θM , θM ], dθ)) and (lγj , u

γ
j )(j = 1, ..., N(ϵ, [−γM , γM ], dγ)). No-

tice that the brackets constructed have |uβ
i − lβi | ≤ ϵ, |uθ

k − lθk|α ≤ ϵ and |uγ
j −

lγj | ≤ ϵ. We also have N(ϵ, [−βM , βM ], dβ) = ⌈2βM

ϵ
⌉, N(ϵ, [0, θM ], dθ) = ⌈ θM

ϵ1/α
⌉ and

N(ϵ, [−γM , γM ], dγ) = ⌈2γM
ϵ
⌉.

Then we can construct no more than

N(ϵ, [−βM , βM ], dβ) ·N(ϵ, [0, θM ], dθ) ·N(ϵ, [−γM , γM ], dγ)

brackets
(
lβi (ZH(θ0) + L(lθk − θ0)) + lγjX, uβ

i (ZH(θ0) + L(uθ
k − θ0)) + uγ

jX
)
to coverQ,

and the L2(P ) size of the bracket√
P
(
uβ
i (ZH(θ0) + L(uθ

k − θ0)) + uγ
jX −

(
lβi (ZH(θ0) + L(lθk − θ0)) + lγjX

))2
≤
√
3

√
P
(
(uβ

i − lβi )(ZH(θ0)− Lθ0)
)2

+ P
(
L(uβ

i u
θ
k − lβi l

θ
k)
)2

+ P
(
(uγ

j − lγj )X
)2

≤
√
3

√
P (ϵ2(ZH(θ0)− Lθ0)2) + P

(
L(uβ

i (u
θ
k − lθk) + (uβ

i − lβi )l
θ
k)
)2

+ P (ϵ2X2)

Since

P (ZH(θ0)− Lθ0)
2 ≤ 2

(
PZ2

H(θ0) + PL2θ20)
)
≤ 2

(
PZ2

H(θ0) + PL2θ2M)
)
,
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P
(
L(uβ

i (u
θ
k − lθk) + (uβ

i − lβi )l
θ
k)
)2

≤ 2P
(
L2(uβ

i )
2(uθ

k − lθk)
2
)
+ 2P

(
L2(uβ

i − lβi )
2(lθk)

2
)

≤ 2PL2β2
Mϵ2/α + 2PL2θ2Mϵ2,

The L2(P ) size of the bracket

≤
√
6
√
(PZ2

H(θ0) + 2θ2MPL2 + PX2) ϵ2 + β2
MPL2ϵ2/α

≤
√
6
√
(PZ2

H(θ0) + 2θ2MPL2 + PX2 + β2
MPL2) ϵ2/α

≡LQ · ϵ1/α.

by the fact that α < H < 1.

Then we have

N[]

(
LQ · ϵ1/α,Q, ∥ · ∥P,2

)
≤ ⌈2βM

ϵ
⌉⌈ θM
ϵ1/α

⌉⌈2γM
ϵ

⌉,

N[]

(
LQ · ϵ,Q, ∥ · ∥P,2

)
≤ ⌈2βM

ϵα
⌉⌈θM

ϵ
⌉⌈2γM

ϵα
⌉,

logN[]

(
LQ · ϵ,Q, ∥ · ∥P,2

)
. log

1

ϵ
. 1

ϵ
,∫ 1

0

√
logN[]

(
LQ · ϵ,Q, ∥ · ∥P,2

)
dϵ < ∞.

Then ∫ LQ

0

√
logN[]

(
ϵ̃,Q, ∥ · ∥P,2

)
dϵ̃ < ∞.

So up to now we have proved Q has �nite entropy integral of L2(P ) bracketing.
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Appendix D

Exchangeability of di�erentiation and

expectation

The exchangeability of di�erentiation and expectation is to be justi�ed when we take

derivatives of M(η) w.r.t. β. Those derivatives w.r.t. γ and second derivatives w.r.t.

β and γ can be handled in exactly the same way.

The derivative of M(η) w.r.t. β can be broken into two parts, that of P (βZH(θ)+

γX)N(τ) and that of
∫ τ

0
log [PY (u) exp(βZH(θ) + γX)] dPN(u). We deal with them

separately.

For the �rst item, consider any β1, β2 ∈ [0, βM ],

(P (β1ZH(θ) + γX)N(τ)− P (β2ZH(θ) + γX)N(τ)) /(β1 − β2)

= P (β1 − β2)ZH(θ)N(τ)/(β1 − β2) = PZH(θ)N(τ),

For the second item,∫ τ

0

log [PY (u) exp(βZH(θ) + γX)] dPN(u)

=

∫ τ

0

log

[
P exp(βZH(θ) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds)

]
dPN(u).

=

∫ τ

0

log

[
P exp(βZH(θ) + γX − eβ0ZH(θ0)+γ0X

∫ u

0

λ0(s)ds)

]
λ0(u)s

(0)(θ0, u)du,

where we used (2.7) in the last equality.
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For continuous type random variables ZH(θ0) with P.D.F. fZ and X with P.D.F.

fX , the integrand can be expressed as a double integral by fZ and fX ,

log

[∫ ∞

−∞

∫ ∞

−∞
exp(βz + γx− eβ0z+γ0x

∫ u

0

λ0(s)ds)fZ(z)fX(x)dzdx

]
λ0(u)s

(0)(θ0, u).

All the functions involved here are continuous and has continuous derivatives w.r.t.

β and γ, it follows that the exchangeability of di�erentiation and expectation is

justi�ed by [47] as long as P [ZH(θ0)Y (u) exp(βZH(θ0)+γX)] < ∞ for any (β, γ, u) ∈

[−βM , βM ]× [−γM , γM ]× [0, τ ].

For discrete type random variable ZH(θ0) with P.M.F. (probability mass function)

P (ZH(θ0) = zi) = pZ,i, i = 1, 2, ... and continuous type random variableX with P.D.F.

fX , the integrand can be expressed as

log

[∫ ∞

−∞

∞∑
i=1

exp(βzi + γx− eβ0zi+γ0x

∫ u

0

λ0(s)ds)pZ,ifX(x)dx

]
λ0(u)s

(0)(θ0, u).

By Theorem 7.9 and Theorem 7.11 of Rudin [42], the exchangeability holds if

lim
n→∞

sup
|β|≤βM

∣∣∣∣∣
∞∑

i=n+1

zi exp(βzi + γx− eβ0zi+γ0x

∫ u

0

λ0(s)ds)pZ,i

∣∣∣∣∣ = 0.

Since zi exp(βzi + γx− eβ0zi+γ0x
∫ u

0
λ0(s)ds)pZ,i is monotonically increasing w.r.t. β,

it su�ces to require that

lim
n→∞

∞∑
i=n+1

zi exp(βzi + γx− eβ0zi+γ0x

∫ u

0

λ0(s)ds)pZ,i = 0

for |β| = βM and any |γ| ≤ γM . It is guaranteed also by P [ZH(θ0)Y (u) exp(βZH(θ0)+

γX)] < ∞ for any (β, γ, u) ∈ [−βM , βM ]× [−γM , γM ]× [0, τ ].

For discrete type random variables ZH(θ0) with P.M.F. P (ZH(θ0) = zi) = pZ,i, i =

1, 2, ... and X with P.M.F. P (X = xj) = pX,j, j = 1, 2, ... , the integrand can be

expressed as

log

 ∞∑
j=1

∞∑
i=1

exp(βzi + γxj − eβ0zi+γ0xj

∫ u

0

λ0(s)ds)pZ,ipX,j

λ0(u)s
(0)(θ0, u).
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The exchangeability follows similarly as the previous paragraph, as long as

P [ZH(θ0)Y (u) exp(βZH(θ0)+γX)] < ∞ for any (β, γ, u) ∈ [−βM , βM ]× [−γM , γM ]×

[0, τ ], which follows by Cauchy�Schwartz Inequality using Assumptions 2.3.1 (3).
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