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ABSTRACT

Essays on Empirical Asset Pricing

Dongyoup Lee

My dissertation aims at understanding the dynamics of asset prices empirically. It contains

three chapters.

Chapter One provides an estimator for the conditional expectation function using a

partially misspecified model. The estimator automatically detects the dimensions along

which the model quality is good (poor). The estimator is always consistent, and its rate

of convergence improves toward the parametric rate as the model quality improves. These

properties are confirmed by both simulation and empirical application. Application to the

pricing of Treasury options suggests that the cheapest-to-deliver practice is an important

source of misspecification.

Chapter Two examines the informational content of credit default swap (CDS) net

notional for future stock and CDS prices. Using the information on CDS contracts registered

in DTCC, a clearinghouse, I construct CDS-to-debt ratios from net notional, that is, the

sum of net positive positions of all market participants, and total outstanding debt issued

by the reference entity. Unlike the ratio using the sum of all outstanding CDS contracts,

this ratio directly indicates how much of debt is insured with CDS and therefore, is a

natural measure of investors concern on a credit event of the reference entity. Empirically,

I find cross-sectional evidence that the current increase in CDSto- debt ratios can predict

a decrease in stock prices and an increase in CDS premia of the reference firms in the next

week. Greater predictability for firms with investment grade credit ratings or low CDS-to-

debt ratios suggests that investors pay more attention to firms in good credit conditions

than those regarded as junk or already insured considerably with CDS.

Chapter Three tests the relationship between credit default swap net notional and put

option prices. Given motivation that both CDS and put options are used not only as a



type of insurance but also for negative side bets, both contemporaneous and predictive

analysis are performed for put option returns and changes in implied volatilities with time-

to-maturities of 1, 3, and 6 months. The results show that there is no empirical evidence

that CDS net notional and put option prices are closely connected.
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CHAPTER 1. ASSET PRICING USING PARTIALLY MISSPECIFIED MODELS 1

Chapter 1

Asset Pricing Using Partially

Misspecified Models

with Jialin Yu

1.1 Introduction

Econometricians constantly face the challenge of imperfect models. For example, a trader

of Treasury options listed on the Chicago Board of Trade (CBOT) may have learned the

state-of-the-art option pricing formula. Over time, the trader starts to notice that option

prices sometimes deviate from the pricing formula and suspects the model is misspecified.1

Misspecification can take various forms: the model may be accurate along some dimensions

but crude along others, or the model may be poor along all dimensions. Even in the latter

case, the model can still provide useful restrictions that may be utilized by some investors.

For example, in the option pricing context, a model may approximate the option delta well

1E.g., the Black-Merton-Scholes option pricing formula (Black and Scholes (1973) and Merton (1973)) is

found by many to have difficulty explaining the Black Monday in October 1987, see for example Rubinstein

(1994).
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but not the option gamma.2 Therefore, misspecification is not a binary concept. Rather,

there is a continuous middle ground between correct specification and the case of a useless

model. A partially misspecified model is a more likely scenario in practice than the two

polar cases.

How should the option trader use her partially misspecified model? This paper pro-

poses an estimation method (referred to as “robust parametric method” in this paper) and

the resulting estimator has the following properties: (i) robustness – the estimator is con-

sistent and the estimation error is at most that of the nonparametric rate irrespective of

misspecification; (ii) adaptive efficiency – the estimation error decreases when the model

quality improves, and the rate of convergence approaches the parametric rate in the limit

when the model misspecification disappears;3 (iii) model quality detection – the estimator

automatically detects the model quality along various model dimensions and provides clues

to future improvement of the model.

To see the potential magnitude of improvement from adaptive efficiency, recall that the

estimation error of parametric method, based on a correct model, is in the order of n−1/2

with n being the sample size. The estimation error of nonparametric method is in the order

of n−2/(4+d) where d is the dimension of the state variables.4 To reduce the pricing error

from $0.1 to $0.01, parametric method requires 100 times the sample size and nonparametric

method requires 10,000 times the sample size if d = 4. Multidimensional state variables are

common. For example, option pricing can involve state variables such as the underlying

asset price, volatility, option maturity, strike price, etc. That the robust parametric method

can, depending on model quality, reduce the estimation error toward that of the parametric

method is a nontrivial contribution. Its advantage relative to parametric methods lies in the

possibility of model misspecification, in which case the parametric pricing error is difficult

to quantify. Therefore, the proposed robust parametric method is especially suitable if a

2Delta refers to the sensitivity of option value to the change in price of its underlying asset. Gamma

measures the rate of change in delta when the underlying asset value changes.

3See (1.8) on measuring model quality.

4See Newey and McFadden (1994) and Fan (1992) on the parametric and nonparametric rates of conver-

gence.
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model is partially misspecified.

To see the intuition of the robust parametric method, let f (X; θ) denote the option

trader’s state-of-the-art model which may be misspecified, where X is the state variable

and θ is the model parameter. Misspecification implies the nonexistence of a parameter θ

such that f (X; θ) fits the true model for all X. However, misspecification does not rule out

the existence of a parameter θ such that f (x; θ) fits the true model for one value X = x

only. Since a parameter generally varies with x, tracing out this parameter for various

x (denote the resulting function θ (X)) implies that f (X; θ (X)) matches the true model.

That is, the misspecified model has been turned into a true model. For example, because

the out-of-the-money put options tend to be more expensive (i.e., higher implied volatility)

than the Black-Scholes price, no single volatility number can match the Black–Scholes prices

to observed option prices for all strikes. Nonetheless, these implied volatilities, when plotted

against strikes, constitute the smile curve. The Black-Scholes price can fit the option prices

using the smile curve. This is an instance where a misspecified model is converted into a

correct one. Therefore, this paper captures the intuition used informally in the investment

community.

Along the dimensions where the model quality is high, θ (X) tends to be less variable.

This implies that a parameter can adequately approximate the true model even for distant

state variables. In the option pricing example, the Black-Scholes model is a better model if

the smile curve is flatter. In this case, Black-Scholes price using the at-the-money implied

volatility may provide a good approximation for out-of-the-money option prices. Similarly,

along other dimensions where the model quality is poor, the increased variability of θ (X)

implies that the model cannot match observations with distant state variables. The pro-

posed estimator automatically detects the model quality and assesses the “region of fit,”

which denotes the region in which the model is deemed high quality. For example, in a

two-dimensional case, the region of fit may take the shape of a rectangle. The side along

the dimension of high model quality is longer, while the side along the dimension of poor

model quality is shorter.

A poor model tends to require a lot of variation in θ (X) for f (X; θ (X)) to match

reality. This relates to Hansen and Jagannathan (1991) and Hansen and Jagannathan
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(1997). These two papers show how security market data restrict the admissible region

for means and standard deviations of intertemporal marginal rates of substitution (IMRS)

which can be used to assess model specification. Specifically, Hansen and Jagannathan

(1991) calculate the lower bound on the standard deviation of IMRS to price the assets.

This bound on the variability of IMRS has a natural connection to the variability of θ (X)

in this paper. Therefore, the robust parametric estimator operationalizes the Hansen and

Jagannathan (1991) volatility bound for investors who know their model is misspecified but

have no better model at the time of decision making.

The robust parametric pricing method can add value even in the unlikely situations

where the correct model is known. For example, a true model can be high-dimensional and

does not admit closed-form formula. Estimation using numerical procedures can add noise

when computing power is finite. In this case, it may sometimes be beneficial to use a simple

(yet misspecified) model and explicitly adjust for the misspecification using the proposed

method. This echoes the “maxim of parsimony” in Ploberger and Phillips (2003) and is

consistent with, for example, the widespread practice of using the Black-Scholes option

price despite possible misspecification. Section 1.3.3 illustrates this point using simulation

under a realistic setting of Treasury option pricing. The robust parametric estimator using

a simple but misspecified model can give pricing precision comparable to that of a true yet

complicated model.

We then apply the robust parametric method to the pricing of Treasury options traded

on the CBOT. In both in-sample analysis and out-of-sample performance, the robust para-

metric method consistently performs better than the nonparametric price and the paramet-

ric price (based on models in which the short rate follows an affine term structure model).

This suggests that such option pricing formulas are misspecified, but they are still informa-

tive (otherwise, the robust parametric prices would not perform better than nonparametric

prices). The region of fit indicates that these option pricing formulas have poor fit along the

dimensions of short rate and bond maturity but are good along the dimension of option ma-

turity. Such information facilitates future development of asset pricing models. Specifically,

it suggests that the cheapest-to-deliver (CTD) practice in the CBOT Treasury options mar-

ket is an important source of model misspecification which is often ignored in bond option
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pricing formulas. Jordan and Kuipers (1997) document an interesting event where CTD

affected the pricing of those Treasuries used in the delivery. Results in this paper suggest

that CTD is also an important feature in day-to-day Treasury options pricing.

The robust parametric estimator is motivated in the context of asset pricing. Asset

prices involve expectations of discounted future payoffs conditional on available informa-

tion. Nonetheless, the estimator can be applied to estimate conditional expectation func-

tions in general when partially misspecified models are available.5 Model misspecification is

an important topic in the econometrics literature and has motivated specification tests (e.g.,

Hausman (1978)) and nonparametric estimation (e.g., Fan and Gijbels (1996)). Nonpara-

metric estimation achieves robustness by completely ignoring economic restrictions (either

right or wrong restrictions). This results in a loss of efficiency (the “curse of dimensionality”

illustrated previously). To improve efficiency, nonparametric pricing can be conducted un-

der shape restrictions implied by economic theory (Matzkin (1994), Aı̈t-Sahalia and Duarte

(2003)). There is also a literature on semiparametric estimation (Powell (1994)). Gozalo

and Linton (2000) propose to replace the local polynomial in nonparametric estimation

with an economic model and show that the resulting estimator is consistent and retains

the nonparametric rate of convergence. This paper builds on their insight and shows that

incorporating model restrictions can improve efficiency toward that of the parametric rate

when the model quality improves, hence constituting a continuous middle ground between

parametric and nonparametric estimations. The estimator is particularly useful when an

available model is partially misspecified — good along certain dimensions yet poor along

others.

5This paper focuses on the estimation of the conditional expectation function. In the context of likelihood

estimation, quasi-maximum likelihood estimator (White (1982)) and local likelihood estimator (Tibshirani

and Hastie (1987)) have been proposed to address misspecification. When the model is correctly specified,

the maximum likelihood estimator is optimal under fairly general conditions (e.g., Newey and McFadden

(1994)). When the model is misspecified, the quasi-maximum likelihood estimator minimizes the Kullback-

Leibler Information Criterion (KLIC) which is the distance between the misspecified model and the true

data-generating process measured by likelihood ratio. However, minimal distance measured by likelihood

ratio need not translate into minimal distance in price (i.e., conditional expectation function) if the model

is misspecified. This also applies to the local likelihood estimator.
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This paper is organized as follows. Section 1.2 details the proposed robust parametric

method and its properties. Section 1.3 uses simulation to examine its performance. Section

1.4 studies the pricing of CBOT Treasury options using the robust parametric method.

Section 1.5 concludes. The appendix contains the proofs and collects the various Treasury

options and futures pricing formulas used in the simulation and empirical analysis.

1.2 Asset pricing with misspecified models

Consider an asset whose price is P (X) where X is a d-dimensional state variable. In case

a state variable is unobservable, we assume in this paper that the investors observe a proxy

of it.6 We assume that an investor has an economic model which prescribes a possibly

misspecified pricing formula f (X; θ). θ is a p-dimensional parameter. The data consist of

observations {xi, yi}ni=1 where yi = P (xi)+εi. ε has zero mean and can capture the market

microstructure effects (see Amihud et al. (2005) for a recent review) or noises in the proxy

of the state variable.

As motivated in the introduction, a misspecified model f (X, θ) can be turned into a

true model if there exists a function θ (X) such that

P (X) = f (X; θ (X)) . (1.1)

Correct specification is equivalent to θ (X) being constant. Given x, a Taylor expansion

implies that for X near x,

P (X) = f (X; θ (x)) + b1 (x) · (X − x) + (X − x)T · b2 (x) · (X − x) + o
(
‖X − x‖2

)
(1.2)

i.e., the model f using parameter θ (x) (the true parameter at X = x) approximates P (X)

for X near x. Therefore, we propose to estimate θ (x) using observations near x,

θ̂ (x) = argmin
θ

∑
‖xi−x‖≤h

[yi − f (xi; θ)]
2 (1.3)

The reason we include observations at X 6= x in the presence of misspecification is that

the additional observations likely reduce estimation noise as long as the misspecification is

6We do not focus on the filtering problem associated with unobservable state variables due to our focus

on the conditional expectation.
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not severe. This creates a trade-off between estimation efficiency and robustness which is

represented in the choice of h in (1.3). We will refer to h as “region of fit” in this paper.

When the model misspecification is minor, one can afford to use a larger region of fit to

improve efficiency. By contrast, if model misspecification is severe, one might want to use

a smaller region of fit to ensure robustness. We will discuss the optimal choice of region of

fit shortly. For now, assuming an estimate θ̂ (x) is obtained using the optimal region of fit,

we estimate the asset price by

P̂ (X = x) = f
(
x; θ̂ (x)

)
.

The (infeasible) optimal choice of region of fit, denoted h∗, can be determined by mini-

mizing the integrated mean squared pricing error

h∗ = argmin
h

E
[
P (X)− f

(
X; θ̂ (X)

)]2
. (1.4)

Equation (1.4) cannot be directly applied because the true expectation is unknown. In

this paper, we follow a method similar to the crossvalidation in nonparametric bandwidth

choice. The crossvalidation procedure is asymptotically optimal with respect to the criterion

function in (1.4) (see Hardle and Marron (1985) and Hardle et al. (1988)).7 Specifically,

the crossvalidation method has two steps. For a given candidate h, we obtain a first-step

estimate θ̂−i,h (xi) of θ (xi) using all observations less than h away from xi except xi itself,8

θ̂−i,h (xi) = argmin
θ

∑
0<‖xj−xi‖≤h

[yj − f (xj ; θ)]
2 (1.5)

and the optimal choice of the region of fit is set to ĥ that minimizes the sum of residual

squared errors from the first-step estimates

ĥ = argmin
h

1

n

n∑
i=1

[
yi − f

(
xi; θ̂−i,h (xi)

)]2
(1.6)

7There is a large statistics literature on choosing the optimal smoothing parameter h. See Hardle and

Linton (1994) for a review.

8If xi itself is included in the crossvalidation, it will result in a mechanical downward bias in the h

estimator because a perfect fit is possible by choosing a very small region of fit so that only xi is included

to fit itself.



CHAPTER 1. ASSET PRICING USING PARTIALLY MISSPECIFIED MODELS 8

where, for technical reasons, the minimization is restricted to the compact set

O
(
n−1/(4+d)

)
≤ h ≤ O

(
n−ω

)
(1.7)

for some ω > 0. The lower bound n−1/(4+d) is the rate of the nonparametric bandwidth.

The upper bound, when ω is close to zero, is allowed to decrease at a very slow rate (in

the case of a good model). The propositions in this paper will be proved for the feasible

region of fit ĥ instead of for the infeasible h∗. In general, ĥ depends on the sample size n.

However, the dependence is not made explicit to simplify notations.

Proposition 1. (Consistency) Under Assumptions 1-5, irrespective of misspecification,

when n→∞,

θ̂ (x)
p→ θ (x)

f
(
x; θ̂ (x)

)
p→ P (x)

if ĥ
n→∞→ 0 and nĥd

n→∞→ ∞.

The asymptotic distribution of θ̂ (x) varies with the quality of the model. (1.2) implies

that the model can locally match the true pricing formula. Therefore, model quality in

this paper is measured by the mismatch between the true model and f (X; θ (x)) for state

variable X away from x. This relates to the match between the derivatives of f (X; θ (x))

and those of the true model. We say that a model matches the true model up to its 2k-th

derivative if, for any x, (using univariate notation for simplicity)

P (X) = f (X; θ (x)) + b2k+1 (x) · (X − x)2k+1 + b2k+2 (x) · (X − x)2k+2 + o
(
‖X − x‖2k+2

)
.

(1.8)

Let nx,h denote the number of observations less than h away from x. When X is d-

dimensional, the number of observation less than h away from x is in the order of

nx,h = Op

(
nhd

)
(1.9)

when n→∞ and h→ 0.

Proposition 2. (Bias-variance trade-off) Under Assumptions 1-5, if the model f matches

the true model up to its 2k-th derivative as in (1.8) for some k ≥ 0, when n → ∞, ĥ → 0
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and nĥd →∞,

Bias
(
θ̂ (x)

)
= O

(
ĥ2k+2 + n−1ĥ−d

)
(1.10)

Var
(
θ̂ (x)

)
= O

(
n−1ĥ−d

)
.

This proposition illustrates the trade-off between estimation efficiency and robustness.

When the region of fit ĥ is larger, more observations are used which results in lower variance

of the estimate. However, if the model is misspecified, increasing the region of fit leads to a

larger bias. When the model quality improves (k increases), the bias becomes smaller. The

next proposition shows that the estimator will, depending on model quality, automatically

select an appropriate region of fit ĥ to balance efficiency and robustness.

Proposition 3. (Model quality) Under Assumptions 1-5, when the model f matches the

true model up to its 2k-th derivative as in (1.8) for some k ≥ 0,

ĥ−1 = Op

(
n1/(4+4k+d)

)
(1.11)

P (x) = f
(
x; θ̂ (x)

)
+Op

(
n−(2+2k)/(4+4k+d)

)
Note that n−(2+2k)/(4+4k+d) → n−1/2 when k →∞.

When k = 0 (i.e., if the model can only match the level of the true model), the estimator

automatically achieves the nonparametric rate of convergence n−2/(4+d).9 When the model

gives a better fit in the sense of a higher k, the rate of convergence automatically improves

towards that of the parametric rate n−1/2. Therefore, a continuous middle ground between

nonparametric and parametric estimation is achieved depending on the quality of the model.

The efficiency gain is due to the valid restrictions imposed by a better economic model.

When k increases, (1.11) implies that the region of fit ĥ decreases at a slower rate. Recall

that (1.7) implies an upper bound n−ω for the region of fit. Therefore, full parametric

rate of convergence cannot be achieved. This efficiency loss is necessary because we need

h→ 0 to ensure robustness. However, ω can be made arbitrarily small to make the rate of

convergence arbitrarily close to the parametric rate. Further, if one views most models as

reasonable approximations (i.e., misspecified) rather than literal descriptions of the reality,

9See Fan (1992) on the nonparametric rate of convergence.



CHAPTER 1. ASSET PRICING USING PARTIALLY MISSPECIFIED MODELS 10

this efficiency loss associated with ω > 0 is likely a small price to pay in practice to ensure

robustness.

This efficiency is gained without introducing additional parameters. This contrasts with

the local polynomial nonparametric estimators (see Fan and Gijbels (1996)) in which smaller

bias can be achieved using a higher-order polynomial to approximate the true model. How-

ever, this leads to increased variance due to increased number of parameters. For example,

going from a local linear model to a local quadratic model can double the asymptotic vari-

ance for typical kernels (Table 3.3 in Fan and Gijbels (1996)).

(1.3) weighs observations equally for ease of illustration and does not explicitly discuss

the possibility of weighting the observations as in, for example, GMM estimation (Hansen

(1982)) or LOWESS nonparametric estimation (Fan and Gijbels (1996)). This is similar

to using a uniform kernel in nonparametric estimation where it is known that the choice

of kernel is not crucial (Hardle and Linton (1994)). Equal weighting is also technically

convenient. When the model is correct and the sampling errors are homoskedastic, we

would like the estimator to use all observations with equal weight just like the parametric

nonlinear least-squares estimation. To achieve this using a kernel with unbounded support

(such as normal), h → ∞ is required which is inconvenient in numerical implementation.

However, weighting implicitly occurs in this paper through the region of fit; observations

outside of the region of fit receive zero weight.

1.2.1 Sensitivity analysis

One may be interested in estimating derivatives of the pricing formula for, e.g., risk manage-

ment purposes. Examples include the various Greek letters of the option pricing formula

or other sensitivity analyses. Recall that θ (X) satisfies P (X) = f (X; θ (X)). Taking

derivative with respect to the state variable implies

P ′ (X) = fX (X; θ (X)) + fθ (X; θ (X)) · θ′ (X) .

To simplify notation, fX is used to denote ∂
∂X f , similarly for fθ.

In order to estimate P ′ (x), θ′ (x) needs to be estimated. Otherwise there is a bias if the

model is misspecified and fX (X; θ (X)) alone is used to estimate sensitivity. To estimate
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the first derivative of θ (X), we can use an augmented model

f (X; θ0 (x) + θ1 (x) · (X − x))

to approximate the true model for X near a given x. The estimation then proceeds in the

same way as in the previous section. From the estimates
(
θ̂0 (x) , θ̂1 (x)

)
, the derivative of

the true model P ′ (X) at X = x can be estimated by

fX

(
x; θ̂0 (x)

)
+ fθ

(
x; θ̂0 (x)

)
· θ̂1 (x) .

The estimation of higher-order derivative is similar. Counterparts to Proposition 1

– 3 exist for derivative estimation. These propositions and their proofs are similar to

Proposition 1 – 3. These results are omitted for brevity and are available from the authors

upon request.

1.2.2 Partially misspecified models

A multivariate model may be correctly specified along some dimensions, but misspecified

along other dimensions. Even when it is misspecified in all dimensions, its approximation

may be better in some dimensions than the others. The robust parametric pricing method

is well suited for such models. In fact, Proposition 1 - 3 are derived for the general case

of d-dimensional state variables. In this section, we show that the region of fit can be

refined for a partially misspecified model. Specifically, we apply a separate region of fit for

various model dimensions (this contrasts with the previous sections where the estimation of

θ (x) use observations xi satisfying ‖xi − x‖ ≤ h and does not distinguish different model

dimensions).

We illustrate using a two dimensional example where the state variable is x =
(
x(1), x(2)

)
.

(1.3) can be modified so that the parameters are estimated from

θ̂ (x) = argmin
θ

∑
∥∥∥x(1)i −x(1)∥∥∥≤h(1)∥∥∥x(2)i −x(2)∥∥∥≤h(2)

[yi − f (xi; θ)]
2 . (1.12)

The region of fit now takes the shape of a rectangle. I.e., the model is allowed to have

different qualities along the first and the second dimensions of the state variable. This
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refinement may also be used to reflect different scales of various dimensions (e.g., measured

in different currencies). The estimation then proceeds in the same way and the conclusions

in Proposition 1 - 3 remain the same.

1.2.3 Numerical implementation

The estimation in (1.3) and (1.5) involves nonlinear least squares which is programmed in

many statistical software packages. Nonlinear least squares estimation is quick because it

is typically implemented as iterated linear least squares, see Greene (1997). Nonetheless,

when the dataset has a large number of observations and when the state variable has many

dimensions, there is room for faster implementation of the proposed pricing method.

A potential bottleneck of the robust parametric pricing method is the crossvalidation

step (1.5). In principal, it is repeated for all possible candidates of h at all observations to

evaluate the model quality. However, this is not necessary; fewer evaluations can be done

to trade efficiency gain for computation speed.

First, one can restrict the choice of h by searching over a grid instead of a continuum,

h1 = n−1/(4+d), h2 = h1 + ∆, h3 = h1 + 2∆, · · · , hm = n−ω (1.13)

where ω is a small positive number as in (1.7). The grid size is ∆ = (hm − h1) / (m− 1).

The number of grid can be increased when additional computing power is available. The

downside from searching over fewer grids is that ĥ is away from its optimal choice, which

reduces (though does not eliminate) the efficiency gain. For a partially misspecified model

in Section 1.2.2, the grid can be applied separately to each dimension.

Next, one can restrict the number of observations at which (1.5) is evaluated. For

the purpose of estimating the expectation in (1.4) using its sample analog, the number of

evaluations should increase asymptotically towards infinity though the rate of increase can

be lower than that of the sample size. This can be implemented, for example, by estimating

(1.5) at randomly selected nv observations for some 0 < v ≤ 1. When v is bigger, the

expectation in (1.4) is estimated more precisely at the cost of additional computing time.



CHAPTER 1. ASSET PRICING USING PARTIALLY MISSPECIFIED MODELS 13

1.3 Simulation – Treasury options pricing

This section uses simulation to illustrate the proposed robust parametric pricing method

in realistic samples, comparing its performance to parametric and nonparametric methods.

When a true model is complicated, we also illustrate the potential advantage of using a

simple (though misspecified) model.

We illustrate in the context of pricing Treasury options. Specifically, let C (τ, T,X)

denote the price of a call option on Treasury zero-coupon bonds, where τ is time to option

expiration, T is bond maturity at option expiration, and X includes other state variables

such as the prevailing interest rate, the strike price, etc. This is a multivariate example in

that the option pricing formula will be estimated along the dimensions of option maturity,

underlying bond maturity, and other state variables using the method in Section 1.2.2. We

assume that the true data-generating process follows the Cox et al. (1985) model (CIR

model) under the risk-neutral probability

drt = k (θ − rt) dt+ σ
√
rtdWt (1.14)

where rt is the instantaneous short rate at time t. The short rate mean-reverts to its long-

run mean θ. The speed of mean reversion is governed by k. The standard Brownian motion

W drives the random evolution of the short rate. The instantaneous volatility of the short

rate is determined by the parameter σ and the square root of the short rate (hence the

process is also known as the square root process). Under the CIR model, the Treasury

zero-coupon bond option has a closed-form expression (detailed in the appendix).

To implement the robust parametric method, we travel back in time to year 1977 where

an investor has just learned the Vasicek (1977) model (which delivers a closed-form Treasury

option pricing formula detailed in the appendix), but this same investor has yet to learn

the Cox et al. (1985) model. In the Vasicek model, the evolution of the short rate under

the risk-neutral probability is assumed to follow

drt = k (θ − rt) dt+ σdWt. (1.15)

We compare the robust parametric method using the misspecified Vasicek model to four

other estimation methods: (i) parametric estimation using the CIR model (true model); (ii)



CHAPTER 1. ASSET PRICING USING PARTIALLY MISSPECIFIED MODELS 14

parametric estimation using the Vasicek model (misspecified model); (iii) nonparametric

estimation; (iv) parametric estimation using the correct CIR model but applying numerical

integration (instead of the closed-form formula) to obtain option prices. The estimation

performance is measured by the sample analog of the root integrated mean squared error

RIMSE ≡

√√√√ 1

n

n∑
i=1

(
Ĉi − Ci

)2
(1.16)

where Ĉ and C are, respectively, the estimated and the true Treasury option prices in each

simulation. RIMSE captures the average goodness of fit and smaller RIMSE indicates

better fit.

The simulation draws 100 sample paths of short rate, each sample path being equivalent

to 5 years of weekly observations. Such samples are common in practice, see for example

Duffie and Singleton (1997). For each sample path, to realistically match the contracts

traded on the Chicago Board of Trade (CBOT), Treasury call option prices are generated

according to the CIR model for the option maturity τ =1, 2, 3, 6, 9, 12, 15 months,

underlying bond maturity T =2, 5, 10, 30 years. The first short rate is drawn from the

stationary distribution of the CIR process. To simplify the illustration, we consider only

at-the-money options which also tend to be the most liquid contracts in practice. As a

result, our model has a three-dimensional state variable – option maturity, underlying bond

maturity, and short rate. In the simulation, the “true” CIR parameters are set to the

estimates in Aı̈t-Sahalia (1999)

k = 0.145, θ = 0.0732, σ = 0.06521 (1.17)

and we add a zero-mean normally distributed noise to generate the observed option price.

The standard deviation of the noise is set to 1% of the CIR price and captures effects such

as the bid-ask bounce. At the true parameter, the bond option prices average around $1.

Hence the pricing errors can be interpreted either as dollar pricing errors or as proportional

pricing errors.
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1.3.1 Simulation result: parametric and nonparametric prices

Table 1.1 panel 1 shows the performance of the various option price estimators. When

an investor knows the correct model, parametric estimator performs the best, generating

an average pricing error of only 0.022 cents.10 However, the accuracy of the parametric

estimator depends crucially on the validity of the model. When the model is misspecified,

the parametric pricing error is 4.1 cents which is an increase of about 200 times. Nonpara-

metric prices, on the other hand, do not depend on any model and avoid misspecification.

In the simulation, nonparametric prices register an average pricing error of 1.3 cents, about

70% less than the parametric prices when the model is wrong.11 However, the nonpara-

metric prices ignore all model information (correct or not) and perform much worse than

parametric prices when the model is correctly specified.

1.3.2 Simulation result: robust parametric prices

The robust parametric method proposed in this paper aims to achieve a continuous middle

ground between parametric and nonparametric methods. Table 1.1 panel 1 shows that the

robust parametric method (which uses a misspecified model) has an average pricing error of

0.15 cents. This is about 7 times larger than that of the parametric estimation error using

the correct model, yet 27 times smaller than the parametric estimation error using a wrong

model. The error is also an order of magnitude smaller than the nonparametric error.

To see the source of the efficiency gain, let us turn to panel 2 in Table 1.1 and Figures

1.1 and 1.2. In panel 2 of Table 1.1, the regions of fit along the option maturity and bond

maturity dimensions are both zero, indicating that the Vasicek model provides a poor fit

of the CIR prices along these two dimensions.12 Figures 1.1 and 1.2 further illustrate this.

Figure 1.1 plots the true and estimated option prices along the dimension of option maturity.

10The parametric estimation uses nonlinear least squares.

11We use the Nadaraya-Watson nonparametric estimator with uniform kernel and cross-validation band-

width selection, see Hardle and Linton (1994) for more details.

12To be exact, the region of fit for option maturity averages to 0.01. However, because the observations

come in weekly and the interval between successive observations of option maturity is at least 1/52 ≈ 0.02,

the region of fit for option maturity is essentially zero.
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The robust parametric method is applied to four maturities (1, 3, 6, and 12 months) and

we use the estimates to price options with other maturities. The Vasicek and CIR prices

quickly diverge, confirming severe model misspecification along the dimension of option

maturity. Similarly, Figure 1.2 illustrates severe misspecification along the dimension of

bond maturity, too. Such misspecification is the reason why the robust parametric method

outperforms parametric method using a misspecified model. When the model quality is

poor along some dimensions, the robust parametric method sets small regions of fit along

such dimensions to achieve robustness.

The situation is different along the dimension of short rate. Panel 2 of Table 1.1 shows

that the region of fit is 0.026 along this dimension. I.e., if one is estimating the option

price at short rate 7%, the robust parametric estimator uses all observations whose short

rates are between 4.4% and 9.6%. Figure 1.3 confirms that the Vasicek price approximates

the CIR price reasonably well for adjacent short rates (the two option price curves almost

overlap). The robust parametric method detects the good fit and uses a larger region of

fit for the dimension of the short rate to improve efficiency. This is the intuition why the

robust parametric method outperforms the nonparametric method – it retains those model

restrictions that are valid.

1.3.3 Simulation result: comparison with using a true but complicated

model

The proposed robust parametric method can add value even in the unlikely case where the

correct model is known. A true model is likely complicated and may not have closed-form

pricing formula. For example, many term-structure models do not render closed-form bond

option pricing formula. The Vasicek and CIR models used in the simulation, along with a

handful of other models, constitute the exception. For more complicated models, numerical

methods can be used to approximate the option prices (e.g., numerical integration in Duffie

et al. (2000)).

In this section, we compare the performance of the proposed method to the performance

of parametric estimation using numerical methods on a true model. Specifically, the robust

parametric estimator still uses the closed-form Vasicek option pricing formula which is mis-
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specified. On the contrary, the parametric estimator uses the true CIR model but pretends

that this is a model complicated and closed-form option pricing formula is unavailable.

Instead, the parametric estimator uses numerical integration to obtain option prices.

We use two ways to model the numerical errors. First, we assume that the option price

from numerical integration (denoted by CNUM ) satisfies

CNUM = C · (1 + ε)

where C is the true option price from the closed-form CIR pricing formula. ε is set to be a

uniformly distributed random variable over [−ω, ω]. I.e., we do not actually use numerical

integration. Instead, we start from the closed-form option price and let ω vary to control

the degree of numerical error. When ω = 0, numerical error disappears and we return

to the case of parametric estimation using the closed-form formula. A larger ω indicates

larger numerical error. We repeat the simulation for ω = 0.01%, 0.1%, 0.2%, 0.3%, 0.5%,

and 1%. The results are shown in Panel 3 of Table 1.1. The proposed robust parametric

method using the misspecified Vasicek model is comparable in performance to parametric

estimation using the true model when the numerical error is between 0.2% and 0.3%. This

is remarkable because Vasicek option prices are grossly misspecified relative to CIR option

prices.13 Nonetheless, adjusting for misspecification using the robust parametric method

improves the estimation performance to the equivalent of parametric estimation using true

model with a numerical error of around 0.25%.

Next, we follow Duffie et al. (2000) and compute CIR option prices by actual numerical

integration. The estimation RIMSE is shown in Panel 4 of Table 1.1. The result is

comparable to the case of ω = 1% in Panel 3. In practice, numerical precision can be

improved at the cost of longer computing time. Therefore, the result in Panel 4 should be

interpreted with caution. However, even with a relatively tractable model like CIR, there are

already non-trivial issues with numerical integration. For example, Carr and Madan (1999)

point out that poor numerical precision can result from the highly oscillatory nature of the

characteristic function in the integrand. When the true model becomes more complicated,

13Parametric estimation error using the Vasicek model is 200 times the parametric estimation error using

the true CIR model, see Panel 1. Panel 2 further shows that the Vasicek model does not fit CIR model

along the dimensions of bond maturity and option maturity at all.
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the numerical errors are likely more difficult to understand and control. This shows that it

may sometimes be preferable to use a simpler model and explicitly adjust for misspecification

using the proposed robust parametric method.

1.4 Empirical application – Treasury options pricing

We next apply the robust parametric method to the pricing of Treasury options traded

on CBOT to examine its in-sample and out-of-sample performances. We collect weekly

call option closing price data from CBOT. The sample period is May 1990 – December

2006. CBOT lists options on 2-, 5-, 10-, and 30-year Treasuries.14 The 2-year Treasury

option does not have much trading volume and is excluded from the analysis. To reduce

data error, we eliminate those observations where the recorded option price is less than the

intrinsic value, i.e., if C < max(F − K, 0) where C, F , and K are the observed Treasury

call option price, observed Treasury futures price, and option strike, respectively. Further,

for each option contract, we use only data for the at-the-money contract (contract whose

F is closest to K) which tends to have the most trading volume. There are a few instances

where CBOT supplies a closing option price but indicates a trading volume of zero. Such

observations are eliminated.

As in Section 1.3, we apply the robust parametric method using the possibly misspecified

Vasicek (1977) model.15 The Vasicek (1977) option pricing formula assumes that a zero-

coupon bond underlies the option. This differs from the cheapest-to-deliver (CTD) practice

of CBOT listed options where the delivery can be made with different Treasuries.16 Because

14These options are more precisely options on Treasury futures. However, those option maturities with the

most trading volume (March, June, September, and December) coincide with futures expiration. Therefore,

upon option exercise, the delivery is essentially made in the underlying Treasuries. We focus on the option

maturities of March, June, September, and December and will refer to the options as Treasury options for

simplicity.

15We have alternatively estimated a model in which the short rate follows the Cox et al. (1985) process.

The result is similar. It is suppressed for brevity and available from the authors upon request.

16CTD refers to the right to deliver any Treasuries designated eligible by CBOT. For example, for the 10

year contracts, deliverable grades include US Treasury notes maturing at least 6 1/2 years, but no more than

10 years, from the first day of the delivery month. To address the fact that Treasuries vary in their coupon,
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we do not have information on the cheapest Treasury for delivery, we use the following

procedure to adjust for the coupon of the delivery bond. Specifically, we convert the delivery

bond into a zero coupon bond by assuming that the coupons are paid at bond maturity.

This assumption ignores the time value between coupon payment and bond maturity. It is

an imperfect way to model the cheapest-to-deliver practice and we will discuss more on this

issue later. However, since the estimation method permits misspecification, this assumption

does not lead to inconsistent estimators. Now the problem of unknown coupon is translated

to the new problem of unknown face value at maturity which we back out using the observed

Treasury futures price from CBOT. Specifically, let M denote the unknown par value, then

M can be computed from

M =
F

F (τ, T, r)

where F is the observed CBOT Treasury futures price, F (τ, T, r) is the Vasicek (1977)

implied futures price on a zero coupon bond with face value $1 (see appendix 1.5 for the

futures price formula).17 This implies the following pricing formula for the CBOT options

Cadj(τ, T, r,K) = M · C(τ, T, r,
K

M
) (1.18)

where Cadj is the call option price adjusted for the cheapest-to-delivery practice, C is the

Vasicek (1977) pricing formula for call option on a Treasury zero coupon bond with $1 face,

τ is the option maturity, T is the bond maturity, r is the short rate which is measured by

one month Treasury bill rate, and K is the option strike price.

We compare both in-sample and out-of-sample performances of three pricing methods:

the robust parametric method proposed in this paper, the parametric method, and the

nonparametric method.18

maturity, and other features, CBOT uses a system known as the conversion factor to equalize various bonds.

According to CBOT, the conversion factor is the price of the delivered note ($1 face value) to yield 6 percent

and the invoice price equals the futures settlement price times the conversion factor plus accrued interest.

The conversion system usually makes some bonds less costly to deliver than others.

17The CBOT Treasury futures price data are from Datastream.

18We use nonlinear least squares in the parametric estimation. We use the Nadaraya-Watson nonparamet-

ric estimator with uniform kernel and cross-validation bandwidth selection, see Hardle and Linton (1994)

for more details.
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1.4.1 Misspecification of Treasury option pricing models

We use the root integrated mean squared error (RIMSE) defined in (1.16) to measure the in-

sample performance of various estimators. The result is in Panel 1 of Table 1.2. The model

is so misspecified that the nonparametric prices do better than parametric prices in the

sample. Nonetheless, the model contains useful information because the proposed robust

parametric method does better than either parametric or nonparametric methods. The

robust parametric method also produces the highest R-square in the regression of observed

option prices on fitted option prices – 90.2% versus 49.8% and 74.4% from parametric and

nonparametric estimators, respectively. The improvement in R-square is consistent with

the scatterplots shown in Figure 1.4.

The robust parametric method selects a region of fit separately for each dimension (see

Section 1.2.2). Figure 1.5 shows the RIMSE for various regions of fit along the dimensions of

option maturity, bond maturity, and short rate.19 In the sample, the Vasicek (1977) model

performs poorly along the dimensions of bond maturity and short rate. This can be seen by

the increase in RIMSE when the regions of fit for these two dimensions increase. Therefore,

the robust parametric estimator selects small regions of fit for these two dimensions. The

model, however, provides useful restrictions along the dimension of option maturity. In

Figure 1.5, the RIMSE bottoms out when the region of fit is set to 3 weeks for the dimension

of option maturity.20 This implies that the Vasicek option pricing formula provides a good

approximation for observations with adjacent option maturity.

The information provided by the regions of fit along various dimensions of the state vari-

able can be used to triangulate model misspecification which is useful for the development

of pricing models. In this case, the model fits well along the dimension of option maturity

but not along bond maturity or short rate. Pinpointing the exact cause of bond options mis-

19When plotting for one of the three dimensions, the regions of fit for the other two dimensions are held

the same as those in the estimation.

20The optimal region of fit along the dimension of option maturity is 2 weeks if the Cox et al. (1985)

process is used instead of the Vasicek (1977) process to model the short rate. The optimal regions of fit

along bond maturity and short rate remain the same. This suggests better fit of Vasicek (1977) process for

the purpose of modeling CBOT Treasury option prices.
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specification requires a separate study, though the evidence is suggestive that the cheapest-

to-deliver (CTD) practice associated with the CBOT Treasury futures/options plays a role.

The CTD practice usually makes some bonds less costly to deliver than others, which is not

typically captured by bond option pricing formulas. The actual cheapest-to-deliver bond

varies across contracts involving different bond maturities and across different interest rate

environments (see, for example, Kane and Marcus (1984) and Livingston (1987)) which is

consistent with the misspecification along the dimensions of bond maturity and short rate

indicated by the regions of fit. The region of fit for option maturity, on the contrary, shows

good fit up to 3 weeks. Observations less than 3 weeks apart are likely consecutive weekly

observations of the same contract for which the cheapest-to-deliver bonds are likely similar

or even identical. Therefore, the evidence suggests that the cheapest-to-deliver feature is

an important source of misspecification for Treasury option pricing.

1.4.2 Out-of-sample performance

To confirm that the improved fit is not due to in-sample overfitting and can be extrapolated

out of the sample, Panel 2 of Table 1.2 shows the out-of-sample comparison of the proposed

robust parametric method to parametric and nonparametric methods. Specifically, model

parameters are estimated using five years of weekly observations which are then used in out-

of-sample pricing in the subsequent year. RIMSE and regression R-square are computed in

the subsequent year out-of-sample. Because the sample period starts in May 1990, the first

year of out-of-sample comparison is 1996. Panel 2 shows the RIMSE for each year separately.

It also shows the R-square in the regression of observed option prices on predicted option

prices. The robust parametric method has the best out-of-sample performance in all years.

Overall, the robust parametric method has a reduction of 46.6% and 33.9% in RIMSE,

and an increase of 39.6% and 16.5% in R-square relative to parametric and nonparametric

methods, respectively.
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1.5 Conclusion

Misspecified models is a fixture in decision making. This paper proposes a robust parametric

method which extracts valid information yet explicitly controls for possible misspecification

of a model. The resulting estimator provides a continuous middle ground between para-

metric and nonparametric precision. Though the simulation and empirical analysis are in

the context of asset pricing, the method can be applied to the estimation of conditional

expectation function in general.

Model restrictions also help to alleviate the concern of overfitting. As pointed out by

Campbell et al. (1997) (page 524), “... perhaps the most effective means of reducing the

impact of overfitting and data-snooping is to impose some discipline on the specification

search by a priori theoretical considerations.” The estimator in this paper does exactly

that; it confronts the data with an a priori model. This is confirmed by the out-of-sample

performance in Section 1.4.2.

Using an approximate (i.e., misspecified) model may also provide other advantages. For

example, the true model can be complicated and it may sometimes be preferable to use

a simple yet misspecified model. As pointed out by Fiske and Taylor (1991) (page 13),

“... People adopt strategies that simplify complex problems; the strategies may not be nor-

matively correct or produce normatively correct answers, but they emphasize efficiency.”

Interestingly, one of the simulations shows that applying the proposed estimator on a good

parsimonious model can sometimes outperform fully parametric estimation using a compli-

cated model even if the complicated model is the true model. This echoes the “maxim of

parsimony” in Ploberger and Phillips (2003) and allows wider applications of the proposed

estimator.
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Assumptions, Proofs, and Option Pricing Formulas for Chap-

ter One

Assumptions

First, we collect the regularity conditions assumed in this paper. Recall that we want

to estimate the pricing formula P (X) where X ∈ Rd is the state variable. We assume

an investor has an economic model which implies a possibly misspecified pricing formula

f (X; θ) for P (X). θ ∈ Rp.

Assumption 1. There exists a unique function θ (X) such that f (X; θ (X)) = P (X). The

range of θ (X) is in a compact set Θ.

Assumption 2. P (X) and f (X; θ) are infinitely differentiable with respect to X and θ.

P (X), f (X; θ), and their derivatives are uniformly bounded over X and θ.

Assumption 3. (Sample) The sample consists of independent observations {xi, yi}ni=1

where

yi = P (xi) + εi.

E [εi|X = xi] = 0, Var[εi|X = xi] = v (xi) > 0. v (·) is continuously differentiable. v (·)

and v′ (·) are bounded.

Assumption 4. infX,θ ‖fθ (X; θ) fθT (X; θ)‖ > 0. There exist H > 0, a non-random func-

tion G (θ, x, h), and random variables Z (θ, x, h) ∼ N (0,Σ (θ, x, h)) such that

sup
θ∈Θ,x∈Rd,h<H

∥∥∥∥∥n−1
n∑
i=1

fθ (xi; θ) fθT (xi; θ)−G (θ, x, h)

∥∥∥∥∥ = Op

(
n−1/2

)

sup
θ∈Θ,x∈Rd,h<H

∥∥∥∥∥n−1/2
n∑
i=1

fθ (xi; θ) εi − Z (θ, x, h)

∥∥∥∥∥ = op (1)

for the observations {xi}ni=1 satisfying ‖xi − x‖ ≤ h for all i. The functions ‖G (θ, x, h)‖

and ‖Σ (θ, x, h)‖ are continuous and bounded.

Assumption 4 is a standard uniform convergence condition in large sample asymptotics

(see Newey and McFadden (1994)) except that it requires stronger uniformity because the

“true” parameter θ (X) may vary.
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Let p (X) denote the probability density function of X.

Assumption 5. p (x) > 0 for all x ∈ Rd, p (·) is twice-continuously differentiable.

Proof of Proposition 1

See Theorem 1 in Gozalo and Linton (2000).

Proof of Proposition 2

Using the standard large sample asymptotics argument (see for example Newey and Mc-

Fadden (1994)),

√
n
x,ĥ

(
θ̂ (x)− θ (x)

)
(1.19)

=

 1

n
x,ĥ

∑
‖xi−x‖≤ĥ

FiF
T
i

−1

n
−1/2

x,ĥ

∑
‖xi−x‖≤ĥ

Fi · (εi + P (xi)− f (xi; θ (x))) +Op

(
n
−1/2

x,ĥ
+ ĥ2k+2

)
.

To simplify notation, Fi ≡ fθ (xi; θ (x)). Recall that n
x,ĥ

denotes the number of observations

less than ĥ away from x. When X is d-dimensional, n
x,ĥ

= Op

(
nĥd

)
when n→∞, ĥ→ 0,

and nĥd →∞. The magnitude of the bias

E0<‖xi−x‖≤h [P (xi)− f (xi; θ (x))] = O
(
ĥ2k+2

)
(1.20)

follows from (1.8) using the standard change-of-variable method in nonparametric estima-

tion (see, for example, page 2303 of Hardle and Linton (1994)). The proposition then follows

from (1.19) and (1.20).
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Proof of Proposition 3

The crossvalidation criterion function is

CV (h) =
1

n

n∑
i=1

[
yi − f

(
xi; θ̂−i,h (xi)

)]2

=
1

n

n∑
i=1

[
εi + P (xi)− f

(
xi; θ̂−i,h (xi)

)]2

=
1

n

n∑
i=1

ε2
i +

1

n

n∑
i=1

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]2

+
2

n

n∑
i=1

εi

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]
.

By (1.10), (1.9), and the uniform bounds in Assumption 2–4,

1

n

n∑
i=1

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]2
= Op

(
h4k+4 +

(
nhd

)−1
)
. (1.21)

We will later prove the following lemma.

Lemma 1. Under the conditions of Proposition 3,

1

n

n∑
i=1

εi

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]
(1.22)

= op

(
1

n

n∑
i=1

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]2
)
.

Lemma 1 and (1.21) imply

CV (h) =
1

n

n∑
i=1

ε2
i +Op

(
h4k+4 +

(
nhd

)−1
)

(1.23)

which is minimized at ĥ = n−1/(4+4k+d). It can then be calculated using (1.10) that

P (x) = f
(
x; θ̂ (x)

)
+O

(
n−(2+2k)/(4+4k+d)

)
.

Proof of Lemma 1

εi and P (xi)− f
(
xi; θ̂−i,h (xi)

)
are independent (recall that θ̂−i,h (xi) does not use obser-

vation i hence is independent of εi). Assume for now that θ̂−i,h (xi) is independent of εj
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and θ̂−j,h (xj) (this is almost correct, and we will make it rigorous later), then (1.22) is the

average of n independent variables with zero mean. In this case, the central limit theorem

implies
1√
n

n∑
i=1

εi

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]
d→ N (0, V )

and, by Assumption 3,

V = Op

(
1

n

n∑
i=1

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]2
)

= Op

(
h4k+4 +

(
nhd

)−1
)

by (1.21). Therefore,

1

n

n∑
i=1

εi

[
P (xi)− f

(
xi; θ̂−i,h (xi)

)]
= Op

(
n−1/2

(
h2k+2 +

(
nhd

)−1/2
))

= op

(
h4k+4 +

(
nhd

)−1
)
.

A quick way to see the last step is to note that n−1/2 is the parametric rate of conver-

gence which is faster than the rate of convergence of the robust parametric estimator

(h2k+2+
(
nhd

)−1/2
, see Proposition 2 and (1.7)). This proves Lemma 1 except that the proof

has relied on the assumption that θ̂−i,h (xi) is independent of εj and θ̂−j,h (xj). However,

because θ̂−i,h (xi) is estimated using only observations less than h away from xi, θ̂−i,h (xi) is

independent of εj and θ̂−j,h (xj) if xi and xj are more than 2h apart. Since h→ 0, θ̂−i,h (xi)

is independent of a majority of εj and θ̂−j,h (xj) hence the proof also goes through. The

details of the exact proof provide no additional intuition and contain mere book-keeping

of the correlation for those few observations that are not independent. These details are

suppressed for brevity and available from the authors upon request.

Option Pricing Formula

This section collects several existing option pricing formulas that are used in the paper’s

empirical analysis.
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CIR model

Cox et al. (1985) show that, when the short rate follows the CIR model in (1.14), the price

of a call option with maturity τ and strike price K on a T -year Treasury zero-coupon bond

with par $1 is

C (τ, T, r0,K) = B (r0, T )χ2

(
2r∗ [φ (τ) + ψ −B(T − τ)] ,

4κθ

σ2
,

2φ (τ)2 r0e
γτ

φ (τ) + ψ −B(T − τ)

)

−KB (r0, τ)χ2

(
2r∗ [φ (τ) + ψ] ,

4κθ

σ2
,
2φ (τ)2 r0e

γτ

φ (τ) + ψ

)

where r0 is the short rate at the time of option pricing and χ2 (·, n, c) denotes the cumulative

probability distribution function of a non-central Chi-square distribution with degree of

freedom n and non-centrality parameter c. The other terms used in the option pricing

formula are

B (r0, T ) = A (T ) exp (B (T ) r0)

A (T ) =

(
2γ exp

(
1
2 (k + γ)T

)
(k + γ) (exp (γT )− 1) + 2γ

) 2kθ
σ2

, B (T ) = − 2 (exp (γT )− 1)

(k + γ) (exp (γT )− 1) + 2γ

γ ≡
√
k2 + 2σ2, r∗ = − 1

B (T − τ)
log

[
A (T − τ)

K

]
, φ (τ) =

2γ

σ2 (eγτ − 1)
, ψ =

κ+ γ

σ2
.

Vasicek model

Jamshidian (1989) shows that, when the short rate process follows (1.15), the price of a call

option with maturity τ and strike price K on a T -year Treasury zero-coupon bond with par

$1 is

C (τ, T, r0,K) = B (r0, T ) Φ(z1)−KB (r0, τ) Φ(z2)

where r0 is the short rate at the time of option pricing and Φ(·) denotes the cumulative

probability distribution function of a standard normal random variable. The other terms
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used in the option pricing formula are

B (r0, T ) = exp [A (T ) +B (T ) r0]

A (T ) = −σ
2

4k
B (T )2 − (T +B (T ))

(
θ − σ2

2k2

)
, B (T ) = −1

k

(
1− e−kT

)
z1 =

1

σp
log

[
B (r0, T )

B (r0, τ)K

]
+
σp
2
, z2 =

1

σp
log

[
B (r0, T )

B (r0, τ)K

]
− σp

2

σp = σ

√
(1− e−2κτ )

(
1− e−κ(T−τ)

)2
2κ3

.

Chen (1992) shows that the price of a Treasury future that delivers a T -year zero coupon

bond in τ years is

F (τ, T, r0) = exp [C (τ, T ) +D (τ, T ) r0]

where

C (τ, T ) = A (T ) +
1

4k
B (T ) e−2kτ

(
ekτ − 1

)(
B (T )σ2 + ekτ

(
B (T )σ2 + 4kθ

))
D (τ, T ) = e−kτB (T ) .
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Table 1.1: Simulation

This table reports the Treasury option pricing simulation results. It compares four estimation methods:

the parametric estimator using the correct model (Cox et al. (1985) process), the parametric estimator

using a misspecified model (Vasicek (1977) model), the proposed robust parametric estimator which uses

the misspecified Vasicek (1977) model but explicitly adjusts for misspecification, and the nonparametric

estimator. The simulation is iterated 100 times and each simulation sample path corresponds to five years

of weekly observations. Panel 1 shows the average root integrated mean squared error (RIMSE) defined

as RIMSE ≡
√

1
n

∑n
i=1

(
Ĉi − Ci

)2
where Ĉ and C are, respectively, the estimated and the true Treasury

option prices. Panel 2 shows the average regions of fit (h in (1.12)) in the robust parametric method. Panel 3

shows the estimation RIMSE for parametric estimation using the correct CIR model where the closed-form

option price C is perturbed to C · (1 + ε). ε is uniformly distributed over [−ω, ω] to capture potential noise

when numerical integration instead of the closed-form formula is used to compute the option prices. In

Panel 4, the parametric estimation uses the true CIR model but uses numerical integration to obtain option

prices.

1. Performance of the option price estimators

RIMSE

Parametric $0.00022

Parametric (using misspecified) $0.041

Nonparametric $0.013

Proposed (using misspecified) $0.0015

2. Robust parametric estimator: region of fit (h) along various dimensions

Interest rate Option maturity Bond maturity

h 0.026 0.01 0

3. Simulate numerical error

ω 0.01% 0.1% 0.2% 0.3% 0.5% 1%

RIMSE $0.00023 $0.00061 $0.0012 $0.0017 $0.0028 $0.0056

4. Performance of parametric estimation using correct model and numerical integration

RIMSE

Parametric (Numerical) $0.0063
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Table 1.2: CBOT Treasury option pricing

This table reports the Treasury option pricing result using CBOT Treasury option data from May 1990

to December 2006. Three pricing methods are compared: the parametric estimator, the robust parametric

estimator, and the nonparametric estimator. Both the parametric and the robust parametric estimators

use the possibly misspecified option pricing formula (1.18) which assumes that the short rate follows the

Vasicek (1977) process. Panel 1 shows the average root integrated mean squared error (RIMSE) defined

as RIMSE ≡
√

1
n

∑n
i=1

(
Ĉi − Ci

)2
where Ĉ and C are, respectively, the estimated and the observed

Treasury option prices. Also shown in panel 1 is the R-square in the regression of observed call option

price on predicted option price. The estimation in Panel 1 uses observations in the entire sample period.

Panel 2 shows the out-of-sample RIMSE and R-square comparisons of the three estimation methods. The

out-of-sample estimation uses five years’ observations to obtain parameter estimates and then measures the

RIMSE and R-square in the subsequent year using the estimated parameters. The first year of out-of-sample

comparison is 1996.

1. In-sample pricing performance

Parametric Nonparametric Proposed

RIMSE 0.476 0.383 0.212

R2 0.498 0.744 0.902

2. Out-of-sample pricing performance

RIMSE R2

Parametric Nonparametric Proposed Parametric Nonparametric Proposed

1996 0.468 0.379 0.164 0.523 0.788 0.941

1997 0.485 0.375 0.221 0.476 0.727 0.947

1998 0.543 0.495 0.324 0.487 0.623 0.834

1999 0.430 0.347 0.149 0.578 0.794 0.955

2000 0.395 0.292 0.148 0.482 0.798 0.930

2001 0.418 0.325 0.199 0.559 0.804 0.933

2002 0.540 0.444 0.247 0.582 0.793 0.912

2003 0.632 0.481 0.296 0.485 0.761 0.922

2004 0.549 0.385 0.322 0.596 0.817 0.932

2005 0.538 0.432 0.414 0.532 0.804 0.971

2006 0.401 0.405 0.399 0.527 0.654 0.907

Average 0.491 0.396 0.262 0.530 0.760 0.926
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Figure 1.1: Compare option prices along the dimension of option maturity

This figure compares the option prices of CIR model (true model in simulation) and Vasicek model

along the option maturity dimension. Prices from Vasicek model are shown in neighborhoods around

option maturity of 1 month, 3 months, 6 months, and 1 year. The parameter for CIR process is

set to that in (1.17). The parameters for Vasicek process are set to those estimated in section 1.3,

which differ across the four Vasicek price curves shown. The underlying bond maturity is set to 10

years and the short rate is set to 7% (approximately the mean interest rate) in the simulation.
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Figure 1.2: Compare option prices along the dimension of bond maturity

This figure compares the option prices of CIR model (true model in simulation) and Vasicek model

along the bond maturity dimension. Prices from Vasicek model are shown in neighborhoods around

bond maturity of 2, 5, 10, and 30 years. The parameter for CIR process is set to that in (1.17). The

parameters for Vasicek process are set to those estimated in section 1.3, which differ across the four

Vasicek price curves shown. The option maturity is set to 3 months and the short rate is set to 7%

(approximately the mean interest rate) in the simulation.
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Figure 1.3: Compare option prices along the dimension of short rate

This figure compares the option prices of CIR model (true model in simulation) and Vasicek model

along the short rate dimension. Prices from Vasicek model are shown in neighborhoods around short

rate of 0.04, 0.07, and 0.1, which are approximately the mean and mean plus/minus one standard

deviation of the short rate. The parameter for CIR process is set to that in (1.17). The parameters

for Vasicek process are set to those estimated in section 1.3, which differ across the three Vasicek

price curves shown. The option maturity is set to 3 months and the bond maturity is set to 10 years.
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Figure 1.4: Scatter plots of observed and estimated Treasury option prices

This figure shows the scatter plots of observed Treasury option prices against option prices estimated,

respectively, using parametric methods, nonparametrics, and the robust parametric method (labeled

“robust prices” in the plot). The sample period is May 1990 – December 2006.
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Figure 1.5: RIMSE and regions of fit This figure shows the root integrated mean squared

error (RIMSE) in CBOT Treasury option pricing for various regions of fit along the dimensions of

option maturity, bond maturity, and short rate. The robust parametric method selects a region of fit

separately for each dimension to minimize the RIMSE. In the plot for bond maturity, the horizontal

axis refers to the number of nearest bond maturities. I.e., 1 means using the 1 nearest bond maturity

(e.g., bond with 5-, 10-, and 30-year maturities are included in 10-year Treasury option pricing).

The sample period is May 1990 – Dec 2006.
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Chapter 2

The Information in Credit Default

Swap Volume

2.1 Introduction

Since the first credit default swaps (CDS) were traded by JPMorgan in 1995, the CDS mar-

ket has blossomed to become a major asset class in the capital markets. This is illustrated

in Figure 2.1 from the Bank for International Settlements (BIS) which shows the semiannual

total amounts of CDS from 2004 to 20101. The main reason for this drastic growth and

continuing vitality of the CDS market is that CDS can be used in both capital allocation

and speculation. By providing protections, CDS make it easier for credit risks to be held

by those who are in the best position to take them and allow financial institutions to make

loans that they would not otherwise be able to make. CDS also enable speculators to take

huge negative side bets without holding any underlying debts. No matter what they are

used for, CDS could reveal useful and unambiguous information about credit risks because

CDS are purely about the likelihood of default. Also, since most of the major players are

insiders in the CDS market, the existence of asymmetric information and insider trading is

highly likely (see Acharya and Johnson (2007)). Thus, one might expect that at least some

1Though the total amount of CDS halved after the financial crisis, CDS trading activity has not decreased

because most of the reduction comes from trade compression (see Duffie et al. (2010) and Vause (2010)).
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new information on credit risk would be reflected in the CDS market first.

This paper examines the informational content of CDS trading for future asset prices

of the reference entities. Specifically, I focus on the informational role of CDS net notional

outstanding, which is the sum of net CDS bought by all net buyers (or equivalently the

sum of net CDS sold by all net sellers). The net notional amounts generally represent the

maximum possible net funds transfers between net sellers and net buyers of protection2, and

hence mean the actual amounts of insurance offered by CDS. Especially when compared to

the total amount of existing debt, CDS net notional outstanding directly shows how much of

the debt is insured with CDS, and is considered a natural measure of investors’ view on the

likelihood of the credit event of the reference entity. This indicates that CDS-to-debt, the

ratio of CDS net notional to the total amount of existing debt, increases as credit quality

is deteriorated, and vice versa.

CDS net notional could contain more relevant information on credit risk than CDS

prices. According to the data from the Depository Trust & Clearing Corporation (DTCC),

more than 80% of CDS trades are made between dealers. The Office of the Comptroller

of the Currency (OCC) also reports that a small number of dealers account for more than

95% of market share. These suggest that a considerable portion of CDS trades occurs

between the largest dealers and as a result, the corresponding CDS prices might not reveal

valuable information on credit risk changes because they could make trades to rebalance

their portfolios by adding redundant CDS positions, rather than respond to the changes.

Given this motivation, I perform an empirical study on whether the information in CDS

net notional can predict future CDS and stock prices. I use the most comprehensive and

disaggregated data on the weekly CDS positions from the Depository Trust & Clearing

Corporation (DTCC) over the period November 2008 through June 2011. The data include

both the gross and net amount of notional contracts outstanding. Combining the DTCC

data with the debt records from Compustat, I form CDS-to-debt ratio in order to test the

predictability of CDS net notional for future CDS and stock price movements.

The results of my examination are two fold. First, I find cross-sectional evidence that

a rise in current CDS-to-debt ratios predicts an increase in CDS prices and a decrease in

2Actual net funds transfers are dependent on the recovery rate for the underlying debt instruments.
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stock prices within the next 3 weeks. This suggests that it takes time for the information

expressed in the CDS net notional to get incorporated into asset prices. Second, I show

that the predictability is greater for the subsamples where we expect a priori more investor

interest, e.g. entities that are in good credit condition such as firms with investment grade

credit ratings or low CDS-to-debt ratios. This implies that the firms regarded as junk

or already considerably insured with CDS are not a concern for investors. Additional

predictability test on a daily basis confirms that information gradually flows from the CDS

market to the stock market in a persistent way. All these results suggest that investors pay

limited attention to information contained in CDS net notional because CDS net notional

is not observable in real time and could have lower priority to other information sets such

as earnings, sales, and macro information.

This paper contributes to furthering our understanding of how information in a deriva-

tive market gets incorporated into asset prices. Since Black (1975) pointed out that informed

investors might choose to trade derivatives due to the higher leverage, a number of studies

have explored these cross-market information flows. Their informational sources can largely

be divided into two categories: security volume and prices.

Regarding the latter, Acharya and Johnson (2007) examine the effects of insider trading

in the credit market. They find evidence that information flows from the CDS market to

the equity market for firms that are more likely to experience credit event in the future.

Chakravarty et al. (2004) investigate the behavior of investors with private information

who can choose to trade in the stock market or in the options market. They provide

evidence that stock option trading contributes to price discovery in the underlying stock

market. Ni and Pan (2010) examine the interaction between price discovery in stocks and

the trading of options and CDS during the short sale ban in 2008. They confirm the

theory prediction of Diamond and Verrecchia (1987) in which prohibiting short-sales slows

the speed of adjustment to private information in the derivatives market. Longstaff et al.

(2005) study the lead-lag relations among CDS, bond, and stock prices in a VAR framework

and find that both stock and CDS markets lead the bond market. However, there is no

clear lead of the CDS prices with respect to stock prices, and vice versa.

Regarding the former, Easley et al. (1998) provide a theoretical model of asymmetric
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information in which option order flows contain information about the future direction of the

underlying stock price. Pan and Poteshman (2006) empirically test their information model

by constructing put-call ratios from option volume initiated by buyers to open new positions

and find a strong predictability for future stock prices. Like these papers, I contribute a

measure of credit risk from CDS volume and directly test for its effects on future asset

prices.

To the best of my knowledge, this paper is the first work to explore the informational

role of CDS volume. On a related plain, the determinants of CDS net notional in DTCC

are investigated by Oehmke and Zawadowski (2012). They find that firms which recently

experienced credit rating demotion from investment to speculative grades have more CDS

outstanding and suggest that investors exposed to these firms use the CDS market to hedge.

The remainder of the paper is organized as follows. Section 2.2 describes credit default

swaps and explains what information is in their net notional amounts. Section 2.3 details

the data employed. Section 2.4 examines the informational content in CDS notional for

CDS and stock prices of the reference firms empirically, and section 2.5 concludes.

2.2 Credit default swap volume

2.2.1 Credit default swap

A credit default swap is a bilateral agreement between two counterparties, in which one party

(the writer) offers the other party (the buyer) protection against a credit event by a third

party (the reference entity) for a specified period of time, in return for premium payment.

Counterparties are often banks, insurance companies, or hedge funds. The reference entity

may be a corporate or a sovereign. CDS documentation must specify what constitutes a

credit event that triggers the capital payoff on the CDS. The key credit events are failure

to pay, bankruptcy, and restructuring.

A CDS is economically similar to an insurance contract on debt issued by the reference

entity. The buyer pays a premium regularly and the writer pays par in return for 100

nominal of debt if the reference entity suffers a credit event before the maturity of the deal.
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However there exist a number of significant differences between a CDS and an insurance

policy. First, a CDS does not require the buyer to hold the insured risk at the time that a

claim is made whereas an insurance contract owner typically has to have a direct economic

exposure to obtain insurance. For example, an investor can buy a CDS written on IBM

without holding bonds, but cannot buy a car insurance without having a car. Because of

this feature, CDS can be used by investors not only for hedging but also for speculation.

Investors who hold bonds issued by the reference entity may use CDS to eliminate or

reduce the risk of default. CDS in which the buyer owns the underlying debt is referred

to as covered credit default swaps. Meanwhile, CDS buyers can take huge speculative side

bet on the reference entity by buying CDS without holding the underlying debt, hoping

for deterioration in its credit quality. Especially speculators prefer CDS market because

buying protection in the CDS market is easier in terms of liquidity than taking an equivalent

position by shorting bonds. CDS in which the buyer does not hold the underlying security

is called naked credit default swaps.

Second, in contrast to insurance contracts, CDS contracts are traded. Rather than being

traded on an exchange, they are negotiated over the counter (OTC) in which counterpar-

ties in different locations privately communicate and make deals by phone and through

electronic messages. It is therefore difficult to know how much insurance exists on each

borrower, or who has insured whom and for how much. Third, insurance companies, the

writers of insurance policies, are regulated by an insurance regulator, while CDS writers

do not have to be regulated entities. Although CDS contracts are typically written under

the International Swaps and Derivatives Association (ISDA) documentation, it is consid-

erably different from insurance documentation, which raises the concern that systemically

important counterparties may suffer devastating losses on large unhedged CDS positions.

The privacy of the OTC market and unregulated environment press the dealers to use

the central clearing counterparty. After two counterparties agree on the terms of a credit

default swap, they can clear the CDS by having the clearinghouse stand between them,

acting as the buyer of protection for one counterparty and the seller of protection to the

other. The clearinghouse can reduce both systemic and counterparty risks. Once the swap is

cleared, the original counterparties are insulated from direct exposure to each other’s default
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so that systemic risk is lowered. In addition, the clearinghouse reduces counterparty risk by

using stringent membership access, robust margining regime, and clear default management

procedures.

2.2.2 Credit default swap volume

It is not unusual for the total notional amount of credit default swaps written on the refer-

ence entity to exceed the total amount of debt issued by that reference entity because active

market participants, typically derivatives dealers, have large but nearly offsetting positions

since they intermediate between buyers and sellers. According to data from DTCC, more

than 80% of total number of CDS trades on single names occurred between dealers by June

2011, while about 0.1% of trades were between non-dealers. In addition, vast credit default

swap positions were held by big bank credit derivatives dealers. Figure 2.2 from the Office

of the Comptroller of the Currency (OCC) exhibits historical CDS market share of the

largest dealers and their recent positions in detail. It presents that JPMorgan Chase, the

largest dealer, has for more than 40% of CDS gross notional outstanding held by dealers all

the time. The fact that top 3 dealer firms account for more than 80% of all CDS contracts

outstanding and top 5 for more than 95% confirms that there is a high degree of concentra-

tion among CDS dealers. It also reports that JPMorgan Chase bought protection coverage

on $2.95 trillion of debt principal, and sold protection on $2.97 trillion by the 2nd quarter

of year 2011. Since most of dealers’ positions are redundant, gross notional amounts of

outstanding CDS in the market tends to be overstated and is therefore not a good measure

of the effective amount of insurance offered by CDS. From the definition of gross notional

that is the sum of all existing contracts, its changes could indicate the turnover. However

gross notional is notably biased. Because DTCC releases the data weekly, creating and

canceling the contracts partially or fully in a unit period cannot be captured in changes in

gross notional. Therefore, it would be a devalued measure. On the other hand, turnover

could be overstated when a clearinghouse executes trade compression which reduces gross

notional considerably without any trades initiated by dealers.

What is relevant is the actual size of the potential claims which are transferred from one

pocket to others in case of the credit event. It is calculated as sum of net CDS bought by
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all net buyers (or equivalently as sum of net CDS sold by all net sellers). Economically this

net notional amount represents the maximum possible net fund transfers between net sellers

of protection and net buyers of protection that could be required upon the occurrence of a

credit event relating to particular reference entity. Figure 2.3 plots the empirical density of

the ratio of net notional and gross notional amounts of outstanding CDS. It demonstrates

that roughly 10% of gross notional amounts of outstanding CDS would be paid if the

reference entity defaults. When dealers trade with other dealers not due to any credit risk

change but for rebalancing their credit portfolios, any changes in CDS premium are not

representative of the true demand by real end users, typically non-dealers. This means that

the net notional which is little changed by portfolio rebalancing could give more accurate

information on demand for CDS.

The net notional amount of outstanding CDS provides the key information on market’s

perception regarding the credit status of the reference entity especially when combined

with the total amount of existing debt. Since CDS-to-debt, the ratio of CDS net notional

outstanding to the total amount of existing debt, directly indicates how much of the debt is

insured with CDS, it is a natural measure of investors’ view on the likelihood of the credit

event of the reference. One can expect a high level of CDS-to-debt ratio when investors

anticipate that credit condition of the reference is worsened. When investors believe that a

credit event for the reference is very unlikely, the level of CDS-to-debt ratio is low.

Regardless of whether CDS positions are covered or naked, the ratio is informative.

Clearly the size of CDS relative to the debt used in speculation presents the market’s

concern on the credit quality of the reference. Since payoff to CDS is discrete, either

0 or expected loss, the investors who take speculative side bets using CDS have the most

pessimistic view. The naked CDS holders strongly believe that the credit quality of reference

will be deteriorated and in deep trouble. The amount of covered CDS positions indicates

the market’s perception as well. Assuming that there is no arbitrage opportunity, investors

have no incentive to buy the underlying debt together with CDS, because it is identical

to buying risk-free assets if counterparty risk is ignored. They initially invest money in

the underlying, realize changes in credit risk later, and then hedge their exposure using

CDS. Moreover, when the primary debt holders insure their lending using CDS, they are
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no longer concerned about monitoring the firm’s management which might incur the poor

performance of the firm and eventually the credit event. It means that the amount of

covered CDS contracts also reveals market’s view on credit risk of the reference entity.

Especially for the reference entities whose bonds are illiquid, investors use CDS markets to

speculate or hedge exposures (Oehmke and Zawadowski, 2012).

The respective portion of the net notional amounts used for hedging and speculation is

difficult to gauge. However, if a ratio is greater than 1, the debt is over-insured using CDS

and it can be considered that at least the excess amount of CDS was used in speculation.

2.3 Data

I focus on 208 US companies over the period of November 2008 through June 2011 that

satisfy the following conditions: (1) The firms are enlisted in NYSE and NASDAQ. (2) The

firms are neither in financial nor in utility sectors. (3) CDS net notional and premium quotes

are available. (4) The amounts of debt issued by the firms are available from Compustat.

2.3.1 The credit default swap volume

The CDS contracts data are obtained from the Depository Trust & Clearing Corporation’s

(DTCC) Trade Information Warehouse (TIW).3 The data record weekly aggregate gross

and net notional positions written against single name reference entities. TIW collects the

information on CDS positions from Monday to Friday and usually releases it next Tuesday

after the stock market is closed though no official announcement time is scheduled. DTCC

reports that TIW covers around 95% of globally traded CDS, and hence, provides the most

accurate and comprehensive data on CDS positions. Notional represents the par amount of

credit protection bought (or sold), equivalent to debt or bond amounts, and is used to derive

the coupon payment calculations for each payment period and the recovery amounts in the

credit event. Gross notional outstanding is the sum of CDS contracts bought (or equivalently

sold) for all contracts in aggregate for single reference entities. Net notional outstanding is

3As transparency in OTC (credit derivatives) market was requested after Lehman’s default, DTCC began

publishing the CDS information on Nov. 7, 2008.
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the sum of the net protection bought by buyers (or equivalently net protection sold by net

sellers). The aggregate net notional is the sum of net protection bought (or equivalently

sold) across all counterparty families which will typically include all of the accounts of a

particular asset manager or corporate affiliates rolled up to the holding company level.

Figure 2.4 illustrates gross and net notional calculation and trade compression in detail

as an example of CDS positions over the counter. Counterparty A, B, and C are very active

in trading CDS and they hold simultaneously long and short CDS positions referencing the

same underlying borrower. Assume that A buys $5 million of CDS from B initially and

all the other CDS contracts are made later. The net notional amount of CDS is equal to

the gross notional amount of CDS, $5 million, at initial trade. However, the net notional

amount of CDS is different from the gross amount of CDS after all trades are done. The

gross notional amount, the sum of all outstanding CDS bought (or equivalently sold) is

$15 million while the net notional amount, the sum of all the net positive positions is

only $2 million. Consequently, it is $2 million, not $15 million transfer that occurs among

counterparties in case of credit event on the reference entity. This process that eliminates

redundant positions held by counterparties and creates replacement trades is called trade

compression or portfolio compression. Therefore, the gross notional amount is equal to the

net notional amount after all possible trade compressions are executed. This example also

demonstrates that an increase in gross notional amount doesn’t necessarily mean a rise in

net notional amount. While the gross notional increases from $5 million to $15 million, the

net notional decreases from $5 million to $2 million. Market participants who don’t have a

negative view on the reference entity could buy CDS to reduce their existing positions by

netting.

2.3.2 Credit default swap premium

The daily credit default swap premium data are obtained from Bloomberg. Credit default

swaps all written on senior debt and with maturity of 5 years are gathered because they

are typical and most liquid. DTCC CDS position data and Bloomberg CDS premium data

are merged using the reference entity name as an identifier. When matching two datasets,

corresponding stock identifiers such as ticker and cusip are simultaneously collected from
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Bloomberg.

2.3.3 The debt

The amounts of total outstanding debt data are obtained from Compustat. Total outstand-

ing debt is measured by the sum of long-term debt (#9) and debt in current liabilities (#34).

2.3.4 S&P credit ratings

Credit ratings issued by Standard & Poor’s (S&P) are used. Historical credit ratings data

are obtained via Bloomberg.

2.3.5 Stock prices

The daily stock price data are obtained from CRSP. To test the informational content of

CDS trading for the idiosyncratic component of future stock returns, I construct the risk-

adjusted returns using a four-factor model of market, size, value, and momentum. In terms

of the construction, I run the rolling regression with 25-day window to estimate coefficients

with a reasonable degree of precision and pin down conditional coefficients in an environment

with time-varying factor loadings.

2.4 Empirical results

The main focus of this article is to test the informational content of CDS-to-debt ratio

for other security prices. Therefore, my empirical specifications are designed to address the

fundamental question of how information gets incorporated into security prices. The ratio of

CDS notional to total debt is employed as an explanatory variable for both contemporaneous

and predictive regressions to measure the impact of information.

2.4.1 CDS-to-debt ratio

Before the regression analysis, it is worth taking a look at descriptive statistics of CDS-

to-debt ratios to confirm that CDS-to-debt ratios using net notional is a good measure of
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market’s perception on the credit risk of the reference entity. Tables 2.1 and 2.2 present

sample distributions of the ratios of net and gross notional amounts outstanding to the total

debt issued by the reference firms over credit rating respectively. In Table 2.1, CDS-to-debt

ratio increases monotonically across the credit rating, which is consistent with conventional

wisdom. All the firms with AAA or AA rating have the ratios within 30%. More than 70%

of investment grade firms have CDS net notional less than 30% of the debt whereas only

40% of the firms with speculative grade have CDS to-debt ratio within 30%. Furthermore

only 3.6% of the investment grade firms have more net notional than the total debt, and

21.7% of the speculative grade firms are over-insured with CDS. It confirms that CDS-to-

debt ratio using net notional is a natural and good measure of investors’ concerns on the

credit quality of the reference.

On the other hand, gross notional is not so informative as net notional in terms of the

level of insurance. In Table 2.2, About two thirds of investment grade firms have more

CDS gross notional than the total debt, and even some AAA or AA rated firms could be

interpreted as over-insured if gross notional is used in ratio construction. These numbers

can hardly make sense because 65% of over-insurance level is too high for investment grade

entities which have less than 5% of probability of default historically. It is therefore hard

to gauge the investors’ concerns on the firms whose gross CDS-to-debt ratio is higher than

100% by a certain level, and it should be net notional, not gross notional that is used to

the ratio. In the following empirical analysis, both CDS-to-debt ratios using net and gross

notional are employed as explanatory variables and it is confirmed that net notional is the

natural and good measure.

2.4.2 CDS premium

In this section, the informational content of CDS-to-debt ratio on CDS premium movements

is examined in both contemporaneous and predictive regressions of the following forms:

∆CDS Premiumi
t = α+ βXi

t + εit (2.1)

∆CDS Premiumi
t+1 = α+ βXi

t + εit+1 (2.2)



CHAPTER 2. THE INFORMATION IN CREDIT DEFAULT SWAP VOLUME 47

where time indices t and t + 1 denote contemporaneous and predictive regressions respec-

tively in weekly frequency. Both net and gross notional are used in ratio construction and

regression results are shown in Tables 2.3 and 2.4. The regressions establish a number of

basic results and stylized facts about CDS volume. First, I find that CDS premium in-

creases as net CDS-to-debt ratio increases and this is consistent with the economic theory

that demand and price move together in the same direction. The β coefficient of net CDS-

to-debt in contemporaneous regression (2.1) is positive and statistically significant. Using

the entire data sample, net CDS-to-debt ratio has a slope coefficient of 9.91 basis points

with a t-statistic of 2.85. This result implies that changes in net CDS-to-debt ratio can be

a good proxy for demand of the credit risk.

Analysis with subsamples across credit ratings and the level of the CDS-to-debt ratios

provides better understanding of the relationship between the CDS notional and premium.

For the firms with investment grade or low level of the CDS-to-debt ratio, the contempora-

neous relationship between changes in premium and the ratio is stronger in magnitude and

statistical significance. One would expect that investors pay little attention to the firms

whose credit is already deteriorated so that they are recognized as junk or considerably

insured with CDS. Moreover, since they have a high level of insurance, a small change in

insurance level can hardly tell whether their credit condition really gets better or worse. In

contrast, the firms in good health of credit get more attention from market participants.

Because demoting from investment to speculative grade is of great interest to credit market

investors, they will use CDS to hedge if credit risk increases. This is in accordance with

Oehmke and Zawadowski (2012)’s finding that firms which lose investment grade status

have more CDS net notional outstanding.

The changes in net notional also have predictive power for future premium changes. The

β coefficient of net CDS-to-debt in predictive regression (2.1) is positive and significant. Its

estimate is 8.84 basis points with a t-statistic of 3.17 using all the data sample. This suggests

that changes in insurance level contain the information on forecast in credit risk and there is

a delay to reflect the information into security prices. The net notional is not observable on

real-time basis because it is a calculated number after doing some mathematics of netting

redundant contracts out. Therefore, there could be delayed reactions to the changes in
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demand pressure. Similarly to contemporaneous analysis, predictability is greater for firms

in good credit status.

Though the changes in gross CDS-to-debt explain the concurrent movement in premium,

it has no predictive power for future CDS premium as expected. A slope coefficient for the

changes in gross CDS-to-debt ratio is also positive and significant for contemporaneous

regression but both magnitude and statistical significance is smaller. To see whether gross

CDS-to-debt ratio has the same information as in net CDS-to-debt ratio for CDS premium,

I run the regressions with the changes in both ratios as independent variables. Table 2.4

confirms that both changes explain the current changes in CDS premium but only changes

in net CDS-to-debt ratio predict the future changes. This means that the gross notional

has different information from net notional on CDS premium and is not useful to get an

idea about future dynamics.

To explore further how information in CDS net notional gets incorporated into CDS

prices, the horizon of predictability is extended up to 5 weeks. The slope coefficients and

their t-statistics are reported in Table 2.5. The predictability persists up to 3rd week

and the magnitude is the largest at 2nd week. Also subsample analysis shows that most of

predictability comes from the firms in good credit status. Moreover, there is no reversal over

longer horizons, which indicates that the predictability is truly information based rather

than the result of mechanical price pressure.

2.4.3 Stock prices

Having identified a measure of information flow in the CDS volume to the credit default

swaps premium, I next apply this directly to weekly stock returns in following regression

specifications:

Rit = α+ βXi
t + εit (2.3)

Rit+1 = α+ βXi
t + εit+1 (2.4)

where Rit+1 and Rit denote four-factor risk-adjusted return of the firm i in next and current

weeks respectively. The economic motivation for using the risk-adjusted returns is to test the

information content of CDS volume for the idiosyncratic component of future stock returns
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that are not explained by common factors−market, size, value, and momentum. If the

risk-adjusted returns have the component determined by credit risk, one would expect that

it responds in opposite direction to the changes in net CDS-to-debt ratio. The magnitude

of response would be dependent on how large the credit component is in the risk-adjusted

returns and how closely it is connected to the CDS volume change. Again, both net and

gross notional are used in ratio construction and regression results are summarized in Table

2.6.

In contemporaneous analysis, it is shown that the risk-adjusted return decreases as net

CDS-to-debt ratio increases and this satisfies the conventional expectation that stock price

performs poorly as credit quality is deteriorated. The β coefficient of net CDS-to-debt

using all the data sample is -2.38 basis points with a t-statistic of -1.94. The relationship is

stronger for the firms with good quality of credit as for CDS premium. Investment grade

firms have a slope coefficient of -3.52 basis points with a t-statistic of -2.76 and firms with

low level of insurance have -12.12 basis points with a t-statistic of -4.34. Intuitively, one

would expect investors to have more care about the credit risk of the healthy firms and

therefore see stronger predictability from the risk-adjusted returns as confirmed in CDS

premium. On the contrary, all the coefficients of CDS-to-debt ratio using gross notional

are exceedingly small and not statistically significant regardless of firms’ credit condition.

Thus gross CDS-to-debt ratio does not have information on credit risk of the reference.

I test the hypothesis that information contained in CDS trading activity is valuable in

predicting next week stock returns. The null hypothesis is that the market is in a separating

equilibrium and information in CDS contracts has no predictive power. The second column

of Table 2.6 confirms that there is a cross-sectional predictability and the null hypothesis

is rejected. The magnitude and statistical significance of the coefficients are even stronger

than those in contemporaneous analysis except for the firms with low levels of insurance.

This implies that information on credit risk contained in CDS net notional flows gradually

into stock market.

I also extend the horizon of predictability up to 5 week to investigate the information

flow from CDS net notional to stock prices. The slope coefficients and their t-statistics are

reported in Table 2.5. As for CDS prices, the predictability persists up to 3rd week and
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the magnitude is the largest at 2nd week.4 For good credit companies, changes in CDS net

notional can predict 4th week stock returns. The absence of reversal over longer horizons

suggests that the predictability is information based.

I take a closer look at the predictability of the net CDS-to-debt ratio for future stock

return by running 1-day regressions to investigate how information flow occurs. Regression

specification is given by

Rit+ω+1,t+ω = α+ β∆

(
CDS

Debt

)i
t,t−5

+ εit+ω+1 (2.5)

where Rit+ω+1,t+ω is the next day four-factor risk-adjusted return of the firm i from time

t+ω. Since weekly net CDS positions are collected Friday after market is closed, calculated

over weekend, and typically released next Tuesday after market is closed, t is always Friday

and ω represents the delay from Friday in regression (2.5). For example, if ω is 3, Rit+ω+1,t+ω

is 1-day return from Wednesday to Thursday in next week. Here, an independent variable

is CDS-to-debt ratio using only net notional. The results are summarized in Table 2.9.

Since the information about CDS notional is released typically on Tuesday, if investors care

much about CDS net notional the coefficients on Monday and Tuesday would be negatively

significant and those after Tuesday would be insignificant. For all weekdays, however, there

is predictability of CDS-to-debt ratio for 1-day risk-adjusted returns for all weekdays and

there is no surprise from the announcement. As shown in previous regressions, predictability

is greater for firms in good credit condition.

All of these results suggest that the predictability of CDS volume mainly comes from

gradual information flow and limited attention. Since CDS net notional data are not observ-

able in real time and could have lower priority to other information sets such as earnings,

sales, and macro information to stock investors, cognitively-overloaded investors pay at-

tention to only a subset of publicly available information which can be easily accessed.

Especially when the information in CDS contracts could not be captured by market, size,

value, and momentum, it would be incorporated into stock prices slowly.

4Except for the firms with low level of the CDS-to-debt ratio, the predictability with a standard deviation

change in CDS-to-debt ratio, 2%, can hardly beat the bid-ask spread of stock prices. For instance, the average

bid-ask spread is about 10 basis points for IBM which is one of the most actively traded firms, and it is

larger than 2 times of the predictability for most entries in Table 2.8.
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2.5 Conclusion

This paper investigates the informational content of credit default swap volume for other

security prices of the reference entities. Combined with the total debt in the market, CDS

net notional outstanding directly indicates how much of the debt are insured with CDS and

therefore its change could be a natural and good measure of market participants’ demand

for CDS used for hedging or speculation against the credit event of the reference entity.

As consistent with economic theory of demand and price, CDS net notional explains the

concurrent movements of CDS premium and stock prices. Furthermore I find cross-sectional

evidence that the current increase in CDS-to-debt ratio can predict a decrease in stock prices

and a rise in CDS premium of the reference firms in the next week. Greater predictability for

firms with credit rating of investment grade or low CDS-to-debt ratio suggests that investors

pay more attention to firms in good credit conditions than those regarded as junk or already

insured considerably with CDS. Daily analysis confirms that the information in CDS net

notional flows gradually into stock prices. Because CDS volume information is neither real-

time observable nor above other financial information to investors, the predictability could

come from gradual information flow and investors’ limited attention.
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Figure 2.1: Credit Default Swaps Notional Outstanding

This figure exhibits semiannual CDS notional amounts outstanding from the Bank for In-

ternational Settlements (BIS) from the 2nd half of 2004 to the 1st half of 2011. Blue bars

represent notional amounts of CDS written on single name instruments while sum of blue

and green bars do CDS on all instruments. The total notional amount of the CDS market

was $6 trillion in 2004, $57 trillion by June 2008, and $32 trillion in 2011. Most of recent

reduction from a peak to a current level in outstanding notional has occurred through trade

compression as demanded by the regulators which reduces the total notional amount of out-

standing CDS positions after eliminating redundant positions and allowing for additional

trading in the interim (Duffie et al., 2010).
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Figure 2.2: CDS Dealers Market Share and Position

This figure illustrates the distribution of CDS contracts held by top 5 largest dealers. His-

torical market share is shown in (a). Top 5 largest dealers account for more than 95% of all

dealers’ gross positions all the time. Each dealer’s position by the 3rd quarter of year 2011

is split into the amounts bought and sold in (b). It is confirmed that the largest dealers

account for most of total contracts outstanding and they have nearly offsetting positions.
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Figure 2.3: Gross vs. Net Notional

This figure demonstrates the empirical density of the ratio of net notional and gross notional

amounts outstanding of CDS. Average, median, and standard deviation ratio of net notional

to gross notional amounts are 9.6%, 9.0%, and 3.2% respectively. More than 90% of samples

have the ratio of net notional to gross notional amounts between 5% and 15%.
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Figure 2.4: CDS trade over the counter market and trade compression

Figure 2.4 illustrates an example of credit default swaps positions over the counter and how

trade compression works. In (a), counterparty A sold CDS on $5M of debt principal and

bought $6M in total. Likewise, B and C sold $5M and $5M , and bought $6M and $3M

in total respectively. By subtracting amounts sold from amounts bought, net positions of

A, B, and C are calculated in (c), $1M , $1M , -$2M respectively. Gross notional, the sum

of CDS bought (or equivalently sold) for all contracts, is $15M while net notional, the sum

of net CDS bought (or equivalently sold), is $2M . This means that it is not $15M but

only $2M that would change pockets in case of the credit event. Trade compression is the

process from the (a) to (b) that eliminates redundant contracts and creates replacement

contracts to improve market transparency and reduce the associated counterparty risk.

(a) before trade compression

A B

C

2M

5M

3M1M 4M

(b) after trade compression

A B

C

1M 1M

(c) Example of aggregate net notional calculation

sold CDS to bought from Total gross Net notional

positions
A B C A B C sold bought

Counterparty A -2M -3M 5M 1M -5M 6M 1M

Counterparty B -5M 0M 2M 4M -5M 6M 1M

Counterparty C -1M -4M 3M 0M -5M 3M -2M

Gross Notional -15M 15M

Net Notional 2M
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Table 2.1: Net CDS-to-Debt distribution over credit rating

This table presents sample distribution of the ratio of net notional amounts outstanding to

total debt issued by the reference firms over credit rating. The ratio increases monotonically

across the credit rating. More than 70% of firms with investment grade have CDS net

notional less than 30% of the debt whereas only 40% of the firms with speculative grade

have such. Furthermore only 3.6% of the firms with investment grade have more CDS

net notional than the total debt. 21.7% of the firms with speculative grade, however, are

over-insured with CDS.

CDS Net Notional/Total Debt (%)

0 - 10% 10 - 30% 30 - 50% 50 - 100% 100% -

AAA or AA 74.0 26.0

A 42.7 40.6 9.4 4.3 3.0

BBB 23.3 40.8 13.5 18.1 4.3

BB 11.7 31.6 14.8 22.5 19.4

B or lower 13.9 20.4 22.0 18.0 25.7

Investment 32.9 39.9 11.3 12.3 3.6

Speculative 12.5 27.5 17.5 20.8 21.7
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Table 2.2: Gross CDS-to-Debt distribution over credit rating

This table presents sample distribution of the ratio of gross notional amounts outstanding

to total debt issued by the reference firms over credit rating. Using gross notional isn’t

as informative as net notional. Since 65% of investment grade firms have more CDS gross

notional than the total debt, it is hard to gauge the investors’ concern on the firms whose

CDS-to-debt ratio is at certain level higher than 100%. Even some AAA or AA rated firms

could be interpreted as over-insured if gross notional is used in ratio construction.

CDS Gross Notional/Total Debt (%)

0 - 50% 50 - 100% 100 - 500% 500 - 1000% 1000% -

AAA or AA 49.4 44.4 6.2

A 25.6 17.4 47.8 6.0 3.2

BBB 7.6 16.8 50.1 17.7 7.8

BB 3.3 8.4 37.0 23.0 28.3

B or lower 7.2 2.1 28.1 29.9 32.7

Investment 16.2 18.6 46.9 12.6 5.7

Speculative 4.7 6.1 33.7 25.6 29.9
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Table 2.3: Predictability of CDS-to-debt ratio for weekly CDS premium change

This table reports the results of cross-sectional univariate regressions of weekly changes in

CDS premium on changes in CDS-to-debt ratio from Nov. 2008 through Jun. 2011. The

independent variables are constructed from both net and gross notional amounts of CDS

and total debt. Since information on CDS notional is collected on Fridays, t is always

Friday. Fama-MacBeth t-stats are reported in parentheses. The time-series correlation is

controlled by using Newey and West (1987) with five-week lags.

∆CDS Premiumi
t+1 or t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1 or t

Net CDS-to-debt Gross CDS-to-debt

Current week Next week Current week Next week

α β α β α β α β

All -4.56 9.91 -4.62 8.84 -6.24 1.81 -6.59 -0.15

Firms (-0.09) (2.85) (-0.10) (3.17) (-0.13) (2.34) (-0.14) (-0.21)

Investment -4.40 16.16 -5.65 14.77 -6.35 3.23 -8.75 0.56

Grade (-0.09) (2.69) (-0.12) (3.21) (-0.13) (2.65) (-0.18) (0.58)

Speculative -6.22 4.25 -0.50 8.80 -8.03 0.64 -6.05 0.18

Grade (-0.11) (0.93) (-0.01) (2.55) (-0.15) (1.04) (-0.11) (0.25)

CDS/Debt -8.90 40.60 -7.72 33.99 -9.38 4.01 -9.08 0.08

< 50% (-0.18) (4.09) (-0.16) (4.01) (-0.20) (1.40) (-0.19) (0.04)

CDS/Debt 6.09 4.45 7.29 5.93 0.10 1.60 -0.05 0.40

> 50% (0.12) (1.15) (0.15) (1.94) (0.00) (2.49) (-0.00) (0.62)
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Table 2.4: Predictability of both net and gross CDS-to-debt ratio for weekly CDS

premium

This table reports the results of cross-sectional regressions of weekly changes in CDS pre-

mium on changes in CDS-to-debt ratio from Nov. 2008 through Jun. 2011. The inde-

pendent variables are constructed from both net and gross notional amounts of CDS and

total debt. Since information on CDS notional is collected on Fridays, t is always Friday.

Fama-MacBeth t-stats are reported in parentheses. The time-series correlation is controlled

by using Newey and West (1987) with five-week lags.

∆CDS Premiumi
t+1 or t = α+ β∆

(
Net CDS

Debt

)i
t

+ γ∆

(
Gross CDS

Debt

)i
t

+ εit+1 or t

Current week Next week

α β γ α β γ

All -6.92 8.36 2.08 -6.95 9.02 0.28

Firms (-0.14) (2.28) (2.29) (-0.15) (3.10) (-0.43)

Investment -7.29 13.19 3.16 -9.39 14.0 0.56

Grade (-0.15) (2.12) (2.36) (-0.20) (2.97) (0.56)

Speculative -9.09 3.00 0.81 -4.81 9.54 0.32

Grade (-0.17) (0.68) (1.20) (-0.09) (2.67) (0.50)

CDS/Debt -10.61 36.77 4.13 -8.90 32.82 -0.56

< 50% (-0.23) (3.50) (1.29) (-0.19) (3.65) (-0.29)

CDS/Debt -0.84 3.09 2.05 -0.54 0.57 0.52

> 50% (-0.02) (0.78) (2.58) (-0.01) (1.81) (0.92)
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Table 2.5: Predictability of net CDS-to-debt ratio for weekly CDS premium in

long horizon

This table reports the results of cross-sectional univariate regressions of weekly changes in

CDS premium on changes in CDS-to-debt ratio up to 5 weeks from Nov. 2008 through Jun.

2011. CDS Premiumi
t+τ denotes τth week CDS premium change of firm i. Fama-MacBeth

t-stats are reported in parentheses. The time-series correlation is controlled by using Newey

and West (1987) with five-week lags.

∆CDS Premiumi
t+τ = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1st 2nd 3rd 4th 5th

α β α β α β α β α β

All -4.62 8.84 -10.34 13.48 -10.08 5.90 -10.44 0.58 -10.61 1.39

Firms (-0.10) (3.17) (-0.21) (3.87) (-0.21) (2.28) (-0.21) (0.22) (-0.22) (0.53)

Investment -5.65 14.77 -8.66 19.32 -9.41 11.47 -9.50 5.15 -9.84 0.52

Grade (-0.12) (3.21) (-0.18) (4.16) (-0.19) (3.46) (-0.19) (1.38) (-0.20) (0.14)

Speculative -0.50 8.80 -12.68 13.93 -12.64 -0.35 -13.52 -1.29 -16.73 2.00

Grade (0.01) (2.55) (-0.23) (1.98) (-0.22) (-0.09) (-0.24) (-0.27) (-0.30) (0.55)

CDS/Debt -7.72 33.99 -13.13 30.85 -12.56 -0.24 -11.57 11.22 -13.36 1.89

< 50% (-0.16) (4.01) (-0.27) (3.55) (-0.26) (-0.04) (-0.24) (1.35) (-0.27) (0.26)

CDS/Debt 7.29 5.93 -1.60 10.79 -1.67 7.27 -3.99 -1.75 -3.60 2.01

> 50% (0.15) (1.94) (-0.03) (4.03) (-0.03) (2.54) (-0.08) (-0.66) (-0.07) (0.73)
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Table 2.6: Predictability of CDS-to-debt ratio for weekly stock returns

This table reports the results of cross-sectional regressions of weekly 4-factor adjusted stock

returns on changes in CDS-to-debt ratio from Nov. 2008 through Jun. 2011. The indepen-

dent variables are constructed from both net and gross notional amounts of CDS and total

debt. Rt+1 is weekly adjusted return from time t. Since information on CDS notional is

collected on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in parentheses.

The time-series correlation is controlled by using Newey and West (1987) with five-week

lags.

Rit+1 or t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1 or t

Net CDS-to-debt Gross CDS-to-debt

Current week Next week Current week Next week

α β α β α β α β

All -2.42 -2.38 2.95 -3.59 2.13 -0.05 2.08 0.15

Firms (0.42) (-1.94) (0.51) (-2.89) (0.37) (-0.32) (0.37) (1.18)

Investment 2.47 -3.52 2.65 -4.84 2.63 -0.06 2.65 0.20

Grade (0.49) (-2.76) (0.52) (-3.42) (0.50) (-0.31) (0.50) (0.87)

Speculative 1.19 -3.44 3.34 -4.85 -2.17 0.00 -2.02 0.26

Grade (0.10) (-1.62) (0.28) (-1.84) (-0.18) (0.00) (-0.18) (0.84)

CDS/Debt 3.90 -12.12 3.71 -11.87 4.35 -0.26 3.64 0.37

< 50% (0.69) (-4.34) (0.65) (-3.49) (0.78) (-0.49) (0.66) (0.60)

CDS/Debt -2.11 -0.66 -0.04 -2.31 -3.44 0.01 -1.38 0.07

> 50% (-0.19) (-0.48) (-0.00) (-1.67) (-0.31) (0.09) (-0.13) (0.56)
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Table 2.7: Predictability of both net and gross CDS-to-debt ratio for weekly

stock returns

This table reports the results of cross-sectional regressions of weekly 4-factor adjusted stock

returns on changes in both net and gross CDS-to-debt ratio from Nov. 2008 through Jun.

2011. The independent variables are constructed from both net and gross notional amounts

of CDS and total debt. Rt+1 is weekly risk-adjusted return from time t. Since information

on CDS notional is collected on Fridays, t is always Friday. Fama-MacBeth t-stats are

reported in parentheses. The time-series correlation is controlled by using Newey and West

(1987) with five-week lags.

Rit+1 or t = α+ β∆

(
Net CDS

Debt

)i
t

+ γ∆

(
Gross CDS

Debt

)i
t

+ εit+1 or t

Current week Next week

α β γ α β γ

All 2.23 -2.87 0.03 2.14 -3.62 0.23

Firms (0.40) (-2.22) (0.21) (0.39) (-2.88) (1.77)

Investment 2.65 -3.38 -0.04 2.61 -4.75 0.22

Grade (0.52) (-2.47) (-0.21) (0.50) (-3.38) (0.98)

Speculative -0.40 -5.17 -0.13 -0.25 -6.00 0.19

Grade (-0.03) (-2.17) (-0.42) (-0.02) (-2.17) (0.57)

CDS/Debt 4.02 -11.45 -0.19 3.35 -11.76 0.52

< 50% (0.71) (-4.19) (-0.38) (0.60) (-3.61) (0.86)

CDS/Debt -2.94 -1.28 0.08 -1.03 -2.51 0.17

> 50% (-0.27) (-0.87) (0.54) (-0.10) (-1.82) (1.23)
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Table 2.8: Predictability of net CDS-to-debt ratio for weekly stock returns in

long horizon

This table reports the results of cross-sectional regressions of weekly stock returns on changes

in CDS-to-debt ratio up to 5 weeks from Nov. 2008 through Jun. 2011. Rit+τ denotes τth

week stock return of firm i. Fama-MacBeth t-stats are reported in parentheses. The time-

series correlation is controlled by using Newey and West (1987) with five-week lags.

Rit+τ = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1st 2nd 3rd 4th 5th

α β α β α β α β α β

All 2.95 -3.59 3.23 -3.83 3.64 -3.30 3.34 -1.62 3.56 -0.40

Firms (0.51) (-2.89) (0.56) (-3.22) (0.62) (-3.21) (0.57) (-1.85) (0.60) (-0.46)

Investment 2.65 -4.84 2.67 -4.76 6.52 -6.15 2.41 -2.91 2.07 -1.08

Grade (0.52) (-3.42) (0.51) (-3.40) (0.50) (-3.00) (0.45) (-2.23) (0.38) (-0.96)

Speculative 3.34 -4.85 4.60 -6.48 2.67 -4.53 5.79 -3.68 7.16 -1.08

Grade (0.28) (-1.84) (0.41) (-1.92) (0.56) (-2.61) (0.51) (-1.99) (0.63) (-0.71)

CDS/Debt 3.71 -11.87 2.88 -10.20 2.38 -8.46 1.34 -7.33 1.31 -3.84

< 50% (0.65) (-3.49) (0.51) (-3.56) (0.42) (-2.44) (0.24) (-2.18) (0.23) (-1.54)

CDS/Debt -0.04 -2.31 2.34 -3.08 3.73 -2.49 4.81 -0.80 6.05 0.03

> 50% (-0.00) (-1.67) (0.23) (-2.55) (3.73) (-2.52) (0.47) (-0.90) (0.59) (0.03)
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Table 2.9: Predictability of net CDS-to-debt ratio for daily stock returns

This table reports the results of cross-sectional regressions of daily 4-factor adjusted stock

returns on changes in CDS-to-debt ratio from Nov. 2008 through Jun. 2011. The indepen-

dent variables are constructed from both net and gross notional amounts of CDS and total

debt. Rt+ω+1,t+ω is 1 day return from time t+ ω where ω denotes weekday or delay. Since

information on CDS notional is collected on Fridays, t is always Friday. Fama-MacBeth t-

stats are reported in parentheses. The time-series correlation is controlled by using Newey

and West (1987) with five-week lags.

Rit+ω+1,t+ω = α+ β∆

(
CDS

Debt

)i
t

+ εit+ω+1

Mon Tue Wed Thu Fri

α β α β α β α β α β

All 0.09 -0.59 0.37 -0.74 0.24 -0.61 0.36 -0.69 0.12 -0.77

Firms (0.07) (-2.09) (0.33) (-2.93) (0.20) (-2.36) (0.29) (-2.78) (0.09) (-3.24)

Investment 0.30 -0.94 0.33 -0.96 0.30 -0.93 0.35 -0.95 0.13 -0.88

Grade (0.27) (-3.15) (0.33) (-3.47) (0.29) (-3.30) (0.33) (-3.32) (0.12) (-2.99)

Speculative -0.75 -0.80 0.42 -0.98 -0.06 -0.78 0.27 -0.88 -0.05 -1.34

Grade (-0.32) (-1.66) (0.17) (-1.83) (-0.03) (-1.52) (0.11) (-1.69) (-0.02) (-2.00)

CDS/Debt 0.43 -2.26 0.57 -2.44 0.44 -2.17 0.49 -2.54 0.25 -2.61

< 50% (0.37) (-3.74) (0.52) (-3.46) (0.37) (-3.29) (0.40) (-3.36) (0.19) (-3.43)

CDS/Debt -0.92 -0.29 -0.31 -0.42 -0.46 -0.38 -0.14 -0.46 -0.36 -0.54

> 50% (-0.43) (-0.94) (-0.14) (-1.66) (-0.22) (-1.32) (-0.07) (-1.66) (-0.17) (-1.96)
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Chapter 3

The Relationship between Credit

Default Swap Volume and Put

Option Prices

3.1 Introduction

Credit default swaps (CDS) and put options are similar in that both provide protection

against downside risk at a low cost to their holders. A CDS is a bilateral contract between

two counterparties in which the writer offers the buyer protection against a credit event

by the reference entity for a specified period of time. The buyer pays premium regularly,

quarterly in usual, and receives payoff if a credit event such as failure to pay, bankruptcy,

and restructuring, occurs to the reference entity before the maturity date. Since the CDS

buyer is not required to hold the insured risk at the time that a claim is made, CDS have

been used by investors not only for hedging a credit event but also for speculation with

anticipation that the reference entity is highly likely to suffer a credit event. Regardless of

what they are used for, CDS could contain useful information about credit risks because

CDS are designed for likelihood of the default. The exponential growth of CDS market

during the last decade can suggest that a number of investors who have lots of concern on

credit risks have been trading CDS such that new information about credit risk would be
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reflected in the CDS market first.1

Equity put option is a contract between two parties in which the buyer has the right,

but not an obligation, to sell the underlying equity at the strike price by maturity, while

the seller, has the obligation to buy the asset at the strike price if the buyer exercises the

option. A put option is used in similar purpose to a credit default swap. The most obvious

use of a put option is as a type of insurance. In the protective put option strategy, the

investor buys enough put options to cover their holdings of the equity so that if a drastic

downward movement of the underlying equity’s price occurs, they have the option to sell

the holdings at the strike price. Another use is for speculation: an investor can take a short

position in the underlying equity without trading in it directly.

Since both CDS and put options are used in hedging and negative side bets for the

reference (underlying) firms, one might expect that there could exist the close relationship

between CDS and put options. In response, recent literature has explored the role of

volatility in determination of CDS spreads. Pan and Singleton (2008) extract the credit

risk premium from sovereign CDS spreads and find that it co-varies with several economic

measures of the financial market volatility including VIX. Zhang et al. (2009) suggest that

the volatility risk alone predicts considerable portion of variation in CDS spreads from high-

frequency data. Wang et al. (2010) analyzed the predictability of variance risk premium for

credit spreads at firm level.

However the relationship between CDS volume and put option has not been done. A

novelty of the paper is in its examination of this relationship. CDS net notional outstanding

is the actual size of the potential claims which are transferred from one pocket to others in

case of the credit event. Especially when it is combined with the total amount of outstanding

debt, it directly shows how much of the debt is insured with CDS. The ratio of CDS net

notional outstanding to the total amount of debt is a natural measure of investors’ concern

on the credit risk of the reference entity.2 Therefore, it is worth investigating whether CDS

net notional contain has the informational content for future put option returns and changes

in implied volatilities. This study could enlarge our understanding on the information in

1See chapter 2 on detail explanation.

2See chapter 2 on detail explanation.
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CDS volume for future asset prices.3

To address the informational relationship, I first perform the weekly contemporaneous

analysis between CDS-to-debt ratios and both returns and changes in implied volatilities

of put options. Regression analysis suggests that movements in put options cannot be

accompanied by CDS-to-debt ratios for all put options with time-to-maturities of 1, 3, and

6 months. This implies that the common risk components in determination of CDS volume

and put option prices cannot be found. Secondly I look into the predictability of CDS-to-

debt ratios for future movements in prices and implied volatilities of put options in daily

basis. The regression results show that CDS-to-debt ratios have no forecasting power in

predicting put options prices and their implied volatilities for all time-to-maturities. All of

these results suggest that there exists no close relationship in credit default swaps volume

and put option prices. The regression estimates are not statistically significant and display

specific patterns in neither magnitude nor sign. This is not incompatible with the findings

in the chapter 2: credit default swaps volume have informational content not on raw stock

returns but on adjusted stock returns. Stock prices are driven by a number of factors such as

market, size, value, and momentum. If these factors have greater influence on stock returns

than credit risk have, the informational content in CDS net notional for stock prices might

be captured in not raw returns but adjusted returns. Since options are mostly contingent on

stock prices, if option returns are not controlled by major risk factors, it is hard to observe

the relationship between CDS volume and put option prices.

This paper focuses on on the relationship between put option and credit default swap

volume. In the context of the relationship between put option and credit risks other than

credit default swap volume, Cremers et al. (2008) investigate whether implied volatilities

contain useful information for credit spreads. They show that both the level of individual

implied volatilities and the implied-volatility skew are determinants of credit spreads. Cao

et al. (2010) find that put option implied volatilities dominate historical volatilities in ex-

plaining the time-series variation in CDS spreads. The disconnection between CDS volume

and put option prices could be attributed to the difference in their underlying assets and

3Chapter 2 finds cross-sectional predictability of credit default swap volume for future CDS and stock

prices.
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time-to-maturities, which would be investigated in advance.

The rest of the paper proceeds as follows. Section 3.2 describes the data. Section

3.3 examines the relationship between credit default swaps volume and put options and

discusses the findings. Section 3.4 concludes.

3.2 Data

The list of firms that are included in this study is the same that is employed in chapter 2.

It consists of 208 US companies enlisted in NYSE and NASDAQ from November 2008 to

December 2011. They are neither in financial nor utility sectors. For all firms, the options

trading data and the amounts of debt issued are available in OptionMetrics and Compustat

respectively. CDS net notional and premium quotes are also available. To investigate the

relationship between credit default swaps volume and put options, I obtain these data sets

from the following sources.

3.2.1 The credit default swap volume

I obtain the CDS contract data from the Depository Trust & Clearing Corporation’s

(DTCC) Trade Information Warehouse (TIW). The data include weekly CDS aggregate

gross and net notional positions written against single name reference entities.4

3.2.2 The debt

I obtain the total amounts of debt outstanding issued by the firms from Compustat to form

CDS-to-debt ratios. Total outstanding debt is measured by the sum of long-term debt (#9)

and debt in current liabilities (#34).

4Section 2.3.1 explains gross and net notional outstanding in detail. Figure 2.4 illustrates an example of

CDS positions over the counter which describes gross and net notional calculation and trade compression in

detail.
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3.2.3 Put option

I obtain daily put options information from the OptionMetrics which provides daily trad-

ing information such as closing prices, implied volatility, open interest, and trading volume

on exchange-listed equity options in the US. I choose non-zero open interest at-the-money

(ATM) put options of which the information content are currently in use by market partici-

pants. I compute daily returns and changes in implied volatility of put options for maturity

of 1, 3, and 6 months, and test the relationship between these put options and CDS-to-debt

ratios.

3.2.4 S&P credit ratings

I obtain credit ratings from Standard & Poor’s (S&P) through Bloomberg system.

3.3 Empirical results

This study primarily investigates the relationship between CDS-to-debt ratios and returns

and changes in implied volatility of put options. I construct CDS-to-debt ratios from net

notional, that is, the sum of net positive positions of all market participants, and total

outstanding debt issued by the reference entity.5 The ratio of CDS notional to total debt

is used as an explanatory variable for predictive regressions to test the relationship.

3.3.1 Put option return

In this section, I examine the relationship between CDS-to-debt ratios and put option prices.

First, contemporaneous analysis is performed using following regression:

Rit+1,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1 (3.1)

where Rit+1,t denotes the weekly option returns. Regression results are shown in Table 3.1.

I find no evidence that CDS-to-debt ratios co-move with put option prices for all time-to-

maturities of 1, 3, and 6 months in any direction. All of estimates are not significant and

5Sample distribution of CDS-to-debt ratios is reported in Tables 2.1 and 2.2.
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both magnitude and sign does not show any specific pattern. The result implies that credit

default swaps volume and put option prices are not associated simultaneously.

Next, I explore the informational content in CDS-to-debt ratios for the future put option

prices. Predictive analysis is executed using following regression:

Rit+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ (3.2)

where Rit+τ,t represents the τ -day put option returns. The results are demonstrated in

Tables 3.3, 3.4, and 3.5. Similarly to contemporaneous regression, there is no predictability

of CDS-to-debt ratios for the future put option price movements for all time-to-maturities

of 1, 3, and 6 months except. This suggests that CDS-to-debt ratios have no informational

content, which is not contrary to the findings in chapter 2. CDS net notional has the

informational content for stock returns adjusted by market, size, value, momentum factors,

and doesn’t forecast the raw stock returns. A number of risk factors including credit risk are

playing roles in determination of stock prices and the component of stock returns which are

not explained by major risk factors are captured in CDS volume. Put options are derivative

contracts dependent on stock prices and if option returns are not controlled by those factors,

there might exist no close relationship between CDS net notional and put option prices.

3.3.2 Changes in implied volatility

In this section, I investigate the relationship between CDS-to-debt ratios and implied volatil-

ities. First, contemporaneous analysis is performed using following regression:

IV i
t+1,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1 (3.3)

where IV i
t+1,t denotes the weekly changes in implied volatilities respectively. Regression

results are shown in Table 3.2. It indicates that implied volatilities seems to have no

connection with CDS-to-debt ratio concurrently for all kinds of option except the options

with 1 month time-to-maturity and their underlying firms are less than 50% insured by

CDS. For those firms, put option implied volatility increases around 3% while CDS-to-debt

ratio rises 1%. However, it is marginally significant – t-stat is 2.1 – it might not imply that

there exists close relationship between those two.
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I also test whether CDS-to-debt ratios can predict movements of implied volatilities of

put options. I perform the predictive analysis using following regressions:

IV i
t+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ (3.4)

where IV i
t+τ,t represents the τ -day changes in put option implied volatilities. Tables 3.6, 3.7,

and 3.8 show the result for options with time-to-maturities of 1, 3, and 6 months respectively.

The results present that CDS-to-debt ratios has no forecasting power in predicting the future

changes in put option implied volatilities for all time-to-maturities of 1, 3, and 6 months.

All regression analysis suggest that there exists no close relationship between credit

default swaps volume and put option prices. This disconnection could come from the

difference in their features in underlying and maturity. Credit default swaps are contingent

claim on the debt issued by the reference firms while equity put options depends on the

underlying stocks. Most actively traded CDS are of 5-year maturity and CDS quotes are

derived based on this time-to-maturity. On the other hand, the longest time-to-maturity

for liquid put options is only 6 months. Therefore when stock prices moves, put option

prices correspond no matter whether it is related with the credit risk. For instance, if

stocks fluctuates notably by the risk such as noise trader risk which is independent to the

credit risk, there will be considerable change in put option prices but there might not be

significant variation in demand for credit default swaps. Since large portion of CDS traders

are insiders and dealers, they could be in better position to distinguish whether the risk

that moves stock prices is connected to the likelihood of the credit event. Especially stock

prices are exposed to lots of risks and noises. When the risks and noises are short-lived

and have no component from credit risk, credit default swaps volume and put option prices

could not be linked. This disparity needs to be scrutinized in advance.

3.4 Conclusion

This paper studies the relationship between the credit default swaps net notional and put

option prices. From the similarity between CDS and put option in terms of payoff structure,

one can expect the close connection which is found in neither contemporaneous nor predic-

tive analysis. CDS-to-debt ratio, a natural indicator of investors’ view on credit event, is
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not associated with put option prices concurrently. Neither has the ratio forecasting power

in predicting future put option price movement for all time-to-maturities.
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Table 3.1: Contemporaneous analysis of net CDS-to-debt ratio for weekly put

option returns

This table reports the results of cross-sectional regressions of weekly put option returns with

maturity of 1, 3, and 6 months on changes in CDS-to-debt ratio from Nov. 2008 through

Dec. 2011. The independent variables are constructed from net notional amounts of CDS

and total debt. Rt+1,t is a week return from time t. Since information on CDS notional is

collected on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in parentheses.

The time-series correlation is controlled by using Newey and West (1987) with five-week

lags.

Rit+1,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1

1M 3M 6M

α β α β α β

All -5.41 -0.11 -2.9 -0.01 -1.97 -0.1

Firms (-1.94) (-0.44) (-1.59) (-0.03) (-1.55) (-0.48)

Investment -5.61 -0.04 -3.17 -0.08 -2.07 0.16

Grade (-1.99) (-0.12) (-1.67) (-0.13) (-1.57) (0.44)

Speculative -4.48 0.23 -2.84 0.86 -1.96 -0.63

Grade (-1.57) (0.46) (-1.62) (0.92) (-1.56) (-0.56)

CDS/Debt -5.29 -0.85 -3.14 0.19 -2.19 -0.36

< 50% (-1.87) (-1.16) (-1.71) (0.31) (-1.72) (-0.58)

CDS/Debt -5.86 -0.09 -2.13 0.59 -1.32 -0.16

> 50% (-2.13) (-0.39) (-1.08) (1.09) (-0.92) (-0.43)
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Table 3.2: Contemporaneous analysis of net CDS-to-debt ratio for weekly change

in put option implied volatilities

This table reports the results of cross-sectional regressions of weekly put option implied

volatilities with maturity of 1, 3, and 6 months on changes in CDS-to-debt ratio from Nov.

2008 through Dec. 2011. The independent variables are constructed from net notional

amounts of CDS and total debt. IVt+1,t is a week change in implied volatility from time

t. Since information on CDS notional is collected on Fridays, t is always Friday. Fama-

MacBeth t-stats are reported in parentheses. The time-series correlation is controlled by

using Newey and West (1987) with five-week lags.

IV it+1,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+1

1M 3M 6M

α β α β α β

All 0.25 0.05 -0.10 0.08 -0.03 0.01

Firms (0.44) (0.82) (-0.24) (0.77) (-0.08) (0.1)

Investment 0.26 -0.03 -0.14 0.18 -0.01 0.06

Grade (0.43) (-0.33) (-0.30) (1.12) (-0.03) (0.57)

Speculative 0.20 -0.06 0.20 -0.14 -0.08 -0.08

Grade (0.39) (-0.57) (0.42) (-0.75) (-0.22) (-0.29)

CDS/Debt 0.27 0.29 -0.08 0.05 -0.10 0.14

< 50% (0.44) (2.10) (-0.18) (0.32) (-0.27) (0.85)

CDS/Debt 0.16 -0.01 -0.01 0.11 0.09 -0.11

> 50% (0.31) (-0.20) (-0.02) (0.71) (0.24) (-0.77)
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Table 3.3: Predictability of net CDS-to-debt ratio for daily option returns: 1

month

This table reports the results of cross-sectional regressions of daily put option returns with

maturity of 1 month on changes in CDS-to-debt ratio from Nov. 2008 through Dec. 2011.

The independent variables are constructed from net notional amounts of CDS and total

debt. Rt+τ,t is τ -day return from time t. Since information on CDS notional is collected

on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in parentheses. The

time-series correlation is controlled by using Newey and West (1987) with five-week lags.

Rit+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All -1.86 -0.10 -2.87 -0.08 -3.33 0.00 -2.63 0.02 -5.11 -0.10

Firms (-1.25) (-1.26) (-1.69) (-0.72) (-1.51) (-0.03) (-0.93) (0.11) (-1.83) (-0.39)

Investment -1.90 0.07 -2.90 -0.07 -3.50 0.21 -2.80 0.22 -5.32 0.05

Grade (-1.27) (0.58) (-1.69) (-0.44) (-1.59) (1.07) (-0.98) (0.89) (-1.90) (0.09)

Speculative -1.73 -0.02 -2.63 -0.02 -2.80 -0.10 -1.81 -0.04 -4.09 -0.31

Grade (-1.18) (-0.17) (-1.52) (-0.07) (-1.22) (-0.50) (-0.63) (-0.16) (-1.43) (-0.94)

CDS/Debt -1.91 0.29 -2.91 0.04 -3.23 0.26 -2.49 0.35 -4.96 0.37

< 50% (-1.26) (1.28) (-1.70) (0.14) (-1.46) (0.67) (-0.87) (0.72) (-1.77) (0.51)

CDS/Debt -1.75 -0.14 -2.77 -0.12 -3.53 0.03 -2.94 0.08 -5.57 0.04

> 50% (-1.23) (-1.59) (-1.62) (-0.90) (-1.59) (0.17) (-1.05) (0.40) (-1.99) (0.16)
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Table 3.4: Predictability of net CDS-to-debt ratio for daily option returns: 3

months

This table reports the results of cross-sectional regressions of daily put option returns with

maturity of 3 months on changes in CDS-to-debt ratio from Nov. 2008 through Dec. 2011.

The independent variables are constructed from net notional amounts of CDS and total

debt. Rt+τ,t is τ -day return from time t. Since information on CDS notional is collected

on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in parentheses. The

time-series correlation is controlled by using Newey and West (1987) with five-week lags.

Rit+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All -1.20 -0.10 -1.85 -0.20 -2.30 -0.02 -1.46 0.11 -2.67 0.10

Firms (-1.25) (-0.97) (-1.67) (-1.59) (-1.60) (-0.10) (-0.79) (0.55) (-1.46) (0.38)

Investment -1.36 -0.02 -1.99 -0.08 -2.49 0.15 -1.69 0.06 -2.82 -0.67

Grade (-1.43) (-0.12) (-1.78) (-0.35) (-1.74) (0.59) (-0.89) (0.20) (-1.49) (-1.26)

Speculative -0.70 -0.45 -1.90 -0.48 -2.04 0.05 -1.47 0.27 -2.47 1.38

Grade (-0.70) (-1.41) (-1.58) (-1.58) (-1.30) (0.15) (-0.79) (0.60) (-1.39) (1.48)

CDS/Debt -1.27 0.00 -2.01 -0.49 -2.42 -0.72 -1.48 -1.09 -2.69 -1.46

< 50% (-1.30) (-0.02) (-1.78) (-1.26) (-1.66) (-1.39) (-0.79) (-1.67) (-1.44) (-1.72)

CDS/Debt -1.08 -0.23 -1.30 -0.08 -1.81 0.21 -1.32 0.40 -2.23 0.64

> 50% (-1.12) (-1.65) (-1.11) (-0.27) (-1.25) (0.74) (-0.70) (1.27) (-1.17) (1.16)
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Table 3.5: Predictability of net CDS-to-debt ratio for daily option returns: 6

months

This table reports the results of cross-sectional regressions of daily put option returns with

maturity of 6 months on changes in CDS-to-debt ratio from Nov. 2008 through Dec. 2011.

The independent variables are constructed from net notional amounts of CDS and total

debt. Rt+τ,t is τ -day return from time t. Since information on CDS notional is collected

on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in parentheses. The

time-series correlation is controlled by using Newey and West (1987) with five-week lags.

Rit+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All -0.61 -0.16 -1.23 -0.10 -1.47 -0.03 -0.98 0.01 -1.72 0.08

Firms (-0.86) (-2.01) (-1.59) (-1.03) (-1.47) (-0.20) (-0.75) (0.09) (-1.33) (0.45)

Investment -0.64 -0.01 -1.27 0.23 -1.51 0.29 -1.00 0.2 -1.84 -0.24

Grade (-0.89) (-0.05) (-1.63) (0.96) (-1.49) (0.98) (-0.74) (0.89) (-1.39) (-0.77)

Speculative -0.36 -0.27 -1.17 -0.38 -1.29 0.09 -0.79 0.33 -1.53 1.39

Grade (-0.53) (-1.28) (-1.45) (-1.70) (-1.22) (0.29) (-0.62) (0.87) (-1.21) (1.62)

CDS/Debt -0.63 -0.08 -1.37 -0.22 -1.51 -0.03 -0.98 -0.23 -1.92 0.12

< 50% (-0.88) (-0.45) (-1.76) (-0.88) (-1.51) (-0.07) (-0.75) (-0.60) (-1.52) (0.26)

CDS/Debt -0.58 -0.17 -0.86 -0.11 -1.29 -0.02 -1.00 -0.05 -1.04 0.02

> 50% (-0.83) (-1.80) (-1.04) (-0.77) (-1.27) (-0.11) (-0.73) (-0.28) (-0.70) (0.07)
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Table 3.6: Predictability of net CDS-to-debt ratio for daily change in put option

implied volatilities: 1 month

This table reports the results of cross-sectional regressions of daily put option implied

volatilities with maturity of 1 month on changes in CDS-to-debt ratio from Nov. 2008

through Dec. 2011. The independent variables are constructed from net notional amounts

of CDS and total debt. IVt+τ,t is τ -day return from time t. Since information on CDS

notional is collected on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in

parentheses. The time-series correlation is controlled by using Newey and West (1987) with

five-week lags.

IV it+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All 0.96 -0.02 0.74 -0.04 0.45 0 0.95 0.03 0.32 -0.04

Firms (3.85) (-0.64) (2.45) (-0.87) (1.21) (-0.07) (1.98) (0.45) (0.56) (-0.79)

Investment 0.97 -0.05 0.76 -0.08 0.42 -0.01 0.94 -0.03 0.30 -0.02

Grade (3.73) (-0.83) (2.44) (-0.72) (1.06) (-0.06) (1.91) (-0.27) (0.50) (-0.29)

Speculative 0.88 -0.02 0.60 0.00 0.46 0.01 0.87 0.10 0.27 0.05

Grade (3.68) (-0.22) (1.98) (-0.07) (1.43) (0.08) (1.93) (0.99) (0.52) (0.50)

CDS/Debt 0.96 0.10 0.72 -0.22 0.41 -0.03 0.93 -0.27 0.35 -0.17

< 50% (3.65) (1.16) (2.35) (-1.69) (1.03) (-0.28) (1.90) (-1.60) (0.58) (-1.27)

CDS/Debt 0.95 -0.06 0.77 -0.02 0.52 0.02 0.93 0.10 0.19 -0.11

> 50% (3.96) (-1.18) (2.49) (-0.37) (1.53) (0.24) (1.96) (1.65) (0.37) (-1.29)
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Table 3.7: Predictability of net CDS-to-debt ratio for change in put option im-

plied volatilities: 3 months

This table reports the results of cross-sectional regressions of daily put option implied

volatilities with maturity of 3 months on changes in CDS-to-debt ratio from Nov. 2008

through Dec. 2011. The independent variables are constructed from net notional amounts

of CDS and total debt. IVt+τ,t is τ -day return from time t. Since information on CDS

notional is collected on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in

parentheses. The time-series correlation is controlled by using Newey and West (1987) with

five-week lags.

IV it+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All 0.04 0.01 -0.25 -0.04 -0.36 0.02 0.19 -0.03 -0.05 0.03

Firms (0.24) (0.21) (-1.16) (-0.63) (-1.29) (0.45) (0.51) (-0.47) (-0.12) (0.46)

Investment 0.03 -0.06 -0.28 -0.08 -0.40 0.11 0.15 -0.06 -0.11 0.16

Grade (0.18) (-0.76) (-1.26) (-0.81) (-1.38) (1.49) (0.39) (-0.47) (-0.23) (1.23)

Speculative 0.04 -0.10 -0.24 -0.18 -0.30 -0.04 0.14 -0.13 -0.21 -0.51

Grade (0.17) (-0.79) (-0.88) (-1.41) (-0.99) (-0.36) (0.32) (-0.70) (-0.46) (-2.61)

CDS/Debt 0.07 0.08 -0.27 0.02 -0.36 0.05 0.20 -0.12 -0.09 -0.07

< 50% (0.36) (0.83) (-1.25) (0.18) (-1.23) (0.42) (0.53) (-0.73) (-0.19) (-0.40)

CDS/Debt 0.08 -0.01 -0.13 0.09 -0.20 0.11 0.31 0.11 0.06 0.07

> 50% (0.37) (-0.17) (-0.46) (0.89) (-0.72) (1.15) (0.82) (0.93) (0.14) (0.58)
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Table 3.8: Predictability of net CDS-to-debt ratio for daily change in put option

implied volatilities: 6 months

This table reports the results of cross-sectional regressions of daily put option implied

volatilities with maturity of 6 months on changes in CDS-to-debt ratio from Nov. 2008

through Dec. 2011. The independent variables are constructed from net notional amounts

of CDS and total debt. IVt+τ,t is τ -day return from time t. Since information on CDS

notional is collected on Fridays, t is always Friday. Fama-MacBeth t-stats are reported in

parentheses. The time-series correlation is controlled by using Newey and West (1987) with

five-week lags.

IV it+τ,t = α+ β∆

(
CDS

Debt

)i
t

+ εit+τ

1 2 3 4 5

α β α β α β α β α β

All -0.07 0.03 -0.29 0.04 -0.33 -0.01 0.03 -0.02 -0.01 -0.09

Firms (-0.52) (0.56) (-1.73) (0.85) (-1.47) (-0.19) (0.09) (-0.40) (-0.03) (-1.27)

Investment -0.10 -0.07 -0.31 -0.08 -0.35 -0.09 -0.02 -0.13 0.01 -0.20

Grade (-0.69) (-0.49) (-1.78) (-0.58) (-1.51) (-1.13) (-0.05) (-1.24) (0.02) (-1.34)

Speculative 0.14 0.07 -0.20 0.02 -0.28 0.04 0.24 0.01 -0.14 0.01

Grade (0.76) (0.68) (-0.99) (0.23) (-1.10) (0.40) (0.79) (0.08) (-0.40) (0.04)

CDS/Debt -0.12 0.09 -0.39 0.05 -0.37 0.01 -0.01 -0.09 -0.04 -0.12

< 50% (-0.83) (0.92) (-2.29) (0.56) (-1.60) (0.09) (-0.03) (-0.93) (-0.10) (-0.82)

CDS/Debt 0.00 -0.01 -0.03 0.03 -0.19 0.00 0.10 0.00 0.07 -0.08

< 50% (-0.01) (-0.12) (-0.11) (0.47) (-0.82) (-0.01) (0.32) (-0.02) (0.19) (-0.97)
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