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CHAPTER 1. INTRODUCTION 2

1.1 Motivation

That human societies and systems are impacted by climatic (and geographic) factors are self-

evident; indeed, societies have adapted, historically, to their climatological and geographic

settings. With increasing technological ability to directly alter, at a large scale, natural

systems, post-industrial human societies are increasingly exerting a substantial impact on

the environment, thereby establishing an interactive system at a global scale; canonical in-

stances of such impacts include anthropogenic ozone depletion and climate change. Given

the self-evident and historical nature of natural impacts on human systems, it is suprising

that there appears little rigorous quantification of the impacts of changes in such natu-

ral systems, either autonomous–such as increasing desertification and changes in rainfall

patterns–or anthropogenic, on human societies. Attribution of any specific change in the

human system to changes in natural system(s) appear confounded by a variety of factors,

including the issue of time scales of relevance.

In particular, two issues appear relevant to understanding the linkages between changes

in natural system(s) and their role in causing changes in human systems. First, large natural

systems rarely alter at a specific point in time; rather, they undergo a (relatively) slow

change in equilibrium, to a newer, possibly less desirable, one. Human societies, over time,

perceive such changes and accommodate to them in a variety of ways. Second, changes

in the natural systems lead to changes in human systems which are tightly coupled to

those natural systems which, in turn, can lead to reorganization of societies, if such human

systems are sufficiently important. Thus, attribution of such change in human societies to

a particular cause maybe confounded by the time scales and by the internal processes of

the human systems themselves.

Anthropogenic climate change appears the most important large-scale (in this case,

planetary) change in natural systems in our post-industrial society, and this change is
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anticipated to affect a number of aspects of human systems. Yet there is little quantitative

understanding of the impact of such, possibly momentous, changes upon the human system.

Difficulties appear to arise for two reasons; first, there is no one societally meaningful and

consistent measure of “changes” in the climate and second, there is no particularly simple

representation of the impact of any given change in climate. The latter possibly stems from

the fact that the human system is constantly evolving to respond to particular climatic

(and other natural) conditions; changes in such conditions, therefore, engender changes in

human actions upon which these natural systems impact.

The natural system with the most direct and meaningful impact on human societies,

impacted by changes in the climate system is the hydrologic system. This system is expected

to undergo substantial alteration, depending upon the magnitude of changes in climatic

patterns. Most indications (Trenberth [1999], Bates et al. [2008], Huntington [2006] and

references therein) point to enhanced precipitation at certain locations and increased aridity

at others. Most importantly, increased variability and increasing incidence of extremes of

precipitation is clearly foreseen. On the other hand, as regards the human system, there

appears substantial agreement (see Smith et al. [2007]) that activities directly using the

natural system as an input, in particular agriculture, is most likely substantially impacted.

In the case of both the natural and the human system, however, there is no clear consensus

yet on the magnitude of impacts; indeed, in many cases, even the direction of impacts likely

vary regionally. Finally, in both systems, the most important issue is that of “detecting”

a signal of change and of understanding the possible impacts of such changes. To a large

extent, both are empirical questions, to be investigated using observational data.

Understanding the issue of changing hydrologic extremes may be seen (conceptally at

least) as having two components: the first is primarily understanding if, over a reasonably

long period of the past, there have been substantial changes in extremes of rainfall; this

component provides a basis for the second one, which involves understanding (projecting)
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changes in extremes in future climates relative to the historical. The challenge of climate

change therefore is two-fold: understanding and summarizing changes in the climate sys-

tem (and systems driven by it, such as the hydrologic system) and translating such an

understanding into quantitative assessments of impacts upon different activities.

The first part of this dissertation attempts to add to our understanding of both aspects

(referred to above) of the climate change issue, using tools from two different disciplines:

Economics and Hydro-Climatology, for the case of India. Modifications of conventional

approaches in Environmental Economics are used to obtain a quantitative understanding

of the type of changes in agricultural productivity induced by probable scenarios of climate

change. Using a newly available observational rainfall data set from the Meteorological

Department, assessments are carried out of changes in extremes of rainfall. These putative

changes are then assessed in relation to certain larger scale climatological phenomena which

presumably impact hydrologic extremes, based on hypotheses presented in the literature.

There is yet another common thread unifying the first part of the dissertation. Most

statistical methods used in the literature on quantifying impacts of climate change on agri-

culture have focused on mean impacts, implicitly assuming a mean shift of the distribution

of yield. Yet, it is not evident that such is necessarily the case; in other words, instead of

testing whether a hypothesis of climate change leading to a smooth mean impact on yield,

holds, it is implicitly presumed that it does. Second, in most studies analyzing observed

trends over large regions (such as nation-states or sub-regions), analysis is carried out after

some manner of aggregating rainfall (such as in Goswami et al. [2006]) is chosen. In both

cases, interest centers on presumably pooling information at various locations (district, in

the former, and grid, in the latter) in order to make inference regarding the larger region.

In the case of climate change impacts on yields, consider the following two scenarios

regarding the distribution of yield1: in the first, the upper and lower quantiles change (say

1Assuming that the quantiles are fixed over time.
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increase and decrease respectively) with a very minor change in the mean while in the

second, the upper quantiles increase substantially while the lower decreases, with the mean

impact being the same as in the first scenario. Clearly, both scenarios have very different

implications for policy and welfare, while they appear identical from the mean regression

perspective, which presumes parallel shift of the quantiles.

Consider now the case of pooling rainfall data from a number of grids (stations) by

applying a uniform threshold (as in Goswami et al. [2006]; Rajeevan et al. [2008]). If grids

are sufficiently heterogeneous, then not only are different grids likely to be selected for

different years but (as in the case of the data we use) only a few grids contribute to the

analysis. Thus, this type of pooling leads to only the grids with sufficiently high average

level of rainfall contributing to the analysis.

In both cases, the analysis carried out here allows explicitly for heterogeneity in the indi-

vidual unit of observation, when inferring change; in the former, it is heterogeneity of impact

on yield (of a given change in climate) while in the latter, it is accounting for heterogeneity

of level of rainfall2 when defining thresholds from which an extreme event is defined. In

the case of climate change impact on agriculture, a given change in climate/weather (tem-

perature and rainfall, for instance) is allowed to impact yields at different points on the

distribution of yield differently3. In the analyses on evaluation of trends over India, at-

tempts are made to account for heterogeneity by applying a different threshold for defining

an extreme; this way, the spatial heterogeneity in rainfall levels are accounted for.

India, as a large developing nation, has an agricultural sector which is large, consituting

up to 18% of GDP and 54% of employment, with a large proportion of subsistence farming.

2In other words, extremes must be measured relative to a grid’s (station’s) own level of rainfall, rather
than the rainfall level of some pooled “grid”, which is not representative of any given grid.

3Put another way, a given increase in temperature is allowed to impact yields very differently, including
difference in signs, at different “regions” of the distribution of yield. To be more concrete, an increase in
temperature is allowed to be beneficial at the upper (lower) quantiles and detrimental at the lower (upper)
quantiles. Whether they are indeed similiar is indeed an empricial question and is explicitly tested for.
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It is among the largest food producers in the world (second and third-largest producer of

rice and wheat respectively), and yet suffers from both, a high rate of lack of access to

stable food supply and fluctuations in the production of food driven by variations in large

scale monsoonal features (reflecting its largely rainfed and subsistence farming). These

features, compounded by a lack of effective public food distribution systems, renders the

poorer population vulnerable to fluctuations in production of food grains.

It has a hydrological cycle which is complex, driven primarily by the monsoon phe-

nomenon, with substantial inter- and intra-year variability in rainfall patterns. Thus, while

average all-India rainfall is exceedingly high (at 1160 mm; see Kumar et al. [2005]), the

spatial distribution of rainfall and its utilizability is such that India has among the largest

semi-arid regions in the world, particularly in the South-Central and North-Western re-

gions. The seasonally intermittent (about 80% of annual rainfall occurs in less than 100

days) and intense rainfall (in many cases, more than half the annual rainfall occurs in less

than 100 hours) during the monsoon season poses hazards of both periodic drought and

flooding. In particular, rainfall and tropical-cylone related extreme events are a significant

hazard in much of the Indian sub-continent (encompassing India, Bangladesh, Nepal and

Pakistan). Rainfall extremes, therefore, have significant and large-scale societal impacts

through agricultural production, flood hazards etc.

Thus far, we have addressed the issue of impacts of changes in natural environment upon

the human system. There is however, its obverse, human management of the natural system.

Human societies use and interact with, directly or indirectly, a very large proportion of the

natural system. In particular, the economic system uses, as its input (or as a sink, as in the

case of pollutants, including green house gases) natural resources, including minerals, water

and the atmosphere. Given the importance of such natural inputs in human production,

these have been substantially studied and modelled. In particular, there is a large Economics

literature on “optimal” (from the persepctive of the economic system) management of a
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variety of natural resources. Yet, human management of resources as diverse as groundwater

aquifers and fisheries has been far from optimal even from its own perspective, and has

led to substantial overuse of these systems (see Wada et al. [2010] and references therein

for groundwater depletion, Worm et al. [2009] for the case of fisheries). In particular,

groundwate aquifers throughout a large part of the semi-arid regions around the globe have

been subject to overdraft.

Recharge of aquifers occur primarily through rainfall or through irrigation and riverine

flows; when extraction is larger than recharge, as is true in a variety of semi-arid regions

around the world, there is an effective mining of water. Rapid depletion of these resources

thus has an increasing impact through a positive feedback: depletion raises the cost of

further extraction, rendering such extraction, afer a point, uneconomical societally (see

Dasgupta [1982] for a detailed discussion). While this phenomenon is likely to prevent

physical exhaustion/extinction of a resource, the impact on production systems dependent

on such inputs (such as agricultural systems) are likely eventually to be substantial, espe-

cially in the developing nation setting. For instance, food prices are likely to rise4, adversely

impacting large populations of poor; in addition, it may also further increase the ranks of

the poor by depriving large numbers of small farmers their means of livelihood. Thus,

there are two aspects to the issue: first, understanding the specific context of managing

groundwater in the semi-arid, developing nation context, and second, exploring creative

and context-specific solutions to the issue.

In this context, the second part of the dissertation addresses the issue of unified, coherent

and more realistic analysis of groundwater-based models in the Economics literature. The

attempt here may be viewed as a modest attempt at addressing the first of the two aspects.

4A large part of the gains in food production in monsoonal semi-arid nations such as India, China and
Bangladesh are directly as a result of explosion in groundwater-based agriculture.
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1.2 Structure and Scope

The dissertation comprises of five individual papers, which span the two dimensions indi-

cated in Section 1.1. The methods used and the questions addressed are, by design, diverse.

To summarize, three distinct, yet related, issues are addressed:

1. Quantification of climate change impact on agriculture

2. Assesment, and attribution, of trends in extremes of rainfall

3. Structure of groundwater management models

We indicate below the nature of the issues addressed, the methodologies used and the

inter-relationships between them. Chapter 2 addresses the question of probable impact

of climate change on Indian agriculture. The question here relates to an understanding

of a direct impact between changes in the natural system and a human system directly

dependent upon it. This may be better understood conceptually in the following framework;

let Yt,i denote the yield in district i in year t of a given crop, {Xi,t,k} denote a “climate”

field or alternately, a set of “climate” variables. Nonetheless, denoting by QYi,t (τ |Xi,t,k)

as the quantile function of the (random) variable Yi,t, where τ ∈ (0, 1) is a quantile of the

distribution of Yi,t, we QYi,t (τ |Xi,t,k) as being linear i.e.

QYi,t (τ |Xi,t,k) = β(τ)Xit

where β(τ) = (β1(τ), . . . , βk(τ)). The case of the mean regression corresponds to β(τ) =

β, ∀τ .

While partly based on existing methdologies in Econometrics, the work here represents

a departure from the existing work in both Environmental Economics and agricultural

modeling in a variety of dimensions. While empirical and using a reduced form approach

to data analysis, the methodology adopted nonetheless is flexible enough to allow both, a
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more detailed characterization of impacts as well as accounting of impacts of sub-seasonal

variability in monsoon rainfall.

To understand Chapters 3-5, consider the set up of a statistical inverse problem. We

emphasize that the explanation below is intended to be an informal elucidation of ideas,

since we do not use the formal tools of this theory. Let Θ index the class of models, with

Θ some space (see Evans and Stark [2002] for a full and formal development of the set up),

with the model with indexθ ∈ Θ being referred to as the “model θ”. The forward mapping

is then the mapping θ 7→ Pθ, with Pθ the probability distribution for the observables. The

inverse problem refers to a scenario wherein dataX drawn from Pθ are oberved, for unknown

θ; we then wish to use the knowledge of X and the fact that θ ∈ Θ to estimate g(θ) where

g is a function defined on Θ.

In our case, let t, s denote respectively time and space (grid location) and let θ̃ denote

our “signal” over space and time, where the signal is a pattern or a trend over a region

across a given time period. Given {Xt,s}t∈T,s∈S , our objective is to recover the physically

relevant “signal” θ̃. In other words, we wish to estimate θ̃ from the relationship

{Xt,s} = g(θ̃)

In Chapter 3, the relationship of interest is existence of a trend over a large spatial

domain. In other words, interest centers on understanding whether, over a large domain

(all of India, in fact) there are any discernible increasing (or decreasing) trends in rainfall

extremes. In order to infer this, we use gridded rainfall data for 53 years, compute a non-

parametric estimate of a (deterministic) trend and then make (statistical) inferences about

whether a trend exists over all of India, as conjectured in the literature.

In Chapter 4, the relevant signal of interest is again a trend, now in only one metric

(frequency of exceedance of a certain threshold) over a smaller region of India. The dif-

ferences from the problem in Chapter 3 may again be illustrated in the notation of the
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statistical inverse problem setting above. Denote by {Y k
t }k∈K data on a set of K climatic

predictors or precursors, which potentially impacts rainfall in our region of interest. The

relevant inverse problem now is:

{
Xt,s, Y

k
t

}
= Gk

(
θ̃
)

In other words, the signal extraction problem is more difficult, in that there are ad-

ditional “predictors”, climatic phenomena which can mask or otherwise contaminate the

signal θ̃. In view of the added difficulties, the major difference from Chapter 3 is in the

methodology used. Explicitly recognizing the discrete (count) nature of the data {Xt,s},

and to account for predictors, we use a new regression setting which, in addition, filters

only areally large signals, quantile regression for count data.

Finally, Chapter 5 reports on an ongoing investigation, to understand which consider

now the following inverse problem:

{Xt,s,ω} = g(θ̃ω)

where ω ∈ Ω is some frequency (as in the physical frequency or inverse of the time period

of a relevant physical cycle) of interest, in the frequency spectrum Ω. In other words, the

inverse problem now corresponds to recovering a pattern of behavior of extremes which

now varies by frequency. The problem dealt with in Chapter 1 is a sub-set of this problem

and may be obtained by setting ω = 0, where a deterministic trend is seen as a spike in

the frequency spectrum at 0 frequency. We investigate four frequencies of interest, the

ENSO (El Niño Southern Oscillation), QBO (the Quasi-Biennial Oscillation) and decadal

frequencies, in addition to the trend, at ω = 0.3, 0.4, and 0.1 respectively.

The final substantive chapter, Chapter 6, deals with understanding the structural prop-

erties of groundwater models. To assist in clearly visualizing the objectives of the analysis,
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as well as the contribution of this chapter to the existing literature, we begin with some no-

tation. Consider first a simple, single-cell aquifer, possibly a “bath-tub” type aquifer. Let xt

denote the volume of water in the aquifer at the beginning of time period t ∈ {1, 2, . . . , T},

where time is discrete, and for now T < ∞ and wt denote the extraction (pumping) of

groundwater in period t. The farmer observes xt, makes a decision about wt and then

random recharge (in the form of rainfall) occurs. Thus, the next period stock is, simply,

X̃(xt, wt) = xt+1 = xt − wt +Rt. Denote by Π(xt, wt) = B(wt)− C(xt, wt) the net benefit

to the farmer of pumping in period t, where B(w) are concave and increasing benefits, with

C(x,w) being the cost of pumping. Following the literature (cited below), and in keeping

with hydrologic facts, we take that C(x,w) is lower for higher levels of stock (for any level

of pumping), and increases in pumping (for any given stock).

The decision framework just set up is a dynamic framework, with short-term benefits of

increased extraction offset by longer-term benefits of reduced costs. This decision problem

is expressed, in this chapter, as a formal discrete-time Stochastic dynamic programming

problem. In related literature in Environmental Economics (Burness and Brill [2001]; Burt

[1964, 1966]; Gisser and Sanchez [1980]; Knapp and Olson [1995]; Provencher and Burt

[1993]; Zeitouni [2004], among many others), the important questions of interest are: Is it

necessarily true that

1. wt(x) is increasing in xt?

2. wt(x) is decreasing in t?

3. xt+1 = xt − wt(x) is increasing in xt?

Each of these are intuitive properties, and if they do hold, help in intuition. Typically,

smoothness assumptions (joint concavity of Π) are imposed on the problem in order to

yield these desirable properties. Yet, in many settings for C(x,w), including the most

commonly used ones, these do not hold. In other words, these properties, in the framework
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just described, have not been shown to hold for even the most simplifed form of C(x,w)

used in the literature. In this setting, we generalize the cost function in two dimensions, and

for each of these three forms of C(x,w), prove that some of the three properties listed (and

two which are not) hold. We do not impose any smoothness assumptions on the primitives

in this chapter and work in a lattice-theoretic set up.

Second, we also prove that many of these properties survive when risk aversion of the

decision maker is taken into consideration ie. when the objective is to maximize U(Π(x,w)),

for the log utility function. We note that, apart from Knapp and Olson [1996] (who work

in a different set up) there is no mention of this property in the literature. In addition, we

also investigate limiting (in t) behavior of the problem, and show that certain important

properties do survive this limiting operation.

Finally, we investigate the issue of when the Markov Chain xt+1 = xt−wt+Rt converges

to a unique stochastic steady state5 when property (3) does not hold. We use a very

powerful, and little used (in the Environmental Economics literature), result to illustrate

that, for a very wide class of models, there does exist a unique invariant distribution. Our

work in this Chapter thus unifies, generalizes and proves a variety of properties for a large

class of stochastic models used in this literature.

5Analogous to the converence of a deterministic dynamical system to a deterministic steady state, a
stochastic dynamical system, or equivalently, the Markov Chain, in (3), can converge to a steady state
probability distribution for Xt.
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2.1 Introduction

Given the incontrovertible evidence on human-induced changes in climate, research is in-

creasingly focussed on better and finer-scale understanding of the pathways of the impacts

of such changes on economic activities. Quantifying the nature of such impacts, under a

variety of possible scenarios of climate change, is a critical stage in the process of under-

standing the nature and magnitude of adaptations to the changes. The impacts of climate

change are likely evident on a variety of time scales and climatic variables, and research to

date has focused mostly on the manifestations of such change, primarily through changes in

precipitation and temperature. Many regions of the globe are anticipated to undergo rapid

warming at the surface, with a possibility of increasing precipitation.

Of the many sectors of an economy impacted by climate change, agriculture and forestry

have been identified to be most susceptible, given that weather is a direct component

of the production in these sectors. Another reason for the importance of agriculture is

its disproportionate share in employment in developing nations1. Most studies of climate

change impacts on agriculture focus on the developed world, primarily the US (Deschenes

and Greenstone [2007]; Schlenker and Roberts [2006, 2009]; Schlenker et al. [2006]), but

the importance of the agricultural sector in these regions are smaller than those in the

developing nations. Estimates of the impacts of climate change on these economies will

presumably be a first and important step in adapting to these changes. The importance

of the task is magnified by the predictions of both larger changes in climate (and therefore

weather) and larger uncertainties in those changes in the developing nations (predominantly

in the tropical and sub-tropical regions) than in the more developed (and temperate) ones.

This paper provides direct evidence on the impact of climate change on Indian agriculture,

and finds that climate change is likely to reduce yields of many food grains substantially,

1The share of agriculture in employment, for India, is about 54%.
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although there is also intriguing evidence of only small negative and even slightly positive

changes for rice.

Previous studies quantifying the impact of climate change on agriculture fall into one of

three categories, based on the approach used to quantify such impacts: production function

approach, the Ricardian approach and a panel data approach. The production function

approach is based on controlled agricultural experiments in a laboratory-like setting, under

agronomically optimal conditions. As a result, they reflect optimal outcomes, with only

minimal adaptation to changes possible, and likely differ from realized outcomes at the farm

level. The Ricardian approach, pioneered by Mendelsohn et al. [1994], attempts to control

for the full range of farmer adaptations possible, by estimating a functional relationship

between land values and other (appropriate spatial) climate variables (along with other

controls). The main premise of the approach is that, with well functioning land markets,

land prices will reflect the present discounted value of profits from all uses of land, controlling

for many potentially unobservable characteristics. Naturally, the reliability of such methods

depend on the tenability of such assumptions (for evidence on this approach to agriculture

in the US, see Deschenes and Greenstone [2007]; Fisher et al. [2009]).

A variant of this approach, which is less demanding in terms of well functioning markets,

is the semi-Ricardian approach, developed in Sanghi et al. [1998] and applied to the cases

of Brazil and India. This approach uses average profits (over a long period of time) at the

district level as a proxy for land prices, with the assumption that land prices, if available,

would be the present discounted value of such profits. Using this approach, Sanghi et al.

[1998] and Kumar and Parikh [2001] find significant negative impacts on profits under a

variety of climate change scenarios for India.

The panel data approach uses presumably random year-to-year variation in weather

across US counties to estimate the impact of weather on agricultural yield (Schlenker and

Roberts [2006, 2009]; Schlenker et al. [2006]) and profits (Deschenes and Greenstone [2007]).
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This approach overcomes the omitted variable-type issues encountered in the Ricardian ap-

proach, and permits controlling for unobserved individual heterogeneity (via the use of

county fixed effects), such as farmer/soil quality, while at the same time allowing for some

farmer adaptation, providing presumably better estimates than the production function

approach. A major drawback with this approach is an inability to reflect changes in tech-

nology and choices (such as switching of crops, exit from agriculture, change in cropping

seasons etc). Using this approach for India, along with gridded reanalysis weather data,

Guiteras [2008] explores the impact of climate change on annual profits at the district level,

and estimates moderate losses (up to 9%) for the medium term, and significant (up to 25%)

losses for the long term, under a variety of climate scenarios.

It is also important to notice that all of the preceding approaches model themean change

in the underlying variable (yield, land value, average profit) by using a mean regression

framework (parametric or nonparametric), in which a major assumption implicit is that

covariates (weather, climate, controls, etc) impact only the mean of the underlying variable,

and do not alter the shape (or scale etc) of the conditional distribution of yield.

In other words, implicit in such an approach is the idea of climate change leading to

mean shift in agricultural outcomes, with no changes of underlying relationship between

agricultural outcomes and climate. This is problematic for several reasons; for instance,

in much of the scientific literature on climate change, focus is on changes in variability

(especially in the hydrologic cycle, which determines both long and short-run availability

of water supply, a critical ingredient in agriculture) as a result of an altered climate; while

such changes are encapsulated in a “mean effect” framework, they are not restricted to it.

Research focus in the climate literature therefore is on changes in extremes and in variability

changes. Further, the assumption of a mean shift is arguably a testable hypothesis in a

statistical framework, rather than an implicit axiom.

This paper develops a novel panel data approach for linking observed weather outcomes
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and agricultural outcomes, at the district level2, at any number of chosen quantiles. In

this framework, yield, at each quantile, is modeled as being a (potentially nonlinear in

covariates) function of weather variables, primarily Growing Degree Days and seasonal (and

monthly) rainfall and district-specific fixed effects. The use of district-specific fixed effects

allows unobserved determinants of district-specific, time-invariant effects (such as soil type,

topography etc) to be controlled for. The estimation strategy is to regress yield on observed

weather outcomes and district-fixed effects, for each quantile of interest. Extensions of

the framework to flexible modeling of covariate impacts, as well as to fully non-parametric

settings using the penalized splines approach in Koenker et al. [1994] are also indicated. The

framework developed here may therefore be seen as a generalization of the non-parametric

estimation outlined in Schlenker et al. [2006] to an estimation of various features of the

conditional distribution, apart from the mean.

Given that the quantile function completely characterizes the distribution function of a

random variable, the idea underlying this approach (and quantile regression in general) is

to parametrically obtain estimates of local features of the full conditional (upon covariates)

distribution of yield, without sacrificing the interpretability and computational simplicity

of the regression framework3. Unlike in the linear panel data case, this approach allows for

two distinct types of (unobserved) heterogeneity: district-specific unobserved heterogeneity

(due to the inclusion of the fixed effects), and heterogeneity of covariate effects (due to the

quantile nature of the regression). Region-specific cubic time trends are also included in

order to disentangle the impacts of a potentially warming climate over the latter period of

the twentieth century and improvements in agricultural productivity over the same period.

2The district is the smallest administrative unit in India, and is analogous to an American county,
although generally larger.

3For instance, alternative and non-parametric estimation of conditional quantile functions are detailed
in Koenker [2005, Chapter 7]. These frameworks however are (a) not easily extended to higher dimensions
(of covariates) (b) lack interpretability, especially in multi-variate settings (c) not readily generalized to fixed
effects settings and (d) computationally burdensome, especially since inference is bootstrap-based.
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The predicted impact of climate change at each quantile is computed as the differences in

predicted yield at the historical weather and weather realizations from climate models for

various climate scenarios (or uniform changes in temperature and rainfall applied to current

weather).

This paper uses a unique and recently available dataset of gridded temperature and

rainfall data for India, from the Indian Meteorological Department, spanning 1969-1999,

and an agricultural dataset, spanning 1971-2005, for agricultural yield at the district level,

for estimation. Rice and wheat are grown in different seasons, with very different charac-

teristics, and projections of climate changes are very different for these two seasons. It is

therefore important to account for considerations of separate growing seasons and therefore

very different impacts on crops in the different growing seasons4. This paper find significant

negative impacts, of up to 6% of yield, for wheat, for very reasonable scenarios (up to 0.50C

increase in temperature), and up to 10% losses for larger increases (10C increase in winter

temperature).

For rice, however, results indicate minimal losses at all but the highest quantiles con-

sidered, and even mildly positive impact in many regions, primarily the Eastern region, a

result which is consistent with those in Guiteras [2008], and with a recent study of Welch et

al. [2010]5. These results are robust to both flexible functional forms (quadratic, orthogonal

polynomials and fully non-parametric) and to different plausible thresholds, for Growing

Degree Days.

4There are two major growing seasons in India; the summer monsoon growing season, called kharif,
and the winter growing season, called rabi. There are actually two monsoon seasons over India, the most
important being the summer or South Western monsoon season, from June to September, during which about
70% of annual rainfall occurs. The second monsoon season (North Eastern monsoon) affects primarily South-
Eastern and North-Eastern regions of India, of which agriculture in South-Eastern states of India (Andhra
Pradesh and Tamil Nadu) is significantly impacted. In this paper, we will use terms “summer growing
season” (“winter growing season”) and “kharif season” (“rabi season”) interchangeably.

5This study reported an increase in rice yield across different locations under increasing maximum
temperature, although at the only study location in India (in Tamil Nadu, South-Eastern India) temperatures
reported rarely exceeded 340C.
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Prior approaches to estimating impacts of climate change for India suffer from two

drawbacks: first, given that there are two agricultural seasons, it is not clear that ignoring

completely weather(climate) in this season while including agricultural outcomes for this

season as part of the response (as in Sanghi et al. [1998], Kumar and Parikh [2001] and

Guiteras [2008]) provides sensible estimates. This issue aside, it is not clear how to interpret

the monetary equivalent of crop yield when summed over crops grown in different growing

seasons (i.e.
∑
k yitkpik where k denotes the crop, yitk the yield of crop k in year t and district

i, prices pik are fixed in time) at the district-level (Guiteras [2008]). For any interpretation

of this variable as potential productivity, one must also control for all inputs, which is

not possible in this case (due to the absence of such data). A final issue is the possible

confounding of price impact from productivity i.e. results are likely sensitive to impacts of

the specific price used6. The approach outlined in this paper avoids the issues raised above

altogether by working directly with changes in physical crop yield, addressing crops grown

in different seasons separately, and accounting for substantial changes in seasonal weather

directly.

The plan of the paper is as follows: we first detail the agronomic and economic basis of

the model, turn then to outlining the advantages of quantile regression in the current setting,

indicating the benefits and interpretation of fixed-effects in quantile regressions, proceed

to outline the econometric strategy adopted and finally, report results of the estimation,

including impacts of climate change on yields.

6It is also not evident that fixing prices at the 1960 level provides any remedy to the problem outlined
for the reason that the year chosen(1960) pre-dates all significant agricultural policy changes in India, at
both the national and the state level (such as support prices for rice and wheat and sugar co-operatives for
sugarcane, changes in electricity pricing for irrigation and water pricing for surface irrigation). These prices
therefore are unlikely to be relevant for later periods.
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2.2 Model

The objectives of the paper are to be able to obtain estimates of the impact of weather

on crop yields, using a newly available high quality gridded weather data set, and using a

newly developed framework for quantile regression for panel data with fixed effects. The

approach outlined here allows estimation of the potentially non-linear relationship between

temperature and rainfall on crop yields, at different quantiles of yield.

2.2.1 Temperature and Yields

Given the reduced form nature of the statistical approach proposed here, it is imperative

to obtain a seasonally aggregate metric of temperature relevant for crop growth (given that

aggregate metrics such as “average temperature” yield almost no relevant information). Fol-

lowing the approach outlined in Guiteras [2008]; Schlenker and Roberts [2009], we postulate

a temperature limit within which heat is beneficial to plants, in a linear and time-separable

manner. The upper and lower limits of temperature are a matter of some debate even in

the context of US agriculture (for which they were first derived) and are generally unknown

for the Indian context. However, following Guiteras [2008], we fix these limits to be 8◦C

and 34◦C for the summer growing season. Following Schlenker et al. [2006], who illustrate

the superiority of the agronomic measure of Growing Degree Days (GDD), we compute

this measure using two different methods. In the first case, which we term “Linear Degree

Days”, the computation is straightforward7. Given daily average temperature, T , compute

7Degree days were also computed using an alternative method of Baskerville and Emin, with very similar
results (not reported here).
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D(T ) =



0 T≤Tlow

T − Tlow Tlow≤T ≤ Tupper

(Tupper − Tlow) T ≥ Tupper

(2.1)

where the upper and lower thresholds are set to 8◦C and 34◦C for the summer growing

season.

The Linear GDD metric was computed for each day, summed over the growing season

(kharif and rabi seasons) to obtain a seasonal sum of GDD8. The fixing of the growing

season is less to do with the endogeneity of farmers’ sowing and harvesting decisions (which

are, for the rainfed areas, dependent on expected onset of the summer monsoon) and more

to do with bio-physical conditions, including availability of water. In order to account

for potentially harmful effects of temperatures beyond 34◦C upon plant growth, we also

compute “Harmful Degree Days” as the difference between 34◦C and the daily average

temperature.

The choice of temperature limits for the rabi season was made more difficult by having

little India-specific literature on the topic (much of the literature use only a lower bound and

do not use a specific upper bound). Given however the significant temperature constraints

on wheat, it was decided to choose 6◦C as the lower threshold (temperatures only very

rarely go much below this over much of the wheat growing regions) and an upper threshold

of 28◦C. Choosing slightly different upper thresholds (27◦C and 29◦C) did not appreciably

alter the results. Harmful Degree Days were computed as in the case of the kharif season.

Two points regrading this formulation are worth emphasizing : (a) linearity of plant

growth as a function of temperature during the growing season (b) the complete indepen-

8In other words, GDDk =
∑Tk

t=1 D(t) i.e. the growing season degree days are the sum of the daily degree
days over the growing season, for a given year; season length is 122 days for the summer growing season and
183 days for the winter season.
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dence between temperature and precipitation, when used in the regression framework with

yield (not its transformations) as the dependent variable. For instance, in the regressions in

Guiteras [2008] (see for instance, Equation (5), pp 22), this implies the complete separation

of the effects of temperature and precipitation upon yield, which is somewhat unrealistic in

the case of the summer growing season.

2.2.2 Precipitation and yield

The focus in most of the econometric research on estimation of climate change impacts has

been on estimation of temperature impacts upon plant growth. Agronomic and climate

literature for India however, has tended to focus, for rainfed agriculture, on the significance

of summer monsoon characteristics. However, in the case of India, even without climate

change, climatic variability, especially the variability in monsoon rainfall, has been of major

interest for agriculture. This is due to (a) the season: the earlier part of the summer

growing season from May-Sept are also the hottest months of the year and temperatures

generally reduce only with rainfall (b) lack of water availability: seasonal characteristics

and the largely rainfed nature of agriculture in India (current estimates indicate that only

about 40-50% of agriculture in India is fully irrigated) means that sowing operations are

critically dependent on the arrival of rainfall.

The significance of monsoon rainfall for Indian agriculture is well documented in both,

Agricultural and Development Economics (for instance, Rosenzweig and Binswanger [1993])

and in the Agriculture and Climate literature (Gadgil, 2000 etc). In these regions, it is well

known that the major constraint is availability of water during the critical sowing period,

May to June, and therefore, onset of the monsoon is of some importance. Further, contrary

to popular perception of the monsoon as marching South-West to North-West, the monsoon

has what are known as “break periods”, periods during which there are long dry spells (of

up to a fortnight or more in duration) over large parts of India. There is some speculation
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on the harmful effects of these periods, but little actual evidence about its importance for

agriculture.

If (as in Guiteras [2008]) identification is based on weather variations from district mean

weather, we argue that it is important to (a) account for rainfall variations which are not

captured by monthly totals (b) condition monthly and seasonal total rainfall on onset and

dry spells. The latter accounts for the fact that years with late onset and years with normal

rainfall are not exclusive and therefore, two years with very similar total rainfall can have

very different onset days; further, given the concentrated nature of monsoonal rainfall in

India, years with a large number of “dry spells” can easily be years with average monthly

rainfall (especially true in the semi-arid parts of India with highly variable rainfall patterns).

In other words, monthly rainfall is not a sufficiently fine proxy for rainfall distribution

within the month, given the relatively concentrated nature of rainfall in India. However,

total seasonal rainfall may be a somewhat inadequate measure of such variability due to

the concentrated nature of rainfall in many regions in India (for instance, more than 80%

of total rainfall in India is documented as occurring in less than 100 hrs). We therefore use

more direct measures on the two aspects of monsoon most relevant for agriculture: onset

of the monsoon and the number of dry spells during the season. Monsoon onset is defined

simply as the first day after April 1 that rainfall on 5 successive days is above 5mm without

being followed by 5 successive days with rainfall below 5 mm. Defining as a “dry spell” any

7-day period with rainfall below 5mm, we obtain a count of such spells for every district

for every year (see Appendix A for more details on these variables).

To summarize, we use the following variables for summer monsoon season measures of

rainfall: seasonal (monthly) total rainfall and onset day, dry spells. For the winter season

we use, in addition to seasonal rainfall, a bi-monthly rainfall sum.



CHAPTER 2. CLIMATE CHANGE IMPACT ON INDIAN AGRICULTURE 26

2.3 Econometric Strategy

We turn now to characterizing our econometric strategy. We begin with a brief interpreta-

tion of linear quantile regression as an extension of linear regression to the heterogeneous

effects of covariates case, and then turn to indicating the major ideas that underlie an

extension of quantile regression to the fixed effects setting.

2.3.1 Quantile Regression and heterogeneous covariate effects

Consider the so-called location-scale model:

Yit = Xitβ + (Xitγ)σit (2.2)

where where σit is an error term (not necessarily i.i.d) and γ 6= 0 represents “hetero-

geneity” (observed). It is evident that the condition γ = 0 is sufficient for the conditional

quantiles to be parallel to one another, and this is generally a maintained assumption in

mean regressions, parametric or non-parametric. In other words, most mean regression

frameworks assume that the conditional quantiles are all parallel to one another and that

the covariates exert an effect only on the mean of the distribution. Evidently, this as-

sumption is restrictive. In this context, quantile regression maybe viewed as an extension

of regression to the “location-scale” models i.e. covariates also affect the scale parameter

(variance, for the normal distribution) of the conditional distribution of the response, due

to which the quantiles are no longer parallel to one another9.

For instance, in the current application, it is quite plausible that weather covariates

have differential impacts on distinct quantiles of the yield10; further, if the effect of climate

9In the case of the simple location-scale model above, note that the conditional variance of Y is now a
function of X and of γ.

10A very common economic application of quantile regression is in Labor Economics, in the analysis of
differential impacts of covariates on different parts of the wage distribution. See Fitzenberger et al. [2002]
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change for India are likely manifested in increases in variance along with changes in mean

(as is currently speculated, especially for precipitation), then impacts computed based on

mean regression are likely to understate the true magnitude. Similarly, if there is a change

in seasonal distribution of rainfall, computing the mean impact will tend to smooth out

variations in yield at different quantiles.

2.3.2 Quantile regression for fixed effects panel data models

There is an extensive literature in Economics, particularly in fields such as Labor Economics,

on the usage of quantile regressions (see for instance Fitzenberger et al. [2002]). Effectively,

linear quantile regression is the simplest parametric framework for a scenario in which

covariates are expected to exert differential impacts on the distribution of the response.

Panel data with fixed effects allow applied researchers to base identification purely on

“within” variation in the covariates. Further, this approach allows arbitrary correlation

between the covariates and the fixed effects. There has been, however, little research on

the intersection of the two methods. Two approaches have recently been developed to deal

with the fixed effects quantile regression (FE-QR) case, differing primarily (from an applied

perspective) in how the fixed effects are viewed.

Consider the following two regression frameworks:

E(Yit|αi, Xit) = αi +Xitβ (2.3)

QYit(τ |αi, Xit) = αi(τ) +Xitβ(τ) (2.4)

where QYit(τ |Xit, α) is the τ th conditional quantile of Yit. Model (2.3) maybe seen to be

for a list of applications to mostly this area of Economics.
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obtained from

Yit = αi +Xitβ + εit (2.5)

by imposing the following orthogonality condition: E(εit|Xit, αi) = 0, while model (2.4)

might appear, at a first glance, to be obtained by imposing the following restriction on the

model in (2.5): Qεit(τ |Xit, αi) = 0 (along with the separability assumption on αiand εit).

However, the two models are not equivalent, except under special conditions, as indicated

in detail in Rosen [2009] and we do not further pursue this path here.

In both cases, the αi11 are (a) unobservable (b) potentially correlated with the Xit and

with the residuals of the model (accounting for omitted variables effects). We also maintain

the assumption that the X are (conditionally) exogenous i.e. X|α ⊥ ε. The {αi} in the

equation (2.3) represent “unobserved” heterogeneity while such an interpretation in the

case of equation (2.4) is somewhat misleading, since even in the absence of {αi}, there is

considerable heterogeneity allowed by the model. In fact, the {αi} are not “fixed” in the

true sense, since they vary across quantiles, and provide additional flexibility in modeling

unobserved heterogeneity (since they vary over the distribution of Y ), due to which Harding

and Lamarche [2009] term them “Quantile Fixed Effects”.

A fundamental issue in both equations is how the {αi} are viewed; as “nuisance” param-

eters to be estimated or as ancillary parameters aiding identification. In the case of model

(2) above, both perspectives yield, from the point of view of identification and estimation

of β, simple solutions; identification is straightaway guaranteed under simple orthogonality

condition above while estimation is facilitated by noting that the linearity of the expecta-

tion operator ensures that the mean of the difference is the difference of the means. In the

case of the quantiles, however, conditions on identification of β are not always clear and the

11In general, we will not index the parameters αi and β by τ , except when such an indexing is required,
in order to avoid a proliferation of notation, with the understanding that all parameters under consideration
are at the same quantile (unless otherwise stated).
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“de-meaning” estimation procedure is no longer valid since quantiles of differences are only

rarely equal to differences of quantiles12.

Harding and Lamarche [2009]; Koenker [2004]; Lamarche [2010] pursue the statistics-

based approach of treating the {αi} as “nuisance” parameters and focus on consistent

estimation while minimizing variance. In more detail, Koenker [2004] views the least squares

problem in model (1) in the context of a penalized estimator with an l2-penalty, the rather

special form of the penalty inducing a separation between the estimation of αi, the fixed

effects, and β. Koenker [2004] then proposed both a penalized, with an l1-penalty13, and

an unpenalized version of FE-QR. The two proposals therein were

min
α,β

q∑
k−1

n∑
j=1

Ti∑
i=1

wkρτk(yit − αi −Xitβ(τk)) + λ
n∑
i=1
|αi| (2.6)

with the unpenalized estimator obtained by setting λ = 0, where wk are the weights on

the quantiles. The weighting QR pursued here may be seen as yet another variance reduction

device. However holding the {αi} fixed across the quantiles imposes strong restrictions on

the type of dependence between αi and Xi as well as on the omitted variable bias that such

effects are typically used to control for in applied studies14.

This approach follows a rich statistical literature and views the problem in (4) above

as one of regularization, since the benefits of an l1-penalty are well documented in the

12To see this in a more precise manner, note that the quantile operator does not commute with the
“subtraction” operator; formally, this means that while E(Yit−Yi,t−1) = E(Yit)−E(Yi,t−1), QYit−Yi,t−1 (τ) 6=
QYi,t (τ)−QYi,t−1 (τ), where for notational simplicity we do not explicitly indicate that all of these operations
are conditional on Xit, αi. This implies, in particular, that “first differencing”, which in the case of the
conditional mean regression yields a separation in the estimation of the β, is no longer valid, since the
quantile of the first difference is not guaranteed to be identical to the difference of the quantiles.

13The l-spaces mentioned herein refer to the “little l” norms in functional analysis, the discrete analogue
of the LP -norms. In other words, the l1-penalty corresponds to the absolute value penalty, the l2 to the
squared penalty.

14For instance, viewing the fixed effects as capturing the effect of unobserved, individual specific variables,
i.e. if αi = Ziγ(τ), restricting them to be invariant across the quantiles implies that the coefficients of such
variables are τ -invariant i.e. γ(τ) = γ.
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statistics literature. In effect, the (scalar) l1-penalty term “shrinks”15 the estimates of α

in order to reduce the variability induced in the estimation of β. While appealing from

a theoretical perspective, the major drawbacks in this framework are (a) selection of the

shrinkage parameter (b) inference. Both the estimates and the variance matrix are functions

of the shrinkage parameters, and while there are results in the case of univariate covariates

(Lamarche [2010]), there is no generalization to a multi-variate framework of a method for

selection of the shrinkage parameter. An important point to note in the formulation above

is that the {αi} are viewed as purely location shift (since they are τ -invariant) .

Kato et al. [2010] provide clearer proofs of the asymptotic properties of the unpenalized

estimator and investigate the properties of different types of bootstraps for inference in

this framework. Further, they also allow the “fixed effects” to vary across quantiles. We

therefore follow this approach in our analysis16.

2.3.3 Identification and Interpretation

There are three important issues to note with the framework above. First, following Powell

[2009], it is important to note that the quantiles are defined, in the approaches outlined

above, based on each individual unit’s residual i.e. based on εi,t = Yi,t − αi − Xitβ (the

alternative definition being (αi + εi)) as a result of which one “loses” the position of an

observation in the distribution, compared to the cross-section distribution. However, given

that the effects identified here (weather on yield) require a panel, and do not make sense

in a cross-section, it is evident that the definition used here is the most sensible one. This,

however, leads to the interpretation of the coefficients being somewhat different from those

15There is an extensive statistical literature on the benefits of l1-penalty and shrinkage. In effect, the
main arguments are the statistical and computational benefits offered by this approach. For more details,
see Tibshirani [1996], as well as http://www-stat.stanford.edu/∼tibs/lasso.html.

16All of the frameworks considered above are subject to the incidental parameter problem (see Lancaster
[2000] for an detailed introduction to the topic in econometrics), which is “solved” in all cases above by
allowing both n and T to diverge at specific rates.

http://www-stat.stanford.edu/~tibs/lasso.html
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in the purely cross-sectional case17.

Second, if year fixed effects are not included in the above framework, then, as pointed out

in Powell [2009], the resulting τ th quantile corresponds to different parts of the distribution

for different years, a possibly undesirable artifact in applications. Third, unlike in the case

of the linear panel data models (where identification and consistency follows from a simple

orthogonality condition between X and ε), conditions for identification and consistency of

β involve high level conditions on the marginal density of the residuals evaluated at zero

and on moment conditions on Xi (Assumption A3 in Kato et al. [2010]), due to which they

have no interpretable or intuitive content.

2.3.4 Covariance Matrix Estimation

For the unpenalized case, Koenker [2004] derives the asymptotic variance of the estimator

and points out that bootstrap inference maybe more accurate (another cause for concern is

that the asymptotic variance requires T to grow “fast enough”, compared toN ; in particular,
Na

T
→ 0 for some a > 0). Kato et al. [2010], for the same unpenalized model, also point

out that asymptotics require, in their case, T to grown faster than N2, a clearly restrictive

condition, and they recommend the cross-sectional bootstrap as being the better approach,

after comparing both cross-sectional and time bootstraps for their coverage accuracy. We

note however that their comparisons are for coverage for individual coefficients only.

There is a large literature on the use of the bootstrap for confidence interval estimation

in a cross-section QR setting (see for instance Buchinsky [1995]; Fitzenberger et al. [2002];

Fitzenberger [1998] among others). For the panel data case, there are three possible basic

version of the bootstrap, which, following Kapetanios [2008], are termed “Time” bootstrap,

17It is, in this context, important to note that if the use of a panel framework is for the purposes of
identifying the effects of a variable which is believed to be endogenous in the cross-section case (such as for
instance in the hedonic case), then the framework outlined above is likely inappropriate, and a better suited
one is the GMM approach outlined in Powell [2009]
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with resampling across the time dimension, “Cross-section”, with resampling across the

“individual unit” dimension and a combination. We note that all three versions correspond

to the “paired” or the “x-y” bootstrap, involving bootstrapping the data matrices rather

than the residuals18. We use the simple time bootstrap for inference, which accounts for

the unknown spatial dependence but not for time dependence. Details of estimation of the

standard errors (and therefore, the t-statistic) are provided in the Appendix B.

2.3.5 Extension to semi-parametric quantile regression

We outline an extension of the above linear conditional QR-FE estimation strategy to semi-

parametric settings. Consider the linear FE-QR estimation detailed above:

QYit(τ |αi, Xit) = αi(τ) +Xitβ(τ) (2.7)

and observe that, once a particular estimation framework is settled upon, the problem

above is in essence a straightforward linear QR problem (with more involved conditions

for consistency). Consider instead the more general semi-parametric conditional quantile

estimation problem:

QYit(τ |αi, Xit) = αi(τ) +X1
i,tγ + g(Zit) (2.8)

where Zit is (for now) a univariate variable to be modeled non-parametrically. There

exist two possible approaches to non-parametric modeling of quantiles (see Koenker [2005,

Chapter 7] for a survey), the local-polynomial based one, and a penalized spline version.

18In more detail, denoting ti1 , . . . , tiT the resampled time indices (assuming for now a balanced
panel data), time resampling involves forming the full bootstrapped data, Z∗ = (Y ∗, X∗) where
Y ∗ = (Yti1

, Yti2
, . . . , YtiT

) and X∗ = (Xti1
, . . . , XtiT

) where Yt, Xt denote respectively the N × 1 and
N × K matrix of observations for all N individual units. Cross-sectional resampling is entirely analo-
gous, with Ij1 , Ij2 , . . . , IjN denoting the resampled individual unit indices, Y ∗ = (YIj1

, YIj2
, . . . , YIj)N

),
X∗ = (XIj1

, . . . , XIjN
) with YIjn

being the resampled T × 1 vector of observations on individual Ijn for all
T time periods and XIjn

the T ×K matrix of covariates for individual unit Ijn
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We note however, that even without these options, the function g(Zit) may always be

approximated by an orthogonal polynomial of a suitable order, and the problem is one of

estimation of the order of the polynomial. Inference is even more problematic in this setting;

however, since consistency is likely guaranteed (under possibly additional conditions), a

bootstrap approach maybe easily used in this case (and this is the approach pursued here).

The alternative approach, of penalized splines, is a different variant of the same ap-

proach, in that the scalar penalty term must be chosen, generally through means of AIC-

like measures (see Koenker [2010] for details and an application); we briefly pursue this

approach here, more as a robustness check, but note that in most non-parametric QR cases,

inference is generally problematic and computationally expensive, and this is especially true

in the FE case.

2.3.6 Model Specification

The basic model we consider is of the following form, for a given crop:

yit = αi + β1GDDit + β2GDD
2
it + β3Precipit + β4Precip

2
it

+
K∑
k=1

J∑
j=1

β5+k,,jTrend
k ∗Rj (2.9)

where yitis the log of yield, Rj is a region indicator (we use 5 regions, North, West,

South, East and Central with “North” being the omitted category), K = 3 is the order of

the time trend. A second possible specification where we use, in addition, monsoon onset

at the district level and the number of dry spells for the summer growing season, is
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yit = αi + β1GDDit + β2GDD
2
it + β3Precipit + β4Precip

2
it

+
K∑
k

J∑
j

β5+j,kTrend
k ∗Rj + β5+J+1Onsetit + β5+J+2dryspellsit (2.10)

The third specification is where we use monthly precipitation data instead of using

seasonal totals as above.

yit =
K1∑
κ=1

precipkitβk +GDDitβK+1 +GDD2
itβK+2 +

K∑
j=1

precip2
kitδj

+
J∑
j

K∑
k

γk,jTrend ∗Rj + νOnsetit + ζdryspellsit (2.11)

with K1 = 6 being the number of months in the winter (rabi) growing season, and

K1 = 4 the number of months in the summer growing season (kharif), with onset and

dry spells included for the summer growing season only. Another covariate added to many

regressions is (where available) the ratio of irrigated area to un-irrigated area at the district

level. Finally, for the winter season which spans 6 months, instead of including rainfall for

all 6 months separately, in one specification, we aggregate them into 3 separate periods,

early, middle and late season rainfall19.

19For instance, there is generally little rainfall during the months of Feb-March and therefore including
them separately provides little additional knowledge.
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2.4 Data and summary statistics

2.4.1 Agricultural Data

We use district-level data on agricultural outcomes from the commercially available Indian

Harvest database from the CMIE. The database includes crop-specific data on district-

level yield, area sown, farm harvest price and sparse input data, in addition to irrigated

area by crop. Data on inputs are very unreliable, and we do not make use of them. The

dataset nominally spans the time period 1950-2006 but data for a large proportion of the

districts are available only from 1970 onwards and we therefore use data from 1971. The

dataset covers most of the major crops (including what are termed “cash crops” but not

plantation crops such as “tea”, “coffee” and “rubber”) and all the states and districts. The

present analysis is restricted to the major cereals rice and wheat. The data are essentially

a compilation of the official statistics reported by the state governments and the Ministry

of Agriculture of the Govt. of India.

The CMIE’s Indian Harvest database has only been available since 2003. Previous

research for India on this topic used a dataset compiled by the World Bank (WB) (Sanghi

et al. [1998]) which pre-dates the CMIE’s database and is essentially similar. The main

differences stem in geographical coverage and homogeneity of district definition. The WB

dataset covers a large proportion of the agriculturally important states while the CMIE

database covers all states. Further, data on the large and agriculturally important states of

Bihar and West Bengal are mostly missing in the extension by Duflo and Pande [2007].

Indian district boundaries change periodically, with larger districts generally split into

smaller ones (sometime combinations of districts are split into larger numbers but this is

rare), creating difficulties for defining a district as the unit of observation. Further, no

year-by-year spatial definition of the districts are available, and it is not always clear what

year a district was changed; we therefore take the year in which data for a district appears
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in the agricultural data as the “year” in which the said district was created. Yet another

difficulty lies in that the “mother” district, from which the new district is created, exists and

has the same name as before. However, in many cases, the agricultural data base indicates

that a change has occurred20, and this allows a largely21 comprehensive accounting of (a)

which new districts are created (b) which existing districts have altered and at what point

of time.

There are two ways to proceed to obtain uniform district data sets. The first approach,

pursued in Duflo and Pande [2007] (an extension of the earlier dataset compiled by Sanghi

et al. [1998]), is one in which districts were defined based on the most primitive definition

and are therefore consistent in time. The second approach, and the one we pursue, is to (a)

track when new districts are created (b) treat the new districts as being distinct from the

original ones22. We argue that this is a better indicator of the districts for the following

reason: in general, districts are altered for ease of administration and/or for historical

reasons. We anticipate the two districts to have different characteristics (in addition to

the obvious one of different area), and therefore, separate fixed effects for each is more

appropriate when the fixed effects are viewed as accounting for “unobserved heterogeneity”.

In order to obtain geographical co-ordinates for each district (primarily the district center),

we make use of GIS maps of India for two time periods, 1991 and 2001. This allow us

to keep track of how district centroids change with time, following the approach outlined

above in treating districts which undergo any changes as separate districts (although most

districts are already small enough that even after a change, their centroids are either almost

20The timing of the change is generally restricted to the census years, due to the nature of reporting of
data.

21This is “largely” but not completely comprehensive since it is not clear if all districts which have altered
even slightly have indicators in the database but this issue is likely to be minor enough to be ignored.

22Thus, if district “X” was split in year “Y” into districts “X(1)” and “Z” (the “(1)” is simply an indicator–
generally a phrase such as “up to 1981” etc–allowing one to distinguish between the pre- and -post districts),
then we treat districts “X”, “X1” and “Z” as all distinct, with district “X” being in existence prior to year
“Y”, and districts “X1” and “Z” existing post year “Y”. This approach of course leads to the number of
districts being different at different time points (generally, the census years).
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unchanged or change at most by half a degree)23.

2.4.2 Weather Data

2.4.2.1 Temperature Data

Schlenker and Roberts [2006, 2009] have illustrated the superiority of using fine-scale tem-

perature measures to account for the cumulative effects of variations in temperature on crop

yield. Much of this research has been confined to the developed countries (an exception

is Guiteras [2008]) due to lack of availability of such data for the developing nation set-

ting. Given the paucity of station-level temperature and rainfall data for India, prior work

(Guiteras [2008]) makes use of a corrected reanalysis gridded (at the 1◦ × 1◦ resolution)

dataset, with 6-hourly measurements of temperature from 1949-2000. This study makes

use of gridded (1◦× 1◦ resolution) daily rainfall and temperature products recently created

and made available by the IMD (Srivastava et al. [2009]). To our knowledge, this is the first

paper in Economics to make use of this dataset, spanning 1969-2005.

To create daily district-level data from gridded, we use a weighted (using standard

weights in the Climate literature, the inverse square root of distance) average of data from

all grids which are within a 100 KM radius24 from the district centroid. Due to the nature

of agricultural policy, yields across space are expected to be related (especially within a

state and region); further, the mode of creation of the weather variables (gridding) induces

additional dependence across space, due to which dependence of the regression residuals

are likely to be dependent across space. Following recent literature on bootstrapping the

variance estimators for panel data with spatial dependence (Gonçalves [2008]), we illustrate

23The approach in the CMIE database to new states is to treat these states and their districts to have
existed for the entire period and to simply relabel the districts originally in another state to have been in
the new state. For instance, districts which were in Madhya Pradesh and were later a part of Chhatisgarh
are treated as being, for all time periods, in Chhatisgarh. We follow this convention since it is also more
sensible when reporting effects at the state level.

24Alternative radii of up to 200 km yielded very similar seasonal summary statistics.
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a simple bootstrap approach which accounts for this, even in the relatively complicated

estimation framework employed here.

2.4.2.2 Precipitation

For precipitation, we again make use of a gridded daily rainfall data set product, spanning

1951-2003, developed by the IMD (Rajeevan et al. [2005]). To our knowledge, this is the

first paper in Economics to make use of this dataset. Creation of district-level data from

gridded proceeds in the same way as for temperature. The significance of using actual data,

in comparison to reanalysis data, for India is illustrated elsewhere (and is available upon

request) but the main differences are that the fidelity to actual rainfall varies with reanalysis

datasets, and the NCC dataset in particular appears poorly constrained due to the lack of

actual data for India.

2.4.3 Summary statistics

Summary statistics of the key variables used, by region, are presented in Table 2.1 for wheat

and Table 2.2 for rice. Three points are noteworthy about Table 2.1: the predominance of

the Northern region in wheat production, its high yields and the very high irrigation ratios.

Turning now to rice, it is evident that the Eastern region dominates in rice production,

followed by the Southern and Northern regions; in addition, there is a significant difference

in rainfall between the Eastern regions and the rest of India. Finally, the relatively late

onset of the monsoon is evident in the Northern and Western regions25.

25The CMIE data base, and in general agricultural statistics in India, reports irrigated area by crop and
year, instead of by season. However there are, for certain districts in South Eastern India, two rice growing
seasons, due to which we have been unable to establish the extent of irrigation during the kharif season. We
therefore do not have potentially important information regarding irrigation in the kharif season.
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Table 2.1: Descriptive statistics of regression sample for wheat (rabi season). Mean coeffi-
cients reported, with standard deviations in parenthesis.

Central North South West Total
yield(kg/hectare) 1054.8 2056.1 786.1 1313.0 1551.2

(506.5) (829.5) (438.5) (592.0) (849.6)
production(000’s of ton) 80.24 335.4 7.089 84.51 193.5

(63.28) (297.1) (15.09) (106.3) (251.9)
Seasonal rainfall (mm) 88.13 105.0 185.0 67.69 102.7

(68.31) (73.48) (101.9) (65.68) (81.44)
growing degree days (deg Celsius) 2808.2 2444.1 3383.1 2845.5 2708.1

(217.9) (311.5) (164.4) (351.3) (417.3)
harmful degree days(deg Celsius) 8.499 4.146 32.16 15.04 10.43

(8.898) (5.702) (23.50) (14.92) (14.70)
Average seasonal temp (deg Celsius) 21.44 19.41 24.74 21.68 20.90

(1.233) (1.727) (0.993) (1.985) (2.353)
irr_ratio 0.407 0.849 0.596 0.673 0.692

(0.293) (0.180) (0.334) (0.274) (0.301)
Observations 911 2053 486 893 4343

Number of district 45 97 28 52 222
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Table 2.2: Descriptive statistics of regression sample for rice (kharif season). Mean coeffi-
cients reported, with standard deviations in parenthesis.

East North South West Total
yield (kg/hectare) 1206.4 1593.6 1961.8 1098.0 1523.4

(462.8) (863.6) (645.0) (562.7) (757.6)
production (000’s of ton) 310.0 161.0 197.6 39.46 170.8

(248.5) (174.4) (217.5) (75.34) (207.2)
Seasonal rainfall (mm) 1346.2 782.4 844.7 801.4 904.6

(546.9) (297.7) (707.0) (451.2) (562.6)
growing degree days (deg Celsius) 2460.8 2625.7 2320.5 2477.4 2472.1

(147.7) (120.9) (293.9) (167.5) (233.0)
gdd lower threshold 2456.3 2598.7 2315.2 2462.3 2458.3

(145.3) (107.4) (289.2) (155.3) (222.7)
harmful gdd (deg Celsius) 0.754 11.01 1.383 5.968 5.194

(2.716) (13.37) (4.285) (11.14) (10.32)
hgdd lower threshold 5.161 38.03 6.654 21.06 19.05

(9.274) (29.74) (12.74) (28.11) (26.37)
Day of monsoon onset (days from April 1) 29.41 72.20 47.97 76.63 58.43

(23.57) (21.41) (31.92) (19.13) (30.56)
dry spells (number of days) 3.964 5.067 6 5.014 5.139

(1.786) (1.575) (1.858) (1.536) (1.826)
Average seasonal temp (deg Celsius) 28.18 29.62 27.04 28.37 28.31

(1.218) (1.056) (2.420) (1.426) (1.950)
Number of districts 36 66 60 56 218

Observations 880 1497 1490 1127 4994
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2.5 Regression results

As indicated earlier, for each of rice and wheat, two sets of regressions are carried out

for each specification of GDD: using seasonal rainfall and using monthly rainfall. For the

sake of brevity, and since in our climate change specifications we do not use monthly rainfall

changes, we report and discuss results using only seasonal rainfall26. The regression strategy

is as follows: interest centers on the estimation of the τ th quantile of log(yield), as in equation

(2.9) for the parametric case and equation (2.8) for the non-parametric case. The actual

equations estimated, however, are (2.9), for the rabi season, and (2.10) and (2.11) for kharif,

substituted into equation (2.6) (with equal weights and no penalty, as indicated earlier).

We follow much of the literature (see Fitzenberger et al. [2002]) and chose the first three

quartiles, along with the 90th%tile: τ = (0.25, 0.5, 0.75, 0.9) for estimation. All regressions

include region-specific cubic time trends whose coefficients, along with those of individual

fixed effects, are not reported since they are not of intrinsic interest. We avoid the use

of year fixed effects for two reasons, to better capture region-specific heterogeneity and to

avoid numerical issues with the linear programming problem27. An undesirable consequence

of this choice is that the interpretation of the coefficients at each quantile are somewhat

different from those in a pure cross-section, as indicated earlier. As indicated above, both

asymptotic and (time) bootstrap t-statistics are reported.

2.5.1 Wheat

Results of estimation are provided in Tables (2.3) and (2.4). Given the log-linear nature of

the regressions, we may interpret the coefficients as approximately corresponding percentage

26Nearly identical results were obtained when monthly (in case of kharif) and bi-monthly (in case of rabi)
rainfall were used instead.

27It proved difficult to estimate the year fixed effects, given the unbalanced nature of the regression sample
and the fact that both individual fixed effects and year fixed effects must be estimated. For the same reason,
it is even more infeasible in this approach to estimate region-specific or district-specific year fixed effects.
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Table 2.3: Quantile and linear panel regression with fixed-effects for wheat, using seasonal
rainfall. All regressions include region-specific cubic time trends and district fixed-effects
whose coefficients are not reported. T-statistics for the test H0 : β = 0 based on the
asymptotic variance matrix ({}) and time bootstrap for panel data ([]) are reported.

tau=0.25 tau=0.5 tau=0.75 tau=0.9 Linear Model
GDD 2.05E-03 1.94E-03 1.51E-03 1.41E-03 2.04E-03

{4.106} {5.08} {4.86} {4.034} {6.626}
[3.862] [4.802] [4.633] [4.621]

GDD sqr -4.79E-07 -4.21E-07 -3.26E-07 -3.32E-07 -4.53E-07
{-5.133} {-5.941} {-5.367} {-4.493} {-7.98}
[-4.841] [-5.632] [-5.221] [-5.303]

Seasonal Rain 5.03E-04 2.91E-04 6.41E-04 3.69E-04 4.95E-04
{2.19} {1.88} {3.685} {1.739} {3.3}
[2.446] [1.69] [3.233] [1.976]

Seasonal rain sqr -1.26E-06 -9.97E-07 -1.74E-06 -4.09E-07 -1.28E-06
{-1.772} {-2.483} {-3.168} {-0.5686} {-3.15}
[-2.032] [-2.143] [-2.698] [-0.6852]

hgdd -7.58E-04 -4.10E-04 5.45E-05 1.27E-03 3.79E-04
{-0.827} {-0.5346} {0.07862} {1.419} {0.654}
[-0.7863] [-0.5426] [0.07665] [1.627]

Irr_ratio 1.00E+00 9.75E-01 9.27E-01 7.75E-01 7.95E-01
{14.83} {15.34} {12.88} {8.697} {22.92}
[15.25] [15.72] [14.59] [9.505]
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Table 2.4: Same as table(2.3) but using orthogonal polynomials (of degree 4) for gdd.

tau=0.25 tau=0.5 tau=0.75 tau=0.9 Linear Model
Seasonal Rain 5.08E-04 2.38E-04 5.67E-04 3.96E-04 4.84E-04

{2.232} {1.544} {3.183} {1.874} {3.23}
[2.519] [1.42] [2.9] [2.124]

Seasonal rain sqr -1.29E-06 -8.63E-07 -1.52E-06 -4.82E-07 -1.26E-06
{-1.851} {-2.19} {-2.686} {-0.6792} {-3.09}
[-2.118] [-1.902] [-2.447] [-0.7924]

hgdd -8.45E-04 -4.62E-04 -6.85E-05 1.28E-03 3.13E-04
{-0.9137} {-0.6013} {-0.09465} {1.436} {0.53}
[-0.8716] [-0.597] [-0.0917] [1.647]

Irr_ratio 1.01E+00 9.71E-01 9.22E-01 7.76E-01 7.95E-01
{14.99} {15.33} {12.32} {8.78} {22.92}
[15.32] [15.75] [14.26] [9.397]

changes. Turning first to effects of temperature, two conclusions are evident. First, there

appears to be a inverted U-shape relationship between yield and temperature, indicating

that temperature up to a certain point is beneficial, and harmful thereafter. This is in

keeping with the results obtained in Schlenker and Roberts [2009] and in Guiteras [2008],

using very different methods. A second, and more surprising, one is that the differences

across quantiles of yield of the inflection point is minimal, indicating a significant degree of

uniformity in impacts across differing crop and ecology types (controlling for irrigation and

rainfall). Rainfall also appears to have a similar relationship to yield as does temperature

and interestingly, the coefficients across different quantiles is very different (for instance, in

absolute terms, the coefficients in many instances differ by up to 50%), reflecting the high

spatio-temporal variability in winter season rainfall (evident in Table 2.1).

Yet another interesting point is that while Harmful Degree Days appear to have (for

the most part) the correct sign, they are never significant, indicating that, when accounting

for a richer interaction between temperature and rainfall (as the log specification does28),

28We note that the use of a log specification implies some amount of substitutability between heat and
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the additively separable nature of Harmful Degree Days yields little additional information.

Irrigation, unsurprisingly, is highly significant and positive at all quantiles, with a possibly

smaller coefficient at the 90thpercentile. Results using bi-monthly rainfall totals are almost

identical (and are available upon request), although given the highly variable and spatially

concentrated nature of rainfall, it is difficult to interpret the coefficients on rainfall.

Finally, in order to assess if the results are influenced by the quadratic specification for

GDD, we use two, very different, non-parametric approaches; first, we use an orthogonal

polynomial expansion for growing degree days, using polynomials of degree 4, and second, we

use the penalized spline approach outlined above. The coefficients for other variables, using

either approach, appeared to be identical (we do not therefore report coefficients estimated

with the spline specification), as illustrated for the case of orthogonal polynomials in Table

2.4. The estimated effect of GDD on yields using non-parametric splines, in Figure 2.1,

indicates very clearly an initial increase, followed by a subsequent decrease (the inflection

point also appears very close to the ones obtained using simple quadratic specification

above). Thus, the results are robust to functional form assumptions29.

2.5.2 Rice

In the case of rice, GDD appear to have a U-shaped relationship, quite contrary to intuition

and agronomic belief, as indicated in Table 2.5. Further, this behavior is consistent across

quantiles, indicating that the relationship is global (in the distribution function). More

surprisingly, a very similar relationship appears to hold for rainfall, and rainfall is seen to

be significant at all but the lowest quantile; similar is the case with onset day and dry

spells. In order to assess if the results are impacted by the simple, quadratic functional

form assumptions, both orthogonal polynomials and penalized splines were used to model

rainfall, which is realistic. It also limits the interactions to be multiplicative.
29More surprisingly, the direction of impact of temperature and rainfall are consistent even if very crude

measures of temperature, such as average daily district temperature, are used. See for instance Table 2.10
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Table 2.5: Quantile and linear panel regression with fixed-effects for rice, using seasonal
rainfall data. All regressions include region-specific cubic time trends and district fixed-
effects whose coefficients are not reported. T-statistics for the test H0 : β = 0 based on the
asymptotic variance matrix ({}) and time bootstrap for panel data ([]) are reported.

tau=0.25 tau=0.5 tau=0.75 tau=0.9 Linear Model
GDD -4.35E-03 -3.51E-03 -2.59E-03 -2.33E-03 -3.81E-03

{-5.029} {-4.101} {-3.171} {-2.46} {-3.09}
[-4.744] [-4.269] [-3.357] [-2.601]

GDD sqr 9.58E-07 7.41E-07 5.17E-07 4.53E-07 8.35E-07
{5.6} {4.346} {3.095} {2.339} {3.45}
[5.186] [4.515] [3.335] [2.53]

Seasonal Rain -8.26E-05 -3.36E-05 3.73E-06 -5.32E-07 -2.10E-04
{-1.763} {-0.8878} {0.103} {-0.01362} {-4.47}
[-1.625] [-0.8545] [0.1049] [-0.01319]

Seasonal rain sqr 1.57E-08 3.99E-09 -4.14E-09 1.05E-09 4.47E-08
{1.461} {0.4743} {-0.5071} {0.09544} {3.09}
[1.349] [0.4675] [-0.4921] [0.09404]

onsetday -2.13E-04 -2.37E-04 -5.02E-04 -4.46E-04 -1.22E-04
{-0.8656} {-1.175} {-2.605} {-2.267} {-0.43}
[-0.883] [-1.184] [-2.676] [-2.335]

dryspells -5.30E-03 -1.77E-03 -3.62E-03 -3.96E-03 -1.14E-02
{-1.258} {-0.563} {-1.208} {-1.292} {-2.78}
[-1.182] [-0.5704] [-1.258] [-1.354]
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Figure 2.1: Non-parametric (penalized spline) estimation of the effect of Growing Degree
Days on wheat yields (at the median).

Table 2.6: ]
FE-QR for rice using seasonal rainfall data and orthogonal polynomials of degree 4 for gdd
(coefficients not shown). Other conventions same as for Table (2.5)

tau=0.25 tau=0.5 tau=0.75 tau=0.9 Linear Model
Seasonal Rain -9.01E-05 -4.22E-05 -2.34E-06 -1.06E-05 -2.16E-04

{-1.939} {-1.11} {-0.06455} {-0.2742} {-4.59}
[-0.3732] [-0.2109] [-0.01245] [-0.05542]

Seasonal rain sqr 1.77E-08 5.76E-09 -2.20E-09 1.56E-09 4.57E-08
{1.695} {0.6882} {-0.2674} {0.145} {3.162}
[3.95e-06] [1.855e-06] [-7.634e-07] [5.34e-07]

onsetday -1.53E-04 -2.73E-04 -4.80E-04 -4.19E-04 -1.17E-04
{-0.63} {-1.363} {-2.49} {-2.106} {-0.42}

[-0.01368] [-0.0368] [-0.05795] [-0.04873]
dryspells -6.09E-03 -1.69E-03 -3.89E-03 -4.09E-03 -1.16E-02

{-1.45} {-0.54} {-1.3} {-1.326} {-2.85}
[-7.238] [-3.03] [-6.407] [-6.313]
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GDD.

Results from Table 2.6 indicate the quadratic specification for GDD performs poorly and

tends to inflate variance of the remaining parameters, while both alternative specifications

perform much better. However, for brevity, we report only results using the orthogonal

polynomial specification, in Table 2.6. The impact of rainfall on yield appears very similar

across the quadratic and orthogonal polynomial specification, in being significant at only

the first quartile; the impact of onset day too appears rarely significant in both specifica-

tions. Dry spells however appear much more precisely estimated, and are, as anticipated,

significantly more harmful at the lower quantiles than at the higher (the coefficients differ

by about 30%).

Further, the fully non-parametric approach to estimating the effect of GDD, as indicated

in Figure 2.2, reinforces the robustness of an inverted U-shape relationship. Thus, it is clear

that the relationship outlined, and the lack of significance, are robust to various functional

forms. These results are unaltered when monthly rainfall is used instead of seasonal rainfall.

Yet another concern could be the omission of irrigation, which is of some importance for

many regions, especially the Northern region. Given the lack of reliable data on irrigation

at the district level for rice by season, it is not possible to directly address this concern.

However, we argue that it is very plausible that the possible bias due to omission of irrigation

is unlikely to drive our results, by noting that rainfall and onset days are already not

significant; thus, the concern that these coefficients are larger (or significant) due to the

omission of irrigation is no longer as important.

Intriguingly, however, recent results using farm level data on irrigated agriculture (Welch

et al. [2010]) indicate that maximum temperatures are beneficial for rice crops, despite

agronomic evidence to the contrary. While the study had only one site in India, in Tamil

Nadu, with maximum temperature significantly lower than those in say, North-Western

India, the impact of the interaction of high temperatures with irrigation may well explain
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Figure 2.2: Non-parametric (penalized spline) estimation of the effect of growing degree
days on rice yields (at the median).



CHAPTER 2. CLIMATE CHANGE IMPACT ON INDIAN AGRICULTURE 49

a part of the results obtained here30.

2.5.3 Comparison with the standard, conditional mean approach

In order to illustrate the benefits of the current approach, consider the results of using an

identical specification in a standard, linear panel data framework, results for which are in the

final columns of Table 2.3 to 2.6. Since the comparison is identical when using orthogonal

polynomials, we focus on the simple, quadratic-in-gdd specification.

Consider first, the case of wheat, in Table 2.3, where magnitudes of differences in co-

efficients across quantiles are smaller than those for rice. Two points are evident from a

perusal of the results: (a) results of the mean regression are very similar to those of the

quantiles when there is little difference in coefficients across the quantiles, as for the case of

GDD (b) when there are substantial differences across quantiles (as in the case of irrigation

and rainfall), mean regression provides a very incomplete characterization of the conditional

distribution. For instance, in the case of irrigation ratio, the coefficient in the mean regres-

sion is 7.95, which is very close to the impact of regression at the 90th percentile, and is

substantially (about 25%) smaller than at the first quartile.

These differences are even larger in the case of rice (Table 2.5). Consider for instance

the coefficient on either onset day or dry spells; these coefficients are, in many instances,

substantially (an order of magnitude, in the case of dryspells) different. It is therefore

clear that substantial heterogeneity in relationships exist at different quantiles and that the

mean regression framework, in this case, provides a very incomplete characterization of the

30We also indicate that the results obtained here do not require the use of the linear GDD specification.
For instance, the results in Table 2.11 indicate that even with a very crude measure of temperature, district
average seasonal temperature, the direction of impact of temperature and rainfall are consistent with that
obtained using the GDD measure. Very similar results are obtained using GDD computed with a presumed
daily distribution of temperature, approximated using a sine-curve by the Baskerville-Emin method, which
uses the minimum and maximum temperature, instead of just using the average temperature, as the linear
GDD method uses. Therefore, we do not report separately regression results using this method of GDD
computation (results are available upon request).
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conditional distribution of yield. The substantial differences in impacts using these two

frameworks are fully illustrated below.

2.5.4 Climate Change scenarios

Climate change scenarios for econometric studies of impacts on agriculture has focused on

GCM projections, for the most part, the Hadley Center models (Deschenes and Greenstone

[2007]; Guiteras [2008]; Schlenker and Roberts [2009]). However, for the US, Schlenker and

Roberts [2009] used downscaled GCM projections while Guiteras [2008] uses the coarser

GCM daily output. GCM daily projections, however, are known to have significant biases

which make their use for agricultural purposes quite tricky (Ines et al. [2010]). Further,

the coarseness of the GCM output tends to lead to a large degree of spatial smoothing, a

very undesirable feature. While we hope to report on downscaling GCM output for India

and their applications in a future iteration, we will use simpler scenarios for the future at

present.

Consistent with IPCC projections and with prior literature on crop modeling for India,

we consider the following scenarios for kharif (summer growing) season: uniform increases

in temperature over the growing season of 1◦ and 2◦C, coupled with uniform increases in

rainfall of 10%. It is clear that, using this approach, the increases in rainfall are significantly

overstated (since model projections expect reduction in rainfall over certain regions of India,

especially the Northwest). Further, many GCM’s also project increase in monsoon rainfall

variability, which we interpret as increases in probability of late monsoon (by a uniform

10%) and increases in dry spells (again by a uniform 10%), given model projections of more

intense rainfall coupled with reduction in rainfall frequency. However, for the results below,

we do not apply changes in sub-seasonal characteristics, in order to minimize clutter (and

since modest changes in these variables do not substantially affect yield).

For the rabi (winter growing) season, there have been very few studies on possible
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impacts; however, most indications are for increased minimum (therefore average) temper-

atures, and little changes in rainfall. We translate this, in line with prior crop modeling

efforts, into uniform 0.5◦ and 1◦C increase in temperature, and an unchanged rainfall dis-

tribution. We emphasize that these scenarios are consistent with those used in the crop

modeling literature (Mall et al. [2006a,b]) as well as prior econometric approaches (Guiteras

[2008]; Sanghi et al. [1998]).

2.5.5 Climate Change impacts

The impacts of climate change are computed, at each quantile, as the differences in predicted

values under current and future weather. In more detail, denoting with superscript f future

realizations of weather, we compute

∆Yit(τ) = Ŷ f
it (τ)− Ŷit(τ) (2.12)

as the predicted change. In other words, predicted values are obtained, using coefficients

estimated under current weather, for both current and future weather and the difference

in predicted values is interpreted as the impact of change in climate. We present the full

distribution of predicted changes, instead of focusing on summary changes (such as changes

at the mean of the covariates) in order to assess the full range of changes predicted. The

distribution of the changes are summarized using box plots.

2.5.5.1 Wheat

There are two possible scenarios for winter, as indicated above. Given the signs of the

coefficients, one anticipates significant losses in yield under increased warming. The re-

sults in Table 2.7 indicate that increasing temperatures indeed are harmful. Further, the

magnitude of losses are decreasing in quantiles, for every scenario considered, indicating

a significant degree of heterogeneity in the direction (not magnitude) of impact across a
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range of growing conditions. Finally, median losses range from 2 to 5% in the relatively

benign 0.50C temperature increase scenario to a substantial 5 − 10% in the 10C warming

scenario, with many districts losing as much as 22% of yield. Figure 2.3 provides a visual

description of the magnitude of losses; for scenario 2, losses rise to as high as 20% for the

lower percentiles, indicating significant losses for the already lower productive districts31.
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(a) Scenario 1
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(b) Scenario 2

Figure 2.3: Box plots of changes in wheat yield under scenarios indicated, for various
quantiles.Scenarios are same as in Table (4)

Turning now to assessing regional impacts, we note that the Southern region, already

quite hot, has the highest losses (although of less importance in wheat production nationally)

in both scenarios, as indicated in Figure 2.4 (we do not include the figure for regional losses

under scenario 2, since the regional distribution is identical). However, at all percentiles,

Western and Central regions, regions of already high poverty levels and substantial wheat

31The interpretation of the coefficients are somewhat different from the cross-section case, since the
quantiles are defined for i and t; thus, one can only speak of the “low” or “high” yielding district-year
combinations, instead of low (high) yielding “districts” or “years” separately. However, for substantial parts
of India, yields tend to have relatively low variability and only regions with low yield on average tend to
have high variability. Therefore, we loosely interpret district-year combinations with low and high yields as
“districts” with low and high yield. We note that such terminology is clearly inappropriate for the quantiles
0.5 and 0.75, since these can correspond to “low” (“high”) years in high (low) yielding districts, and therefore,
we can only refer to them by the less useful “district-year” terminology.
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production, also lose significantly, up to 6% of yield with a uniform increase of 0.5◦C and 9%,

with an increase of 1◦C. Losses in the Northern region are smaller, at about 2− 5%, whose

impacts, however, can translate into large welfare losses due to the very high production

losses embodied.
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Figure 2.4: Box plots of changes in wheat yield for different regions under scenario 1 for
different quantiles.
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2.5.5.2 Rice

The impact of climate change, as simulated here, on rice appears, at a first glance, from

Table 2.7 to be diametrically opposite, with modest to substantial increases in yield, of

2 − 18%, except at the higher quantiles. However, two features are worth noting: median

changes are substantial only at the first two quartiles, under both scenarios, and changes

at the highest quantile are close to zero or even modestly negative. However, as clearly

seen in Figure 2.5 (unlike in the case of wheat wherein there are only a few districts whose

impacts differ in sign) a substantial number of district-years, at most quantiles, experience

significant (>5%) losses, indicating significant heterogeneity in impacts.
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(a) Scenario 1a
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(b) Scenario 1b

Figure 2.5: Box plots of changes in rice yield under scenarios indicated, for various quantiles.
Scenarios are same as in Table (3)

Turning now to a closer analysis of the regional distribution of losses and gains, it is

striking, from Figure 2.6 that most of the gains are driven by the Eastern region, which

has a very large share in area and production of rice, while most of the losses are driven by

losses in parts of the Southern region, and this is consistent across quantiles and scenarios

(figures for scenario 2 not shown but are available upon request). The results of the regional
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analysis help inform the pathways to possible gains. The impact of climate change on rice

cultivation in Eastern India has been investigated, with some studies indicating possible

increases in yield. Further, the study by Welch et al. [2010] already cited reports a similar

increase in South-Eastern India. This study therefore adds to the weight of evidence on

this important issue.
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(a) 25th percentile
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(b) Median
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(c) 75th percentile
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(d) 90th percentile

Figure 2.6: Box plots of changes in rice yield for different regions under scenario 1 for
different quantiles.

There is substantial prior literature, for India, employing crop simulation models for an
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investigation of impacts of climate change on yields of various crops (see for instance Attri

and Rathore [2003]; Chatterjee [1998]; Kumar and Parikh [2001]; Mall and Aggarwal [2002];

Mall et al. [2006a,b]). The results of such experiments have been varied, but for the crops

considered here, quite clear; most studies report minimal direct impact (defined as simply

an increase in daily temperatures) of climate change on yields of major crops, including

rice, grown in the kharif season, with modest or substantial positive impacts on rice yields,

in particular, for various regions (specifically, minimal impact on Northwestern and Central

India). This is consistent with the results obtained here.

Second, most studies report significant negative impacts on crops grown in the rabi

(winter) season, primarily due to increase in night time temperature. Our results also

indicate, for the moderate scenarios considered here, substantially negative impacts on

wheat yields, mostly in the Southern and Central regions, which is consistent with the

results obtained in many crop modeling efforts, and modest increases in rice yield, driven

for the most part by increases in the Eastern and Northern regions.

2.5.6 Comparison with the mean (fixed effects panel) regression

In order to compare the predictions obtained from a FE-QR framework with those of a

linear FE framework, we consider box plots of predicted changes (as for the FE-QR case)

in Figure 2.732. For wheat, the predicted median impact under the two scenarios, of −3

and −7% are comparable to those of the median, in Figure 2.3. However, it is evident that

under the reasonable scenarios considered here, mean impacts cannot fully characterize the

substantial differences in impacts of changes in weather on yield. A similar result is seen with

rice, from Figure 2.5, i.e. that the mean regression framework is not suited to characterizing

the heterogeneity of impacts of (changes in) weather on yield. The inadequacy of FE panel

32In the interests of brevity, a table similar to the FE-QR case is not presented. It is, however, available
upon request
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regression in capturing heterogeneity in many interesting applications has been repeatedly

emphasized in Galvao [2009], Harding and Lamarche [2009] and Powell [2009] and this study

adds to the weight of evidence.
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(b) rice

Figure 2.7: Box plots of changes in rice and wheat yield under scenarios indicated, from
the linear fixed effects panel data model.

2.6 Conclusions

This paper employed a newly developed panel data quantile regression methodology to

first estimate the relationship between current weather and agricultural yields of the two

most important food grains for India, rice and wheat. The framework used allows a fuller

exploration of the conditional distribution of yield beyond just the conditional mean, which

is the focus of most studies. Results of the estimation, when projected on to moderate, and

almost universally accepted uniform climate change scenarios for India, indicate a significant

negative impact on wheat yields, of up to 11%, primarily in Southern and Central India, with

more moderate losses in the more important Northern region. Further, these impacts were

seen to be most negative on the most productive districts, indicating losses in production

which are likely significant.
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For rice, however, impacts of uniform warming of up to 20C were shown to be mildly

positive, with increases in yield (up to 17% at the lowest quantile) concentrated in the lower

quantiles, or in the least productive areas, while impacts at the upper quantile are seen to

be minimal or even mildly negative. This is likely to translate into a moderate increase in

production of rice. The results here are consistent with many estimates of changes in rice

yields obtained using various crop models, under a variety of climate change scenarios, as

well as a recent study of rice cultivation in Asia under irrigated conditions (Welch et al.

[2010]).

These results indicate significant losses in wheat production, and possibly moderate

gains in rice production. However, given the substantial number of outliers in rice with

yield losses, these estimates likely translate into potentially substantial decreases in rice

production, at least at the local scale. In summary, this study indicates that in the absence

of significant changes in agricultural practices and technology, climate change is likely to

lead to increases in food insecurity for India’s poor, as a result of decreased yield at the

national (or regional) level.
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Appendix 2.A Precipitation measures

The monsoon is, at its most basic, a large scale atmospheric phenomenon which determines

moisture availability and whose interaction with local features determines actual local rain-

fall. Therefore, a definition of “onset” of the monsoon is only climatologically meaningful

at a suitable large scale, generally much larger than a district. This is the major reason

that the IMD defines onset as occurring at a particular location on the Southwestern coast

of India (Moron and Robertson [2009] and references therein). On the other hand, these

definitions of the monsoon are completely divorced from local rainfall and are uninformative

to the farmer.

Recently, there has been renewed interest among the Climatologists in attempting to

hydrologically define onset of the monsoon for India. Fasullo and Webster [2003] provide a

definition of onset in terms of vertically integrated moisture transport, which is valid only

for larger regions than considered here. Moron and Robertson [2009] provide a more local,

at the grid-level, definition of monsoon onset and provide evidence that it does correspond to

actual onset at selected locations. Their measure of onset, at the grid-level, maybe defined

simply as the first day after April 1 that rainfall for X days exceeds a certain threshold

without being followed by Y days in succession without rainfall. The rationale for this is

straightforward: onset is a phenomenon involving rainfall on a few successive days, while

the second condition ensures that there are no “false starts”. As before, we compute district-

level onset from grid-level onset. Finally, in order to proxy for substantial periods with no

rainfall, we compute the number of “dry spells” in the season, wherein a dryspell is defined

as at least 7 days with rainfall below 5mm, a very low threshold. Again, this is computed

at the district level.
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Appendix 2.B Details of the Bootstrap Procedure used

For unbalanced panels, which in practice are the commonest forms of panel data, the mod-

ifications to the time bootstrap are straightforward but algebraically tedious and will not

be illustrated here. We will however point out that the same method outlined above maybe

applied with resampling now being specific to each individual unit. In the absence of depen-

dence in the error structure, we may simply pursue a time bootstrap. However, given (at

least in our application), the suspicion of strong dependence in both space and time, such

time-bootstrap-based inference will clearly be biased (in uncertain directions). A general

but heuristic solution, when spatial dependence is suspected, is to use the time bootstrap

and when spatial dependence is suspected, to use the cross-section bootstrap (as indicated

in for instance Kapetanios [2008]). In the fixed effects quantile regression setting it is not

clear that there is any asymptotic justification for this approach to the covariance ma-

trix estimation (due to the lack of theoretical results on the second order accuracy of the

bootstrap).

Denoting the individual coefficients (on the covariates of interest) β,which is of dimension

K×1, the estimated variance of the kth component of β as σ̂2
ii, n =

∑N
i Ti, the sample size,

we have that the t− statistic for the test H0 : βk = 0 of the kthcoefficient is:

tk = β̂k
ŝek

ŝek =

√
C∗n,k
n

where, in the notation of Gonçalves and White, 2005, C∗n,k is the (k, k)th

element of the bootstrapped variance matrix C∗nwith

C∗n = n

B

B∑
j=1

( ˆβ(j) − βa
) ( ˆβ(j) − βa

)T
(2.13)
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where the pivotal values used, βa, is the bootstrapped mean i.e.

βa = β∗ = 1
B

B∑
j

ˆβ(j)

A final point to note is that one may obtain the critical values by bootstrapping the

variance of
√
nβ∗k, an approach corresponding to the so-called “double bootstrap”. A major

drawback of this approach is the computational burden imposed, due to which we do not

pursue the approach in the present instance. The simplified “Fast Double Bootstrap” of

Davidson and MacKinnon [2007] is likely to provide, in this case, the required improvements

without the same computational burden and we leave this approach to future research.

Note again that the validity of the above approach ,including the double bootstrap,

has been analyzed in detail in Gonçalves and White, 2005 for the case of the cross-section

regression models, and they conjecture that the results are likely to be valid for the case of

cross-sectional quantile regression. If such is the case, then it is likely to also be valid for the

case of quantile regression for fixed-effects panel data, under slightly different conditions.

Appendix 2.C Supplementary Tables
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Table 2.10: Quantile regression with fixed-effects for wheat, using Avg. Temp. instead
of GDD. All regressions include region-specific cubic time trends and district fixed-effects
whose coefficients are not reported. T-statistics for the test H0 : β = 0 based on the
asymptotic variance matrix are reported.

τ=0.25 τ=0.5 τ=0.75 τ=0.9
Avg Temp 5.35E-01 5.00E-01 3.79E-01 3.73E-01

[4.328] [5.467] [4.858] [4.12]
Avg Temp sqr -1.51E-02 -1.34E-02 -1.02E-02 -1.06E-02

[-5.039] [-6.077] [-5.211] [-4.443]
seasonal rain 5.41E-04 2.82E-04 6.49E-04 3.52E-04

[2.478] [1.841] [3.745] [1.61]
rain sqr -1.36E-06 -9.77E-07 -1.78E-06 -2.10E-07

[-2.032] [-2.461] [-3.248] [-0.2774]
hgdd -6.14E-05 -1.79E-04 3.92E-04 1.73E-03

[-0.06638] [-0.2313] [0.5338] [1.811]
irri. ratio 1.01E+00 9.81E-01 9.06E-01 7.76E-01

[15.04] [15.59] [12.45] [8.669]

Table 2.11: Quantile regression with fixed-effects for rice, using Avg. Temp. Other
conventions same as for Table 2.10.

τ=0.25 τ=0.5 τ=0.75 τ=0.9
Avg Temp -7.11E-01 -5.94E-01 -4.28E-01 -4.08E-01

[-5.167] [-4.248] [-3.177] [-2.507]
Avg Temp sqr 1.33E-02 1.08E-02 7.49E-03 7.10E-03

[5.609] [4.439] [3.141] [2.446]
seasonal rain -8.43E-05 -3.36E-05 3.43E-06 -3.19E-06

[-1.798] [-0.8897] [0.09497] [-0.08149]
rain sqr 1.59E-08 3.99E-09 -3.91E-09 1.42E-09

[1.476] [0.475] [-0.4787] [0.1289]
onset day -2.58E-04 -2.09E-04 -4.91E-04 -4.09E-04

[-1.036] [-1.036] [-2.557] [-2.074]
dry spells -5.76E-03 -1.79E-03 -3.37E-03 -4.07E-03

[-1.364] [-0.5698] [-1.13] [-1.323]



chapter 3

Analysis of changes in extremes of rainfall

over India1

1Joint work with Upmanu Lall, published as: Krishnamurthy, Chandra Kiran B., Upmanu Lall, Hyun-
Han Kwon, 2009: Changing Frequency and Intensity of Rainfall Extremes over India from 1951 to 2003.
Journal of Climate, 22, 4737− 4746.
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3.1 Introduction

Anthropogenic climate change poses potentially significant risks for the Indian subcontinent

through changes in extreme rainfall characteristics. General Circulation Models (GCMs) of

climate have had only limited success in reproducing the key attributes of the intra-seasonal

and inter-annual variations in the Indian monsoon. Consequently, it is not clear whether

GCM simulations forced with the Intergovernmental Panel on Climate Change(IPCC)-style

anthropogenic change scenarios adequately represent changes in Indian rainfall extremes,

especially for extreme rainfall that translates into floods or for multi-day dry periods that

impact crop yield. Recently, a few papers (Guhathakurta and Rajeevan [2008],Goswami et

al. [2006])have investigated the trends in selected extreme rainfall attributes from a daily

rainfall data set that has become available through the Indian Meteorological Department

(IMD). Such analyses provide a useful backdrop for assessing whether forced GCM simu-

lations, such as those by May [2004], Kumar et al. [2006], among others, provide plausible

scenarios for changes in extreme rainfall in the 21st century.

This paper presents an exploratory, spatially distributed analysis of the nature of mono-

tonic trends in selected statistics of daily rainfall across India. The research presented

differs from recent work on the issue(Goswami et al. [2006], Guhathakurta and Rajeevan

[2008],Joshi and Rajeevan [2006],Rajeevan et al. [2008],Alexander,L.V., et al [2006], Klein

Tank, A.M.G., et al [2006],Kumar et al. [2006] and May [2004]) in the specific statistics

(frequency and intensity) of extremes considered;in the use of a non-parametric monotonic

trend analysis (instead of a linear trend analysis, which is non-robust to outliers, a concern

in analyzing data on extremes), and in analyzing the complete spatially distributed data

set instead of an aggregate region. Further, we use methods for field significance analysis

of spatial trends in each statistic and also document the concordance of trends across vari-

ables. Trends in the frequency with which daily rainfall exceeds selected thresholds, as well
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as in the intensity (magnitude of such rainfall events) are considered at each grid cell over

India. The rainfall amount considered to define the exceedance events corresponds to fixed

percentiles of the long term rainfall data at that grid cell, and hence the threshold magni-

tude varies from grid cell to grid cell. Thus, changes in the local climatology of extremes are

explored, rather than the rate of occurrence of a fixed extreme magnitude across a region

or even the entire country.

Further, analyzing trends in frequency and intensity separately is of interest since it is

possible that the number of extreme events could increase without a corresponding increase

in the intensity of each event (Trenberth [1999]) and each measure provides information

regarding different aspects of extreme rainfall. For instance,rainfall-indexed insurance is

being introduced by several organizations in India (Gine et al. [2007]) and the determination

of a fair premium, and the associated payout structure, requires an assessment of whether

the upper tail of the probability distribution of daily rainfall is changing at the specific

location where contracts are likely to be written. The need to inform these and similar

applications motivates our spatially distributed analysis of trends in the exceedance of

specific percentiles of the local distribution of daily rainfall.

In the monsoonal setting (Indian or Asian Monsoon), there have been a few studies

focused exclusively on trends in extreme rainfall and most of these have been based on

Greenhouse Gas forced model-based scenarios of the IPCC for the 21st century (Lal et

al. [2000], Bhaskaran and Mitchell [1998], May [2004], Kumar et al. [2006]). Keeping in

mind the biases in the models (indicated in Kumar et al. [2006]), we note that most models

appear to predict enhanced summer monsoonal precipitation over parts of north-western

India, while predicting little or no change over much of Peninsular India (Kumar et al.

[2006]). Climate model-based studies appear to indicate an increase in the geographic extent

of intense events but not necessarily an intensification of extreme events in areas already

subject to high rainfall (which tend to be along the south western coast or the north-eastern
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sub-himalayan region(Kumar et al. [2006]). Model results also indicate intensification of

rainfall in most of India except parts of central and north-eastern India (May [2004]),

with the most intense (maximum 24-hr rainfall) rainfall events predicted to occur over

northeastern and northwestern India.

The literature in this context is typically focused on an analysis of the intensity of

extreme precipitation events, such as the 1-day event or the 5-day event. The frequency

of events exceeding a certain threshold has not usually been a focus. Exceptions are May

[2004], in which an analysis of the frequency of number of wet days, but not of wet days

wherein a certain threshold is exceeded is carried out and Goswami et al. [2006].

The study by Goswami et al. [2006], using the same gridded data set as here, reports an

increasing trend in the frequency of extreme precipitation events, defined as events exceeding

the thresholds of 100 and 150 mm, using pooled data from all grid cells over the central

Indian region (the so-called monsoon belt), and also indicates an increase in the intensity

of precipitation, as measured by the raw values of the 99.5th and 99.75th percentile of the

rainfall distribution, over the same region.

The study by Guhathakurta and Rajeevan [2008] attempts to evaluate trends in rainfall

over India (not rainfall extremes) using a newly-constructed data set of monthly data from

1901-2003.The results of this study appear to corroborate our findings of existence of trend-

in their case, in sub-divisional rainfall-and although the difference in data, objectives make

comparisons difficult, it is nonetheless interesting that this study also reports no trend in

all-india data but trends in both directions in the regional analysis.

Klein Tank, A.M.G., et al [2006], Alexander,L.V., et al [2006] and Joshi and Rajeevan

[2006] all use (very different) station-level data sets to carry out an analysis of (various

measures of) extreme events. Joshi and Rajeevan [2006] use station data (about 199 stations

from 1901-2000)for India to carry out a linear, parametric trend analysis on various measures

of extremes. They find increasing trends for certain regions (West coast and Northwestern
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India) as well as an increase (as in Goswami et al. [2006]) in the contribution of heaviest

rains to total rainfall. Finally, Rajeevan et al. [2008], using a longer station-level data

set (1901-2004), carry out an analysis very similar to Goswami et al. [2006],over a slightly

different region, and find increasing trends (after accounting for inter-decadal variations in

the extreme events) in both heavy and very heavy rainfall events (as defined in Goswami et

al. [2006]). They also make a preliminary attempt at linking such trends to ocean surface

temperatures.

Klein Tank, A.M.G., et al [2006] use station data (for South and Central Asia) for

two different time periods (1961-2000 and 1901-2000) to obtain linear, parametric trends at

each station (as well as simple regional average trends) for 8 measures of extremes. They

report no coherent trends in most measures of precipitation extremes at the regional level.

Alexander,L.V., et al [2006], on the other hand, carry out a global analysis using station

data for various regions of the world. Various measures of extremes are computed at the

station level and are then gridded (2.5 latitude by 3.75 longitude) before an analysis very

similar to that carried out here is attempted for various measures of extremes.

3.2 Data

This study utilizes a recently available gridded daily data-set for India (Rajeevan et al.

[2006]), consisting of 1300 grid cells, each 10 lat x10 long, for 53 years (1951-2003), available

from the IMD. Of these 1300 grids, 357 grids covering all of India’s land area were used for

the analysis. This is the same data set from which Goswami et al. [2006] draw their subset

for analysis.
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3.3 Definition of statistics of extremes

We consider two measures of extremes, frequency and intensity, defined respectively as the

number of days with rainfall events (each year) exceeding a threshold and the average daily

rainfall (for each year) on the days on which rainfall exceeds the specific threshold.

A threshold is defined in terms of a fixed percentile (two were considered, the 90th and

the 99th) of the daily rainfall series at the grid cell, considering only days with non-zero

rainfall. As a result, the threshold magnitude varies from grid cell to grid cell (but not year

to year). A time series of frequency at each grid cell is computed as:

fjt =
365∑
i=1

1Pitj>P ∗j

where t is the year, j the grid box, Pitj the rain on day i in year t and grid j, and P ∗j is the

rainfall threshold for grid j, 1 is an indicator function that takes the value 1 if the argument

is true and 0, else.

Correspondingly, the intensity time series is derived as (following the same notation)

rjt =

∑365
i=1 1Pitj>P ∗j Pijt

fjt

 1fjt>0

For each grid cell, the number of non-zero precipitation events each year was identified

and the 90th (99th) percentile of this series estimated. The median of these 90th (99th)

percentile values across all years was then selected to be the threshold for that particular grid

cell. The spatially varying climatology of extreme rainfall across India is thus addressed(see

also [Joshi and Rajeevan, 2006, 6]).

We feel that this procedure better represents the spatial aspects of the monsoon process

than a threshold fixed across grids, since the monsoon rainfall varies substantially across

India, and we are interested in how the spatial pattern may of extreme rainfall may have
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changed across the country. This is evident from figure 3.1, which illustrates that the spatial

pattern of the thresholds are very similar to the monsoonal precipitaion patterns, with the

largest thresholds obtained at the south-western, western coast and the north-eastern region.

The primary analyses were carried out separately for data for the monsoon season,

June-July-August-September, and for the rest of the year. The monsoon season results are

reported here.

3.4 Trend Analysis

The Mann-Kendall (MK) test is used for the detection of monotonic trends in the derived

frequency and intensity data for each grid cell. An estimate of the Sen slope, a robust

estimate of the monotonic trend, is also computed, along with its significance level. The

MK test is a rank-based test, with no assumptions as to the underlying probability distri-

bution of data ([Helsel and Hirsch, 1992, 326-327]).The test statistic, computed based on

pairwise comparison between the values of a series, is asymptotically normally distributed,

independent of the distribution of the original series. A robust estimate of the magnitude

of the slope of the trend is estimated using the method of Sen, as the median of pairwise

slopes between elements of the series([Yue et al., 2002, 16-17]).

For each grid cell, and separately for the frequency and the intensity data, we test (at

the 10% significance level) (a) the null hypothesis of no trend (b) the null hypothesis of

no increasing trend and (c) the null hypothesis of no decreasing trend. Recognizing that

a certain number of rejections of the null hypothesis are to be expected given the large

number of tests conducted, we construct a field significance test (described in the next

section) to assess whether the outcomes of the significance tests at the grid level may be

consistent with what is expected purely by chance. Here, we examine the general features

of the trends revealed by the MK test.

Figure (3.2) provides the spatial distribution of the trends for grids where the null
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Figure 3.1: Contours of exceedance thresholds of daily rainfall (mm) at each grid. The
boxed area indicates the region considered in Goswami et al. [2006]
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hypothesis of no monotonic trend is rejected at the 10% significance level, while table 3.1

provides a tabulation of the number of such grids.

Even at the higher threshold, however, the numbers of negative trends are quite notice-

able, especially in frequency. Further, it may be inferred from figure(3.1) that the spatial

distribution of positive and negative trends are noticeably prominent in two particular re-

gions (in all cases); the Eastern region and the Northern region, while the Western and

Peninsular regions appear to be relatively less densely populated by significant trends. In

addition, in much of the Southern region, the coasts (or the immediate interiors of the

coast) appear to be the region with changes2.

For exceedances of the 90th percentile, the number of decreasing trends in frequency

dominates the number of increasing trends. This observation runs counter to the assess-

ments reported in the literature, where increasing trends in extremes are the focus. For

instance, Goswami et al. [2006] and Kumar et al. [2006] find only increasing trends (in the

first case over a restricted subset of the domain investigated here), with a fixed threshold

of rainfall applied. Joshi and Rajeevan [2006], using thresholds varying with station, is the

only study to report decreasing trends (at a few stations).

Note from table 3.1 that the number of increasing trends in intensity is higher than

decreasing trends at the same threshold, which suggests that when exceedance of the 90th

percentile of grid rainfall occur, the amount of rain has been increasing, an observation

likely to support the direction of trends reported in Goswami et al. [2006] (with a fixed

rainfall threshold) and in Joshi and Rajeevan [2006] (with a spatially varying threshold).



CHAPTER 3. CHANGES IN EXTREMES OF RAINFALL OVER INDIA 79

Figure 3.2: Spatial Distribution of grids where the Null of no trend is rejected by the MK
test (one-sided, at the 10% significance level) (Blue indicates decreasing, Brown,increasing
trends;exceedance of the 90th and 99th percentile of daily rainfall is considered). The boxed
area indicates the region considered in Goswami et al. [2006]
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Number of Grids with
increasing trend decreasing trend

90th%tile threshold
Frequency 25 61
Intensity 44 27

99th%tile threshold
Frequency 45 30
Intensity 42 25

Table 3.1: Distribution of grids with statistically significant (at the αl=10% significance
level) trends (357 grid cells in total)

3.5 Tables

A perusal of the trends in frequency and intensity of exceedance of the 99th percentile

threshold supports such a speculation, given the dominance of increasing trends in both

frequency and intensity at this threshold. However, contrary to much of the literature, a

fair number of decreasing trends are noted in our analyses. From the figures it is clear

that while the details vary by threshold and metric (frequency and intensity), increasing

trends dominate in the coastal regions and in the eastern region (west of Bangladesh), while

decreasing trends appear to be more prevalent in the northern, central and north-eastern

parts of India. Indeed, from these figures, it is difficult to argue that there has been an

increase in the frequency and intensity of extreme rainfall across India.

The joint trends in frequency and intensity are investigated next. The motivation is

to investigate whether, as hypothesised by Trenberth [1999] and others, trends in both

frequency and intensity increase or decrease jointly. The trends in frequency and intensity

(in figures (3.3) and (3.4)) that are deemed significant in the independent analyses agree

completely for exceedances of the 99th percentile threshold. For exceedances of the 90th

percentile, decreasing trends in frequency and intensity at the same location are much more

2Changes in the extreme northern regions, especially over the states of Jammu and Kashmir and Hi-
machal Pradesh, are based on very scanty data and will be ignored in much of the analysis
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prevalent than joint increasing trends in these two metrics. It is remarkable that at the

higher threshold, there is not a single grid cell with opposite directions of trends in frequency

and intensity, while at the lower threshold, grids with opposing trends are evident only in

the monsoon belt. At the lower threshold, there are not very many grid cells where trends

in both frequency and intensity are significant. Most grids with trends in both significant

are located in the eastern part of the country.

Given the spatial structure of the Indian monsoon, it is pertinent to ask if a similar

(or some) structure is evident in the trends as well. To investigate this aspect, we plot

the contours of the trends calculated at each grid point, and note that if there were some

spatial structure in the trends, it would be evident in the contour plots. However, a perusal

of figures (3.5) and (3.6) indicates that there is no evident structure to the trends, of either

sign.

Having taken a broad look at the spatial distribution and direction of trends in the

frequency and intensity of extreme rainfall across India, we next examine whether the

number of statistically significant trends that appear to be different from zero at the 10%

significance level could occur purely by chance, in an analysis of the spatially distributed

data set used here.

3.6 Field Significance Test

The question addressed in this section is whether the number of increasing or decreasing

trends deemed significant at the grid-cell level analysis could occur purely by chance, taking

into account the possibility that the rainfall data, and hence, the trends, have an underlying

spatial structure. The answer to this question depends on the specific area or domain

considered (all of India or the core monsoon region as identified in Goswami et al. [2006],

and indicated as a box in all figures). Results for the all-India data are presented first and

those for the smaller, core monsoon region are discussed next.
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Figure 3.3: Assessment of consistency in significant trends in frequency and intensity (at
the 90th %tile threshold). Cyan indicates trends in both frequency and intensity decreasing,
Brown indicates trends in both increasing and Blue indicates trends in frequency increasing
and intensity decreasing. Only grids where trend in both frequency and intensity were
statistically significant (at the 10% level) are considered. The boxed area indicates the
region considered in Goswami et al. [2006]



CHAPTER 3. CHANGES IN EXTREMES OF RAINFALL OVER INDIA 83

Figure 3.4: Same as figure 3 (but at the 99th %tile threshold). Blue indicates trends in both
decreasing, Brown indicates trends in both increasing
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Figure 3.5: Contours of the trend estimated by the Sen Slope for frequency of exceedance at
each of the grids. Grids with statistically significant trends (at the 10% level of significance)
are marked with * and 0. The boxed area indicates the region considered in Goswami et al.
[2006]
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Figure 3.6: As in Fig 5 but for Intensity
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The so-called field significance test (Livezey and Chen [1983]) has been typically used

to address the question posed in this section. The null hypothesis of the test is that the

number n out of N total grid cells exhibiting a trend at the αl % level of significance (local

or at each grid cell) is not inconsistent with the value expected by chance, considering the

potential for spatial correlation across the individual time series analyzed for trends. The

null hypothesis is rejected if n is larger than the number expected by chance at the αf%

significance level (global or across the domain)3.

A one-sided test is used, to test whether the proportion of grids with significant trends,

p, is greater than the (global) significance level αf , as below

H0 : p = αf v/s Ha : p > αf

The test statistic
p− αf√
αf (1−αf )

357

is distributed N(0, 1) under the null.

In most applications, the validity of the field significance test is compromised by the

finiteness of the data set used and by the spatial and/or temporal correlation between the

series used (Livezey and Chen [1983], Elmore et al. [2006], Wilks [1997]). We outline a

procedure which addresses the spatial dependence of data. Spatial correlation reduces the

degree-of-freedom of the test i.e. there are less than N individual realizations (of the test

statistic or phenomenon; in this case, frequency and intensity) in a field of size N . Livezey

and Chen [1983] estimate the effective number of realizations, n < N , by a Monte Carlo

procedure involving generating the sampling distribution of n under the null (of field non-

significance), obtaining a desired percentile (say the 5th) of this distribution, and comparing

3Note that the local significance level, αl, is always taken to be 10% while the global significance level,
αf , is either 10% or 5%, depending on whether the field significance test pertains to significant trends of
both (positive and negative) signs or of one particular sign
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it to the minimum number of effective degree of freedom for the significance of the field, n0.

The null hypothesis is rejected if n > n0.

An alternative is to generate the sampling distribution of the test statistic under the

null hypothesis, keeping intact the spatial structure of the data set under consideration.

The advantages of this approach include sampling the spatial correlation structure without

formally specifying it (Wilks [1997]).

The bootstrap is a non-parametric method that samples, with replacement, from the

original data. It is applied here by re-sampling the spatial field associated with each year,

which preserves the spatial structure, but randomizes the temporal structure. The boot-

strapping procedure for the field significance test was carried out by first generating 1000

random samples of 53 numbers each from 1 to 53 (with replacement). Each of these 1000

samples are then treated as realizations of a time index corresponding to 53 years of data,

with the frequency and intensity spatial fields then sampled for each of these generated

years.

This approach preserves the correlation structure across space but not across time. Serial

correlation across years in each grid cell were not found to be significant. For each of the

1000 samples generated, the MK-test was repeated for each grid and for each sample. This

leads to 1000 samples at each grid cell with a binary determination of trend significance

at the αl% level. The proportion of grid cells where significant trends at the αl% level

were found was calculated for each of the 1000 samples, to obtain 1000 realizations of the

proportion of grids, p, exhibiting trends at the local significance level. This provides an

estimate of the sampling distribution of the test statistic under the null hypothesis that the

number of trends identified as significant at the αl% level, across the domain, is consistent

with the number expected by chance. This computation was done separately for increasing

and decreasing significant trends in frequency and intensity, leading to six different tests for

each exceedance threshold. The procedure and results are summarized below:
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1. Mann-Kendall Trend test: Carry out the MK test, obtain the Sen slope and a count

of the number of grids at which the null (of trend non-significance) was rejected (at

the 10% level), compute the test statistic, denoted tsample. This step is carried out

for each of three types of trends (trends in both directions, increasing trends and

decreasing trends only) and steps (ii) and (iii) are then repeated separately for each

of these three types of trends.

2. Field significance test:

• Randomly sample, with replacement, from the data, to obtain 1000 copies of the

data matrix while retaining the spatial structure

• Obtain 1000 realizations of the proportion of the grid cells, p, for which the

hypothesis of no trend is rejected and the vector (of size 1000) of test statistics

(denoted tbootstrap)

• Construct the bootstrap estimate of the sampling distribution of the test statistic

Tbootstrap = (tbootstrap− tsample). Sort this vector and obtain its 100(1−αf )th

percentile (denoted: T ∗)4

• test T = tsample − αf against T ∗5(recall that a one-sided test is employed)and

reject the null hypothesis that the number of significant trends is what would be

expected by chance if: T > T ∗

3. Repeat the analysis for different thresholds

The results of the bootstrap procedure are summarized in table 3.2. First, if we consider

the total number of trends (of either sign), we observe that the null hypothesis is rejected for

all tests. Next, if we consider increasing trends, only in the case of frequency of exceedance

4This is known as the "percentile method" of bootstrap-based hypothesis testing ([Davison and Hinkley,
1997, 201-203]

5We note that this approach differs from the conventional one, involving testing Tbootstrap versus α; the
approach adopted here is more efficient than the conventional one (Hall and Wilson [1991], Wilks [1997])
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of the 90thpercentile is the null hypothesis not rejected. Changes in intensity indicate an

increasing trend at both thresholds. The number of decreasing trends passes the significance

test only for frequency at the 90th percentile. Thus in summary, the hypothesis that overall

there is an increasing trend in the frequency and intensity of extreme rainfall appears to have

support, with the caveat that at the 90th percentile, the frequency of exceedance appears

to be decreasing in the central and northern regions, while the intensity of these events is

increasing. A contour plot of the slopes of frequency and intensity provides a smoother

representation of the nature of these trends (Figures 3.4 and 3.5).

Frequency Intensity
t∗ t Null t∗ t Null

90th percentile threshold
both incr. and dec. -0.078 0.141 reject -0.042 0.099 reject

increasing only 0.025 -0.03 do not -0.039 0.023 reject
decreasing only -0.073 0.071 reject 0.008 -0.024 do not

99th percentile threshold
both incr. and dec. -0.056 0.11 reject -0.034 0.088 reject

increasing only -0.039 0.026 reject -0.031 0.018 reject
decreasing only 0 -0.016 do not 0.014 -0.03 do not

Table 3.2: Bootstrap test results (Note: (a) t: raw statistic, t∗: critical value – the (1 −
αf )quantile of the bootstrap distribution (b) αf for increasing and decreasing trends are
0.05 while for all sig. grids, it is 0.1)(c) Null of field non-significance (p = αf ) is rejected if
t > t∗)

Now consider the results over the region considered by Goswami et al. [2006]), the main

study with a similar analysis and dataset. Recall that Goswami et al. [2006] define extremes

over a homogeneous region, use the number of days of rainfall above 100 and 150mm and

the intensity of rainfall for a fixed percentile (99.5th and 99.75th), as measures of extremes.

They report an increase in the frequency of extreme rainfall events as well as an increase

in the intensity of extreme rainfall. Carrying out the field significance test outlined in the

preceding section over their domain, we find that the broad conclusions from the national

analysis are essentially unchanged (table 3.3 and 3.4) i.e. that while increasing trends do



CHAPTER 3. CHANGES IN EXTREMES OF RAINFALL OVER INDIA 90

exist, they are more predominant in the south-western coast and north-eastern regions, with

decreasing trends being more prominent in the central regions.

Number of Grids with
increasing slopes decreasing slopes
90th percentile threshold

Frequency 7 9
Intensity 17 2

99th percentile threshold
Frequency 13 4
Intensity 12 4

Table 3.3: Distribution of grids with statistically significant (at αl=10% significance level)
trends in the region defined by Goswami et al. [2006] (74 grid cells in total)

Frequency Intensity
t∗ t Null t∗ t Null

90th percentile threshold
both inc. and dec. -0.014 0.103 reject -0.068 0.143 reject

increasing only 0.041 -0.019 do not -0.122 0.116 reject
decreasing only 0 0.022 reject 0.068 -0.073 do not

99th percentile threshold
both inc. and dec. -0.041 0.116 reject -0.027 0.103 reject

increasing only -0.054 0.062 reject -0.054 0.049 reject
decreasing only 0.041 -0.046 do not 0.041 -0.046 do not

Table 3.4: Bootstrap test results for slopes in region defined by Goswami et al. [2006] (Note:
(a) t: raw statistic, t∗: critical value– the (1−αf )quantile of the bootstrap distribution (b)
αf for increasing and decreasing trends are 0.05 while for all sig. grids, it is 0.1)(c) Null of
field non-significance (p = αf )is rejected if t > t∗

Joshi and Rajeevan [2006], using a different dataset, find increasing trends (using some-

what different measures of extremes) in very similar regions; they also report negative trends

(at only two stations).

Goswami et al. [2006] also performed a split sample analysis, splitting the data into

two parts, pre- and post-1981 and find an increasing trend in the post-1981 sample. We

repeated our analysis for the same two sub-periods. The results of this analysis indicate
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that the conclusions obtained using the full sample are unaltered, unlike Goswami et al.

[2006] who find a increasing trend only in the post-1981 sample. The importance of the

spatially distributed analysis performed here is that if the spatial differences noted represent

non-homogeneous aspects of the monsoon, then the spatial patterns identified in the trends

would potentially help inform mechanism identification and model performance evaluation.

Kumar et al. [2006] find significant increases in intense precipitation in much of western,

northwestern and especially the south-western regions. The results of the present analysis

indicates trends in mostly parts of the south western coastal regions, similar to the results

of Kumar et al. [2006], as well as in the eastern and central regions. May [2004] reports

increases over much of the Indian peninsula, while the coarse spatial resolution of the

model used does not provide detail smaller over regions of India. Further, our results that

decreasing trends are likely in many areas are in concurrence with May [2004] who also

finds similar decreases (in the scale and/or shape parameters of the Gamma or the GPA

distributions which are fit to the rainfall data) for a small number of regions. However, the

spatial coarseness of the model prevents a closer spatial comparison of the results.

3.7 Discussion and Conclusion

An earlier examination of trends in extremes of Indian monsoon rainfall was developed fur-

ther in this work. The analysis considered the spatial structure of changes in the extremes

across the country rather than over a box (homogenous region) in central India. Broadly

speaking, there is support for the hypothesis that the frequency and intensity of extreme

rainfall over India may be increasing over the previous 53 years. However, there is consid-

erable spatial variation as to the direction of change, and the spatial continuity of trends

deemed statistically significant is weak. This is not unexpected, since threshold crossings

are a random process, and the assessment of significance is also a threshold process. A

visual examination of the spatial variation in the trends in frequency and intensity of ex-
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treme rainfall suggests that the north and central sections of the Indian subcontinent have

experienced a generally decreasing trend in the frequency and intensity of extremes, while

the coastal regions in Peninsular India, and the region immediately west of Bangladesh have

experienced increasing trends.

Even in central India, which was analyzed in aggregate by a previous study, there is

some heterogeneity in the direction of the trends, and the larger scale analysis performed

here helps clarify the spatial structure of the changes in the region studied in Goswami et

al. [2006].

We do not attribute the trends observed to anthropogenic climate change or to inter-

decadal climate variability which may be of natural origin. Rather, we offer the results of

this analysis as a benchmark to the climate community to consider more detailed studies

of the spatial structure of changes in the Indian monsoon mechanisms, so that a better

informed attribution of change can be determined.

Generally, it is known that tropical depressions that form in the Bay of Bengal and then

propagate westward or northward play a key role in extreme rainfall. These are associated

with a mix of barotropic and baroclinic instabilities, and their interaction with the mean

monsoonal flow(Gadgil [2003]). We suspect that the details of these interactions may be

associated with the indicated changes in the spatial structure of the trends, and naturally

for the trends themselves. A recent study by Guhathakurta and Rajeevan [2008] notes

a significant decreasing trend in the frequency of depressions and storms over the Bay of

Bengal, lending support to our conjecture. Model based studies and detailed analysis of

individual extreme events are necessary to develop this intuition and are being pursued.

The design of our study was somewhat different from prior work. First, we considered

changes in the climatology of extremes for each spatial location, rather than the frequency

and intensity of exceedance of a fixed threshold, which is more meaningful for an analysis of

the larger spatial scale considered. Second, instead of considering linear trends, we consider
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the more general case of monotonic trends (this would include for example a step change

in the process at some time, or an exponential or logarithmic trend), and assessed the

evidence for such a trend using robust, nonparametric methods. The field significance test

was applied both nationally and regionally and essentially confirms that the number of

cases where the null hypothesis of no trend was rejected was statistically different from that

obtained purely by chance (at the relevant level of significance).

Thus, our study lends credibility to previous assessments which report increasing trends

in frequency and intensity of extreme rainfall over India, while identifying areas where there

is a systematic departure from previous assessments. The issue of how these trends may

be reinforced or reversed over the 21st century is not addressed here, and is the subject

of ongoing investigation. However, we note that the broad direction of trends identified

here is consistent with the expectation from the model-based analysis for the 21st century

scenarios for climate change, as reported by Kumar et al. [2006] and May [2004].
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4.1 Introduction

Increase in extreme precipitation events is a key concern of climate change studies. In the

case of India, Rajeevan et al. [2008], Krishnamurthy et al. [2009], Goswami et al. [2006],

Ajayamohan and A. Rao [2008] have attempted to analyze changes in the frequency and

magnitude of extreme precipitation over India. All, except Krishnamurthy et al. [2009],

focused on the Central India region referred to as the “core monsoon region”2, to which we

restrict the present analysis. Rajeevan et al. [2008] and Goswami et al. [2006] analyzed the

data on frequency of exceedance of a specified threshold (100 and 150 mm) over the Central

Indian region, and established a positive trend in the frequency at the higher threshold

(150mm/day, which they label “Very Heavy Rain” or VHR events). They identify a signifi-

cant connection between this measure of extreme and Equatorial Indian Ocean (EIO) SST.

Ajayamohan and A. Rao [2008] consider the relationship between the frequency of extreme

events (using the same threshold as in Rajeevan et al. [2008]) over a slightly different region

(the Ganga-Mahanadi basin) and the DMI (Dipole Mode Index, an index indicating the

strength of the Indian Ocean Dipole (IOD) phenomenon). They report both increasing

trends and modulation of extremes by the IOD.

Past examination of trends in extremes of rainfall over Central India did not adequately

account for the simultaneous influence of natural modes of climate variability (e.g. those

related to ENSO or the IOD). The quasi-periodic and multi-scale nature of these climatic

factors may compromise the results obtained from these analysis. Further, past analyses

were mostly based on a shorter time series of 53 years of data (1951− 2004), due to which

it is also difficult to assess the significance of these other factors. In addition, the use of

2Defined as the region between 16.5-26.5 N and 74.5-86.5 E. The region analyzed in Rajeevan et al.
[2008] was slightly larger than this, while that in Ajayamohan and A. Rao [2008] is a subset of this region.
However, we will continue to refer to the regions used therein as being the core monsoon region except where
we explicitly address the impact of these differences.
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fixed rainfall levels to define thresholds in previous research does not lead to a consistent

probabilistic threshold across the given region.

The current study relates selected climate indices (IOD, ENSO, EIO SST) and frequency

of extreme rainfall events for the core monsoon (Central Indian) region, over a period of 97

years (1901−1997) and explores the potential connections between their respective cyclical

and monotonic trends. Here, we consider a fixed probabilistic threshold across each grid

box within the region, ensuring that we have a consistent probabilistic threshold across the

domain, to assess exceedances. The analysis here is therefore more directly focussed on an

assessment of whether there have been changes in the probability of exceedances over the

given domain. We define the threshold in terms of the 99th percentile of daily rainfall, and

use the median of the 99th percentile of daily rainfall, estimated for each year, as a robust

estimate of the threshold.

This framework allows us to address the following important questions: What are the

secular and quasi-periodic trends in the frequency of extreme rainfall events, and do these

bear a relationship to teleconnection indices which have been conjectured to be important

for this region ? In other words, this framework allows for a unified approach to testing for

secular trends, in the presence of covariates, as well as for covariate significance.

4.2 Data

For rainfall, we use gridded (10 × 10 resolution) daily rainfall data, from 1901-2004, over

India, developed by the IMD and described in Rajeevan et al. [2008]. We use only the

133 grids in the region of interest (defined above) for our analysis. Gridded monthly

data (20 × 20) for the Equatorial Indian ocean region SST (EIO SST) was obtained from

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html (accessed on June 8, 2010),

for 1901 − 2004; we use two definitions of the EIO, the first one as 5S − 5N lat and

50E − 100E longitude, while the second one (following Ajayamohan and A. Rao [2008])

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html
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is between 10S − 5N latitude and 60E − 90E longitude. For both definitions, we extract

monthly data, compute the monthly anomalies for each of JJAS w.r.t the long-term (1901-

2004) mean for each grid and subsequently compute the mean anomaly over the season

across the grids.

We use the Dipole Mode Index (DMI) as a measure of the Indian ocean dipole (IOD),

data for which are obtained from http://www.jamstec.go.jp/frsgc/research/d1/iod/(accessed

on May 5,2010). We use the raw (without detrend and without time filter) monthly data, ex-

tract the data for the JJAS season and obtain the mean JJAS values. Data for the NINO34

and NINO12 indices were obtained from the IRI’s data library (http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/),

from which seasonal means for the JJAS season were computed for the years 1901− 2000.

4.3 Analysis of extreme rainfall events

4.3.1 Definition of Threshold

We believe that a fixed choice of a threshold over heterogeneous regions is not appropriate.

Instead, following Krishnamurthy et al. [2009], we define the threshold objectively, at each

grid, as a fixed percentile of the long-term rainfall distribution at that grid cell. For each

grid cell, the number of non-zero precipitation events each year was first identified and

the 99th percentile of this series was extracted (for each year). Subsequently, the median

of these annual 99th percentile across all years was selected to be the threshold for that

particular grid cell, and rainfall events exceeding the threshold are taken to be extreme

events (frequency of extremes). The spatially varying climatology of extreme rainfall across

the core monsoon region is thus addressed. Finally, we obtain the sum of such events over

all the grids for the core monsoon region each year, and thus, obtain a time series of extreme

events.

From Figure 4.1(a), it is evident that there is significant heterogeneity in the extremes

http://www.jamstec.go.jp/frsgc/research/d1/iod/
http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/
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of rainfall and choosing a fixed amount as the threshold, for instance 100 mm, will most

likely yield a very large number of events, in certain grids, which are not in the tail of the

probability distribution of rainfall, leading to a few grids dominating the count of extreme

events in the region.
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(b) scatter plot of EIO versus extreme events

Figure 4.1: (a) Line plots of EIO SST anomalies and extreme events. Dashed vertical lines
correspond to IOD events at 1961, 1994 and 1997 (b) Scatter plots between Eq. Ind. Ocean
SST and frequency-of-exceedance at lower and higher thresholds, respectively. Red triangles
in both correspond to the aforementioned IOD events.

Figure 4.1(a) also indicates that there has been an increase in both SST anomalies and

the frequency of extremes over the latter half of the 20thcentury. However, it is not clear

that there is any particularly significant association between them, as is clear from Figure

4.1(b). Further, if the conjecture that strong IOD anomalies modulate more extreme events

(as in Ajayamohan and A. Rao [2008]) is true, then years with very strong IOD signals

(such as 1961, 1994 and 1997) must also be associated with more than usual extremes.

From Figure 4.1(b), no such consistent pattern can be discerned, apart from the extremely

strong IOD event in 1994.
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Many of the prior analyses seek to develop such relationships after detrending (or other-

wise filtering) the series. Recognizing the structured low-frequency variability in the climate

indices and in extreme rainfall is also an issue, we explore the trends and teleconnections

in the frequency domain.

4.3.2 Changes in the relationship between frequency of extremes and

climate indices: Spectral analyses

4.3.2.1 Multi-taper spectral analysis

We investigate fluctuations in the frequency of exceedance 3 using the Multi-taper method

of spectral analysis. This method provides a more robust characterization of narrow-band

variability than do traditional methods of spectral analysis. We refer the interested reader

to Mann and Lees [1996], especially their Appendix A, for more details, and to Lall and

Mann [1995], for a detailed application.

A summary of the individual spectra as well as coherences between the individual series

and relevant climate indices are presented in Table 4.1. A few of the important points which

arise from an inspection of the table are presented below.

Figure 4.2(a) is the MTM spectrum with “robust” confidence intervals at the lower and

higher thresholds, respectively4. Two “significant” peaks are evident from the figure, that

near the 0 frequency and at approximately the ENSO frequency. In particular, the only

3There are two distinct uses of the term “frequency” here; the first referring to the “frequency of ex-
ceedances of extreme rainfall” and the second to the frequencies in the frequency-domain analysis; in order
to avoid confusion in usage, henceforth, we refer to the count of extreme events as simply “exceedances”,
instead of “frequency of exceedances” (as used up to now). Therefore, any further references to frequency,
unless otherwise indicated, shall refer to frequency domain analysis.

4Denote by K the number of tapers used, by W the half-bandwidth, by ∆t = 1 (in annual units)
the sampling frequency, by fR = 1

n ∗∆t = 1
97 ∗ 1 = 0.0103 the Rayleigh frequency. Writing, as is usual,

W = pfR setting p = 2, the number of tapers now is K = 2p − 1 = 3 and the resulting DPSS is called a
2π-taper. The spectral estimate thus averages in the frequency band f ± pfR = f ± 0.0206, where we will
term pfR as being the minimum resolvable frequency. Thus, we will only speak of peaks which are “well
separated” from each other, in the sense of being at least 2pfR distance apart. See for instance [Lall and
Mann, 1995, pp 2510]
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Individual Spectra Coherence between exceedance counts and
series Significant periods (years) series Significant periods (years)

Extreme events trend, 3.25− 4, 2.25− 3 NINO12 decadal, 3.5− 4
NINO12 5− 5.5, 3.5− 4 NINO34 7− 10, 3.5, 2.5− 3
NINO34 6.5− 5.25, 3.5 EIO SST decadal, 3, 3.5, 2.5
EIO SST trend, 5 DMI 3.75, 3

DMI trend, 4.75− 5.5

Table 4.1: Results of Multi-taper Spectral Analysis based on Mann and Lees [1996]. Sig-
nificance (at 95% level) of frequency bands (or individual frequencies) are based on an
inspection of the (jacknife) confidence intervals. We only consider frequencies which are
“well separated” from each other (see footnote 4). Features near the 0 frequency are re-
ferred to as “trends”, but note that it is not possible to distinguish multi-decadal cycles and
processes with long memory from those with a time trend.

feature longer-than-decadal of interest is the time trend. The results here are consistent

with the analysis in Krishnamurthy et al (2010), who undertake a more comprehensive

multivariate frequency-domain analysis of trends in frequency and intensity over India using

the same data set, and find four different time scales of interest, the time trend, ENSO,

QBO and the decadal signal, of which the decadal signal is the weakest.
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Figure 4.2: (a) MTM spectrum of the frequency-of-exceedance data. Minimum resolvable
frequency is pfR = 0.0357, see footnote 4 (b) Spatial distribution of the thresholds chosen
to define extreme events

The spectrum of the EIO SST series, in Figures 4.4(b) and 4.4(c), indicates clearly

that power exists in only two frequency bands, the secular trend and the QBO5; further,

the rapid decay of the spectrum suggests a predominance of low frequency (greater than 5

years) components. The NINO12 series, Figure 4.4(a) appears to possess significant power

at an approximately 5 − 51
2 year band and a 31

2 year band; the DMI series, Figure 4.4(d)

has significant power at the secular trend and a QBO-like 43
4−51

2 year band. In particular,

we note that none of the climate indices exhibit any significant power at the decadal scale

or lower (apart from the secular trend), and this is very similar to the findings in the case

of the frequency of extremes at both the thresholds.

In order to assess the common evolution between the individual series and Eq. In-

dian ocean SST, the DMI, we plot the MTM squared-coherence between these series and

exceedance counts. From the Figures in 4.3, the following are evident:

5An advantage of the MTM spectrum over the global wavelet spectrum is that it is better suited at
identifying irregular phenomena such as the QBO. See for instance Torrence and Webster [1999], who
indicated that the Morelet wavelet, in particular, was not very suited to identifying the QBO.
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1. The decadal signal appears to be significant with all climate indices; however, noting

the low power at this frequency range in all climate series as well as the frequency

series, we consider it an artifact of the procedure and do not further analyze it.

2. With NINO12 and NINO34, significant relationships appear to exist at a time period

centered around 31
2 years.

3. With EIO, the only relevant significant relationship is at the secular trend and at an

ENSO-like band of 31
3 − 4 years.

4. Significant frequencies with the DMI appear to be at an ENSO-like 3-4 year band

(where both spectra have significant power) .
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Figure 4.3: (Squared) Spectral Coherence between frequency of exceedance and various
climate and SST indices (indicated in the respective figures). Other conventions same as
for figure (4.2)

4.3.3 Trends and relationship to climate indices

In much of the literature related to changes in frequency of extremes in precipitation,

typically two exercises are pursued disjunctively:

1. testing for existence of (monotonic, generally linear) trends in extremes of rainfall
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2. exploring the impact of covariates on extreme rainfall.

We illustrate that, in the presence of covariates which potentially impact the series under

consideration, tests for trend must account for the impact of such covariates6.

Quantile Regression Poisson Regression
0.25 Q 0.5 Q 0.75 Q 0.9 Q

NINO12 -0.0162 0.0188 -0.0316 0.0538*** -0.02
(0.887) (0.681) (0.670) (1.83e-05) (0.24)

Dipole Mode Index 0.0176 0.0334 -0.0030 -0.0467* -0.007
(0.919) (0.637) (0.984) (0.0759) (0.82)

Eq Indian Ocean SST -0.0062 -0.0780 0.2192 0.2136*** 0.111*
(0.965) (0.217) (0.600) (0) (0.02)

time 0.0006 0.0022*** -0.0000 -0.0004 0.001 0.001***
(0.766) (0.000731) (0.999) (0.412) (0.14) (0.00)

p-values in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4.2: Results for Poisson and Quantile Regressions.

Consider first the results of the canonical model for count data, the Poisson regression

model (details of which maybe obtained from Winkelmann [2008](Chapter 3)), in the final

two columns of Table (4.2). Two important conclusions emerge from a perusal of the table:

in the presence of other covariates, time trends do not appear to be significant and second,

in a model with only time, the coefficient on time is significant, indicating that a time trend

is, indeed, present. It is therefore apparent that the presence of a trend is not robust to

inclusion of other covariates; for instance, the EIO SST series itself appears to have a time

trend (see for instance the correlation with time in Table (3)), and it is likely, as conjectured

in Rajeevan et al. [2008], that there is a relationship between the two. It is also likely that

the trend in the EIO SST is a result of global warming. Thus, it is likely that what is

labeled a “time trend” is simply a relationship with EIO SST (which is possibly trending).

6Given that we focus on exploring the full conditional distribution of frequency of extremes, we do not
use the many proposals for trends tests for the mean of a count variable, such as the parametric ones in Frei
and Schär [2001]; Keim and Cruise [1998] as well as the nonparametric one in Brillinger [1994].
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A mean regression, however, is unsatisfactory in the current context. For instance,

we are interested in understanding the variation in the areal extent impacted in terms of

threshold crossings; it is not clear, in this case, that the mean effect captures sufficient spatial

heterogeneity. In other words, if covariate impacts are evident only in larger scale events,

the conditional mean framework–with a uniform threshold–is likely to provide only very

incomplete information. Further, even in the case of only a single grid box, we anticipate

that covariates will exert differential impacts on strong events.

Quantile regression is a natural framework to accommodate heterogenous impact of

covariates at different points along the conditional distribution; for instance, a popular in-

terpretation of quantile regression is that the covariates affect not only the location but

also the scale (variance) of the conditional distribution of the response. In the current

context, this framework would allow us to disentangle two issues: covariate significance

(including time trends) and heterogeneity of impacts. Given the discrete (“count”) nature

of our response variable (frequency of extreme rainfall events) we use a newly developed

framework for quantile regression for count data, following Machado and Silva [2005]. De-

tails on various types of quantile regressions maybe found in Koenker [2005] while instances

of the application of quantile regression for climate data are Elsner et al. [2008]; Koenker

and Schorfheide [1994]. Ours appears to be the first instance of usage of quantile regres-

sion for count data in the climate literature, and therefore, we provide a slightly detailed

introduction to the method in Appendix C.

To summarize, quantile regression allows us to evaluate if climate teleconnections to

exceedances over the Central Indian region vary at the large and small scale (translated

into higher and lower conditional quantiles). We report results, in Table (4.2), on the first

three quartiles and in addition, at the 90th percentile, a common choice.
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Two important features are evident from the table; time trend is significant and positive

at only the median 7, and climate tele-connections are evident only at the 90thpercentile. We

now assess the impact of different climate indices separately, in turn. We find that there

is a significant modulation of count of exceedances by the DMI but only at the highest

quantile considered, 90th percentile. Finally, EIO SST and ENSO are both associated with

an increase in the count of exceedances but again, at only the 90th percentile. We may

summarize the results of quantile regressions as follows8: time trends are significant at only

one part of the distribution (the median); the DMI modulates count of exceedances only

at the 90thpercentile. EIO SST and ENSO both appear to be associated with very heavy

rainfall events. In general, impact of the covariates appears to be different at different

quantiles, and especially at the 90th percentile (at which there is insufficient data to permit

a more serious examination).

Two important aspects of the results are worth discussing: the negative impact of the

DMI and the positive impact of ENSO. Unlike Ajayamohan and A. Rao [2008], our findings

indicate that, over sufficiently large regions of Central India, the impact of IOD events

(which appear as positive anomalies in the DMI and as negative anomalies in the Eastern

7Note that the model is exponential in the parameters, and therefore, time trends–as well as the effects
of the other covariates–here are not linear; however, when the coefficients are very close to zero, as the is the
case for time trends, they may effectively be treated as being linear. This is not however the case with other
coefficients since they are not very close to zero, and in these cases, conventionally, in addition to coefficients,
reports are provided of “marginal effects” i.e. ∂Y/∂Xk, the derivative of Y w.r.t to the Kthcovariate. In this
particular model, we have that: ∂Y

∂XK
= βKexp(βX); typically, the effects are reported for each covariate

with all covariates held at their median values. We do not report these since in the current case, it is not
clear that such marginal effects convey much more information than do the coefficients. However, these
marginal effects are available from the authors upon request.

8The significance of the time trend in the Poisson regression depended on the specific definition of the
EIO SST index used; further, the significance of the time trend does not survive robust covariance matrix or
the usage of more realistic models for conditional mean of count data, such as the negative binomial model.
We thus wish to emphasize that the results are not an artifact of covariate selection. In addition, even the
popular, simplistic alternative to Poisson regression, wherein log(y) is regressed on covariates, led to very
similar sensitivity of significance of trend on definition of the EIO SST used, and in general, yielded very
similar results. The quantile regression results, however, proved robust to changes in the definition of the
EIO SST as well. In addition, the effects of DMI also proved robust to changes in definition of the EIO SST
and these results are not reported for brevity. Detailed results are available from the authors upon request.
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DMI (EDMI) anomalies used in Ajayamohan and A. Rao [2008]) is negative i.e. positive

IOD events lead to reductions in the spatial extent of exceedances, once the impacts exerted

by other important tele-connections such as ENSO are accounted for. Further, ENSO and

EIO SST both exert positive impacts indicating that tele-connections to both are strong.

Rajeevan et al. [2008] indicate a strong impact of both indices on extreme rainfall events

over Central India, individually; our results clarify that they both jointly impact extreme

events over the same region, and further, that the relationship is significant only over a

sufficiently large spatial scale.

We emphasize that we do not draw serious inferences about changes in signs and sig-

nificance at extreme quantiles ; rather, we offer the evidence above as an alternative and

more comprehensive view of the relationship between climate covariates and frequency of

extreme rainfall.

4.4 Summary and conclusion

This study extends earlier work on extremes of monsoon rainfall over Central India in several

directions. First, using a more appropriate measure of extreme rainfall, a comprehensive

analysis of the dominant modes of variability and their variation over time was carried

out using multi-taper spectral analysis. It was shown that most of the power in the count

of exceedances (at both thresholds) was concentrated in the ENSO and the QBO bands.

Further, coherence in the evolution of frequency of extremes and climate indices indicated

to exert influence on it (EIO SST, DMI and ENSO) was investigated, and it was shown

that:

• coherence with ENSO exists in the 3-4 year band

• coherence with the EIO SST exists only at the secular trend and the 3 1/3 -4 year

ENSO-like band
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• coherence with the DMI is at the 3-4 year band, along with some higher frequency

components.

Second, prior analyses of the impact of climate indices and existence of time trends was

extended to different quantiles of the distribution of the counts of exceedances. Results

indicate that time trends were possibly not significant except at the median of the distribu-

tion. Further, the impact of EIO SST is observed only at the upper tail of the distribution

of exceedances. It was also shown that the IOD exerts a modulating influence on count of

exceedances, only at the 90th percentile. Finally, impact of ENSO on frequency of extremes

were also noted only at the 90th percentile.

The non-uniformity of the impact of EIO SST on different quantiles of the frequency

of exceedance as well as its lack of coherence at most frequencies suggest a relationship

between them which is far from a simple coupling. The implications for flood frequency

of (model) projected increases in EIO SST are therefore somewhat unclear. More puzzling

are the (physical) causes of modulation of frequency of extremes by the DMI, as well as the

(empirical) weakness of the relationship between them, despite coherence over a range of

frequencies. Ajayamohan and A. Rao [2008] offer a reasonable physical explanation for the

modulation by DMI, but one that is not yet empirically supported.

We do not offer any physical mechanism for the influence of either EIO SST or DMI on

frequency of extremes over Central India but note that in the absence of either a simple

coupling mechanism (as with the EIO SST) or an empirically verifiable physical mechanism

(as with the DMI), conclusions of enhanced SST or frequency of IOD events leading to

increased extremes over Central India are, at best, conjectures.
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Appendix 4.A Details of software used

For MTM spectral analysis, we used Mann and Lees [1996] fortran package, modified for our

version of Linux, while for wavelet analysis, we used the matlab package provided by Grin-

sted et al. [2004], downloadable from http://www.pol.ac.uk/home/research/waveletcoherence/

(downloaded on June 10, 2010). For Quantile regression, we used the freely downloadable

add-on QCOUNT to STATA program, provided by Miranda, A Miranda [2008]. All pro-

grams (in fortran, Matlab and Stata) are available upon request from the author, along with

the full dataset used, to facilitate reproduction of all the results. Similarly, all the figures

and tables referenced but not presented in the text are also available from the authors upon

request.

Appendix 4.B Supplemental Figures and Tables

Multi-taper spectra of various climate indices.

http://www.pol.ac.uk/home/research/waveletcoherence/
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Figure 4.4: MTM spectra of various climate indices. Confidence intervals are as for figure
(4.2).

Table of correlation coefficients between various covariates

Appendix 4.C Quantile Regression for Count Data

The discussion here follows the simplified one in Section 6.6 of Winkelmann [2008], to which

the reader is directed for a slightly more thorough (and accessible) discussion. Denote Y as
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NINO12 NINO34 EIO DMI
DMI 0.260552 0.148625 0.281787

[0] [0.03] [0]
EIO 0.25196 0.203608

[0] [0.003]
Freq 0.012 -0.006 0.0085

[0.86] [0.993] [0.9]
Time 0.07 0.026 0.505 0.185

[0.274] [0.7] [0] [0.008]

Table 4.3: Kendall’s rank correlation between different predictors (p-values in brackets)

the dependent variable,X as the matrix ofK+1 covariates, (including a constant), and β the

coefficient on a regression of Y on X. Inference on the coefficient β in a quantile regression

setting depends on the continuity of the conditional quantile function at the τ th quantile,

commonly denoted Qτ (Y/X). When the dependent variable Y is a count variable i.e. when

it can take only a finite number of values from (a finite subset of) N, this assumption is

untenable. Machado and Silva [2005] surmount this obstacle by constructing a continuous

random variable, Z, whose quantiles have a bijective relationship to that of the variable of

interest Y . In particular, letting U be a vector of uniform random variables, they define

Z := Y + U and induce smoothness into the problem, leading to a conditional quantile

which is continuous. They further note that there exists a simple monotonic relationship

between the quantiles of Z and that of Y , which implies that the significance of regressors

in Qτ (Y/X) maybe tested by means of their significance in Qτ (Z/X).

In order to ensure non-negative quantiles, one can define the quantile of the transformed

version of the random variable, where the transformation will be locally (at the quantile of

interest) positive. Thus, the quantile they work with is Qτ (T (Z; τ)/X) = Xβ, where T (:, τ)

is a monotonic transformation of Z, whose inverse exists. The particular inverse transform

used in Machado and Silva [2005] is defined by:

Qτ (Z/X) = τ + exp(Xβ)
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Thus, Qτ (Z/X) is bounded below by τ and is non-negative9. Under relatively mild con-

ditions, which includes the important assumption that at least one of the covariates is

continuous, they indicate the following framework for quantile regression with count data:

1. Obtain Z = Y + U

2. Estimate the quantile regression of

T (Z; τ) =


log(Z − τ) for Z≥ τ

log(ζ)for Z ≤ τ

on X (as with the continuous dependent variable case), with ζ typically being a very

small number (say 10−4).

3. Carry out inference on the resultant quantiles, using the monotonic relationship be-

tween Qτ (Z) and Qτ (Y ).

4. In order to not base inference on a specific realization of the uniform random variable,

the coefficient estimates and covariance matrices are averaged over m draws (we use

m = 50, 000 which is much larger than the 10, 000 recommended by Machado and

Silva [2005])

9In more detail, the count variable is by definition non-negative, in which case simply writing Qτ (Z/X) =
Xβ may well lead to estimates of β for which the predicted value of Y is negative. In order to surmount
this issue, in the case of mean regression (say the usual poisson regression), one models the conditional
mean, conventionally called λ, as being exponential in the covariates i.e. the specification usually followed
in poisson regression is: log λi = Xiβ, where λiis a the mean of the count process Yi. In the case of quantile
regression, therefore, a similar strategy can be used, especially since Qτ (Z/X) is bounded below by τ , which
motivates the exponential form with the additive term τ .
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Spatio-temporal patterns and Teleconnections

of Extreme Rainfall events over India1

1Joint work with Upmanu Lall
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5.1 Introduction

Previous analyses of changes in patterns of extreme rainfall for India (Goswami et al. [2006];

Krishnamurthy et al. [2009]; Rajeevan et al. [2008]) or across the world (Groisman et al.

[2005]; New et al. [2006]; Peterson et al. [2008]; Schmidli and Frei [2005]; Zhai et al. [2005])

have focused mostly on deterministic trends. However, in an analysis of extremes, the

questions of interest often include:

1. Are there any deterministic trends?

(a) If so, are such trends spatially coherent?

(b) Can these trends be related to any global drivers of change, such as ENSO etc?

2. What are the dominant spatial and temporal modes of behavior of extremes?

3. Do extremes exhibit cyclical behavior?

4. Are there any precursors (in terms of SST field etc) to extreme events?

While past analyses of trends have been limited to answering question(1) above, this chapter

reports on an ongoing study attempting to address many of the questions posed above.

Using a daily gridded (1◦ × 1◦) precipitation data set for 1901 − 2004 from the IMD

(Rajeevan et al. [2008]), and following on from Chapter 1, this study seeks to address the

following important issues:

• Are there monotonic (deterministic) trends in extreme rainfall when a century of data

are considered?

• If so, which regions experience such a trend? How do they differ compared to the

shorter data set?

• What can be learnt if a simultaneous analysis of secular and quasi-oscillatory phe-

nomena in extremes are carried out?
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We report on the progress made in addressing these issues and briefly outline tentative

conclusions, and provide indications for future work.

5.2 Methodology

5.2.1 Trend Analysis

For analyzing the trends, we follow the methodology in Krishnamurthy et al. [2009] i.e.

we first apply two thresholds (see reference for definition of threshold and its application)

and obtain the frequency (number of exceedances per year) and intensity (normalized total

rainfall when the threshold is exceeded). We then apply, at each grid, the MK test procedure

to detect monotonic trends.

5.2.2 Accounting for multiple tests

Given that there are a total of 357 simultaneous tests of monotonic trends, with not all

tests being independent, we are interested in two issues (given that climate data exhibit

strong spatial similarity in behavior):

1. Is there any spatial signal in the grids which exhibit a trend (i.e. does the “field” as

a whole exhibit significant trends)?

2. If so, which are the regions which exhibit such a trend?

This is the problem of “test multiplicity” in the Climate literature (also called “multiple

testing” in the Statistics literature). Following Ventura et al. [2004], we use the procedure

of “False Discovery Rate” (explained below) to address the second issue. Issue (1) above,

as pointed out in Wilks [2006], is the same as (2) and so we do not deal with (1) separately.
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5.2.2.1 False Discovery Rate for independent tests

Procedure

Let K denote the total number of independent tests, τi the test statistic at location i and

consider the test of interest for each grid (we consider below a two-sided test and note that

everything carries over to the one-sided test, with obvious changes in critical regions for the

test):

H0 : θ = µ (5.1)

Ha : θ 6= µ (5.2)

The test is carried out at each of the K locations and interest lies in determining which

of the tests are “significant” (i.e. interest lies in determining local significance). Denote

the ordered p− values from the tests p(i) (with unordered p− values being denoted pi) let

α be the nominal probability of false rejections of the null, henceforth referred to as the

False Positive Rate (or the probability of a type I error). Denote by nH0the total number

of correct null hypothesis, nreject the number of null hypotheses rejected and by nFN the

total number of false rejections of the null (or false positives), all of which are unknown

(random variables).

The False Discovery Rate (whose nominal value is commonly denoted q) is defined as

the expectation of the proportion of false rejections out of total rejections i.e.

FDP = nFP /nreject;FDR = E(FDP ) (5.3)

while the False Positive Rate is defined as
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FPP = nFP /nH0 ;FPR = E(FPP ) (5.4)

In a traditional setting, the null hypothesis is rejected at location i if pi ≤ α with the

same α used for all locations. In the FDR method of Benjamini and Hochberg [1995] (BH,

henceforth), however, the null is rejected if pi ≤ pk where

k = maxi=0,1,...,N

{
i : p(i) ≤

qi

n

}
(5.5)

The null is therefore rejected at all locations where the p− value is below a particular

threshold (see Fig 2 and the accompanying discussion in Ventura et al. [2004]).

Rationale

Both FDR and FPR control the number of false detection, nFN but in different ways. In

the traditional procedure, the number of false detections (i.e. false rejections of the null)

are proportional to the number of true null hypotheses and therefore, when a large number

of null hypotheses are true, there are a large number of false detections. Corrections to α

to limit false detections, usually by reducing α either in an ad-hoc manner or through a

sample-dependent manner, as in the case of the bonferroni correction, reduce the probability

of detecting changes and increases nFN , (number of false negatives).

The FDR (for independent data) of BH controls the FDP in a meaningful way irre-

spective of the number of true null hypotheses i.e. FDR = E(FDP ) ≤ q, independent

of nH0(choice of q involves the same trade-off involved in a choice of α). There are two

advantages to using the FDR (over the FPR):

1. The FDR is a more tangible and informative criterion of error control

2. Since nreject is known (in the sample), an approximate upper bound on the average

number of false detections is obtained via E(nFP ) ≤ qnreject. Therefore, for any
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sample of tests, we may always report, for a given q and estimated nreject, that on

average, there are fewer than qnreject number of false positive detections (unlike in

the traditional tests, since such a number cannot be reported without a knowledge of

nH0 , which is in general not estimable; see however, the section on correlated tests).

Ventura et al. [2004] propose a modified version of the test for correlated data, in particular,

for climate data; however, as already noted in Wilks [2006], this procedure suffers from the

drawback that, in many instances, it estimates a (possibly unacceptably) high rate of null

rejections2. We therefore use the original procedure recommended by BH since, as already

noted (in Ventura et al. [2004], among others), this methodology is surprisingly valid under

general dependence.

A drawback of controlling the FDR, which we use here, is that most of the statements

pertain to the mean of the climatic data generating process, of which the given data set is

a realization, rather than a statement regarding the data set under consideration3. Thus,

for instance, claims such as “the proportion of false rejections of the null are less than q”

cannot be made; what can actually be said is “asymptotically, the mean proportion of false

rejections are less than q”. This distinction is important to note, since even when the FDR

is controlled at q, the FPR may be very much higher than q (see Korn et al. [2004] for a

realistic non-climate instance of this issue)

The focus, in the present analysis, is on an identification of the location of grids exhibit-

ing trends, rather than tests of significance of “field”4. Ignoring, therefore, the issue of field

2In our case, using this procedure, for frequency of exceedance exhibiting positive significant trends, at
the 99th%tile, we see that the number of grids deemed significant is more than that at the nominal FPR;
while possibly valid, without further research on the properties of this modified procedure for arbitrary
correlation (not just the positive one for which it was validated in Ventura et al. [2004]), it is difficult to put
more credence in this particular methodology

3In most climate applications, what is of actual interest is the FDP , since there are never many realiza-
tions of a dataset. However, given the relative lack of research in control of FDP , we resort to controlling
the FDR, which is an expected value.

4Nonetheless, we point out that, in the present setting, Wilks [2006] shows that, while the FDR was
developed for obtaining evaluations of local significance, it may also be seen as a test of the global or field
significance. In fact, and very simply, a global null hypothesis, at level αglobal is rejected if at least one
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Positive trends Negative trends
FPR FDR FPR FDR

frequency (90th %tile) 55 1 54 27
frequency (99th %tile) 64 16 37 14
Intensity (90th %tile) 66 13 35 13
Intensity (99th %tile) 64 8 35 0

Table 5.1: Number of grids with positive and negative significant frequencies (as estab-
lished by the MK trend test); in each case, the relevant one-sided test, at the 10% level,
was applied; “FPR” refers to the conventional procedure while “FDR” refers to the BH
procedure

significance (in fact, subsequent spatio-temporal analysis via the MTM-SVD methodology

maybe viewed as a more robust method of obtaining “field significance”), we focus on de-

terminations of local significance, and plot below, each of the plot indicating “significant”

grids using the conventional (or “FPR”) method, the locations at which significance has

been determined using the BH method.

We report most of the results of the testing procedures above as plots, to aid compre-

hension. We plot

1. all significant (at the 10% level) grids

2. all positive significant (at the 10% level) grids

3. all negative significant (at the 10% level) grids

for all measures of extremes we consider.
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5.2.3 Trends in Frequency and intensity

From Table 5.1, we already observe a pattern emerging (with the FDR), in that, at the lower

threshold, negative trends (weakly) pre-dominate while at the higher thresholds, positive

trends are more prominent; however, this is not consistent across FPR and FDR. This

already lends credence to the hypothesis that trends are indeed increasing at very high

thresholds. There is also another aspect regarding FDR procedure in Table 5.1 which is

worthy of comment: no grids are significant, when considering negative trends only, in the

case of intensity at the 99thpercentile. This indicates that, at the higher threshold, there

is no decrease in the intensity of extreme rainfall, a fact of some importance, which would

have been completely unnoticed when applying the conventional test of significance (which

indicates as many as 35 negative trends) or conventional field significance tests (which may

well have indicated field significance). In fact, even if such a field significance test had

indicated a non-significant field, it would not still have been possible to have surmised that

not a single grid would have been significant (all of these interpretations are with the caveat

in the previous section).

Figures 5.1 to 5.4 indicate the results of applying the MK trend test; panel 1 of each

figure indicates all grids deemed significant using the same significance threshold (10% was

used uniformly) while panel 2 indicates all grids deemed significant by the BH procedure

outlined above.

local null hypothesis is, at the nominal level q = αglobal (by any of the FDR procedures outlined in Section
5.2.2.1 above). It is not however, clear that the FDR control is the correct approach to testing for “field
significance” since control of the FDR does not imply control of the FDP , due to which we cannot make
claims about the actual (as opposed to expected) fraction of local null hypotheses rejected (asymptotically),
which is what “field significance” attempts to report.
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Figure 5.1: Spatial locations of the grids deemed to have positive significant trends in
frequency of exceedance using the conventional and the BH procedures; the boxed area is
the “core monsoon region”
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Figure 5.2: Same as Figure 5.1 but for grids with negative trends
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Figure 5.3: Spatial locations of the grids deemed to have positive significant trends in
intensity of exceedance using the conventional and the BH procedures; the boxed area is
the “core monsoon region”
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Figure 5.4: Same as Figure 5.3 but for grids with negative trends
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Figure 5.5: Spatial locations of the grids deemed to have positive significant trends in fre-
quency of exceedance using the conventional and the BH procedures. Significance computed
only for grids in the “core monsoon” region
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Figure 5.6: Same as Figure 5.5 but for negative trend
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Figure 5.7: Spatial locations of the grids deemed to have positive significant trends in
Intensity using the conventional and the BH procedures. Significance computed only for
grids in the “core monsoon” region
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Figure 5.8: Same as Figure 5.7 but for negative trends
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5.2.4 Spatial patterns in trends in frequency and intensity

From Figure 5.1 and 5.2, it is evident that, for frequency of extreme rainfall (at both thresh-

olds), it is in the core monsoon region that trends (in both directions) are concentrated, and

this is true across both FPR and FDR control. In the case of positive trends, it appears

that change is more evident at the higher threshold, where it is more difficult to detect

and attribute change (due to a paucity of data in the tail of the distribution). Further,

an interesting feature in the figures is the concentration of positive trends at the edges of

the monsoon region (and along the East coast) and of negative trends in the more Central

regions, away from the coast.

When we turn to intensity, however, the first feature observed in frequency is stronger

still i.e. the core monsoon region is quite clearly the area of high concentration of grids with

change (of both directions). However, negative trends appear only at the lower threshold,

while positive trends are evident at both thresholds. There is thus, evidence for positive

trends in the core monsoon region (and elsewhere) and weaker evidence for decreasing trends

in much of India. However, the second feature observed in frequency is not true, and most

of the change is evident inland, and this is true using both measures of significance (FPR

and FDR). Thus, the picture that emerges is one of increasing frequency of intense rainfall

at the coasts and of increasing intensity of extreme rainfall in the interior, and especially

over the core monsoon region.

We now turn to compare our results with prior work on this area. Goswami et al. [2006]

find increasing intensity and frequency of extreme rainfall in the core monsoon region (using

a fixed threshold and pooling data), while Krishnamurthy et al. [2009] perform a spatio-

temporal analysis similar to the one in this analysis, and find weaker support for increasing

frequency and slightly stronger support for increasing intensity. This study in fact rejects

a field significance test based on the smaller core monsoon region, and in order to formally

compare results with that study, we carry out a separate FDR procedure within the core
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monsoon region.

While both of the previous papers used data for a shorter time period (1951-2004), the

current very long record allows a better discrimination of trends especially when testing

for trends in both directions, as in Krishnamurthy et al. [2009] (since the sample sizes in

the shorter data set were too small for any reliable conclusions to be drawn). Thus, while

earlier literature, using gridded data for a shorter time period, found mixed evidence for

trends at a large scale, the direction, and locations, of the trends in the present analysis is

largely in conformity with the previous results in Krishnamurthy et al. [2009].

Finally, Rajeevan et al. [2008] analyze, in a similar framework as Goswami et al. [2006],

but with the same data set as we use, the issue of trends over the Central Indian region (the

“core monsoon” region), and report similar results. Further, they carry out a preliminary

analysis to link variations in the very-heavy rainfall events to tropical Indian ocean SST as

well as ENSO and the IOD.

In order to render our results more comparable to prior studies, we also compute the

significance of our results by restricting our analysis to the core monsoon region5.The re-

sults of applying simple FPR procedures and the BH FDR procedure to grids in the “core

monsoon” region are indicated in Figures 5.5 to 5.8, and in Table 5.2.

It is evident from these that there does not appear to be any significant differences in

the number of grids with positive and negative trends, over both frequency and intensity.

Consistent with the prior national-level analysis, at the higher threshold, intensity has no

negative trends but also very few positive trends, indicating an overall lack of significant

change. Further, the overall picture which emerges is one of weakly increasing trends at the

higher threshold, and very uncertain, but possibly mostly negative, changes at the lower

5In other words, we use only grids in the core monsoon region for computation of significance using the
BH approach. We do not make any claims as to the statistical validity of the approach and merely content
ourselves with pointing out that this heuristic approach will enable us to understand if any significant changes
are seen (relative to our full analysis). Evidence of lack of such changes must, we argue, serve to validate
our all India analysis.
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Positive trends Negative trends
FPR FDR FPR FDR

frequency (90th %tile) 10 0 17 7
frequency (99th %tile) 13 5 14 1
Intensity (90th %tile) 19 5 12 6
Intensity (99th %tile) 18 2 14 0

Table 5.2: Same as table 1 but for grids in the core monsoon region (lat: 16.5 - 26.5, long:
76.5-87.5)

threshold. Our conclusions therefore reinforce those in Krishnamurthy et al. [2009], who

found very similar results using a much shorter data set.

5.3 Spatio-temporal variability in extremes

We remind the reader that (monotonic) trends (investigated above) are only one aspect in

which interest centers, as indicated in Section 5.1. In this section, we turn to analyzing the

issues of cyclical behavior of extremes. In particular, we address the following:

1. What are the dominant spatial and temporal modes of behavior of extremes?

2. Do extremes exhibit cyclical behavior?

Diagnosis of important modes of large scale fields require an assessment of coherent

spatio-temporal variation, for which the frequency-domain MTM-SVD approach is best

suited.

5.3.1 MTM-SVD methodology

Identification of the important (low and high-frequency) modes of large-scale climate signals

require an assessment of coherence in spatio-temporal climate variables. Most time-domain

decomposition approaches are able to isolate broad patterns of variability, while being un-

suited for isolating the narrow-band frequencies of most interest in climate data sets. The
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principal frequency-domain approach for multivariate data sets, the multi-channel SSA

(Ghil et al. [2002]), has severe limitations on both frequency bands over which the temporal

structure maybe reconstructed as well as dimensional limitations for large data sets (see for

instance Mann and Park [1999]). See Section 5.A for a more detailed explanation of the

methodology.

5.3.2 Signal detection

The frequency domain MTM-SVD methodology involves the decomposition of a set of time

series into its orthogonal spectral and spatial components by means of a singular value

decomposition. In this manner, spatially coherent variability is sought within all distinct

frequency bands that are resolvable in the dataset. Assuming that climate signals are rel-

atively narrowband in character, a spectral domain approach enhances signal detectability.

An important assumption regarding the data is that the power spectrum of the noise varies

smoothly, so that it may be seen as roughly constant over the narrow bandwidth of the

spectral estimates.

In the present analysis, the LFV spectrum is used to identify “significant” frequencies,

and spatial reconstruction (see below) of the chosen field is carried out at these frequencies.

5.4 Spatio-temporal coherence of extremes

The question we attempt now to answer is: are there any common modes (frequencies) in

the extremes (we use the same two measures, frequency and intensity, defined above). We

first attempt to evaluate modes in each measure separately, and then analyze them together

and identify the dominant frequencies.
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Figure 5.9: MTM-SVD of frequency of exceedance at two thresholds

Frequency

We first note that secular trends which are spatio-temporally coherent are seen as a spike

at zero frequency. Given that we cannot resolve frequencies which are less than 0.0357

cpy apart, the approximately 40-year (and above) cycle, seen at both thresholds, is indis-

tinguishable from a trend. In light of the known lack of robustness of most trends tests

to long-term cycles, in subsequent analysis, we do not distinguish between very long-term

cycles and secular trends and call all such features “trends” .

Other features of interest in the figure include the decadal variation (~10 year cycle) in

the 99thpercentile threshold, as well as higher frequency variations (2.1 and 2.6 year) at both

thresholds. Another feature is the absence of an ENSO-like (3-5 year) band, suggesting that

the variations in frequency of exceedance, at a large enough scale at least, are not directly

dependent on ENSO, and maybe modulated by other large scale movements.
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Figure 5.10: Same as Figure 5.9 but for Intensity

In sum, while trends and high-frequency variations are evident at both thresholds,

decadal and ENSO-band variations are prominent only at the higher threshold.

Intensity

In the case of intensity, there appears to be much more cyclic behavior; for instance, there

are, in addition to trend-like behavior and decadal and sub-decadal variations (12-14 year

and 8-9 year), also two bands, at each threshold, which appears to be ENSO-like (41/4 and

3− 31/2 yr; 6 yr, 4 yr) and a final high frequency variation, as in frequency.

5.4.1 Joint MTM-SVD of frequency and intensity

From the previous sections analysis of trends in frequency and intensity separately, it is

evident that there is no clear and coherent spatio-temporal picture of both. In order to

analyze the variations in both collectively, we now carry out a joint MTM-SVD analysis



CHAPTER 5. SPATIO-TEMPORAL PATTERNS AND CLIMATIC
TELE-CONNECTIONS 140

Figure 5.11: Joint MTM-SVD of frequency and intensity

of frequency and intensity, graphed in Figure 5.11. Consider first the lower threshold; we

note that the results indicate existence of a trend (or long-term cycle) in both frequency

and intensity, further, we also observe the decadal and multi-decadal variations, which

were observed in both individually. However, at the higher threshold, in addition to these

features, we also observe an ENSO-like band at 41/2 years, as in intensity.

In summary, from an individual as well as collective analysis of extreme events, we

note that there are trend-like features, as well decadal and multi-decadal, high frequency

features, and in some cases, ENSO-like bands, of large-scale variation in extremes. It is

worth reiterating that, in the MTM-SVD methodology, “significant” features are shared

by much of the spatial domain, and therefore, correspond to a signal at a relatively large

spatial scale.
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5.5 Conclusions

A more comprehensive analysis of extremes of rainfall was carried out than is common in

the literature. In particular, there were two specific objectives:

1. To understand if secular trends identified in prior analyses, using a shorter (53 year)

dataset and not accounting for multiple testing, are robust or an artifact of the data

and methods used

2. To understand what additional features of extremes, in particular, quasi-oscillatory

behavior, may be detected over a large region?

As regards question 1 above, it was shown that the overall results were consistent with the

analysis in Chapter 1 (Krishnamurthy et al. [2009]). More detailed spatial structure was

shown, using methods suited to identifying specific grids which exhibited significant trends.

Thus, the overall picture which emerges is one of weakly increasing trends at the higher

threshold, with very uncertain (even negative) trends at the lower threshold.

On question 2 above, the features identified vary with the metric for extreme used.

For the case of frequency-of-exceedance, large scale coherence exists at the ENSO and the

decadal time periods. This lends some support to conjectures in the literature (Rajeevan

et al. [2008], for instance) regarding large-scale spatio-temporal connections with frequency

of extreme rainfall events. On the other hand, for intensity of extreme rainfall, there is

no clearly discernible signal, with ENSO and decadal and sub-decadal features appearing

significant.

The context for understanding these results is the substantial importance that changes

in extremes have on society, in particular for agriculture and infrastructural decisions, and

the issue of predictability of extremes from (or at least association of extremes to) large-

scale, observable physical phenomena. Under climate change scenarios, ENSO activity can

intensify (Meehl et al. [2007]); when coupled with the increased atmospheric water retention
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capacity, there is a possibility of increased extreme rainfall events, among other extremes

(Smith et al. [2009]). Given the concerns regarding the increases in damages caused by such

events, decisions on both mitigation (see Stern [2007]) and adaptation are likely significantly

impacted by such putative increases in rainfall extremes.

Analyses such as those carried out here can provide an understanding of the large-

scale connections between societally-relevant outcomes (extremes) and physical phenomena

(ENSO etc), providing a basis for prediction, on the one hand, and help inform mitigation,

on the other.



CHAPTER 5. SPATIO-TEMPORAL PATTERNS AND CLIMATIC
TELE-CONNECTIONS 143

Bibliography

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B

(Methodological), 57(1):289–300, 1995.

M. Ghil, M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. W. Robert-

son, A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advanced spectral methods for

climatic time series. Rev. Geophys., 40, 2002.

B.N. Goswami, V. Venugopal, D. Sengupta, M.S. Madhusoodanan, and Prince K. Xavier.

Increasing trends of extreme rain events over india in a warming environment. Science,

314:1442–1444, December 2006.

P.Y. Groisman, R.W. Knight, D.R. Easterling, T.R. Karl, G.C. Hegerl, and V.N. Razuvaev.

Trends in intense precipitation in the climate record. Journal of Climate, 18(9):1326–1350,

2005.

Edward L. Korn, James F. Troendle, Lisa M. McShane, and Richard Simon. Controlling

the number of false discoveries: application to high-dimensional genomic data. Journal

of Statistical Planning and Inference, 124(2):379 – 398, 2004.

Chandra Kiran B. Krishnamurthy, Upmanu Lall, and Hyun-Han Kwon. Changing frequency

and intensity of rainfall extremes over india from 1951 to 2003. Journal of Climate,

22:4737–4746, 2009.

M.E. Mann and J. Park. Oscillatory spatiotemporal signal detection in climate studies: A

multiple-taper spectral domain approach. Advances in Geophysics, 41:1–131, 1999.

G.A. Meehl, T.F. Stocker, W.D. Collins, AT Friedlingstein, A.T. Gaye, JM Gregory, A. Ki-

toh, R. Knutti, JM Murphy, A. Noda, et al. Global climate projections. 2007.



CHAPTER 5. SPATIO-TEMPORAL PATTERNS AND CLIMATIC
TELE-CONNECTIONS 144

Mark New, Bruce Hewitson, David B. Stephenson, Alois Tsiga, Andries Kruger, Atanasio

Manhique, Bernard Gomez, Caio A. S. Coelho, Dorcas Ntiki Masisi, Elina Kululanga,

Ernest Mbambalala, Francis Adesina, Hemed Saleh, Joseph Kanyanga, Juliana Adosi,

Lebohang Bulane, Lubega Fortunata, Marshall L. Mdoka, and Robert Lajoie. Evidence

of trends in daily climate extremes over southern and west africa. J. Geophys. Res., 111,

|2006|.

Thomas C. Peterson, Xuebin Zhang, Manola Brunet-India, and Jorge Luis Vázquez-Aguirre.

Changes in north american extremes derived from daily weather data. J. Geophys. Res.,

113, |2008|.

Balaji Rajagopalan, Michael E. Mann, and Upmanu Lall. A multivariate frequency-domain

approach to long-lead climatic forecasting. Weather and Forecasting, 13(1):58–74, 1998.

M. Rajeevan, Jyoti Bhate, and A. K. Jaswal. Analysis of variability and trends of extreme

rainfall events over india using 104 years of gridded daily rainfall data. Geophys. Res.

Lett., 35, 2008.

J Schmidli and C Frei. Trends of heavy precipitation and wet and dry spells in switzerland

during the 20th century. International Journal of Climatology, 25(6):753–772, |2005|.

J.B. Smith, S.H. Schneider, M. Oppenheimer, G.W. Yohe, W. Hare, M.D. Mastrandrea,

A. Patwardhan, I. Burton, J. Corfee-Morlot, C.H.D. Magadza, et al. Assessing dan-

gerous climate change through an update of the Intergovernmental Panel on Climate

Change (IPCC)“reasons for concern”. Proceedings of the National Academy of Sciences,

106(11):4133, 2009.

N.H. Stern. The economics of climate change: the Stern review. Cambridge Univ Pr, 2007.

V Ventura, CJ Paciorek, and JS Risbey. Controlling the proportion of falsely rejected



CHAPTER 5. SPATIO-TEMPORAL PATTERNS AND CLIMATIC
TELE-CONNECTIONS 145

hypotheses when conducting multiple tests with climatological data. Journal of Climate,

17(22):4343–4356, 2004.

D. S. Wilks. On “field significance” and the false discovery rate. Journal of Applied Mete-

orology and Climatology, 45(9):1181–1189, 2006.

Panmao Zhai, Xuebin Zhang, Hui Wan, and Xiaohua Pan. Trends in total precipitation and

frequency of daily precipitation extremes over china. Journal of Climate, 18(7):1096–1108,

|2005|.



CHAPTER 5. SPATIO-TEMPORAL PATTERNS AND CLIMATIC
TELE-CONNECTIONS 146

Appendix 5.A MTM-SVD Methodology

We will here provide a brief overview of the MTM-SVD methodology (see Mann and

Park [1999] for a detailed analysis and comparison with other multi-variate decomposi-

tion methodologies), with a focus on application to the analysis of extremes of rainfall (the

description below draws from Rajagopalan et al. [1998] and from Mann and Park [1999]).

In more detail, each of theM time-series, of length N , is first standardized by converting

it to an ‘‘anomaly’’ series i.e. removing the series mean, and dividing by the standard

deviation. For a time-series y = (y1, . . . , yN ), at location m = 1, . . . ,M , using a set of

K orthonormal data tapers (see below), K tapered Fourier transforms of the data at a

frequency f are obtained i.e.

Y m
k (f) =

N∑
t=1

wkt yte
2πit∆t (5.6)

with ∆t being the sampling interval (1 year, in our case), and {wkt }Nt=1 is the kth member,

k = 1, . . . ,K, of an orthogonal sequence of tapers, known as Slepian tapers. The Slepian

tapers provide statistically independent spectra estimates, Y m
k (f), k = 1, . . . ,K, leading to

multiple degrees of freedom within a given narrow frequency band, and furnishes the primary

motivation for the use of the multitaper decomposition. Each eigentaper is orthogonal and

represents independent information in a frequency band of half-bandwidth of pfR about a

given frequency, f , where fR = (N∆t)−1 is the Rayleigh frequency (the minimum resolvable

frequency range for the time series). Since a larger p averages over a greater bandwidth, the

choice between K and p represents the fundamental trade-off between spectral resolution

and degrees of freedom/variance. Values of 2 and 3 for K and p respectively, are seen as

typical for climate data sets and are used in this analysis.

An M × K matrix A(f) is then formed from the K fourier transforms, as below, for

each frequency f ,
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A(f) =



Y 1
1 y1

2 . . . Y 1
K

Y 2
1 y2

2 . . . Y 2
K

. . . . . . . . . . . .

YM
1 yM2 . . . YM

K


(5.7)

Note that the rows correspond to spatial locations (grids, in our case) and columns

to the tapers. Isolation of spatially-coherent narrowband processes is through a complex

singular value decomposition (SVD) of the above matrix

A(f) =
K∑
k=1

λk(f)uk(f)∗vk(f) (5.8)

intoK orthonormal complexM−vectors uk (the left eigenvector), representing complex

spatial EOF’s and K orthonormal K − vectors vk(the right eigenvectors), termed conven-

tionally “spectral EOF’s”. The singular value λk(f) scales the amplitude of the kthmode in

this local eigen-decomposition (with the K singular values being ordered λ1(f) ≥ λ2(f) ≥

. . . ≥ λK(f)), with λk(f)2 being deemed “eigen values”. The normalized “principal eigen

value”, λ2
1(f)/

∑K
j=1 λ

2
j (f), referred to as the “local fractional variance spectrum” (LFV) ,

provides a signal detection parameter that is local in the frequency domain. The normalized

principal eigenvalue should, assuming no more than one signal is present within the narrow

bandwidth of spectral estimation, stand out distinctly above what would be expected from

an appropriate noise model. The confidence levels are based on a locally-white-noise null,

are constant outside the secular band, and are computed using a bootstrap approach.



chapter 6

Structural Properties of Groundwater Models1

1Joint work with Tim Huh. A small part of this chapter, Section 6.6, is being revised for resubmission
at the Naval Research Logistics.
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6.1 Introduction

There is a substantial economic literature on groundwater management, in a single-cell

aquifer, by a single user (beginning with Burt [1964], described in Koundouri [2004]). In

this chapter, we consider the problem of managing groundwater under random recharge in

a single cell aquifer. There are two main modeling paradigms used in the literature: the

first based on optimal control of the continuous-time model, e.g., Brown and Deacon [1972],

Gisser and Sanchez [1980], Tsur and Graham-Tomasi [1991], Hellegers et al. [2001], and

Tsur and Zemel [2004], Zeitouni [2004], Roseta-Palma and Xepapadeas [2004], Rubio and

Casino [2001] and the second based on dynamic programming formulation of the discrete-

time model, e.g., Burt [1964, 1966, 1967, 1970], Provencher and Burt [1993] and Knapp and

Olson [1995, 1996].

Most continuous time models, due to the specific assumptions made, yield explicit so-

lutions. For instance, in the linear case, there are deterministic (Aggarwal and Narayan

[2004]) or stochastic (Zeitouni [2004]) “bang-bang” solutions while in the linear-quadratic

case (Roseta-Palma and Xepapadeas [2004]) there are analytical solutions possible. There

have been very few continuous time models wherein structural properties have been derived

from relatively few assumptions on the primitives. While several discrete-time dynamic

programming formulations have been proposed in the literature, few structural properties

for this problem have been proven. In fact, it is only Knapp and Olson [1995] who provide a

first proof of the relatively straightforward property that extraction is increasing in current

period stock.

Further, almost all of these formulations, both discrete- and continuous-time, make

strong assumptions regarding the cost of extraction. In particular, two assumptions are

made, usually implicitly: (a)marginal cost of pumping is independent of the quantity

pumped (Chakravorty and Umetsu [2003] explicitly state this assumption) and (b) cost
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of pumping depends only on the beginning of period stock. Both of these are assumptions,

with little empirical support even for unconfined aquifers (another assumption implicit in

many studies). Yet, even with these assumptions, most structural properties of interest (see

below) have not been proved.

Formally, we consider here the canonical discrete-time stochastic version of the model

(see §6.2.1 for details). That this setting, for a wide variety of renewable resource problems,

is similar to the standard stochastic one-sector neo-classical growth model has been docu-

mented extensively (beginning at least with Mendelssohn and Sobel [1980]). Many resource

problems (such as those on resource extinction, see Olson and Roy [2000] and references

therein or in Mitra and Roy [2006]) are dealt with in the setting of the stochastic growth

model. However, given that the model can be solved independently in a dynamic program-

ming framework, we do not emphasize such a linkage here. In such models, structural

properties, in particular Properties (a),(c), (d) and (f) (in an infinite horizon model) below

are of interest.

• Property (a): The optimal withdrawal quantity in period t, w∗t (x), is increasing in

x,

• Property (b): The optimal withdrawal quantity in period t, w∗t (x) (which is a func-

tion of the groundwater stock x at the start of the period), is the maximizer of a

concave function of w,

• Property (c): w∗t (x) is nondecreasing in x,

• Property (d): x− w∗t (x) is nondecreasing in x, and

• Property (e): w∗t (x) is nondecreasing in t, where the periods are indexed forward in

time

• Property (f): The Markov chain generated by the optimal policy, w∗t (x), {Xt},

converges to a unique, stationary distribution.
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We note first that in the case of the groundwater models, many of the results in

Mendelssohn and Sobel [1980] are not directly applicable (we indicate, after each result,

if it follows from theirs or any other framework). Further, the question regarding the con-

cavity of the value function has been answered in the negative in Knapp and Olson [1995].

Models used in the literature are replete with assumptions regarding smoothness, in par-

ticular, (joint) concavity of the objective function and convexity of the relevant spaces.

Such assumptions appear to be an artifact of the sufficient conditions for obtaining the

structural properties listed above than arising from any underlying characteristic of the

natural-economic system.

Knapp and Olson [1995, 1996] move away from such smoothness conditions and work in a

lattice-theoretic framework, which we also adopt. However, their formulation of the problem

side-steps the issue of uncertainty (indeed, their model is very similar to a deterministic

model). In their set up, uncertainty (in surface water flows) is resolved prior to the farmer

making the extraction decision. In such a set up, the farmer can directly control the

succeeding periods stock, as a result of which they work directly with the next periods

stock. Thus, proof of monotonicity of next periods stock in current period stock is sufficient

for them to apply to theorems on convergence of Monotonic Markov Chains.

On the other hand, in this set up, uncertainty has no role to play, from the decision

perspective. The model we use, on the other hand, involves uncertainty being resolved after

the farmer has made extraction decisions, and corresponds better to a real world scenario

in a developing nation wherein farmers make decisions on extraction prior to recharge

(rainfall) occurring. In this set up, the inability to directly control the subsequent periods

stock leads to uncertainty playing a central role in the farmers extraction decisions. Further,

monotonicity of extraction and reinvestment are not identical, as we indicate, even for the

model studied in Knapp and Olson [1995, 1996].

The major objectives of this chapter are to provide a unified treatment of the structural
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properties of the dynamic programming problem of groundwater extraction. The unifica-

tion is both in terms of methods of proof used (we rely for the most part on lattice-theoretic

methods) as well as on using very general, realistic cost functions for extraction. We also

move completely away from smoothness assumptions, in particular abandoning all assump-

tions of concavity of the objective functions (unlike for instance in Mendelssohn and Sobel

[1980]), relying only on the monotonicity and supermodularity of the objective function.

Finally, as an adjunct of the smoothness assumptions mentioned, the Markov Chain

generated by the optimal policy is monotone. This allows (as in Knapp and Olson [1995,

1996]) a direct application of standard theorems on convergence of Monotone Markov pro-

cesses (as popularized in economics in Stokey and Lucas [1989] and Hopenhayn and Prescott

[1992]) to establish “global stability” of the resulting Markov Chain. Even here, however,

compactness of the state space (implying boundedness of the shocks) is an essential as-

sumption of the method of proof. In this setting, we illustrate the use of slightly more

probabilistic arguments which guarantee the existence of an invariant distribution even in

cases where the Markov Chain is not monotonic. The assumptions required for the use

of this method is more bengin than even for the monotone case using more conventional

methods in economics. In other words, with weaker assumptions, it is possible to prove

stability of the Markov Chain generated by the decision process, even in cases where the

Markov Chain is not monotone. These methods are applicable to a wide variety of natural

resource problems, and are of independent interest.

6.2 Structure of the Models considered

6.2.1 Model Setup

We describe a discrete-time stochastic groundwater management model, based on the clas-

sical paper by Burt [1964], which is standard in the literature. We consider a finite-
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horizon problem where T is the planning horizon, and periods are indexed forward by

t ∈ {1, 2, . . . , T}. Let xt ≥ 0 denote the groundwater stock2 at the beginning of period t.

The manager decides the withdrawal quantity wt ≥ 0. Then a non-negative random variable

corresponding to the recharge to the groundwater stock, Rt, is realized. We suppose that

the {Rt} are independent and identically distributed, but indicate generalizations where

appropriate and feasible. We assume that the state transition for the groundwater stock

level is given by3:

xt+1 = X̃(xt, wt) = xt − wt +Rt (6.1)

While it is conventional to use a max(z, 0) operator to signify that the xtis taken non-

negative, we do not do so at this stage since it is implicit in our analysis and further, for the

cost function in (6.6) below, such a restriction is not even essential for subsequent results.

The single-period benefit (or reward) is

G(x,w) = B(w)− C(x,w) (6.2)

where B(w), concave and increasing, is the net benefit of withdrawing w units of water

before deducting the pumping cost C(x,w) (which we will address shortly below). The

objective is to maximize the present value of the benefit

2Following the Resource Economics literature (see papers cited above), we work with the total stock of
water instead of the lift, which is more conventional in the engineering literature. However, as remarked
in Worthington et al. [1985](pp 235), since lift increases as groundwater decreases, both are related via a
monotonic function and therefore, one may work with either of them.

3The use of such a simplified balance equation, as remarked in Worthington et al. [1985](pp 232-233) is
a gross over simplification. Taken literally, this equation implies an “instantaneous” capture of all recharge
by any pumping activity. However, this oversimplification can be remedied first by introducing relevant
coefficients on recharge such that only a fraction of the recharge is captured. Second, in the case of many
developing nations where discharge, due to pumping, is much larger than recharge, such as assumption is less
of an oversimplification, since a large part of recharge is very likely captured within the region of pumping.
Finally, more detailed and accurate equations of motion of the stock may be used where such a relationship
is available.
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T∑
t=1

δtG(xt, wt) (6.3)

where δ ∈ (0, 1] is the discount factor. Then, the value function of dynamic programming

is given by the following recursion:

Vt(xt) = max
wt≥0

{G(xt, wt) + δE[Vt+1(xt − wt +Rt)]} (6.4)

where VT+1(xT+1) = 04.

We note that, unlike in much of the Economic literature on the one-sector stochastic

growth model, wherein focus is on the infinite horizon problem, we begin with a finite

horizon set up and indicate extensions to an infinite horizon. The reason for this two step

approach is the added understanding provided in the finite horizon set up, especially with

regard to such intuitive questions as the behavior of the optimal policy with a lengthening

horizon. This approach also makes transparent which type of assumptions regarding the

state space and the benefit functions maybe relaxed. We turn next to characterizing the

cost functions we use, and comparing them with those used in the literature.

6.2.2 Cost Functions

Pumping cost functions used in the literature mostly make the assumption of constant

volume pumped as well as of constant (relative to wt) marginal cost of pumping i.e.
∂C(xt, wt)

∂wt
= c(xt). Within this broad framework, with the exception of Burness and Brill

[2001]; Worthington et al. [1985], most papers (Aggarwal and Narayan [2004]; Provencher

and Burt [1993]; Roseta-Palma and Xepapadeas [2004]; Rubio and Castro [1996]; Tsur and

4The use of the max operator instead of sup indicates an assumption of finiteness of G(x,w), since such
an assumption is sufficient for the right hand side of (6.4) to be finite. The above usage is merely illustrative,
and in specific models below, we outline the assumptions we make to ensure that the use of the max operator
is valid in this setting.
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Graham-Tomasi [1991]; Zeitouni [2004]) use a cost function of the form

C(xt,wt) = c(xt)wt (6.5)

with c(xt) (generally called the marginal cost function) either linearly decreasing in xt

or decreasing and convex, with the most common functions being c(xt) = (a − bxt) or
a

bxt
(except for Roseta-Palma and Xepapadeas [2004] who use c(xt, wt) = awt, a stock

independent linear cost). Burness and Brill [2001] use a slightly different formulation for

c(x) while maintaining the separability outlined above. Their marginal cost function (in

our terminology) is of the form c(x) = c0(a− x)
bc(x− d) with a, c, b, d, c0 > 0 and x > d. This

function also has all the usual properties (c(x)x < 0, c(x)xx > 0) that the simpler functions

above do. Finally, Worthington et al. [1985], who also use a separable cost function, use

an empirical form of the marginal cost function, estimated (interpolated) from data. Their

function is decreasing but, due to being a combination of different order polynomials for

different regions, has c(x)xx ≶ 0 depending upon x.

In general, all cost functions used make the following two assumptions

1. Marginal cost of pumping does not depend upon the quantity pumped i.e. ∂C(xt, wt)
∂wt

=

c(x)

2. Cost of pumping does not vary within a given season i.e. drawdown does not vary

within a given season. This leads to specifications in which marginal costs are based

entirely on beginning-of-period water level depth. This assumption is completely

implicit in almost all studies, discrete- and continuous-time, and is made clear only

in Worthington et al. [1985] (pp 235-237) wherein (in their Table 1, pp 236) they

estimate an annual incremental drawdown given only the level of water table at the

beginning of the season, independent of the quantity of water pumped.

The first characteristic is a modeling assumption and is not always in accord with hydrologic
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facts (see below). The second characteristic above is reasonable if the length of a period is

sufficiently small and decisions are made frequently, in which case continuous-time models

are more appropriate. In sum, in all of the literature, marginal costs of pumping do not

vary within season, and are independent of the quantity pumped during the period. The

implications are that, for the marginal cost of pumping in any given period, the only factor

of importance is the groundwater stock at the beginning of the period; the amount of

abstraction during the period does not matter. Put differently, the implications are rather

striking: the marginal costs of pumping, given a beginning stock, are the same, irrespective

of the quantity extracted.

With this cost function, structural properties such as the concavity of the optimization

problem in each period have not been established5. As noted in Section 6.1, there have been

relatively few efforts focused on establishing structural properties of discrete-time ground-

water models in the literature, and many of the properties still have not been shown to

hold, even in a setting with very simple (and unrealistic) cost functions. In our analysis, we

generalize this formulation for cost to reflect more realistic conditions on marginal cost and

study in detail the structural properties of the resulting dynamic programs. In particular,

we seek to address two important questions:

1. Under what conditions, for the given objective function(s), do intuitive properties

(such as monotonicity of withdrawal, next periods stock in current period stock and

existence of a stationary distribution for the stochastic stock) hold?

2. Which of these properties hold under a setting where risk aversion is introduced?

We carry out two generalizations of the cost function. In the first,

5Provencher and Burt [1993][pp 146]show the concavity of the value function, but their result crucially
depends on (a) the separability of C(x,w) (b) the fact that the per-unit pumping cost is independent of
the quantity, wt, of groundwater extracted and (c) an unsubstantiated claim of concavity of the objective
function. See footnote (9)
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C(x,w) =
∫ x

z=x−w
γ(z)dz (6.6)

where γ is assumed to be non negative, decreasing and convex. This form of the cost

function takes account of changes in the groundwater stock that occur during the pumping

period. Further, the marginal cost of pumping depends, in general, on the quantity of water

pumped. We stress that the conventional approach, in equation (6.5), with the implication

that marginal cost of pumping is independent of the quantity pumped, is an assumption

(recognized explicitly in Chakravorty and Umetsu [2003](pp 5)), and has little empirical or

theoretical support.

In the second, we generalize the cost function in a different direction. In many cases,

and especially in developing nations (such as India) where landholding sizes tend to be far

smaller, many wells are in close proximity, in which case, many assumptions of the “bath

tub” aquifer are not very tenable, especially when transmissivity is limited (which amplifies

the impact, on a given user, of pumping by other users). There has been an increasing

body of literature (see for instance Brozovic et al. [2002]; Chakravorty and Umetsu [2003];

Zeitouni and Dinar [1997], among others) dealing with a variety of issues, especially on the

game-theoretic aspects of managing such common pool resources. The main issue involved

is the formation of “cones of depression” around individual wells, leading to increasing

extraction costs. These costs depend, to a large extent, on a variety of physical parameters

such as transmissivity and storativity (see for instance Athanassoglou et al. [2011]).

On the other hand, even in the case of a single user, the assumptions made in almost

all models regarding the aquifer are unlikely to hold for any given aquifer. For instance,

most continuous time models, following Gisser and Sanchez [1980], assume an essentially

bottomless aquifer. Further, most analyses (exceptions include Worthington et al. [1985])

assume implicitly or explicitly an unconfined aquifer. However, for confined aquifers, on-

going pumping from a well induces a localized “cone of depression” around the well (see
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for instance Siegfried [2004] (Figure 4.4, pp 61)). These dynamics lead to increases in the

per-unit cost of extraction by increasing the effective lift6.

We seek a simplified framework to account for the increased marginal cost of pumping as

a result of such localized cones of depression. We use the finite difference cell approach used

in Siegfried [2004] (pp 52-53). The method effectively corrects the drawdown by adding

a term linear in the extraction. Abstracting away from parametrization, we translate this

into our notation as follows:

C(x,w) = c (x̄− x+ aw)w (6.7)

where the additive term aw captures the “correction” to the drawdown (change in

stock)7.

6.3 Analysis: Finite Horizon

We consider the dynamic model of groundwater extraction using each of the three cost

functions, separately, since many features, method of proof and conclusion differ. The

approach taken in our analysis is somewhat different from that conventionally used in

the Resource Economics (and Economic Growth) literature. We abandon, for the most

part, all assumptions regarding smoothness (concavity, convexity and differentiability) of

the objective function and feasible set, except insofar as these properties can be proved

6This issue, even with the confined aquifer assumption, has been remarked on before. For instance,
Provencher and Burt, 1994 (pp 882) clearly recognize that groundwater levels do not adjust immediately
after a local perturbation caused by pumping from the well, due to the fact that the equilibrating flows
are both slow and subject to great variability. In particular, with heterogeneous aquifers and unequal
pumping rates by farmers, they clearly recognized a not insubstantial lateral flow of groundwater, leading to
uncertainty of future availability of water. While their discussion was in the context of a common property
problem, the discussion is clearly applicable in the context of our modification to the cost function, even if
one ignores the common property aspect, as we do in our work here.

7For subsequent analysis, we drop the coefficient a on w for minimizing the number of constants used.
This coefficient maybe introduced as needed for empirical analysis, and its exclusion does not fundamentally
impact our analysis but does lead to simpler algebraic manipulations.
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from physically or economically reasonable primitives. We use lattice theoretic methods,

developed in Topkis [1978], with a comprehensive account in Topkis [1998], and the detailed

exposition of dynamic programming using lattice-theoretic methods developed in Heyman

and Sobel [2003].

We enumerate below a list of assumptions, not all of which are used in all Theorems or

with all cost functions. We also set up some notation for future reference. Let X ⊂ R+be

the state space, which is a lattice, W : X → L(X), with L(X) the set of all sub-lattices of

X, C = {(x,w);x ∈ X,w ∈W (x)} be a sub-lattice of R2
+.

Definition 6.3.1. (Ascending Set-Valued functions) The set-valued function W is called

ascending in x on X (or simply “ascending”) if it is increasing on X. In this definition, if

x1 and x2 are in X, then W (x1) and W (x2) are in L(X). Therefore, if x1 < x2, a ∈W (x1)

and b ∈W (x2) and W is ascending on X, then necessarily a∧ b ∈W (x1) and a∨ b ∈W (x2)
8.

Definition 6.3.2. (Expanding Sets)The set W (x) is called “expanding” if x′ < x =⇒

W (x) ⊂W (x′).

Definition 6.3.3. (Stochastically supermodular) X̃(x,w), a random variable parametrized

by (x,w), defined on X ×X, a lattice, Fx,w its distribution function, is said to be “stochas-

tically supermodular” in (x,w) if either of the following two conditions are satisfied:

1. [Topkis, 1998, pp 159]
∫
S dFx,w(s) is supermodular in (x,w).

2.
∫
h(s)dFx,w(s) (as a deterministic function of (x,w)) is supermodular in (x,w), for all

increasing and bounded functions h.

Definition 6.3.4. (Re-investment function)a = x − w is defined to the “reinvestment

function”. It will be used in the proof of monotonicity in t of the value function and the

8For ex. if x ∈ X ⊂ R, W (x) = [−∞, x] or W (x) = [x,∞] are ascending on X.
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optimal policy function (where applicable). It is trivial to reformulate all of the statement

and assumptions in terms of a instead of w. Let A(x) be the equivalent of W (x) for a.

Assumption 6.3.5. Π(x,w) is supermodular in (x,w) and increasing in x

Assumption 6.3.6. Π(x, a) is supermodular in (x, a) and increasing in x.

Assumption 6.3.7. X̃(xt, wt) is increasing in xt, given wt, Rt(or independent of xt).

Assumption 6.3.8. Π(x,w) ≥ 0, ∀x,w

Assumption 6.3.9. Π is finite on C

Assumption 6.3.10. ∃B > −∞ s.t. Π(x,w) ≥ B, ∀x,w i.e. Πis uniformly bounded below.

Assumption 6.3.11. Π(x, a) ≥ 0

Assumption 6.3.12. W (x) (A(x)) is ascending in x on X.

Assumption 6.3.13. W (x) (A(x)) is expanding in x.

Assumption 6.3.14. W (x) (A(x)) is compact.

Assumption 6.3.15. X̃(xt, wt) is stochastically supermodular.

Assumption 6.3.16. X̃(xt, at) is stochastically supermodular

We repeat here the dynamic programming recursion from (6.4), with

Vt(xt) = max {Jt(xt, wt);x ∈ X,w ∈W (x)} (6.8a)

Jt(xt, wt) = Π(xt, wt) + δE[Vt+1(xt − wt +Rt)] (6.8b)
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6.4 Conventional Cost Function (equation(6.5))

6.4.1 Risk-Neutral decision making

Recall from equation(6.5) our cost function is:

C(x,w) = c(x)w = c (x̄− x)w (6.9)

Thus, the objective function (which we call Π for this section) is:

Π(xt, wt) = B(wt)− c (x̄− x)w (6.10)

Two facts are evident from equation(6.4). First, Π is not jointly concave in (x,w)9.

Second, Π is supermodular in (x,w). This is evident from the differential characterization

i.e. a smooth (for instance C2) real valued function f(u, v) on a lattice is supermodular

in (u, v) iff ∂2f(u, v)
∂u∂v

≥ 0. That this is unconditionally true is evident from the fact that
∂2Π(x,w)
∂x∂w

= c > 0. Further, it is equally evident that Πx(x,w) = cw > 0.

We make a further assumption before we state our main result for this section.

Assumption 6.4.1. Jt(xt, .) is upper semi-continuous on W (xt) for each t ∈ {1, 2, . . . , T}

and VT+1(x) = 0

We are now ready to state our main theorem

Theorem 6.4.2. [Heyman and Sobel [2003],Corollary 8-5a, pp 383]Assumptions (6.3.5),

(6.3.7),(6.3.8),(6.3.12),(6.3.13),(6.3.15),(6.4.1) imply that Vt(x) (defined in (6.8a))is increas-

9To see this, note that: Cx = −c, Cxx = 0, which leads to Πxw = −c, Πxx = −Cxx = 0, Πww = −B
′′
.

For Π to be jointly concave in (x,w), the Hessian is required to be positive semi-definite, i.e. B
′′
Cxx ≥ (Cx)2

which in this case is equivalent to c2 ≤ 0, which is evidently false. Thus, Π does not satisfy a sufficient
condition to be jointly concave. Of course, this condition is not necessary for concavity, but it is unlikely
that Π will be jointly concave, since Π is otherwise very smooth.
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ing in x and that W ∗t (x) = argmax {Jt(xt, wt);wt ∈W (x)} is ascending in x

on {x;x ∈ X, argmax {Jt (xt, wt)} is non-empty}. Further there exists a least and a greatest

element in the set W ∗t (x) and these are both increasing in x.

Proof. We provide a detailed proof of the theorem, since many subsequent proofs will be

based on, or refer to, this theorem. That Vt(x) is increasing in x is a straightforward

consequence of two facts, VT+1(x) = 0 and Π(x,w) is increasing in x, given w. These both

facts can be used to set up a simple inductive argument, as below.

VT+1(x) is trivially increasing in x, and so the induction is true for t = 0. Similarly, VT =

max {Π(x,w);w ∈W (x)} is increasing in x, since Π is increasing andW (x) is ascending and

expanding and so the hypothesis is true for t = 1. Let it be true for t = k < T i.e. Vk(x) is

increasing in x. Consider Vk−1(x) = maxwt≥0{Jk−1(xt, wt}, where Jk−1(x,w) is increasing

in x, since both its terms are (the second term, E(Vk(x)), is increasing by assumption above

and the fact that integration is order preserving) and thus, so too is Vk−1. As an aside,

observe that if Π is bounded so too is Vt.

We next prove that E
[
Vt
(
X̃ (xt, wt)

)]
is supermodular in (x,w). We have proved

that Vt is increasing and bounded, and have assumed that the distribution function of

X̃ (xt, wt), Fx,w is supermodular. Therefore, by Topkis [1998][Corollary 9.1(b), pp 160],

E
[
Vt
(
X̃ (xt, wt)

)]
is supermodular. Thus, we have that Jt(xt, wt) in (6.8b) is supermodular

(since the sum of two supermodular functions is supermodular10).

Since W (x) is ascending and expanding in x, that W ∗t (x) = argmax {Jt(xt, wt)} is non-

empty and ascending is the content of Topkis [1998][Theorem 2.8.1, pp 78]. Finally, ifW (x)

is compact, then from Topkis [1998][Theorem 2.8.3(a), pp 78], W ∗t (x) is a sub-lattice of R+,

with a least and a greatest element, both of which are increasing in x.

10Supermodular functions have very attractive properties, in that they are closed under summation and
pointwise limits. In fact, these functions form a convex cone which is closed under a variety of useful
operations. These properties can be further extended to stochastic versions of supermodular functions. See
Athey [2002] for a full development of these properties in a static setting, and Smith and McCardle [2002]
for its usage in a dynamic programming framework.
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Proposition 6.4.3. Under Assumption 6.3.8 and 6.3.9, Vt(x) is decreasing in t, for every

x ∈ X

Proof. We provide a proof by induction. VT = maxwt∈W (x) (Π(x,w)) ≥ 0 = VT+1. Let the

hypothesis hold for some k < T i.e. Vk(x) ≥ Vk+1(x). Consider now

Vk−1 = Π(x,w) + δE[Vk(x− w +R)]

≥ Π(x,w) + δE[Vk+1(x− w +R)]

= Vk

6.4.2 The effect of Risk aversion on optimal decisions

We turn now to understanding the implications of moving away from a risk neutral setting

(implicitly assumed by means of profit maximizing) to a setting where risk does play a role.

To be precise, we now consider an economic agent (farmer) whose objective is to maximize

expected utility from profit i.e. U(Π(x,w)) where U is a strictly increasing and concave

function. There has been little work, apart from the analysis in Knapp and Olson [1996]

(see references therein for related work), on groundwater management in a non-risk-neutral

setting and the implications of risk aversion (and separately, inter-temporal substitution

preferences) for management of groundwater. Knapp and Olson [1996] consider the problem

in a recursive utility framework, and show that the optimal policies vary significantly when

compared to a risk neutral setting (and show that inter-temporal elasticity of substitution

plays a far larger role than does risk aversion).

We consider instead a simpler setting, with a conventional utility function, with the

drawback of an inability to distinguish between risk aversion and inter-temporal substitu-
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tion. On the other hand, as we indicate below, we have not come across any literature,

including Knapp and Olson [1996], which deals with an analysis of which of the properties

proved in Theorem 6.4.2 hold in the setting just considered. For instance, while the work in

Knapp and Olson [1996] is, in part, a continuation of Knapp and Olson [1995], there is no

clear analysis of the changes induced in the structural properties of the models considered.

For instance, it is not clear (as we show below) that many of the properties survive this

simple (strictly concave) transformation.

While it is evident that the maximizer cannot change by means of this alteration in the

objective function, new difficulties arise as a result of this operation. A major cause for

the difficulties encountered is that supermodularity, unlike concavity, is a cardinal property

i.e. it is not preserved under monotonic transformations. In others words, g(f), where g

is strictly increasing and f is supermodular, is guaranteed to be supermodular only if g is

also convex. Further, an ordinal generalization of supermodularity, quasi-supermodularity

(developed in Milgrom and Shannon [1994]) does not lead to any operational benefits in

most cases, since other than strictly increasing transformations of supermodular functions,

it is difficult to verify quasi-supermodularity of a function in practice, since there is no

differential characterization of this property (see the discussion in [Topkis, 1998, pp 60-61]).

In particular, while quasi-supermodularity is sufficient for preservation of monotonicity

(in common with supermodularity), it is unsuited in particular for dynamic analyses since

it is not closed under a variety of operations, summation and point-wise limits being two

of the more prominent ones for our application. Thus, even if U(Π) is quasi-supermodular,

it is not true that the resulting Jt would also be, since the sum of a supermodular and a

quasi-supermodular function need not be supermodular.

It turns out however that when restricted to the log function, some pleasing properties

are retained. In particular, the following is true:

Claim 6.4.4. Π(x,w) is log super-modular (log s.p.m)
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Proof. A function f is log sp.m if log f is s.p.m i.e. if ∂2f

∂u∂v
≥ 0 [Topkis, 1998, pp 64]which

implies ffuv ≥ fufv. In our case, the verification exercise involves ΠΠxw ≥ ΠxΠw. Πx = cw,

Πw = B
′ − c(x̄ − x), Πxw = c. Thus, the condition to be verified yields c

(
B −B′w

)
≥ 0,

which holds only if B ≥ B
′
w. That this condition holds for (i) B(w) = aw − bw2 (ii) aw

(iii) ln(w +D), D = 111 and (iv) B(w) = 1− exp(−aw)12 is easily seen. These five benefit

functions more than span the range of the empirical functions used (the most popular of

which is that in (i)).

Replacing Π(x,w) in (6.8b) with U(Π(x,w)), noting that ∂U(x,w)
∂x

= Πx

Π ≥ 0 (whenever

Π is bounded away from 0), it is evident that Theorem 6.4.2 is applicable, which is the

content of

Proposition 6.4.5. Theorem 6.4.2 is applicable if Assumption 6.3.5 is replaced with Claim

6.4.4, and Assumption 6.3.8 with Assumption 6.3.10.

Remark 6.4.6. (Finiteness of Jt) We comment now on the assumption of boundedness and

non-negativity of Π. Note first that, for the purposes of Theorem 6.4.2, in particular, for the

maximization operation, it is required that either Π be finite or that C = {(x,w);w ∈W (x)}

is compact and Jt(x,w) is upper semi-continuous (both of which of course yield finiteness of

Jt and the existence of a maximizer), which latter we assume in Theorem 6.4.2. For these

purposes, it is not sufficient that Π is non-negative, an approach which is the most common

when using more conventional approaches to dynamic programming for unbounded rewards.

Remark 6.4.7. (Boundedness of Π) For the particular case of the logarithmic utility function,

since the log function is unbounded both above and below, it is not sufficient that X is

11For B > B
′
w for this last functional form, it is required that log(1 + w) ≥ w

1 + w
. However, that this

holds is evident from the logarithmic inequality w

1 + w
≤ log(1 + w) ≤ w.

12In this case, B−wB
′

= 1− exp(−aw) (1 + aw). That this is non-negative is evident from the following
inequality: e−x(1 + x) < 1, with x = aw.
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compact, since Π = 0 is always a possibility. However, this can be easily dealt with in a

very general manner, as follows: let Π be uniformly bounded below (when Π is finite or

defined over a compact set, this is trivial but otherwise, it is not) by B > −∞. Consider now

the function Π̃ = Π + (1 +B). It is evident that Π̃ > 0 and further, that replacing Π with

Π̃ yields the same optimal decision. Therefore, there is no loss of generality in assuming Π

to be uniformly bounded away from 0 in both verification of log supermodularity as well as

in Claim 6.4.4.

Remark 6.4.8. (Log supermodularity) Knapp and Olson [1996] consider an identical prob-

lem to that in Knapp and Olson [1995], using a recursive utility framework. Their main

assumption regarding the function Π13 ([Knapp and Olson, 1996, A.4., pp 1007]) is

σΠΠxw ≥ ΠxΠw (6.11)

It is obvious that, for σ ≥ 1, this condition is implied by the log supermodularity of

Π. On the other hand, they use a value of σ < 1, for which this condition in fact is more

demanding. Using the integral of the linear demand function used in Knapp and Olson [1995]

i.e. using B(w) = aw − bw2, and the standard cost function C(x,w) = c(x)w = c(x̄− x)w,

for the condition in (6.11) to hold, it is necessary that a ≥
(
σ − 2
σ − 1

)
bw. That this condition

is stronger than that implied by Bw(w) ≥ 0 =⇒ a ≥ 2bw for any σ < 1 is evident. They

appear not to recognize the condition in (6.11) as a (stronger) form of log supermodularity.

6.5 Cost function accounting for local cones of depression

We begin first with the risk neutral setting, and prove that the use of a seemingly more

complicated cost function does not complicate the analysis. Indeed, there is no change in

13Which is somewhat different from ours due to the differential nature of timing of uncertainty as well as
the addition of a second state variable, surface water supplies.
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the structural results obtained above.

Recall from (6.7) that the cost function is

C(x,w) = c (x̄− x+ aw)w (6.12)

while the objective function is

Π(xt, wt) = B(wt)− c (x̄− x+ w)w (6.13)

From ∂2Π
∂x∂w

= c > 0, it is evident that Π is supermodular, and so too that Πx = cw ≥ 0.

This leads immediately to

Proposition 6.5.1. For the net benefit function in (6.13), Theorem 6.4.2 is directly appli-

cable.

Further, if we assume finiteness of Π, then it is straightforward that Proposition 6.4.3

is directly applicable, which is

Proposition 6.5.2. For the net benefit function in (6.13), Proposition 6.4.3 is directly

applicable.

We turn next to characterizing the properties of the decision problem when one uses a

(strictly) concave transformation of net benefits. The issues confronted with this seemingly

negligible change are substantial, as indicated above. However, even with this cost function,

we may

Claim 6.5.3. Π in (6.13) is log supermodular, under Assumption 6.3.10.
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Proof. Consider Πw = B
′ − c (x̄− x+ 2w), Πx = cw, Πwx = c, which yields

ΠΠxw −ΠxΠw = c
(
B − wB′

)
− c2w (−w)

= c
(
B − wB′

)
+ c2w2

≥ 0 iff B > wB
′

which is valid for the variety of functions for B exhibited in the proof of Claim 6.4.4.

As before, this leads to the following

Proposition 6.5.4. Theorem 6.4.2 is applicable if Assumption 6.3.5 is replaced with Claim

6.5.3, and Assumption 6.3.8 with Assumption 6.3.10.

6.6 Accounting for impact of pumping on marginal cost

We show in Section 6.6.1 that all of Properties (a)-(d) hold for model 6.6. This is in contrast

to model 6.5 and 6.7, for which we are able to show that only (b) holds. In a related model,

Knapp and Olson [1995] are able to show that only (c) holds – and that with the help of

an additional condition on c . The underlying assumption of Knapp and Olson [1995] is the

supermodularity of B(x−y)−C(x, x−y) in (x, y), where B(w) is the benefit of withdrawing

w units of water, but this condition sometimes fails for model 6.5; however, for 6.6, this

supermodularity condition always holds, thereby enabling Property (c) to hold.

A common way to prove results such as (a)-(d) is via a dynamic programming analysis

that simultaneously proves a result about the concavity of the value function. We use this

approach, with the slight variation that it is the concavity of the value function plus an

expression involving the current state that is used in the analysis.

With this cost function, structural properties such as the concavity of the optimization

problem in each period have not been established.
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Example. Under model 6.9, suppose that B(w) = 5w − w2/4, c(x) = 10 − x and T = 2.

Then it is an easy calculation that w∗2(x2) = 2 max[0, x2 − 5]. So, for 5 ≤ x2 ≤ 10, we have

x2 − w∗2(x2) = 10− x2. Thus, Property (c) does not hold.

Continuing analysis of this example, it follows that V2(x2) = (x2 − 5)2 if 5 ≤ x2 ≤ 10,

and V2(x2) = 0 if x2 ≤ 5. Suppose that δ = 1 and R2 = 0 with probability 1. Then, for

example, V1(6) = arg maxw1 H(w1), where

H(w1) =


B(w1)− c(6)w1 + (6− w1 − 5)2 if w1 ∈ [0, 1),

B(w1)− c(6)w1 if w1 ∈ [1, 5].

It is easy to check that the function H(w1) is not concave in the region w1 ∈ [0, 5] (in fact,

it has two maximizers {0, 2}). Thus, Property (a) does not hold.

6.6.1 Analysis

Recall from 6.6 our cost function C(x,w) =
∫ x
z=x−w γ(z)dz. From the definitions of Vt and

G, we can write Vt(xt) = maxwt≥0 Ut(xt, wt), where

Ut(xt, wt) = B(wt)−
∫ xt

z=xt−wt
γ(z)dz + δE[Vt+1(xt − wt +Rt)] . (6.14)

For any xt, let w∗t (xt) = arg maxwt≥0 Ut(xt, wt).

In Theorem 6.6.1 below, part (ii) shows that the problem facing the decision maker

in each period is the maximization of a concave function, which is Property (a). Part

(iii) establishes two properties of the optimal decision in each period – that the optimal

withdrawal quantity increases in the groundwater stock, and that the groundwater stock

in the next period is increasing in the groundwater stock in the current period – which are

Properties (b) and (c), respectively. We prove these results by showing that a modification

of Vt exhibits the concavity property – which is the content of part (iv).
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Theorem 6.6.1. (i) Vt(xt) is increasing in xt for each t ∈ {1, . . . , T + 1},

(ii) Ut(xt, wt) is concave in wt for any xt for each t ∈ {1, . . . , T},

(iii) w∗t satisfies w∗t (xt) ≤ w∗t (xt + ε) ≤ w∗t (xt) + ε for any xt and ε > 0 for each t ∈

{1, . . . , T},14 and

(iv) Vt(xt) +
∫ xt
z=0 γ(z)dz is concave in xt for each t ∈ {1, . . . , T + 1}.

Proof. We proceed by backward induction. As a base case, note that VT+1 is a zero function

and trivially satisfies (i) and (iv). We assume, as an induction hypothesis, that (i) and (iv)

hold for Vt+1, where t ∈ {1, . . . , T}, and prove (i)-(iv) for t.

The inductive step for (i) is immediate from (6.14), i.e.,

Ut(xt, wt) = B(wt)− [Γ(xt)− Γ(xt − wt)] + δE[Vt+1(xt − wt +Rt)] ,

where Γ(y) =
∫ y
z=0 γ(z)dz is concave, and Vt+1 is assumed increasing.

To make an inductive step for (ii), we write (6.14) as

Ut(xt, wt)

= [B(wt)− Γ(xt)] (6.15)

+ (1− δ)Γ(xt − wt) (6.16)

− δE[Γ(xt − wt +Rt)− Γ(xt − wt)] (6.17)

+ δE[Vt+1(xt − wt +Rt)+Γ(xt − wt +Rt)] . (6.18)

We now explain why each of the lines (6.15)-(6.18) is individually a concave function of wt.

This is certainly true of (6.15), as B is assumed to be concave. As regards (6.16), we recall

14This implies that the derivate of w∗t (xt) with respect to xt should belong to [0, 1] if it exists. Also, this
derivative exists almost everywhere since wt is bounded, increasing and continuous.
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the assumption that γ(z) is decreasing in z. It follows that Γ(y) =
∫ y
z=0 γ(z)dz is concave

in z, and so Γ(xt − wt) is concave. As regards (6.17), the assumption that γ(z) is convex

implies that ∂[Γ(v + Rt) − Γ(v)]/∂v = γ(v + Rt) − γ(v) is increasing in v. This implies

that [Γ(v + Rt)− Γ(v)] is convex in v, as is E[Γ(xt − wt + Rt)− Γ(xt − wt)]. Finally, it is

the inductive hypothesis for (iv) that ensures that (6.18) is concave in wt. We have now

established the inductive step for (ii).

We now turn to the inductive step for (iii). This follows from Topkis [1998](pp 78, Thm

2.8.1), which applies to our problem since we are seeking to maximize a function of the

form ft(xt, wt) = Ut(xt, wt) + Γ(xt) = B(wt) +gt(xt−wt), where both B and gt are concave

functions, taking gt to be the sum of lines (6.16)-(6.18). Recall that a function h is said to

be supermodular if h(a∨ b) +h(a∧ b) ≥ h(a) +h(b) (where a∨ b and a∧ b denote maximum

and minimum). So, ft is a supermodular function of (xt, wt) because, for any positive ε and

δ,

ft(xt + ε, wt + δ) + f(xt, wt) ≥ ft(xt + ε, wt) + f(xt, wt + δ)

⇐⇒ gt(xt + ε− wt − δ) + gt(xt − wt) ≥ gt(xt + ε− wt) + gt(xt − wt − δ)

and this is implied by the concavity of gt. Thus, Topkis’s theorem tells us that w∗t (xt+ ε) ≥

w∗t (xt). To show w∗t (xt + ε) ≤ w∗t (xt) + ε, which is equivalent to (xt + ε) − w∗t (xt + ε) ≥

xt − w∗t (xt), we need only make the same application of Topkis’s theorem, but take the

function to be maximized ϕt(xt, yt) = B(xt − yt) + gt(yt), making the identification of

yt = xt − wt.

Finally, to make the inductive step for (iv), we consider the equation involving (6.15)-

(6.18), move Γ(xt) to the left hand side, and replace wt with w∗t (xt). This gives

Vt(xt) + Γ(xt) = B(w∗t (xt)) + gt(xt − w∗t (xt)) .



CHAPTER 6. STRUCTURAL PROPERTIES OF GROUNDWATER MODELS 172

Note that since w∗t (xt) maximizes Ut(xt, wt) = B(wt)− Γ(xt) + gt(xt − wt) with respect to

wt, it is also the value of w maximizing

B(w) + gt(xt − w) (6.19)

subject to w ≥ 0. Since B and gt are concave, the expression in (6.19) is jointly concave in

xt and w. Thus,

B(w∗t (xt)) + gt(xt − w∗t (xt)) = max
w≥0

B(w) + gt(xt − w)

is concave in xt (See, for example, Section 3.2.5 of Boyd and Vandenberghe [2004]). There-

fore, we conclude that Vt(xt) + Γ(xt) is concave, proving (iv).

We note that an alternative way to prove Property (c) is to use a sample path argument:

if x1 < x2 and x1−w1 > x2−w2 hold for some period t, then replacing w1 with w1 +x2−x1

and w2 with w2 − x2 + x1 results in a solution that is not worse than the original solution

– this occurs because of the supermodularity of B(x− y)− C(x, x− y) in (x, y).

The following result shows that with more periods to go, the optimal decision is more

conservative in the extraction of water (Property (d)), and implies in particular that the

optimal extraction quantity is bounded above by the myopic withdrawal quantity (which

corresponds to the last period).

Corollary 6.6.2. Vt(x) is submodular in (t, x). Furthermore, for any x and t ≤ T , w∗t (x) ≤

xt+1(x).

Proof. We remind the reader

Ut(xt, wt) = B(wt)− [Γ(xt)− Γ(xt − wt)] + δE[Vt+1(xt − wt +Rt)] ,
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where Γ(y) =
∫ y
z=0 γ(z)dz, and recall

Vt(xt) = max
wt≥0

Ut(xt, wt) ,

where VT+1(xT+1) = 0. To show the submodularity of Vt(x) in (t, x), we need to show, for

any 1 < t ≤ T + 1 and any pair of x1 and x2 satisfying x2 < x1,

∆t(x1, x2) = Vt(x1) + Vt−1(x2)− Vt−1(x1)− Vt(x2) ≤ 0.

As a base case, note that ∆T+1(x1, x2) ≤ 0 holds since VT+1 is a zero function, and VT

is an increasing function (Theorem 6.6.1(a)). We proceed with a backward induction on t,

by assuming ∆t+1(x1, x2) ≤ 0 for any x2 < x1, where 1 < t ≤ T . Let w1
t = w∗t (x1) and

w2
t−1 = w∗t−1(x2).

Case x1 − w1
t ≥ x2 − w2

t−1. From the definitions of w1
t and w2

t−1, we obtain

Vt−1(x1) = max
w≥0

Ut−1(x1, w) ≥ Ut−1(x1, w1
t ) and Vt(x2) = max

w≥0
Ut(x2, w) ≥ Ut(x2, w2

t−1) .

Thus,

∆t(x1, x2) ≤ Ut(x1, w1
t ) + Ut−1(x2, w2

t−1)− Ut−1(x1, w1
t )− Ut(x2, w2

t−1)

= δE
[
Vt+1(x1 − w1

t +Rt) + Vt(x2 − w2
t−1 +Rt−1)

−Vt(x1 − w1
t +Rt−1)− Vt+1(x2 − w2

t−1 +Rt)
]
.

Since Rt and Rt−1 have an identical distribution, we apply the induction hypothesis to

conclude the rightmost expression above is at most zero. It follows that ∆t(x1, x2) ≤ 0.

Case x1 − w1
t < x2 − w2

t−1. Recall x1 > x2. It can be shown easily that both w2
t−1 +

x1 − x2 and w1
t − x1 + x2 are nonnegative. By using an argument similar to the one used
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in the previous case,

Vt−1(x1) ≥ Ut−1(x1, w2
t−1 + x1 − x2) and Vt(x2) ≥ Ut(x2, w1

t − x1 + x2) .

Then, from the definition of Ut,

∆t(x1, x2) ≤ Ut(x1, w1
t ) + Ut−1(x2, w2

t−1)− Ut−1(x1, w2
t−1 + x1 − x2)− Ut(x2, w1

t − x1 + x2)

= B(w1
t ) +B(w2

t−1)−B(w2
t−1 + x1 − x2)−B(w1

t − x1 + x2) ,

where the right-hand most expression is at most zero by the concavity of B and w2
t−1 ≤

min{w2
t−1 + x1 − x2, w1

t − x1 + x2} ≤ max{w2
t−1 + x1 − x2, w1

t − x1 + x2} ≤ w1
t .

Thus, we complete the induction step, implying the submodularity of Vt for each t. Now,

since Vt(x) is submodular in (t, x), by applying the Topkis’s theorem used in the proof of

Theorem 6.6.1, we obtain that w∗t (x) is nonincreasing in t.

Remark 6.6.3. In the paper, we have assumed that C(x,w) =
∫ x
z=x−w γ(z)dz = Γ(x)−Γ(x−

w).

It is evident (from an inspection of the proof of Theorem 6.6.1) that, for our analysis, the

differentiability of Γ is not required. Indeed, it is sufficient if C(x,w) = Γ(x) − Γ(x − w),

with Γ increasing and concave and Γ(v +R)− Γ(v) convex in v for any R > 0.

We also note that the proof of Theorem 6.6.1 can be generalized in a straightforward

manner to the case where the {Rt} are no longer independent or identically distributed

(i.i.d). However, the i.i.d property is required for the proof of Corollary 6.6.2.

6.6.2 Connection to the Fighter Ammunition Problem

We comment on how the results of this paper is related to the problem of how an aircraft

should spend its missiles over a finite time horizon to maximize the number of enemy planes
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shot down, known as the fighter problem (see Bartroff and Samuel-Cahn [2011]; Bartroff et

al. [2010]; Weber [1985]). For the so-called “invincible fighter” case, Bartroff et al. [2010] and

Bartroff and Samuel-Cahn [2011] have established, for the continuous-time Poisson arrivals

and either discrete or continuous ammunition, some of the desirable properties analogous

to Properties (b), (c) and (d).15 It turns out that a special case of our model is the discrete-

time16 continuous-ammunition version of the fighter problem with the invincible fighter,

and thus our results in Properties (b), (c) and (d) continue to also hold in this context,

providing an alternate proof of the results shown in Derman et al. [1975].

Remark 6.6.4. (Log supermodularity) We remark that the profit function associated with

this problem, (6.13), is not log supermodular, as a result of which, there is no result analo-

gous to Proposition 6.5.4.

6.7 Effects of the Time horizon

We have already proved the following properties regarding the effect of time horizon. For the

cost functions in (6.5) and (6.7), we prove only the (obvious) result that Vt are decreasing

in t (and finite, for each t, since each Jt is finite under the assumption of either finiteness

of Π or of upper semi-continuity of Jt for each t and the compactness of C) in Propositions

6.4.3 and 6.5.2. For the cost function in (6.6), however, we are able to prove, in addition,

convergence of the optimal policy function wt(x).

A natural next step therefore is to ask the following questions regarding the limit func-

tions. To fix matters, consider the following two equations, which may or may not be well

15Properties (b), (c) and (d) in this paper correspond to properties (B), (C) and (A) of Bartroff et al.
[2010] and Bartroff and Samuel-Cahn [2011], respectively.

16The special case that directly follows from Section 6.6.1 assumes that exactly one enemy plane appears
in each period. If an enemy plane instead appears with a certain probability, then the proofs of the paper
can be easily modified to show that the same set of properties hold.
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defined, at this stage (these are the infinite horizon analogues of (6.8a) and (6.8b)):

V (x) = max {J(x,w);x ∈ X,w ∈W (x)} (6.20a)

J(x,w) = Π(x,w) + δE[V (x− w +R)] (6.20b)

1. Does Vt converge?

(a) If so, does it converge to the Bellman equation, (6.20a)?

2. Does the optimal policy function w∗t (x) converge?

(a) If so, does the limit function inherit monotonicity?

(b) Finally, does the limit function maximize the right hand side of (6.20b)?

We answer each of them in turn. We begin with a series of brief remarks on convergence

of the value function and the one-period return function as a prelude to answering the

questions posed above.

Remark 6.7.1. We have proved that Vt, for all three cost functions, is decreasing in t,

increasing x, and is finite (in fact, uniformly bounded). It is therefore immediate (from

monotone convergence of functions) that ∃V s.t. Vt ↓ V and further, that the limit function

V is increasing in x.

Remark 6.7.2. It is evident from (6.8b) that if Vt+1 ≤ Vt then so too is Jt i.e. Jt+1 ≤ Jt.

This may be proved by a straightforward induction on t. Further, either due to finiteness

of Π or Assumption 6.4.1 and compactness of C, it is evident that Jt is uniformly bounded

over C. Therefore, {Jt} is a monotone decreasing and (uniformly) bounded sequence. It

therefore follows that ∃J s.t. Jt ↓ J for each (x,w) ∈ C.
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Remark 6.7.3. We have already shown, in Claims 6.4.4 and 6.5.3, that the profit functions

in (6.10) and (6.13) are log supermodular. Remarks 6.7.1, 6.7.2 are therefore directly

applicable to these formulations.

We make two final assumptions before we embark on our major result for this section.

Assumption 6.7.4. Jt(x, .) is continuous in w on W (x).

Assumption 6.7.5. C = {(x,w);x ∈ X,w ∈W (x)} is a sub-lattice of R2
+.

We now state our main

Theorem 6.7.6. [Heyman and Sobel, 2003, Thm 8-16, pp 427] Under Assumptions 6.3.5,

6.3.10, 6.3.12, 6.3.13, 6.3.14, 6.3.15, 6.7.4, 6.7.5 and Remarks 6.7.1, 6.7.2, and 6.7.3, V (x)

(defined in (6.20a)) is non-decreasing in x and ∃w(x) non-decreasing in x which satisfies

V (x) = J (x,w(x)) for x ∈ X.

Proof. We provide an outline of the proof, split into two steps. The first step (Theorem 8-14

(pp 418-419)) involves proving that (a) Vt ↓ V and that (b) V satisfies equation (6.20a).

(a) is Remark 6.7.1. A proof of (b) begins by noting that since each Vt is bounded and

increasing in x, by the monotone convergence theorem for integrals, we have that

lim
t→∞

E{Vt[X̃(x,w)]} = E
{
V
[
X̃(x,w)

]}
. (6.21)

From this, it is immediate that

Vt(x) = max {Jt(x,w)} ≥ max {J(x,w)}

which implies

lim
t→∞

Vt(x) = V (x) ≥ max {J(x,w)}
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The proof will be complete if the inequality is proved the other way i.e. if it is established

that V (x) ≤ max {J(x,w)}. To prove this, consider

V (x) ≤ Vt(x) = sup {Jt(x,w);w ∈W (x)}

and taking limits, observe that

V (x) ≤ lim
t→∞

[sup {Jt(x,w);w ∈W (x)}]

The proof is complete if

lim
t→∞

[sup {Jt(x,w);w ∈W (x)}] = sup
[

lim
t→∞
{Jt(x,w);w ∈W (x)}

]

i.e. if the operation lim and sup can be interchanged. From Assumptions 6.7.4 and

6.3.14, it follows that Jt(x, .) converges uniformly in w, for each x, to J(x, .) and finally,

equation (6.21) justifies interchange of integral and limit. Thus, the interchange of lim and

sup is valid.

The next step, to prove thatW ∗(x) is ascending in x and the greatest element ofW ∗(x),

w∗(x), is increasing in x, is a direct consequence of Theorem 6.4.2, and is plainly a result

of the supermodularity of J .

Remark 6.7.7. Theorem 6.7.6 addresses question 1. We remark that nothing yet has been

said about convergence of the optimal policy i.e. regarding w∗t (x) → w∗(x) where w∗ is

presumably increasing in x and is the maximizer of the right hand side of equation (6.20b).

We address in turn questions 2, 2a and 2b. To begin addressing question 2a, we observe

that if the limit function w∗ exists, it must be increasing in x. The question thus to be

addressed is 2. In the case of the cost function in equation (6.6), we have already proved

that w∗t is decreasing in t. Thus, using the upper bound X̄ for x, we have that {w∗t } is a
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decreasing, uniformly bounded sequence, which must converge. For the remaining two cost

functions, we have been unable to prove that w∗t is decreasing in t, which is a sufficient

condition for convergence. Thus, convergence is not assured for the remaining forms of the

cost function, including the conventional cost function.

Finally, for the cost function in equation (6.6), we turn to see if question 2b can be

answered in the affirmative. The main issue is whether the limit function is identical with the

maximizer (or belongs to W ∗(x)) identified in Theorem 6.7.6. The only sufficient condition

to ensure that this is so, Heyman and Sobel [2003](Thm 8-15, pp 425-426), relies on the

concavity of the value function, and so is not applicable in our case. We have therefore been

unable to find a sufficient condition (or provide a direct proof) that the limiting function

(to which the optimal policy function converges), in the case of cost function in (6.6), solves

the infinite horizon problem in equation (6.20b).

6.8 Stationary Distribution of Stock

We turn now to understanding the conditions under which the Markov Chains generated by

the dynamic decision problem for each of the three cost functions (in (6.5), (6.6) and (6.7))

converge to an invariant distribution. Almost all of the literature on renewable resource

management, including Knapp and Olson [1995, 1996], relies strongly on the monotonicity of

the “reinvestment function” (see below for details) i.e. of the transition equation in terms

of the reinvestment function in the current stock, and uses functional analytic methods

of stochastic stability, epitomized by Hopenhayn and Prescott [1992]; Stokey and Lucas

[1989] in the Economics literature for characterization of the invariant distribution. This

approach has at least two major drawbacks: it almost always is based on weak convergence

of probability measures and therefore, typically, requires assumptions of compactness of

the state space, leading invariably to bounded shocks (an undesirable artifact, in many

applications) and (b) is very difficult to generalize to non-monotonic systems.
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There is an alternative approach, popularized in Economics in Stachurski [2009], which

uses a combination of the function analytic and probabilistic approaches, in particular

drawing on the fundamental work of Meyn and Tweedie [1993]. A major advantage is that

non-monotonic systems may be handled by this method with almost equal facility. We

explore this avenue in particular for the optimal policies for the cost functions in equations

(6.5) and (6.7). Since the use of this approach in Economics is relatively recent, and since

this approach has not been used (to our knowledge) in Resource Economics, we provide a

more detailed outline of the method of verifying the conditions sufficient for the theorem

to be applicable. We illustrate here the use of a very powerful theorem, applicable to both

monotonic and non-monotoninc Markov Chains, under a set of mild assumptions which are

likely satisfied in a variety of natural resources. A major advantage of this approach is in

allowing the researcher to look beyond monotonic systems, which in many cases in Resource

Economics are an artifact of model assumptions rather than any underlying feature of the

natural (or economic) system being studied17.

6.8.1 The Setup

The generic transition equation, which (following Stachurski [2009]) we label the “Stochastic

Recursive System” (S.R.S, henceforth), is

Xt+1 = f(xt) +Rt+1 = F (xt, Rt+1) (6.22)

where for this section, we will assume Rt ∼iid Φ, where Φ is continuous and assigns

strictly positive probability to every subset of R+. We continue with some notation, used

17There is yet a third approach, applicable to Monotone Markov Chains, developed in detail in Bhat-
tacharya and Majumdar [2007] based on a “splitting condition” on the Markov Chain, developed in Bhat-
tacharya and Majumdar [1999]. The major advantage of this approach is that irreducibility is not required
of the Chain. See also Bhattacharya and Majumdar [2010] for an illustration of limit theorems for Markov
Chains in such a setting. We remark that the method of proof we use yields irreducibility of the Markov
Chain, as a result of which such a generalization is not needed for the current application.
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below to elucidate ideas. Denote by P(X) the set of all (Borel-) probability measures on

the state space X, a (Borel-) subset of R+ and denote by ψ any invariant distribution of

the S.R.S in equation (6.22). P is the stochastic kernel18 for the S.R.S in (6.22), defined

for B ∈ B(X) (set of Borel subsets of X) and x ∈ X, as

P (x,B) =
∫

IB [F (x, z)] Φ(dz)

with IB(.) a indicator function for the set B19. Given the stochastic kernel P , an

associated linear operator, the Markov Operator M : P(X)→ P(X) maybe defined as

ΦM(B) :=
∫
P (x,B)Φ(dx).

The Markov operator is therefore a linear operator mapping distribution functions from

P(X) to P(X). Let X0 ∼ Ψ, where Ψ ∈ P(X) and denote the distribution of (Xt)t≥0

as Ψt. Then it is the case that the recursion Ψt+1 = ΨtM holds, which yields, by an

inductive argument, the infinite-dimensional version of the usual Markov Chain identity:

Ψt+1 = ΨM t.

The operator M also acts on functions, and is used to define the expectation of any

function w.r.t the stochastic kernel i.e. Mh(x) :=
∫
h(y)P (x, dy) x ∈ X. A final point

regarding the operator M is that it acts on distributions (alternatively measures) to the

left and functions to the right20. We now collect a few formal definitions of the properties

18A stochastic kernel is also known as Markov kernel or transition probability function, analogous to the
finite state space case, where it is called the transition probability matrix.

19To understand the definition of the stochastic kernel, observe that P (xt, B) = P (F (xt, Rt+1) ∈ B) =
EIB [F (xt, Rt+1)]. Further, two important properties of this kernel are: for every x ∈ X, P (x, .) is a
probability measure and for B ∈ B(X), P (B, .) is a measurable function onX. Note finally that the definition
of a stochastic kernel above is adapted to the setting of a S.R.S. The general definition of a stochastic
kernel is as a family of probability measures. Notationally, a general stochastic kernel is represented as
P (x, dy) ∈ P(X), (x ∈ X).

20A more precise, and less confusing, usage is to view the Markov operator, M as acting on functions
and its adjoint, M∗, defined on the space of probability (alternately, finite signed) measures on X, acting on
measures (distributions). This is the approach used in Bhattacharya and Majumdar [2007], in the Economics
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of P and M , indicating also sufficient conditions for these properties to be fulfilled. We

list these properties of M and P since they are integral in the proofs of both our main

theorems. More details on these properties, including those regarding the recursions stated

above and the linearity of M , may be found in many standard texts on Markov processes

(cf. Stachurski [2009](Chapters 8, 9.2 and 11), Stokey and Lucas [1989](Chapter 12), Meyn

and Tweedie [1993], Feller [1971] among many others).

Definition 6.8.1. (Feller Property) A Markov Operator M is said to possess the “Feller

Property” if it maps bounded, continuous functions into bounded continuous functions.

Remark 6.8.2. (Sufficient condition for Feller property) It is straightforward to prove [Stachurski,

2009, Lemma 11.2.3, pp 258] that if the map F (x,R) is continuous in x on X for each R,

then a Markov operator satisfies the Feller property. In fact, for F linear (affine) in x, it is

sufficient that F is bounded, since continuity is immediate in this setting.

Definition 6.8.3. (Iterates of M) We have already indicated that Mh(x) may be inter-

preted as the expectation of the function h under the kernel P . We now illustrate the

connection between the tth iterate of M applied to h and the same iterate applied to a

distribution Ψ. Note first that since P t(x, dy) may be interpreted as the distribution of Xt

given X0 = x, it is immediate that M th(x), defined as

M th(x) :=
∫
h(y)P t(x, dy) = E (h(Xt)|X0 = x) (x ∈ X)

may be interpreted as a conditional expectation. Then, it can be shown (Stachurski [2009]

§9.2 (Thm 9.2.15)) that

(a) Φ(Mh) = (ΦM)(h) =
∫

[
∫
h(y)P (x, dy)] Φ(dx)

literature. However, we do not follow such function analytic preciseness since the usage we indicate is more
common in the probability literature.
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(b) By induction, Φ(M th) = (ΦM t)(h) =
∫ [∫

h(y)P t(x, dy)
]
Φ(dx)

Thus, Φ(M th) is merely an (unconditional) expectation.

Definition 6.8.4. (Drift to Small Set) The kernel P satisfies drift to a small set21 if ∃v ≥ 1,

v : X → R+, α ∈ [0, 1) and β ∈ R+s.t

Mv(x) ≤ αv(x) + β

and all sub-level sets of v are small.

Definition 6.8.5. (Aperiodic Kernel) A kernel P is said to be aperiodic if it has a (ν, ε)−

small set C with ν(C) > 0.

Definition 6.8.6. (Irreducible kernel) A kernel P is said to be µ − irreducible with µ ∈

P(X) if ∀x ∈ X , B ∈ B(X) s.t. µ(B) > 0, ∃t ∈ N s.t. P t(x,B) > 0. If P is irreducible an

arbitrary µ ∈ P(X), then it is called irreducible.

Definitions 6.8.5 and 6.8.6 are simply infinite dimensional analogues of the classical

definitions for finite dimensional Markov Chains.

Definition 6.8.7. (Global Stability) Viewing (P(X),M) as a dynamical system, global

stability corresponds to the existence of a unique fixed point of the dynamical system22.

Definition 6.8.8. (Stability) Let Ψ∗be an invariant distribution. Denoting by ib(X) the

set of increasing and bounded functions on X, stability of Ψ∗ is taken to mean

∀Ψ ∈ P(X), h ∈ ib(X)
(
ΨM t

)
(h)→ Ψ∗(h) as t→∞ (6.23)

21Let ν ∈ P(X), ε > 0. A set C ⊂ B(X) is called (ν, ε) − small for P if ∀x ∈ C, it is the case that for
A ∈ B(X), P (x,A) ≥ εν(A). If this condition holds for some ν and ε > 0, then the set C is called small.

22The most common metrics used on P(X) are either the total variation or the Fortet-Mourier metrics.
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This cryptic condition may be easily understood as simply stating that the convergence

above is a stronger form of convergence than weak convergence of the (measure) distribution

Ψ. To see this, note that we have already defined
(
ΨM t

)
(h) as an expectation, in Definition

6.8.3. Therefore, weak convergence of Ψ would imply the convergence in (6.23) for h ∈

ibc(X). However, noting that ibc(X) ⊂ ib(X), it is immediate that the convergence in

(6.23), which holds for h ∈ ib(X), is stronger than weak convergence.

6.8.2 Main Results

In the case of our (or any) dynamic system, the transition equation maybe written

Xt+1 = xt − wt +Rt

Consider now a (stationary) policy w(xt), possibly sub-optimal and non-monotonic in

xt. Under this policy, the Markov Chain that results maybe written as

Xt+1 = xt − w(xt) +Rt = G(xt) +Rt = F (xt, Rt) (6.24)

The fundamental questions concern (a) existence of atleast one invariant distribution

to the Markov chain generated by the policy w(xt) and (b) uniqueness of the invariant

distribution.

In the case of the cost functions in (6.5) and (6.7), the optimal policy w(xt) is increasing

in xt but it is not the case that G(x) = x−w(x) is also increasing. Thus, the S.R.S F (xt, Rt)

in equation 6.24 is not increasing in x on X and results on stability of monotone Markov

Chains are not applicable. We indicate, following Stachurski [2009]§11.3.5, a constructive

method of proof which relies on far simpler assumptions than those for monotone Markov

Chains, dispensing in particular with the assumption of compactness of X, in particular,

that X = {x; a ≤ x ≤ b, a, b ∈ R+} .
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We first state the major theorem of this section, and then indicate how the assumptions

required are satisfied in the case of the S.R.S in 6.24.

Theorem 6.8.9. [Stachurski, 2009, Thm 11.3.36, pp 292] If the Stochastic Kernel P is ape-

riodic, irreducible and satisfies drift to a small set, then the system (P(X),M) is globablly

stable with a unique stationary distribution Ψ∗ ∈ P(X).

This theorem maybe found proved in [Meyn and Tweedie, 1993, Thm 16.0.1].

The verification of the conditions of 6.8.9 crucially depends on the following

Assumption 6.8.10. The function G(x) in equation 6.24 is continuous, satisfies

G(x) ≤ αx+ c (6.25)

with α ∈ [0, 1), c ∈ R+, Rt ∼ Φ, with φ a density which is strictly positive on R+ and

E (R1) <∞.

We now indicate why this assumption is reasonable in the context of our set up. First,

note that 0 < w(xt) ≤ xt is necessary for assumption 6.8.10 to be satisfied for c = 0 (with

which we work, since it is not critical that c be positive). Thus, it is required that w(xt) is

bounded away from 0 for all positive values of x, which of course is a reasonable assumption

for any reasonably shallow aquifer. In other words, any agent who has incurred the (not

insubstantial) fixed costs of accessing the resource (in the case of groundwater, pump and

plumbing; in the case of fishery, capital equipment in the form of boats, nets etc) is unlikely

to extract 0 quantity. Second, it is evidently not sufficient that this assumption is satisfied.

For a differentiable G, in fact, the assumption 6.8.10 is a condition on the derivative of

G i.e. G′ ≤ α. We see now that G is required to be a contraction! For the cost function in

(6.6), we have already shown that ∂w(x)
∂x

∈ [0, 1]. If we make a further, mild, assumption

that ∂w(x)
∂x

is uniformly bounded ( in x) away from zero, then it is evident that we can set

α = 1− inf
{
∂w(x)
∂x

; x ∈ X
}
< 1.
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When w(xt) is not differentiable, we see that if 1 > K = sup {x− w(x);x ∈ X} then we

can set α = K. Another alternative is to consider inf
{
wt(x)
x

;x > 0
}

= κ; if κ > 0, we can

set α = 1− κ < 1. For the developments below, we assume one of the above is true23. For

instance, this condition is naturally satisfied whenever, as in our case, x is bounded. Thus,

for all the models considered here, we henceforth make assumption 6.8.10.

We now indicate the chain of reasoning verifying all the properties required of P in

Theorem 6.8.9. From Stachurski [2009](pp 293), irreducibility of P follows, while it can be

shown easily that every compact subset of X is small for P , from which the aperiodicity of

P follows ([Stachurski, 2009, pp 292, exercise 11.34 and 11.28]). Finally, finding a function

v satisfying Definition 6.8.4 will suffice to prove drift to a small set. It is evident that v = x

does do so24 . Thus, all the properties required of P in Theorem 6.8.9 are satisfied, which

leads to

Proposition 6.8.11. For the groundwater models defined by cost functions, in equations

6.5, 6.6 and 6.7, the stock of groundwater converges to a unique, invariant distribution Ψ∗.

We stress that this result is very general in that it depends only on two assumptions: (i)

that a stationary policy exists and (ii) under a stationary policy, extraction (not necessarily

monotonic) is uniformly bounded away from 0. The former is almost always true while the

latter is clearly an assumption, and we argue, a very reasonable one.

23It is interesting to note from the literature on extinction of natural resources (for instance Olson and
Roy [2000]), this assumption is not equivalent to stating that the stock of resources is bounded away from
0 almost surely (pp 194). In other words, the assumption above does not require that the stock be strictly
positive. Rather, the assumption indicates that even at very low levels of stock, it is always optimal to
extract a non-zero quantity of water, and further, that this quantity is bounded below. Such will always be
the case if costs are not “too convex”. Given that Inada-like conditions to ensure interior solutions cannot
be used in this setting, this is an assumption, albeit a reasonable one .

24Mv(x) =
∫
v(y)P (x, dy). The kernel is P (x, y) = φ(y−g(x))>0. Using change of variable, z = y−G(x),

v = y, we have
∫
yφ(y−G(x))dy =

∫
(G(x) + z)φ(z)dz ≤ αx+β, where β =

∫
zφ(z)dz <∞. It is immediate

that all sublevel sets i.e. set of the form {x ∈ X; v(x) ≤ K}} K ∈ R+, are compact.
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6.9 Conclusions and Extensions

The analysis in the paper had two major objectives, to

i investigate the implications of using more realistic formulations of cost functions for

dynamic groundwater management

ii investigate the changes in structural properties obtained when risk aversion of the

economic agent is taken into account.

The cost function was generalized in two directions, accounting for localized cones of de-

pression which potentially increase cost of extraction, and taking into account changes in

groundwater stock within a season. With the conventional (simplified) cost function, it was

shown that only very few structural properties hold, notably monotonicity of extraction

(pumping) in groundwater stock. Quite surprisingly, this simple, and intuitive, result has

been rigorously proved here for the first time. It was shown, with the former generalization

of the cost function, that extraction is increasing in the current stock. With the latter gen-

eralization however, it was shown, in addition, that reinvestment (next periods stock) was

increasing in current groundwater stock, and further, that extraction (reinvestment) was

decreasing (increasing) over time. In other words, it was shown that a longer horizon (very

intuitively) leads to slower extraction and more reinvestment. We stress that our results

appear to be the first to show these properties for any form of the dynamic groundwater

extraction problem in the literature. Further, we also illustrate, with examples, that many

of these results do not hold for the conventional, and simplified, cost function.

In addition, we also show that the net benefit, using the conventional cost function

as well as the generalization accounting for cones of depression around the well, is log

supermodular. As a result, all of the preceding results are directly applicable. Again, apart

from Knapp and Olson [1996], who use a recursive utility framework (with different timing
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of uncertainty), ours appears to be the only application explicitly proving structural results

for objective functions displaying risk aversion25.

In much of the literature in Resource Economics which use discrete-time dynamic mod-

els, decision problems are formulated in such a way as to yield extraction decisions mono-

tonic in stock, primarily by means of smoothness conditions on the primitives, including

concavity of the single-period benefit function and convexity of the feasible set. The rea-

sons for doing so appear to be more related to tractability of the resulting models rather

than any underlying feature of the model. Abandoning smoothness and using more realistic

assumptions on the primitives in our models, we are able to prove most of the properties

previously conjectured in the literature for these class of models.

Finally, many models which deal with the existence of stationary distribution for the

stock of resource, are cast in such a manner as to yield “re-investment” (or subsequent

periods stock, when uncertainty is resolved prior to the decision on extraction being made)

which is increasing in current stock. This allows an immediate appeal to standard results in

convergence of monotone Markov Chains. However, moving away from models which impose

such strong assumptions (for instance, two of our cost function, both the conventional model

as well as the generalization accounting for localized cones of depression, do not satisfy this

condition), we illustrate the use of a more general method of proof of global stability. This

method does not require that the Markov Chain be monotonic; further, only very mild

assumptions on the optimal policy are imposed to yield the result.

Three directions for extension of the current work are immediately evident. First, as-

sumptions of finiteness (of the objective function) permeate the use of supermodularity,

which is primarily a restriction of lattice-theoretic methods. In particular, for many Re-

source Economic applications, lower bounds on utility appear contrived and are an unsatis-

25Despite discussion in the Agricultural Economics literature (see for instance Krautkraemer et al. [1992],
Kennedy et al. [1994] among others) about the necessity, in dynamic decision problems, of using objective
functions which reflect the beliefs of the modeler regarding the behavior of the agents under consideration.
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factory manner of dealing with possible unboundedness. In this setting, use of the weighted

sup norm approach, explored in detail in Hernández-Lerma and Lasserre [1999] and increas-

ingly used in Economics (see for instance Stachurski [2009](§12.2.1) and references therein)

holds some promise.

Second, in the case of groundwater, an important issue is the prevention of groundwa-

ter depletion (or restoration of the groundwater system, if already depleted) by means of

regulation. In this context, even if the optimal policy is monotone, it need not be a simple

function of the stock. In this setting, it is of some interest to explore, even in the admittedly

simplified case of a single user, a variety of possibly sub-optimal but simple policies (such

as a linear policy, as in Athanassoglou et al. [2011]) and to characterize the performance of

such policies in a given setting.

Finally, in the groundwater scenario which motivated this work, crop choice determines

water use (and groundwater extraction), and exogenous prices determine crop choices. It

is, in this setting, of some interest to understand the conditions under which the variance

(variability) in prices influence the evolution of groundwater stock. In other words,the

question of whether increases in variability of price leads to increase in extraction of stock

is of some importance for policy. Exploring this question in the model framework above,

we feel, is both feasible and interesting.
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Appendix 6.A Comment on Knapp and Olson [1995]: Su-

permodularity Condition

The paper by Knapp and Olson Knapp and Olson [1995] proves property (c) assuming the

supermodularity κ(x, y) defined by κ(x, y) = G(x, x− y) where G(x,w) = B(w)−C(x,w).

This supermodularity condition is equivalent to

0 ≤ −B′′(x− y)− ∂

∂x

∂

∂y
C(x, x− y) (6.26)

where w = x− y.

Under cost function in (6.5), i.e., C(x,w) = c(x)w, we have C(x, x − y) = c(x)(x −

y). Thus, ∂
∂x

∂
∂yC(x, x − y) = −c′(x). Therefore, the supermodularity condition (6.26) is

equivalent to −B′′(w) ≥ −c′(x), i.e., the degree of concavity in B is larger than the rate at

which c is decreasing. Therefore, with cost function (6.5), property (c) is satisfied with this

added condition. (Note: In the example provided in the paper, we have B′′(w) = −1/2 and

c′(x) = −1, not satisfying this added condition.)

Under cost model (6.6), i.e., C(x,w) =
∫ x
z=x−w γ(z)dz, we have C(x, x−y) =

∫ x
z=y γ(z)dz.

Then, ∂
∂x

∂
∂yC(x, x− y) = 0. This implies, along with the concavity of B, that the condition

6.26 is satisfied. This is an alternate proof of property (c) using an intermediate result of

Knapp and Olson [1995]. However, Knapp and Olson [1995] do not speak of Properties (a)

and (b).

Comment on the Proof of Theorem 1: Part (iv)

In the proof of part (iv), we use the following fact: Suppose ψ(xt, w) is jointly concave

in (xt, w). Then, ψ(xt) = maxw≥0 ψ(xt, w) is concave. This result follows directly from

Section 3.2.5 of Boyd and Vandenberghe [2004].
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For convenience, we include the proof of this result here. For any pair of x′ and x′′,

let w′ and w′′ maximize ψ(x′, w) and ψ(x′′, w), respectively. Let x = (x′ + x′′)/2 and

w = (w′ + w′′)/2. Then,

ψ(x) ≥ ψ(x,w) ≥ [ψ(x′, w′) + ψ(x′′, w′′)]/2 = [ψ(x′) + ψ(x′′)]/2 .

Thus, we retain this proof.

Appendix 6.B Proof of Theorem 6.6.1 using Derivatives

For each t ∈ {1, . . . , T},

(i) Vt(xt) is increasing in xt,

(ii) Ut(xt, wt) is concave in wt for any xt,

(iii) w∗t satisfies w∗t (xt) ≤ w∗t (xt + ε) ≤ w∗t (xt) + ε for any xt and ε > 0, and

(iv) V ′′t (xt) ≤ −γ′(xt) for any xt.

Proof. We proceed by backward induction. As a base case, note that VT+1 is a zero function

and trivially satisfies (i) and (iv). We assume, as an induction hypothesis, that (i) and (iv)

hold for Vt+1, where t ∈ {1, . . . , T}, and prove (i)-(iv) for t.

From the induction hypothesis (i) on Vt+1, Zt+1(xt − wt) = E[Vt+1(xt − wt + Rt)] is

increasing in xt. Since γ is decreasing (by assumption),
∫ xt
z=xt−wt γ(z)dz is also decreasing

in xt. Thus, for any wt, Ut(xt, wt) in (6.14) is increasing in xt. It follows now that Vt(xt) is

increasing in xt, proving (i) for t.
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From (6.14),

∂

∂wt
Ut(xt, wt) = B′(wt)− γ(xt − wt)− δZ ′t+1(xt − wt) and (6.27)

∂2

∂w2
t

Ut(xt, wt) = B′′(wt) + γ′(xt − wt) + δZ ′′t+1(xt − wt) . (6.28)

By the convexity of γ, we have

−γ′(xt − wt) ≥ −E[γ′(xt − wt +Rt)] = Z ′′t+1(xt − wt) .

Therefore, the second and the third term in the right side of (6.28) satisfy

γ′(xt − wt) + δZ ′′t+1(xt − wt) ≤ γ′(xt − wt)− δγ′(xt − wt)

= (1− δ)γ′(xt − wt)

≤ 0 , (6.29)

where the last inequality follows since δ ∈ (0, 1] and γ is decreasing. Thus, by the concavity

of B, we conclude that (6.28) is at most 0, i.e., ∂2

∂w2
t
Ut(xt, wt) ≤ 0, proving (ii).

The induction hypothesis (iv) on Vt+1 (that V ′′t+1(xt+1) ≤ −γ′(xt+1) for any xt+1) implies

E[V ′′t+1(xt − wt +Rt)] ≤ −E[γ′(xt − wt +Rt)] . (6.30)

Note that the left-hand-side of (6.30) is the same as Z ′′t+1(xt − wt) from the definition of

Zt+1. From (??), the right-hand-side of (6.30) is bounded above by − supw B′′(w), which

in turn is bounded above by −B′′(wt). Thus, (6.30) implies

Z ′′t+1(xt − wt) ≤ −B′′(wt) .

We claim that B′′(wt) + δZ ′′t+1(xt −wt) ≤ 0. To see this, if Z ′′t+1(xt −wt) ≤ 0, then, by the
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concavity of B, B′′(wt) + δZ ′′t+1(xt − wt) is the sum of two non-positive terms; otherwise,

if Z ′′t+1(xt − wt) > 0, then we have δZ ′′t+1(xt − wt) ≤ Z ′′t+1(xt − wt) ≤ −B′′(wt). This

completes the proof of the claim. Then, since γ is decreasing, we obtain from (6.28) that
∂2

∂w2
t
Ut(xt, wt) ≤ 0, proving (ii).

Now, we will prove (iii). Fix xt. Part (ii) shows that Ut(xt, wt) is concave in wt. Since

Part (ii) has now been established we may proceed by assuming that the partial derivative

of Ut with respect to wt is zero at the optimal withdrawal quantity w∗t (xt). (We omit

here the case of the boundary solution w∗t (xt) = 0 for brevity.) ; this case can be argued

by considering two intervals [xt, xt + ε1] and [ε1, ε] separately, where ε1 is the smaller of

min{ε′ ≥ 0 | U ′t(xt + ε′, 0) ≤ 0})

We first consider the case of w∗t (xt) = 0. In this case, since Ut(xt, wt) is concave in wt,

it follows from (6.27) From (6.27),

Since Ut(xt, wt) is concave in wt, by the first order condition and (6.27), w∗t (xt) satisfies

0 = ∂

∂wt
Ut(xt, wt)|wt=w∗t (xt)

= B′(w∗t (xt))− γ(xt − w∗t (xt))− δZ ′t+1(xt − w∗t (xt)) . (6.31)

From (6.27), the above identity and the concavity of B, we obtain

∂

∂wt
Ut(xt + ε, wt)|wt=w∗t (xt)+ε

= B′(w∗t (xt) + ε)− γ((xt + ε)− (w∗t (xt) + ε))− δZ ′t+1((xt + ε)− (w∗t (xt) + ε))

=
[
B′(w∗t (xt) + ε)−B′(w∗t (xt))

]
+B′(w∗t (xt))− γ(xt − w∗t (xt))− δZ ′t+1(xt − w∗t (xt))

≤ 0 .

It implies, by the concavity of Ut(xt+ ε, wt) in wt, the value of wt maximizing Ut(xt+ ε, wt)

should be bounded above by w∗t (xt) + ε, i.e., w∗t (xt + ε) ≤ w∗t (xt) + ε.
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Now, again from (6.27),

∂

∂wt
Ut(xt + ε, wt)|wt=w∗t (xt)

= B′(w∗t (xt))−
{
γ(xt + ε− w∗t (xt)) + δZ ′t+1(xt + ε− w∗t (xt))

}
. (6.32)

We want to show the nonnegativity of this expression. Since (6.29) implies

∂

∂xt

[
γ(xt − wt) + δZ ′t+1(xt − wt)

]
≤ 0 ,

it follows that γ(xt − wt) + δZ ′t+1(xt − wt) is an decreasing function of xt, showing that

γ(xt + ε− w∗t (xt)) + δZ ′t+1(xt + ε− w∗t (xt)) ≥ γ(xt − w∗t (xt)) + δZ ′t+1(xt − w∗t (xt)) .

Thus, we obtain the nonnegativity of (6.32) since

∂

∂wt
Ut(xt + ε, wt)|wt=w∗t (xt)

≥ B′(w∗t (xt))−
{
γ(xt − w∗t (xt)) + δZ ′t+1(xt − w∗t (xt))

}
= ∂

∂wt
Ut(xt, wt)|wt=w∗t (xt)

= 0 ,

where the last equality follows since w∗t (xt) maximizes Ut(xt, wt). which implies that (6.32)

is nonnegative, i.e., ∂
∂wt

Ut(xt + ε, wt)|wt=w∗t (xt) ≥ 0.

To do this, we first claim that (6.32) is bounded below by

B′(w∗t (xt))−
{
γ(xt − w∗t (xt)) + δZ ′t+1(xt − w∗t (xt))

}
. (6.33)
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To prove this claim, observe that, for any y,

Z ′′t+1(y) = E
[
V ′′t+1(y +Rt+1)

]
≤ −E

[
γ′(y +Rt+1)

]
≤ −E

[
γ′(y)

]
= −γ′(y) ,

where the first equality follows from the definition of Zt+1, the first inequality follows from

the induction hypothesis (iv), and the second inequality follows the convexity of γ and the

nonnegativity of Rt+1. Thus, by the nonnegativity of −γ′, we obtain γ′(y) + δZ ′′t+1(y) ≤

0. (If Z ′′t+1(y) ≤ 0, then this sum adds two non-positive numbers; if Z ′′t+1(y) > 0, then

γ′(y) + δZ ′′t+1(y) ≤ γ′(y) + Z ′′t+1(y) ≤ 0.) Then,

0 ≥
∫ xt+ε−w∗t (xt)

xt−w∗t (xt)

[
γ′(y) + δZ ′′t+1(y)

]
dy

=
{
γ(xt + ε− w∗t (xt)) + δZ ′t+1(xt + ε− w∗t (xt))

}
−
{
γ(xt − w∗t (xt)) + δZ ′t+1(xt − w∗t (xt))

}
.

Note that the right-hand-side of the above expression is the difference between (6.33) and

(6.32). Thus, we prove the claim, i.e.,

∂

∂wt
Ut(xt + ε, wt)|wt=w∗t (xt) ≥ B′(w∗t (xt))− γ(xt − w∗t (xt))− δZ ′t+1(xt − w∗t (xt)) .

Now, from the first order condition (6.31), we conclude that the right-hand-side of the above

inequality is zero, and thus, we obtain ∂
∂wt

Ut(xt + ε, wt)|wt=w∗t (xt) ≥ 0.

By the concavity of Ut(xt + ε, wt) in wt, we conclude w∗t (xt + ε) ≥ w∗t (xt). We complete

the proof of (iii).

Finally, since

Vt(xt) = Ut(xt, w∗t (xt)) = B(w∗t (xt))−
∫ xt

z=xt−w∗t (xt)
γ(z)dz + δZt+1(xt − w∗t (xt)) ,
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it follows that

V ′t (xt) = B′(w∗t (xt))w∗t
′(xt)− γ(xt) + γ(xt − w∗t (xt))(1− w∗t

′(xt))

+ δZ ′t+1(xt − w∗t (xt))(1− w∗t
′(xt))

= B′(w∗t (xt))− γ(xt)

−
[
B′(w∗t (xt))− γ(xt − w∗t (xt))− δZ ′t+1(xt − w∗t (xt))

]
(1− w∗t

′(xt)) .

By the first order condition (6.31), the expression inside the square bracket above is zero,

and it follows that

V ′t (xt) = B′(w∗t (xt))− γ(xt) .

Since B is concave and w∗t (xt) is increasing in xt (by (iii)), we obtain

V ′′t (xt) = B′′(w∗t (xt)) · w∗t
′(xt)− γ′(xt) ≤ −γ′(xt) ,

proving (iv).

Appendix 6.C Technical Appendix

The aim of this appendix is to prove, under very reasonable hypotheses, that (1) Vt is twice

differentiable (1) The interchange of expectation and differentiation is justified and (3) the

policy function is differentiable.

(1) and (2) are used in proof of all four parts of Theorem 1 and are therefore critical.

We also note that, for the purposes of our proof, we do not require that the shocks be i.i.d;

instead, the only restriction is that the shocks be Markovian, to be made precise below.

In our proof’s below, we make assumptions regarding (a) existence and (b) continuity
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of V ′′t . We note however that our assumptions are weaker than those in, for instance,

Tsur and Graham-Tomasi [1991] (who outright assume thrice differentiability of Vt) and are

somewhat standard in the literature.

6.C.1 The setup

We will first set up some notation and definitions, before attempting the full justification.

Let (R,F , µ) be the probability space under consideration, X = [x, x] be the state space

(evidently a compact subset of R), W ⊂ X be the “action” space. Denote by X̃ the

transition equation for the state, with X̃ : (X ×W ×R) → X, with R being the space of

“shocks”; thus, X̃ = X̃(xt, wt, Rt). The value function therefore maybe written as Vt : X →

R and note that

∂Vt+1(xt − wt +Rt)
∂xt

= V ′t+1

∂Vt+1(xt − wt +Rt)
∂wt

= −V ′t+1

∂2Vt+1(xt − wt +Rt)
∂w2

t

= V ′′t+1

if the said derivatives exist.

We next define the relevant integrals and begin with the simpler case of i.i.d shocks and

later indicate the modification required to accommodate non-iid shocks . Consider first the

second component of the RHS of the recursion in equation (1), E[Vt+1(xt−wt+Rt)] where

the expectation is w.r.t the distribution of the random variable R. Begin by observing that,

by assumption, the distribution of R is independent of xt, wt, and is, in addition, i.i.d.

Thus, the integral may be written as follows:

E(Vt+1(xt, wt;R)) =
∫
R
Vt+1(xt − wt +R)µ(dR) (6.34)
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We now define

Zt+1(xt, wt) := E(Vt+1(xt, wt;R)) =
∫
R
Vt+1(xt − wt +R)µ(dR) (6.35)

and observe that (if the relevant derivatives exist and the interchange is justifiable)

∂Zt+1
∂wt

=
∫
R

∂Vt+1(xt − wt +R)
∂wt

µ(dR) =
∫
R
−V ′t+1µ(dR) = −E(V ′t+1) (6.36a)

∂2Zt+1
∂w2

t

=
∫
R

∂2Vt+1(xt − wt +R)
∂w2

t

µ(dR) =
∫
R
V ′′t+1µ(dR) = E(V ′′t+1) (6.36b)

We will also assume, as necessary, that X, W and X ×W are either compact or open.

6.C.2 Differentiation

We will now prove, under weak conditions, that Vt has two derivatives.

First Derivative Note that the a.e. differentiability of Vt(xt) follows from the monotonic-

ity of Vt(.), which is true by the induction hypothesis. In more detail, from Royden

[1988][pp 100], we have that Vt is a.e. (w.r.t µ) differentiable and further, that the

derivative V ′t is measurable (w.r.t F).

Second derivative We note that there appear to be no general results, for the discrete-

time model with non-concave value function, on first or second differentiability of the

value function in terms of the primitives of the model(in contrast with the case for

the continuous time model). We therefore take the route of appealing to standard

theorems for the first derivative which guarantee existence of the second derivative.

Most theorems require some form of boundedness, and we collect these below. If V ′t

satisfies any of the conditions below, then V ′t is continuously differentiable.

a V
′
t is absolutely continuous on X (Royden [1988][pp 109])

b V
′
t is monotonic
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c V
′
t is of bounded variation

We are thus led to either simply assume the existence of V ′′t or to assume that V ′t

satisfies one of the above three conditions.

6.C.3 Interchange arguments

We will first define a local definition of integrability. The relevant probability spaces used

below have already been defined above, with U = (X ×W ).

Definition 6.C.1. If a function f : (U × R) → R is F-measurable, for each u ∈ U and

continuous in u for each R ∈ R it is said to be “caratheodory”.

Definition 6.C.2. If f is caratheodory, and ∀u ∈ U , ∃ a function gu in L1(R,F , µ) s.t.

∀y in N(u), an open neighbourhood of u, |f(y,R)| ≤ g(R) ∀R ∈ R, then f is said to be

Locally uniformly Integrably bounded.

Remark 6.C.3. Note that f need not be bounded in u for it to be LUIB.

Another important property of LUIB functions are continuity of the integral. Let

h(u) :=
∫
R
f(u,R)µ(dR) (6.37)

where f is LUIB.

Claim 6.C.4. h is continuous in u, where h is defined above.

Proof. Follows from Billingsley [2008][Theorem 16.8(i), pp 212]

We will first state an important theorem which will allow us to claim, under the condi-

tions above, the validity of the interchange. The theorem maybe found proved, for instance,

in Aliprantis and Burkinshaw [1998][pp 193-4, Theorem 24.5], Billingsley [2008][Theorem
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16.8,pp 222] or Cramer [1999][pp 67-68], and is an application of Lebesgue’s dominated con-

vergence theorem. Define Dif(u) to be the partial derivative of f w.r.t the ith component

of the vector u.

Theorem 6.C.5. Let h be as defined in equation (6.37), f : (U ×R)→ R be Caratheorody.

If for each i and each R, Dif exists and is continuous in u ∀u ∈ U and if, in addition,

Dif(u,R) is LUIB, then h is continuously differentiable and

Dih(u) =
∫
R
Dif(u,R)µ(dR) (6.38)

Proof. The proof follows from Cramer [1999][pp 67-68].

Remark 6.C.6. Note that we do not require that either of f , Dif be bounded in u for a

given R but we do impose that they are integrable in R for each u ∈ U .

Assumption 6.C.7. Continuity and integrable boundedness of V ′t+1

(i) V ′t+1 is LUIB

(ii) V ′t+1 is continuous in xt (we note that this assumption is redundant when V ′′t exists

but is reported here only for completeness)

Assumption 6.C.8. Continuity and integrable boundedness of V ′′t+1

(i) V ′′t+1 is LUIB

(ii) V ′′t+1 is continuous in xt

Claim 6.C.9. Identify u with (xt, wt), Zt+1 with h, Vt with f , note that V ′t+1 exists µ-a.e.(by

Theorem 1 (i)). Then, under Assumption 1,the interchange in equation (6.36a) is valid i.e

we have that
∂Z(u)
∂wt

= −E(V ′t+1)
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Claim 6.C.10. Identifying u with (xt, wt),
∂Z(u)
∂wt

with h, V ′t with f , noting that V ′′t+1 exists

µ-a.e.(by assumption) we have that under Assumption 2, the interchange in equation (6.36b)

is valid i.e we have that

∂2Z(u)
∂w2

t

=
∂

(
∂Z(u)
∂wt

)
∂wt

=
∂(−E(V ′t+1))

∂wt
= E(V ′′t+1)

In the claims above, we here make the added assumption that V ′′t is continuous, which

cannot directly be justified by an appeal to the II of Littlewood’s principles (since without

assuming that V ′′t is a.e bounded, it is not possible to apply Luzin’s theorem on which the

II principle is based).

Remark 6.C.11. We note that all of the results carry over to a non-iid Markovian setting. In

order to minimise notation, we will simply point out the following: if the distribution of Rt

is independent of xt, wt and Rt is Markovian i.e. P(Rt+1 ∈ H|{Rs}ts=0) = P(Rt+1 ∈ H|Rt)

(where H ⊂ R), then, letting Q(R, dR′) denote the transition function, we may write the

integral in (6.34) as

E(Vt+1(xt − wt +Rt)) =
∫
R
Vt+1(xt − wt +R)Q(R, dR′) (6.39)

All of the results on interchange carry over without any modification (given standard as-

sumptions on Q(., .). Details on this approach for the current model maybe obtained from

Stokey and Lucas [1989][Chapter 8]).



chapter 7

Conclusion and Implications
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7.1 Extensions

The five chapters in the dissertation have addressed three different issues. We first indicate

a few extensions, both ongoing and future work, which constitute a natural progression

from the work undertaken here. We finally conclude by pointing out some of the broader

implications of the work undertaken here.

7.1.1 Quantifying climate change impact on agriculture

Chapter 2 has been focused on quantifying the impact of climate change on crop yields, for

India. While this analysis, arguably, represents an advance in understanding the distribution

of the impact as well as on utilizing sub-seasonal features of monsoon variability, there is

an important issue which this analysis, and related literature, has been largely unsuccessful

in addressing. First, much of the yield increases associated with the “Green Revolution”

have been driven by expansion of irrigation facilities. Yet, both the Agriculture and the

Economics literatures (Aggarwal and Mall [2002]; Guiteras [2008]; Kumar and Parikh [2001];

Sanghi and Mendelsohn [2008]) have acknowledged but largely not dealt with the issue. In

the case of Agricultural modeling literature, the models used inherently are incapable of

accommodating such changes, while in the case of the Economics literature, the omission

has been due both to the reduced form nature of the models, as well as due to availability

of data. This is one of the reasons for exclusion of irrigated areas1 from studies even in the

developed nations (Deschenes and Greenstone [2007]; Schlenker and Roberts [2009]).

Yet, given that a large part of the developing nations are dependent on irrigated agri-

culture for food production, it is essential to analyze the relationship between irrigation and

1Yet another reason is the debate within the Ricardian framework regarding inclusion of irrigation and
its potential, and the interpretation of irrigation in this framework. See Cline [2007] for a discussion and
Schlenker et al. [2005] for an illustration of the importance of accounting for irrigation in a cross-section
setting.
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yield in more detail. In particular, the question of importance is the extent to which irriga-

tion can act as a buffer in mitigating the impact of temperature increases. Two difficulties

loom prominently with accounting for irrigation in studies of climate change impacts on

agriculture; first, and foremost, it is not clear how different irrigation systems will evolve

in response to altering climate and second, for the developing nations, detailed unit (dis-

trict/county) level data regarding current irrigation is unavailable. However, for certain

states in India, it is possible to reconstruct series of irrigated areas at the district level, and

to pair with a repeated-cross section on groundwater levels, to obtain such a relationship.

7.1.2 Precursors and prediction regarding rainfall extremes

Our analysis in Chapters 3-5 dealt with understanding the nature of changes in extreme

rainfall events as well as in initiating the study of large-scale precursors to such events.

Yet, these have been mere first steps in a more detailed understanding of the precursors of

extreme rainfall events. In particular, there are two challenges which still remain. First, the

analysis in Chapter 5 and in related literature, on understanding of larger-scale precursors

to rainfall extremes, is nascent and an important methodological challenge faced is extract-

ing spatial patterns from gridded (station) data. Second, relating such large-scale spatial

(and spatio-temporal) patterns to climate precursors is a challenging task, and much work

remains to be done on this aspect.

Initial results on spatial patterns in extreme events indicate that much of the coherence,

in both amplitude of reconstructed changes as well as in direction, exists outside, or at the

boundaries, of the “core monsoon” region. This result is intriguing since much work on

Indian monsoon is focused on this region, both for extremes as well as for more moderate

events. If coherent signals exist outside of this region only, then it not only calls into

question the intense focus on this particular region but also raises the possibility of improved

prediction in the regions outside the “core monsoon”, some of which are also quite flood-
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prone.

7.2 Implications of our results

Climate Change Mitigation Policy

The impact of climate change on agriculture is a matter of some debate; yet, for sub-tropical

nations such as India, a consensus appears to have developed around a significant negative

impact. Given the complexity of the issue, there is not a similar consensus regarding the

geographical and population-based distribution of its impact. Attempts, such as those in

Chapter 2, to quantify such distributional implications on district-level units are of signif-

icant importance in understanding and designing policies to mitigate the adverse impacts

of climate change. In the context of the debate regarding mitigation strategies, therefore,

this type of analysis provides a basis for regional assessment of agricultural strategies, much

of which (for the developing world) involves more investment in better crop varieties and

irrigation to buffer increased temperatures.

Yet, the analysis above has been incomplete, in that they do not investigate the pop-

ulation impacts of climate change. Since a given change in temperature affects different

economic sectors and individuals in these sectors differently, it is not only important to

know the aggregate losses suffered; it is equally important to know who bears these losses.

A recent study by Jacoby et al. [2011] provides a compelling picture of the rural landless

bearing the largest proportion of the cost, due to the rising prices for cereals. Further,

among the implications of such a study is, at first sight, the counter intuitive one, that

if the objective is protecting the poor from climate change, a focus on helping

farmers may be misplaced.... Nevertheless, a better policy in this respect might

be to reduce the share of rural income derived from climate sensitive employment

([Jacoby et al., 2011, pp 28], emphasis added). While it is definitely possible to take excep-
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tion to parts of the statement, the important point is that the same estimate of agricultural

impacts can lead to very different policy choices, once the distributional implications are

taken into account. To the extent that distributional (both in space and populations) im-

plications are substantial, the exercise of quantifying impacts need not be thought of as

guiding policy towards the given goal of sectoral intervention; rather, in the case of devel-

oping nations, they may also be viewed as meaningfully allowing a more optimal choice of

the activities undertaken toward mitigation of such impacts.
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