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ABSTRACT 

MicroRNA Dysregulation in Neuropsychiatric Disorders and Cognitive Dysfunction 

Pei-Ken Hsu 

MicroRNAs (miRNAs) are evolutionarily-conserved small non-coding RNAs that are important 

posttranscriptional regulators of gene expression. Genetic Variants may cause microRNA dysregulation 

and the concomitant aberrant target expression. The dysregulation of one or a few targets may in turn 

lead to functional consequences ranging from phenotypic variations to disease conditions. In this thesis, I 

present our studies of mouse models of two human genetic variants − a rare copy number variant (CNV), 

22q11.2 microdeletions, and a common single nucleotide polymorphism (SNP), BDNF Val66Met. 22q11.2 

microdeletions result in specific cognitive deficits and high risk to develop schizophrenia. Analysis of 

Df(16)A
+/–

 mice, which model this microdeletion, revealed abnormalities in the formation of neuronal 

dendrites and spines as well as microRNA dysregulation in brain.  We show a drastic reduction of miR-

185, which resides within the 22q11.2 locus, to levels more than expected by a hemizygous deletion and 

demonstrate that this reduction impairs dendritic and spine development.  miR-185 targets and represses, 

through an evolutionary conserved target site, a previously unknown inhibitor of these processes that 

resides in the Golgi apparatus. Sustained derepression of this inhibitor after birth represents the most 

robust transcriptional disturbance in the brains of Df(16)A
+/−

 mice and could affect the formation and 

maintenance of neural circuits. Reduction of miR-185 also has milder effects on the expression of a group 

of Golgi-related genes. One the other hand, BNDF Val66Met results in impaired activity-dependent 

secretion of BDNF from neuronal terminals and affects episodic memory and affective behaviors. We 

found a modest reduction of miR-146b which causes derepression of mRNA and/or protein levels of a few 

targets. Our findings add to the growing evidence of the pivotal involvement of miRNAs in the 

development of neuropsychiatric disorders and cognitive dysfunction. In addition, the identification of key 

players in miRNA dysregulation has implications for both basic and translational research in psychiatric 

disorders and cognitive dysfunction.  



i 

 

Table of Contents 

Chapter I − Tiny Regulators with Profound Impact in Neuropsychiatric Disorders ix 

1.1 MicroRNAs-mediated Regulation ..................................................................................................... 1 

1.2 Altered microRNA Expression and Function in Neuropsychiatric Disorders ............................. 3 

1.2.1 Schizophrenia .............................................................................................................................. 3 

1.2.2 Autism Spectrum Disorders ......................................................................................................... 8 

1.2.3 Rett Syndrome ........................................................................................................................... 10 

1.2.4 Fragile X Syndrome ................................................................................................................... 12 

1.2.5 Tourette's Syndrome .................................................................................................................. 13 

1.2.6 Down Syndrome ........................................................................................................................ 14 

1.3 Potential Mechanistic Connections between microRNA Dysregulation and  

Neuropsychiatric Disorders ........................................................................................................... 15 

1.3.1 Insights from Global Disruption of miRNA Biogenesis and Action ............................................ 15 

1.3.2 Individual miRNAs Modulate Dendritic Complexity and Spine Morphology in Neurons ............ 16 

1.3.3 Individual miRNAs Modulate Neurogenesis, Neuronal Proliferation, Migration and  

Integration ................................................................................................................................. 18 

1.3.4 Individual miRNAs Modulate Neuronal Electrophysiological Properties in Response to 

Neuronal Activity ....................................................................................................................... 20 

1.4 Summary ........................................................................................................................................... 20 

1.5 References ........................................................................................................................................ 24 

Chapter II − A Major Downstream Effector of MicroRNA Dysregulation in  

22q11.2 Genomic Losses ...................................................................... 36 

2.1 Introduction ...................................................................................................................................... 36 

2.1.1 22q11.2 Microdeletions and Schizophrenia ............................................................................... 36 

2.1.2 A Mouse Model of 22q11.2 Microdeletion ................................................................................. 37 

2.1.3 miRNA Dysregulation in of 22q11.2 Microdeletion Mouse Model ............................................. 39 

2.1.4 In this Chapter ............................................................................................................................ 41 



ii 

 

2.2 Results .............................................................................................................................................. 41 

2.2.1 A Drastic Reduction of miR-185 Levels in Df(16)A
+/– 

Mice ........................................................ 41 

2.2.2 A Primary Transcriptional Consequence of 22q11.2 Genomic Losses ..................................... 43 

2.2.3 2310044H10Rik as a Major Downstream Target of miRNAs Dysregulated in  

Df(16)A
+/– 

Mice .......................................................................................................................... 45 

2.3 Discussion ........................................................................................................................................ 51 

2.3.1 CNV-associated miRNA Dysregulation ..................................................................................... 51 

2.3.2 Convergent Downregulation of miRNAs in Schizophrenia Patients and Df(16)A
+/– 

Mice .......... 53 

2.3.3 Impact of Modest Dysregulation of miRNAs .............................................................................. 54 

2.3.4 Not all miRNA Targets are Created Equal? ............................................................................... 55 

2.4 Summary ........................................................................................................................................... 56 

2.5 Methods ............................................................................................................................................ 63 

2.6 References ........................................................................................................................................ 69 

Chapter III − Dysregulation of A Novel Inhibitor of Dendritic and Spine 

Morphogenesis In Df(16)A+/– Mice ........................................................ 75 

3.1 Introduction ...................................................................................................................................... 75 

3.1.1 miRNA Regulation of Dendritic Arborization .............................................................................. 76 

3.1.2 miRNA Regulation of Spine Morphogenesis ............................................................................. 77 

3.1.3 Structural Alterations in Df(16)A
+/–

  Neurons ............................................................................. 79 

3.1.4 In this Chapter ............................................................................................................................ 80 

3.2 Results .............................................................................................................................................. 81 

3.2.1 Generation of Mirta22 Specific Antibody ................................................................................... 81 

3.2.2 Mirta22 is a Neuronal Protein Residing in the Golgi Apparatus ................................................ 81 

3.2.3 Coordinated Mild Dysregulation of Golgi-related Genes due to miR-185 Reduction ................ 85 

3.2.4 Altered miR-185 Levels Contribute to Structural Alterations of Df(16)A
+/−

 Neurons.................. 86 

3.2.5 Elevation of Mirta22 Levels Inhibits Dendritic and Spine Development in  

Df(16)A
+/–

 Neurons .................................................................................................................... 89 



iii 

 

3.3 Discussion ........................................................................................................................................ 92 

3.3.1 What do We Know about Mirta22 Protein?................................................................................ 92 

3.3.2 A Neuronal Inhibitor Failed to be Repressed ............................................................................. 94 

3.3.3 Role of miR-185, Mirta22 and Golgi Apparatus in Regulating Neuronal Morphology ............... 95 

3.3.4 Implication for Behavioral and Cognitive Impairments in 22q11.2DS ....................................... 98 

3.4 Summary ........................................................................................................................................... 99 

3.5 Methods .......................................................................................................................................... 109 

3.6 References ...................................................................................................................................... 113 

Chapter IV − MicroRNA and Target Dysregulation in  a Mouse Model of BDNF Val66Met SNP ... 120 

4.1 Introduction .................................................................................................................................... 120 

4.1.1 BDNF Val66Met Single Nucleotide Polymorphism .................................................................. 121 

4.1.2 BDNF Val66Met SNP and Mood Disorders ............................................................................. 121 

4.1.3 BDNF Val66Met SNP and Schizophrenia................................................................................ 123 

4.1.4 BDNF Val66Met SNP and Cognitive Function ........................................................................ 124 

4.1.5 Mouse Models of BDNF Val66Met SNP .................................................................................. 125 

4.1.6 BDNF and MicroRNAs ............................................................................................................. 127 

4.1.7 In this Chapter .......................................................................................................................... 129 

4.2 Results ............................................................................................................................................ 130 

4.2.1 miRNA Expression Profile of  BDNF
Val

 and BDNF
Met

 Mouse Lines ......................................... 130 

4.2.2 miR-146b and miR-337-3p are Downregulated in Met/Met Mice ............................................ 131 

4.2.3 BDNF Acutely Induces miR-146b and miR-337-3p Expression in Met/Met Mice .................... 132 

4.2.4 Search for miR-146 Targets in Hippocampus.......................................................................... 132 

4.2.5 Per1 and Npas4 are Regulated by miR-146b .......................................................................... 134 

4.2.6 Irak1 is a Translationally Repressed Target of miR-146 ......................................................... 136 

4.3 Discussion ...................................................................................................................................... 137 

4.3.1 BDNF-mediated Regulation of miRNAs ................................................................................... 138 



iv 

 

4.3.2 BDNF SNP and miRNA Expression ........................................................................................ 139 

4.3.3 Is miR-146b Transcriptionally Activated by BDNF? ................................................................. 140 

4.3.4 Functional Implication of miRNA-146b Dysregulation due to Val66Met SNP ......................... 140 

4.4 Summary ......................................................................................................................................... 142 

4.5 Methods .......................................................................................................................................... 147 

4.6 References ...................................................................................................................................... 151 

Chapter V − General Discussion ....................................................................................... 164 

5.1 Summary of results ....................................................................................................................... 164 

5.1.1 Elucidation of MicroRNA-Target Dysregulation in a Pathogenic CNV –  

22q11.2 Microdeletions ........................................................................................................... 164 

5.1.2 miR-185 Upregulation is an Important Component of MicroRNA Dysregulation due to  

Gene X Gene Interaction ........................................................................................................ 164 

5.1.3 Mirta22 is a Major Downstream Effector of 22q11.2-associated MicroRNA Dysregulation .... 165 

5.1.4 Mirta22 is a Novel MicroRNA-regulated Inhibitor of Neuronal Morphogenesis ....................... 165 

5.1.5 MicroRNA Dysregulation due to BDNF Val66Met SNP ........................................................... 166 

5.1.6 MicroRNA Dysregulation as an Integral Part of Pathophysiology of Psychiatric Disorders .... 166 

5.2 MicroRNA Dysregulation due to Rare and Common Genetic Variants .................................... 166 

5.2.1 Models of Genetic Architecture of Neuropsychiatric Disorders ............................................... 166 

5.2.2 MicroRNA Alterations due to Common Variants are Generally Modest .................................. 169 

5.2.3 MicroRNA Dysregulation due to Rare Variants can be  Pervasive and Drastic ...................... 170 

5.3 Concerted Regulation of Functionally-related Genes by MicroRNAs ...................................... 171 

5.3.1 Concurrent Regulation Manages the Output of a Signaling Pathway ..................................... 171 

5.3.2 Study of MicroRNA-regulated Transcriptomic Network may Pinpoint Molecular Pathology ... 172 

5.3.3 A Mechanism for Synchronous Changes in Expression of Functionally Related Targets ...... 173 

5.3.4 Delineation of Specific Functional Pathways Controlled by Genuine Targets ......................... 173 

5.4 Clinical Implications for Diagnosis and Treatment .................................................................... 174 

5.4.1 MicroRNA-related Signatures as Diagnostic Biomarkers ........................................................ 174 



v 

 

5.4.2 Normalization of MicroRNA Expression using Recombinant Adeno-associated Virus ........... 175 

5.4.3 Systemic Application of MicroRNA Mimics or Antagonists ...................................................... 175 

5.4.4 Discovering Small Molecules that Neutralize MicroRNA-related Dysregulation ...................... 176 

5.4.5 Induced Pluripotent Stem Cell (iPSC) as a Therapeutic Means .............................................. 176 

5.4.6 Identification of Genuine Targets for Constructing Specific Therapies ................................... 178 

5.5 Conclusion ..................................................................................................................................... 178 

5.6 References ...................................................................................................................................... 180 

Appendix 1. Sequence of primers and probes used in qRT-PCR ........................................... 186 

 

  



vi 

 

List of Figures 

Figure 1.1   MicroRNA Biogenesis   2 

Figure 2.1   Mouse Models of 22q11.2 Microdeletions 39 

Figure 2.2   Behavioral and Cognitive Phenotypes of Df(16)A+/− Mice 40 

Figure 2.3   MicroRNA Dysregulation due to Dgcr8 Deficiency in Df(16)A+/− Mice 41 

Figure 2.4   Dgcr8 Levels in Df(16)A+/– Mice during Brain Development 43 

Figure 2.5   Drastic Reduction of miR-185 Expression in Df(16)A+/– Mice 43 

Figure 2.6   2310044H10Rik (Mirta22) is Robustly Upregulated in the Brain of Df(16)A+/– Mice 45 

Figure 2.7   Generation of Df(16)B and Dp(16)B 47 

Figure 2.8   2310044H10Rik (Mirta22) is the Major Downstream Target of the miRNA 

Dysregulation 48 

Figure 2.9   miR-185 Directly Targets and Represses 2310044H10Rik (Mirta22) 49 

Figure 2.10 Reduction of miR-485 and miR-491 Expression in Df(16)A+/– Mice 51 

Figure 2.11 Convergent Downregulation of miRNAs in Schizophrenia Patients  

and Df(16)A+/– Mice 54 

Figure 3.1   Genomic Structure, Neuronal Expression and Subcellular Localization of  

2310044H10Rik (Mirta22) 83 

Figure 3.2   Specificity of 2310044H10Rik (Mirta22) Antibody 84 

Figure 3.3   Coordinated Mild Dysregulation of Golgi-related Putative miR-185 Targets  

in Df(16)A+/– Mice 85 

Figure 3.4   miR-185 Reduction Results in Age-specific Coordinated Dysregulation of  

Golgi-related Genes 86 

Figure 3.5   Reduced miR-185 Levels Contribute to Structural Alterations of Df(16)A+/−  

Neurons 88 

Figure 3.6   miR-185 Levels Affect Dendritic and Spine Development 90 



vii 

 

Figure 3.7   Elevated 2310044H10Rik (Mirta22) Levels Contribute to Structural Alterations  

of Df(16)A+/− Neurons 91 

Figure 3.8   2310044H10Rik (Mirta22) Levels Affect Dendritic and Spine Development 92 

Figure 3.9   MicroRNAs Control Neuronal Morphogenesis through Cytoskeletal Regulation 97 

Figure 4.1   Generation of A Mouse Model of BDNF Val66Met SNP  127 

Figure 4.2   BDNF-induced MicroRNA Regulation in Neurons 129 

Figure 4.3   MicroRNA Alterations in the Hippocampus of BDNFMet/Met versus BDNFVal/Val Mice 131 

Figure 4.4   BDNF-induced Expression of miR-146b in Hippocampal Slices 133 

Figure 4.5   Identification of miR-146b Targets using Luciferase Assays 134 

Figure 4.6   Per1 and Npas4 Expression is Regulated by miR-146b 136 

Figure 4.7   Elevation of Irak1 Protein Levels in BDNFMet/Met Mice 137 

Figure 4.8   Dysregulation of miR-146b and Its Targets due to BDNF Val66Met SNP   138 

Figure 5.1   The Pattern of MicroRNA Dysregulation Emerging due to 22q11.2 Deletions 166 

Figure 5.2   MicroRNA Dysregulation as Liability Imposed by Genetic Variants 169 

  



viii 

 

List of Tables 

Table 1.1   MicroRNA Dysregulation in Psychiatric Disorders from Profiling Data 22 

Table 1.2   Psychiatric Disorders-associated Genetic Variants at MicroRNA or  

MicroRNA-biogenesis Gene Loci  24 

Table 2.1   Examples of Phenotypic Correlation between 22q11.2DS and Df(16)A+/− Mice 58 

Table 2.2   Transcripts outside the 22q11.2 Syntenic Region Misregulated in a  

Reciprocal Manner  59 

Table 2.3   Transcripts outside the 22q11.2 Syntenic Region Misregulated in a  

Reciprocal Manner in both Prefrontal Cortex and Hippocampus  62 

Table 2.4   Three Factor ANOVA of the Impact of miR-185, miR-485 and miR-491 on  

Luciferase Activity 63 

Table 3.1   MicroRNA Regulation of Dendritic Complexity 102 

Table 3.2   MicroRNA Regulation of Spine Growth and Maturation 103 

Table 3.3   Altered Expression of Predicted miR-185 Targets with Golgi-related Functions 104 

Table 4.1   Significantly Altered MicroRNAs in the Hippocampus of BDNFMet/Met Mice 145 

Table 4.2   Candidate miR-146b Targets Selected for Validation 146 

Table 4.3   Expression Levels of Candidate miR-146b Targets and Non-Targets in The 

Hippocampus of BDNFMet/Met Mice 147 

  



ix 

 

Acknowledgements 

“If I have seen further it is by standing on ye shoulders of Giants.”   − Isaac Newton 

During my journey through graduate school, I was lucky enough to have many Giants that saw 

me through my maturation as a scientist and as a person.  I am immensely grateful to all of you that stood 

by me along the way, offering my love, support and guidance. If I ever achieve anything, it is because of 

you. So a big “Thank You” to all of you.  

I would like to thank Drs. Joseph Gogos, Maria Karayiorgou and Bin Xu, my three wise mentors 

that are the most “critical” people in my development. I thank Joseph for including me in this diverse and 

exciting lab to work with so many incredible people, including Karine Fenelone, Heather McKellar, Xander 

Arguello, Becky Levy, Merilee Teylan, Scarlet Woodrick, Liam Drew, Wei-Sung Lai, Laura Murillo, Kim 

Stark, Darshini Mahadevia, Yan Sun, Rozanna Yakub, Megan Sribour, Florence Chaverneff, Mirna Kvajo, 

Alefiya Dhilla Alberts, Ziyi Sun, Sander Markx, Gregg Crabtree, Tim Spellman, Dionne Swor, Aude-Marie 

Lepagnol-Bestel, Jun Mukai, Constance Zou, Luxiang Cao, Brenda Huang, Naoko Haremaki, Allie 

Abrams-Downey, Sara Kishinevsky, Ruby Hsu, Talia Atkin, Andrew Rosen, Ken Yagi, Arielle Torres and 

Ellen Whitwell. It is hard to describe how positive (and negative) impact my dear labmates have shaped 

me but it is beyond doubt that through the share of love of science (ya, that’s right!), we had amazing time 

together and we will be friends forever.  

I would also like to thank members of Amy MacDermott lab, including Amy, Donald Joseph, 

Damian Williams, Chi-Kun Tong, Claire Daniele, Papiya Choudhury, Tomo Takazawa, Gregory Scherrer. 

I always feel like a genuine member of the MacDermott lab and it is a privilege to be part of you in all the 

data and journal clubs andall the fun we shared.  

I thank my committee Brian McCabe, Hynek Wichterle and Tao Sun for consistently giving me 

different prospectives in scientific reasoning. I am also truly grateful of the program director Ron Liem and 

administrator Zaia Sivo for making sure that I am alright and on the right track from time to time.  

My Taiwanese fellows have been my most supportive friends since I started living abroad and 

you really make it feel like home. I would especially acknowledge Professor Jun-An Chen, Jung-Wei Fan, 

Chun-The Lee, Wei-Jen Chung, Chin-Hao Chen, Ya-Ting Lei, Chiung-Ying Chang, Wei-Feng Yen, Ting-



x 

 

Chun Liu, Huan-Yi Shen, JJ & JJ Chen (my unofficial God daughters), Hua-Sheng Chiu, Ming-Chun Lai, 

Yuan-Ping Huang, Brenden Chen, Wei-Nan Lian, Che-Hung Shen, Ho-Chou Tu, Li-Chung Cheng, Ji-Wu 

Tsai. I would also like to thank Ian Orozco, Tahilia Rebello, Priscilla Chan, Hideaki Yano, Jon 

Mandelbaum, Rachid Skouta for the friendship and encouragement along the way.  

I would like to thank Wan-Jin Lu for all the love and support you gave me. You are a wonderful 

person I wish you all the best in your future endeavors.  

I can’t express my gratitude for Ruei-Ying Tzeng who came with me to United States together 

and was my greatest friend and supporter in the first 5 years. Sometimes you don’t know what you got ‘til 

it is gone. I can only look forward and wish the best for both of us. There will be a rainbow after the rain.  

I am who I am for a reason, and the reason is my family. I owe too much to my family for 

everything I have. I understand it is not easy to care for and support me sometimes because we are miles 

away but deep down inside I know we are always together wherever we are and whatever we do. So 

thank you Mom, Dad and Sister. Thank you.  

Finally, I would like to dedicate this thesis to all who love me and all I love. Love makes this world 

a better place.  

 



1 

 

Chapter I 

Tiny Regulators with Profound Impact in  

Neuropsychiatric Disorders 

1.1 MicroRNAs-mediated Regulation 

Non-coding RNAs (ncRNAs), transcribed RNAs that are not further translated into proteins, play 

an important regulatory role in shaping protein production and are an integral part of the epigenetic 

network (Bian and Sun, 2011; Esteller, 2011). One class of ncRNAs that has been extensively studied in 

recent years is miRNAs, which are about 22 nucleotides long (Bartel, 2004). MicroRNAs regulate gene 

expression primarily through post-transcriptional gene silencing by complementary binding to their target 

mRNAs (Lewis et al., 2003; Pasquinelli, 2012). The interaction of miRNAs with their target mRNAs is 

largely through a 5’ seed region of the miRNA and one or more binding sites in the 3’UTR of the targets, 

though it is shown that the interaction can be mediated through other features or regions, such as binding 

sites in the open reading frame (Chi et al., 2012; Pasquinelli, 2012). This interaction directs miRNA-

associated complexes to mediate translational repression and/or mRNA degradation (Prosser et al., 

2011). Since the interaction of miRNAs and their mRNA targets are primarily determined by the short 

seed region encompassing only 6-8 nucleotides, one miRNA typically has multiple mRNA targets (Lewis 

et al., 2005) while several miRNAs can concertedly bind on the same mRNA target. Therefore, miRNAs 

can act in combinatorial or synergistic fashion by integrating different intracellular signals and/or 

coordinating several different signaling pathways at once (Krek et al., 2005). Furthermore, the production 

of miRNAs is regulated at various steps during biogenesis, both at transcription and post-transcriptional 

levels (Figure 1.1) (Krol et al., 2010b). Importantly, miRNAs can incorporate into different RNA-binding 

protein complexes, which provide information for subcellular localization and control the accessibility of 

potential targets at different intracellular locations. Genuine interaction between a miRNA and its targets 

can be experimentally detected and validated by either indirect methods, such as luciferase assays or by  
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Figure 1.1 MicroRNA Biogenesis. Primary miRNA transcripts (pri-miR) are mostly transcribed by RNA polymerase 

II. Pri-miR is cleaved by “microprocessor” Drocha−DGCR8 to become precursor (pre-miR) before exiting the nucleus 

by Exportin-5−Ran-GTP. The hairpin of pre-miR is cleaved by a complex including the RNase III enzyme Dicer, 

double-strand binding protein TARBP2 and PACT. The miR-miR* duplex recruits Ago2 which help loading the 

functional strand into the RNA-induced silencing complex (RISC). The complementary binding between miRs and 

sites at the 3’UTR of target mRNAs will lead to three possible scenarios: (1) Initiation and elongation of mRNA 

translation is repressed, (2) mRNA is cleaved by Ago2 and degraded by exosome and Xrn1 RNases, (3) the miR-

mRNA−RISC complex  is translocated to P-bodies. This stored mRNA is later destroyed or translated after releasing 

from P-body. Notably, P-body and GW182 bodies can be transported to various cellular locations.  

more direct approaches such as high-throughput sequencing of RNA isolated by crosslinking and 

immunoprecipitation (HITS-CLIP) (Chi et al., 2009) or tandem affinity purification of miRNA target mRNA 

(TAP-Tar) (See reviews by (Takada and Asahara, 2012; Thomson et al., 2011)). More recently a resource 

of mouse targeted miRNA knockout embryonic stem cells has been generated (Prosser et al., 2011). 

Studies utilizing such approaches and resources are poised to provide a comprehensive understanding of 

the role that miRNAs play in animal development and disease.   

Overall, miRNA provide great control flexibility by integrating signals from different pathways 

under a variety of physiological conditions and, therefore, can have a great impact on neuronal function 

and communication (Cao et al., 2006). Along these lines, it is becoming increasingly clear that miRNAs 

have a profound impact on cognitive function and are involved in the etiology of several neuropsychiatric 

disorders, including schizophrenia, mental retardation (or intellectual disability) as well as autism and 

autism spectrum disorders. In this Chapter, I will summarize the general role of miRNA dysregulation in 
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neuropsychiatric conditions, based on evidence obtained from human and animal model studies, I will 

then discuss the potential effect of altered miRNAs on various neural processes that can impact 

psychiatric disease pathophysiology. 

1.2 Altered microRNA Expression and Function in Neuropsychiatric Disorders 

Accumulating evidence from human and animal studies strongly suggests that alterations in 

miRNA regulation or function associate with the genetic architecture of neuropsychiatric disorders 

including schizophrenia, autism and various forms of intellectual dysfunction. Our understanding the 

involvement of miRNAs in neuropsychiatric disorders has provided invaluable insights into the etiology 

and pathophysiology of these mental illnesses and taken us a step forward toward better prognosis and 

effective treatment.  

1.2.1 Schizophrenia 

Schizophrenia is one of the most common psychiatric disorders with a prevalence of ~1% in most 

of the populations studied worldwide (Xu et al., 2011). Schizophrenia is a disabling disease, which is 

characterized by positive (psychotic) symptoms such as hallucinations, delusions, and disorganized 

behavior, negative symptoms such as social withdrawal and apathy, as well as increasingly recognized 

cognitive deficits (Arguello et al., 2010). Classical family, twin, and adoption studies estimating the 

recurrence risk to relatives have provided direct evidence for a genetic etiology. The risk of developing 

schizophrenia increases exponentially with the degree of genetic relatedness to a patient and reaches 

~50% for a monozygotic twin (Sullivan et al., 2003). 

MicroRNA profiling in postmortem brain tissues from individuals with schizophrenia has shown 

alterations in the levels of many miRNAs (Beveridge et al., 2009; Kim et al., 2010; Moreau et al., 2011; 

Perkins et al., 2007; Santarelli et al., 2011) (Table 1.1, see also below). However miRNA dyregulation in 

the disease brain is not specific to schizophrenia and has been described in a variety of other psychiatric, 

neurodevelopmental and neurological disorders (Abu-Elneel et al., 2008; Kuhn et al., 2008; Talebizadeh 

et al., 2008). Given the important role that miRNA play in posttranscriptional gene regulation and their 

potential to regulate a large number of target genes, the majority of the observed changes likely reflect 

reactive changes due to the disease state or medication. Such changes cannot be interpreted as 
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indicative of a role of miRNAs in the disease pathogenesis and pathophysiology. Given the strong genetic 

component of schizophrenia, conclusive evidence that miRNAs are important components of the etiology 

and pathophysiology of schizophrenia can only be obtained by analyzing the impact that well established 

mutations or proximal processes affected by them (Kvajo et al., 2010) have on the formation, steady-state 

levels and function of miRNAs. In that respect, it is notable that the most important insight into the 

relationship between schizophrenia etiology and miRNAs come from recent studies on a mouse model of 

the 22q11.2 microdeletion (Stark et al., 2008), a well-established and largest known genetic risk factor for 

schizophrenia (Karayiorgou et al., 2010; Xu et al., 2010). 

The 22q11.2 microdeletion is a major recurrent de novo copy number variant (CNV) responsible 

for introducing new schizophrenia cases in the population (ISC, 2008; Karayiorgou et al., 1995; 

Stefansson et al., 2008; Xu et al., 2008a; Xu et al., 2009). A 1.5-Mb human 22q11.2 region has been 

shown to be the critical region for 22q11.2 microdeletion syndrome. Because this 1.5-Mb region is highly 

conserved in the syntenic region of mouse chromosome 16 and harbors nearly all orthologues of the 

human genes (except CLTCL1), a mouse model carrying the microdeletion, Df(16)A
+/−

, was generated to 

investigate the abnormalities at different levels (Drew et al., 2011). Df(16)A
+/−

 mice exhibit a variety of 

structural, behavioral, and cognitive alterations that are correlated with neuroanatomical abnormalities 

and cognitive dysfunction found in individuals with 22q11.2 microdeletions.  

Transcript and miRNA profiling indicate that miRNA alterations represent a major changes in 

Df(16)A
+/−

 mice. Dgcr8 gene, an important component of the miRNA biogenesis, is located within the 1.5-

Mb microdeletion region (Stark et al., 2008). Previously in our lab, Stark et al. showed that the 

hemizygous deletion of the Dgcr8 gene is the cause of downregulation (by ~20–70%) of 10-20% of all 

known mature miRNAs, including a number of miRNA clusters involved in neural development (Stark et 

al., 2008). In addition to Dgcr8, the 22q11.2 microdeletion and the equivalent mouse deficiency also 

remove one copy of a miRNA gene, mir-185, located within the minimal 1.5-Mb 22q11.2 critical region, 

which will be one of the focuses of my thesis work. 

It is plausible that there exist convergent pathways which underlie the phenotypic similarity within 

a genetically heterogeneous disorder like schizophrenia. It is therefore an intriguing idea that the miRNA 

dysregulateion observed in the 22q11.2 microdeletion animals may have a more general role in 
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schizophrenia pathogenesis (see also Chapter 2.3.2). In fact, two recent studies provide supporting 

evidence for this hypothesis. Moreau et al. measured the expression of 435 miRNAs and 18 small 

nucleolar RNAs in the Brodmann area 9 of the prefrontal cortex using quantitative real-time PCR. After 

controlling for confounding variables such as sample storage time, brain pH, alcohol at time of death, and 

postmortem interval, 19% of analyzed miRNAs exhibited altered expression associated with diagnosis of 

schizophrenia or bipolar disorder and both conditions were associated with reduced miRNA expression 

levels (Moreau et al., 2011). In a separate study, expression profiling was performed to compare 

expression of miRNAs in peripheral blood mononuclear cells of 112 patients with schizophrenia and 76 

non-psychiatric controls (Gardiner et al., 2011) and showed that a cluster of 17 of the most substantially 

downregulated miRNAs were located within an imprinted region (DLK1-DIO3) on chromosome 14 

(14q32). These miRNAs account for 53% of the 30 miRNAs that lie within this locus and are expressed in 

the peripheral blood mononuclear cells (Gardiner et al., 2011). As we gather more data from miRNA 

profiling of human samples and mouse models, a consensus of the pattern of miRNA dysregulation in 

schizophrenia may emerge.   

Although targets of the Dgcr8-dependent miRNA dysregulation have not been reported yet, the 

functional consequences of alterations in miRNA biogenesis have been studied in some detail. Behavioral 

tests showed that Dgcr8-deficient mice show impaired acquisition of the spatial working memory-

dependent task (the T-maze delayed non-match to place task) as seen in Df(16)A
+/−

 mice, suggestive of  

altered function of the frontal regions of the mouse neocortex and/or their interaction with the 

hippocampus. Interestingly, unlike Df(16)A
+/−

 mice, Dgcr8-deficient mice have normal associative memory 

(Stark et al., 2008). Thus, Dgcr8 deficiency and the ensuing abnormality of miRNA biogenesis appears to 

contribute to some but not all of the cognitive phenotypes observed in the Df(16)A
+/−

  mice. Pinpointing 

the affected miRNAs and their targets will facilitate the identification of the neural substrates underlying 

these phenotypes.  Notably, cognitive deficits, in particular working memory deficits, have become 

increasingly recognized as key components of schizophrenia and may reflect a more general disruption of 

neural networks that underlie both sensory perception and cognition. Working memory is thought to be 

primarily modulated by the prefrontal cortex (PFC) and to depend on persistent and recurrent neuronal 

excitation even in the absence of continued sensory stimulation. In that respect, the cognitive profile of 
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Dgcr8 deficiency may reflect a bottom-up impact from defects in neuronal connections and/or synaptic 

transmission or plasticity to cortical networks. Consistent with this notion, electrophysiological studies of 

prefrontal pyramidal neurons of Dgcr8
+/−

 mutant mice showed that layer 5 (L5) pyramidal neurons from 

heterozygous mutant mice showed a higher level of short-term synaptic depression (STD) and less 

potentiation following physiologically relevant persistent high-frequency stimulation, while intrinsic 

membrane properties and basal synaptic transmission upon activation of superficial layer afferents are 

normal (Fenelon et al., 2011). These synaptic phenotypes implicate a deficit at the presynaptic level in 

prefrontal pyramidal neurons of Dgcr8
+/−

 mutant mice. On the contrary, unlike the robust deficits observed 

in the prefrontal cortex, basic synaptic transmission and plasticity at the CA3/CA1 synapse of Dgcr8
+/−

 

mice appeared normal, suggesting that the effects of Dgcr8 deficiency on synaptic plasticity are not 

manifested ubiquitously throughout the brain. Dgcr8 deficiency caused only modest morphological 

changes in both prefrontal cortex and hippocampus (Fenelon et al., 2011; Stark et al., 2008). These 

included changes in the density of layer 2/4 (L2/4) neurons, a modest but significant decrease in the size 

of spines of basal dendrites of cortical L5 and hippocampal CA1 pyramidal neurons as well as a modest 

decrease in the complexity of peripheral basal dendritic branches in CA1 pyramidal neurons. Using an 

independent Dgcr8
+/− 

mouse model, Schofield et al. showed that L5 pyramidal neurons in the medial 

prefrontal cortex of Dgcr8-deficient mice have decreased complexity of basal dendrites, and electrical 

properties were altered including a decrease of frequency but not amplitude of miniature excitatory 

postsynaptic currents (mEPSC) and spontaneous excitatory postsynaptic currents (sEPSC) of L5 

pyramidal cells in slices from P25-30 mice (Schofield et al., 2011). The reason for the discrepancy 

between this investigation and the Fenelon et al study regarding changes to the basal excitatory 

transmission and dendritic structures is not clear. Nevertheless, both studies suggested the involvement 

of miRNA dysregulation in changes to neuronal electrophysiological properties which warrants further 

investigation. 

Recent human genetic studies provide evidence that the contribution of miRNAs and related 

processing enzymes to the genetic etiology of schizophrenia may extend beyond the 22q11.2 

schizophrenia susceptibility locus (Table 1.2). First of all, several large-scale genome-wide scans for 

structural variants associated with schizophrenia have identified a number of variants within the genes 
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that control the miRNA biogenesis pathway. For example, Xu et al. identified a de novo duplication 

encompassing the DICER1 gene in a genome-wide scan for de novo CNVs in sporadic schizophrenia (Xu 

et al., 2008a). CYFIP1, another gene within a recurrent CNV regions in a schizophrenia cohort on 

15q11.2 (Stefansson et al., 2008), binds two components of miRNA mediated translational control 

machinery, namely the Fragile X Mental Retardation Protein (FMRP) and the translation initiation factor 

eIF4E (Jin et al., 2004; Napoli et al., 2008). In addition, genome-wide scans for CNVs have also identified 

a number of structural variants enriched in patients with schizophrenia that contain miRNAs. For example, 

hsa-mir-211 and hsa-mir-484 are within CNVs at 15q13.1 and 16p13.11 identified by several genome 

scans in schizophrenia samples (Ingason et al., 2009; ISC, 2008; Kirov et al., 2009; Kirov et al., 2008; 

Stefansson et al., 2008). Furthermore, Hansen et al. conducted an association study of 101 brain 

expressed miRNA loci in a Danish and Norwegian schizophrenia cohort using a case-control design. 

They found evidence suggesting that two miRNA loci, mir-206 and mir-198 were associated with 

schizophrenia in the Danish and Norwegian sample, respectively (Hansen et al., 2007). More recently, a 

large sample genome-wide association study reported a strong association between schizophrenia and a 

genetic variant in the vicinity of the mir-137 gene locus at chromosome 1p21.3 as well as weaker 

associations with a number of predicted miR-137 targets (Ripke et al., 2011). The effect of the linked 

variant on the expression of miR-137 remains unknown and, provided that the reported association is not 

a false finding, it is expected to be rather modest. In addition, although supporting evidence for some of 

the predicted targets has been obtained using in vitro assays (Kwon et al., 2011), whether predicted 

targets represent genuine targets in vivo and more importantly whether they are responsive to the 

expected modest changes in miR-137 expression remains to be determined. This is an important issue 

given the rather poor correct prediction rate of available programs (Rajewsky, 2006) and the fact that 

suppression of downstream targets is miRNA-concentration dependent (Mukherji et al., 2011). As noted 

elsewhere (Rodriguez-Murillo et al., 2011), interpreting results from GWAS should be done with care and, 

in the absence of a link between mir-137 common variants and the function or expression of this miRNA, 

the possibility that the positive correlation from GWAS reflect disease risk confered by a neighboring 

gene/locus cannot yet be excluded. 
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MicroRNA expression-profiling studies have also observed significant changes in miRNA levels in 

postmortem brains of individuals with schizophrenia (Table 1.1) (Beveridge et al., 2009; Kim et al., 2010; 

Moreau et al., 2011; Perkins et al., 2007; Santarelli et al., 2011). In the first study of this kind, Perkins et 

al. studied the expression pattern of 264 human miRNAs using postmortem prefrontal cortex samples 

from 13 patients with schizophrenia and two with schizoaffective disorder, as well as 21 psychiatrically 

unaffected controls. The study showed that 14 miRNAs were significant decreased and one was 

upregulated in schizophrenia patients as compared with controls (Perkins et al., 2007). Although there are 

discrepancies among the various miRNA expression profiling studies, in aggregate and in the context of 

accumulating evidence from human genetic studies, they tend to support the view that altered miRNA 

levels could be a significant factor in the dysregulation of cortical gene expression in schizophrenia at 

least at the mRNA level. In the same context, the observations that the expression levels of some 

miRNAs are sensitive to antipsychotics or psychotomimetics drugs can also be interpreted as supportive 

(but not conclusive) evidence of involvement of miRNA related regulation in schizophrenia etiology. For 

instance, three miRNAs, miR-128a, miR-128b and miR-199a were upregulated in response to haloperidol 

treatment in rats as compared to untreated controls (Perkins et al., 2007). In an independent study, miR-

219 expression level was reduced in the prefrontal cortex of mice in response to dizocilpine, a selective 

NMDA receptor antagonist. This dizocilpine-induced effect on miR-219 could be attenuated by pretreating 

the mice with the antipsychotic drugs haloperidol and clozapine (Kocerha et al., 2009).  

1.2.2 Autism Spectrum Disorders 

Autism spectrum disorders are a heterogeneous group of neurodevelopmental disorders with 

impairment in social interaction and repetitive and stereotyped behaviors (as defined in DSM-IV, 

American Psychiatric Association, 1994). Symptoms start at age three or earlier. The prevalence of 

autism spectrum disorders in general population is about 1%. Family and twin studies indicate a strong 

genetic component (Bailey et al., 1995; Folstein and Rutter, 1977; Greenberg et al., 2001; Steffenburg et 

al., 1989). 

Several recent studies have started to explore the possibility of whether dysregulation of miRNAs 

plays a role in autism spectrum disorders. A number of human genetic studies have provided some 
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potential connection between miRNA abnormalities and autism spectrum phenotypes due to chromosome 

structural mutations. One such an example is the 22q11.2 microduplications. In contrast to the 

enrichment of 22q11.2 microdeletion (but not microduplication) in schizophrenia cohort (Brunet et al., 

2008), a higher frequency of 22q11.2 microduplication (but not microdeletion) was observed in unrelated 

autism spectrum cases according to the results of several genome-wide CNV screenings (Glessner et al., 

2009; Marshall et al., 2008). Because the expression level of DGCR8 gene is upregulation in the 22q11.2 

micoduplication, miRNA biogenesis process is likely to be affected.  In addition, miR-185 gene within in 

the 22q11.2 duplication is also likely altered. Similarly, hsa-mir-211, another microRNA gene, is located 

within a recurrent genomic imbalance region at 15q13.2-q13.3 that has been associated with autism 

spectrum disorders, intellectual disability, epilepsy, and/or electroencephalogram (EEG) abnormalities 

(Miller et al., 2009). A number of expression profiling studies examined miRNA dysregulation in autism 

spectrum disorders patient samples. Talebizadeh et al. checked the expression profile of 470 miRNAs of 

the lymphoblastoid cell line samples from 6 autism patients and 6 matched controls using microarrays 

(Talebizadeh et al., 2008). Nine miRNAs were shown to be differential expressed in the autism samples 

as compared to controls. In an independent study Abu-Elneel et al. probed the expression of 466 miRNAs 

of the postmortem cerebellar cortex samples from 13 autism spectrum disorders patients and 13 non-

autistic controls using multiplex quantitative PCR method. They found that 28 out of 227 miRNAs that 

could be reliably detected were differentially expressed in at least one of the autism spectrum disorders 

samples as compared to the mean value observed in non-autistic controls (Abu-Elneel et al., 2008). 

Three miRNAs, miR-23a, miR-132 and miR-146b overlapped between these two studies. More recently, 

Sarachana et al. compared miRNA expression in lymphoblastoid cells from three pairs of monozygotic 

twins discordant for diagnosis of autism spectrum disorders, a normal sibling for two of the twin pairs, two 

pairs of autistic and unaffected siblings, and a pair of normal monozygotic twins. Forty-three miRNAs 

were found as significantly changed between autistic and nonautistic individuals. Two miRNAs (miR-23a 

and miR-106b) overlapped with the ones reported by Abu-Elneel et al. (Abu-Elneel et al., 2008; 

Sarachana et al., 2010).  Ghahramani Seno et al. used a discordant sibling pair design to study mRNA 

and miRNA expression profiles in lymphoblastoid cells of 20 severe autism patients and 22 unaffected 

siblings. They identified a subgroup of samples with similar expression patterns using cluster analysis and 
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determined that 12 miRNAs were differentially expressed in this subset of autism spectrum disorders 

samples (Ghahramani Seno et al., 2011). Although initial genetic studies at the genomic level suggest 

that miRNA alterations could contribute to the genetic heterogeneity and phenotypic variation of autism 

spectrum disorders, miRNA gene profiling studies have not yet produced a convergent picture and 

additional larger scale systematic investigation will be necessary.   

1.2.3 Rett Syndrome 

Rett syndrome is a neurodevelopmental disorder with an incidence of 1:10,000–15,000 (Hagberg, 

1985). Rett syndrome occurs almost exclusively in girls and 99% of affected girls are sporadic cases. 

Patients with classic Rett syndrome have an apparently normal development before 6–18 months of age, 

then gradually exhibit developmental stagnation, stereotypical movements, microcephaly, seizures, 

autistic features and intellectual disability (Hagberg et al., 1983). Detailed anatomic examination reveals 

that Rett syndrome patients have a smaller brain and the size and dendritic arborization of individual 

neurons are also reduced (Armstrong et al., 1995; Leonard and Bower, 1998; Sirianni et al., 1998).  

Mutations in the gene encoding methyl-CpG binding protein 2 (MECP2) have been associated 

with many Rett syndrome cases and are thought to be the main cause of Rett syndrome (Amir et al., 

1999). Evidence that miRNAs might involve in the etiology and clinical expression of Rett syndrome came 

from the finding that miR-132 controls the expression a Mecp2 splice variant in primary cortical neurons 

through its 3’UTR (Klein et al., 2007). This finding, combined with the observations that miR-132 is a 

miRNA that regulates neuronal morphogenesis in responding to extrinsic trophic cues such as BDNF and 

that lack of Mecp2 decreases BDNF levels in mouse models of Rett syndrome, suggested that miR-132 

might exert homeostatic control over Mecp2 translation (Klein et al., 2007; Vo et al., 2005). More recently, 

Hansen et al. generated a transgenic mouse strain where miR-132 is over-expressed in forebrain 

neurons. mir-132 transgenic mice displayed reduced Mecp2 levels, a significant increase of dendritic 

spine density in hippocampal neurons as well as deficits in a novel object test (Hansen et al., 2010). 

Interestingly, MeCP2 appears to also control miRNAs as well as their downstream targets. Nomura et al. 

reported that MeCP2 regulated the expression of another brain-specific imprinted miRNA, miR-184, by 

binding to its promoter region (Nomura et al., 2008). When cultured cortical neurons are depolarized, 
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MeCP2 is released from the promoter binding site of the paternal allele leading to upregulation of paternal 

allele-specific expression of miR-184. However, that the authors observed a downregulation of miR-184 

expression in the Mecp2-deficient mouse brain and no morphological changes were identified when miR-

184 was overexpressed in the cultured cortical neurons (Nomura et al., 2008). In addition, Im et al. found 

that MeCP2 repressed the expression of mir-212−mir-132 cluster as a part of homeostatic interactions in 

dorsal striatum that regulate cocaine intake (Im et al., 2010). However, they also confirmed that MeCP2 

upregulates BDNF expression. As BDNF enhances miR-132 expression, the net effect on expression of 

mir-212−mir-132 cluster is unclear. Perhaps MeCP2 and BDNF cooperatively determine the regional and 

temporal specific expression pattern of miR-132 and miR-212. More recently, 2 miRNA expression 

profiling studies of a Mecp2 knockout mouse model further demonstrated a broader alteration of miRNA 

expression in response to lack of Mecp2.  Urdinguio et al. used miRNA microarrays to investigate the 

miRNA expression profiles of Mecp2 knockout mice, a mouse model of Rett syndrome. They reported 

that expression levels in 65 out of 245 miRNAs were altered, with more than 70% of them downregulated 

(Urdinguio et al., 2010). Wu et al. used massively parallel sequencing methods to identify miRNAs altered 

in cerebella of Mecp2-null mice before and after the onset of severe neurological symptoms. They found 

that ~17% of all known mature miRNAs were considerably dysregulated (>1.5-fold) in cerebella of 

knockout mice before the onset of severe neurological symptoms. A further analysis revealed that many 

upregulated mature miRNAs belong to the miRNA clusters within the Dlk1-Gtl2 imprinted domain (Wu et 

al., 2010). Interestingly, dysregulation of miRNAs within this genomic region was also reported in 

schizophrenia samples, albeit in the opposite direction (see Chapter 1.2.1). Transcription of miRNAs 

within this cluster has been shown to be regulated by neuronal activity and has been implicated in 

regulation of dendritic morphology (Fiore et al., 2009).  Overall, MeCP2 seems to be an important 

component of a miRNA-modulated regulatory network: miRNAs such as miR-132 and miR-212 control 

Mecp2 level and, in turn, Mecp2-regulated miRNAs may serve as critical mechanistic links to the 

downstream phenotypes. Therefore, deficits in Mecp2 expression may lead to the disruption of a miRNA 

regulatory machinery, which may contribute to clinical phenotypes observed in Rett syndrome. 
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1.2.4 Fragile X Syndrome 

Fragile X syndrome is the most common inherited form of mental retardation, affecting about 

1:4000 males and 1:8000 females (Turner et al., 1996). It results in a spectrum of cognitive and 

behavioral manifestation including deficits in speech and language skills similar to the ones seen in 

autism spectrum disorders patients (Merenstein et al., 1996). Fragile X syndrome is caused by the repeat 

expansion of a single trinucleotide gene sequence (CGG) in the 5’UTR of FMRP, which leads to the 

failure of FMRP gene expression (Penagarikano et al., 2007). FMRP is a RNA binding protein and is 

thought to act through its translational repression effect. It has been reported that mutations in FMRP 

affect neuronal morphology as well as electrophysiological properties of neurons such as synaptic 

plasticity and long term potentiation (Bolduc et al., 2008; Dictenberg et al., 2008; Huber et al., 2002; Jin et 

al., 2004; Zhang et al., 2001). 

FMRP protein was found to associate with Argonaute-2 (Ago2) and Dicer, both of which are 

critical components of miRNA pathway (Caudy et al., 2002; Ishizuka et al., 2002; Jin et al., 2004). In 

addition, several studies indicated that the maturation and function of some miRNAs is partially FMRP 

dependent. Xu et al. showed that ectopic expression of miR-124a precursors in vivo decreased dendritic 

branching of sensory neurons in Drosophila. This effect was partially rescued by the inactivation of 

dFMR1. They further showed that pre-miR-124a (precursor of miR-124a) levels were increased while the 

level of the mature form was reduced in dFMR1 mutants (Xu et al., 2008b). More recently, Edbauer et al. 

showed that several miRNAs, including miR-125b and miR-132, are associated with FMRP in the mouse 

brain (Edbauer et al., 2010). Alterations of miR-125b and miR-132 expression resulted in spine 

morphology changes and FMRP was required for the effect of miR-125b and miR-132 on the spine 

morphology. Furthermore, the expression of the NMDA receptor subunit NR2A was regulated by FMRP 

partially through miR-125b (Edbauer et al., 2010). This finding is consistent with the several previous 

results indicating that loss of FMRP alters NMDA receptor function in mice (Pfeiffer and Huber, 2007; 

Pilpel et al., 2009). Muddashetty et al. showed that miR-125a could reversibly control PSD-95 expression, 

which in turn, alters the dendritic spine morphology (Muddashetty et al., 2011). FMRP phosphorylation 

status in response to mGluR signaling controls the binding affinity of AGO2-miR-125a complex to PSD-95 
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mRNA. These studies indicated that FMRP gene, at least in part, executes its function via miRNA–

modulated regulatory networks. 

1.2.5 Tourette's Syndrome 

Tourette's syndrome is a neurodevelopmental condition characterized by chronic vocal and motor 

tics and associated with behavioral abnormalities. Tourette’s syndrome has a prevalence of 1% in general 

population and 3/4 of the patients are male (Staley et al., 1997). The age of onset of the disease ranges 

from 2 to 14 years old with a peak age of tic onset at 6–7 years of age (Kerbeshian et al., 2009; 

Robinson, 2010). Tourette’s syndrome is often comorbid with other neuropsychiatric disorders such as 

attention deficit hyperactivity disorder and obsessive-compulsive disorder (Cavanna et al., 2009). 

Although a strong genetic component is suggested based on family, segregation and twin studies, gene 

identification via linkage and association studies have been largely unsuccessful indicating it is a complex 

disease (O'Rourke et al., 2009). 

A potential link between miRNA and Tourette’s syndrome was first proposed by Abelson et al. 

based on identification of a sequence variant (var321) in the 3’UTR of Slit and Trk-like1 (SLITRK1) gene 

(Abelson et al., 2005). The variant was identified when the authors screened the sequence surrounding 

the breakpoint of a de novo chromosomal inversion of a Tourette’s syndrome patient. Mutational 

screening of the resident SLITRK1 gene in 174 unrelated Tourette’s syndrome patients revealed that two 

patients (but none of the 2,148 controls) carried var321 in the 3’UTR of SLITRK1, which affects the 

binding of a miRNA, miR-189. They further showed that miR-24-1-5p (previous ID: miR-189) has a 

modest dose-dependent effect on SLITRK1 expression in an in vitro luciferase assay system. In situ 

hybridization experiments indicated that the expression of mir-24-1-5p and SLITRK1 mRNA are 

overlapping in many neuroanatomical circuits of postnatal mouse and fetal human brains that are most 

commonly implicated in Tourette’s syndrome (Abelson et al., 2005). Finally, over-expression of SLITRK1 

in cortical neuronal cultures was shown to promote dendritic growth (Abelson et al., 2005). The 

association between var321 and Tourette’s syndrome phenotype was followed up in several independent 

datasets (Chou et al., 2007; Deng et al., 2006; Keen-Kim et al., 2006; O'Roak et al., 2010; Scharf et al., 

2008; Wendland et al., 2006; Zimprich et al., 2008). Although var321 was detected in some of these 
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studies, it failed to cosegregate with Tourette’s syndrome phenotype. Because var321 is a very rare 

variant in the general population (minor allele frequency of 0.1%), additional studies with larger samples 

in homogeneous populations are needed to clarify if the original finding was a false positive i.e. due to 

population stratification, a common problem with the case/control design or the follow-up replication 

studies were underpowered. 

1.2.6 Down Syndrome 

The Down syndrome is characterized by mild to moderate mental retardation and its prevalence 

is estimated to be 1/800 (Carothers et al., 1999). The syndrome is caused by an extra whole or part of 

chromosome 21, which has a severe impact on the development of nervous system leading to impaired 

maturation of neurons including atrophic dendritic structure, decreased neuronal numbers and abnormal 

neuronal differentiation in the brain of Down syndrome patient. Some patients show early appearance of 

senile plaques (Mrak and Griffin, 2004; Wisniewski et al., 1985). A potential connection between miRNAs 

and Down syndrome phenotypes was recently explored (Kuhn et al., 2008). Five miRNA genes (mir-99a, 

let-7c, mir-125b-2, mir-155, and mir-802) located on human chromosome 21 were found upregulated in 

the fetal brain tissue of Down syndrome patients compared to age- and sex-matched controls (Kuhn et 

al., 2008). The same group further demonstrated that a common target of miR-155 and miR-802 is 

MeCP2 (see Chapter 1.2.3). In brain samples from patients and mouse models, the expression of MeCP2 

and its downstream targets, CREB1 and Mef2c, were all altered. In a Down syndrome mouse model, the 

expression level of MeCP2, CREB1 and Mef2c was restored when endogenous miR-155 or miR-802 

were knocked down by intra-ventricular injections of corresponding antagomirs (Kuhn et al., 2010). These 

results suggest that over-expression of the miRNAs on chromosome 21 may repress the expression of 

MeCP2, which in turn contributes, at least in part, to the neural deficits observed in the brains of Down 

syndrome individuals. An important unresolved issue in these studies is that none of analyzed miRNAs 

are located within the Down syndrome critical region, which was previously identified to be associated 

with many of the Down syndrome phenotypes (Delabar et al., 1993). Therefore, how these miRNAs 

contribute to the DS phenotypes, especially intellectual disability requires further analysis. 
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1.3 Potential Mechanistic Connections between microRNA Dysregulation and Neuro-

psychiatric Disorders 

Although genetic and miRNA expression profiling studies described above provide strong 

evidence that miRNAs are involved in various psychiatric and neurodevelopmental disorders, the details 

on how miRNA dysregulation contributes to specific clinical pictures remains to be elucidated. A collective 

role of miRNAs in modulating normal neural morphology and function as well as various behavioral 

phenotypes is supported by many recent studies (see recent reviews in (Fineberg et al., 2009; Siegel et 

al., 2011)) and the impact of altered expression of individual miRNAs has been assessed using a variety 

of strategies. Below, I present a few relevant examples that offer potential mechanistic insight that 

illuminates the connection between miRNA dysfunction and neuropsychiatric disorders.   

1.3.1 Insights from Global Disruption of miRNA Biogenesis and Action 

The majority of miRNAs identified so far are transcribed by RNA polymerase II as long primary 

transcripts called pri-miRNA. Pri-miRNAs are then processed into stem-loop precursor miRNAs (pre-

miRNAs) by the microprocessor (a complex containing type-III RNase Drosha and its partner protein  

Dgcr8) in the nucleus. Pre-miRNAs are then exported to the cytoplasm and further cleaved into 

mature miRNA duplexes by Dicer, another type-III RNase (Figure 1.1). The final mature miRNAs have 

one strand incorporated into the RNA-induced silencing complex (RISC) with the help of Dicer and 

several other RNA binding proteins including Ago2, PACT and TARBP2. The miRNA-associated RISC 

binds to the target mRNA to inhibit its translation or cause the degradation of the target mRNA (Kim, 

2005). Disruptions of the components in miRNA biogenesis pathway have been shown to have a critical 

impact on neuronal survival, development, differentiation and function in the central nervous system. For 

example, knockout of the Dicer gene led to severe defects in neural tube morphogenesis arising from 

abnormal neuronal differentiation in zebrafish and embryonic lethality in mouse (Giraldez et al., 2005; 

Murchison et al., 2005). Conditional knockout of Dicer in mouse further demonstrated that morphogenesis 

of the neurons in the cortex and hippocampus was disrupted (Davis et al., 2008) and postnatal 

progressive neuron death was observed in the cerebellum and forebrain (Kim et al., 2007; Schaefer et al., 

2007). In addition, Dicer ablation in hippocampus at different developmental time points revealed stage-
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dependent, region-specific requirement for miRNAs in proper hippocampal development (Li et al., 2011). 

Mutation of dAgo1, one of the Argonaute proteins that facilitate the loading of miRNAs into the RISC, 

results in global developmental defects in Drosophila. The most prominent malformation is seen in the 

nervous system (Kataoka et al., 2001). Similarly Ago2-null mice have severe defects in neural tube 

formation and die early in development (Mukai et al., 2004). Deficiency of Dgcr8 gene, which is disrupted 

by the 22q11.2 microdeletion, was the first example of a clinically relevant disruption of a component of 

miRNA biogenesis pathway. Similar to the situation of Dicer knockout, homozygous Dgcr8 knockout mice 

die at embryonic day 6.5 (Stark et al., 2008; Wang et al., 2007), while Dgcr8 heterozygous mice (Dgcr8
+/−

) 

show partially impaired miRNA biogenesis and a number of neuronal and behavioral deficits similar to 

what have been observed in human disease conditions (Fenelon et al., 2011; Schofield et al., 2011; Stark 

et al., 2008) (see Chapter 1.2.1). Recently, the development of high throughput sequencing technologies 

and advanced bioinformatics tools, afforded the identification of many small RNAs with characteristics of 

miRNAs. Interestingly, these putative miRNAs are generated by alternative miRNA biogenesis pathways 

that bypass one or more key steps of the canonical pathway (Yang and Lai, 2011). It will be interesting to 

see whether anomalies in any components of these alternative pathways contribute to the various 

neuropsychiatric disorders. 

1.3.2 Individual miRNAs Modulate Dendritic Complexity and Spine Morphology in Neurons 

Alterations in dendritic complexity and spine morphology of neurons have been reported 

frequently in various neuropsychiatric disorders and cognitive dysfunctions. Understanding the molecular 

underpinnings of these changes may provide insights into the etiologies of these conditions and may 

reveal new drug targets. miR-134 is the first miRNA shown to contribute to dendritic complexity and spine 

morphology of neurons. Overexpression of miR-134 significantly decreases spine volume while 

overexpression of a 2′-O-methylated anti-miR-134 oligonucleotide increases spine width (Schratt et al., 

2006). Schratt et al. proposed that BDNF treatment relieves miR-134-dependent translational inhibition of 

its target, Limk1 (a kinase that regulates actin and microtubule polymerization), which in turn results in 

higher Limk1 protein levels and morphological changes of dendritic spines. Further investigation indicated 

that Myocyte enhancing factor 2 (MEF2) was necessary and sufficient to induce expression of miR-134 in 
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response to external stimuli, such as neurotrophic factors and neuronal activity. High level of miR-134 

inhibits translation of Pumilio2, a translational repressor, and promotes neurite outgrowth (Fiore et al., 

2009). 

miR-132 is another extensively studied miRNA that has been shown to modulate neuronal 

morphology. Vo et al. identified neuronal-enriched miR-132 as a target of the transcription factor cAMP-

response element binding protein (CREB) through a genome-wide screen. There is a CRE (cAMP 

response element) in the promoter of mir-132 that allows CREB binding downstream of neurotrophin 

signaling. Overexpression of this miRNA in primary cortical neurons dramatically increases neurite 

outgrowth. Conversely, inhibition of miR-132 blunts neurite outgrowth under basal conditions and blocks 

the response to BDNF (Vo et al., 2005). Magill et al. further demonstrated that ablation of the mir-

212−mir-132 locus dramatically reduces dendritic length, branching, and spine density in newborn 

hippocampal neurons in young adult mice. Because miR-132 was shown to be the predominantly product 

of the mir-212−mir-132 locus in hippocampal neurons, the authors concluded that miR-132 was required 

for normal dendrite maturation of newborn neurons in the adult hippocampus (Magill et al., 2010).  In an 

independent study, Hansen et al. employed a transgenic mouse strain that expresses miR-132 in 

forebrain neurons. Morphometric analysis of hippocampal neurons indicated a dramatic increase in 

dendritic spine density in miR-132 overexpressing mice (Hansen et al., 2010). As mentioned previously 

(in Chapter 1.2.4), Edbauer et al. demonstrated that miR-132 and miR-125b interacts with FMRP in 

mouse brain and regulates dendritic spine morphology of hippocampal neurons in largely opposite 

directions. Downregulation of FMRP gene affects the impact of these miRNAs on spine morphology 

(Edbauer et al., 2010).  

Overall, these studies suggest that a group of miRNAs play multiple regulatory roles in controlling 

neuronal morphology in response to external stimuli, such as neurotrophic factors or neuronal activity. 

Given that miR-134 is altered in the brain of the 22q11.2 microdeletion model (Stark et al 2008) and 

alteration of miR-132 expression is associated with FMRP expression (Edbauer et al., 2010), it is 

tempting to speculate that dysregulation of these 2 miRNAs is part of the pathophysiological processes 

underlying the corresponding clinical conditions (see also Chapter 1.2.1 and 1.2.4). Along these lines, 

observations from independent studies suggest that miRNAs may regulate dendritic morphology in 
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concert with other disease-related signaling pathways. For example, two independent studies 

demonstrated that miR-138 controls the depalmitoylating enzyme lysophospholipase1 (Lypla1)/acyl 

protein thioesterase 1 (APT1), which modulates palmitoylation states of neuronal proteins (Banerjee et 

al., 2009; Siegel et al., 2009). In this respect, it is noteworthy that in 22q11 microdeletion, deficits in both 

miRNA biogenesis and palmitoylation (due to the hemizygous deletion of ZDHHC8 gene that encodes for 

a palmitoyltranferase) contribute to the abnormalities in dendritic and spine morphogenesis (Mukai et al., 

2008; Stark et al., 2008). Chapter 3.1.1 and 3.1.2 will further detail the roles of miRNAs in dendritic and 

spine morphogenesis. 

1.3.3 Individual miRNAs Modulate Neurogenesis, Neuronal Proliferation, Migration and Integration 

Neuropsychiatric disorders such as schizophrenia, autism spectrum disorders and mental 

retardation have been associated with an array of abnormalities in neurodevelopmental processes from 

neurogenesis, neuronal proliferation to neuron migration and integration (Hsieh and Eisch, 2010; Wegiel 

et al., 2010; Yang et al., 2011). Recent studies demonstrated that miRNAs participate in many aspects of 

these processes. Therefore, elucidating the regulatory mechanisms involving individual miRNAs might 

provide important insights into the pathogenesis of neuropsychiatric disorders. Below, I present a few 

examples that miRNAs play important roles in neurodevelopmental processes. 

miR-124a is one of the most abundant miRNAs in mammalian brain and mainly expressed in 

differentiating and mature neurons, accounting for 25%–48% of all mouse brain miRNAs (Deo et al., 

2006; Lagos-Quintana et al., 2002). Ectopic expression of miR-124a in HeLa cells leads to a shift of 

expression profile from non-neuronal pattern to neuronal-like pattern (Lim et al., 2005), indicating this 

miRNA might specify neuronal identity. Several studies showed that miR-124a promote neuronal 

progenitor differentiation by de-repression of RE1-Silencing Transcription Factor (REST). The 

corresponding downregulation of REST target mRNAs such as PTBP1, a RNA-binding protein that 

globally represses neuronal-specific alternative pre-mRNA splicing, results in neuronal identity (Conaco et 

al., 2006; Makeyev et al., 2007; Wu and Xie, 2006). Subsequently, Cheng et al. showed that miR-124 

regulated neurogenesis in the subventricular zone stem cell niche by repressing the SRY-box 

transcription factor Sox9 in the adult mammalian brain (Cheng et al., 2009). Yu et al. showed that miR-
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124 controls neurite outgrowth in differentiating neurons of P19 mouse and in primary cortical neurons 

(Yu et al., 2008). Besides its roles in neuronal development, Rajasethupathy et al. provided evidence that 

miR-124 also plays a role in serotonin mediated long-term plasticity of synapses in the nervous system of 

mature Aplysia californica  (Rajasethupathy et al., 2009).  

miR-9 is another miRNA abundantly expressed in vertebrate brains (Griffiths-Jones, 2006; Lagos-

Quintana et al., 2002). Several studies suggested that miR-9 and miR-9* target Nr2e1, REST, 

Corepressor of REST (CoREST) and BAF53a to suppress progenitor proliferation and promotes neural 

differentiation (Packer et al., 2008; Yoo et al., 2009; Zhao et al., 2009). miR-9 also promotes proliferation 

of human embryonic stem cell-derived neural progenitors by targeting STMN1 mRNA (Delaloy et al., 

2010). Mutant mice lacking mir-9-2 and mir-9-3 (referred to as mir-9-2/3 double mutants) was generated 

to examine the function of miR-9 and miR-9* in telencephalic development. These mice exhibited 

aberrant proliferation and/or differentiation of pallial and subpallial progenitors, and displayed multiple 

defects in telencephalic structures (Shibata et al., 2011).  

Luikart et al. provided evidence that the temporal expression pattern of miR-132 is correlated with 

time course of newborn neurons integration into mature circuits in dentate gyrus. When a retroviral vector 

containing a “sponge” consisting of multiple miR-132 binding sites is introduced into the newborn 

neurons, miR-132 expression is downregulated. As a result, integration of newborn neurons into the 

excitatory synaptic circuitry in adult brain was disrupted (Luikart et al., 2011). Interestingly, the mice also 

exhibited a decrease in MeCP2 levels and impairment in novel object recognition memory (Hansen et al., 

2010). More recently, Gaughwin et al. showed that miR-134 modulates cortical development in a stage-

specific fashion. Through interaction with Doublecortin and/or Chordin-like 1, miR-134 promotes cell 

proliferation and counteracts Chrdl-1–induced apoptosis and Dcx-induced differentiation in neural 

progenitors. miR-134 also affected neuronal migration in vitro and in vivo in a Dcx-dependent manner. 

When overexpressed in differentiating cortical neurons, miR-134 leads to several subtle alterations in 

neurites, including reductions of number, length and overall complexity. Exogenous BMP-4 treatment can 

significantly reverse the effect of miR-134 overexpression, resulting in more complex processes. The 

author concluded that miR-134 might be a modulator of  BMP-4 signals on neurite outgrowth in a noggin-

reversible manner (Gaughwin et al., 2011).  
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1.3.4 Individual miRNAs Modulate Neuronal Electrophysiological Properties in Response to 

Neuronal Activity 

MicroRNA expression is modulated by neuronal activity (Krol et al., 2010a). Studies from Dgcr8 

mutant mice demonstrated that miRNAs alterations in neuropsychiatric conditions lead to the changes of 

the electrical and synaptic properties of neurons (Fenelon et al., 2011; Schofield et al., 2011). Lambert et 

al. tested the effects of miR-132 expression on synaptic function. Their results indicated that features of 

short term synaptic plasticity of cultured mouse hippocampal neurons is altered when miR-132 is 

overexpressed, including an increased paired-pulse ratio and decreased synaptic depression. However, 

the presynaptic vesicular release properties such as the initial probability of neurotransmitter release, the 

size of the readily releasable pool of synaptic vesicles and the rate of refilling of the pool are unchanged 

(Lambert et al., 2010). The direct impact of other miRNAs on electrophysiological properties of neurons is 

still largely unexplored and thus warrants further investigation. 

1.4 Summary 

The evidence reviewed here strongly suggests that miRNAs play an important role in the 

pathogenesis and pathophysiology of neuropsychiatric disorders (Kvajo et al., 2011) as well as cognitive 

dysfunction. Although the exact mode of action of individual miRNAs affected in various psychiatric 

conditions remains largely unclear, our understanding is rapidly improving by the convergence of findings 

from various recent studies, including ones involving carefully designed animal models.  

In the following chapters, I will present our study of miRNA dysregulation in animal models of two 

human genetic variants, 22q11.2 microdeletions and BDNF Val66Met SNP. Given that these genetic 

variants are associated with psychiatric disorders and cognitive dysfunction, our finding further strengthen 

the comprehension that miRNAs play central roles in pathophysiology of neuropsychiatric disorders. In 

addition, the identification of physiological relevant targets that mediate the influence of miRNA 

dysregulation helps us elucidate the disease mechanism. In the 22q11.2DS model, we demonstrate that 

the elevation of a major downstream effector of miRNA dysregulation, Mirta22 (2310044H10Rik) and the 

concerted mild dysregulation of Golgi related genes contribute to the morphological phenotype. Thus 

miRNAs and Mirta22 represent novel targets for therapeutic intervention for these devastating conditions.  
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Table 1.2   Psychiatric Disorders-associated Genetic Variants at MicroRNA or MicroRNA-

biogenesis Gene Loci 

Schizophrenia 

Populations 

(case-control, n=patient, 

control) 

Type of Study 

(# of CNV or SNP tested) 

miRNA or miRNA biogenesis gene  

(CNV or associated SNP) 

Reference 

Danish  (n=420, 1006) 

Norwegian (n=163, 

177) 

Case-control 

SNP association study 

(18 miRNAs) 

miR-198 (rs17578796, with Danish samples), 

miR-206 (rs1700, with Norwegian samples) 

Hansen et 

al., 2007 

Mixed European 

population 

(n=1433, 33250) 

Case-control (66 de 

novo CNVs found in the 

same studies ) 

DGCR8, has-mir-185 (22q11.2 deletion), 

CYFIP1 (15q11.2 deletion and duplication), 

has-mir-211 (15q13.2 deletion), has-mir-484 

(16p13.11 deletion) 

Stefansson 

et al., 2008 

Afrikaner (152 trios 

w/ proband, 159 trios 

w/o proband) 

Family-based 

CNV scan 

DICER1 (14q32.12-q32.2 dupicatation) Xu et al., 

2008a 

Mixed worldwide 

population (n=17836, 

33859) 

Case-control 

GWAS 

hsa-mir-137  (rs1625579) Ripke et al., 

2011 

Autism Spectrum Disorders 

Populations 

(case-control, n=patient, 

control) 

Type of Study 

(# of CNV or SNP tested) 

miRNA or miRNA biogenesis gene  

(CNV or associated SNP) 

Reference 

American of 

European ancestry 

(n=859, 1409) 

Case-control 

CNV scan 

DGCR8 , has-mir-185 (22q11.2 duplication) Glessner et 

al., 2009 

1445 patients from 

Children’s Hospital 

Boston 

CNV scan has-mir-211 (15q13.2-q13.3 deletion, 

duplication) 

Miller et al., 

2009 

CNV: copy-number variant, GWAS: genome-wide association study.  
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Chapter II 

A Major Downstream Effector of MicroRNA 

Dysregulation in 22q11.2 Genomic Losses 

2.1 Introduction 

22q11.2 microdeletion was identified in 1995 (Karayiorgou et al., 1995) as a causative genetic 

factor for schizophrenia with high penetrance (~30%) and was the first example that chromosomal 

microdeletions and microduplications (copy-number variants or CNVs) play in the etiology of human 

diseases. In recent years, discovery of a widespread role of CNVs in determining susceptibility to 

psychiatric disorders such as schizophrenia, as well as neurodevelopmental disorders such as autism 

and intellectual disability, further represents a shift in our understanding of the genetic architecture of 

these disorders and highlights the pervasive contribution of rare and highly penetrant structural mutations 

(ISC, 2008; Karayiorgou et al., 1995; Levy et al., 2011; Sanders et al., 2011; Stefansson et al., 2008; Xu 

et al., 2008). However, 22q11.2 microdeletions remain the only confirmed recurrent chromosomal 

structural alteration responsible for the introduction of sporadic (de novo) cases of schizophrenia into 

human population (Karayiorgou et al., 2010). Due to the clear association with schizophrenia, this 

mutation allows the generation of an etiologically valid animal model of schizophrenia. A 22q11.2 

microdeletion model we generated, Df(16)A
+/−

 mice, thus presents unprecedented opportunities to 

determine key pathophysiological alterations which may underlies schizophrenia in general. 

2.1.1 22q11.2 Microdeletions and Schizophrenia 

It has long been known that an individual’s genetic composition is a stro  ng determinant of 

susceptibility to mental illness (Shields, 1982). With the increasing genetic similarity to a schizophrenia 

patient, an individual’s risk of developing schizophrenia also increases, from 1% risk of totally genetically 

unrelated to ~50% risk of identical twins. Unfortunately, characterization of the genetic underpinning of 

schizophrenia proved to be a hard task, as schizophrenia is a genetically complex and heterogeneous 

disorder. Nevertheless, after years of research since the discovery of 22q11.2, a strong link has been 
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established between 22q11.2 microdeletion, cognitive dysfunction and schizophrenia (Karayiorgou et al., 

2010). Up to one third of individuals with 22q11.2 microdeletion develop schizophrenia or schizoaffective 

disorder in adolescence or early adulthood, accounting for 1–2% of sporadic schizophrenia cases 

(Karayiorgou et al., 1995; Karayiorgou et al., 2010). Importantly, the symptoms observed in 22q11.2 

microdeletion carriers affected by schizophrenia are indistinguishable from other schizophrenia patients 

(Bassett et al., 2003; Bassett et al., 1998). Moreover, children carrying the microdeletion have specific 

behavioral impairments and exhibit a spectrum of deficits in cognitive abilities linked to activity in the 

hippocampus and prefrontal cortex, such as measures of attention, working memory and executive 

function (Karayiorgou et al., 2010). Understanding how the genes disrupted by this deletion contribute to 

the emergence of the psychiatric and cognitive phenotypes associated with this genomic imbalance will 

provide important mechanistic insights and can guide analysis of other CNVs that cause psychiatric 

disorders and cognitive dysfunction (Arguello and Gogos, 2006, 2010; ISC, 2008; Karayiorgou et al., 

2010). 

2.1.2 A Mouse Model of 22q11.2 Microdeletion 

Since 22q11.2 microdeletion is a defined genetic variant with a clear and strong association with 

schizophrenia, a mouse line that faithfully models this genetic variant offers an opportunity to study the 

etiology and pathophysiology of 22q11.2-associated schizophrenia.  Using chromosomal engineering, our 

lab generated a mouse model carrying a hemizygous 1.3-Mb chromosomal deficiency on mouse 

chromosome 16 [Df(16)A], which is syntenic to the 22q11.2 1.5-Mb microdeletion (Figure 2.1) (Stark et al., 

2008). Although mouse models of psychiatric disorders can never fully recapitulate the entire spectrum of 

symptoms and behavioral abnormalities of human patients, careful characterization has shown that 

Df(16)A
+/−

 mice have alterations at behavioral, cognitive and cellular levels that are correlated with 

neuroanatomical abnormalities and cognitive dysfunction found in individuals with 22q11.2 microdeletions 

(Table 2.1; Figure 2.2). For example, disruption of prepulse inhibition (PPI), a measure of sensorimotor 

gating and preattentive processing, is observed in both Df(16)A
+/−

 mice (Stark et al., 2008) and individuals 

with 22q11.2 microdeletions (Ornitz et al., 1986; Sobin et al., 2005). In addition, aspects of cognitive 

dysfunction in 22q11.2 microdeletion carriers (Casey et al., 1995; Lajiness-O'Neill et al., 2005; Shprintzen  

et al., 1978) are also observed in Df(16)A
+/−

 mice, as demonstrated by decreased accuracy in delayed- 
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non-match to place (DNMP ) task of spatial working memory and deficits in both cued and contextual fear 

conditioning (Stark et al., 2008). Morphological analysis reveals that the CA1 neurons of Df(16)A
+/−

 

animals have simplified dendritic trees and decreased spine density(Mukai et al., 2008), which may 

partially account for the reduction in hippocampal volume (Campbell et al., 2006; Eliez et al., 2000b; 

Simon et al., 2005) in individuals with 22q11.2 microdeletions. Moreover, altered neural synchrony 

between dorsal hippocampus (HPC) and medial prefrontal cortex (PFC) as compared to WT mice 

(Sigurdsson et al., 2010) is consistent with PFC-HPC coupling abnormalities observed in schizophrenia 

patients (Ford et al., 2002; Lawrie et al., 2002; Meyer-Lindenberg et al., 2005). Although additional 

comparative analysis is necessary, results so far outline a number of conserved anomalies in 

Figure 2.1 Mouse Models of 

22q11.2 Microdeletions. Human 

22q11.2 locus and syntenic mouse 

locus 16qA13 are shown, and 

genes in the loci are listed. The 

human 1.5 Mb region is flanked by 

low-copy-repeat seq-uences (blak 

boxs). The non-homologues re-

combineation between these 

sequences results in deletion or 

duplication. DGCR8 and C22orf25 

that harbors mir-185) orthologues 

are in red. We generated 2 mouse 

models of 22q11.2 micro-deletions. 

Using chromosomal engineering, 

regions spanning Dgcr2−Hira and 

Dgcr14−Hira are deleted to 

generate Df(16)A and Df(16)B 

allele, respectively. An Dp(16)B 

allele with a duplicated Dgcr14− 

Hira are also generated. Most 

experiments are done with 

Df(16)A
+/−

 mice. The expression 

profilings comparing the effect 

genomic dosage were performed 

in Df(16)B
+/−

 and Dp(16)B
+/−

 mice 

(see Chapter 2.2.2). 
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hippocampal and frontal circuitry in 22q11.2 microdeletion carriers and  the Df(16)A
+/−

 mouse model 

(Drew et al., 2011; Karayiorgou et al., 2010).  

2.1.3 miRNA Dysregulation in of 22q11.2 Microdeletion Mouse Model 

The Df(16)A
+/–

 mice also provided compelling evidence that the 22q11.2 deletion results in 

abnormal processing of brain microRNAs (miRNAs), a class of small, noncoding RNAs that regulate the 

stability and translation of mRNAs (Fineberg et al., 2009; Kosik, 2006; Schratt, 2009; Xu et al., 2010). 

One gene disrupted by the 22q11.2 microdeletion is DGCR8, a component of the “microprocessor” 

complex that is essential for miRNA production (Tomari and Zamore, 2005). Extensive miRNA alterations 

are found in Df(16)A
+/–

 mice (Figure 2.3) (Stark et al., 2008). Specifically, primary transcripts (pri-forms) of 

 

Figure 2.2 Behavioral and Cognitive Phenotypes of Df(16)A
+/−

 Mice. A battery of tests showed the behavioral 

and cognitive deficits in Df(16)A
+/−

 Mice. The results from Wt and Df(16)A
+/− 

mice are shown in white and black 

columns, respectively.  (A) Prepulse inhibition was used to measure preattentive processing and sensorimotor. 

The inhibition of startle response is impaired in Df(16)A
+/− 

mice when primed with non-startling prepulses of various 

levels (78, 82 or 86 dB). (B) Associative learning and spatial memory are impaired as shown by reduced freezing 

response in cued and contextual fear conditioning. The mice were trained to associate the context (contextual 

conditioning) or a condition stimulus (CS, a tone) (cued conditioning) to an aversive electric shock (uncondition 

stimulus). In contrast, in cued conditioning, there is no difference in time spent in freezing before CS was 

presented. The deficits indicate deficits in hippocampal and amygdala circuitries. (C)  Impaired working memory 

was revealed by a delayed non-match to place (DNMP) task. In this task, food-deprived mice were trained to use 

location information held by frontal cortex (working memory) to retrieve food pellets. Accuracy of successful 

retrieval was lower in Df(16)A
+/− 

mice, as compared to Wt mice. (D) Phase locking between the spike timing in a 

medial prefrontal cortex (mPFC) neuron and the θ rhythm of hippocampus (HPC) field potential was computed as a 

measure of HPC−PFC connectivity (see box at the right). In Df(16)A
+/− 

mice HPC−PFC synchrony is reduced 

during both sample and choice phase of a DNMP task, as compared to Wt mice. See text and Stark et al., 2008; 

Sigersson et al., 2010 for details. Figures adapted from Karayiorgou et al., 2010).  
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many miRNAs are upregulated while the mature forms of a specific subset of those upregulated pri-

miRNAs are downregulated, as one would expect in a miRNA processing bottleneck. Dgcr8 

haploinsufficiency likely contributes a large part of these miRNA alterations. The pri-forms of miRNAs 

accumulate due to limited microprocessors available as well as compensatory upregulation of miRNA 

transcription. Indeed, dysregulation of pri-forms and mature forms of the same set of miRNAs is observed 

in Dgcr8
+/− 

mice (Stark et al., 2008). A comprehensive picture of miRNA dysregulation in Df(16)A
+/–

 mice 

was provided by miRNA microarray studies whereby 30 and 59 mature miRNAs were found to be 

downregulated in HPC and PFC, respectively. There are 25 miRNAs that are downregulated in both HPC 

and PFC, including miR-185, which is encoded in the 22q11.2 locus. Several of these miRNAs are found 

to be enriched in synaptic compartment and have important roles in the brain (see Chapter 2.3.3). 

Moreover, a higher proportion of upregulated PFC and HPC transcripts contained one or more potential 

seed sites for the affected miRNAs, as compared to downregulated transcripts (TargetScan: PFC, 39% 

versus 14%, P = 1.5 X 10
-8

; HPC, 40% versus 6%, P = 1.5 X 10
-5

). Among the transcripts significantly 

Figure 2.3 MicroRNA Dysregulation due to Dgcr8 

Deficiency in Df(16)A
+/−

 Mice. Individuals with 22q11.2 

microdeletions and the Df(16)A
+/–

 mice lose one couple 

of the Dgcr8 gene. The cleavage of pri-miRNAs by the 

microprocessor, Drosha-Dgcr8 complex, to become pre-

miRNAs is the “bottleneck” process that limits the 

biogenesis of miRNAs. Therefore, Dgcr8 haplo-

insufficiency results in the downregulation of a subset of 

miRNAs in Df(16)A
+/–

 mice, as compared to Wt mice. 30 

and 59 miRNAs are downregulated in hippocampus and 

prefrontal cortex of Df(16)A
+/–

 mice, respectively. The 25 

overlapped miRNAs include miRNAs known to express 

in brain and have brain-specific functions, such as miR-

134. Due to sampling limitations, large-scale miRNA 

profiling has not been conducted in human samples. 
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altered and possessing at least one seed site, upregulated transcripts are enriched in transcripts with 2 or 

more seed sites, indicating possible convergent effects of the affected miRNAs in regulating targets with 

more than 2 target sites (Stark et al., 2008). These results suggest that the miRNA dysregulation in 

Df(16)A
+/–

 mice likely accounts for at least part of the transcript dysregulation in this mouse line. Thus 

Df(16)A
+/–

 mice provide a reliable model to interrogate the effects of miRNA dysregulation on neural 

circuit structure and function in a disease context.  

2.1.4 In this Chapter 

As mentioned above, miRNA dysregulation likely accounts for a fraction of the transcript 

misexpression observed in the brains of Df(16)A
+/–

 mice(Stark et al., 2008) but direct targets have not 

been reported. Moreover, the impact of copy number change of individual miRNA genes due to CNV has 

not been investigated. In this chapter, I describe the discovery of a drastic reduction of mir-185 levels as 

an important component of miRNA dysregulation due to genomic loss at 22q11.2 and the identification of 

a previously uncharacterized gene as a major target affected by this miRNA dysregulation.  

2.2 Results 

2.2.1 A Drastic Reduction of miR-185 Levels in Df(16)A
+/– 

Mice 

Studies of the Df(16)A
+/–

 mouse strain have shown that the 22q11.2 microdeletion results in 

abnormal processing of a specific subset of brain miRNAs due to the removal of one copy of the Dgcr8 

gene causing a decrease in Dgcr8 expression in the adult brain
 
(Stark et al., 2008) as well as earlier in 

development (Figure 2.4). It is noteworthy that, in addition to Dgcr8, the 22q11.2 microdeletion and the 

equivalent mouse deficiency remove one copy of a miRNA gene (mir-185) located within the minimal 1.5- 

Mb 22q11.2 critical region (Figure 2.1). In situ hybridization assays indicated that miR-185 is expressed in 

several brain regions such as hippocampus (HPC) and cortex (Figure 2.5A). Quantitative real-time PCR 

(qRT-PCR) analysis showed that expression of mature miR-185 is dramatically reduced by ~70-80% in 

both HPC (P < 10
-6

) and prefrontal cortex (PFC, P < 10
-11

) of adult Df(16)A
+/–

 mice as compared to their 

wild type (Wt) littermates (Figure 2.5B, C). This reduction was also observed at earlier developmental 

stages (E17 and P6) (Figure 2.5D). miR-185 also showed a more modest decrease in Dgcr8
+/–

 mice 
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(~20% in HPC, P < 0.05; Figure 2.5E) suggesting that the severe reduction of mature miR-185 

expression in Df(16)A
+/–

 mice is due to a combined effect of hemizygosity of the mir-185 gene and 

impaired maturation of the pri-miR-185 transcript produced from the remaining copy due to the reduction 

Figure 2.4 Dgcr8 Levels in Df(16)A
+/– 

Mice during Brain Development. Dgcr8 

expression levels in hippocampus of E17 

(A) and P6 (B) Df(16)A
+/–

mice (n = 10) and 

their respective wild type (Wt) littermates 

(n = 10), as assayed by qRT-PCR. 

Figure 2.5 Drastic Reduction of miR-185 Expression in Df(16)A
+/–

 Mice. (A) Expression of mir-185 mRNA in 

HPC and cortex as shown by in situ hybridization in coronal brain sections using an antisense mir-185 probe. An 

antisense U6 probe and a scramble probe were used as positive and negative controls, respectively. Images were 

taken at either × 4 (left panels) or × 10 (right panels) magnification. (B-E) miR-185 expression levels in adult 

hippocampus (HPC) (B) or prefrontal cortex (PFC) (C) (n = 7 for mutant, n = 9 for Wt littermates), in E17 and P6 (D) 

(n = 10 for HPC or PFC, each genotype) of Df(16)A
+/–

 and in HPC (E) (n = 10, each genotype) of Dgcr8
+/–

 as 

assayed by qRT-PCR. Expression levels in mutant animals were normalized to their respective Wt littermates. 

Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 
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in Dgcr8 levels. This represents a genuine gene X gene interaction within a pathogenic CNV that results 

in a considerably greater reduction of the expression of a resident gene than expected by the 50% 

decrease in gene dosage. Such a large reduction in relative expression is unique among genes affected 

by the microdeletion and may represent an important and previously unappreciated component of 

22q11.2-associated miRNA dysregulation. As such, drastically diminished miR-185 activity may lead 

either on its own or in combination with other miRNAs affected due to the Dgcr8 deficiency, to altered 

developmental regulation of one or more targets and thereby impact a number of neural processes. 

However, direct targets for this miRNA as well as for other affected miRNAs have not been reported to 

date.  

2.2.2 A Primary Transcriptional Consequence of 22q11.2 Genomic Losses 

Previous microarray analysis of adult Df(16)A
+/– 

mice revealed that a genomic loss in the 22q11.2 

region results in genome-wide alterations of transcriptional programs in the HPC and PFC (Stark et al., 

2008). We extended expression profile analysis of these two brain regions to two earlier developmental 

stages, embryonic day 17 (E17) and postnatal day 6 (P6). Only one gene, 2310044H10Rik, was 

consistently found to be significantly upregulated in at least two of the three developmental stages 

examined and in at least one of the two brain areas tested. Indeed, 2310044H10Rik was among the top 

upregulated genes in both postnatal stages examined and the top upregulated transcript in the frontal 

cortex of P6 mutant mice (Figure 2.6A, B). Notably, no significant difference in 2310044H10Rik 

expression was found in either frontal cortex or HPC at E17 (Figure 2.6A, B). Importantly, there is not any 

known miRNA within or surrounding this genomic locus suggesting that the upregulation is not due to 

impaired processing of overlapping pri-miRNA transcripts.  

In independent experiments, we attempted to distinguish primary versus secondary gene targets 

of the 22q11.2 microdeletion by looking for genes which expression changes in the opposite direction as 

a result of genomic losses or gains in this locus. Such genes are likely to represent primary targets and 

direct transcriptional readouts of the underlying copy number imbalances. By contrast, expression 

changes specific to genomic losses or in the same direction independent of genomic dosage are more 

likely to be secondary reflections of affected physiological process or malfunctioning brain regions 

(Chahrour et al., 2008). We compared the PFC and HPC gene expression profiles in mice carrying a  
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deletion or duplication at the syntenic mouse locus using as a reference compound heterozygous mice  

balanced for copy number (see Chapter 2.5.1 and Figure 2.7). We identified a number of inversely altered 

transcripts in either PFC or HPC (P-value <0.001, Table 2.2), in addition to the transcripts from the 

22q11.2 region. As expected the majority of the identified transcripts are pri-miRNA forms. Only twelve 

transcripts were significantly misregulated in a reciprocal manner in both PFC and HPC (Table 2.3). 

Among them, 2310044H10Rik is the only gene with protein coding potential.  

Taken together, our expression profiling highlighted the misregulation of 2310044H10Rik as a 

major consequence of the 22q11.2 genomic imbalances at the transcriptome level. We confirmed the 

pattern of 2310044H10Rik upregulation in both PFC and HPC by TaqMan qRT-PCR (PFC: E17, 20%, P 

= 0.24; P6, 59%, P < 0.01; Adult, 76%, P < 10
-6

; HPC: E17, 20%, P = 0.16; P6, 50%, P < 0.05; Adult, 

38%, P <0.05; Figure 2.6C, D). This analysis revealed a profile of temporal regulation where levels of 

2310044H10Rik rapidly decline during the first week after birth (between E17 and P6) and remain 

constantly low thereafter, as well as a corresponding pattern of misregulation in Df(16)A
+/–

 mice where 

elevated expression of 2310044H10Rik persists throughout postnatal and adult life. Increased brain 

expression of 2310044H10Rik is recapitulated in primary neurons from Df(16)A
+/–

 mice (Figure 2.6E).  

2.2.3 2310044H10Rik as a Major Downstream Target of miRNAs Dysregulated in Df(16)A
+/– 

Mice 

Notably, 2310044H10Rik mRNA levels were also elevated in Dgcr8
+/–

 mice (HPC: 30%, P < 0.05; 

PFC: 24%, P < 0.05; Figure 2.8A), suggesting that upregulation may be due to miRNA dysregulation. 

Indeed, two miRNA target site prediction programs, TargetScan
 
 (Grimson et al., 2007) and mirDB (Wang, 

Figure 2.6 [previous page] 2310044H10Rik (Mirta22) is Robustly Upregulated in the Brain of Df(16)A
+/–

 

Mice. (A) Changes in gene expression in the prefrontal cortex (PFC, upper panel) or hippocampus (HPC, lower 

panel) of Df(16)A
+/–

 and Wt littermate control mice at E16, P6 and adulthood (n = 10 each group): Volcano plot of 

the P-values and the corresponding relative expression of each gene. Light blue dots indicate genes within 

Df(16)A deficiency; light green dots indicate upregulated miRNA-containing transcripts; red dots indicate probe 

sets representing Mirta22. (B) Top 10 protein encoding genes that show significant upregulation in the PFC 

(upper panel) or HPC (lower panel) of Df(16)A
+/–

 and Wt littermate mice at E16, P6 and adulthood. Mirta22 is 

highlighted in red. (C-D) Temporal expression of 2310044H10Rik (Mirta22) in the PFC (C) and HPC (D) of 

Df(16)A
+/–

 and Wt littermate mice as monitored by qRT-PCR. n = 9–10 for each group. (E) Increased expression 

of endogenous 2310044H10Rik (Mirta22) in DIV9 hippocampal neurons isolated from Df(16)A
+/–

 animals as 

assayed by qRT-PCR (n = 3 each genotype). Expression levels in mutant neurons were normalized to Wt 

neurons. Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 
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2008), report that the 3′UTR of 2310044H10Rik contains binding sites of miRNAs that were shown to be 

affected in Df(16)A
+/–

 mice by microarray profiling
 
(Stark et al., 2008). Specifically, mirDB predicted 5 such 

miRNAs with binding sites in the 3′UTR of 2310044H10Rik including miR-185 and miR-485, whereas 

Figure 2.7 Generation of Df(16)B and Dp(16)B. (A) Dgcr14 and Hira loci and the corresponding targeted loci 

following the introduction of 5’ HPRT and 3’ HPRT mini-cassettes, respectively. (B) Upon exposure to Cre 

recombinase, recombination between the Lox P sites of modified loci positioned in the trans orientation, led to the 

generation of a deletion between Dgcr14 and Hira, as well as a duplication of the region. (C) Southern blot of 2 ES 

cell clones, using probes A and B (positions of probes, as well as expected sizes upon digestion with KpnI, 

indicated in panel B. E5 and E8 possess both the deletion (indicated by a 22.9 kb band) as well as the duplication 

(indicated by a 16.6 kb band). Wt indicates lane with DNA from wild type ES cells. M indicates the marker lane, 

BstEII cut λ DNA. (D) FISH verification. Top panel: metaphase chromosome spread of MEFs possessing the 

duplication. A slightly brighter red signal (arrow) indicates the duplicated region. Middle panel: Interphase FISH of 

the duplication. The duplication is demonstrated by a third separate red signal. Bottom panel: Metaphase 

chromosome spread of MEFs possessing the deletion. The red signal indicates the deleted region, and the green 

signal is from the control probe, located outside of the deleted region. MEF: mouse embryonic fibroblast. FISH: 

fluorescent in situ hybridization. RP23-420H6: mouse BAC probe located within the deleted and duplicated regions. 

RP23-290E4: mouse BAC probe located outside of the deleted and duplicated regions. 
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TargetScan predicted 13 miRNA sites, including sites for miR-185, miR-485, miR-491 and miR-224. 

Notably, both programs predicted sites for miR-185 and miR-485 (Figure 2.9A, red rectangles).  

Because increased brain expression of 2310044H10Rik is recapitulated in primary neurons from 

Df(16)A
+/–

 mice (Figure 2.6E), we first used primary neurons to determine if endogenous 2310044H10Rik 

expression is actually under the control of miR-185. To examine the effect of miR-185 overexpression on 

2310044H10Rik level, we introduced into primary neuronal cultures a miRNA precursor mimic (“pre-miR-

185”), which is processed into mature miRNA, or a scramble precursor (“pre-scramble”) with no homology 

to the mouse genome, which serves as a control for nonspecific effects of small RNA expression. 24 

hours post-transfection there was a decrease in the levels of 2310044H10Rik in pre-miR-185 transfected 

neurons when compared to pre-scramble transfected neurons (P < 0.01; Figure 2.9B). In a 

complementary experiment, introduction of an anti-miR-185 LNA oligonucleotide or a scramble control 

oligonucleotide resulted in an increase of 2310044H10Rik mRNA levels in anti-miR-185 transfected cells 

when compared to scramble transfected cells (P< 0.05; Figure 2.9C). Taken together, these results 

Figure 2.8 2310044H10Rik (Mirta22) is 

the Major Downstream Target of the 

miRNA Dysregulation.  

(A) 2310044H10Rik (Mirta22) expression 

levels in hippocampus (HPC) and prefrontal 

cortex (PFC) of adult Dgcr8
+/–

mice (n = 7 

for HPC; n = 10 for PFC) and their 

respective Wt littermate controls (n = 8 for 

HPC; n = 10 for PFC), as assayed by qRT-

PCR. Expression levels in mutant animals 

were normalized to their respective Wt 

littermates. (B) 293T cells transfected with 

pre-miR-185 mimic or pre-scramble (pre-

scr) oligo. Expression levels of C19orf63, 

the human homolog of 2310044H10Rik  

(Mirta22), were assayed by qRT-PCR. Expression levels of C19orf63 in cells transfected with pre-miR-185 (n = 3) 

were normalized to the pre-scr controls (n = 3). (C) Expression levels of a sample of putative miR-185 targets 

predicted by both TargetScan and miRanda (Nptx2, Coro2b, Epb4.1l1, Lpcat3, Gsk3b, Slc6a1,Grin2b andVipr2) in 

the HPC of adult Df(16)A
+/–

mice (n= 10) and their respective Wt littermate mice (n = 10), as assayed by qRT-PCR. 

Expression levels in mutant animals were normalized to their respective Wt littermates. For all genes tested, 

expression levels were not significantly altered in mutant animals. Expression levels in mutant animals were 

normalized to their respective Wt littermates 
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Figure 2.9 miR-185 Directly Targets and Represses 2310044H10Rik (Mirta22). (A) Structure of the 3′UTR of 

2310044H10Rik (Mirta22) showing miRNA binding sites predicted by TargetScan or mirDB. Blocks in mouse 

2310044H10Rik 3′UTR that are highly conserved in rat and human orthologues are shown below the mouse 3′UTR. 

Evolutionary conservation is also assessed by the “30-way multiz alignment and conservation analysis” in the USCS 

browser, with conserved blocks indicated by green peaks. miR-185 and miR-485 binding sites located within the 

conserved blocks are shown in red. (B-C) qRT-PCR quantification of endogenous Mirta22 in DIV7 hippocampal 

neurons. Expression levels in anti-miR-185-treated and pre-miR-185-treated neurons were normalized to expression 

levels under respective controls. (B) Increased expression levels of Mirta22 in neurons transfected with anti-miR-185 

at DIV5 (n = 5, each treatment). (C) Reduced expression levels of Mirta22 in DIV9 hippocampal neurons transfected 

with pre-miR-185 mimic at DIV7 (n = 3, each treatment). (D-E) qRT-PCR quantification of endogenous Mirta22 in N18 

cells. Expression levels in pre-miR-185-treated and anti-miR-185-treated cells were normalized to expression levels 

under respective controls. (D) Reduced expression levels of Mirta22 in cells transfected with pre-miR-185 mimic (n = 

3, each treatment). (E) Up-regulation of Mirta22 in cells transfected with an anti-miR-185 LNA oligo (n = 3, each 

treatment). (F-H) Repression effects of pre-miR-185, pre-miR-485 and pre-miR-491 on Mirta22 3′UTR were examined 

by a dual-luciferase reporter assay. psiCHECK2 plasmids containing a Renilla luciferase gene under the control of 

either Wt or one of the mutant 2310044H10Rik  3′UTRs were co-transfected with pre-miRNA or pre-scramble mimic 

into the N18 neuroblastoma cell line (n = 3 for each condition). Firefly luciferase expressed from the same plasmid 

was used as internal control. Values are Renilla luciferase levels relative to firefly luciferase levels and normalized to 

the relative expression levels under pre-scramble treatment (F, H) or to the relative expression levels from plasmid 

with no 3′UTR (G). Pre-miR-185 significantly decreases the 2310044H10Rik 3′UTR reporter expression over a 

concentration range of 10nM to 0.01nM (F). pre-miR-185 mediated repression on 2310044H10Rik (Mirta22) 3′UTR 

reporter expression depends on conserved miRNA binding sites (G). 2310044H10Rik 3′UTR luciferase reporters with 

mutations at Site 1 (Mut1) or Site 2 (Mut2) or both sites (Mut1&2) were analyzed. Mutated 2310044H10Rik (Mirta22) 

3′UTR reporters express significantly higher luciferase activities than Wt Mirta22 3′UTR reporters. Pre-miR-485 and 

pre-miR-491 significantly decreases the 2310044H10Rik (Mirta22) 3′UTR reporter expression (H). Results are 

expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 
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confirm that 2310044H10Rik expression in primary neurons is under the repressive control of miR-185. 

Essentially identical results were obtained when 2310044H10Rik expression was assayed in N18 cells 

(Figure 2.9D, E). Therefore we used this cell line in order to facilitate further molecular characterization of 

the inhibition of miR-185 on 2310044H10Rik expression.   

To test if the inhibition of miR-185 on 2310044H10Rik expression is 3′UTR-dependent as 

predicted by TargetScan and mirDB (see above), 2310044H10Rik 3′UTR-fused luciferase reporter genes 

(see Chapter 2.5.7 and Figure legend for details) were cotransfected with either “pre-miR-185” mimic or a 

scramble precursor (“pre-scramble”) into N18 cells. While pre-scramble did not affect the reporter activity, 

introduction of pre-miR-185 mimic led to a dramatic decrease of luciferase activity as compared to the 

pre-scramble control (P < 0.001 for all pre-miR-185 concentrations used, compared to pre-scramble 

control; Figure 3F). Repression by miR-185 occurs over a 10
3
-fold concentration range and more than 

55% repression was still observed at a pre-miR-185 mimic concentration of 0.01 nM (Figure 2.9F). To 

investigate if miR-185-mediated repression is specific and operates directly via the two binding sites 

predicted by TargetScan (Figure 3A), we engineered luciferase reporters carrying mutated versions of 

2310044H10Rik 3′UTR with either individual or both miR-185 binding sites mutated (Mut1: Site 1 mutant; 

Mut2: Site 2 mutant; Mut1&2: Site 1 and 2 mutants, see Supplementary Methods). The pre-miR-185 

mimic significantly reduced the luciferase activity of the Wt reporter to ~25% relative to a control reporter 

without 3′UTR, while it reduced the luciferase activities of the Mut1 and Mut2 reporters to 80% (P < 0.01) 

and 33% (P < 0.05) respectively (Figure 2.9G). Notably, the pre-miR-185 mimic could not repress 

luciferase activity driven from a mutant reporter where both binding sites are simultaneously disrupted 

(Figure 3G). Thus, both miR-185 cognate binding sites have an impact on the 3′UTR-mediated regulation 

of 2310044H10Rik expression, although the site disrupted in the Mut1 reporter (Site 1) seems to be the 

major target site via which miR-185 directly exerts its repressive effect.  

We further addressed the dependence of 2310044H10Rik 3′UTR reporter repression on the 

levels of miR-485 or miR-491, which are also predicted to target binding sites in the 3′UTR of 

2310044H10Rik. Neither of these two miRNAs is located within the 22q11.2 microdeletion, but both are 

modestly down-regulated in HPC of Df(16)A
+/–

 mice due to the Dgcr8 hemizygosity (Figure 2.10). The 

pre-miRNA mimics of either miRNA modestly but significantly reduced the luciferase activity of the 3′UTR 

fused reporter compared to the pre-scramble control (pre-miR-485: 27%, P < 0.05; pre-miR-491: 35%, P 
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< 0.05; Figure 2.9H). A three factor ANOVA analysis indicated that all three miRNAs (miR-185, miR-485 

and miR-491) and their interactions have significant impact on the luciferase activity with the exception of 

the interaction between miR-485 and miR-491 (Table 2.4).  

Taken together, these findings suggest that the persistent elevation of 2310044H10Rik levels 

observed in Df(16)A
+/–

 mice is likely the result of the combined hemizygosity at mir-185 and Dgcr8 loci. 

Although more than one miRNA contributes, the major effect is due to the dramatic downregulation of 

miR-185. Consistent with this notion and the less profound reduction of miR-185 in Dgcr8
+/–

 mice (Figure 

2.5E), 2310044H10Rik is only modestly upregulated in this strain (Figure 2.8A). Interestingly, a 

comparison between the 3′UTR of human and mouse orthologues (Figure 2.9A) reveals that miR-185 

cognate Site 1 as well as one miR-485 binding site are located within a highly conserved region, 

suggesting that these sites are critical in regulating the levels of the human orthologue (C19orf63).  

Consistent with this expectation, introduction of pre-miR-185 into human 293T cells resulted in a 

significant decrease of endogenous C19orf63 levels (Figure 2.8B). In addition, similar to the pattern 

observed in the mouse brain, expression of C19orf63 decreases in infant brain (see also Chapter 3.3.2) 

(Colantuoni et al., 2011).  

It is noteworthy that inspection of our gene expression database as well as qRT-PCR analysis of 

a sample of eight high-likelihood miR-185 targets identified by more than one prediction program did not 

reveal any additional significant transcript level changes in the brains of Df(16)A
+/−

 mice (Figure 2.8C). 

Furthermore, unlike 2310044H10Rik, none of the top upregulated genes shown in Figure 2.6 are 

consistently altered in the HPC and frontal cortex of E17, P6 and adult Df(16)A
+/−

 mice and only one of 

them contains miR-185 seed sites in its 3′UTR. Overall, although additional downstream targets of miR-

Figure 2.10 Reduction of miR-485 and miR-491 

Expression in Df(16)A
+/–

 Mice. Expression levels 

of miR-485 and miR-491 in hippocampus of adult 

Df(16)A
+/–

mice (n = 7) and their respective Wt 

littermate mice (n = 9), as assayed by qRT-PCR. 

Expression levels in mutant animals were 

normalized to their respective Wt littermates 
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185 likely exist (see Chapter 3.2.3), our analysis suggests that 2310044H10Rik represents the major 

downstream effector of miR-185 and a major hub target of miRNA dysregulation due to the 22q11.2 

microdeletion. Due to confirmed miRNA-mediated regulation, we renamed the gene Mirta22 (miRNA 

target of the 22q11.2 microdeletion). In the Chapter 3, I will discuss the efforts to characterize the 

localization and function of Mirta22 protein.  

2.3 Discussion 

2.3.1 CNV-associated miRNA Dysregulation 

In our 22q11.2 microdeletion mouse model, Df(16)A
+/−

, downregulation of a subset of mature 

miRNA due to Dcgr8 haploinsufficiency was described previously (Stark et al., 2008). Dgcr8 is the RNA-

binding moiety of the microprocessor complex and its deficiency impedes the processing of pri-miRNAs to 

pre-miRNAs. Proper miRNA function involves the delicate pathways controlling miRNA biogenesis and 

targeting, including transcription, enzymatic processing and formation of miRNA-containing complexes 

and their intracellular tracking. Gain or loss of any of the gene involved in these processes generally 

leads to modest dysregulation of a group of miRNAs. How much impact the collective changes of a 

subset of miRNA can make is discussed next in Chapter 2.3.3, but it is conceivable that this kind of 

extensive miRNA dysregulation could be a more general phenomenon underlying the etiology of 

pathogenic CNVs associated with neuropsychiatric disorders. Indeed, as mentioned in Chapter 1.2.1, a 

CNV encompassing DICER1 and recurrent CNVs encompassing CYFIP1 (encoding a protein interacting 

with components of miRNA-silencing machinery) were identified in large-scale genome-wide studies for 

CNV associated with schizophrenia (Napoli et al., 2008; Xu et al., 2008). As there are increasing genome-

wide efforts to identify structural variants associated with neuropsychiatric disorders, it seems promising 

that other CNVs containing genes involved in miRNA processing  will be uncovered. In fact, CNVs were 

found to encompass DROSHA, XPO5 (Exportin 5), GEMIN4 and PIWIL1 loci (Duan et al., 2009). The 

understanding of the resulting abnormalities of miRNA biogenesis and function will greatly increase our 

understanding of the pathophysiology of neuropsychiatric disorders and even the normal function of the 

genes involved. 

Instead of a more widespread dysregulation of miRNAs, CNVs that encompass individual miRNA 
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genes lead to aberrant expression of specific miRNAs. Besides hsa-mir-185, hsa-mir-1306 and hsa-mir-

1286 (without mouse orthologues) are also located in the 1.5 Mb 22q11.2 microdeletion region (ISC, 

2008; Karayiorgou et al., 1995; Stefansson et al., 2008; Xu et al., 2008). These 2 miRNAs were 

experimental identified relatively recently and are likely to be expressed at much lower levels than hsa-

mir-185 as suggested by the accumulated deep sequencing reads so far (see their respective entries at 

miRBase). Whether mir-1306 is downregulated in Df(16)A
+/−

 mouse and the potential functional impact 

remains to be investigated. Furthermore, other miRNA genes located in recurrent CNVs identified in 

schizophrenia and autism spectrum disorder include hsa-mir-211 in the 15q13 (ISC, 2008; Kirov et al., 

2009; Kirov et al., 2008; Miller et al., 2009; Stefansson et al., 2008) and hsa-mir-484 in 16p13.11 

(Ingason et al., 2009; Kirov et al., 2009). Since miRNA genes are dispersed in the genome, many CNVs 

likely include miRNA genes. As the genome of any individual contains a number of inherited and de novo 

CNVs that likely encompass miRNA genes (Freeman et al., 2006; MacArthur et al., 2012; Pinto et al., 

2007), dysregulation of individual miRNAs due to CNVs is possibly more prevalent than was previously 

appreciated. In support of this hypothesis, an analysis focusing on 380 miRNA genes at gene loci 

enriched in biological processes found that more than 50% (193 out of 380) of these genes are located in 

regions covered by 385 CNVs in public databases. However, it is conceivable that most of the resulting 

miRNA expression change is mild and likely due to compensation by downregulation (in the case of 

duplication) or upregulation (in the case of deletion) of the existing miRNA copies. More substantial 

alterations in miRNA levels are likely to occur when there is gene X gene or variant X variant interaction.  

In this regard, in this chapter I present our finding that a drastic reduction in miR-185, which 

resides in the 22q11.2 locus, is a previously unappreciated component of the miRNA dysregulation in 

22q11.2 microdeletion syndrome. This discovery is particularly interesting as it represents an example of 

a gene X gene interaction within a CNV that leads to more severe dysregulation of a miRNA encoded 

within the CNV locus. Other CNVs that include a miRNA gene and a gene involved in processing of that 

miRNA can result in larger alterations than changing the copy number of the miRNA alone. Gene X gene 

or variant X variant interaction likely contributes to drastic alteration of miRNA expression. In cases where 

a chromosomal deletion causes a loss of a miRNA gene is coupled with a variant in the remaining copy of 

the miRNA gene, a greater alteration than expected by the change of copy number itself results.  
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2.3.2 Convergent Downregulation of miRNAs in Schizophrenia Patients and Df(16)A
+/– 

Mice 

Compelling evidence for miRNA dysregulation due to 22q11.2 microdeletion provides a useful 

etiological context to interpret results obtained from ongoing studies monitoring miRNA expression 

changes in the brains and peripheral blood cells in schizophrenia. As mentioned in Chapter 1.2.1, two 

recent studies provide supporting evidence suggesting that miRNAs dysregulated as a result of the 

22q11.2 microdeletion may have a more general role in schizophrenia pathogenesis (Figure 2.11). A 

postmortem study found that reduction in a subset of miRNAs in Brodmann area is associated with 

schizophrenia and bipolar disorder (Moreau et al., 2011). Interestingly, when the 24 misexpressed 

miRNAs with posterior probabilities of a nonzero diagnostic effect > 95% were compared with 22 

< 5% (Gardiner et al., 2011). Interestingly, 17 miRNAs, including miR-134, are transcribed and possibly co-

regulated from the maternally expressed DLK1-DIO3 locus on chromosome 14q32 (a homologous locus on mouse 

chromosome 12qF1), suggesting that fine control of miRNA expression from this locus may be critical for normal 

brain development and function. MicroRNAs identified as downregulated in both the Gardiner et al study and 

the  Df(16)A
+/−

mice are shown in RED. Overalapping miRNAs located in the DLK1-DIO3 locus  are underlined. It is 

important to note that many of these convergent miRNAs are synaptically enriched, suggesting they may function at 

synaptic sites. Those miRNAs with a synaptic enrichment ratio (synaptic fraction/total homogenate) > 2 are marked 

with a blue star (Lugli et al 2008). 

Figure 2.11 Convergent down-regulation 

of miRNAs in schizophrenia patients 

and Df(16)A
+/- 

 mice. In Df(16)A
+/− 

mice, 

expression of 30 miRNAs in hippocampus 

(HPC) and 60 miRNAs in prefrontal cortex 

(PFC) is reduced due to hemizygosity of 

Dgcr8 gene. Among them 25 miRNAs are 

downregulated in both HPC and PFC. In a 

study of postmortem brain samples from 

patients with SCZ or bipolar disorder (BP), 

Moreau et al identified 24 dysregulated 

miRNAs (having > 95% posterior probability 

of nonzero effect of psychiatric diagnosis). 

Among those, 8 are underexpressed in the 

PFC of Df(16)A
+/− 

mice, including miR-151 

and miR-106b that are downregulated in 

the HPC as well (Moreau et al 2011). In 

addition, miRNA profiling in PBMC of 

patients with SCZ found 83 miRNAs  down-

regulated with a false discovery rate (FDR)  
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identified in the mouse model of 22q11.2 microdeletion, 8 of them overlapped. Another line of evidence 

came from an expression profiling study of miRNAs in peripheral blood mononuclear cells of 112 patients 

with schizophrenia and 76 non-psychiatric controls (Gardiner et al., 2011). Gardiner et al. showed that a 

cluster of 17 of the most substantially downregulated miRNAs were located within an imprinted region 

(DLK1-DIO3) on chromosome 14q32. These miRNAs account for 53% of the 30 miRNAs that lie within 

this locus and are expressed in the peripheral blood mononuclear cells (Gardiner et al., 2011). Notably, 

the expression levels of many miRNAs within this cluster including miR-134 were also downregulated in 

Df(16)A
+/−

 and  Dgcr8
+/−

  mice. It is interesting to note that many of these convergent miRNAs have been 

shown to be synaptically enriched (Lugli et al., 2008) and may function at synaptic sites (Figure 2.11). It is 

an intriguing idea that there exist a “core group” of miRNAs which play important roles in brain function 

that are collectively downregulated in schizophrenia or certain subtypes of schizophrenia. This hypothesis 

remains to be tested by future miRNA expression profiling studies in patients as well as in etiologically 

valid animal models. 

2.3.3 Impact of Modest Dysregulation of miRNAs 

Although the observed fold change of individual miRNAs in studies of the Df(16)A
+/−

 mouse model 

(Stark et al., 2008) as well as in human postmortem studies (Beveridge et al., 2010; Gardiner et al., 2011; 

Kim et al., 2010; Moreau et al., 2011; Perkins et al., 2007; Santarelli et al., 2011) is generally small 

(typically <0.70, i.e. <30% decrease), it is conceivable (although not yet unequivocally established) that 

even relatively small changes in specific miRNA levels can disrupt the fine-tuning of target protein 

expression. Many of the miRNAs found altered in the aforementioned studies are not among the most 

highly expressed miRNAs in the brain, suggesting that they may not be able to stoichiometrically saturate 

their target mRNAs under physiological condition. Fluctuation in the levels of such miRNAs may result in 

changes of expression levels of target proteins, especially those targets that have multiple binding sites 

for the dysregulated miRNAs. Indeed, it has been recently shown that alterations in the levels of at least 

some miRNAs have a low magnitude but widespread impact on proteome, suggesting that individual 

miRNAs can act as “rheostats” to adjust the fine-scale control of protein output (Selbach et al., 2008). In 

that context, modest dysregulation of many miRNAs can, in principle, interact additively and cooperatively 

resulting in an even more prevalent impact on proteome. More studies are certainly required to validate if 
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additive or synergistic miRNA dysregulation is indeed at play in individuals with 22q11.2 microdeletions.  

2.3.4 Not all miRNA Targets are Created Equal? 

Our analysis suggests that Mirta22 is the major downstream target affected by drastically 

dysregulated miR-185 starting at postnatal development. We began by speculating that any major target 

with expression critically regulated by miR-185 during normally brain maturation would be derepressed 

and significantly upregulated in brains of Df(16)A
+/−

 mice. We thus searched for the top upregulated 

genes in the transciptome that harbor miR-185 binding sites in the 3’UTR and found Mirta22 as the only 

gene consistently altered in both hippocampus and frontal cortex and possessing a miR-185 binding site.  

This finding may seem surprising considering the many possible targets predicted by various in 

silico programs to be regulated by miR-185. Furthermore, microarray and proteomic studies generally 

show a large number of targets simultaneously repressed by individual miRNAs (Baek et al., 2008; Chi et 

al., 2009; Guo et al., 2010; Lim et al., 2005; Selbach et al., 2008). It was also reported that at least 16% of 

the proteins from mRNAs with single 7-8mer 3’UTR sites responded to miRNAs overexpression (Baek et 

al., 2008). However, in these studies, only a very small percentage of altered targets changed by at least 

0.5 on log2 scale (~>30% downregulation or ~>40% upregulation) when miRNAs levels were drastically 

manipulated (Baek et al., 2008; Chi et al., 2009; Selbach et al., 2008). It is also relevant to note that 

although CNVs clearly contribute to human diseases, many CNVs and the resulting heterozygosities or 

gene duplications are likely well-tolerated and only have limited contribution to phenotypic variation 

(Freeman et al., 2006; MacArthur et al., 2012). In similar fashion, it is conceivable that the majority of the 

mildly dysregulated targets can be neutralized by compensatory regulation. Effects of collective modest 

dysregulation of a group of targets only become noticeable when those targets are involved in specific 

functional pathways (see Chapter 5.2.1). Although we also observed a coordinated dysregulation of 

targets with Golgi-related function due to reduced miR-185 levels (results present in Chapter 3.2.3), in 

studies mentioned above, the functional impact of the dysregulation of a cohort of targets due to miRNA 

manipulations is largely unexplored. 

On the other hand, ever since the discovery of miRNA, it is well-documented that in certain 

contexts, especially during development, repression of a few targets or even one single target, among the 

large cohort of targets of a single miRNA, is the primary role of that particular miRNA (Lee et al., 1993; 
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Reinhart et al., 2000; Wightman et al., 1993). In nematode C. elegans the phenotype of the loss of 

function (lf) mutant of lin-4, the first identified miRNA gene, is the reiteration of early fates and cell division 

at inappropriate late developmental stages (Chalfie et al., 1981; Lee et al., 1993). The phenotype is 

largely accounted for by the loss of repression of only 2 targets, lin-14 and lin-28 (Lee et al., 1993; Moss 

et al., 1997; Wightman et al., 1993). Later, similar regulatory interactions with major phenotypic 

importance were discovered for let-7 miRNA and its targets HBL-1 and LIN-41 in L4-adult transition in 

worm (Abbott et al., 2005; Reinhart et al., 2000) and for miR-223 and Mef2c in myeloid-lineage 

differentiation in mouse (Johnnidis et al., 2008). To date, numerous miRNAs have been demonstrated to 

regulate important key targets at least in certain contexts (see also review by Alex Flynt and Eric Lai 

(Flynt and Lai, 2008)). A future challenge is to determine the extent of situations where miRNAs regulate 

only a few of key targets versus where miRNAs concurrently control a large number of targets to exert 

effects on phenotypes. Of course, these two possibilities are not necessarily mutually exclusive and I 

argue that miRNAs can simultaneously regulate key targets that have decisive impacts as well as other 

secondary targets that can collectively modulate the functional consequences. As shown in this and the 

next chapter, such a complicated scenario is likely the case for miR-185. 

2.4 Summary 

While extensive miRNA dysregulation in Df(16)A
+/−

 mice was previously observed, we investigate 

a miRNA gene (mir-185) located in the 22q11.2 locus and discover a drastic downregulation of mir-185 in 

hippocampus (HPC) and prefrontal cortex (PFC) of Df(16)A
+/−

 mice. This effect is due to the gene X gene 

interaction in which Dgcr8 haploinsufficiency is coupled with the loss of one copy of the mir-185. Since a 

miRNA exerts its function by repressing its target genes, we looked for downstream targets of miRNA 

dysregulation in Df(16)A
+/−

 mice. We identified 2310044H10Rik (later renamed Mirta22) from the top 

upregulated genes in the transcriptome analysis and showed that 3 miRNAs dysregulated in Df(16)A
+/−

 

mice, miR-185, miR-491 and miR-485, regulate Mirta22 expression by targeting the 3’UTR of Mirta22. We 

conclude Mirta22 is a major effector of miRNA dysregulation in Df(16)A
+/−

 mice and will describe the 

functional characterization of Mirta22 in the next Chapter. 
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Table 2.1   Examples of Phenotypic Correlation between 22q11.2DS and Df(16)A+/−  

Cognitive Function 

22q11.2 DS Patients Functional correlates Df(16)A
+/−

 Refs 

Impaired suppression in prepulse 

inhibition (PPI) test 

Preattentive processing 

Sensorimotor gating 

Impaired suppression in prepulse 

inhibition (PPI) test 

1, 2, 3 

Decreased accuracy in N-back task Working memory Decreased accuracy in delayed non-

match to place (DNMP) task 

4, 3 

Visual-spatial memory in CMS dot 

location  task  

Spatial memory Reduced fear response in contextual 

fear conditioning 

5, 3 

Learning disability  Learning and memory Reduced fear response in contextual 

and cued fear conditioning; longer time 

to reach criteria in DNMP task 

6, 7, 3 

Brain Morphology 

22q11.2 DS Patients Structural correlates Df(16)A
+/−

 Refs 

Decreased hippocampal volume Structural complexity in 

Hippocampus  

Reduced dendritic complexity, spine 

number and spine size of CA1 neurons 

8, 9, 

10, 3 

Decreased cortical thickness Structural complexity in 

prefrontal cortex  

Reduced basal dendritic complexity 

and spine number of layer V PFC 

neurons 

11, 

12, 13 

Attenuated concomitant  activation 

of DLPFC and HPC in N-back task 

HPC-PFC circuitry Reduced neural synchrony and phase 

locking between HPC and PFC 

14, 15 

CMS: Children’s Memory Scale, DLPFC: dorsolateral prefrontal cortex, PFC: prefrontal cortex, HPC: hippocampus. 

References: 1. (Ornitz et al., 1986), 2. (Sobin et al., 2005), 3. (Stark et al., 2008), 4. (Casey et al., 1995), 5. (Bearden 

et al., 2001), 6. (Shprintzen et al., 1978), 7. (Lajiness-O'Neill et al., 2005), 8. (Simon et al., 2005), 9. (Campbell et al., 

2006), 10.  (Eliez et al., 2000a), 11. (Schaer et al., 2006), 12. (Schaer et al., 2009), 13. (Kim Stark & Joseph Gogos, 

unpublished data),  14. (Meyer-Lindenberg et al., 2005), 15, (Sigurdsson et al., 2010). 
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Table 2.2   Transcripts outside the 22q11.2 Syntenic Region Misregulated in a Reciprocal 

Manner 

Brain 
region 

AffyID 
Ch
r 

Chr_start Chr_end 
Fold 

change 
(Del/Bal)

*
 

Fold 
change 

(Dup/Bal)
 *
 

F P Value Symbols 

PFC 1424038_a_at 7 51745308 51751883 1.43 0.86 73 2.60E-11 2310044H10Rik 

PFC 1435179_at 13 83867710 83875274 1.46 0.89 52.6 8.50E-10 
C130071C03Rik 

(miR-9-2) 

PFC 1460033_at 1 196850302 196864096 1.76 0.85 44.49 4.60E-09 
A330023F24Rik 

(miR-29c) 

PFC 1435089_at 13 63116293 63400964 1.77 0.78 43.72 5.50E-09 
2010111I01Rik 

(miR-23b) 

PFC 1428562_at 11 75275040 75280192 1.33 0.85 42.88 6.70E-09 
2210403K04Rik 

(miR-22) 

PFC 1440357_at 15 85537748 85537832 2.07 0.87 32.51 9.40E-08 (let-7b) 

PFC 1438838_at X 100764843 100819093 1.3 0.88 18.77 9.60E-06 
B230206F22Rik 

(miR-374) 

PFC 1431094_at 12 110833610 110835408 1.2 0.91 17.13 1.90E-05 
1110006E14Rik 

(miR-136) 

PFC 1439305_at X 100772966 100773671 1.4 0.97 15.3 4.20E-05 (miR-374) 

PFC 1430959_at 17 17967938 17976035 1.46 0.88 14.93 5.00E-05 Ncrna00085 

PFC 1456904_at 11 97049276 97050652 0.82 1.08 14.92 5.10E-05 NA 

PFC 1457030_at 12 110973190 110987665 1.29 0.91 14.82 5.30E-05 Mirg 

PFC 1434730_at 7 86676773 86677477 1.42 0.96 14.75 5.50E-05 
AI854517 

 (miR-9-3) 

PFC 1427410_at 14 62221673 62301210 1.27 0.9 13.75 8.80E-05 Dleu2 (miR-15a) 

PFC 1419161_a_at 7 94395304 94547116 1.17 0.97 13.66 9.20E-05 Nox4 

PFC 1441666_at 1 148274740 148342171 0.81 1.02 13.48 1.00E-04 AK162963 

PFC 1453713_s_at 17 17967938 17976035 1.8 0.89 13.18 1.20E-04 Ncrna00085 

PFC 1457181_at 15 81822952 81846570 0.84 1.16 12.67 1.50E-04 Pppde2 

PFC 1438053_at 16 56690444 56717467 0.71 1.06 11.63 2.60E-04 Tfg 

PFC 1431343_at 14 8603700 8625033 1.16 0.91 11.59 2.60E-04 Gm10044 

PFC 1430603_at 9 98462878 98464030 0.93 1.25 11.14 3.30E-04 4930579K19Rik 

PFC 1459704_at 11 100447804 100448219 0.85 1.05 10.91 3.70E-04 Dnajc7 

PFC 1457760_at 4 131435283 131436411 0.7 1.04 10.8 4.00E-04 A930004J17Rik 

PFC 1425173_s_at 3 95392880 95423164 1.03 0.82 10.4 4.90E-04 Golph3l 

PFC 1419586_at X 19941733 19977475 0.78 1.03 10.36 5.00E-04 Rp2h 

PFC 1453087_at 5 139475528 139476533 0.91 1.08 10.35 5.10E-04 6330403L08Rik 

PFC 1420483_at 1 36568720 36585082 1.23 0.94 10.07 5.90E-04 Cnnm3 

PFC 1436503_at 6 128489839 128531624 1.1 0.87 9.98 6.20E-04 BC048546 

PFC 1417272_at 5 65361313 65433140 0.82 1.1 9.97 6.30E-04 Fam114a1 
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PFC 1442913_at 3 118242789 118243450 1.31 0.92 9.92 6.40E-04 NA 

PFC 1437686_x_at 5 136750114 137043301 1.2 0.95 9.79 6.90E-04 Cux1 

PFC 1429599_a_at 5 91360221 91450395 1.26 0.98 9.79 6.90E-04 Mthfd2l 

PFC 1424291_at 8 96738500 96838966 1.23 0.97 9.77 7.00E-04 Nup93 

PFC 1427587_at 7 6336027 6349347 0.98 1.22 9.48 8.30E-04 Zfp28 

PFC 1446835_at 17 6109658 6110258 0.96 1.31 9.48 8.30E-04 Tulp4 

PFC 1429647_at 1 89083240 89084978 0.93 1.25 9.38 8.80E-04 1700027L20Rik 

PFC 1452817_at 1 180885169 181448134 0.94 1.3 9.37 8.80E-04 Smyd3 

PFC 1446932_at 4 108470038 108470615 0.98 1.34 9.2 9.70E-04 NA 

HPC 1424038_a_at 7 51745308 51751883 1.29 0.88 68.49 1.10E-10 2310044H10Rik 

HPC 1440357_at 15 85537748 85537832 1.68 0.81 48.73 3.30E-09 (let-7b) 

HPC 1435179_at 13 83867710 83875274 1.42 0.95 45.42 6.40E-09 
C130071C03Rik 

(miR-9-2) 

HPC 1435089_at 13 63116293 63400964 1.41 0.82 43.86 8.90E-09 
2010111I01Rik 

(miR-23b) 

HPC 1460033_at 1 196850302 196864096 1.71 0.86 42.71 1.10E-08 
A330023F24Rik 

(miR-29c) 

HPC 1427410_at 14 62221673 62301210 1.49 0.95 33.16 1.20E-07 Dleu2 (miR-15a) 

HPC 1428562_at 11 75275040 75280192 1.33 0.92 30.51 2.40E-07 
2210403K04Rik 

(miR-22) 

HPC 1431094_at 12 110833610 110835408 1.2 0.87 25.24 1.20E-06 
1110006E14Rik 

(miR-136) 

HPC 1442913_at 3 118242789 118243450 1.39 0.84 22.06 3.50E-06 AK141880 

HPC 1438838_at X 100764843 100819093 1.3 0.93 19.9 7.70E-06 
B230206F22Rik 

(miR-374) 

HPC 1447298_at 13 83879857 83880314 1.29 0.98 19.9 7.70E-06 (miR-9-2) 

HPC 1436467_at 9 41422406 41423268 1.2 0.83 15.31 5.10E-05 
D230004N17Rik 

(miR-125b-1) 

HPC 1424525_at 18 66033147 66046233 1.06 0.83 14.34 7.80E-05 Grp 

HPC 1434730_at 7 86676773 86677477 1.4 0.95 13.99 9.20E-05 AI854517 (miR-9-3) 

HPC 1460695_a_at 13 63116293 63400964 1.11 0.89 13.92 9.40E-05 2010111I01Rik 

HPC 1455965_at 1 173180552 173190053 0.75 1.02 13.5 1.20E-04 Adamts4 

HPC 1428792_at 2 170172490 170253345 0.8 1.03 13.37 1.20E-04 Bcas1 

HPC 1458783_at 11 22753661 22754585 1.19 0.97 13.05 1.40E-04 B3gnt2 

HPC 1459340_at 3 94771437 94772099 1.25 1 12.96 1.50E-04 NA 

HPC 1453184_at 11 61497911 61523452 1.22 0.97 11.96 2.40E-04 Fam83g 

HPC 1419148_at 10 126437764 126458050 1.15 0.87 11.45 3.20E-04 Avil 

HPC 1430600_at 14 55555306 55558114 0.81 1.02 11.27 3.50E-04 Cmtm5 

HPC 1445039_at 1 120955632 120956425 0.9 1.09 11.21 3.60E-04 NA 

HPC 1426852_x_at 15 54577482 54585316 1.11 0.92 11.15 3.70E-04 Nov 

HPC 1440109_at 7 54261880 54262492 0.88 1.07 10.94 4.10E-04 D7Ertd413e 

HPC 1436796_at 18 35721811 35751699 0.88 1.06 10.91 4.20E-04 Matr3 

HPC 1454212_x_at 15 63712281 63720628 0.86 1.01 10.71 4.60E-04 Gsdmcl2 

HPC 1432862_at 2 146909611 146911081 0.89 1.15 10.37 5.60E-04 Nkx2-4 

HPC 1439943_at 11 21138891 21221136 0.8 1.01 10.27 5.90E-04 Vps54 

HPC 1426851_a_at 15 54577482 54585316 1.12 0.92 9.98 6.90E-04 Nov 
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 * Bal = mouse strain balanced for copy number; Del = mouse model of the 22q11.2 microdeletion; Dup = 

mouse model of the 22q11.2 microduplication   

HPC 1449465_at 5 21390271 21850523 1.14 0.93 9.95 7.00E-04 Reln 

HPC 1415951_at 11 100277007 100286153 0.95 1.2 9.84 7.50E-04 Fkbp10 

HPC 1459493_at 18 79083283 79083877 1.21 0.95 9.83 7.50E-04 Setbp1 

HPC 1419411_at 10 127162447 127168824 1.2 0.84 9.76 7.80E-04 Tac2 

HPC 1435047_at 13 110844396 111070414 1.03 0.9 9.74 7.90E-04 Rab3c 

HPC 1457030_at 12 110973190 110987665 1.22 0.8 9.73 7.90E-04 Mirg 

HPC 1438748_at 19 60600598 60656926 1.06 0.85 9.62 8.40E-04 2700078E11Rik 

HPC 1422703_at X 82947275 83022158 0.98 1.15 9.39 9.60E-04 Gyk 
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Table 2.4   Three Factor ANOVA of the Impact of miR-185, miR-485 and miR-491 on Luciferase 

Activity 

FACTOR DF SS MS F Pr > F 

pre-miR-185 1 0.582 0.582 6554 0 

pre-miR-491 1 0.0307 0.0307 346.3 0 

pre-miR-185 X pre-miR-491 1 0.0062 0.0062 70.27 0 

pre-miR-485 1 0.0011 0.0011 12.86 0.0059 

pre-miR-185 X pre-miR-485 1 0.0008 0.0008 9.069 0.0147 

pre-miR-485 X pre-miR-491 1 2.50E-05 2.50E-05 0.282 0.6084 
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2.5 Methods 

2.5.1 Generation of Df(16)A
+/−

, Df(16)B
+/−

, Dp(16)B
+/−

 and Dgcr8
+/−

 Mice 

Df(16)A
+/–

: By using a chromosomal engineering approach (Zheng et al., 1999), we generated a 

mouse model carrying a 1.3-Mb deficiency on  chromosome 16 syntenic to the human 22q11.2 region 

ranging from the Dgcr2 gene to the Hira gene and encompassing 27 genes (Df(16)A
+/–

, Figure 2.1). The 5’ 

and 3’ ends of the deficiency were introduced into HPRT deficient AB2.2 ES cells through homologous 

recombination. Exposure to Cre recombinase in vitro led to the generation of ES cells with the expected 

deficiency. Chimeric mice were generated and germline transmission of the deficiency was achieved. 

Southern blot, PCR analysis and Fluorescent in situ hybridization (FISH) analysis of mice confirmed that 

the deficiency was present and stable. Mice harboring the deficiency appeared normal by gross 

observation, although, we obtained fewer Df(16)A
+/–

 adult mice (37.3%, n = 300) than the 50% 

transmission rate expected from heterozygote (HET) X wild-type (WT) crosses. Df(16)A
+/–

 mice do not 

show any gross anatomical brain abnormalities. For more details, please see previous work by Stark et al. 

(Stark et al., 2008). 

Df(16)B
+/−

, Dp(16)B
+/−

: Because we did not observe germline transmission for the ES clones 

positive for Dp(16)A duplication [reciprocal of Df(16)A deficiency], in order to compare the PFC and HPC 

gene expression profiles in mice carrying genomic losses or gains in the 22q11.2 syntenic locus we took 

advantage of a different pair of deficiency/reciprocal duplication (Df(16)B and Dp(16)B), which is slightly 

smaller than Df(16)A/Dp(16)A (extending from Dgcr14 to Hira, see Figure 2.1) but includes both Dgcr8 

and mmu-mir-185. The corresponding mouse lines were created using a chromosomal engineering 

approach (Figure 2.7). ES cell clones were screened by Southern blot, using a KpnI digest of ES cell 

DNA. A16.6 kb band, indicating the presence of the duplication, was detected. A 22.9 kb band, indicating 

an expected change in the location of the KpnI sites when the reciprocal deletion is obtained, was also 

seen. Clones positive for the duplication and a reciprocal heterozygous deletion were amplified and 

injected into C57BL/6J blastocysts. Resulting chimeric males were bred to C57BL/6J females in order to 

obtain F1 mice. PCR screening was used in order to detect the duplication and/or the deletion in tail DNA 

samples. To screen for the duplication, PCR primers were used to detect the puromycin resistance gene. 

5’-ATGACCGAGTACAAGCCCAC-3’ and 5’-GCGTGAGGAAGAGTTCTTGC-3’ primers led to the 
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generation of a 166-bp PCR product. A second set of primers: 5’-CTAGGCCACAGAATTGAAAGATCT-3’ 

and 5’ GTAGGTGGAAATTCTAGCATCATCC-3’ was included in these assays in order to detect a 324-bp 

IL-2 internal control band The PCR cycling conditions we used were: 94°C for 3 min; 35 cycles of 94°C for 

30 s, 65°C for 30 s, and 72°C for 90 s; then 72°C for 10 min. To screen for the deletion, primers were 

selected such that an 829-bp band would be detected when the 5’ and 3’ insertions were directly abutted, 

due to the recombination of loxP sites, as previously described (Zheng et al., 1999). Only mice containing 

the duplication were obtained using this approach. Germline transmission of the deficiency was not 

observed. We therefore used an alternative approach to obtain these mice. ES cell clones where the 5’ 

and 3’ insertions were found to be in a cis configuration were injected into C57BL/6J blastocysts. 

Resulting chimeric males were bred to C57BL/6J females in order to obtain F1 mice. PCR was used to 

detect the puromycin resistance gene in the offspring. Puromycin positive mice were further screened by 

Southern blot. Probes external to the 5’ Dgcr14 insertion, as well as external to the 3’ Hira insertion, were 

used to verify the 5’ and 3’ insertions. Mouse genomic DNA was prepared from tail clips, and digested 

with EcoRI (to check for the Dgcr14 insertion) or SpeI (to check for the 3’ Hira insert). Southern blot 

analysis detected a 14.0 kb band, demonstrating the proper positioning of the 5’ insertion, as well as a 

16.2 kb WT band. For the 3’ insert, probing of SpeI cut DNA revealed a 14.5 kb band indicating proper 

positioning of the 3’ construct, in addition to an expected 17.7 kb Wt band. These mice were then bred 

with mice expressing Cre recombinase in their germline using the HPRT-Cre line (stock # 004302, The 

Jackson Laboratory, Bar Harbor, ME). Offspring that were positive by PCR for both the puromycin 

resistance gene (see PCR conditions above) and Cre recombinase (using primers 5’-

GCGGTCTGGCAGTAAAAACTATC-3’ and 5’-GTGAAACAGCATTGCTGTCACTT-3’, and cycling 

conditions 94°C for 3 min; 35 cycles of 94°C for 30 s, 51°C for 1 min, and 72°C for 1 min; then 72°C for 

10 min) were bred with C57BL/6J Wt mice. The resulting offspring from these crosses were screened for 

the presence of the deletion by using the primers and PCR conditions described (Stark et al., 2008). 

Once the duplication and deletion mouse lines were established, maintenance of the lines was performed 

by PCR-based genotyping. Both lines have been backcrossed to C57BL/6J background for at least 10 

generations.  

Dgcr8
+/−

: We generated Dgcr8-deficient mice using an ES cell line (XH157 ES, BayGenomics) 

carrying a β-geo gene trap inserted into intron 8 of the Dgcr8 gene. A transcriptional fusion, expected to 
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be generated as a result of splicing between the splice donor site at Dgcr8 exon 8 and the splice acceptor 

site located at the gene trap, was detected in Northern blots in brain samples of HET mice. As expected, 

by using qRT-PCR we showed that the full-length Dgcr8 mRNA levels are reduced by approximately half 

in Dgcr8-deficient mice (P = 0.0001). At the protein level, we can also readily detect by Western blots, 

using total brain protein extracts, a chimeric protein produced as a result of the translational fusion 

between the N-terminal part of Dgcr8 and the β-geo moiety (expected size ~220-kD) and the reduced WT 

120-kD product. As a result of the translational fusion, two functional double-stranded RNA binding 

domains (DRBs) of Dgcr8 are either truncated or lost, resulting in a chimeric protein predicted to have 

severely impaired activity. Consistent with this prediction, homozygous mice die before birth. For more 

details, please see previous work by Stark et al. (Stark et al., 2008). 

2.5.2 Fluorescent in situ Hybridization (FISH) 

Further confirmation of the deletion and reciprocal duplication was obtained using FISH. A mouse 

chromosome 16 BAC clone located within both the duplicated and deleted regions (BAC RP23-420H6), 

as well a BAC clone from outside of these regions (BAC RP23-290E4), were differentially labeled with 

SpectrumRed and SpectrumGreen, respectively, and used as fluorescent probes. All BAC clones were 

purchased from Invitrogen. Metaphase and interphase chromosome spreads were prepared from E13.5 

mouse embryonic fibroblast (MEF) cultures, from embryos carrying either the duplication or the deletion, 

as determined by PCR screening. A minimum of 10 metaphases was examined for each sample. For the 

duplication, MEFs were observed from 4 individual embryos, from the N7 backcross generation (to 

C57BL/6J). For the deletion, MEFs from 2 individual embryos of an N6 backcross generation (to 

C57BL/6J) were observed. 

2.5.3 In situ Hybridization 

Digoxigenin tail labeled anti-mir-185 locked nucleic acid (LNA) and scramble LNA oligo-

nucleotides were obtained from Exiqon. In situ hybridization was conducted as described previously 

(Nuovo et al., 2009). 
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2.5.4 Quantitative RT-PCR 

Total RNA samples were extracted from 8-wk old male mice or cultured cell using miRNeasy mini 

kit (QIAGEN) according to manufacturer’s protocol. We treated 3 µg of total RNA from each sample with 

DNA-free kit (Ambion/Applied Biosystems). For qRT-PCR of mature miRNA, 100 ng of treatment RNA 

each sample was reverse transcribed and qPCR was performed using TaqMan MicroRNA PCR kit and 

individual Mouse TaqMan MicroRNA Assays according to the company’s protocol (Applied Biosystems). 

A glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene-specific RT primer was also included RT 

reaction and expression of endogenous control GAPDH was measured in a duplex reaction that included 

the miRNA primer and probe set and GAPDH primer and probe set was used in qPCR reactions. For 

qRT-PCR of other genes, the remaining DNase-treated RNA each sample was reverse transcribed using 

random primers and SuperScript II Reverse Transcriptase (Invirtogen). For each gene, a duplex qPCR 

was performed using TaqMan Universal PCR Master Mix, no AmpErase UNG (Applied Biosystems) and 

custom designed primer and probe set, as well as primer and probe set for GAPDH.  

TaqMan expression assays are purchased from Applied Biosystems. MicroRNA assay name and 

ID: hsa-miR-185: 002271; mmu-miR-491: 001630; hsa-miR-485-5p: 001036. These assays are able to 

detect mature miRNAs in both human or mouse samples. Gene assays name and ID: C19orf63: 

Hs00382250_m1; Nptx2: Mm00479438_m1; Vipr2: Mm01238618_g1; Slc6a1: Mm01183568_m1; Grin2b: 

Mm00433820_m1. For other genes, PCR primers and probes were designed at Primer3 web site 

(http://frodo.wi.mit.edu/) and purchased from Sigma Genosys (Sigma-Aldrich) and the sequences can be 

found in Appendix 1). All target gene probes were 5’ FAM and 3’ BHQ™-1 Dual labeled. Mouse or human 

GAPDH was measured as endogenous control. GAPDH Control Reagents was purchased from Applied 

Biosystems (mouse: #4352339E, #4308313; human: #402869).  

The reactions were incubated in a 96-well plate at 95°C for 10 min, followed by 45 cycles of 95°C 

for 10 sec and 58°C for 1 min on a 7900 Sequence Detection System (Applied Biosystems). All reactions 

were repeated 5 times. Relative qualification was based on a standard curve method. The highest 

concentrated cDNA template was drew from a cDNA pool mixing portion of cDNA from each sample in 

equal amount and other standards were made from a series of 1:4 dilution of the highest concentrated 

templates. cDNA samples were then diluted 1:3 relative to the highest concentrated standard before 

qPCR was performed. Quantity of amplified Gene (or miRNA) and GAPDH product from the highest 
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concentrated template was arbitrarily set to 256 and the quantity of amplified signals from other standards 

were set according to the dilution. A standard curve is then made and the relative quantity of each sample 

was determined.   

2.5.5 Expression Profiling 

For development-dependent expression profiles of Df(16)A
+/–

 mice: A total of 48 PFC and 48 

HPC from 12 Df(16)A
+/–

 mutants and 12 Wt littermate control mice at E17 and P6 were dissected and 

processed using standard protocols recommended by Affymetrix. RNA quality was assessed with 

Bioanalyzer (Agilent Technologies) and all RNAs had a RIN > 7.0. For hybridization, cRNA was exposed 

to the Affymetrix Mouse genome 430 2.0 array, which includes 45,000 probe sets from > 34,000 well 

characterized mouse genes, and then scanned (Agilent). Sequence clusters were created and refined 

from the UniGene and the Whitehead Institute Center for Genome Research databases. Initial intensity 

files (CEL files) were obtained from microarray images using GeneChip (Affymetrix) Analysis Software 

Microarray Suite version 5 (Affymetrix). Data analysis of Df(16)A
+/–

 and Wt littermate expression profiling 

at E17 and P6 was performed using limma package in the bioconductor project (www.bioconductor.org) 

as previously described (Stark et al., 2008).  

For expression profiles of Df(16)B
+/–

 and Dp(16)B
+/–

 mice: Expression profiling was conducted on 

8 mice carrying a deletion (Df(16)B
+/–

), 8 carrying a duplication (Dp(16)B
+/–

) and 8 reference compound 

heterozygous mice balanced for copy number (Df(16)B/Dp(16)B). The experimental procedure is as 

described above. Data analysis of the Df(16)B
+/–

, Dp(16)B
+/–

, Df(16)B/Dp(16)B expression profiling was 

also performed as previously described (Stark et al., 2008), with the exception that an ANOVA F-test was 

used because three groups were compared with the limma package. 

2.5.6 Neuronal Culture and Transfection 

Dissociated hippocampal neurons were isolated from E17 mouse embryos and plated at 2 x 10
5
 

cells/ml in 6-well plates containing glass coverslips coated with poly-D-lysine. Neurons were cultured for 9 

– 19 days, depending on the experiments. Pre-miR-185 mimic and pre-scramble control (Ambion) were 

used for high efficiency calcium-phosphate mediated transfections as described previously (Jiang and 

Chen, 2006). For all experiments, 100 pmol of pre-miRNA mimics were used per well. 
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2.5.7 Luciferase Assay 

Mirta22 3′UTR was cloned into psiCHECK2. Binding site mutant clones were generated by PCR-

based mutagenesis (see Supplementary Methods for details). N18 neuroblastoma cells were transfected 

with various psiCHECK2 reporter constructs together with pre-miR-185 mimic or pre-scramble control 

unless mentioned otherwise and luciferase assays were performed using the Promega Dual-Luciferase 

Reporter Assay System. All experiments were performed at least 2 times and all data presented is the 

average of 3 technical repeats. Mirta22 3′UTR was cloned into XhoI and NotI sites of psiCHECK2 

(Promega). Binding site mutant clones were generated by PCR-based mutagenesis. Site Mut1 sequence 

(starting from position 289 in 3′UTR): GGAgtTTGCCAAGCTCggTaaA (lower case letters denote altered 

nucleotide). Site Mut2 sequence (starting from position 350): AtTGTCACgCTaaA. Mutations are predicted 

by RNAhybrid
 
(Rehmsmeier et al., 2004) to disrupt the binding of miR-185 at the seeds and secondary 

binding sites. N18 neuroblastoma cells were transfected with various psiCHECK2 reporter constructs 

(100 ng per well of a 24-well plate) together with pre-miR-185 mimic or pre-scramble control (1 nM = 0.5 

pmol), unless mentioned otherwise, and luciferase assays were performed 24 hrs post-transfection using 

the Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions. All 

experiments were performed at least 2 times and all data presented is the average of 3 technical repeats. 
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Chapter III 

Dysregulation of A Novel Inhibitor of Dendritic and 

Spine Morphogenesis In Df(16)A+/– Mice 

3.1 Introduction 

Since the discovery of dendritic spines by Ramon y Cajal in 1888 (Garcia-Lopez et al., 2007), it 

gradually became clear that dendritic spines are the synaptic sites between neurons. It has also become 

evident that spine morphology is intimately linked to synaptic strength and it is the dynamics of these 

synaptic contacts that ultimately underlie learning and cognitive function (Kasai et al., 2010; Segal, 2002).  

In addition, activation of individual spines at different dendritic segments is integrated spatially and 

temporally before the information reaches the soma to generate a specific output pattern (Henny et al., 

2012; Kim et al., 2012). Therefore the structure of dendritic arbors is critical in controlling the source of 

synaptic inputs a neuron receives and in determining the computational ability of a given neuron (Magee, 

2000; Piskorowski and Chevaleyre, 2012). It is not surprising that dysfunction in neuronal communication 

due to aberrant pattern of dendritic arborization or spine morphology is an important underlying cause of 

neuropsychiatric disorders (Kasai et al., 2010; van Spronsen and Hoogenraad, 2010).   

Analysis of Df(16)A
+/–

 mice provided evidence for abnormalities in dendritic morphogenesis and 

formation of dendritic spines of hippocampal pyramidal neurons both in culture and in vivo (Mukai et al., 

2008; Stark et al., 2008). Such changes may account, at least in part, for the regional decreases in grey 

matter volumes observed in human 22q11.2 deletion carriers (Chow et al., 2002). Even modest 

alterations in dendritic and spine formation may result in a suboptimal number of synapses, formation of 

inappropriate connections or changes in the integration of synaptic inputs, and may ultimately lead to 

altered information processing (Henny et al., 2012; Mainen and Sejnowski, 1996; Yuste and Tank, 1996). 

However, how miRNA dysregulation contribute to the structural anomaly in Df(16)A
+/–

 mice was not 

previously determined. 
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3.1.1 miRNA Regulation of Dendritic Arborization  

As described briefly in Chapter 1.3, miRNAs regulate various aspects of neuronal function and 

morphology, including the growth and maintenance of dendritic structures. De novo dendritic growth and 

arborization of cultured neurons and newborn neurons in the brain is regulated by miRNAs including miR-

132 and miR-134 (Table 3.1).  

miR-132 was the first miRNA found to promote neurite sprouting in cultured cortical neurons by 

decreasing levels of p250GAP, a CNS-enriched Rac/Rho GTPase-activating protein (Vo et al., 2005). In 

morphogeneis of newborn neurons in dentate gyrus (DG), miR-132 begins to be expressed as the 

neurons mature and maintains high levels of expression in fully mature neurons (Luikart et al., 2011). 

Correlating with the time course of miR-132 expression, deletion of the mir-212−mir-132 locus in adult DG 

was shown to cause a dramatic decrease in dendritic arborization in newborn neurons (Magill et al., 

2010). As miR-132 is the predominant miRNA expressed from this locus in hippocampal neurons, this 

effect was thought to be mainly due to the loss of mir-132 expression. Furthermore, miR-134, which is 

from a large miRNA cluster at the Dlk1-Gtl2 region in mouse (Dlk1-Dio3 in human), is expressed during 

neuron differentiation (Tay et al., 2008). Postembryonic virus-mediated miR-134 overexpression results in 

reduction in length and complexity of layer V cortical pyramidal neurons (Christensen et al., 2010). In 

cultured cortical neurons, miR-134 overexpression also causes decreased arborization (Fiore et al., 2009; 

Gaughwin et al., 2011). However, miR-134 sensitizes neurons to BMP-induced dendritogenesis, resulting 

in more complex dendrite trees (Gaughwin et al., 2011). It seems the effects of miR-134 on neuronal 

morphogenesis are complex and mir-134 levels need to be critically controlled in neurons (Fiore et al., 

2009). Other miRNAs that are implicated in regulating dendrite outgrowth include miR-375, which reduces 

dendrite density in adult mouse hippocampus (Abdelmohsen et al., 2010), and miR-124, which promotes 

neurite outgrowth in primary cortical neurons (Yu et al., 2008).  

Activity induces the growth of dendrites through transcription factors like CREB and Mef2 (Fiore 

et al., 2009; Vo et al., 2005). The activation of these transcription factors in turn induces the transcription 

of miRNAs important for dendritic morphogenesis. This process is exemplified by the induction of miR-

132 by BDNF (Vo et al., 2005) or by bicuculline or KCl which increase spontaneous synaptic activity 

(Wayman et al., 2008). Binding of CREB to CRE motifs in the mir-212−mir-132 locus results in rapid (in a 

transcriptional sense) and long lasting (at least 24 hours) miR-132 expression within 2 hours after 
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sustained activity (Vo et al., 2005). As during neuronal maturation, elevated miR-132 levels promote 

dendrite growth through inhibition of p250GAP (Wayman et al., 2008). The induction of mir-132 by activity 

is also observed in organotypic hippocampal slices. Increased activity due to BDNF or KCl also induces 

MEF2-mediated transcription of the mir-379−mir-410 cluster that includes more than 50 miRNA genes. 

These miRNAs expressed from the mir-379−mir-410 cluster are co-expressed and many of them are 

brain-enriched (Tierling et al., 2006). At least 3 miRNAs from this cluster, miR-134, miR-381 and miR-329, 

are required for activity-dependent dendritic growth. This effect of miR-134 is at least partly through 

inhibition of translational repressor Pumilio2 (Pum2). However, miR-134 overexpression or Pum2 

knockdown also disrupts activity-induced dendritic growth. As mentioned earlier, it seems that miR-134 is 

required for fine-tuning expression of proteins like Pum2 whose levels need to be maintained in a specific 

range. This fine-tuning relationship is especially desirable for controlling dynamic processes in response 

to rapid changes in neuron activity.   

3.1.2 miRNA Regulation of Spine Morphogenesis  

It was known for many years that activity regulates local protein translation in dendrites and 

especially near or at the site of synapses (Liu-Yesucevitz et al., 2011; Swanger and Bassell, 2011). 

Accumulating evidences suggests that synaptic miRNAs are integral parts of the local translation 

machinery and regulate the protein production locally in a rapid fashion. Several miRNAs are enriched in 

synaptic fractions (Lugli et al., 2008; Siegel et al., 2009) and some of these miRNAs were already shown 

to regulate spinogenesis in response to neuronal activity (Table 3.2) (Impey et al., 2010; Schratt et al., 

2006).  

It was also reported that both protein degradation and synthesis are required for synaptic 

plasticity (Ashraf et al., 2006; Fonseca et al., 2006). Activity-induced NMDA receptor signaling triggers 

proteasome-mediated MOV10 degradation at about half of the synaptic sites (Banerjee et al., 2009). 

MOV10, mammalian homologue of Drosophila helicase Armitage, is a component of the RISC complex. 

Interestingly, MOV10 degradation is correlated with translation of several proteins that normally associate 

with the RISC complex. Thus, activity-induced degradation of MOV10 (and possibly other components of 

the RISC complex) possibly relieves miRNA-repressed local protein translation that is required for 
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synaptic plasticity. Protein candidates that are controlled in this fashion include Limk1 (a miR-134 target), 

Lypla1/APT1 (a miR-138 target) and CaMKIIa (a miR-219 target) (see below).  

As described in Chapter 1.3, the first miRNA shown to regulate spine development is miR-134 

(Schratt et al., 2006). Although miR-134 is transcriptionally upregulated by activity, it is immediately 

inhibited upon BDNF treatment and results in derepression of Limk1 which regulates actin filament 

dynamic. The loss of miR-134 repression leads to increased spine volume. Similarly, miR-138, another 

synaptically enriched miRNA, targets depalmitoylation enzyme Lypla1/APT1 and negatively regulates 

spine size (Siegel et al., 2009).  By reducing Lypla1 expression, miR-138 results in membrane-

localization of Gα13 which in turn elevates Rho activity and spine shrinkage. Calcium influx reduces pre-

miR-138 levels rapidly and progressively, suggesting miR-138 regulation of spine size is also activity-

controlled. Furthermore, it is noteworthy that FMRP-associated miRNAs miR-125b and miR-132 have 

largely opposite effects on spine morphology (Edbauer et al., 2010). miR-125b promotes the formation of 

immature spines (long and thin) while mir-132 promotes an increase in spine width. In addition, the effect 

of miR-125b and miR-132 on spine morphology is FMRP-dependent, suggesting the possible loss of 

miRNA-mediated spine morphogenesis in Fragile X syndrome. 

As spine formation and elimination are consistent and dynamic processes under the control of 

neural activity, the number of spines may reflects the strength of neural circuits. Not surprisingly, miRNAs 

play important roles in controlling the number of spines of neurons under normal condition and when 

excited. Besides regulating spine size, activity-induced miR-132 controls spine formation. The time course 

of miR-132 upregulation during postnatal development in rodent hippocampus correlates with the time 

course of active spine formation (Impey et al., 2010).  In vitro and in vivo manipulations of miR-132 levels 

show that miR-132 promotes mushroom spine formation (Hansen et al., 2010; Impey et al., 2010; Luikart 

et al., 2011; Mellios et al., 2011). In cultured hippocampal neurons, this effect is due to the inhibition of 

p250GAP, which also mediates the effect of miR-132 on dendritic growth, and the subsequent activation 

of Rac1−PAK pathway by Rac GEF, Kakirin-7 (Impey et al., 2010). In contrast to miR-132, miRNAs like 

miR-34a and miR-485 negatively affect spine number (Agostini et al., 2011; Cohen et al., 2011).  

Importantly, miRNA-regulated spine formation is emerging as one of the underlying mechanisms 

of neural plasticity. Homeostatic synaptic plasticity in response to persistent activity is mediated through 

miR-485-mediated decrease in spine density, PSD-95 clustering and surface expression of GluR2. miR-
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132 is rapidly upregulated in visual cortex after eye opening and regulates spine maturation of pyramidal 

neurons. Inhibition of miR-132 in visual cortex results in more immature spines (thin and filopodia) and 

fewer mature spines (mushroom and stubby) as well as an impairment of ocular dominance (Mellios et al., 

2011). On the other hand, miR-29a/b, which was identified in a screen for miRNAs involved in 

neuroadaptations induced by psychostimulants, decreases mushroom spines while increasing filopodias 

through downregulation of Arpc3, a component of ARP2/3 actin nucleation complex (Lippi et al., 2011).  

These results strongly suggest miRNAs regulate behavior-associated plasticity by regulating spine 

formation and maturation. 

3.1.3 Structural Alterations in Df(16)A
+/–

  Neurons 

As mentioned briefly in Chapter 2.1.2, individuals with 22q11.2DS exhibit morphological deficits 

such as reduced hippocampal volume (Campbell et al., 2006; Eliez et al., 2000; Simon et al., 2005) and 

enlarged lateral ventricles (Campbell et al., 2006; Machado et al., 2007; Simon et al., 2005) which 

suggest a decrease in neuron density or reduced dendritic complexity in hippocampal areas. More 

importantly, these morphological deficits are consistent with structural alterations found in general 

schizophrenia patients (Chow et al., 2002; van Amelsvoort et al., 2001) and may contribute to the 

cognitive dysfunction in schizophrenia. 

Although the morphological features of neurons in the affected brain area of 22q11.2DS patients 

have been not examined, studies of a 22q11.2DS mouse model, Df(16)A
+/–

,reveal that genomic loss of 

the 22q11.2 locus leads to several structural deficits in hippocampal neurons (Mukai et al., 2008). Basal 

dendritic branching of CA1 hippocampal neurons is significantly simplified (Drew et al., 2011a). Sholl 

analysis indicated that the decrease in dendritic complexity is especially prominent in the proximal part. 

The impaired dendritic arborization is recapitulated in cultured hippocampal neurons, as indicated by a 

45% decrease in the number of branch points and a 38% decrease in the number of primary dendrites. 

Besides deficits in dendritic trees, spine growth and maturation appear to be compromised in Df(16)A
+/–

 

mice. Both spine density and spine width are reduced in CA1 hippocampal neurons. These deficits are 

also recapitulated in cultured hippocampal neurons. Df(16)A
+/–

 neurons have  45% less mushroom spines 

which are on average 23% smaller in diameter as compared to Wt neurons. Additionally, there are 30-

50% decreases in the number of PSD95, VGLUT1, Homer1 and GluR2 puncta on dendrites of Df(16)A
+/–
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neurons, indicating a reduced density of excitatory postsynaptic complexes correlating with decreased 

spine density. In a parallel analysis of prefrontal cortical pyramidal neurons, deficits in complexity of basal 

dendritic trees and in spine density on basal dendrites are found (Kim Stark and Joseph Gogos, 

unpublished data). Therefore, 22q11.2 microdeletion appears to affect morphogenesis of excitatory 

neurons in multiple brain areas which may together result in reduced connectivity in neural circuits across 

the brain.  

Notably, part of these structural abnormalities in dendrites and spines of hippocampal neurons 

are also observed in Zdhhc8-deficent and Dgcr8
+/–

 neurons (Mukai et al., 2008; Stark et al., 2008). 

Dgcr8
+/–

 CA1 neurons show lower dendritic complexity and a 8.5% decrease in average spine width, 

while CA1 neurons in Zdhhc8-deficent mice have reduced dendritic arborization and spine density, as 

compared to neurons in Wt littermates. These results suggest that the loss of a copy of Zdhhc8 or Dgcr8 

(both located in 22q11.2 locus) and the subsequent dysregulation of palmitoylation or miRNA biogenesis, 

respectively, contribute to aberrant morphogenesis of hippocampal neurons. It remains to be examined 

how deficiency of additional individual genes in 22q11.2 locus affect the neuronal structures.  

3.1.4 In this Chapter 

Since a novel gene Mirta22 (miRNA target of the 22q11.2 microdeletion, or 2310044H10Rik) 

appears to be the major downstream target of miRNA dysregulated in Df(16)A
+/–

 mice, including miR-185 

(see Chapter 2), we try to characterize the gene and its protein product. We generated a specific anti-

Mirta22 antibody and used it to probe the distribution of Mirta22 in neurons. We show that Mirta22 is 

expressed in neurons but not glial cells and is localized to the Golgi apparatus intracellularly. Besides the 

characterization of miRNA and target dysregulation in Df(16)A
+/–

 mice, we examined the functional 

consequences of this dysregulation. We demonstrate that the drastic decrease of miR-185, one of the 

most prominent miRNA dysregulation in Df(16)A
+/–

 mice, contributes to the structural deficits in Df(16)A
+/–

 

neurons. Furthermore, we speculated that the persistent elevation of Mirta22 downstream of miRNA 

dysregulation partly mediated the effect of mir-185 reduction on these deficits. We manipulated Mirta22 

levels in neurons and show that Mirta22 is an inhibitor of dendritic and spine development. 



81 

 

3.2 Results 

3.2.1 Generation of Mirta22 Specific Antibody  

Mirta22 encodes a 28 kD protein without any known sequence homology or functional domain 

(http://www.uniprot.org/uniprot/Q3TAS6). The murine orthologue is located on mouse chromosome 7 and 

contains seven coding exons. The human ortholog (C19orf63) is located on chromosome 19q13.33 and 

encodes a protein with 92.3% identity to the murine protein (Figure 3.1A). One mouse reference 

sequence (isoform 1) is reported in GeneBank, while two C19orf63 isoforms (isoform 1 and 2) are 

reported in GeneBank and in the literature
 
(Junes-Gill et al., 2011). The protein encoded by isoform 1 is 

predicted to contain an N-terminal signal peptide, as well as a transmembrane segment (Figure 3.1A, red 

rectangles), which separates a long N-terminal region from a short C-terminal segment that contains a 

polyglycine tail with unknown function. Isoform 2 differs from isoform 1 by an alternatively spliced exon 

located after exon 6. The protein encoded by isoform 2 is shorter by 8 amino acids, contains the N-

terminal signal peptide but not the transmembrane segment, and is predicted to be secreted (Figure 

3.1A). We raised a polyclonal antibody against a segment of the protein (amino acids 207–226, Figure 

3.1A, green rectangle; see Methods). The specificity of the antibody was validated by Western blot 

analysis on protein extracts from 293T cells transfected with a plasmid expressing full length Mirta22 

cDNA with a C-terminal FLAG tag (Figure 3.2A) or a mouse neuroblastoma cell line (N18),  transfected 

with either a Mirta22 shRNA (Figure 3.2B) or a full length cDNA plasmid (Figure 3.2C) . Western blot 

assays of protein extracts from the brain of Df(16)A
+/–

 mice and their Wt  littermates showed the expected 

increase (25%) in the levels of Mirta22 in mutant mice (Figure 3.1B). An increase of similar magnitude of 

the Mirta22 immunocytochemical signal was observed in Df(16)A
+/–

 cultured neurons, as compared to Wt 

neurons (Figure 3.1C). These results provided independent confirmation of the specificity of the antibody. 

3.2.2 Mirta22 is a Neuronal Protein Residing in the Golgi Apparatus 

Immunostaining of neuronal cultures showed that Mirta22 is colocalized with neuron-specific 

marker NeuN, but not astrocyte-specific marker GFAP, indicating that Mirta22 is primarily a neuronal 

protein (Figure 3.1D, upper panel). At the subcellular level, Mirta22 is found primarily in the soma, where 
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it colocalizes with the Golgi apparatus marker GM130
 
(Nakamura et al., 1995) and as neurons mature it is 

also found in vesicles and tubular-like clusters within the dendritic shafts (Figure 3.1D, lower panel). 

Figure 3.1 Genomic Structure, Neuronal Expression and Subcellular Localization of 2310044H10Rik 

(Mirta22). (A) Top: Structure of mRNA transcripts of 2310044H10Rik (Mirta22) and its human orthologue, 

C19orf63. RefSeq reports a 2310044H10Rik (Mirta22) transcript with 7 exons (blue rectangles), which is 

predicted to encode a signal peptide and a transmembrane domain (red rectangles). The peptide epitope used 

to generate a polyclonal antibody is marked by green rectangle. For C19orf63, RefSeq reports 2 alternatively 

spliced transcripts: one that encodes a predicted transmembrane protein and one with an additional exon that 

encodes a predicted secreted protein. Bottom: Protein sequence alignment of predicted transmembrane 

isoforms encoded by 2310044H10Rik and its human orthologue. Black blocks indicate completely conserved 

residues; grey blocks indicate similar residues (defined by Boxshade default similarities); white blocks indicate 

different residues. (B) Upper: Representative western blot assays of 2310044H10Rik (Mirta22) in prefrontal 

cortex (PFC) lysates prepared from Df(16)A
+/–

 animals and Wt littermates. Alpha-tubulin is used as loading 

control. Lower: Quantification of 2310044H10Rik protein level in PFC of Wt and Df(16)A
+/–

  animals (n = 9 each 

genotype). Expression levels in mutant mice were normalized to Wt littermates. Results are expressed as mean 

± SEM. **p < 0.01 (Student′s t-test). (C) Quantification 2310044H10Rik (Mirta22) immunocytochemical signals in 

Wt and Df(16)A
+/–

  cultured neurons (n = 34 for Wt; n = 31 for Df(16)A
+/–

). Expression levels in mutant neurons 

were normalized to Wt neurons. Results are expressed as mean ± SEM. *p < 0.05 (Student′s t-test). (D) Upper 

panel: 2310044H10Rik (Mirta22) co-localizes with neuron specific marker NeuN, but not with glia specific marker 

GFAP, in cultured hippocampal neurons at DIV20. Lower panel: 2310044H10Rik (green) co-localizes with Golgi 

specific marker GM130 (red) in the soma. 2310044H10Rik is also found in vesicles and tubular-like clusters in 

the dendrites, which are highlighted by the dendritic marker MAP2 (blue).  
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Figure 3.2 Specificity of Mirta22 (2310044H10Rik) Antibody. (A) Anti-2310044H10Rik (anti-Mirta22) antibody, 

as well as polyclonal and monoclonal anti-FLAG antibodies, recognize a 28 kD band in western blots on lysates of 

293T cells transfected with a plasmid expressing full length Mirta22 cDNA with a C-terminal FLAG tag (“Flag 

tagged” lanes). Lysates of cells transfected with empty vector were used as control (“control” lanes). Note that 

there is a 28 kD band recognized by anti-Mirta22 antibody, but not by anti-FLAG antibodies, in control lysates. 

This likely represents the endogenous human Mirta22 orthologous protein (C19orf63). (B-C) Upper panel: 

Representative western blot showing the endogenous Mirta22 protein in N18 cells transfected with Mirta22 

shRNA (B, lane 2) or Mirta22 cDNA (C, lane 2) compared to contol cells (lane 1). Alpha-tubulin is the loading 

control. Lower panel: Quantification of western blots showing a 32% reduction (p < 0.01; n = 6 each condition) in 

Mirta22 signal in Mirta22 shRNA-transfected cells, compared to scramble shRNA-transfected cells (B). 

Quantification of western blots showing a 57% increase (p < 0.05; n = 6 each condition) in Mirta22 signal in 

Mirta22 cDNA-transfected cells. Expression levels in Mirta22 shRNA or cDNA-manipulated neurons were 

normalized to their respective controls. (D) Anti-Mirta22 antiserum, but not pre-immune serum, recognizes 

endogenous Mirta22 protein (green signal) in DIV20 Wt hippocampal neurons, as assayed by 

immunocytochemistry. (E) Representative immunocytochemistry images showing that Mirta22 signal (green) as 

compared to Golgi marker GM130 (blue), is largely reduced in Mirta22 shRNA-transfected (RFP+) DIV14 Wt 

hippocampal neurons (lower panel) but not in scramble shRNA-transfected (RFP+) neurons (upper panel). Note 

that in Mirta22 shRNA-treated culture (lower panel), Mirta22 signal (green) in un-transfected neurons (marked by 

white arrows) is not reduced, as compared to scramble shRNA-transfected (RFP+) neurons (shown in upper 

panel). Transfection was performed at DIV12. (F) Quantification of Mirta 22 immunocytochemical signal shown in 

(E). Note that in Mirta22 shRNA-treated neuronal cultures, there is a 64% decrease (p < 0.001) in Mirta22 signal 

in transfected neurons (RFP+, n = 20), compared to un-transfected neurons in (RFP-, n = 20). In scramble  



84 

 

Mirta22 immunoreactivity was not detected in cultures stained with preimmune serum (Figure 3.2D) and 

was diminished by 64% in Mirta22 shRNA-transfected neurons (RFP+ neuron, Figure 3.2E, lower panel), 

as compared to non-transfected neurons (RFP- neurons, marked by arrows in Figure 3.2E, lower panel) 

(Figure 3.2F). 

[Figure 3.2, continued from p84] shRNA-treated cultures, there is no difference in Mirta22 signal between 

transfected (RFP+, n = 10) and un-transfected (RFP-, n = 10) neurons. Mirta22 signal measurements in 

transfected (RFP+) and un-transfected (RFP-) neurons in scramble shRNA treated culture and Mirta22 shRNA-

tranfected neurons (RFP+) were normalized to un-tranfected neurons (RFP-) in 2310044H10Rik (Mirta22) shRNA 

treated culture. Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 

Figure 3.3 Coordinated Mild Dysregulation of Golgi-related Putative mir-185 Targets in Df(16)A
+/– 

mice. (A) 

2708 genes that were predicted to be miR-185 targets byTargetScan Mouse v5.2 were imported into the DAVID 

bioinformatics resources 6.7 (http://david.abcc.ncifcrf.gov) and 2695 genes have corresponding DAVID IDs. 

Functional annotation analysis using Mus musculus genes as background identified Gene Ontology (cellular 

component) term "Golgi apparatus" as the top enriched gene cluster (gene count = 159, Enrichment Score = 8.56, 

FDR-corrected P = 2x10
-9

) and term “Golgi apparatus part” as the second best hit with FDR-corrected P = 4x10
-3 

(left). The same gene list was also imported into Gene Set Enrichment Analysis (GSEA v2.0). The Gene Ontology 

(cellular component) terms “Golgi apparartus part” (NES = 1.35, P = 0.1) and “Golgi apparatus” (NES = 1.3, P = 0.1) 

were again among the top enriched gene sets (right). (B) Expression heatmap plot of the potential miR-185 targets 

that serve Golgi apparatus related functions (GO term) and are differentially expressed (p < 0.005) between adult 

hippocampus of Df(16)A
+/–

 mice and Wt littermates. ID is Affymetrix ID (see Table 3.2) and Rank is the ranking 

position in the list of all differentially expressed genes according to significance level. Note that the majority (91%, 42 

out of 46) of the genes are upregulated. 
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3.2.3 Coordinated Mild Dysregulation of Golgi-related Genes due to miR-185 Reduction  

Accumulating evidence suggests that miRNAs may target functionally connected genes, often in 

a developmental stage-specific manner
 
(Tsang et al., 2010; Zhang et al., 2009). Consistent with this 

notion, functional annotation clustering analysis of 2708 predicted miR-185 targets (TargetScanMouse 

v5.2) included in the DAVID Mus musculus gene functional annotation database 

(http://david.abcc.ncifcrf.gov) identified as the top enriched gene cluster (gene count = 159, Enrichment 

Score = 8.56, FDR-corrected P = 2x10
-9

) the Gene Ontology (cellular component) term "Golgi apparatus" 

(Figure 3.3A). Gene set enrichment analysis (GSEA) on the 2708 predicted miR-185 targets ranked 

based on the gene expression profile of  Df(16)A
+/–

 mice also indicated that the Gene Ontology terms 

“Golgi apparatus part” and “Golgi apparatus” were among the top 20 genesets in the adult hippocampus 

(HPC) (Figure 3.3A). A global perspective on the enrichment of this miR-185 target gene set among the 

differentially expressed genes in the Df(16)A
+/–

 mice showed a significant enrichment in the adult HPC 

expression profile (P = 5x10
-4

) where, as expected, most of top genes were upregulated (42 genes were 

upregulated and only 4 genes were downregulated at P < 0.005, Figure 3.3B and Table 3.3). A 

considerably more modest enrichment was suggested for the E17 (P = 0.02) and P6 HPC (P = 0.016) 

profiles (Figure 3.4). Interestingly, there was no significant enrichment within the prefrontal cortex (PFC) 

profiles in all three ages tested (E17: P = 0.6311; P6: P = 0.1326; Adult: P = 0.244). Expression changes 

were modest, with only 4 out of 159 Golgi-related probe sets included among the top 100 probe sets in 

the adult HPC.  Overall, in addition to the robust and pervasive upregulation of Mirta22, reduction in miR-

185 levels appears to affect in a milder, age and region-specific manner, expression of a group of Golgi 

apparatus-related genes.  

Figure 3.4. miR-185 Reduction 

Results in Coordinated Mild 

and Age-specific Dysregula-

tion of Golgi-related Genes. 

Expression heatmap plot of all 

potential miR-185 targets that 

have Golgi apparatus related 

function in E17, P6 and adult 

(left, middle, right panel, 

respectively) hippocampus of 

Df(16)A
+/− 

mice and Wt 

littermates. 
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3.2.4 Altered miR-185 Levels Contribute to Structural Alterations of Df(16)A
+/−

 Neurons 

We have previously shown that 22q11.2 microdeletion results in impaired formation of dendrites 

and spines in the brain. We have also shown that these deficits are faithfully recapitulated in primary 

neuronal cultures, affording the opportunity to study the underlying mechanisms in physiologically 

relevant cellular models. miRNAs have been shown to affect structural indices of neuronal connectivity, 

such as dendritic tree and dendritic spine development
  
(Fiore et al., 2009; Schratt et al., 2006; Siegel et 

al., 2009; Stark et al., 2008), but impairment in these processes in Df(16)A
+/−

 mice could only be partially 

accounted for by the 50% decrease in the levels of Dgcr8
 
(Fenelon et al., 2011; Stark et al., 2008). 

Localization of Mirta22 within the Golgi apparatus and dendritic shafts suggests that diminishment of the 

repressive influence of miR-185 on Mirta22 levels may also contribute to these deficits.  

To test this hypothesis we first asked whether reduction of miR-185 levels results in deficits in 

dendritic and spine development similar to those observed in Df(16)A
+/−

 neurons
 
(Mukai et al., 2008).  We 

introduced an anti-miR-185 and a scramble control LNA oligonucleotide into Wt primary hippocampal 

neurons and measured dendritic and spine morphology two days post-transfection at DIV9 and DIV19, 

respectively. As mentioned above, we confirmed that introduction of anti-miR-185 LNA oligonucleotide 

resulted in a significant increase of Mirta22 mRNA levels when compared to anti-miR control transfected 

primary neurons (Figure 2.9C).  Analysis of dendritic architecture indicated that reduction of miR-185 

levels leads to deficits in dendritic complexity (Figure 3.5A), including a significant reduction in the 

number of primary dendrites (21%, P < 0.05; Figure 3.5B) and a significant reduction in total branch 

points in transfected neurons (16%, P < 0.05; Figure 3.5C). This finding was confirmed by a Sholl 

analysis, which compares branch point numbers at varying distances from the soma (Figure 3.6A). 

Moreover, reduction of miR-185 levels in DIV19 neurons results in decreased mushroom spine density 

(21%, P < 0.05; Figure 3.5D-E, 3.6B) and a significant reduction in their median width (15% decrease, P 

< 0.001, Kolmogorov-Smirnov test; Figure 3.5F). These structural deficits recapitulate those observed in 

Df(16)A
+/–

 neurons. Thus the neuronal deficits in Df(16)A
+/–

 mice are, at least in part, due to the aberrantly 

low level of miR-185. Consistently, introduction of pre-miR-185 mimic into Wt neurons increased the 

number of primary dendrites, the number of branch points, the density and head width of mushroom 

spines (Figure 3.6C, D).  
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Figure 3.5 Reduced miR-185 Levels Contribute to Structural Alterations of Df(16)A
+/−

 Neurons. (A) 

Representative images of Wt neurons at DIV9 transfected with anti-miR control or anti-miR-185 oligos. (B-C) 

Reduction in the number of primary dendrites (B) and branch points (C) in Wt neurons at DIV9, 2 days after 

transfected with  anti-miR-185 relative to Wt neurons transfected with anti-miR control (n = 21 for Wt + anti-miR-

185; n = 20 for Wt + anti-miR control). In (C), values of Wt + anti-miR-185 were normalized to Wt + anti-miR 

control. (D) Representative images of spines on Wt neurons at DIV19, transfected with anti-miR control or anti-

miR-185 as well as enhanced GFP.  (E) Reduction in the density of mushroom spines (quantified over 75 µm of 

dendritic length) in neurons transfected with anti-miR-185 relative to neurons transfected with anti-miR control (n 

= 20 for Wt + anti-miR-185; n = 20 for Wt + anti-miR control). Values of Wt + anti-miR-185 were normalized to Wt 

+ anti-miR control. (F) Transfection of anti-miR-185 oligos significantly decreased the width of mushroom spines 

compared to that of the neurons transfected with anti-miR control at DIV19 (15%, P < 0.001, Kolmogorov-

Smirnov test) (n = 232 for Wt + anti-miR-185; n = 293 for Wt + anti-miR control). (G) Representative Df(16)A
+/–

 

neurons at DIV9 transfected with pre-scramble or pre-miR-185 mimic and enhanced GFP for visualization. Scale  
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We also examined whether elevation of miR-185 levels could, at least partially, reverse 

cytoarchitectural alterations observed in Df(16)A
+/− 

neurons
 
(Mukai et al., 2008). We transfected primary 

hippocampal neurons from Df(16)A
+/–

 mice and their Wt littermates with a miRNA precursor mimic (“pre-

miR-185”) or a scramble precursor oligonucleotide (“pre-scramble”). A co-transfected GFP reporter 

plasmid allowed us to analyze the dendritic architecture (Figure 3.5G-I) and spine morphology (Figure 

3.5J-L) of pyramidal neurons 2 days following transfection at DIV9 and DIV19, respectively. In control 

experiments we confirmed that introduction of pre-miR-185 resulted in significant decrease in the levels of 

Mirta22 when compared to pre-scramble transfected neurons (P < 0.01; Figure 2.6B). Consistent with 

previous results
 
(Mukai et al., 2008), compared to Wt neurons, Df(16)A

+/–
 neurons transfected with pre-

scramble showed reduced dendritic complexity as manifested by a decrease in the number of primary 

dendrites (25%, P < 10
-10

; Figure 3.5H) and the number of dendritic branch points (38%, P < 10
-4

; Figure 

3.5I). They also showed reduced spine density (38%, P < 10
-6

, Figure 3.5K) as well as a small, but 

statistically significant decrease in median head-width (8% decrease, P < 0.01; Figure 3.5L) of mushroom 

spines. Increase in miR-185 activity largely reversed the deficits in dendritic complexity (Figure 3.5H-I, 

3.6E) and the reduction in spine density (Figure 3.5K, 3.6F) and significantly increased the spine head-

width of mushroom spines in Df(16)A
+/–

 hippocampal neurons (Figure 3.5L). Thus, introduction of pre-

miR-185 into hippocampal neurons from Df(16)A
+/–

 mice reversed some key deficits in the structural 

connections among neurons that emerge as a result of the microdeletion.  

  

[Figure 3.5, continued from p88] Bar, 20 µm. (H-I) Reduction in the number of primary dendrites (H) and branch 

points (I) in Df(16)A
+/–

 neurons at DIV9 relative to Wt neurons is reversed by the transfection of pre-miR-185, but 

not pre-scramble mimic (pre-scr) (n = 21 for Wt + pre-scr; n = 21 for Df(16)A
+/– 

+ pre-scr; n = 21 for Df(16)A
+/– 

+ 

pre-miR-185). In (I), values of Df(16)A
+/–

 neurons were normalized to Wt + pre-scr. (J) Representative images of 

spines on Df(16)A
+/–

 neurons at DIV19, transfected with pre-scramble or pre-miR-185 mimic as well as enhanced 

GFP. Scale Bar, 5 µm. (K) Reduction in the density of mushroom spines (quantified over 75 µm of dendritic 

length) in DIV19 Df(16)A
+/–

 neurons relative to Wt control neurons is reversed by the transfection of pre-miR-185, 

but not pre-scramble mimic, into Df(16)A
+/–

 neurons. (n = 23 for Wt + pre-scr; n = 21 for Df(16)A
+/– 

+ pre-scr; n = 

23 for Df(16)A
+/– 

+ pre-miR-185). Values of Df(16)A
+/–

 neurons were normalized to Wt + pre-scr. (L) Transfection 

of pre-miR-185 mimic, but not pre-scramble control, significantly increased the width of mushroom spines of 

Df(16)A
+/–

 neurons at DIV19 (18%, p < 0.001, Kolmogorov-Smirnov test) (n = 568 for Wt + pre-scr; n = 339 for 

Df(16)A
+/– 

+ pre-scr; n = 527 for Df(16)A
+/– 

+ pre-miR-185). (B, C, E, H, I, K) Results are expressed as mean ± 

SEM. *p < 0.05, **p < 0.01 (Student′s t-test). 
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3.2.5 Elevation of Mirta22 Levels Inhibits Dendritic and Spine Development in Df(16)A
+/–

 Neurons 

We then considered the possibility that elevation of Mirta22 levels may contribute to at least some 

of the effects of the miR-185 deficiency on the neuronal morphology in Df(16)A
+/−

 mice. To this end, we 

first examined whether elevation of Mirta22 levels could partially phenocopy the structural alterations 

observed in Df(16)A
+/−

 neurons
 
(Mukai et al., 2008). We introduced a Mirta22 cDNA into Wt primary 

hippocampal neurons and measured dendritic and spine morphology two days post-transfection at DIV9 

and DIV19, respectively. Control experiments using qRT-PCR and Western blot confirmed that the  

Figure 3.6 miR-185 Levels 

Affect Dendritic and Spine 

Development. (A) Wt neurons 

transfected with either anti-

miR-185 (n = 21) or anti-miR 

control (n = 20) at DIV7 and 

fixed at DIV9. Increase in 

branching is prevalent in the 

vicinity of the most proximal 

dendrites. In (A) and (E), Sholl 

analysis of dendritic complexity 

using 10 µm concentric circles 

around the soma. (B) Distribu-

tion of spine morphotypes and 

total protrusions, in cultured Wt 

hippocampal neurons transfec-

ted with anti-miR-185 relative 

to neurons transfected with 

anti-miR control (n = 20 for Wt 

+ anti-miRcontrol; n = 20 for Wt 

+ anti-miR-185). In (B) and (F),  

spines other than mushroom spines are quantified over 75 µm of dendritic length from soma. (C) Increase in the 

number of primary dendrites and branch points in DIV9 (7+2) Wt neurons transfected with pre-miR-185  relative to 

Wt neurons transfected with pre-scramble mimic (pre-scr) (n = 21 for Wt+ pre-miR-185; n = 20 for Wt + pre-scr). (D) 

Left: Increase in the density of mushroom spines (quantified over 75 µm of dendritic length) in DIV19 Wt neurons 

transfected with pre-miR-185 relative to Wt neurons transfected with pre-scr (n = 23 for Wt + pre-scr; n = 23 for Wt+ 

pre-miR-185). Right: Transfection of pre-miR-185 mimic, but not pre-scramble control, significantly increased the 

width of mushroom spines on Wt neurons at DIV19 (18%, P < 0.001, Kolmogorov-Smirnov test) (n = 568 for Wt + 

pre-scr; n = 527 for Wt+ pre-miR-185). In (C and D right), values of Wt+ pre-miR-185 were normalized to Wt + pre-

scr. (E) Df(16)A
+/–

 neurons transfected with either pre-miR-185 mimic (n = 21) or or pre-scramble mimic (n = 21) at 

DIV7 and fixed at DIV9. (F) Distribution of spine morphotypes and total protrusions, in cultured DIV19 Df(16)A
+/–

hippocampal neurons transfected pre-miR-185 or pre-scramble mimic relative to Wt neurons transfected with pre-

scramble mimic (n = 23 for Wt + pre-scr; n = 21 for Df(16)A
+/– 

+ pre-scr; n = 23 for Df(16)A
+/– 

+ pre-miR-185). Results 

are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 
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Figure 3.7 Elevated 2310044H10Rik (Mirta22) Levels Contribute to Structural Alterations of Df(16)A
+/−

 

Neurons. (A, B left) qRT-PCR and Western blot of Mirta22 mRNA and protein levels in DIV12 hippocampal cultured 

neurons transfected with a full length Mirta22 cDNA plasmid. Quantification of western blots showing a 58% 

increase (p < 10
-4

; n = 4 each condition) in Mirta22 signal in Mirta22 cDNA-transfected cells, compared to control 

cells. (B right) Representative blot of endogenous Mirta22 protein in neurons transfected with Mirta22 cDNA (lane 

2) or empty vector (lane 1). Alpha-tubulin is the loading control. (C-D) Transfection of a Mirta22 expression 

construct into Wt neurons at DIV7 results in decrease in the number of primary dendrites (C) and branch points (D) 

at DIV9 (n = 24 for empty vector transfected and n = 27 for Mirta22 transfected cells). In (D), values of Mirta22 

overexpressing neurons were normalized to empty vector-transfected neurons.(E-F) Introduction of Mirta22 into Wt 

neurons at DIV17 results in decrease in the density of mushroom spines (E) and the width of those spines (F) (P < 

0.01, Kolmogorov-Smirnov test) at DIV19 [n = 16 for vector transfected and n = 17 for Mirta22 transfected neurons 

(E); n = 278 for spines on vector transfected neurons and n = 231 for spines on Mirta22 transfected neurons (F)]. 

Values of Mirta22 overexpressing neurons were normalized to empty vector-transfected neurons. (G, H left) qRT-

PCR and Western blot of Mirta22 mRNA and protein levels in DIV12 hippocampal cultured neurons transfected with 

Mirta22 shRNA. Quantification of western blots showing a 48% decrease (p < 0.01; n = 4 each condition) in Mirta22 

levels in Mirta22 shRNA-transfected cells, compared to control cells. (H right) Representative blot of the 

endogenous Mirta22 protein in neurons transfected with Mirta22 shRNA (lane 2) or scramble shRNA (lane 1). 

Alpha-tubulin is the loading control. (I-J) Reduction in the number of primary dendrites (I), but not reduction in the 

number branch points (J), in Df(16)A
+/–

 neurons at DIV9 relative to Wt neurons is reversed by the transfection of a 

construct that expresses Mirta22 shRNA
+/–

 (n = 24 for Wt + scr shRNA; n = 21 for Df(16)A
+/– 

+ scr shRNA; n = 25 for 

Df(16)A
+/– 

+ Mirta22 shRNA). Scr shRNA: scramble shRNA. N.S.: not significant. In (J), values of Df(16)A
+/–

 neurons 

were normalized to Wt + scr shRNA. (K) Reduction in the density of mushroom spines in Df(16)A
+/–

 neurons at 

DIV19 relative to Wt neurons is reversed by the introduction of Mirta22 shRNA, but not scramble shRNA (n = 22 for 

Wt + scr shRNA; n = 24 for Df(16)A
+/– 

+ scr shRNA; n = 15 for Df(16)A
+/– 

+ Mirta22 shRNA). Values of Df(16)A
+/–
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Mirta22-encoding plasmid drives increased expression of Mirta22 at both mRNA and protein levels 

(Figure 3.7A, B). Analysis of dendritic architecture indicated that elevation of Mirta22 levels results in a 

significant reduction in the number of primary dendrites (18%, P < 0.001; Figure 3.7C) and total branch 

points in transfected neurons (41%, P < 10
-5

; Figure 3.7D). This finding was confirmed by Sholl analysis 

(Figure 3.8A). Moreover, elevation of Mirta22 levels in DIV19 neurons results in decreased spine density 

(22%, P < 0.05; Figure 3.7E) and a small but significant reduction in the mushroom spine median width 

(8% decrease, P < 0.001, Kolmogorov-Smirnov test; Figure 3.7F). These structural deficits recapitulate 

those observed in Df(16)A
+/–

 neurons, suggesting these deficits are, at least in part, due to the aberrantly 

high level of Mirta22. 

[Figure 3.7, continued from p90] neurons were normalized to Wt + scr shRNA. (L) Transfection of Mirta22 shRNA 

does not affect the width of mushroom spines of Df(16)A
+/–

 neurons at DIV19 (p > 0.05, Kolmogorov-Smirnov test). 

n = 342 for Wt + scr shRNA; n = 289 for Df(16)A
+/– 

+ scr shRNA, n = 177 for Df(16)A
+/– 

+ Mirta22 shRNA. (A-E, G-

K) Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01 (Student′s t-test). 

Figure 3.8 2310044H10Rik 

(Mirta22) Levels Affect 

Dendritic and Spine 

Development. In (A-B, D) 

Sholl analysis of dendritic 

complexity using 10-µm 

concentric circles around the 

soma was performed on 

neruons transfected on DIV7 

and fixed at DIV9. (A) 

Dendritic complexity of Wt 

neurons transfected with a 

plasmid carrying either full 

length Mirta22 (n = 25) or no  

insert (n = 24). (B) Dendritic complexity of Df(16)A
+/–

 neurons transfected with either Mirta22 shRNA (n = 29) or 

scramble shRNA (n = 26).  (C) Reduction in the number of primary dendrites in Df(16)A
+/– 

neurons at DIV9 relative 

to Wt neurons is reversed by the transfection of a construct that expresses an independent Mirta22 shRNA (n = 16 

for Wt + scr shRNA; n = 16 for Df(16)A
+/– 

+ scr shRNA; n = 16 for Df(16)A
+/– 

+ Mirta22 shRNA). Scr shRNA: 

scramble shRNA. (D) Dendritic complexity of Df(16)A
+/–

 neurons is partially reversed by Mirta22 shRNA, especially 

in the vicinity of the most proximal dendrites. (E) Reduction in the density of mushroom spines (estimated over 75 

µm of dendritic length) in Df(16)A
+/– 

neurons at DIV19 relative to Wt neurons is reversed by the introduction of 

2310044H10Rik (Mirta22) shRNA, but not scramble shRNA (n = 12 for Wt + scr shRNA; n = 12 for Df(16)A
+/– 

+ scr 

shRNA; n = 12 for Df(16)A
+/– 

+ Mirta22 shRNA). Values of Df(16)A
+/–

 neurons were normalized to Wt + scr shRNA. 

Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test). 
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We also asked whether reduction of Mirta22 levels could, at least partially, reverse 

cytoarchitectural alterations observed in Df(16)A
+/− 

neurons
 
(Mukai et al., 2008). We transfected primary 

hippocampal neurons isolated from Df(16)A
+/–

 embryos and their Wt littermates with constructs that 

coexpress turbo RFP (tRFP) and either an shRNA engineered to knock down expression of endogenous 

mouse Mirta22 or a scramble control shRNA (scr shRNA). We confirmed that the Mirta22 shRNA can 

effectively knockdown the expression of Mirta22 at both mRNA and protein levels (Figure 3.7G, H). We 

analyzed dendritic architecture and spine morphology two days following transfection, at DIV9 and DIV19 

respectively. Introduction of Mirta22 shRNA restored to Wt levels the number of primary dendrites of 

Df(16)A
+/–

 neurons at DIV9 (Mirta22 shRNA versus scr shRNA, 40% increase , P < 10
-5

; Figure 3.7I). A 

trend toward an increase in the total number of branch points in Df(16)A
+/– 

neurons was also observed 

(25%, P = 0.16; Figure 3.7J). Sholl analysis confirmed that introduction of Mirta22 shRNA in Df(16)A
+/–

 

neurons increased branch point numbers mainly in the proximal dendritic segments from the soma 

(Figure 3.8B). Furthermore, while DIV19 Df(16)A
+/–

 neurons transfected with the control shRNA had fewer 

and thinner mushroom spines than Wt neurons, introduction of Mirta22 shRNA into Df(16)A
+/–

 neurons 

reversed the deficit in density (Mirta22 shRNA versus scr shRNA, 91% increase, P < 10
-6

; Figure 3.7K) 

while it had no significant impact on spine width (Figure 3.7L). The observation that reduction of Mirta22 

levels partially reverses the structural deficits observed in Df(16)A
+/−

 mice was confirmed by using an 

independent Mirta22 shRNA (Figures 3.8C-E) and strongly suggests that Mirta22 acts as an inhibitor 

mediating the effects of the structural mutation of dendritic and spine growth.  

3.3 Discussion 

3.3.1 What do We Know about Mirta22 Protein? 

Through large scale sequencing efforts, draft sequences of the whole genomes of many 

mammals are available through various databases. However, expression and functional data of many 

putative genes are still missing. We identified a largely uncharacterized gene Mirta22 (2310044H10Rik) 

as a major downstream effecter of miRNA dysregulation in Df(16)A
+/−

 mice. Mirta22 and its orthologues 

constitute a class of novel genes which are located in a conserved area of the genome and are 

evolutionarily conserved from mammals to plants (Junes-Gill et al., 2011). The mouse and human genes 
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have 7 constitutive exons and are predicted to encode proteins with a signal peptide and a 

transmembrane domain but no other known motif or domain. The human and mouse proteins have 

remarkably high homology (92.3% identity). It was reported that a secretable form of human Mirta22 

orthologue (hHSS1 or C19orf63) is produced from a splice variant with the inclusion of an extra exon 

(Junes-Gill et al., 2011). The first 226 amino acids (aa) of the transmembrane form (hHSM1) and the 

secretable form (hHSS1) of human Mirta22 orthologue are encoded by the same first 6 exons. For mouse 

Mirta22 gene, only transcripts encoding a transmembrane form of the protein are reported in GeneBank 

but a secratable form is likely to be produced. Since Mirta22 has no sequence homology to any known 

naturally occurring protein, there is little insight into the signaling pathways Mirta22 participates in or its 

interacting proteins. Therefore, what we knew previously about Mirta22 was from experimental results 

from a couple of reports. 

Wang et al. cloned hHSS1 (or termed INM02 in this report) from a cDNA library of human 

insulinoma tissue in an attempt to identify glucose-responsive genes (Wang et al., 2009). hHSS1 mRNA 

is expressed in testis, bladder, lung, kidney and brain, as well as islets of Langerhans in the pancreas. 

Immunohistochemistry showed that hHSS1 is exclusively expressed in islets of Langerhans and 

colocalized with insulin. hHSS1 is also detected in human serum and is induced by high but not low 

glucose from isolated islets of Langerhans. The authors speculated that hHSS1 is associated with 

functions of β-cells in response to glucose. Another group interested in novel therapeutic targets of 

tumors identified HSS1 gene from hematopoietic stem cells (Junes-Gill et al., 2011). They designated the 

protein products of hHSS1 splice variants as hHSS1 (human Hematopoietic Signal peptide-containing 

Secreted 1) and hHSM1 (human Hematopoietic Signal peptide-containing Membrane domain-containing 

1). hHSS1 suppresses proliferation and anchorage-independent growth when expressed in glioblastoma 

cells. Nude mice injected with hHSS1-expressing glioblastoma cells survive significantly longer than 

those injected with vector transfected cells, suggesting hHSS1 decreases malignancy of tumor cells. 

Interestingly, although hHSS1 has inhibitory effects on tumor growth, high levels of hHSS1 are only found 

in high-grade gliomas. Thus exactly how hHSS1 modulates tumorigenicity in vivo remains to be studied. 

In addition, from expression profiling data, Mirta22 (2310044H10Rik) was found to be significantly 

upregulated in MECP2-Tg mice expressing a human transgene and endogenous genes (Chahrour et al., 

2008) and significantly downregulated in Neuropsin
−/−

 mice (Attwood et al., 2011). It is noteworthy that 
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these mouse strains have cognitive or behavioral abnormalities related to psychiatric symptoms, such as 

memory deficits and aberrant anxiety level. However, whether Mirta22 dysregulation contributes to these 

abnormalities was not explored. 

Here we show that Mirta22 is a neuronal morphogenesis inhibitor that suppressed dendritic and 

spine growth when overexpressed. Moreover, reducing Mirta22 expression by shRNA partially rescued 

the structural deficit of Df(16)A
+/–

 neurons. It seems that Mirta22 plays diverse roles in different tissues 

and is possibly regulated by different signaling pathways. In the next sections, I will focus the discussion 

on the role of miR-185 and Mirta22 in regulating neuronal morphology.  

3.3.2 A Neuronal Inhibitor Failed to be Repressed 

The reduction in the levels of Mirta22 soon after birth, during periods of active neuronal 

maturation and synaptogenesis, suggests that repression of this gene may play an important role in 

promoting neural circuit formation, especially in the postnatal brain after embryonically generated neurons 

have migrated to their final destinations. Consistent with the notion that miRNAs function predominantly 

as fine-tuning regulators of the expression levels of their targets
 
(Baek et al., 2008; Selbach et al., 2008), 

miR-185 and to a lesser extent other miRNAs affected by the 22q11.2 deletion appear to restrict and 

optimize Mirta22 expression, presumably to avoid excessive inhibition during this critical stage of synapse 

formation. Accordingly, sustained derepression of the gene due to genomic loss at the 22q11.2 locus may 

have an impact on the formation of neural circuits in early development, as well on their maintenance 

during adulthood. Such structural changes may result in local and long-distance disruptions of neuronal 

communication that may contribute to the cognitive dysfunction, psychiatric phenotypes or both
 
(Fenelon 

et al., 2011; Sigurdsson et al., 2010). In agreement with this prediction expression of the human 

orthologue of Mirta22 (C19orf63) declines in infant brains
 
(Colantuoni et al., 2011) and displays a spatio-

temporal pattern that significantly overlaps with that of Neuroligin-3, consistent with participation in 

processes related to synapse and circuit formation and maturation
 
(Kang et al., 2011). Moreover, it has 

been shown that during the transition between human fetal and early postnatal development a large 

number of the genes reverse their direction of expression from an increase in utero to a decrease in the 

months after birth and that ~40% of them are predicted miRNA targets
 
(Colantuoni et al., 2011).  In that 

respect, Mirta22 is one of the first examples of a disease-related gene representative of this prominent 
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type of transcriptional trajectory. Mirta22 is also indicative of a miRNA-imposed inhibitory control over 

postnatal brain development. 

3.3.3 Role of miR-185, Mirta22 and Golgi Apparatus in Regulating Neuronal Morphology 

miR-185 promotes dendritic and spine growth when overexpressed in both Wt and Df(16)A
+/–

 

neurons (Figure 3.5G-I, 3.6C). Importantly, fluctuation in miR-185 levels can bidirectionally control 

neuronal morphogenesis as mir-185 knockdown in Wt neurons phenocopies dendritic and spine deficits 

seen in Df(16)A
+/–

 neurons (Figure 3.5A-F). Therefore miR-185 levels are likely to be tightly controlled 

during development and in adult brain. Alteration in miR-185 levels has a greater impact on spine 

development than dendritic development. Both spine density and spine width are dramatically altered by 

change of miR-185 levels (Figure 3.5D-F, 3.6D). Median spine width is increased by 19% and 25% when 

pre-miR-185 is applied to Wt and Df(16)A
+/–

 neurons respectively, while median spine width is decreased 

by 15% when anti-miR-185 was applied in Wt neurons. Although miR-185 is not known to be enriched in 

synapse, it is an intriguing hypothesis that miR-185 has a role in activity-dependent synaptic plasticity in 

certain contexts, given its potent effects on spine development. Since Mirta22 is an inhibitor of neuronal 

morphogenesis and Mirta22 levels are strongly controlled by miR-185, it is likely that miR-185 exerts most 

of the effects on neuronal morphology through repressing Mirta22 expression. On the other hand, 

increasing miR-185 causes bigger changes of structural features of Df(16)A
+/–

 neurons, as compared to 

decreasing abnormally high levels of Mirta22 in these neurons. Therefore, other targets downstream of 

miR-185 may contribute to structural deficits in Df(16)A
+/–

 neurons, albeit to a lesser degree. In this 

context, it is noteworthy that RhoA and Cdc42, two members of the Rho GTPase family, are bona fide 

miR-185 targets (Liu et al., 2011). Although we did not detect changes of RhoA or Cdc42 transcripts in 

microarrays, it is likely because miR-185 negatively regulates RhoA and Cdc42 primarily at the protein 

level. The Rho family of GTPases are important regulators of cytoskeletal dynamics and membrane 

trafficking (Benarroch, 2007; Govek et al., 2005), both of which are important determinants for structural 

modulations. Both RhoA and Cdc42 modulate exocytosis which is important for dendritic and spine 

growth (Ory and Gasman, 2011). RhoA and Cdc42 have largely opposing effects on actin polymerization 

and dendritic and spine growth (Benarroch, 2007; Tolias et al., 2011). Whereas RhoA acts through ROCK 

(Rho-kinase) to induce actomyosin contraction, Cdc42 activates WASP and PAK to promote actin  
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nucleation and filament assembly. As a result, RhoA generally inhibits dendritic and spine development, 

while Cdc42 promotes growth of dendrites and spines. How exactly miR-185 repression affects overall 

cytoskeletal dynamics remains to be carefully examined. Nevertheless, since multiple miRNAs control 

downstream targets that are important regulators of actin dynamics, such as Limk1, p250GAP, and Arpc3  

(see Chapter 3.1), it is an emerging view that miR-185 and other miRNAs converge on cytoskeletal  

Figure 3.9 MicroRNAs Control Neuronal Morphogenesis through Cytoskeletal Regulations. Activation of Rho 

family GTPases Rac1 and Cdc42 results in actin polymerization through Arp2/3 and Cofilin, which in turn promotes 

spinogenesis and maturation. During neuronal activity, calcium influx through NMDA receptor also activates 

CamKII that inhibit p250GAP and further induce spine growth. By repressing the expression of NR2A, LimK1, 

Arp2/3 and CamKII respectively, miR-125b, miR-134, miR-29a/b and miR-219 inhibit actin remodeling and spine 

growth. miR-138 represses Lypla1 which leads to activation of RhoA that also inhibits spine maturation. On the 

contrary, miR-132 and miR-185 promote spine growth by inhibiting p250GAP and RhoA respectively. miR-185 also 

represses a novel neuronal morphogenesis inhibitor Mirta22 and a group of genes with Golgi-related function.  

Golgi outposts and extension of Golgi ribbons into dendrites are shown to regulates dendritic and spine 

morphogenesis, miR-185 may relieve the suppression of Golgi function by these genes. The exact molecular 

mechanism remains to be determined. Note that many of these miRNAs also affect dendritic growth through actin 

and microtubule remodeling (no shown here), for example, miR-132 and miR-185 promote dendritic arborization. 

The role of miR-134 in dendritic growth is complex and proper dendritic growth seems to require optimal range of 

miR-134 levels. See Chapter 3.1.1, 3.1.2, 3.3.3 and Table 3.1, 3.2 for details.  
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regulation to control neuronal morphogenesis (Figure 3.9). Thus miRNAs provide an additional layer for 

integrating diverse signals downstream of morphogens, neurotrophins and synaptic activity.  

Additional miR-185 targets which are only mildly affected by reduced miR-185 levels are likely 

present and contribute to morphological deficits in Df(16)A
+/–

 mice. Indeed, in addition to Mirta22, there is 

hippocampus-specific modest dysregulation (mostly upregulation) of a group of miR-185 target genes 

with Golgi-related function in Df(16)A
+/–

 mice (Figure 3.3). As discussed in Chapter 5.3, the concerted 

dysregulation of these Golgi-related genes can have a noticeable impact on Golgi function in the adult 

hippocampus. Furthermore, localization of Mirta22 in the Golgi apparatus and in vesicle and tubular-like 

extensions in dendrites is consistent with a role in membrane and protein trafficking and secretion, which 

is necessary for establishment and maintenance of neuronal connections (Horton et al., 2005). Golgi 

apparatus is found in both soma and dendritic compartment in neurons (Horton and Ehlers, 2004). As 

hippocampal pyramidal neurons mature, somatic Golgi is polarized toward and extended into the longest 

dendrite as ribbon-like structures in proximal dendrite (Horton et al., 2005). From proximal to distal 

dendrite, the Golgi ribbon becomes more fragmented and possibly gives rise to Golgi outposts which 

accumulate at dendritic branch points along the dendrites. In addition, Golgi membranes were shown to 

localize to dendritic spines and may regulate spine maintenance (Camera et al., 2008). This dendritic 

Golgi system mediates forward secretory tracking which is required for supplying proteins crucial for 

establishing as well as maintaining the proper dendritic morphology (Jan and Jan, 2010; Matsuki et al., 

2010; Ramirez and Couve, 2011). Therefore it is conceivable that the elevated expression of neuronal 

morphology inhibitor Mirta22 coupled with the coordinated dysregulation of Golgi-related genes may 

affect the distribution of Golgi structures in dendrites. This hypothesis can be tested by future experiments 

examining the distribution of Golgi extensions and Golgi outposts in Df(16)A
+/−

 and Wt neurons. It is 

suggested that the “non-canonical” route of protein tracking involving the dendritic Golgi system is 

especially important for some proteins crucial for forming new synapses, such as GluR2 (Horton et al., 

2005; Ramirez and Couve, 2011). Thus the hypothesis that Golgi-dependent GluR2 trafficking is 

compromised in Df(16)A
+/− 

neurons is consistent with the previous observation (see Chapter 3.1.3) that 

the number of GluR2 punta is decreased in these neurons. Certainly how elevated levels of Mirta22 and 

concerted dysregulation of Golgi-related genes in Df(16)A
+/− 

neurons contribute to the morphological 

deficits of Df(16)A
+/− 

neurons warrants further studies.   
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Mirta22 is also likely to act in concert with other genes within the 22q11.2 deletion
 
(Karayiorgou et 

al., 2010), including the Zdhhc8 palmitoyl-transferase, which is also located in the Golgi apparatus and 

has been shown to modulate dendritic and spine development
  
(Mukai et al., 2008). A potential interaction 

between miRNA dysregulation and altered neuronal palmitoylation is supported by previous findings
 

(Banerjee et al., 2009; Siegel et al., 2009) and contributions from more than one gene to the 

morphological phenotypes described in this study are consistent with an oligogenic basis for the 

psychiatric and cognitive symptoms associated with 22q11.2 microdeletions (Karayiorgou et al., 2010). 

Future challenges will be to design treatments that restore the genes lost in 22q11.2 microdeletions or to 

correct the dysregulation of molecular networks (e.g. miRNA regulatory networks) or functional pathways 

(e.g. Golgi-related function) (see Chapter 5.4).  

3.3.4 Implication for Behavioral and Cognitive Impairments in 22q11.2DS 

22q11.2DS patients exhibit a number of behavioral and cognitive abnormalities that are 

characteristic of schizophrenia patients in general (Drew et al., 2011a; Karayiorgou et al., 2010; Philip and 

Bassett, 2011). Besides psychosis, these abnormalities include attention deficits, anxiety, learning 

difficulties, memory impairment, and executive dysfunction. These behavioral and cognitive impairments 

indicate dysfunction in frontal cortical and hippocampal circuitry. It is known that the prefrontal cortex 

(PFC) is a key hub in the network that manages attention and executive function (Miller and Cohen, 2001), 

while the hippocampus (HPC) is crucial for learning and seems to be the storage place for short-term 

memory (Andersen, 2007). In addition, as most learning requires the proper allocation of attention and 

executive function involves the integration of goal and memory, the communication between the PFC and 

the HPC is important for proper cognitive function. Although a detailed comparison of neural circuitry in 

22q11.2DS patients and normal individuals is lacking, the global cortical thinning and reduction of 

hippocampal volume likely underlie the cognitive dysfunction in 22q11.2DS (Drew et al., 2011a; 

Karayiorgou et al., 2010). In particular, reduced hippocampal volume suggests a reduction in neuron 

number or decreased dendrite arborization or soma size, all of which may lead to imbalance in the 

hippocampal circuit required for learning and memory.  

Analysis of a 22q11.2DS model, Df(16)A
+/–

 mice, revealed behavioral and cognitive deficits 

similar to some of the phenotypes of human patients, including memory impartment in fear conditioning 
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and working memory deficits in DNMTS task (Stark et al., 2008). In this context, our finding that Mira22 is 

a negative regulator of dendrite and spine suggests that excitatory transmission is likely attenuated in 

hippocampus of Df(16)A
+/–

 mice and possibly 22q11.2DS patients. This can account for the decreased 

LTP in Schaffer collateral pathway under a particular stimulation protocol (Drew et al., 2011b). As LTP is 

thought to be the cellular correlate of learning and memory, decreased number of hippocampal synaptic 

contacts due to simplified dendritic trees and lower spine density in vivo likely limits the capacity for 

synaptic plasticity and thus compromises cognitive function in Df(16)A
+/–

 mice. It remains unclear whether 

miR-185 and Mirta22 dysregulation affects neuronal morphology in other brain areas, and if so, how 

altered neuronal morphology in turn causes behavioral and cognitive impairments. As miR-185 reduction 

results in concerted dysregulation of Golgi-related genes in the hippocampus but not the prefrontal cortex, 

it is likely that neurons in different brain areas are influenced to a different degree by miR-185 and 

Mirta22 dysregulation in Df(16)A
+/–

 mice. Detailed surveys of neurons in different brain areas in mmu-mir-

185 or Mirta22 loss-of-function mice will help answer this question. Furthermore, experiments entailing 

normalization of Mirta22 levels in mice compound heterozygous for Df(16)A and Mirta22  loss-of-function 

alleles should also establish which of the various behavioral (Stark et al., 2008), cognitive (Drew et al., 

2011b; Stark et al., 2008) and circuit alterations (Fenelon et al., 2011; Sigurdsson et al., 2010) observed 

in Df(16)A
+/–

 mice can be attributed to the inhibitory influence of Mirta22 upregulation. 

 3.4 Summary 

We find that Mirta22 is a neuron-specific protein and localizes to the Golgi apparatus. In mature 

neurons, Mirta22, along with Golgi apparatus, is distributed in dendrites as vesicles and tubular-like 

clusters. Although Mirta22 represents a major downstream effector of miR-185 dysregulation, our finding 

of a coordinated miR-185 targeting of Golgi apparatus-related genes suggests that Mirta22 upregulation 

may act in an age and brain region specific manner in concert with other modestly altered miR-185 

targets to interfere with the Golgi-related processes required for neuronal maturation. miR-185 

knockdown or Mirta22 overexpression in Wt neurons phenocopies Df(16)A
+/–

  neurons. In contrast, 

elevation of miR-185 levels and reduction of Mirta22 levels reverse cytoarchitectural alterations of Wt 

neurons. We conclude that Mirta22 is a neuronal inhibitor of dendritic and spine development and its 

dysregulation may contribute to cognitive dysfunction. Thus, our findings highlight a link between the 
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Golgi apparatus and neuronal phenotypes associated with 22q11.2 microdeletions. The molecular 

mechanism of Mirta22 action in regulating neuronal morphogenesis remains obscure and needs to be 

deciphered. 
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Table 3.1   MicroRNA Regulation of Dendritic Complexity 

Dendritic Phenotypes 

MicroRNA Manipulation Target(s) Morphological Phenotypes Refs 

miR-132 Overexpression and 

inhibition 

p250GAP Expression promotes neurite sprouting from 

cultured cortical neurons 

1 

miR-132 Deletion in DG  Drastically decreased in dendritic arborization 2 

miR-132 Overexpression and 

inhibition  

p250GAP Activity-induced dendritogenesis is blocked by 

miR-132 inhibition in cultured hippocampal 

neurons and organotypic hippocampal slices 

3 

miR-134 AAV-mediated OE in 

HPC 

 Mildly decreased in length and complexity of layer 

V cortical pyramidal neurons  

4 

miR-134 Overexpression Chrdl-1 Mildly decreased dendritic complexity; increased 

complexity w/ BMP-4 in cultured cortical neurons 

5 

miR-134  Overepxression and 

inhibition 

Pumilio2 Both overexpression and inhibition impairs 

activity-induced dendritogenesis in cultured 

hippocampal neurons 

6 

miR-381, 

miR-329  

(miR-379−miR-

410 cluster) 

Inhibition  Impaired activity-induced dendritogenesis in 

cultured hippocampal neurons 

6 

miR-375 Lentivirus-mediated 

OE in HPC 

HuD Decreased dendritic complexity in DG granular 

cells 

7 

miR-124 Overexpression and 

inhibition 

Cdc42 Expression increases the number of primary 

neuritis in cultured cortical neurons 

8 

let-7, miR-

124, miR-125, 

miR-132 

Inhibition  Decreased dendritic branching in cultured 

hippocampal neurons 

9 

DG: Dentate gyrus, HPC: hippocampus, OE: overexpression, AAV: adeno-associated virus.  

References: 1. (Vo et al., 2005), 2. (Magill et al., 2010), 3. (Wayman et al., 2008), 4. (Christensen et al., 2010), 5. 

(Gaughwin et al., 2011), 6. (Fiore et al., 2009), 7. (Abdelmohsen et al., 2010), 8. (Yu et al., 2008), 9. (Edbauer et al., 

2010), 10. (Schratt et al., 2006), 11. (Siegel et al., 2009), 12. (Impey et al., 2010), 13. (Luikart et al., 2011), 14. 

(Hansen et al., 2010), 15. (Mellios et al., 2011), 16. (Cohen et al., 2011), 17. (Lippi et al., 2011)
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Table 3.2   MicroRNA Regulation of Spine Growth and Maturation 

Spine Phenotypes 

MicroRNA Manipulation Target(s) Morphological Phenotypes Refs 

miR-134 Overexpression and 

inhibition 

Limk1 Expression decreases spine width in cultured 

hippocampal neurons 

10 

miR-138 Overexpression and 

inhibition 

Lypla1 

(APT1) 

Expression increases spine volume in cultured 

hippocampal neurons 

11 

miR-125b Overexpression and 

inhibition 

NR2A Overexpression increases spine length but 

decreases width; inhibition decreases spine width  

9 

miR-132 Overexpression and 

inhibition 

 Overexpression increases spine width; inhibition 

has no effect 

9 

miR-132 Overexpression and 

inhibition 

p250GAP Overexpression is sufficient to increase spine 

density; inhibition blocks activity-induced 

spinogenesis 

12 

miR-132 Retrovirus-mediated 

inhibition in HPC 

 Mildly decreased spine density in newborn DG 

neurons 

13 

miR-132 Transgenic miR-132 

OE 

 Increased spine density in CA1 pyramidal neurons 14 

miR-132 Lentivirus-mediated 

inhibition in visual 

cortex 

 A decrease in mushroom and stubby spines and 

an increase in thin spines and filopodia of layer V 

pyramidal neurons 

15 

let-7, miR-22, 

miR-124 

Overexpression and 

inhibition 

 Overexpression has no effect; inhibition increases 

spine width (all) and length (let-7) 

9 

miR-485 Overexpression and 

inhibition 

SV2A Expression decreases spine density in 

hippocampal neurons 

16 

miR-29a/b Overexpression Arpc3 Decreased mushroom spine density and 

increased filopodia density in cultured 

hippocampal neurons   

17 

OE: overexpression, HPC: hippocampus. 

References: 1. (Vo et al., 2005), 2. (Magill et al., 2010), 3. (Wayman et al., 2008), 4. (Christensen et al., 2010), 5. 

(Gaughwin et al., 2011), 6. (Fiore et al., 2009), 7. (Abdelmohsen et al., 2010), 8. (Yu et al., 2008), 9. (Edbauer et al., 

2010), 10. (Schratt et al., 2006), 11. (Siegel et al., 2009), 12. (Impey et al., 2010), 13. (Luikart et al., 2011), 14. 

(Hansen et al., 2010), 15. (Mellios et al., 2011), 16. (Cohen et al., 2011), 17. (Lippi et al., 2011)
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Table 3.3   Altered Expression of Predicted miR-185 Targets with Golgi-related Functions 

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

31 1425690_at B3gat1 3.94E-09 0.478 

52 1420833_at Vamp2 2.92E-07 0.607 

66 1425691_at B3gat1 6.47E-07 0.319 

70 1421270_at Sh3rf1 7.53E-07 0.391 

117 1421890_at St3gal2 3.97E-06 0.292 

176 1423228_at B4galt6 1.23E-05 0.286 

192 1450105_at Adam10 1.48E-05 0.28 

199 1422758_at Chst2 1.57E-05 0.296 

201 1421271_at Sh3rf1 1.58E-05 0.276 

216 1450913_at B4galt6 1.80E-05 0.291 

340 1448367_at Sdf4 5.34E-05 0.267 

458 1450153_at Gopc 9.82E-05 0.233 

493 1421978_at Gad2 1.16E-04 0.437 

535 1431646_a_at Stx6 1.42E-04 0.215 

647 1422718_at Ap3s2 2.27E-04 0.236 

726 1450247_a_at Scamp5 3.09E-04 0.255 

730 1449111_a_at Grb2 3.13E-04 0.217 

734 1423720_a_at Sar1a 3.16E-04 0.292 

825 1428398_at B3galt5 4.25E-04 0.224 

845 1416437_a_at Mapk8ip3 4.48E-04 0.238 

914 1431320_a_at Myo5a 5.23E-04 0.179 

923 1427481_a_at Atp1a3 5.33E-04 0.198 

1018 1421891_at St3gal2 6.61E-04 0.194 

1029 1449943_at Lfng 6.74E-04 0.312 

1155 1422664_at Rab10 8.79E-04 0.183 

1270 1437107_at Rab6b 1.08E-03 0.395 

1304 1426744_at Srebf2 1.14E-03 0.295 

1338 1428374_at Glce 1.20E-03 0.164 

1354 1438373_at App 1.22E-03 -0.21 

1387 1431120_a_at Golga1 1.28E-03 0.259 

1430 1420643_at Lfng 1.37E-03 0.283 

1450 1419190_at Vti1a 1.41E-03 0.217 

1464 1424633_at Camk1g 1.44E-03 0.161 

1502 1443220_at NA 1.50E-03 0.217 

1589 1422044_at Ndst1 1.68E-03 0.352 

1694 1429296_at Rab10 1.93E-03 0.166 

1739 1433571_at Serinc5 2.05E-03 -0.245 

     

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

1805 1449129_a_at Kcnip3 2.18E-03 0.161 

1822 1420262_at NA 2.25E-03 -0.203 

2003 1448309_at Ap3m1 2.74E-03 0.196 

2042 1423075_at Lman2 2.85E-03 0.17 

2217 1431053_at Mphosph9 3.37E-03 0.257 

2246 1435758_at B4galt6 3.45E-03 0.158 

2257 1424755_at Hip1 3.51E-03 0.264 

2414 1416550_at Slc35b4 4.08E-03 0.135 

2516 1432017_at Hip1 4.47E-03 -0.146 

2712 1436321_at B3gnt7 5.02E-03 -0.185 

2740 1432054_at Golga1 5.13E-03 0.244 

2995 1451484_a_at Syn1 6.13E-03 0.13 

3025 1452174_at Srebf2 6.30E-03 0.132 

3093 1439853_at B4galnt2 6.58E-03 -0.181 

3148 1455924_at Rab6b 6.85E-03 0.145 

3281 1431066_at Fut11 7.49E-03 0.187 

3345 1450730_at Hs2st1 7.76E-03 0.177 

3358 1450104_at Adam10 7.83E-03 0.144 

3427 1457356_at NA 8.17E-03 -0.17 

3683 1416459_at Arf2 9.41E-03 0.119 

3710 1428397_at B3galt5 9.58E-03 0.156 

3722 1460191_at Ykt6 9.65E-03 0.144 

3788 1436155_at Nmnat2 1.01E-02 0.145 

3822 1457045_at Galnt13 1.03E-02 0.251 

3826 1423743_at Arcn1 1.03E-02 0.148 

3969 1448477_at Chst12 1.10E-02 0.113 

3986 1415670_at Copg 1.11E-02 0.124 

3998 1419754_at Myo5a 1.12E-02 0.134 

4049 1444943_at NA 1.14E-02 -0.184 

4089 1423358_at Ece2 1.16E-02 -0.207 

4101 1444413_at Ap3s2 1.17E-02 0.255 

4459 1436525_at Ap3s2 1.39E-02 0.135 

4584 1455986_at Zdhhc17 1.48E-02 0.245 

4608 1423229_at Inpp5e 1.49E-02 0.119 

4656 1436193_at Man1c1 1.52E-02 0.099 

4708 1435762_at Pacs1 1.55E-02 0.153 

4795 1453095_at Rab10 1.60E-02 0.094 
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Rank AffyID 
Gene 

Symbols 
P.Value logFC 

4866 1434945_at Lpcat2 1.66E-02 -0.1 

4905 1443398_at NA 1.68E-02 0.308 

5038 1426575_at Sgms1 1.77E-02 0.185 

5075 1449063_at Sec22b 1.80E-02 0.125 

5154 1440684_at Lpcat2 1.85E-02 -0.121 

5157 1460329_at B4galt6 1.85E-02 0.086 

5225 1443842_at Arfgef2 1.90E-02 0.133 

5582 1430966_at Cml3 2.16E-02 -0.158 

5633 1460070_at NA 2.20E-02 0.13 

5663 1455735_at Ap1s3 2.22E-02 0.129 

5664 1418508_a_at Grb2 2.22E-02 0.101 

5671 1425363_at B4galnt1 2.22E-02 -0.122 

5681 1422468_at Ppt1 2.23E-02 0.133 

5811 1416549_at Slc35b4 2.33E-02 0.107 

5837 1422129_at Apc2 2.36E-02 0.114 

5882 1425539_a_at Rtn3 2.40E-02 0.108 

6004 1447834_at NA 2.51E-02 -0.162 

6169 1423167_at Mobkl3 2.63E-02 0.117 

6247 1445103_at NA 2.70E-02 -0.101 

6461 1454865_at Slc9a8 2.88E-02 0.11 

6526 1424112_at Igf2r 2.94E-02 0.126 

6637 1451837_at Ap3b2 3.04E-02 -0.111 

6756 1459801_at B3galt5 3.16E-02 -0.185 

6868 1457316_at Mtap6 3.24E-02 0.133 

6882 1428150_at Coro7 3.26E-02 0.105 

6950 1426704_at Gak 3.33E-02 -0.118 

6971 1426576_at Sgms1 3.35E-02 0.113 

7015 1426274_at Slc9a8 3.39E-02 0.194 

7049 1453221_at Gopc 3.42E-02 0.095 

7088 1450729_at Hs2st1 3.45E-02 0.116 

7283 1458363_at Zdhhc17 3.61E-02 0.114 

7303 1423152_at Vapb 3.63E-02 0.314 

7426 1429661_at Rhobtb3 3.74E-02 0.173 

7435 1431136_at Rab36 3.75E-02 0.141 

7450 1447012_at Gm10791 3.76E-02 -0.127 

7669 1459144_at NA 3.97E-02 -0.093 

7928 1426703_at Gak 4.23E-02 0.092 

7956 1418582_at Cbfa2t3 4.26E-02 0.102 

8007 1458501_at Vapb 4.31E-02 0.169 

     

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

8158 1428149_at Coro7 4.48E-02 0.162 

8286 1460322_at Chst3 4.60E-02 -0.114 

8611 1448308_at Ap3m1 4.93E-02 0.094 

8746 1419189_at Vti1a 5.07E-02 0.079 

8831 1450384_at Bace1 5.15E-02 0.086 

8939 1423038_at Stx6 5.28E-02 0.078 

8968 1442028_at B4galnt2 5.30E-02 -0.138 

9185 1458189_at Emid2 5.57E-02 -0.111 

9251 1448464_at Ykt6 5.63E-02 0.087 

9285 1439610_at Rab27b 5.68E-02 0.128 

9324 1441216_at St3gal1 5.73E-02 -0.124 

9331 1421825_at Bace1 5.74E-02 0.116 

9491 1425876_a_at Glce 5.92E-02 0.174 

9552 1424856_at Atp1a3 5.98E-02 -0.098 

9608 1442234_at Chst2 6.05E-02 0.127 

9850 1416548_at Slc35b4 6.36E-02 0.098 

9907 1435718_at Ap3s2 6.42E-02 0.069 

9932 1416375_at Ap3m1 6.45E-02 0.163 

10029 1421892_at St3gal2 6.58E-02 0.117 

10410 1424708_at Tmed10 7.12E-02 0.159 

10733 1416374_at Ap3m1 7.55E-02 0.087 

10817 1450509_at Chst11 7.66E-02 0.126 

10868 1454821_at B3gat1 7.75E-02 0.077 

10928 1436676_at Mapk8ip3 7.84E-02 -0.092 

11304 1435199_at Apc2 8.31E-02 0.182 

11552 1415958_at Slc2a4 8.65E-02 -0.131 

11608 1452471_at Il17rd 8.73E-02 -0.13 

11746 1443857_at Hook3 8.90E-02 0.138 

11832 1436471_at Rab36 9.03E-02 -0.073 

11896 1445688_at NA 9.12E-02 -0.093 

11919 1419909_at Mphosph9 9.17E-02 -0.094 

12475 1433630_at Map6d1 9.98E-02 0.068 

12508 1428044_at Ap3s2 1.00E-01 -0.102 

12518 1428902_at Chst11 1.00E-01 0.084 

12643 1417215_at Rab27b 1.02E-01 0.104 

12745 1460083_at Adam10 1.04E-01 -0.073 

12789 1423759_a_at Tmco1 1.04E-01 0.078 

12811 1435801_at Fktn 1.05E-01 0.101 

12906 1427020_at Scara3 1.06E-01 0.125 
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Rank AffyID 
Gene 

Symbols 
P.Value logFC 

12922 1430549_at Bet1l 1.07E-01 0.107 

13027 1425316_at B3gat1 1.08E-01 -0.106 

13056 1446049_at NA 1.09E-01 -0.096 

13109 1418946_at St3gal1 1.09E-01 0.091 

13608 1453227_at Rhobtb3 1.17E-01 0.105 

13625 1437748_at Fut11 1.17E-01 0.103 

13687 1418929_at Ift57 1.18E-01 0.084 

13889 1419186_a_at St8sia4 1.22E-01 -0.075 

13935 1447656_at Zdhhc17 1.22E-01 -0.109 

13967 1418655_at B4galnt1 1.23E-01 0.106 

13968 1423647_a_at Zdhhc3 1.23E-01 0.063 

14000 1448404_at Scamp2 1.23E-01 0.139 

14073 1438008_at Gga3 1.25E-01 0.094 

14264 1440011_at NA 1.27E-01 -0.176 

14265 1445374_at NA 1.28E-01 -0.07 

14657 1451036_at Spg21 1.34E-01 0.105 

14708 1420928_at St6gal1 1.35E-01 0.093 

14715 1428367_at Ndst1 1.35E-01 0.092 

14960 1439094_at Cltc 1.39E-01 -0.116 

15016 1450528_at B3galt5 1.40E-01 0.129 

15062 1451017_at Ergic3 1.40E-01 -0.064 

15117 1421853_at Psen1 1.41E-01 0.072 

15173 1450844_at Stx6 1.43E-01 0.06 

15267 1452657_at Ap1s2 1.44E-01 0.054 

15301 1438063_at Mphosph9 1.45E-01 0.107 

15413 1458296_at NA 1.47E-01 -0.147 

15447 1443881_at Pofut1 1.48E-01 0.064 

15609 1442463_at NA 1.50E-01 0.101 

15617 1456655_at NA 1.50E-01 -0.09 

15685 1424111_at Igf2r 1.52E-01 0.062 

15742 1442904_at Chst2 1.53E-01 -0.144 

16001 1415766_at Sec22b 1.57E-01 0.075 

16220 1439922_at Prrc1 1.61E-01 0.117 

16277 1421155_at B3galt6 1.62E-01 0.067 

16372 1424707_at Tmed10 1.64E-01 0.063 

16416 1435679_at Optn 1.65E-01 -0.075 

16561 1418544_at Kcnip3 1.67E-01 0.055 

16664 1447347_at NA 1.69E-01 -0.117 

16694 1454982_at Arfgef2 1.69E-01 0.064 

     

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

16773 1435982_at Stx12 1.71E-01 -0.065 

17109 1434123_at Fut11 1.77E-01 -0.052 

17199 1440585_at Stx6 1.78E-01 -0.086 

17742 1429778_at Optn 1.90E-01 0.114 

18074 1420621_a_at App 1.96E-01 0.054 

18150 1417327_at Cav2 1.97E-01 0.093 

18184 1440014_at NA 1.98E-01 -0.102 

18225 1455368_at Zdhhc3 1.99E-01 0.074 

18374 1440979_at Igf2r 2.02E-01 -0.047 

18470 1446737_a_at Hook3 2.04E-01 0.095 

18685 1436051_at Myo5a 2.08E-01 0.057 

18823 1442079_at Sgms1 2.11E-01 -0.058 

18878 1416086_at Tpst2 2.12E-01 0.059 

19009 1423168_at Mobkl3 2.14E-01 0.046 

19055 1425549_at Psen1 2.15E-01 0.07 

19058 1420832_at Qsox1 2.15E-01 -0.061 

19193 1448936_at Stx12 2.19E-01 0.054 

19621 1440963_at Cbfa2t3 2.28E-01 -0.069 

19946 1445009_at NA 2.34E-01 -0.072 

20048 1420016_at Ppt1 2.37E-01 -0.063 

20091 1426393_a_at Sdf4 2.37E-01 0.066 

20302 1426886_at Cln5 2.42E-01 -0.072 

20382 1440915_at Mphosph9 2.44E-01 0.108 

20406 1422467_at Ppt1 2.44E-01 0.057 

20483 1438566_at St8sia6 2.46E-01 -0.08 

20589 1427442_a_at App 2.49E-01 0.041 

20638 1431325_at Cml3 2.50E-01 0.083 

20681 1420112_at NA 2.51E-01 -0.054 

20768 1444275_at NA 2.52E-01 -0.07 

21064 1452515_a_at Xylt2 2.60E-01 -0.063 

21300 1420927_at St6gal1 2.65E-01 0.075 

21507 1446617_at NA 2.70E-01 -0.066 

21565 1460436_at Ndst1 2.72E-01 0.05 

21605 1458920_at NA 2.73E-01 0.116 

21742 1415696_at Sar1a 2.76E-01 0.057 

21867 1418129_at Dhcr24 2.80E-01 0.137 

21870 1455584_at Sdf4 2.80E-01 0.053 

22017 1432230_at Hip1 2.83E-01 -0.069 

22036 1446696_at Ift57 2.84E-01 -0.123 
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Rank AffyID 
Gene 

Symbols 
P.Value logFC 

22131 1434397_at Zdhhc17 2.86E-01 0.051 

22165 1455741_a_at Ece1 2.87E-01 0.05 

22331 1436192_at Arfgef2 2.91E-01 0.058 

22341 1460431_at Gcnt1 2.91E-01 0.095 

22363 1440905_at Hs2st1 2.91E-01 -0.077 

22645 1436664_a_at Slc35a2 2.98E-01 0.042 

22797 1425031_at Fktn 3.02E-01 0.051 

22906 1451215_at Prrc1 3.05E-01 0.048 

23037 1451089_a_at Arcn1 3.08E-01 0.035 

23265 1439876_at Vti1a 3.14E-01 -0.061 

23269 1430904_at Arfgap3 3.14E-01 -0.075 

23324 1436062_at Arcn1 3.15E-01 0.045 

23558 1436956_at NA 3.22E-01 -0.053 

23566 1436101_at NA 3.22E-01 0.044 

23601 1453858_at Slc35a2 3.23E-01 -0.044 

23760 1424746_at Kif1c 3.27E-01 0.069 

23774 1439877_at NA 3.27E-01 -0.098 

23978 1449538_a_at Gcnt1 3.32E-01 -0.06 

24169 1458524_at Fndc3a 3.37E-01 -0.073 

24233 1457968_at NA 3.38E-01 0.064 

24321 1440457_at NA 3.41E-01 -0.056 

24330 1450137_at Pofut1 3.41E-01 0.054 

24445 1421609_a_at Cml3 3.44E-01 0.048 

24546 1422687_at Nras 3.47E-01 0.041 

24588 1418774_a_at Atp7a 3.48E-01 -0.077 

24690 1435157_at Hook3 3.51E-01 0.034 

24721 1432631_at Prrc1 3.51E-01 -0.06 

24887 1434316_at NA 3.56E-01 -0.055 

24932 1420821_at Sgpp1 3.57E-01 -0.1 

24999 1440340_at B3galt6 3.59E-01 -0.062 

25088 1434557_at Hip1 3.61E-01 0.055 

25240 1425128_at B3gnt8 3.65E-01 -0.075 

25460 1439433_a_at Slc35a2 3.71E-01 0.074 

25610 1422622_at Nos3 3.75E-01 0.076 

25660 1458342_at Tmem90a 3.76E-01 0.078 

25735 1443863_at Fndc3a 3.78E-01 -0.039 

25921 1424747_at Kif1c 3.82E-01 -0.043 

25932 1426903_at Fndc3a 3.83E-01 0.038 

26127 1455826_a_at Bace1 3.88E-01 0.055 

     

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

26230 1446314_at Gcnt7 3.92E-01 -0.053 

26239 1450399_at Psen1 3.92E-01 0.035 

26692 1423074_at Lman2 4.05E-01 0.036 

26788 1453393_a_at Chst4 4.07E-01 -0.037 

26884 1417730_at Ext1 4.10E-01 0.046 

27080 1425955_at Cav2 4.15E-01 -0.053 

27188 1434914_at Rab6b 4.18E-01 0.033 

27310 1424894_at Rab13 4.20E-01 0.037 

27493 1444873_at NA 4.25E-01 -0.048 

27548 1439899_at Galnt13 4.27E-01 -0.06 

27767 1458608_at NA 4.33E-01 -0.046 

27770 1423230_at Inpp5e 4.33E-01 0.055 

27794 1444705_at NA 4.34E-01 -0.071 

28091 1439417_at Qsox1 4.43E-01 0.051 

28164 1416828_at Snap25 4.45E-01 -0.035 

28323 1440386_at Glce 4.50E-01 -0.038 

28342 1459654_at NA 4.50E-01 0.043 

28620 1444563_at NA 4.58E-01 -0.045 

28728 1431761_at Entpd4 4.61E-01 -0.048 

28771 1441423_at Ece1 4.62E-01 -0.048 

28825 1426372_a_at Bet1l 4.64E-01 0.026 

29026 1451224_at Scamp5 4.70E-01 0.031 

29052 1444361_at Ap1s2 4.71E-01 0.05 

29079 1428147_at Coro7 4.71E-01 0.038 

29100 1420902_at St6galnac3 4.72E-01 0.065 

29292 1422550_a_at Mtap6 4.78E-01 0.033 

29339 1438661_a_at Arf2 4.79E-01 0.054 

29538 1439196_at Hook3 4.85E-01 0.045 

29727 1454626_at Cltc 4.91E-01 0.025 

29739 1458084_at Zdhhc17 4.91E-01 -0.029 

30054 1454077_at Vti1a 5.00E-01 -0.03 

30521 1418195_at Galnt10 5.12E-01 0.056 

30636 1458897_at Ust 5.16E-01 0.036 

30681 1422980_a_at Bet1l 5.18E-01 0.038 

31145 1459097_at NA 5.32E-01 0.038 

31455 1427617_at Fut10 5.41E-01 -0.032 

31508 1435027_at Golga1 5.43E-01 0.022 

31615 1459707_at NA 5.46E-01 -0.027 

31807 1426325_at Kif1c 5.51E-01 0.034 
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Rank AffyID 
Gene 

Symbols 
P.Value logFC 

32077 1444102_at NA 5.60E-01 0.033 

32304 1438355_at Tmem90a 5.67E-01 0.029 

32464 1446624_at Fktn 5.72E-01 -0.037 

32703 1421522_at B4galnt2 5.79E-01 -0.038 

32779 1439218_at NA 5.81E-01 -0.049 

32833 1415959_at Slc2a4 5.83E-01 -0.038 

32882 1437388_at Fut10 5.84E-01 0.035 

32946 1416591_at Rab34 5.86E-01 -0.028 

32960 1416590_a_at Rab34 5.87E-01 -0.024 

33007 1416760_at Galntl1 5.88E-01 0.023 

33138 1432819_at Prrc1 5.93E-01 -0.032 

33158 1416611_at Scamp2 5.94E-01 0.022 

33175 1447235_at NA 5.94E-01 0.033 

33517 1455149_at Sh3rf1 6.04E-01 0.035 

33813 1432818_at Prrc1 6.14E-01 0.029 

34235 1421824_at Bace1 6.27E-01 0.018 

34412 1445505_at Ndst1 6.32E-01 0.023 

34607 1436865_at Slc26a11 6.39E-01 -0.032 

34680 1431549_at NA 6.41E-01 -0.038 

34744 1416017_at Copg 6.44E-01 0.022 

34779 1436499_at Sgms1 6.45E-01 0.026 

34819 1452365_at Csgalnact1 6.47E-01 0.027 

34832 1454924_at Fut10 6.47E-01 0.027 

34887 1451825_a_at Copz1 6.49E-01 -0.017 

35005 1441133_at NA 6.52E-01 -0.023 

35022 1429589_at Gad2 6.52E-01 -0.019 

35229 1429652_at Prrc1 6.59E-01 0.026 

35272 1430391_a_at St8sia4 6.60E-01 0.029 

35397 1453032_at Mobkl3 6.64E-01 0.019 

35670 1420333_at Txndc8 6.74E-01 0.028 

35685 1441993_at Ap3s2 6.75E-01 -0.019 

35814 1458616_at NA 6.80E-01 0.019 

35954 1416199_at Kifc3 6.84E-01 -0.021 

36001 1444884_at Ppt1 6.86E-01 0.019 

36267 1445966_at NA 6.95E-01 -0.029 

36278 1418014_a_at B4galt1 6.95E-01 0.022 

36301 1421967_at B4galt5 6.96E-01 0.025 

36355 1441148_at NA 6.98E-01 0.027 

36408 1459970_at NA 7.00E-01 -0.021 

     

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

36487 1437998_at Ap1s2 7.03E-01 -0.02 

36607 1458773_at NA 7.07E-01 -0.021 

36699 1453929_at Rnf24 7.10E-01 0.032 

36742 1438252_at Qsox1 7.12E-01 -0.014 

36795 1425310_a_at Emid2 7.13E-01 -0.021 

36894 1417214_at Rab27b 7.16E-01 0.022 

37011 1454060_a_at Nras 7.20E-01 0.022 

37023 1445178_at Sh3rf1 7.20E-01 0.05 

37039 1451895_a_at Dhcr24 7.21E-01 -0.015 

37096 1420261_at Psen1 7.23E-01 -0.015 

37194 1422739_at Hs2st1 7.26E-01 0.022 

37503 1420831_at Qsox1 7.35E-01 -0.026 

37522 1427923_at Zmpste24 7.36E-01 0.018 

37524 1419910_at Mphosph9 7.36E-01 -0.019 

37638 1424058_at Prrc1 7.41E-01 -0.021 

37757 1458054_at Ext1 7.45E-01 -0.022 

37768 1456147_at St8sia6 7.45E-01 0.035 

37836 1429893_at Il17rd 7.47E-01 0.019 

38090 1446739_at NA 7.56E-01 0.023 

38187 1458258_at NA 7.60E-01 0.012 

38215 1447763_at NA 7.61E-01 -0.017 

38284 1436797_a_at Surf4 7.63E-01 0.016 

38293 1440493_at Galnt10 7.63E-01 -0.02 

38312 1460036_at Ap1s2 7.64E-01 -0.052 

38364 1440092_at NA 7.66E-01 -0.028 

38429 1444411_at NA 7.68E-01 -0.025 

38435 1419320_at Chst5 7.69E-01 -0.02 

38548 1418130_at Dhcr24 7.73E-01 -0.015 

38586 1436224_at Kif1c 7.74E-01 0.019 

38629 1423646_at Zdhhc3 7.76E-01 -0.011 

38767 1438705_at Cbfa2t3 7.80E-01 0.017 

38795 1442365_at NA 7.81E-01 -0.019 

38806 1440121_at NA 7.82E-01 0.032 

38913 1421517_at St6galnac1 7.85E-01 -0.011 

39243 1426927_at Ap3b2 7.98E-01 -0.011 

39548 1424561_at Ece2 8.08E-01 -0.014 

39772 1418101_a_at Rtn3 8.15E-01 -0.008 

40008 1424979_at Aph1a 8.24E-01 0.014 

40539 1423609_a_at Mgat1 8.42E-01 0.007 
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Gene 
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40735 1415672_at Golga7 8.48E-01 -0.008 

40782 1456323_at Pofut1 8.50E-01 -0.012 

40839 1443082_at NA 8.52E-01 -0.01 

41035 1434862_at Fut2 8.58E-01 -0.009 

41074 1428103_at Adam10 8.59E-01 -0.01 

41243 1457009_at Rhobtb3 8.65E-01 0.014 

41365 1432533_a_at Slc35a2 8.70E-01 0.009 

41408 1436921_at Atp7a 8.71E-01 0.016 

41588 1446365_at Vti1a 8.77E-01 -0.014 

41613 1420834_at Vamp2 8.78E-01 0.007 

41628 1451853_at Fktn 8.79E-01 0.007 

41685 1452366_at Csgalnact1 8.81E-01 0.008 

41705 1435252_at B3galt6 8.81E-01 0.008 

41726 1438897_at Zdhhc3 8.82E-01 -0.009 

41824 1457583_at NA 8.86E-01 -0.012 

42111 1425975_a_at Mapk8ip3 8.96E-01 -0.006 

42167 1450246_at Fut2 8.97E-01 0.006 

42229 1448255_a_at Surf4 9.00E-01 0.006 

42245 1449432_a_at Mmel1 9.00E-01 -0.006 

42495 1443141_at NA 9.08E-01 0.005 

Rank AffyID 
Gene 

Symbols 
P.Value logFC 

42617 1450497_at Apc2 9.13E-01 -0.008 

42710 1434177_at Ece1 9.16E-01 -0.006 

42987 1445466_at Map6d1 9.26E-01 -0.007 

43014 1445838_at NA 9.26E-01 0.004 

43082 1431941_at Slc35b4 9.29E-01 0.005 

43387 1431205_at Slc9a8 9.40E-01 0.004 

43455 1430932_at Slc9a8 9.43E-01 0.004 

43457 1416458_at Arf2 9.43E-01 0.004 

43643 1418194_at Galnt10 9.50E-01 0.003 

43797 1458179_at NA 9.55E-01 0.003 

43822 1422688_a_at NA 9.56E-01 0.003 

44117 1442402_at Sh3rf1 9.66E-01 -0.003 

44298 1455064_at Rab36 9.72E-01 -0.002 

44305 1445224_at NA 9.73E-01 0.002 

44314 1420903_at St6galnac3 9.73E-01 -0.002 

44475 1451554_a_at Aph1a 9.78E-01 -0.004 

44677 1424756_at Hip1 9.85E-01 -0.001 

44797 1449737_at NA 9.89E-01 0.001 

44798 1458525_at NA 9.89E-01 -0.001 

44883 1443581_at St6gal1 9.92E-01 -0.001 
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3.5 Methods 

3.5.1 Generation of Mirta22 Antibody 

A 20 amino acid peptide ([C]- CEQAQKAKNPQEQKSFFAKY -[N]) was designed, synthesized 

and conjugated to KLH (Keyhole Limpet Hemocyanin) and then injected into rabbits using Covance 

custom antibody production service (Covance). Antibody serum was then purified using Melon Gel IgG 

purification Kit (Thermo Scientific) and the purified antibody was tested by Western blot (1:50), 

immunohistochemistry and immunocytochemistry assays (1:25). 

In western blot assays of 293T cell lysates, the purified antibody specifically recognized 

overexpressed full length Mirta22 tagged with C-terminal FLAG (~28 kD), which was independently 

verified using both polyclonal and monoclonal anti-FLAG antibodies (Figure 3.2A). The specificity of the 

antibody was tested in western blot assays of protein extracts from N18 cells transfected with a 

2310044H10Rik shRNA or a full length 2310044H10Rik cDNA plasmid. The intensity of the band at ~28 

kD, changed as predicted for each manipulation (Figure 3.2B,C). Finally, when used to stain cultured 

neurons the antibody generated a specific staining pattern whereas the pre-immune serum failed to show 

signal (Figure 3.2D).  

3.5.2 Western Blot 

Hippocampus (HPC) or prefrontal cortex (PFC) from 8-wk old mice were isolated and 

homogenized in ice-old modified RIPA buffer containing 1% Triton X-100, 0.1% SDS, 0.5% Sodium 

Deoxycholate, 150 mM NaCl and 50 mM Tris pH 8.0 and Proteinase inhibitor cocktail (Roche). 

Homogenates were centrifuged at 12,000 x g at 4°C for 30 min. The supernatant was saved and the 

protein concentration in each sample was determined by DC Protein Assay (Bio-Rad). An aliquot of the 

supernatant equivalent to 20 µg protein was resolved on 4–12% polyacrylamide gel (Bio-Rad) and then 

transferred onto an ECF plus membrane (Amersham Biosciences) or Immobilon-FL membrane (Millipore). 

The membrane was first blocked by 5% nonfat dry milk in PBS buffer containing 0.5% Tween-20 for 1 h 

at room temperature. The membrane was then washed three times with the same buffer and then treated 

with 1:50 dilution of purified Mirta22. The membrane was washed again with the same buffer three times, 

treated with 1:5000 dilution of horseradish peroxidase conjugated secondary antibody for 1 h at room 
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temperature and then washed thoroughly. The washed membrane was incubated with HRP substrate 

(Western Lightning Chemiluminescence Reagent, PerkinElmer Life Sciences) for 1 min, and 

chemiluminescence images were obtained using Alpha imaging system. The membrane was then 

stripped by Restore Western Blot Stripping Buffer (Thermo Scientific) and re-probed with 1: 5000 dilution 

of α-tubulin antibody (T5168, Simga-Aldrich) as a loading control, using the same procedure described 

above. Protein bands were subjected to densitometric analysis with NIH Image J. 

3.5.3 Neuronal Culture and Transfection 

Dissociated hippocampal neurons were isolated from E17 mouse embryos and plated at 2 x 10
5
 

cells/ml in 6-well plates containing glass coverslips coated with poly-D-lysine. Neurons were cultured for 9 

– 19 days, depending on the experiments. Two independent  pRFP-C-2310044H10Rik shRNAs 

(FI587489 and FI587487) and pRFP-C-scramble shRNA control (Origene), 2310044H10Rik (Mirta22) 

cDNA clone (Origene), as well as pre-miR-185 mimic and pre-scramble control (Ambion) were used for 

high efficiency calcium-phosphate mediated transfections as described previously (Jiang and Chen, 

2006). For all experiments, 5 µg of total plasmids and/or 100 pmol of pre-miRNA mimics were used per 

well. Images of basal dendrites and dendritic spines were acquired as described previously (Mukai et al., 

2008; Stark et al., 2008). Detailed procedures of neuronal morphological analysis can be found in 

Chapter 3.5.7, Chapter 3.5.8 below. 

3.5.4 Immunohistochemistry Assays 

Immunohistochemistry assays were described previously (Schneider Gasser et al., 2006). Briefly, 

fresh brains were dissected and immediately frozen in OCT. Brains were then sliced at a thickness of 15–

20 µm and brain sections were dried at room temperature and then fixed. Sections were incubated 

overnight with one or two primary antibodies and subsequently incubated for 1 hr with secondary antibody 

coupled to the Alexa Fluor fluorochromes (1:1,000, Invitrogen). Images were examined under a 

fluorescence microscope (Nikon). 
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3.5.5 Immunocytochemistry Assays 

Neurons were cultured on coverslips, fixed, permeabilized, and then exposed to primary 

antibodies and secondary antibodies as described previously
 
(Mukai et al., 2008). Images were examined 

under a fluorescence microscope (Nikon). For quantification of Mirta22 signals, images were acquired as 

described previously (Mukai et al., 2008). The raw LSM images were projected and exported using 

ImageJ. Mirta22 immunocytochemical signal from cell body of each individual neuron was calculated as 

total integrated density minus background of the cell body area.   

3.5.6 Functional and Geneset Enrichment Analysis (GSEA) of Predicted miR-185 Targets 

miR-185 target predictions were obtained using TargetScan Mouse v5.2. The gene list was 

imported into DAVID gene functional annotation database. 92% (2708 out of 2932) predicted targets 

genes were mapped into the DAVID database. Functional annotation was conducted using the program’s 

functional annotation clustering analysis with default settings. The gene list from the top cluster ("Golgi 

apparatus") was converted into Affymetrix IDs using the DAVID ID conversion tool and further mapped to 

the corresponding IDs of  the Affymetrix mouse 430 2.0 chip. This final probeset list was used as a user-

defined geneset for downstream analysis. Geneset enrichment analysis was conducted using the 

ErmineJ software
 
(Lee et al., 2005). Analysis was conducted using the receiver operator characteristic 

(ROC) analysis based on P value rankings.  

3.5.7 Analysis of Dendritic Complexity 

An experimenter blind to the genotype performed imaging and analysis. The number of primary 

dendrites and total branch points for each treatment condition were calculated by L-measure [version 4.0]
 

(Scorcioni et al., 2008). The basal dendrite branches were semi-automatically traced from the somata of 

neurons using NeuronStudio (Wearne et al., 2005). The output .swc files were imported into L-measure 

(Scorcioni et al., 2008). The number of primary dendrites and total branch points for each treatment 

condition were calculated by L-measure (version 4.0). Statistical analysis was conducted using the 

Student′s t-test as implemented in L-measure. Sholl analysis was conducted in ImageJ 

(http://rsbweb.nih.gov/ij/) using the “Sholl analysis” plugin (http://biology.ucsd.edu/labs/ghosh/software/ 

ShollAnalysis.pdf). The results were combined in the MS-Excel and a Student′s t-test was conducted to 
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determine the intersection number and significance at each step size between the experimental group 

and the controls.  

3.5.8 Analysis of Spine Morphology 

For each experiment, images across all genotypes were acquired with similar optimal settings for 

laser power, detector gain, and amplifier offset. An experimenter blind to the genotype performed all 

imaging and analysis. The raw LSM images were projected and exported using ImageJ. Quantification of 

mushroom spine density, length, and width was first performed using automatic tracing implemented in 

NeuronStudio (Rodriguez et al., 2008) and followed by manual adjustment. All spines on a basal dendrite, 

each at least 75 µm in length from the soma, were analyzed per neuron. We analyzed at least 4 neurons 

from each animal. The mushroom spine width was measured as the length of a straight line drawn across 

the widest part of the spine head and the mushroom spine length was measured as the length of the 

shortest line drawn from the tip of the spine head to the shaft of the dendrite. All measurements were 

determined by NeuronStudio. The results of spine analysis were exported, combined in MS-Excel and 

classified according to genotype or treatment information. The spine type was defined according to 

Chakravarthy et al
 
(Chakravarthy et al., 2006). Changes in mushroom spine density were assessed by 

Student′s t-test. The distribution of width of mushroom spines was compared using the Kolmogorov-

Smirnov test. 
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Chapter IV 

MicroRNA and Target Dysregulation in  

a Mouse Model of BDNF Val66Met SNP 

4.1 Introduction 

Discovered in 1982 (Barde et al., 1982), brain-derived neurotrophic factor (BDNF) is a 

polypeptide growth factor of the neurotrophin family that regulate the development and function of 

nervous system. BDNF is synthesized as a 247 amino acid (32 kD) pre-pro-BDNF in the endoplasmic 

reticulum (ER) (Lu, 2003). Pro-BDNFs form homodimers and are packed into dense-core vesicles that are 

transported to terminals for constitutive secretion or activity-dependent release (Lessmann et al., 2003). 

Upon release, Pro-BDNF dimers can either bind to p75 receptors or are proteolytically cleaved by 

extracellular proteases, such as plasmin or MMP7, giving rise to mature BDNF (Lessmann et al., 2003; 

Seidah et al., 1996). Mature BDNF binds to tropomyosin-related kinase receptor type B (TrkB) which in 

turns activates PI3K-Akt, PLCγ, and Ras-MAPK signaling pathways (Martinowich and Lu, 2008; 

Minichiello, 2009). Although there is continuous debate about the differential functional outcomes and 

relative importance of TrkB versus p75 signaling pathways in different scenarios (Lu et al., 2005), it is 

now believed that mature BDNF signaling through widely expressed TrkB receptors is of predominant 

physiological relevance in the mature brain (Matsumoto et al., 2008; Rauskolb et al., 2010).  

BDNF is the most intensively studied member of the neurotrophin family due to its high 

expression in diverse brain regions and its involvement in neuronal survival, neurogenesis, neuronal 

morphogenesis and synaptic plasticity (Binder and Scharfman, 2004). Given the important role of BDNF 

in brain function, it has been hypothesized that the genetic variants of Bdnf can predispose carriers to 

cognitive dysfunction or even psychiatric disorders (Buckley et al., 2011; Frielingsdorf et al., 2010; 

Martinowich and Lu, 2008). As discussed below, many association studies have been performed aiming 

to investigate this hypothesis and most of them focused on a single nucleotide polymorphism (SNP), 

Val66Met.   
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4.1.1 BDNF Val66Met Single Nucleotide Polymorphism 

There are so far 891 single nucleotide polymorphisms (SNPs) within human BDNF gene in the 

dbSNP database to date, of which 41 have been studied and 2 of them, including rs6265, are reported as 

probable-pathogenic. The common single SNP at nucleotide 196 (G/A) (dbSNP number rs6265) is 

particularly interesting as it results in a Valine to Methionine substitution (missense mutation) at codon 66 

located in the pro-domain. This SNP is only found in human and its allele frequency is ethnically variable 

and stratified from near 0% in a population in Kenya, Africa to 60% in a population in Japan, Asia 

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6265). It is estimated about 30% (Caucasians) 

to 50% (Asians) of world population are Met carriers (Shimizu et al., 2004), while about only 4% 

(Caucasians) and 20% (Asians) of individuals are homozygous for the Met allele (Petryshen et al., 2010).  

Although it is usually difficult to comprehend how most SNPs affect the expression or function of 

its host genes, Val66Met is a notable exception. Studies in cell culture systems using overexpressed 

protein showed that Val66Met mutation reduces the expression of BDNF at neuronal terminals by 

disrupting the transportation of both the mRNA and protein that contain this mutation (Chen et al., 2004; 

Egan et al., 2003). The Met form of BDNF (BDNFMet) fails to interact with sortilin and to be correctly sorted 

into secretory granules for activity-dependent release at the dendrites (Chen et al., 2005). Furthermore, 

the observation that sorting of BDNFMet– BDNFVal heterodimers into secretory granules was also impaired 

suggested that BDNFMet may act in a dominant negative fashion to affect release of BDNFVal molecules 

(Chen et al., 2004). Besides these well-documented protein sorting/trafficking deficits, Val66Met mutation 

also blocks the translin-mediated dendritic trafficking of BDNF mRNA (Chiaruttini et al., 2009). As the 

majority of BDNF is released in response to activity through regulated secretory pathways, these results 

suggest there is a significant reduction in BDNF levels in regions with high neuronal activities, such as a 

learning-strengthened hippocampal circuit.  

4.1.2 BDNF Val66Met SNP and Mood Disorders 

BDNF plays diverse and important roles in the development and function of the brain (Cohen-

Cory et al., 2010; Yoshii and Constantine-Paton, 2010). Moreover, BDNF is also shown to be a crucial 

modulator for a variety of cognitive functions and emotion. It is therefore not surprising that multiple 



122 

 

groups have hypothesized the involvement of altered BDNF expression and function in pathophysiology 

of psychiatric disorders, especially mood or affective disorders. Indeed, expression levels of BDNF and its 

receptor TrkB are reduced in the CNS, especially hippocampus, of patients with depression (Karege et al., 

2005; Marvanova et al., 2001). Furthermore, most effective antidepressant treatment and antidepressants, 

including serotonin reuptake inhibitors (SSRIs), induce the expression of BDNF in hippocampus (Alme et 

al., 2007; Chen et al., 2001; Duman and Monteggia, 2006) and in serum (Sen et al., 2008; Shimizu et al., 

2003).  BDNF expression in plasma and neurons is also increased by lithium (de Sousa et al., 2011; 

Yasuda et al., 2009), an effective treatment for bipolar disorders. Thus, there has been considerable 

interests in revealing the possible association or the lack of it between of BDNF Val66Met and psychiatric 

disorders in the past decade.  

Association of the Met allele with depression was found in several case-control studies of both 

Asian (Hwang et al., 2006; Su et al., 2011) and Caucasian (Borroni et al., 2009; Lavebratt et al., 2010) 

populations. A meta-analysis also revealed significant effects of the Met allele or the Met/Met genotype 

on risk of major depression disorder in men (Verhagen et al., 2010). It is worth noting that in some reports, 

interaction of the Met allele with early life stress leads to a higher risk of depression (Carver et al., 2011; 

Lavebratt et al., 2010). The Met allele is also associated with higher anxiety level (Montag et al., 2010) 

and smaller hippocampus (Frodl et al., 2007; Montag et al., 2009) and amygdala (Montag et al., 2009) 

volumes, all of which are potent risk factors for depression. However, a number of studies found no 

association of Val66Met with depression (Figueira et al., 2010; Jessen et al., 2009; Sun et al., 2011; Zou 

et al., 2010) or reported Val/Val to be associated with depression diagnosis (Ribeiro et al., 2007) or 

symptoms (Duncan et al., 2009).  

There are continuous debates of the association of Val66Met with anxiety disorders (Frustaci et 

al., 2008; Jiang et al., 2005; Kobayashi et al., 2005; Tocchetto et al., 2011). In addition, the involvement 

of Val66Met in bipolar disorder is equally controversial, with most population case-control studies showing 

no association (Green et al., 2006; Nakata et al., 2003; Neves-Pereira et al., 2005; Oswald et al., 2004; 

Schumacher et al., 2005; Skibinska et al., 2004; Tang et al., 2008; Wellcome Trust Case Control, 2007), 

while one case-control (Lohoff et al., 2005) and several family-based studies (Geller et al., 2004; 
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Kremeyer et al., 2006; Muller et al., 2006; Sklar et al., 2002) conducted in US reported higher risk of Val 

allele (odds ratio ranging from 1.22-2.33) (Petryshen et al., 2010). 

In summary, evidence suggests (but not unequivocally confirms) the possible association of the 

Met allele with depression disorders and anxiety level (whereas the Val allele may be associated with 

psychosis, as described below at Chapter 4.1.3). The study of a mouse model of BDNF Val66Met later 

provides supporting evidence for the deleterious effects of the Met allele in development of depression 

and anxiety traits (see Chapter 4.1.5) (Chen et al., 2006b).  

4.1.3 BDNF Val66Met SNP and Schizophrenia 

Whether BDNF Val66Met SNP modulates the risk of schizophrenia is also under intensive 

scrutiny. In schizophrenia patients (as in depression patients), expression levels of BDNF and its receptor 

TrkB are reduced in the brain, especially in the hippocampus (Durany et al., 2001; Iritani et al., 2003). 

Intriguingly, some studies indicated a protective effect for the Met allele. A study examining a large 

Scottish schizophrenia sample found a significant excess of Val in schizophrenia patients (Neves-Pereira 

et al., 2005). In a Spanish family-based study, the transmission disequilibrium test (TDT) showed a 

preferential transmission of Val allele from heterozygous parents to the affected schizophrenic offspring 

(Rosa et al., 2006). The association of the Val allele with schizophrenia was later replicated in a Russian 

male sample (Golimbet et al., 2008). On the contrary, there was no association of Val66Met or other 

BDNF SNPs (rs3750934, ro. 000001, G-172A, C270T) with schizophrenia in Han Chinese samples (Chen 

et al., 2006a; Sun et al., 2011; Wang et al., 2010; Yi et al., 2011). In addition, several case-control studies 

and meta-analysis of a Japanese population found no association of Val66Met with schizophrenia 

(Kawashima et al., 2009; Naoe et al., 2007; Tochigi et al., 2006).  Considering ethnicity as a factor in 

those studies, Val66Met may differentially affect schizophrenia susceptibility in different races. As there is 

substantial linkage disequilibrium between BDNF SNPs (Petryshen et al., 2010), it is an intriguing 

possibility that the ethnic differences in haplotype (combination of alleles) frequency can explain more 

variability in schizophrenia susceptibility among different races than Val66Met allele alone.  

Although the Met allele was linked to schizophrenia in an Armenian sample (Zakharyan et al., 

2011), most studies that reported a positive association with schizophrenia pointed to a higher odds ratio 
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of the Val allele. This could represent a result of evolutionary trade-off that a recent mutation (Val66Met) 

persists due to the balance between the advantages (protection from schizophrenia or schizoaffective 

disorders) and disadvantages it offers (vulnerability to depression; memory deficits, as discussed in 

Chapter 4.1.2 and 4.1.4). 

The contribution of Val66Met to the risk of schizoaffective disorders is most likely very small. 

Nevertheless, Val66Met may establish background liability, together with other common variants with 

small effect sizes, that is then modified by rare genetic variants and environmental factors.   

Although the results regarding association of Val66Met and psychiatric disorders is inconsistent, it 

seems highly likely that Val66Met is associated with more intermediate phenotypes or endophenotypes, 

such as memory and executive function. Moreover, the discrepancy of human association studies may be 

due to confounding factors like small sample size, genetic heterogeneity and population stratification. To 

get around these problems, mouse models of the Val66Met SNP were used to study the association of 

Val66Met with behavioral measures of depression or anxiety and offer opportunity to analyze the 

mechanism of any altered behaviors.  

4.1.4 BDNF Val66Met SNP and Cognitive Function 

BDNF, like other neurotropins, appears relatively late in evolution and is not found in invertebrate 

species. In addition, phylogenetic analysis showed that BDNF genes are under even more selective 

pressure in mammals (Tettamanti et al., 2010). These results suggest that BDNF plays specialized roles 

in the development and function of more complex nervous systems and is an important modulator of 

highly specific cognitive function in mammalian brains.   

Seminal work by Daniel Weinberger et al. showed that individuals with Val/Met genotype have 

worse episodic memory than Val/Val individuals, as assessed with the Wechsler Memory Scale (WMS) 

(Egan et al., 2003; Hariri et al., 2003). In these studies, Met carriers (predominantly Val/Met) performed 

worse on tasks that rely on hippocampal activity, such as recalling places and events, but not on tasks 

that are less hippocampal dependent, such as word learning and planning (Egan et al., 2003; Hariri et al., 

2003). In addition, the interaction between the Val66Met genotype and the hippocampal response during 

encoding accounted for 25% of the total variation in memory performance (Hariri et al., 2003). Deficits in 
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hippocampal dependent task are correlated with diminished hippocampal activation during encoding and 

retrieval processes (Hariri et al., 2003) and with lower hippocampal n-acetyl aspartate (NAA) (Egan et al., 

2003). The effect of Val66Met on episodic memory was later replicated in healthy (Cathomas et al., 2010) 

and schizophrenia patients (Tan et al., 2005).   

Besides hippocampal activation deficits, schizophrenia patients carrying the Met allele also 

performed worse in prefrontal cortex (PFC)-dependent N-back tasks (Rybakowski et al., 2006a), implying 

that PFC-dependent working memory is also affected by the Val66Met SNP. Furthermore, bipolar 

patients with at least one Met allele made more perseverative errors (Rybakowski et al., 2006a; 

Rybakowski et al., 2006b), indicating compromised attention, which is also PFC-dependent. As 

behavioral flexibility relies on error detection that requires attention as well as effective communication of 

error-responding neural networks (Holroyd and Coles, 2002), it is noteworthy that the Met allele also 

compromised the post-error phase locking, indicative of reduced synchronization between the basal 

ganglia and anterior cingulate cortex (ACC) (Beste et al., 2010). Unlike the association with psychiatric 

disorders, the literature regarding the association of Val66Met SNP with cognitive dysfunction is largely 

consistent in pointing to detrimental effects of the Met allele.  

One possible cause of the functional deficits in hippocampus and frontal cortex in Met carriers is 

the anomaly in brain structures due to impaired neuronal survival during development. Consistent with 

this idea, the Met allele is associated with decreased volume of various brain regions, including the 

hippocampus (Pezawas et al., 2004; Szeszko et al., 2005), and the dorsolateral prefrontal cortex 

(Gerritsen et al., 2011; Pezawas et al., 2004). On the other hand, as Val66Met results in deficient 

synaptic plasticity as discussed in Chapter 4.1.5, difficulties in achieving or maintaining the activation of 

relevant circuits likely contribute significantly to the cognitive dysfunction in Met allele-carrying individuals.  

Thus there are several possible mechanisms via which the Met allele could impair cognitive function. 

4.1.5 Mouse Models of BDNF Val66Met SNP 

This Val66Met SNP is only found in human as BDNF orthologues in non-primate animals encode 

Valine at codon 66 (Tettamanti et al., 2010). To study the functional consequences of Val66Met in a 

homogeneous genetic background, Francis Lee’s group in Cornell and our group have generated 
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independent knock-in mice expressing Met alleles. While the Lee group made a G196A substitution in the 

mouse Bdnf coding sequence (Bdnf
Met 

allele) (Chen et al., 2006b), our lab generated two “humanized” 

BDNF knock-in mouse lines by replacing the mouse Bdnf coding sequence with human BDNF sequence 

carrying either Met (BDNF
met

) or Val (BDNF
val

) allele (Cao et al., 2007) (Figure 4.1).  

With our mouse lines, our group has demonstrated that BDNF is involved in activity-dependent 

axonal competition within the olfactory bulb and that Met homozygotes have axonal competition deficits 

and the resulting impaired pruning of silent arbors (Cao et al., 2007). Through a series of experiments, 

Francis Lee and collaborators showed a variety of morphological and functional abnormalities associated 

with the Val66Met SNP. They confirmed that the activity-dependent release of endogenous BDNFMet is 

impaired from Met/Met and +/Met cultured cortical neurons (Chen et al., 2006b) and from ventral 

tegmental area (VTA) dopaminergic neuron terminals ending at the nucleus accumbens (NAc) (Krishnan 

et al., 2007). They also showed reduced dendritic complexity in dentate gyrus (DG) neurons (Chen et al., 

2006b), layer II/III (Yu et al., 2009) and layer V (Liu et al., 2011) vmPFC pyramidal neurons, as well as 

decreased survival of migrating olfactory neuroblasts (Bath et al., 2008) and newly-born DG cells (Bath et 

al., 2012) in the Bdnf
Met/Met

 mice.  In addition, NMDA receptor-dependent long-term potentiation (LTP) and 

long-term depression (LTD) of hippocampal CA3-CA1 synapses (Ninan et al., 2010) and LTP of medial 

perforant path (MPP)-DG synapses (Bath et al., 2012) were significantly reduced. Spine density and size 

in layer V cortical neurons were also decreased at basal state and under ketamine stimulation, correlating 

Figure 4.1 Generation of A 

Mouse Model of BDNF Val66Met 

SNP. Targeting constructs 

carrying human BDNF gene (Val 

or Met allele) and upstream (Long 

Arm) and downstream (Short 

Arm) flanking sequence were 

introduced into mouse ES cells 

and replace endogensou mouse 

Bdnf gene. The knock-in lines 

thus generated express human 

BDNF
met

 or BDNF
val

 allele  transc-

riptionally controlled by endogen- 

ous mouse regulatory elements.  

See text and Method for details. 
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to reduced frequency and amplitude of serotonin (5-HT) and hypocretin (Hcrt)-induced EPSC under these 

conditions (Liu et al., 2011). The converging evidence indicated that Met allele carriers (mice and possibly 

humans) have synaptic plasticity-related deficits in certain neural circuits due to impaired activity-

dependent released of BDNF.   

The Bdnf
Met

 knock-in mouse line displayed several anxiety phenotypes that suggest Val66Met 

may predispose individuals to anxiety and depression disorders. Met/Met
 
mice showed increased anxiety 

in open field, elevated plus maze and novelty-induced hypophagia test. These mice were not responsive 

to the SSRI fluoxetine, a common anxiety treatment (Chen et al., 2006b). Even under chronic fluoxetine 

treatment (28 days), Met/Met mice still had decreased hippocampal BDNF protein level and impaired 

survival of newly born cells as well as LTP in the dentate gyrus (Bath et al., 2012). These results implicate 

the involvement of Val66Met in a treatment-resistant form of affective disorders. Met/Met
 
mice also 

displayed abnormalities in fear-related behaviors, with deficits in contextual but not cue-dependent fear 

conditioning (Chen et al., 2006b) and impairment in extinction learning (Soliman et al., 2010; Yu et al., 

2009). Importantly, those findings paralleled human behavioral studies which showed that Met/Met 

individuals have deficits in fear learning (Hajcak et al., 2009) and extinction (Montag et al., 2010), and 

demonstrated the face validity of this Bdnf
Met

 mouse model in anxiety-related measures.  

The adverse effects of the Met allele on cognitive function (see Chapter 4.1.4) are also validated 

in the Bdnf
Met

 knock-in mouse line. There was a dosage-dependent deficit of the Met allele in contextual 

fear memory (Chen et al., 2006b). Additionally, Met/Met mice showed impaired extinction learning in cue-

dependent fear conditioning (Soliman et al., 2010) and worse performance in object recognition (OR) and 

object placement (OP) tests (Spencer et al., 2010). These data point to an anomaly in hippocampus-

connected neural circuits that underlie these forms of learning.  

4.1.6 BDNF and MicroRNAs 

Accumulating data suggests miRNAs play an integral part in BDNF-mediated synaptic plasticity 

underlying learning and memory. miRNA dysregulation due to altered BDNF expression may also play an 

important role in development of addiction or psychiatric disorders, such as Rett Syndrome (de Leon-

Guerrero et al., 2011).  
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BDNF induces a rapid change in spine structures and synaptic protein expression after synaptic 

transmission. As discussed in Chapter 1.3.2 and Chapter 3.1.2, miR-134, the first individual miRNA 

identified to function locally at dendrites, is acutely inactivated after BDNF release during synaptic activity. 

This leads to the derepression of Limk1 and an increase of spine size through the mTOR pathway 

downstream of TrkB (Figure 4.2) (Schratt et al., 2006). BDNF is also involved in long-term activity-induced 

synaptic changes. Synaptic activity, including glutaminergic and BDNF transmission (Vo et al., 2005), 

activates CREB which induces the transcription of mir-132−mir-212 cluster (Vo et al., 2005) and Bdnf 

itself (Hong et al., 2008), along with other synaptic proteins. miR-132 enhances dendritic growth through 

inhibition of Rho GTPase-activating protein p250GAP (Magill et al., 2010; Vo et al., 2005) and  increases 

spine width which correlates with elevated mEPSC amplitude (Edbauer et al., 2010). Since MeCP2 

Figure 4.2 BDNF-induced MicroRNA Regulation in Neurons. Through activation of TrkB receptors, BDNF leads 

to spine and dendritic growth through activation of Rac1 and actin polymerization. This is partly via repression of 

p250GAP by miR-132 and derepression of Limk1 from miR-134. In the nucleus, BDNF also induces expression of 

miR-132 and miR-134 from mir-212−mir-132 and mir-370−mir-410 respectively, through MAPK signaling and 

CREB activation. It is hypothesized that transcriptionally-expressed miR-134 represses translational repressor 

Pum2 and promote dendritic growth, along with other miRNAs encoded in mir-370−mir-410 locus on a longer time 

frame. The transcriptional expression of BDNF is homeostastically regulated by CREB, MeCP2, miR-134 and miR-

132, while mir-370−mir-410 is also controlled by SIRT1 and YY1 repressors and Mef2. Note that BDNF is secreted 

mostly as pro form and processed by extracellular proteases. See text for details.  
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induces BDNF expression (Chahrour et al., 2008; Klein et al., 2007; Zhou et al., 2006) while miR-132 

repress MeCP2 levels (Klein et al., 2007), these molecules form a negative feedback loop that mediates 

homeostatic control over the levels of activation and of MeCP2 expression (Figure 4.2). It has been 

shown that both loss and gain of MeCP2 can lead to Rett syndrome (Chahrour et al., 2008), and the fine 

control represented by this feedback loop appears to be important in regulating synaptic function. 

Furthermore, the expression of BDNF is under the control of miRNAs transcriptionally and post-

transcriptionally. By translationally repressing CREB, miR-134 limits the extent of CREB-mediated Bdnf 

transcription. miR-134 is itself restricted by SIRT1-YY1 repressor complex and brain-specific knockouts of 

SIRT1 had increased miR-134 levels and impaired memory and synaptic plasticity (Gao et al., 2010) 

(Figure 4.2). On the other hand, BDNF mRNA is targeted by many miRNAs including miR-181a 

(Chandrasekar and Dreyer, 2011), miR-124 (Chandrasekar and Dreyer, 2009), miR-30a (Mellios et al., 

2008), miR-206 (Miura et al., 2012) and miR-26 (Caputo et al., 2011) (check also TargetScanMouse, 

version 6.0). Two SNPs (rs11030100 and rs11030099) in the BDNF 3’UTR abrogate miR-26a and miR-

26b targeting, and interestingly, Val66Met is in high linkage disequilibrium with these SNPs (Caputo et al., 

2011). However, it remains to be tested if these two SNPs are associated with cognitive dysfunction or 

psychiatric disorders. More importantly, whether a common SNP Val66Met in BDNF results in miRNA 

alteration was never investigated.  

4.1.7 In this Chapter 

While I have so far discussed the impact of miRNA dysregulation due to the rare 22q11.2 

microdeletion, it is conceivable that common variants also induce changes in expression of miRNAs and 

their targets. Although these changes in protein expression levels are generally mild perturbations to a 

robust system, the combination of several common or rare variants can lead to a more profound alteration 

in gene expression and functional pathways in the brain that predispose the affected individual to 

cognitive dysfunction or psychiatric disorders. In this regard, I investigated the miRNA expression profile 

of a mouse line that carries a common human SNP, BDNF Val66Met (rs6265), and described the 

alteration in expression levels of targets of the dysregulated miR-146b.    
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4.2 Results 

4.2.1 miRNA Expression Profile of  BDNF
Val

 and BDNF
Met

 Mouse Lines 

We speculated that BDNF Val66Met SNP could change the expression of miRNA and wanted to 

find out the scope and amplitude of the possible miRNA dysregulation. Using a miRNA microarray, we 

compared the expression of 559 miRNAs (miRBaser Release 10.1) in the hippocampus (HPC) of adult 

Val/Val and Met/Met animals. 325 miRNAs that showed positive signals above mean background for all 

replicated spots on the array were further analyzed. We identified 24 miRNAs with significantly altered 

expression in Met/Met animals versus Val/Val animals (FDR-corrected P-value < 0.05) (Figure 4.3A and 

Table 4.1). Fourteen of these miRNAs were significantly upregulated, while 10 of them were significantly 

down-regulated. As expected, the expression changes were relatively modest, with fold change (FC) 

ranging from 1.29 to 0.79, except for miR-197 (FC = 1.58) and miR-700 (FC = 1.66). Mild expression 

changes found in expression microarray can be due to sample variation or stochastic factors and may not 

be genuine and robust finding. Furthermore, these changes with small magnitude are generally difficult to 

Figure 4.3 MicroRNA Alterations in the Hippocampus of BDNF
Met/Met

 versus BDNF
Val/Val

 Mice. (A) Volcano 

plot showing miRNA expression profile in hippocampus (HPC) of Met/Met animals versus Val/Val animals (n = 6 

each genotype). For each miRNA, the FDR-corrected P-value and corresponding relative expression (shown as 

fold change) are indicated by the location of a dot. Green dots, miR-146b and miR-337-3p; blue dots, miR-197 and 

miR-700. (B-C) Expression levels of miR-146b, miR-337-3p (B) and miR-197, miR-700 (C) in HPC of Val/Val, 

Val/Met and Met/Met mice (n = 6 each genotype), as measured by qRT-PCR. The expression levels in Val/Met 

and Met/Met mice were normalized to Val/Val animals. Results are expressed as mean ± SEM. *P < 0.05, **P < 

0.01 (Student′s t-test). 
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verify by qRT-PCR due to the requirement for large sample sizes. Therefore, we then focused our studies 

on 4 miRNAs (miR-197, miR-146b, miR-700 and miR-337-3p) with absolute fold change > 1.2 and FDR-

corrected P-value < 0.005. miR-132 and miR-212, which are located in the same cluster that is 

transcriptionally up-regulated by BDNF through CREB transcription factor (Vo et al., 2005) were 

downregulated in Met/Met mice, with FC of 0.90 (P = 0.35; uncorrected P = 0.12) and 0.95 (P = 0.31; 

uncorrected P = 0.07) respectively. Although these changes were not significant, it is consistent with the 

idea that BDNF levels are decreased in Met/Met animals and suggests that at least some of the changes 

we found in the miRNA expression profiling could be due to the direct effect of the BDNF Val66Met SNP. 

4.2.2 miR-146b and miR-337-3p are Downregulated in Met/Met Mice 

We were able to verify the miRNA expression change by quantitative real-time PCR (qRT-PCR) 

in adult hippocampus (HPC) of the 2 down-regulated miRNAs (miR-146b and miR-337-3p) out of 4 

miRNAs with absolute fold change > 1.2 and FDR-corrected P-value < 0.005. As compared with levels in 

Val/Val animals, miR-146b was decreased by 8% (P = 0.20) and 19% (P < 0.05) in Val/Met and Met/Met 

animals respectively, and miR-337-3p was decreased by 19% (P < 0.01) and 10% (P < 0.05) in Val/Met 

and Met/Met animals respectively (Figure 4.3B). Interestingly, both miR-146 and miR-337 are reported to 

be among the top 20 most enriched miRNAs in synaptic compartments of adult mouse forebrain, 

suggesting they have synaptic-related function (Lugli et al., 2008). 

Unfortunately, we were not able to replicate the up-regulation of miR-197 (FC = 1.04, P = 0.64, 

Met/Met versus Val/Val) and miR-700 (FC = 1.08, P = 0.48, Met/Met versus Val/Val) in Met/Met animals 

(Figure 4.3C). The expression levels of miR-197 and miR-700 were low in HPC and their signals could be 

detected above background after more than 35 cycles of amplification in qRT-PCR. Therefore there were 

probably more variations in qRT-PCR assays of miR-197 and miR-700 due to their low signal-to-noise 

ratio. mmu-mir-197 was later removed from miRBASE because only two clones supported the presence 

of miR-197 in mouse (Landgraf et al., 2007) and the sequence does not map in a stem-loop region of the 

genomic sequence or any known mouse transcript sequence. Since miR-700 is expressed at very low 

levels in HPC and it demonstrated a relatively flat FC due to Val66Met SNP, it seems that gene 

expression changes in Met/Met mice due to altered miR-700 levels, if any, were likely to be minor.  
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4.2.3 BDNF Acutely Induces miR-146b and miR-337-3p Expression in Met/Met Mice 

We speculated that reduced expression levels of miR-146b and miR-337-3p were due to lower 

BDNF levels in these animals and increasing BDNF levels would induce the expression of these 2 

miRNAs. To test this hypothesis, we apply physiological levels of BDNF to acute hippocampal slice 

preparations from Wt animals and monitored expression levels of miR-146b and miR-337 after 2 hours of 

stimulation. We found that acute BDNF stimulation increased the levels of miR-146b and miR-337-3p by 

22% (P < 0.05) and 21% (P = 0.11) respectively (Figure 4.4A, B). As these experiments demonstrated 

that expression of miR-146b was significantly changed due to BDNF Val66Met SNP and in response to 

BDNF treatment, we therefore sought the targets of mir-146b that are in turn altered due to Val66Met 

SNP.  

4.2.4 Search for miR-146 Targets in Hippocampus 

We used miRNA target site prediction programs, TargetScan Mammal v.4.2 

(http://www.targetscan.org/vert_42/) and PicTar (updated March 2007, http://pictar.mdc-berlin.de/) and 

found 39 genes that were predicted by both programs. Among them, 12 target candidates (Irak1, Traf6, 

Per1, Stx3, Syt1, Cask, Robo1, Kctd15, Dlgap1, Gria3, Npas4, Lin28A) were initially selected for further 

analysis due to their roles in neural development and/or plasticity (Table 4.2). Since Sort1 encodes sortilin 

that is required for intracellular BDNF trafficking and activity-regulated release and has a miR-146b seed 

sequence in the 3’UTR of its mRNA, we also included Sort1 for candidate target testing in a luciferase 

assay. It is worth noting that almost all of these targets were later found to be predicted by a more 

updated version of TargetScanMouse (v6.0, http://www.targetscan.org/mmu_60/) and miRanda (released: 

Figure 4.4 BDNF-induced Expression of 

miR-146b in Hippocampal Slices. (A-B) miR-

146 (A) and miR-337-3p (B) expression levels 

in acute hippocampal slices (n = 9, from 3 

animals, each treatment) treated with BDNF 

for 2 hours, as measured by qRT-PCR. 

Expression levels in BDNF treatments were 

normalized to mock treatment control. Results 

are expressed as mean ± SEM. *P < 0.05 

(Student′s t-test). 
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August 2010, updated: Nov 2010) and by additional programs – mirDB (Wang, 2008) (updated: January 

2012, http://mirdb.org/miRDB/index.html) and microT (Maragkakis et al., 2011) (v4.0, http:// 

diana.cslab.ece.ntua.gr/DianaTools/ index.php?r=microtv4/index). In fact, all candidates originally 

predicted by both TargetScan Mammal v.4.2 and PicTar except Per1 are predicted by 3 or more of these 

5 programs (TargetScanMouse v6.0, microT v4.0, PicTar, miRanda 08/2010, mirDB 01/2012), indicating 

that we have tested the expression of a group of highly probable miR-146b target candidates in BDNF
Val

 

and BDNF
Met

 knock-in mice.  

We were able to clone the 3’UTR of 10 of these candidates from adult mouse HPC cDNA and 

tested the expression of the 3’UTR-fused luciferase reporter constructs under “pre-miR-146b” mimic or a 

scramble precursor (“pre-scramble”) in N18 cells. Luciferase expression from 3’UTR constructs of Irak1, 

Traf6, Per1, Stx3, Syt1, Kctd15, Sort1, Npas4 and Lin28A were significant down-regulated (P < 0.05) by 

pre-miR-146b cotransfection as normalized expression under pre-scramble application.  The repression 

of luciferase expression by pre-miR-146b is especially salient on 3’UTR of Irak1 (59%, P < 0.001), Traf6 

Figure 4.5 Identification of miR-146b 

Targets using Luciferase Assays. (A) 

Effects of pre-miR-146b application on 

3’UTR luciferase reporters of a group of 

putative targets were examined by a 

luciferase reporter assay performed in N18. 

neuroblastoma cell line (n = 3 for each 

reporter). Normalized expression values of 

each reporter to no 3’UTR control (vector). 

(B). Pre-miR-146b significantly decreases 

the Per1 3′UTR reporter expression over a 

concentration range of 1 nM to 0.1 nM. The 

repression effect of pre-miR-146b can be 

completely neutralized by anti-miR-146b 

transfection (n = 3 for each condition) at a 

concentration ratio of around 10:1. Results 

are expressed as mean ± SEM. *p < 0.05, 

**p < 0.01, ***p < 0.001 (Student′s t-test). 
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(81%, P < 0.001), Per1 (54%, P < 0.001), Lin28A (55%, P < 0.001), Npas4 (44%, P < 0.01) and Stx3 

(32%, P < 0.01), while constructs with 3’UTR of Syt1 (14%, P < 0.05), Kctd15 (19%, P < 0.05) and Sort1 

(15%, P < 0.05) were modestly repressed (Figure 4.5A).  To demonstrate the specificity of the effects of 

pre-miR-146b on luciferase reporters on target 3’UTR clones, we tested the ability of anti-miR-146b LNA 

oligonucleotides to antagonize the impact of pre-miR-146b mimics on Per1 3’UTR construct. Addition of 

0.1 nM and 1 nM of pre-mir-146b resulted in 46% (P < 0.05) and 56% (P < 0.05) repression in luciferase 

expression as compared to the pre-scramble control. On the other hand, when increasing concentration 

of anti-miR-146b oligonucleotides were cotransfected with pre-miR-146b mimics, there were 

corresponding increases in luciferase expression from the Per1 3’UTR reporter clone transfected with 

pre-miR-146b (Figure 4.5B). Anti-miR-146b LNA oligonucleotides were less efficient and only fully 

antagonized pre-miR-146b mimics at a stoichiometric ratio of around 10:1. Nevertheless, the observation 

that anti-miR-146 antagonizes the impact of pre-miR-146b on Per1 3’UTR-controled luciferase expression 

suggested that the luciferase assay screen for miR-146b targets was specific and miR-146b can repress 

expression of these predicted targets, except Dlgap1, through their 3’UTR sequences. 

4.2.5 Per1 and Npas4 are Regulated by miR-146b 

As mammalian miRNAs inhibit target expression predominantly through decreasing mRNA levels 

rather than translational repression (Guo et al., 2010), we hypothesized that most of the physiologically 

relevant target genes in vivo are upregulated at the transcript levels in Met/Met animals which have lower 

levels of mir-146b, as compared to Val/Val animals. Therefore, we measured and compared the 

expression levels of the predicted candidates in Val/Val, Val/Met and Met/Met animals by qRT-PCR. 

Expression of 3 additional targets predicted by miRanda (Betel et al., 2008) (Akt3, Srrd, Bsn, see Table 

4.2) with important function in transmitter production (Srrd), postsynaptic density (Bsn) and TrkB signaling 

(Akt3) were also analyzed. Expression levels of only Per1 and Npas4 were upregulated in Val/Met (24% 

for Per1 and 27% for Npas4) and Met/Met mice (28% for Per1 and 79% for Npas4) as compared to 

Val/Val mice and were significant influenced by genotype as analyzed by one-way ANOVA (P < 0.01 for 

Per1; P < 0.05 for Npas4) (Table 4.3, left panel and Figure 4.6A and 4.6B). There was no genotype effect 

on expression levels for other predicted targets, except for Kctd15 which is drastically down-regulated in 
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Val/Met but not Met/Met mice. This result is hard to explain and may be due to technical issues of PCR 

probe design or low and fluctuated levels of Kctd15 in the HPC.  None of the genes without a miR-146b 

seed sequence showed significantly elevated expression in Val/Met and Met/Met mice (Table 4.3, right 

panel). Fisher’s Exact Test showed a P = 0.24 for equal distribution of significantly upregulated genes in 

target group and non-target group. Since we showed that luciferase reporter fused with either the Per1 or 

Npas4 3’UTRs were downregulated by pre-miR-146b application (Figure 4.5A), an increase in Per1 and 

Npas4 levels in Val/Met and Met/Met mice were likely due to reduced endogenous miR-146b levels in 

these mice.  

To investigate if miR-146-mediated repression is specific and operates directly via the target sites 

predicted by TargetScan (Table 4.2), we engineered luciferase reporters carrying mutated versions of 

Per1 and Npas4 3′UTR with miR-146 binding sites mutated. Per1 3’UTR contains two cognate miR-146b 

binding sites at position 190-197 (an 8-mer site) and position 505-511 (a 7mer-1A site), so for Per1, 3 

different 3’UTR mutants were generated (Mut1: Site 1 mutant; Mut2: Site 2 mutant; Mut1&2: Site 1 and 2 

mutants; see Methods). A mutant Npas4 3’UTR (Mut) with the 7mer-m8 site at position 315-321 was also 

generated. Under pre-miR-146b mimic transfection in N18 cells, Mut1, Mut2 and Mut1&2 in Per1 3’UTR 

cells (n = 3 for each reporter). Mutated Per1 and Npas4 3′UTR reporters express significantly higher luciferase 

activities than Wt Per1 3′UTR reporters. Normalized expression values of each reporter to Wt 3’UTR reporters. 

Results are expressed as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (Student′s t-test).  

Figure 4.6 Per1  and Npas4 

Expression is Regulated by 

miR-146b. (A-B) Expression levels 

of Per1 (A) and Npas4  (B) in 

hippocampus (HPC) of Val/Val, 

Val/Met and Met/Met mice (n = 6 

each genotype), as measured by 

qRT-PCR. The expression levels 

in Val/Met and Met/Met mice were 

normalized to Val/Val animals. (C-

D) Per1 3′UTR luciferase reporters 

with mutations at Site 1 (Mut1) or 

S i te  2  (Mut2 )  o r  bo th  s i tes 

(Mut1&2) (C) and Npas4 3’UTR 

report with a mutation at the 

binding site (D) were analyzed in 

luciferase assay conducted in N18  
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increased the luciferase activity by 49% (P < 0.01), 26% (P < 0.05), and 58% (P < 0.01) respectively, 

while Mut in Npas4 3’UTR increased the luciferase activity by 29% (P < 0.01) (Figure 4.6C, D). Thus both 

miR-146b binding sites in Per1 3’UTR control miR-146b-mediated regulation on Per1 expression, 

although the 8mer site seems to have a larger impact. The miR-146b binding site in Npas4 3’UTR 

similarly controls the miR-146b-mediated repression of Npas4 expression. Taken together, we have 

identified Per1 and Npas4 as genuine targets of mir-146b in vivo. miR-146b likely represses Per1 and 

Npas4 expression by mRNA degradation. Therefore lower miR-146b levels in Val/Met and Met/Met 

animals results in the corresponding rise in Per1 and Npas4 transcript levels.    

4.2.6 Irak1 is a Translationally Repressed Target of miR-146 

We noticed 2 other target genes (Traf6, Irak1) for which luciferase clones were strongly affected 

by miR-146b (Figure 4.5A) but lacking upregulated expression in Met/Met mice compared to Val/Val mice 

(Table 4.2). More intriguingly, these 2 genes have been shown to be verified targets of miR-146 in human 

monocytes (Taganov et al., 2006) and are important in mediating the signaling downstream of Toll-like 

receptors (TLRs). It is likely that these targets are repressed by miR-146b translationally without any 

changes in their transcript levels and thus no expression change was identified by qRT-PCR assays of 

hippocampus (HPC) (Table 4.3). Therefore, we performed Western blotting to determine whether Traf6 

and Irak1 are translationally repressed targets altered by Val66Met SNP in vivo.  

Western blot assays of protein extracts from the HPC of BDNF
Val

 and BDNF
Met

 knock-in mice 

showed increases of Irak1 in Val/Met (19%, P = 0.39) and Met/Met animals (56%, P < 0.05) as compared 

Figure 4.7 Elevation of Irak1 Protein 

Levels in BDNF
Met/Met

 Mice. (A-B) Western 

blots in hippocampus (HPC) lysates of Irak1 

(A) and Traf6 (B) protein in Val/Val, Val/Met 

and Met/Met mice (n = 7 each genotype). 

Upper: Representative western blot assays 

of Irak1 (A) and Tarf6 (B). Beta-actin was 

used as loading control. Lower: 

Quantification of Irak1 and Traf6 protein 

levels. Expression levels in Val/Met and 

Met/Met mice were normalized to Val/Val 

littermates. Results are expressed as mean 

± SEM. **p < 0.01 (Student′s t-test). 
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to Val/Val animals (Figure 4.7A). There is a trend toward increased Traf6 levels in Met/Met animals (28%, 

P = 0.18), but not in Val/Met animals (5%, P = 0.81) (Figure 4.7B). Thus, although we did not find altered 

mRNA levels of Irak1 in Val/Met and Met/Met mice, Irak1 protein levels were significantly elevated in 

Met/Met mice likely due to decreased miR-146b levels and reduced miR-146b-mediated translational 

repression in these mice.   

4.3 Discussion 

By generating knock-in mouse lines with human BDNF Val or Met allele, we generated “BDNF-

humanized” mice to study the this common human SNP (rs6265) (Cao et al., 2007). We investigated the 

impact of BDNF Val66Met on the expression profile of miRNAs in the hippocampus (HPC) and identified 

miR-146b and miR-337-3p to be significantly downregulated by the Val66Met SNP. In Met/Met mice, the 

decrease in miR-146b levels is likely due to the lower overall levels of BDNF released either constitutively 

or during activities, as exogenously applied BDNF acutely elevated miR-146b expression in HPC slices. 

In a series  of experiments, we then identified Per1, Npas4 and Irak1 as physiological targets affected by 

altered miR-146b levels in HPC of Val66Met mice (Figure 4.8). Importantly, miR-146b binds to target sites 

in the 3’UTR of Per1 and Npas4 and results in degradation of the mRNA, whereas miR-146b represses 

the translation of Irak1 protein without changing its mRNA levels. As a whole, these data suggested a 

Figure 4.8 Dysregulation of miR-

146b and Its Targets due to BDNF 

Val66Met SNP. Carrying BDNF Met 

allele results in the downregulation of 

miR-146b in Met/Met animals. This in 

turn leads to derepression of trans-

lationally repressed target Irak1 

ofmiR-146b. Per1 and Npas4 mRNA 

levels are increased in Met/Met 

animals due to a reduction in miR-

146b-mediated mRNA degradation.  
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common human SNP BDNF Val66Met results in specific miRNA alteration that is modest in magnitude 

but can possibly lead to physiological changes of expression levels and functions of certain targets. 

4.3.1 BDNF-mediated Regulation of miRNAs 

BDNF has been shown to induce the expression of genes (e.g. Arc) involved in synaptic plasticity 

(Lyons and West, 2011). This is mediated through activation of MAPK pathway and Akt1/2 downstream of 

TrkB which in turn leads to activation of CREB, MEF2 and NF-κB transcription factors(Huang and 

Reichardt, 2003; Shalizi and Bonni, 2005; Yoshii and Constantine-Paton, 2010). mir-212−mir-132 cluster 

(Vo et al., 2005) and mir-379−mir-410 cluster (Fiore et al., 2009) are among many activity-independent 

transcriptional targets induced by BDNF. The nature of the induction has been characterized. CRE motifs 

are found upstream of mir-212 (two CRE motifs) and mir-132 (one CRE motif) and were shown to be 

bound by CREB (Vo et al., 2005). Likewise, MEF2 binds to a site found in the promoter region of the mir-

379−mir-410 cluster (Fiore et al., 2009). During activity, BDNF-dependent activation of CREB and MEF2 

thus induces the expression of these miRNAs. miR-132 and at least 3 individual miRNAs of the mir-

379−mir-410 cluster (miR-134, miR-381 and miR-329) are required for activity-dependent dendritic 

outgrowth. In addition, miR-134 also regulates spine size in a BDNF-controlled fashion (Schratt et al., 

2006). Recently it was also shown that BDNF rapidly activates Dicer and induces GW182-containing RNA 

processing bodies, leading to a general increase in mature miRNA levels in hippocampal neurons. 89.4% 

of significantly altered miRNAs from hippocampal neurons treated with BDNF for 30 min were increased 

by more than two-fold. However, BDNF-induced expression of Lin28 specifically downregulates Lin28-

associated miRNAs (e.g. let-7). Expression of a Lin28-resistant let-7 precursor prevented BDNF-

dependent dendritic arborization (Huang et al., 2012). This evidence points to the importance of BDNF-

induced miRNA expression in neuronal morphogenesis and function. Nevertheless, we should be 

cautious in interpreting these results in a physiological context as these experiments were all done in 

cultured hippocampal neurons with exogenously applied BDNF. Questions remain regarding whether 

these miRNA are regulated by BDNF in vivo during activity and regarding the magnitude of the BDNF-

induced miRNA alteration. It is also not known whether genetic variations that affect BDNF expression or 
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function alter the expression of BDNF-regulated miRNAs. Thus, we want to study a miRNA alteration due 

to the common BDNF SNP Val66Met in knock-in mice harboring the human BDNF Val or Met alleles. 

4.3.2 BDNF SNP and miRNA Expression 

Since BDNF Val66Met has been shown to impair the constitutive and activity-induced dendritic 

targeting of BDNF mRNA (Chiaruttini et al., 2009) and protein (Chen et al., 2005), it is conceivable that 

BDNF knock-in mice carrying the Met allele have reduced BDNF release from terminals at both basal and 

activated states. Therefore, we predicted to see downregulation of BDNF-induced miRNAs, especially 

miR-132 and miR-134. From the miRNA array, miR-132 and miR-212 were both downregulated in 

Met/Met animals as compared to Val/Val animals, with FC of 0.90 (P = 0.35) and 0.95 (P = 0.31) 

respectively. Although the changes were not significant, probably partly due to the small number of mice 

compared and the modest downregulation, it suggested a baseline reduction of expression from the mir-

212−mir-132 cluster in Met/Met animals due to lower BDNF levels. Of the 49 miRNAs in the array from 

the mir-379−mir-410 cluster, we found 28 were upregulated and 21 were downregulated, with no miRNA 

passing a FDR-corrected P-value < 0.12. It is of note that the BDNF-dependent induction of the mir-

379−mir-410 cluster peaked at 2 hours after treatment and went back to basal levels before 5 hours 

(Fiore et al., 2009). It is likely the expression of the mir-379−mir-410 cluster is under BDNF control only at 

a specific temporal window during activity and thus any BDNF-dependent expression alteration would not 

be detected in our experimental design which monitors the basal expression of miRNAs in hippocampus.  

In general, our miRNA expression profiling showed that the miRNA alteration due to Val66Met is 

very restricted and modest, with expression of only 24 miRNAs significantly changed (0.79< FC < 1.6, 

FDR-corrected P-value < 0.05). Only 4 of these miRNAs were changed by more than 25%. Focusing on 4 

miRNAs with highly significant FDR-corrected P-value (P < 0.005) and absolute fold change > 1.2, we 

verified miR-146b, which was shown to be synaptically enriched (Lugli et al., 2008), to be significant 

changed due to BDNF Val66Met SNP, and in response to BDNF treatment. It was shown that the 

transcriptional induction of miR-146a and miR-146b downstream of TLR activation is mediated through 

NF-κB and JNK-1/2 (mir-146a) and MEK-1/2 and JNK-1/2 (mir-146b) (Perry et al., 2009; Taganov et al., 

2006), but how exactly mmu-mir-146b expression is regulated by transcription factors is still unknown.  
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4.3.3 Is miR-146b Transcriptionally Activated by BDNF?  

We speculate that the miR-146b can be transcriptionally activated by transcription factors 

downstream of BDNF, such as CREB or MEF2, which are important in transcriptional activation of mir-

132 (Vo et al., 2005) and the mir-379−mir-410 cluster (Fiore et al., 2009) respectively. We thus searched 

for putative transcription factor binding sites within the promoter region predicted according to the 

H3K4me3 landscape (Marson et al., 2008), about 2.5  kb upstream of the transcription start site (TSS) of 

Tmem180 which contains mmu-mir-146b within its first intron , using web-based prediction program 

TFSEARCH v.1.3 (http://www.cbrc.jp/research/db/TFSEARCH.html) and ConSite (http:// 

asp.ii.uib.no:8090/cgi-bin/CONSITE/consite). There is a CRE sequence (CREB binding site) and a CRE-

BP binding site at -149 from TSS and a MEF2 at -32 from TSS. There are additional MEF2 sites at -1694, 

-860 and +560 from TSS and 2 potential CREB sites at -1186 and +87. Additionally, 8 NF-κB binding 

sites are found at -2239, -1725, -1566, -1507, -1093, -341, -170 and +260 from TSS. It remains to be 

proved whether BDNF signaling can induce mir-146b through transcription factors binding to these sites. 

Nevertheless, it is an intriguing idea that reduced binding of CREB or MEF2 to the mir-146b promoter due 

to lower BDNF signaling in Val/Met and Met/Met animals leads to the decreased expression of miR-146b 

in these animals. Since MeCP2 transcriptionally activates BDNF, it is noteworthy that miR-146b is 

downregulated in an Mecp2-null (KO) mouse model of Rett syndrome (Urdinguio et al., 2010). 

Furthermore, quantitative chromosome immunoprecipitation (ChIP) assays reveal the occupancy of 

MeCP2 to 5’-end CpG islands in the mmu-mir-146b genomic locus and suggest that MeCP2 directly 

transcriptionally activates mir-146b expression by binding to its promoter. Although the exact mechanism 

by which miR-146b is altered by Val66Met SNP remains to be examined, it is conceivable that 

dysregulation of miR-146b caused by Val66Met could possibly lead to some functional alteration or 

phenotypic variation in Met allele carriers. 

4.3.4 Functional Implication of miRNA-146b Dysregulation due to Val66Met SNP 

There was extensive research indicating important roles of miR-146b and miR-146a in regulation 

of immune responses and inflammation (Hou et al., 2009; Taganov et al., 2006), cancer metastasis 

(Bhaumik et al., 2008; Li et al., 2010) and tumor development (Jazdzewski et al., 2009; Jazdzewski et al., 
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2008). miR-146a has the same seed sequence as miR-146b and likely shares largely overlapping targets 

with miR-146b. Multiple reports showed that both miR-146a and miR-146b were upregulated after TLR 

and NF-κB activation and repressed Traf6 and Irak1 to control the extent of TLR and cytokine signaling 

(Lu et al., 2010; Perry et al., 2009; Taganov et al., 2006). This negative regulatory loop is critical to 

suppress widespread immune responses which lead to inflammation and likely rheumatoid arthritis 

(Stanczyk et al., 2008), osteoarthritis (Yamasaki et al., 2009) and systemic lupus erythematosus (Luo et 

al., 2011). Besides a role in immune regulation, miR-146b was cloned and identified from the 

hippocampus (He et al., 2007) and was found to be the 72
nd

 most abundant miRNA in mouse 

hippocampus by counts of sequencing reads in one report (Zovoilis et al., 2011) (in comparison, brain-

specific miR-134 was the 99
th
 most abundant in that study). Here we showed that Irak1 was a 

translationally repressed target of miR-146b and was upregulated in Met/Met animals. Traf6 protein levels 

also increased though not significantly in Met/Met animals and its 3’UTR is under pre-miR-146b control in 

a luciferase assay. Interestingly, in a microarray study, Irak1 is shown be upregulated in Mecp2-null mice 

(Chahrour et al., 2008). Since Bdnf is downregulated in Mecp2-null mice, this result is consistent with our 

identification of Irak1 as a physiological target upregulated in Met/Met animals. Irak1 upregulation in 

Met/Met mice enhances NF-κB signaling and results in pro-inflammatory responses in hippocampus. 

Recently, the role of a miR-146a-mediated inflammatory circuit in Alzheimer Disease and in stressed 

human brain cells was proposed (Cui et al., 2010; Li et al., 2011; Lukiw et al., 2008; Pogue et al., 2009). 

Since miR-146a and miR-146b share similar targets and can be induced by NF-κB, it is possible that 

there can be an association of Val66Met is with Alzheimer Disease.  

In addition, Per1 and Npas4 were also miR-146b targets because mRNA levels were upregulated 

in Met/Met animals. Per1 is a transcriptional repressor with a PAS domain which is transcriptionally 

activated by master regulator Clock−Bmal1 complex. Accumulation of Per1 which peaks at Zeitgeber 

Time (ZT) 10-14 (around lights off) leads to increased inhibition of  Clock−Bmal1 transcriptional activity 

and thus reduced expression of Per1 itself. This feedback cycle of the core loop provides a nearly 24 hour 

circadian cycle and drives rhythmic expression of many other clock modulated genes. It will be interesting 

to test whether BDNF Val66Met knock-in animals have any circadian rhythm anomaly.  
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Interestingly, another transcriptional factor with a PAS domain, Npas4 (neuronal period aryl 

hydrocarbon receptor nuclear translocator single-minded domain protein 4) is also a miR-146b target. 

Npas4 is a membrane depolarization-activated transcription factor that upregulates expression of BDNF, 

c-Fos, Zif268 and Arc (Lin et al., 2008; Ramamoorthi et al., 2011) while downregulating other membrane 

depolarization-regulated genes (Lin et al., 2008) and is required for inhibitory synapse development in 

hippocampus. In addition, Npas4 expression in the hippocampus and the lateral nucleus of amygdala (LA) 

is required for formation and reactivation of fear memories. Activation of the Npas4-regulated 

transcriptional program in CA3 is required for contextual learning (Ramamoorthi et al., 2011).  Npas4 

activation in LA is required for formation and retention of a reactivated auditory cue-associated fear 

memory (Ploski et al., 2011). BDNF or other neurotrophic factors are not able to induce Npas4 expression 

(Ramamoorthi et al., 2011), so Npas4 expression after membrane depolarization and Ca
2+

 influx appears 

to precede BDNF upregulation. We showed here that BDNF-induced miR-146b limits the expression level 

of Npas4 and its transcriptional targets therefore controlling the extent of neuronal activity. Similar 

negative regulatory loops MeCP2−BDNF−miR-132 and CREB−BDNF−miR-134 were previously 

described (Fiore et al., 2009; Gao et al., 2010; Klein et al., 2007; Zhou et al., 2006), and these 

transcription factor−BDNF−miRNA loops may represent a general mechanism that neuronal activity-

dependent transcriptional programs can be finely controlled. These negative feedback loops may also be 

important for the homeostasis of activity within neural circuits in hippocampus and other brain areas. 

Therefore, alteration of Npas4-regulated transcriptional program in Met allele carrying animals may 

underlie the impaired cognitive function that relies on hippocampal circuits.   

4.4 Summary 

We performed a microRNA expression profiling in hippocampus of humanized BNDF knock-in 

mice and find that a BDNF-induced miRNA, miR-146b, is downregulated in Met/Met animals. Moreover, 

the reduced levels of miR-146b in turn lead to the increased Per1 and Npas4 mRNA levels and increased 

Irak1 protein but not mRNA levels in Met/Met mice (Figure 4.8). These findings highlight molecular 

alterations downstream of a modest miRNA dysregulation caused by a common human SNP in the BDNF 

gene. The resulting changes in proteins with roles in immune regulation, circadian rhythm and activity-
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dependent transcription regulation may have functional impacts in cognitive functions which are 

compromised due to Val66Met variant.   
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Table 4.1   Significantly Altered MicroRNAs in the Hippocampus of BDNFMet/Met Mice  

mmu-

miR 

FDR 

P−value regulation 

Fold 

Change 

Stem-loop 

Accession Chr Chr_start Chr_end Strand Note 

197 2.73E-03 up 1.58 MI0005485     a 

146b 2.83E-03 down 0.83 MI0004665 19 46417252 46417360 + 
 

700 2.83E-03 up 1.66 MI0004684 4 134972470 134972548 - 
 

337-3p 3.54E-03 down 0.83 MI0000615 12 110823999 110824095 + 
 

130b 3.54E-03 up 1.17 MI0000408 16 17124154 17124235 - 
 

127-5p 4.38E-03 up 1.12 MI0000154 12 110831056 110831125 + b 

328 7.71E-03 up 1.23 MI0000603 8 107832264 107832360 - 
 

291a-5p 9.73E-03 down 0.93 MI0000389 7 3218920 3219001 + 
 

10a 1.03E-02 up 1.15 MI0000685 11 96178479 96178588 + 
 

20b 1.40E-02 down 0.88 MI0003536 X 50095290 50095369 - 
 

337-5p 2.51E-02 up 1.15 MI0000615 12 110823999 110824095 + 
 

532-5p 2.61E-02 up 1.23 MI0003206 X 6825528 6825623 - 
 

674 3.05E-02 up 1.26 MI0004611 2 117010863 117010962 + 
 

27b 3.30E-02 down 0.92 MI0000142 13 63402020 63402092 + 
 

874 3.70E-02 down 0.88 MI0005479 13 58124486 58124561 - 
 

804 4.29E-02 up 1.15 MI0005203 11 50171287 50171381 - 
 

7a-1-3p 4.29E-02 down 0.83 MI0000728 13 58494140 58494247 - c 

485-3p 4.29E-02 up 1.14 MI0003492 12 110973112 110973184 + d 

491 4.29E-02 up 1.15 MI0004680 4 87767944 87768029 + 
 

721 4.29E-02 down 0.79 MI0004708 5 136851586 136851673 - 
 

688 4.29E-02 down 0.87 MI0004653 15 102502223 102502297 - 
 

342-3p 4.40E-02 down 0.87 MI0000627 12 109896830 109896928 + 
 

378 4.45E-02 up 1.29 MI0000795 18 61557489 61557554 - 
 

185 4.51E-02 up 1.09 MI0000227 16 18327494 18327558 - 
 

a: removed from miRBase, b: previously mmu-miR-127*, c: previously mmu-miR-7a*, d: previously mmu-miR-485* 
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4.5 Methods 

4.5.1 Generation of BDNF
Val 

and BDNF
Met

 Knock-in Allele 

A 370 bp fragment, located 5′ of the mouse Bdnf coding region, was amplified from genomic 

mouse DNA with the following primers: 5′-ACAGATGTAGTAAAACGTTGGAG-3′ and 5′-

TTACTGATCCACTCCAGCTGC-3′. This fragment was subcloned into pGEMT (Promega) with T-A 

cloning and was used as a probe against a 129 Sv/Ev BAC library. One of the identified BAC clones was 

expanded for use in the generation of targeting constructs. Flanking sequence 11 kb upstream (long arm) 

and 3 kb downstream (short arm) of the Bdnf gene was PCR-ed from the BAC clone using the following 

sets of primers: 5′-GCGGCCGCCAGGCTCTATTTGATTATAAAATAG-3′, 5′-GGCCGGCCATGTGCACT 

GAATTTCAGTTCAG-3′ and 5′-ACGCGTCGACTGACTGCCTGCGACAAACTT-3′, 5′-GGCGCGCCTC 

AGCCCTGGTTCATGGATCCTG-3′. 

Additionally, 274 bp of sequence including the 5′ UTR and a portion of the coding sequence was 

amplified from human DNA extracted from a Val/Val or a Met/Met individual with the following primers: 5′-

ACCAGGTGAGAAGAG TGATGACCATCCTTTTCCTTAC-3′ and 5′-CACCCGGGA CGTGTACAAGTC-3′. 

The long arm was further modified into the long arm
Val

 and the long arm
Met

 fragments by excision of the 

mouse sequence located between unique XmaI and SexAI sites, aligned with the human 274 base pair 

fragment, and replacement with sequence from the Val/Val or the Met/Met individuals. Finally, the 

BDNF
Met

 and BDNF
Val

 knockin constructs were assembled, by cloning the corresponding long arms into 

the AscI site of the pACNIII targeting construct (5′ of a self-excisable neo cassette) and the short arm into 

the NotI and FseI sites, located at the 3′ of this cassette. All PCR reactions related to the generation of 

this construct were conducted with the Expand High Fidelity kit (Roche), and subcloning steps involved 

the use of the Rapid Ligation Kit (Roche) or the Infusion Kit (BD Biosciences). A total of 70 µg of each 

plasmid (BDNF
Met

 and BDNF
Val

) was electroporated into 129 Sv/Ev embryonic stem cells. Twenty-four 

hours after electroporation, neomycin selection was applied and approximately 400 clones were picked 

for each construct after 5 days of selection. These clones were analyzed with a PCR approach, expanded, 

and confirmed with Southern blot analysis. The restriction enzyme MfeI was used to digest ES cell DNA, 

and a probe located outside the targeting construct (at the 3′ end) generated a 5.9 kb targeted band and a 

3.8 kb wild-type band in correctly targeted clones. Both constructs recombined at a rate of ∼1%. Upon 
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germline transmission, DNA extracted from tail-biopsy samples of both lines of mice was genotyped with 

the human primers described above, and this was followed by a diagnostic restriction-enzyme analysis 

with either PmlI (BDNF
Val

) or BmgBI (BDNF
Met

). 

4.5.2 miRNA Microarray 

6 pairs of 8-week-old male homozygous BDNF
Val

 and BDNF
Met 

knock-in mice (6 pairs of Val/Val 

and Met/Met) are used for global miRNA expression profiling. We isolated 25-35 mg of total RNA from 

HPC of these mice using mirVana miRNA isolation kit (Ambion). Quality of RNA samples were verified by 

BioAnalyzer (Agilent) and all RNAs had a RIN > 7.0. Small RNAs (<300 nt) were then isolated and 

processed for microarray analysis (LC Sciences). Purified small RNAs were labeled with Cy3 (Val/Val) or 

Cy5 (Met/Met) fluorescent dyes and hybridized to dual-channel microarray mParaFlo microfluidics chips 

(LC Sciences) containing 569 miRNA probes to mouse mature miRNA. The miRNA probe sequences 

used were from miRBase Sequence database version 10.1 (microrna.sanger.ac.uk). Hybridization 

images were collected using GenePix 4000B laser scanner (Molecular Devices) and digitalized using 

Array-Pro image analysis software (Media Cybernetics). Raw data were imported into ArrayAssist 5.0 

(Stratagene). The microarray data were corrected by removing spots with intensity equal to or below 

median background and then normalized with the LOWESS (locally weighted regression) method 

implemented in ArrayAssist software. Differentiation analysis was conducted to determine the FDR P-

value of each miRNA gene. 

4.5.3 Quantitative RT-PCR 

Total RNA samples were extracted from 8-wk old male mice using using mirVana miRNA 

Isolation Kit (Ambion) according to manufacturer’s protocol. We treated 3 µg of total RNA from each 

sample with DNA-free kit (Ambion/Applied Biosystems). For qRT-PCR of mature miRNA, 100 ng of 

treatment RNA each sample was reverse transcribed. A glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) gene-specific RT primer was also included RT reaction. For qRT-PCR of other genes, the 

remaining DNase-treated RNA each sample was reverse transcribed using random primers and 

SuperScript II Reverse Transcriptase (Invirtogen). qPCR was performed in a 7900 Sequence Detection 

System (Applied Biosystems) and the qPCR and quantification procedures are described in Chapter 2.  
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All PCR primers and probes were designed at Primer3 web site (http://frodo.wi.mit.edu/) and 

purchased from Sigma Genosys (Sigma-Aldrich) and the sequences can be found in Appendix 1, except 

for Nptx2 (Mm00479438_m1, Applied Biosystems) and Clec16a (Mm00624340_m1, Applied Biosystems). 

All target gene probes were 5’ FAM and 3’ BHQ™-1 Dual labeled. Mouse GAPDH mRNA was used as 

the endogenous control. The GAPDH gene probe was 5’ JOE™ and 3’ BHQ™-1 dual labeled. 

4.5.4 BDNF-treatment of Hippocampal Slices 

8-wk old Wt C57Bl/6J mice were anesthetized with isoflourane and then decapitated. The brain 

was removed and chilled in ice-cold dissection solution (in mM: sucrose 195, NaCl 10, KCl 2.5, NaH2PO4 

1, NaHCO3 25, glucose 10, MgCl2 5, MgSO4 1, CaCl2 0.5). The cerebellum and the anterior portion of the 

brain were removed and horizontal brain sections cut on a vibratome (Leica VT1200S). About 10 slices of 

250 µm slices were cut and then immediately transferred to an interface chamber and allowed to recover 

for 1 h at 31–32 °C. Slices were then transferred to another chamber and incubated for 2 hours with pre-

oxygenated artificial cerebrospinal fluid (aCSF) (bubbled with 5% CO2/95% O2) that had the following 

composition (in mM): NaCl 124, KCl 2.5, NaH2PO4 1, NaHCO3 25, Glucose 10, MgSO4 1, CaCl2 2. In 

the BDNF treatment group, the aCSF also contained 50 ng/ml of BDNF (#B3795, Sigma-Aldrich). Slices 

were removed immediately after 2 hour incubation and total RNAs from the BDNF or sham treated slices 

were extracted using Trizol (Invitrogen). 

4.5.5 Luciferase Assay 

The longest 3′UTRs of predicted miR-146b targets (Irak1, Tarf6, Per1, Stx3, Syt1, Kctd15, Sort1, 

Dlgap1, Npas4, Lin28A) were cloned into XhoI and NotI sites psiCHECK2 luciferase reporter construct 

(Promega). Mir-146b binding site mutant clones of Per1 and Npas4 were generated by PCR-based 

mutagenesis. Per1 3’UTR mutant clone: Site Mut1 sequence (starting from position 186 in 3′UTR): 

TccAAGTTCagA (lower case letters denote altered nucleotide). Site Mut2 sequence (starting from 

position 495): GctCCCAGGTGTTacaA. Npas4 3’UTR mutant clone: Site Mut sequence (starting from 

position 309 in 3′UTR): TccGCCAGTTaca. All the clones were verified by Sanger sequencing. Mutations 

are predicted by RNAhybrid (Rehmsmeier et al., 2004) to disrupt the binding of miR-146b at the seeds 

and secondary binding sites.  
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N18 neuroblastoma cells were transfected with various psiCHECK2 reporter constructs (100 ng 

per well of a 24-well plate) together with pre-miR-146b mimic or pre-scramble control (1 nM, unless 

mentioned otherwise). In the antagonizing experiments, anti-miR-146b was also co-transfected along with 

pre-miR-146b and Per1 3’UTR reporter constructs.  Luciferase assays were performed using the 

Promega Dual-Luciferase Reporter Assay System 24 hours after transcfection and all experiments were 

performed at least 2 times and all data presented is the average of 3 technical repeats.  

4.5.6 Western Blot 

General Western blot procedures are described in Chapter 2, with the following modification: (1) 

ice-old lysis buffer containing 1% Triton X-100, 0.2 mM EDTA, 100 mM KCl and 20 mM Tris pH 8.0 and 

Proteinase inhibitor cocktail (Roche) was used instead of modified RIPA buffer. (2) Primary anitbody used 

were Traf6 (#597, MBL), 1:1000 dilution and Irak1 (D51G7, Cell Signaling), 1:1000 dilution. (3)  

Membranes were re-probed with 1:10000 dilution of β-actin antibody (A5441, Sigma-Aldrich) as loading 

control. (4) ImageQuant (Molecular Dynamics) was used for densitometric analysis of protein bands. 
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Chapter V 

General Discussion 

5.1 Summary of results 

5.1.1 Elucidation of MicroRNA-Target Dysregulation in a Pathogenic CNV – 22q11.2 Microdeletions  

Elucidation of the biological processes affected by pathogenic CNVs may offer novel insights into 

the pathogenesis of psychiatric disorders as well as disorders of cognitive development (Karayiorgou et 

al., 2010). However, the transcriptional networks and signaling cascades that mediate the effects of CNVs 

on neuronal structure and function remain, to a large extent, uncharacterized. Our study in a mouse 

model of 22q11.2DS was designed to identify such downstream targets and processes disrupted by a 

bona fide pathogenic mutation that predisposes an individual to schizophrenia and cognitive dysfunction. 

By applying an array of morphological, molecular and cellular assays to a mouse model of this mutation, 

we provide a number of novel mechanistic insights to the pathogenesis.  

5.1.2 miR-185 Downregulation is an Important Component of MicroRNA Dysregulation due to 

Gene X Gene Interaction 

First, taken together with previous results on the effects of Dgcr8 hemizygosity
 
(Fenelon et al., 

2011; Stark et al., 2008), we provide a comprehensive view of the pattern of miRNA dysregulation 

emerging due to 22q11.2 deletions, which is shaped by the combined (synergistic and additive) effect of 

miR-185 and Dgcr8 hemizygosity (Figure 5.1). Our findings show how a genuine gene X gene interaction 

within a pathogenic CNV can result in a considerably greater reduction of the expression of a resident 

gene than expected by the 50% decrease in gene dosage. These results indicate that mechanisms other 

than simple haploinsufficiency could represent an important and previously unappreciated component of 

CNV pathogenicity. Along these lines, our results also raise the more general and intriguing possibility 

that 22q11.2 microdeletions, by partially disabling the miRNA machinery, create a sensitized genetic 

background, which promotes the effects of deleterious mutations that affect the expression or activity of a 

subset of miRNAs (Brenner et al., 2010). 
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5.1.3 Mirta22 is a Major Downstream Effector of 22q11.2-associated MicroRNA Dysregulation  

By comparing gene expression profiles over three developmental stages and variable levels of 

genomic dosage at the 22q11.2 locus, we identified elevated levels of a previously uncharacterized gene, 

Mirta22 as the most robust change in gene expression resulting from the 22q11.2 microdeletion. This 

alteration occurred in addition to the major downstream transcriptional effects of the 22q11.2- associated 

miRNA dysregulation.   

5.1.4 Mirta22 is a Novel MicroRNA-regulated Inhibitor of Neuronal Morphogenesis   

Furthermore, using physiologically relevant cellular models, we provide unequivocal evidence that 

Mirta22 as well as its primary miRNA regulator miR-185 mediate, at least in part, the effects of the 

22q11.2 microdeletions on dendrite and spine formation. Although results from acute manipulations of 

gene expression via transient transfections of primary neurons should not be over-interpreted 

Figure 5.1 The Pattern of MicroRNA 

Dysregulation Emerging due to 22q11.2 

Deletions. miR-185 (due to a combined 

effect of hemizygosity and impaired 

maturation of the pri-miR-185 transcript 

produced from the remaining copy) results 

in derepression and protracted elevation of 

the expression levels of 2310044H10Rik 

(Mirta22) and other Golgi-related miR-185 

target genes. Increased Mirta22 levels 

may, in turn, impair the growth of dendrites 

and spines and affect formation and 

maintenance of neural circuits. Dgcr8 

hemizygosity, on its own, results in modest 

downregulation of a specific subset of 

mature miRNAs (10-20% of all miRNAs, 

including a modest 20% decrease in the 

levels of miR-185) and results in a number 

of cellular, synaptic and behavioral 

alterations found in Dgcr8
+/–

 mice. Most 

notable among them are deficits in cortical  

short-term plasticity and related deficits in working-memory dependent cognitive assays. Dgcr8 hemizygosity also 

results in modest and layer-specific changes in neuronal density in the cortex as well as modest alterations in 

dendritic spine size and dendritic tree formation. Downstream targets that mediate these effects and the extent that 

2310044H10Rik (Mirta22) contributes to these phenotypes remain unknown. 
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quantitatively, the observed convergence and remarkable consistency of data from a multitude of 

experimental manipulations and approaches convincingly identified Mirta22 as a novel miRNA-regulated 

inhibitory factor of neuronal maturation.  

5.1.5 MicroRNA Dysregulation due to BDNF Val66Met SNP 

Besides characterizing the miRNA-related dysregulation in a mouse model of rare variants, we 

delineate the miRNA dysregulation due to a common genetic variant BDNF Val66Met. Although miRNA 

dysregulation is generally mild in BDNF Val66Met mice, we uncovered a reduction of mir-146b levels that 

occur as a result of lower BDNF levels. The reduction results in a failure of mir-146b to repress the 

transcript or protein levels of a few targets, which may in turn lead to functional consequences.  

5.1.6 MicroRNA Dysregulation as an Integral Part of Pathophysiology of Psychiatric Disorders 

Altogether, our identification and functional characterization of an important component of miRNA 

dysregulation in a mouse model of 22q11.2DS represents an important first step toward a comprehensive 

elucidation of the pathophysiological involvement of non-coding RNA in these devastating disorders. 

Furthermore, the study of the miRNA dysregulation due to BDNF Val66Met SNP demonstrates the 

potential impact of a common variant on the miRNA-dependent molecular network. Our results presented 

in this thesis thus echo the multiple threads of evidence presented in Chapter 1, which suggest that 

miRNAs play an important role in the pathogenesis of psychiatric and neurodevelopmental disorders 

(Kvajo et al., 2011) and cognitive dysfunction. Moreover, the identification of physiologically relevant 

targets of miRNA dysregulation offers valuable leads to further unwrap the hidden pathophysiology 

mechanisms that underlie these conditions. 

5.2 MicroRNA Dysregulation due to Rare and Common Genetic Variants 

5.2.1 Models of Genetic Architecture of Neuropsychiatric Disorders 

Neuropsychiatric disorders are genetically complex in nature with heterogeneous genetic 

etiologies. Therefore, the genetic architecture of psychiatric disorders such as schizophrenia is under 

continuous debate (Gibson, 2011). Considering the frequency and effect size (odds ratio) of risk alleles, 
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there have been two main hypotheses that take conceptually different perspectives on the etiology of 

psychiatric disorders. The common disease-common allele (CDCA) hypothesis purports the cooperation 

of a core set of common variants in every affected individual (Goldstein, 2009). Since the risk variants are 

common within the population, the effect size of these alleles is unlikely to be high. Only through the 

combined effect of many common risk alleles will the disease start to emerge. The alternative hypothesis, 

the common disease-rare allele (CDRA) hypothesis, emphasizes the contribution of a few, or even a 

single, rare variants that each has high penetrance. Since the variants that predispose the disease are 

rare, each affected individual may have different genetic profile of rare variants. Additionally, this 

hypothesis implies that in order to sustain the prevalence of disease, highly penetrant de novo mutations 

need to be continuously generated in the population, because they are strongly selected against (Crow, 

2000).  

Empirical data from both the traditional genome-wide association studies (GWASs) and studies 

employing new techniques such as copy number scan and high-throughput sequencing unequivocally 

reveal the contribution from both common and rare variants in psychiatric disorders (Gibson, 2011; 

Rodriguez-Murillo et al., 2012). Although the proportion of susceptibility conferred by common versus rare 

variants has not been precisely determined, recently it is estimated that common SNPs collectively 

account for 23% of variation in liability to schizophrenia (Lee et al., 2012). It is likely that most of the 

remaining variation in liability (77%) is attributed to rare variants, suggesting the rare variants like CNVs 

are the principal determinants of disease risk. The accumulating data from human genetic studies leads 

to the proposal of new compound models integrating the aspects of CDCA and CDRA (Gibson, 2011; 

Rodriguez-Murillo et al., 2012). According to new models, the development of clinical manifestations of 

primary disease-causing CNVs (or other rare variants) is modulated by a constellation of common 

variants, environmental factors and stochastic factors. Comprehensive analysis of the location of human 

genetic variants showed that many of these variants, including CNVs and SNPs, overlap with genomic 

loci of pre-miRNAs or miRNA-processing genes (Duan et al., 2009).  In fact, more than 10% (170 out of 

1527) of human pre-miRNA genes overlap with known genetic variants and since the pool of annotated 

variants keeps increasing, this figure is probably an underestimation. However, much less is known about 

the impact of the genetic variants on the miRNA-mediated regulation. In this context, the results in this  
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Figure 5.2 MicroRNA Dysregulation as Liability Imposed by Genetic Variants. Human genetic studies have 

identified multiple common or rare genetic variants that predispose individuals to psychiatric disorders and 

cognitive dysfunction. The distribution of these genetics variants on allele frequency –effect size graph indicates 

an inverse relationship between allele frequency and effect size, as most common variants (consisting mostly of 

SNP and variable length of repeats) fall in the green area that is targeted by GWAS, while most rare variants 

(frequency < 1%) falls in blue area that is the detection zone of linkage analysis and sequencing scan of 

structure variant (SV), such as CNV and chromosomal translocation. These genetics variants have varying 

degree of impact on transcriptome of a neuron, partly through the effects on miRNA expression (as shown by 

arrows with varying degree of darkness). Altered miRNAs (shown as black nodes in the transcriptomeic network; 

other genes are shown as red nodes) can have a widespread and profound impact depending on the degree 

expression change. Thick and thin black edges in transcriptomeic network denote enhanced and reduced 

repression of miRNAs on target genes, respectively. Evidence here and elsewhere suggests that common 

variants generally have mild or limited impact on miRNA-mediated network, while some rare variants may have  
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thesis demonstrate that the miRNA dysregulation appears to be an important component of the total 

liability imposed by disease-related rare and common variants (Figure 5.2).  

We studied mouse models of 2 genetic variants, a rare variant − 22q11.2 microdeletions and a 

common variant – BDNF Val66Met. 22q11.2 microdeletion is a recurrent de novo CNV that occurs at a 

frequency of 1/4000 and has strong penetrance for schizophrenia or schizoaffective disorders, while 

BDNF Val66Met is a SNP that has variable allele frequency (0-50%) across different ethnic groups and is 

associated with cognitive dysfunction, though the effect size is only moderate. Since disease penetrance 

of a genetic variant largely depends on the degree of perturbation in biological systems induced by the 

variant, it seems plausible that variants with high effect size generally cause more profound miRNA 

dysregulation. It is thus not surprising the miRNA-related dysregulation is much larger in both scope and 

amplitude in Df(16)A
+/–

 mice, a model of a rare variant, 22q11.2 microdeletion, as compared to 

dysregulation in BDNF Val66Met mice.   

5.2.2 MicroRNA Alterations due to Common Variants are Generally Modest 

Evolutionary theory argues that the disease-promoting variants are actively selected against 

(Pritchard and Cox, 2002). This prediction is supported by empirical population genetic data indicating 

that deleterious variants are rare (Kryukov et al., 2007; Zhu et al., 2011). This distribution of fitness-

reducing variants reflects the dynamics between de novo mutagenesis and active purifying selection. In 

order to put things into perspective, it should be noted that BDNF Val66Met is a primate-specific allele 

[Figure 5.2, continued from p156] strong impact. It is import to note that genetic variants affect other nodes 

(genes), besides miRNAs, directly in the molecular network. The effects of genetic variants on different 

components of the transcriptomic network likely have to be deciphered case-by-case. The altered molecular 

network leads to variation in neuronal morphology and function, such as changes in spine density and dendritic 

complexity. These neuronal characteristics in turn reflect on the connectivity of local and distant brain circuitries 

(strength of a connection shown by lines of varying darkness in between brain areas). The ultimate functional 

output is determined by the degree of functional connectivity that is required for proper brain function, such as 

sensory and cognitive processes. The functional connectivity−“mental wellness” curve indicates continuous 

phenotypic variation that spans zones of “healthy” and “affected” defined by clinical criteria (the horizontal line 

denotes clinical criteria or threshold). In the “healthy” zone, phenotypic variance is manifested as personality 

traits, cognitive capability, etc., and in “affected” zone, it is expressed as symptom severity. In summary, genetic 

variants have a range of impact on molecular network, neuronal properties, functional circuitry and ultimately on 

phenotypic variance. In every level, effect of different genetic variants may interact, further modulating the 

variance positively or negatively.  
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that appeared late in evolution and its frequency is possibly modulated by evolutionary forces hic et nunc. 

In addition, BDNF Val66Met seems to have a protective effect against psychotic disorders but 

compromise the cognitive dysfunction (see Chapter 4.1.3 and 4.1.4). Therefore, it is plausible that BDNF 

Val66Met results in mild miRNA alteration that modulates certain brain functions together with miRNA and 

transcript alterations imposed by other variants. The combined mild miRNA alteration induced by common 

variants can positively or negatively modulate the anomalous molecular network caused by rare variants 

(see below, Chapter 5.3.2) to affect the development and expression of psychiatric disorders and 

cognitive dysfunction. Since the miRNA-related alterations due to common variants are modest in nature, 

challenges remain to functionally elucidate the impact of these changes on the molecular network that are 

ultimately reflected as variance of behaviors or cognitive function. 

5.2.3 MicroRNA Dysregulation due to Rare Variants can be  Pervasive and Drastic 

On the other hand, in several cases,  psychiatric disorders can be largely attributed to rare alleles 

of large effect (Brandon and Sawa, 2011; Drew et al., 2011; Levy et al., 2012; Malhotra and Sebat, 2012; 

Rodriguez-Murillo et al., 2012). In addition, it is calculated that for a disease with 2% prevalence, one or 

two risk variants of high effect size (e.g. odds ratio = 5) and very low frequency (e.g. 0.1%) are able to 

significantly increase the probability of disease (Gibson, 2011). This is likely the case for many psychiatric 

disorders, as these parameters are relevant: schizophrenia affects ~1% of the general population while 

22q11.2 microdeletions has a frequency of 0.025% and odds ratio of 30. It is conceivable that many of the 

rare variants that confer high risk may result in pronounced and possibly widespread miRNA 

dysregulation. This view is supported by the fact that some human CNVs encompass loci of miRNAs or 

miRNA-processing genes (Duan et al., 2009; Levy et al., 2012), though the scope and magnitude of 

ensuing miRNA dysregulation have not been determined. Thus, our analysis provides a proof-of-concept 

that rare variants may lead to pervasive and drastic miRNA dysregulation that can be directly linked to 

functional abnormalities. However, it should be emphasized that not all rare variants have big effect size 

while high-risk rare variants do not necessarily result in profound miRNA-related dysregulation. Although 

there is likely a core group of miRNAs affected in the pathogenesis of certain psychiatric disorders (see 

Chapter 2.3.2), individual disease-predisposing variants may affect the molecular network in a variety of 
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manners that results in the similar functional consequences. Hence miRNA dysregulation due to rare 

variants need to be examined on a case-by-case basis.  

New systemic approaches for surveying the human genome have revealed numerous common or 

rare genetic variants associated with psychiatric disorders and revolutionized our conception of the 

genetic architecture of these disorders. The delineation of the impact of individual variants on miRNA-

mediated molecular network will further advance our understanding of the pathophysiology of psychiatric 

disorders (see Chapter 5.3) and provide important insights for diagonosis and the development of 

personalized therapies (see Chapter 5.4)  

5.3 Concerted Regulation of Functionally-related Genes by MicroRNAs 

5.3.1 Concurrent Regulation Manages the Output of a Signaling Pathway 

We show that as a result of 22q11.2 microdeletion the drastic decrease in miR-185 concurrently 

results in the upregulation of Mirta22, a major downstream effector, and a group of Golgi-related genes. 

As these genes and Mirta22 appears to converge on specific functional pathways, the genetic interactions 

between these miR-185 targets couple and augment the detrimental effects of miR-185 dysregulation on 

Golgi-related functions. Furthermore, Irak1 and Traf6 are also important component of TLR signaling and 

are targets of miR-146b which levels are altered by BDNF Val66Met SNP. Thus it seems common and 

rare variants alike may lead to aberrant levels of miRNAs that simultaneously target functionally related 

genes. 

Multiple studies have demonstrated that individual miRNAs or related miRNAs (e.g. from a same 

family) are able to concurrently target genes in the same signaling pathways, especially the hub genes 

(Allantaz et al., 2012; Davalos et al., 2011; Jiang et al., 2012; Ooi et al., 2011; Sarachana et al., 2010; 

Sun et al., 2012; Xiao et al., 2012). For example, several members of BMP signaling pathway are 

upregulated in the Drosophila mir-124 mutant and were proved to be genuine miR-124 targets (Sun et al., 

2012). The overexpression of two of these targets in flies results in structural and functional defects which 

phenocopy the defects observed in mir-124 mutants. Likewise, miR-33 represses multiple targets in fatty 

acid metabolism and insulin signaling pathways (Davalos et al., 2011). Moreover, there is a tendency for 

signaling pathways to concertedly regulate multiple independent miRNAs that in turn target overlapping 
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signaling pathways (Boot et al., 2011; Herranz and Cohen, 2010; Schlesinger et al., 2011; Xiao et al., 

2012; Zhang et al., 2010), resulting in a variety of complex regulatory motifs, such as feedback loops. In a 

positive feedback loop, miRNA can suppress the inhibitors so that the signals through certain pathway 

can be selectively amplified and generate strong stimulation-dependent responses (Herranz and Cohen, 

2010). This is likely the case during development when establishing an “all-or-none” decision is necessary. 

In neurons, rigorous activity is often accompanied by corresponding change in processes such as gene 

expression. Therefore, miRNA-mediated feedback mechanisms can help maintain long-term plasticity. On 

the other hand, in a negative feedback loop, a miRNA can act as a homeostasis regulator of a pathway or 

as a part of a bistable switch. Given the conceivably pivotal roles of miRNA in signaling pathways altered 

in psychiatric disorders, initial attempts have been made to delineate the transcriptomic network involving 

miRNAs and other transcripts, in the context of functional modules or pathways. 

5.3.2 Study of MicroRNA-regulated Transcriptomic Network may Pinpoint Molecular Pathology  

First, it is relevant to note that several groups have identified functional coexpression modules in 

human brains using weighted gene co-expression network analysis (WGCNA) which analyzes expression 

profiles across normal and affected individuals (Ben-David and Shifman, 2012; Oldham et al., 2008; 

Voineagu et al., 2011). Importantly, these modules are highly enriched in genes with similar function and 

expressed in specific neuronal subgroups in specific brain regions (Ben-David and Shifman, 2012; 

Voineagu et al., 2011), implying they likely function in interrelating pathways. Although the functional 

modules in the brain of control and autistic patients are largely the same, a few differentially expressed 

modules are enriched in genes important for structural and functional plasticity. Therefore, these analyses 

provide proof-of-principle that the network analyses of transcriptomic datasets can uncover convergent 

molecular pathophysiology of psychiatric disorders. Although miRNAs altered in psychiatric disorders 

likely contribute significantly to the molecular pathophysiology, to date, an effort to map the empirical (not 

predicted) miRNA-mediated repression onto these functional transcriptomic networks has yet to be 

reported. 

An alternative approach to determine and compare the involvement of miRNA in functional 

networks in normal and disease state was demonstrated recently (Ooi et al., 2011). Tan et al. made the 
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assumption that correlating gene expression patterns denote functional connections and constructed a 

microRNA−pathway network based on expression signatures in tumor samples. This network reveals the 

interconnecting nature of miRNAs and oncogenic pathways and provides further proof that miRNAs are 

able to concertedly regulate functionally related targets. The application of this strategy to psychiatric 

disorder gene expression datasets could uncover formerly unappreciated roles of miRNAs in disease 

pathways as well as help define the nature of molecular pathogenic alterations within the transcriptomic 

network. 

5.3.3 A Mechanism for Synchronous Changes in Expression of Functionally Related Targets 

The recent discovery of reciprocal regulation of miRNA and target mRNAs reveals an additional 

layer of complexity in miRNA-mediated regulation of transcriptomic networks (Rubio-Somoza et al., 2011; 

Salmena et al., 2011). As exemplified by studies of the scope and impact of interaction between miRNAs 

and their corresponding set of competitive endogenous RNAs (ceRNAs) in tumors, there is extensive 

crosstalk between miRNA−RNA interaction when multiple RNA targets bearing common miRNA 

recognition elements (MREs) compete to bind their cognate miRNAs (Karreth et al., 2011; Sumazin et al., 

2011).  In this scenario, it is predicted that if a miRNA is stoichiometrically limited, the upregulation of one 

or a few of its target mRNAs will lead to a concomitant increase of other target mRNAs with the same 

MRE. Thus functionally related genes with the same MREs are likely to be synchronously up- or down-

regulated. This effect can be magnified when levels of the cognate miRNAs are decreased, such as the 

drastic decrease of miR-185 that occurs in Df(16)A
+/–

 mice.  

5.3.4 Delineation of specific functional pathways controlled by genuine targets   

The discovery that miRNAs tend to regulate functionally-related genes in cell-specific manner 

provides a new perspective on our understanding of miRNA-mediated pathophysiological mechanisms. 

Although individual miRNAs have numerous potential targets, empirical data indicate that not every 

potential target is regulated in a given physiological context. Our ultimate goal is to determine the specific 

functional pathways affected by genuine targets dysregulated by disease-associated miRNAs. In this 

respect, our finding of concerted upregulation of Golgi-related genes due to reduced miR-185 levels in a 
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22q11.2DS model presents a functional pathological mechanism due to miRNA dysregulation in a 

psychiatric disorder.   

5.4 Clinical Implications for Diagnosis and Treatment 

5.4.1 MicroRNA-related Signatures as Diagnostic Biomarkers 

We show that a drastic decrease of miR-185expression and a concomitant upregulation of 

Mirta22 are prominent components of miRNA-related dysregulation in hippocampus and prefrontal cortex 

of Df(16)A
+/–

 mice. These molecular signatures are likely conserved in 22q11.2 microdeletions carriers 

and can be considered as diagnostic biomarkers for screening 22q11.2 microdeletions. Moreover, these 

pathophysiologically relevant molecular signatures may also help predict the disease state and the 

trajectory of future progression. However, since biopsy of neural tissue is not feasible for routine 

screening, it has to be determined whether these molecular signatures also exist in the peripheral tissues 

such as skin, blood, or saliva. One possible confounding factor is the tissue-specific expression of miRNA 

and their targets. In this regard, it is of note that a group of miRNAs, many of which are synaptically 

enriched and located within an imprinted DLK1-DIO3 locus, are downregulated in peripheral blood 

mononuclear cells of schizophrenia patients (Gardiner et al., 2011) (see Chapter 2.3.2). As many of these 

miRNAs were also shown to be downregulated in postmortem brains (Moreau et al., 2011) and in brains 

of Df(16)A
+/–

 mice (Stark et al., 2008) (Figure 2.11), it seems likely there is a core group of miRNAs that  

are prone to be affected during schizophrenia pathogenesis in both brain and peripheral tissues. If 

verified, these molecular signatures will lead to the development of low-cost diagnostic tests for 

schizophrenia that will greatly help early diagnosis and treatment. It is plausible that other 

pathophysiologically relevant miRNA-related signatures exist for other diseases or aging-related 

processes, as exemplified by the identification of mir-34c as a target for diagnosing and treating 

dementias (Zovoilis et al., 2011).  

Recently, comprehensive analysis of personal omics profiling that combines genomic, 

transcriptomic, proteomic, metabolomics and other medical profiles has been conceptualized (Chen et al., 

2012). Initial testing suggests that an integrative personal omics profile (iPOP) may offer longitudinal 

information of fluctuation of molecular components where signatures of dynamic biological processes can 
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be extracted over healthy and diseased states. Undoubtedly, the integration of our understanding of 

disease-relevant alterations in miRNA profile with signatures in other omics profiles will offer an 

unprecedented opportunity to accurately assess disease risk, monitor disease progression and evaluate 

the effectiveness of treatment.   

5.4.2 Normalization of MicroRNA Expression using Recombinant Adeno-associated Virus (AAV)   

Besides early diagnosis, our understanding of miRNA-related dysregulation and its contribution to 

pathophysiology holds promise for the development of novel drugs or therapies that help ameliorate 

associated cognitive and psychiatric symptoms. As the elevation of miR-185 levels and reduction of 

Mirta22 levels each reverses the deficits in neuronal morphology due to loss of 22q11.2 syntenic region, 

miR-185 and Mirta22 represent attractive therapeutic targets. Since inhibition of Mirta22 function is 

predicted to promote formation of neuronal connections in 22q11.2 deletion carriers, drugs that target this 

protein may enhance excitatory connections in the brain. On the other hand, phenotypic comparison of 

Dgcr8
+/–

 and Df(16)A
+/–

 mice suggests that miRNA dysregulation contributes significantly to the structural 

and functional impairments associated with schizophrenia symptoms in 22q11.2DS patients (Stark et al., 

2008). Therefore, gene therapy that delivers mir-185 or Dgcr8 gene back to affected brain regions can be 

considered as a means to restore miRNA levels in 22q11.2DS patients.  

One available option for in vivo gene deilvery is the recombinant adeno-associated virus (AAV) 

(McCarty, 2008; Wang et al., 2003). Unlike recombinant retrovirus, AAV does not integrate into the 

genome, so it is non-mutagenic. Engineered miRNA-carrying AAV with specific serotype was shown to 

achieve highly efficient transduction (close to 100%) of selective tissues such as liver (Kota et al., 2009). 

In addition, as described in Chapter 3.1.2, AAV-mediated miR-134 delivery was demonstrated to 

successfully increase mir-134 levels in adult mouse hippocampus (Christensen et al., 2010). 

Nevertheless, the delivery involved injection of virus into the brain so the efficiency and durability of AAV-

based therapies need to be carefully assessed given the inherent risk. 

5.4.3 Systemic Application of MicroRNA Mimics or Antagonists  

None-invasive therapies utilizing mir-185 synthetic mimics, such as that used in our experiments, 

is another viable alternative. Antisense oligonucleotides like locked nucleic acid (LNA) or antagomirs can 
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be exploited to treat diseases or conditions that are associated with aberrant upregulation of miRNAs. 

The most notable success thus far in miRNA therapeutic is the use of anti-miR-122 LNA to treat hepatitis 

C in non-human primates (Elmen et al., 2008; Lanford et al., 2010). The replication of hepatitis C virus is 

significantly hampered by the downregulation of miR-122. Similarly, a Phase II clinical trial is currently 

underway to test the effectiveness of SPC3649, a miR-122 antagonist, in inhibiting hepatitis C viral 

production. A main concern for the systemic adminstration of miRNA mimics or antagonists is whether the 

effective concentration in target cells is achieved. Passage of these oligonucleotides across the cell 

membrane can be enhanced by packaging these oligonucleotides into lipid nanoparticles (Pramanik et 

al., 2011; Trang et al., 2011). Successful delivery of tumor-suppressing miRNAs into malignant cells of 

several mouse tumor models has demonstrated the feasibility of this approach. Nevertheless, the 

possible side-effects of miRNA alteration in other tissues should be monitored and whether systemically 

applied miRNA mimics or antagonists are able to reach CNS neurons remains to be seen.  

5.4.4 Discovering Small Molecules that Neutralize MicroRNA-related Dysregulation 

In addition to synthetic oligonucleotides as therapeutic agents, the small molecule reserve is a 

possible gold mine for future drug discovery. The rigorous exploration of chemical space for biologically 

active molecules promises to reveals small molecules with the capability to neutralize miRNA-related 

dysregulation (Crews, 2010; Lipinski and Hopkins, 2004). Agents that boost miRNA biogenesis or RISC 

activity may help confine the extent of miRNA dysregulation and limit its impact on brain structure and 

function. Interesting, recently it was discovered that natural compounds resveratrol and its analogue 

pterostilbene promote Ago2 activity and the upregulation of a number of tumor-suppressive miRNAs, 

including has-miR-185 (2.75 fold by 25 µM resveratrol) in adenocarcinoma cells (Hagiwara et al., 2012). It 

will be interesting to test if stilbene derivatives alleviate the cognitive and behavioral deficits of Df(16)A
+/–

 

mice.    

5.4.5 Induced Pluripotent Stem Cell (iPSC) as a Therapeutic Means  

Recently, the development of induced pluripotent stem cell (iPSC) technology has revealed a 

brand new avenue for studying and, down the road, treating psychiatric disorders (Cherry and Daley, 

2012; Robinton and Daley, 2012). Patient-derived iPSCs can be differentiated into a variety of cell types 
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to allow the observation of cellular phenotypes. Since the genetic composition is preserved in iPSCs 

(exceptions exist, see below), iPSC technology allows the analysis of the impact of the complete genetic 

background on cellular phenotypes. More importantly, iPSC-derived cultures can be used for drug 

screening that help design personalized treatment. Furthermore, in the cases where the primary genetic 

lesion is known (e.g. 22q11.2DS), patient-derived iPSCs can be genetically repaired and differentiated 

into either the affected cell types or progenitors of the affected cells. These immune-compatible 

progenitors or mature cells are then implanted back to the same patient. A seminal work by Jaenisch et al. 

demonstrated that iPSC-derived dopaminergic neurons can integrate into existing circuits and improve 

the symptoms after being engrafted into a rat model of Parkinson Disease (Wernig et al., 2008). More 

recently, human iPSC-derived neural stem cells have been shown to differentiate into neurons after 

implantation into the CNS of rodent models of stroke and spinal cord injury (Fujimoto et al., 2012; Jensen 

et al., 2011). The engrafted stem cells form synaptic connections, integrate into neural circuits and 

contribute to the restored motor function (Fujimoto et al., 2012). Furthermore, human iPSC-derived 

cortical stem cells are able to recapitulate in vivo cortical neurogenesis and give rise to all classes of 

cortical projection neurons that show mature electrical properties and form synapses (Shi et al., 2012). 

These studies demonstrate the practicability of using genetically repaired iPSCs in cell-replacement 

therapy in the brain.  

Since schizophrenia is neurodevelopmental disorder, it is plausible that early intervention of the 

disease progression can greatly help alleviate or even prevent the manifestation of certain symptoms. In 

principle, 22q11.2DS patient-derived iPSCs corrected for miRNA dysregulation can be differentiated into 

neuron progenitors and then transplanted back to hippocampus or prefrontal cortex of the affected 

patients. However, several concerns and hurdles need to be resolved before this approach achieves 

clinical use for psychiatric disorders. First, we need to have a more comprehensive understanding of the 

specific anomalies in the neural circuits that underlie the disease phenotypes. The responsible cell types 

and the specific cellular abnormalities need to be determined in order to design iPSC-based therapy. 

Second, the morphology and function of the iPSC-derived cells should be carefully compared to cells in 

normal individuals and patients. Since even modest alteration in cells could be the origin of the disease 

symptoms, it is essential for clinical success that the iPSC-derived cells are functionally equivalent to 
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normal cells and can be integrated properly into the affected neural circuits. Third, iPSC reprogramming 

seems to alter DNA methylation pattern that affect mRNA and miRNA expression (Deng et al., 2009; 

Stadtfeld et al., 2010; Wilson et al., 2009). The comparison of iPSCs and embryonic stem cells (ESCs) 

uncovered an aberrant silencing of the imprinted Dlk1−Dio3 locus that contains a large miRNA cluster 

(Stadtfeld et al., 2010) (see Chapter 2.3.2 and 3.1.1). The Dlk1−Dio3 locus encodes many miRNAs that 

are required for neural function and are associated with psychiatric disorders. Furthermore, the 

inactivation of Dlk1−Dio3 locus is associated with poor contribution to chimeras and failure to generate 

all-iPSC mice. This is a great obstacle for iPSC therapies, especially for those designed to correct 

disease-associated miRNA dysregulation. Recently, ascorbic acid is shown to prevent loss of Dlk1−Dio3 

imprinting and increase expression of several transcripts of genes in this locus, including Mirg (Stadtfeld 

et al., 2012). Whether ascorbic acid restores expression of miRNAs from maternal alleles is not examined.  

In addition, it is also reported that reprogramming of human iPSC introduces many de novo CNVs in the 

genome which conferred selective disadvantage (Hussein et al., 2011; Laurent et al., 2011). Therefore, 

technical improvement is necessary to generate iPSCs and iPSC-derived cells with the genetic and 

epigenetic composition more faithfully resembling normal primary cells.  

5.4.6 Identification of Genuine Targets for Constructing Specific Therapies   

In light of the increasing opportunities offered by the aforementioned treatments designed to 

reverse the miRNA-related dysregulation in diseases, our studies on miRNA-related dysregulation caused 

by 22q11.2 microdeletions reveal genuine targets for constructing specific therapies for intervening the 

disease processes. Treatments that normalize the expression levels of miR-185 or Mirta22 may help to 

alleviate symptoms and disease progression. 

5.5 Conclusion 

Accumulating evidence suggests that miRNAs play an important role in the pathogenesis and 

pathophysiology of psychiatric disorders and cognitive dysfunction (Moreau et al., 2011; Xu et al., 2010). 

Therefore we aimed to study the miRNA-related dysregulation in mouse models of rare and common 

variants. First, we analyzed schizophrenia-associated miRNA dysregulation and revealed a possible core 

group of miRNAs that are concertedly downregulated in disease conditions. Although additive or 
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synergistic miRNA dysregulation can result in a more profound impact on proteome, we identified an 

important component of miRNA dysregulation due to 22q11.2 microdeletion. This component, a drastic 

decrease in miR-185 levels, was a consequence of the genetic interaction within the pathogenic CNV. 

Furthermore, our work represents one of the first examples where a major downstream target of a 

disease-related miRNA dysregulation has been unequivocally identified and its function has been 

characterized. The major downstream effector of miRNA dysregulation, Mirta22, is a neuronal 

morphogenesis inhibitor with Golgi-related function. Knockdown of Mirta22 levels corrects the dendritic 

and spine deficits in mutant neurons. Second, we delineated the dysregulation of mir-146b and its targets 

due to the BDNF Val66met SNP. Altogether, our studies exemplified alterations in miRNA-regulated 

network that may exist downstream of other rare or common genetic variants. Future experiments will 

help understand the impact of Mirta22 upregulation on neuronal functions, the integrity of neural circuits, 

and behavior and cognitive performance. Ultimately, by integrating results from these studies, we hope to 

have a comprehensive understanding of the disease mechanism.  Moreover, advancement in gene 

therapy, chemical biology and iPSC techniques will undoubtedly further our arsenal to correct miRNA 

dysregulation underlying psychiatric disorders and eventually translate our knowledge to effective 

remedies. 
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Appendix 1. Sequence of primers and probes used in qRT-PCR 

Name Sequence 

Kctd15 L:  ATGGAAGCCTAGATGCCTCAC 

P:  GGTCCTCGCTTAACGCACACGG 

R:  GAGTGACAGCCGGGACATATT 

Per1 L:  TCTCAGCGGAGTTCTCATAGTTC 

P:  GCTCTGCTGGAGACCACTGAGAGCA 

R:  ACTCAGGAGGCTGTAGGCAAT 

Npas4 L:  TACGATATCATTGACCCTGCT 

P:  CTGATCGCCTTTTCCGTTGTCGATT 

R:  AATAAGCACCAGTTTGTTTCCTG 

Robo1 L:  CAGCAACCTGACAACCTACAGTC 

P:  CAAACAAATCTGATGCTCCCTGAGTCA 

R:  AAGGTCCACATCACCATAAACAG 

Akt3 L:  TTTCAGGGCTCTTGATAAAGGAT 

P:  CCAAATAAACGCCTTGGTGGAGGG 

R:  ACATCTTGCCAGTTTACTCCAGA 

Traf6 L:  GAGCAAGTATGAGTGTCCCATCT 

P:  AGGTTCTGCAAAGCCTGCATCATCA 

R:  TCCAGCAGTATTTCATTGTCAAC 

Syt1 L:  AAACCCTCAATCCAGTCTTCAAT 

P:  GGTGCCATACTCGGAATTAGGTGGC 

R:  GAGAAGCGGTCAAAATCATACAC 

Irak1 L:  CCTGAGGAGTACATCAAGACAGG 

P:  ACTGGAGACCCTTGCTGGTCAGAGG 

R:  AAATACTTGGTCTTTGCACCTTG 

Sort1 L:  AGATGATGTACAGCCCTCAGAAT 

P:  GGGTGTCCAAGAATTTTGGGGAAA 

R:  CCAAACATACTGCTTTGTGGATT 

Cask L:  GTAGCCAAGTTCACATCAAGTCC 

P:  GCGGGAAGCCAGTATCTGTCATATGC 

R:  CTCCAACAGCTCTACAATGTGTG 

Gria3 L:  CTTTCCTGACTGTGGAGAGGAT 

P:  ATTGCATACGGGACCCTGGACTCTG 

R:  TTTCTCATACACAGCAATTTTGG 

Stx3 L:  ATGAAGGACCGGCTGGAG 

P:  GGATGATGACACGGACGAGGTTGAG 

R:  CAGAGAAGAACTCGTCCATGAAG 

Srr L:  ATGTGAGCTCTTCCAGAAAACTG 

P:  ATTCGAGGTGCCCTTAATGCCATCA 

R:  CTGCTGTGAGTAACTACGGCTTT 
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Bsn L:  AATATGCAAGACCTCGGACCT 

P:  ACACCTGCACCCAGTGTCACAACAA 

R:  TGACAGTTCAAACAGAGCCACT 

Cpeb4 L:  GCTATCAGTGCCCGCTTT 

P:  CCCGTTTATCTATCTCTCCATGCTGCA 

R:  ACACAGCTGGTCATCCAAGA 

B3gat1 L2: CTGGTCAATGAGGGGAAGAAG 

P2: GGCCTGCCATCCTCTCCCAT 

R2: GGAAGCCCTCGGAATACATAA 

Kif5c L2: GAGGTGGCTCTTCAAACTCTACTC 

P2: TGACTCCACGTAGCATGAAAAGGAC 

R2: GCAAGTGTAAAAAGAAACGGA 

Cdk5r1 L:  CTGGCTCAAGGATTCCACTT 

P:  TGTCTAGCAGAGCCACCAAGGGC 

R:  AGGAAAGAACGTGGGAAGAG 

Ldb2 L:  AAAAATATCACCAGGATGGGTCT 

P:  TGTGTGTAATACTGGAGCCAATGCAGG 

R:  GGACTGAGGTTGTAGGTTTTGTG 

Cpeb2 L2: AGCTACATTGCTGCCATCAG   

P2: TGTTCAGCTTCAGCACGGTGACA 

R2: GCACTCGTCACACATCTGGT 

GSK3b L:  GCACTCTTCAACTTTACCACTCAA 

P:  CACCATCCTTATCCCTCCACATGCT 

R:  GGTCTCCAGCATTAGTATCTGAGG 

Cdk5r2 L:  ATCGTGCAGGCGTCTACC 

P:  CTGCTACCGCCTCAAGGAGCTGAG 

R:  GAACCAGCCCACCAGCTC 

vGlut1 L:  ACACTGTCTGGGATGGTGTG 

P:  GAGGAGTGGCAGTACGTGTTCCTCA 

R:  GAAGCAAAGACCCCATAGAAGAT 

Agxt2l1 L:  CGAGGTGAAGAAGATCATTGAAGAG 

P:  TGAATCCATGCAGAGTTGTGGTGGA 

R:  GTAGCCTGCTGGAGGAATAATTT 

Mef2C L:  CCTGACTCCTCTTATGCACTCAC 

P:  AAATTCCTGCTGTTCCACCTC 

R:  ATGGTAACTGGCATCTCAAAGC 

Hspa8 L:  GCAAGATCAATGATGAGGACAA 

P:  TCATCAGCTGGCTGGATAAGAACCA 

R:  GGTTGCAGACTTTCTCCAGTTC 

Lpcat3 L:  CGAGGATCTGAGCCTTAACAAGT 

P:  CGGCTCATCTTCTCCATCTTCCTGG 

R:  AAGGTAATGCCGGTAAAACAGAG 
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Coro2b L:  GTACATGACAACCACTTCTGTGC 

P:  TGGCCATAGTCACTGAGAGCGCAG 

R:  TGGCCATAGTCACTGAGAGCGCAG 

Epb4.1l1 L:  CCCAAGATTCTCAAGATCTCCT 

P:  TTCAAGCTCCCTAACCACCGCTCA 

R:  GATGCAGACCTTCCACAACC 

Begain L:  CTAAGGTGACCATTGACAAGCTG 

P:  CTGCTGCAGTGCAGCCAGACCTAC 

R:  AGCTCGGACACCTTATGGAC 

Mirta22 

(2310044H10Rik) 

L:  CTGCTGTCAATGGCCTCTAC 

P:  CATGGCCGCCAGCTTCTGA 

R:  GTCCGAAAGGTGCGACTC 

Gapdh L:  CAGGTTGTCTCCTGCGACTT 

P:  GGCTGGCATTGCTCTCAATGACA 

R:  CCTGTTGCTGTAGCCGTATTC 

 

 


