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Climate models as a test bed for
climate reconstruction methods:
pseudoproxy experiments
Jason E. Smerdon∗

Millennium-length, forced transient simulations with fully coupled general
circulation models have become important new tools for addressing uncertainties
in global and hemispheric temperature reconstructions targeting the Common Era
(the last two millennia). These model simulations are used as test beds on which to
evaluate the performance of paleoclimate reconstruction methods using controlled
and systematic investigations known as pseudoproxy experiments (PPEs). Such
experiments are motivated by the fact that any given real-world reconstruction
is the product of multiple uncontrolled factors, making it difficult to isolate the
impact of one factor in reconstruction assessments and comparisons. PPEs have
established a common experimental framework that can be systematically altered
and evaluated, and thus test reconstruction methods and their dependencies.
Although the translation of PPE results into real-world implications must be
done cautiously, their experimental design attributes allow researchers to test
reconstruction techniques beyond what was previously possible with real-world
data alone. This review summarizes the development of PPEs and their findings
over the last decade. The state of the science and its implications for global and
hemispheric temperature reconstructions is also reviewed, as well as near-term
design improvements that will expand the utility of PPEs. © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The late 20th and early 21st centuries have emerged
as a period of rapid and pervasive environmental

changes.1,2 Multiple anthropogenic activities have
been identified as the leading causes of these changes,
principal among them is the burning of fossil fuels and
the subsequent release of greenhouse gases into the
Earth’s system.3 Understanding the impacts of these
emissions on the Earth’s carbon cycle and climate
is of vital importance to human societies and the
natural world on which they depend, but a rigorous
understanding of these impacts and an ability to
anticipate their emergence in the future cannot be
achieved by modern observations alone—the potential
changes are too vast and complex, the relevant
timescales are too varied. A thorough understanding
of contemporary climate change is thus dependent on

∗Correspondence to: jsmerdon@ldeo.columbia.edu

Lamont-Doherty Earth Observatory of Columbia University,
Palisades, NY, USA

our ability to comprehensively characterize the Earth’s
climate system on multiple timescales and over many
different states in the past.

Paleoclimatology offers a glimpse into historical
climates over a range of timescales and mean states,
while allowing us to test and inform our developing
hypotheses about the climate system and climatic
change.4 Among the many time periods of relevance,
the Common Era (CE; the last two millennia) is
an important target because the abundance of high-
resolution paleoclimatic proxies (tree rings, corals, ice
cores, etc.) over this time period allow seasonal to
annual reconstructions on regional to global spatial
scales.5 The CE also spans the rise and collapse
of many human civilizations, making paleoclimatic
information during this time period critical for
understanding the complicated relationships between
climate and organized societies.6–8

Studies of CE climate have already proved vital
to understanding basic properties of the climate
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system and the vulnerabilities of present societies
to climate variability that is not fully captured
in the modern observational record. For example,
megadroughts of extreme duration and intensity
throughout much of Mexico and the American
Southwest have been tied to small and prolonged
decreases in sea surface temperatures in the tropical
Pacific (see Ref 9 for a review), while historical
drought vulnerabilities also have been characterized
in areas of Southeast Asia and Indonesia.7,8 The El
Niño-Southern Oscillation phenomenon also has been
shown to vary on multidecadal timescales10 and to
couple importantly with volcanic activity,11,12 while
understanding its secular behavior has been identified
as important for climate projections of the 21st
century.13 Despite these and many other successes,
however, there remain outstanding questions about
our understanding of CE climate and its implications
for the future.

Perhaps one of the more widely debated areas
of CE paleoclimatology involves the reconstruction
of global or hemispheric climate using networks of
climate proxies derived from multiple proxy records
(see Ref 5 for a review). One of the principal issues of
this debate surrounds the amount of reconstructed
temperature variability during the CE on decadal
and longer time scales, particularly as it relates
to the magnitude, phasing, and ubiquity of the
Medieval Climatic Anomaly and Little Ice Age.14–19

Although much progress has been made to understand
how various reconstructions may accurately represent
the characteristics of these past epochs, there
remain important unanswered questions about
reconstruction uncertainties. These questions are tied
to understanding the connections between climate and
proxy responses across different spectral domains,
the response of proxies to multiple environmental
variables, the role of teleconnections and noise in
the calibration data, and the impact of specific
proxy networks and methodological choices on
derived reconstructions—questions that are ultimately
fundamental to the success of efforts to reconstruct
past climatic variability during the CE.5,20,21

One important new tool for addressing questions
about the performance of CE reconstruction methods
is millennium-length, forced transient simulations
with coupled general circulation models (CGCMs).
These model simulations are used as test beds
on which to evaluate the performance of a
given reconstruction method using controlled and
systematic experiments—an approach that has come
to be known as pseudoproxy experiments (PPEs).22

This approach was originally investigated using
an unperturbed control simulation to explore the

selection of optimal proxy locations in global
temperature reconstructions.23 The more complete
pseudoproxy approach in which predictor data are
perturbed to mimic the characteristics of real proxy
data was later explored using instrumental data in
multiple settings.22,24,25 Since these early publications,
an impressive and growing number of PPE studies
and subsequent discussions have emerged in the
literature,26–69 as well as one recent summary of
PPE work in the larger context of high-resolution
paleoclimatology of the CE.5 The following review
builds off of these previous efforts by summarizing
the last decade or more of PPE studies, surveying their
implications for global and hemispheric temperature
reconstructions of the CE, and by suggesting near-term
design improvements that will increase the utility of
PPE applications.

CONSTRUCTION OF PPEs

The motivation for PPEs stems from the fact that real-
world reconstructions are derived from many different
methods, calibration choices, and proxy networks.
Uncertainty in any given real-world reconstruction is
therefore a combined result of the employed method,
the adopted calibration data and calibration time
interval, the spatial and temporal sampling of the
proxy network, the actual climate-proxy connection
of each proxy record used for the reconstruction, and
the presence of stochastic noise in both the climate
and proxy data. If the objective is to isolate the
impact of one of these factors, it is difficult to do
so from comparisons between available real-world
reconstructions. PPEs have allowed some of the above
challenges to be circumvented by adopting a common
framework that can be systematically altered and
evaluated, and thus test reconstruction methods and
their dependencies. Moreover, PPEs provide a much
longer, albeit synthetic, validation period than that
which can be achieved with instrumental data, and
thus methodological evaluations can extend to lower
frequencies and longer time scales. Although one
must always be mindful of how PPE results translate
into real-world implications, these collective design
attributes allow researchers to test reconstruction
techniques beyond what was previously possible with
real-world data alone.

The primary data of PPEs have been derived
from a limited number of forced transient CGCM
simulations spanning the last 500 years before present
or more34,35,70,71; in some cases model control
runs23,50,67 or the instrumental record22,24,25,60–63,

have been used as alternatives. The approach of
PPEs described subsequently is to extract a portion
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of a spatiotemporally complete CGCM field in a
way that mimics the available proxy and instrumental
data used in real-world reconstructions. The principal
experimental steps proceed as follows: (1) pseudo-
instrumental and pseudoproxy data are subsampled
from the complete CGCM field from locations
and over temporal periods that approximate their
real-world data availability; (2) the time series that
represent proxy information are perturbed with
noise to simulate the temporal (and in some cases
spatial) noise characteristics present in real-world
proxy networks; and (3) reconstruction algorithms
are applied to the sampled pseudo-instrumental data
and pseudoproxy series to produce a reconstruction of
the climate simulated by the CGCM. The culminating
fourth step is to compare the derived reconstruction

to the known model target outside of the calibration
interval as a means of evaluating the skill of the applied
method and the uncertainties expected to accompany
a real-world reconstruction product.

Pseudoproxy Networks
The adopted pseudoproxy networks in almost all
PPEs to date have approximated the Mann
et al.72 (hereinafter MBH98) multiproxy net-
work.28,29,42,45,54–59,64–67 A recent study59 has addi-
tionally tested a distribution approximating the
updated network of Mann et al.73 (see Figure 1 for
a comparison of pseudoproxy distributions approx-
imating the MBH98 and Mann et al.73 networks).
Exceptions to the above choices include some
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FIGURE 1 | (a) Comparison of two pseudoproxy networks that approximate the most populated nests in the multiproxy networks of Mann et al.72

(MBH98, red dots) and Mann et al.73 (gray squares). Bottom plots show the total and categorized proxy abundances in the global multiproxy network
of Mann et al.73 for: (b) the full dataset; and (c) the culled dataset as screened and used by Mann et al.73 The plotted abundances are as published in
the Supporting Information of Mann et al.73
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studies that have tested additional proxy network
distributions,37,39,41,48,49,61,62 random subsampling of
the MBH98 network distribution,40 random and semi-
random sampling of the target field,42,45,50,53,60,64

or noise-only experiments.38,46,47,63 In almost all
cases, the number of pseudoproxies in the sampled
network have been constructed to be temporally
invariant. Notable exceptions have tested multiple
temporally invariant distributions that approximate
densely or sparsely populated nests in specific mul-
tiproxy networks.29,45 In those PPEs approximating
the MBH98 distribution, pseudoproxy availability is
typically assumed to be constant during the entire
reconstruction period and reflects the availability of
the most populated nest in the multiproxy network.
While this feature of current PPEs allows a straight-
forward interpretation of spatial sampling impacts, it
is a simplification of real-world networks that rapidly
lose records back in time (Figure 1).

Pseudoproxy Noise
Perhaps the most important decision for the design of
PPEs is the characteristics of the signal and noise that
make up the pseudoproxy network—a choice that
typically has the largest impact on the performance
of the evaluated methods.29,40,45,54,58,59,64–66 Most
PPE studies have sampled the modeled temperature
field at specific locations to construct a baseline, or
no-noise, pseudoproxy network. Various colors of
noise with different levels of variance are then added
to the sampled temperature time series to establish
collections of pseudoproxy networks with multiple
signal-to-noise ratios (SNRs). The most widely applied
choice of noise has been Gaussian white noise at
SNR values of 1.0, 0.5, and 0.25 by standard
deviation (see Box 1 for the relationships between
SNR and other common noise conventions used in
PPEs).26,40,42,45,54,56,58,59,64–66 In some cases Gaussian
red noise has been used by adding red noise time series
with uniform characteristics to the entire pseudoproxy
network25,31,34,66; blue noise has also been used in
several experiments.22,45 An additional study has used
residual analyses to approximate the noise character
of proxies at specific locations, resulting in mixed
pseudoproxies with multiple noise characteristics
throughout the employed network.29 To demonstrate
the process of pseudoproxy construction, Figure 2
plots a selected temperature time series from the
ECHO-G ERIK2 millennium simulation.35 The signal
has been normalized and is shown above a white noise
time series that has been scaled to have variances of 1,
4, and 16. The combined signal-plus-noise time series
are also shown in Figure 2 and represent the resulting
pseudoproxy time series used in PPEs.

BOX 1

NOISE CLASSIFICATIONS IN PPES

Various conventions have been used for classify-
ing the level of noise in pseudoproxy studies. The
most common include the signal-to-noise ratio
(SNR) by standard deviation, the percent noise
by variance (PNV), or the correlation between
the signal and the signal-plus-noise time series
(r). For white noise, these conventions can be
expressed interchangeably. If the level of noise
is expressed as the variance of a pure white noise
(NVAR) time series relative to a normalized sig-
nal time series (variance of one), the expressions
relating SNR, PNV, and r are as follows:

SNR = (NVAR)−1/2

PNV = (NVAR)/(1 + NVAR) = 1/(SNR2 + 1)

r = (1 + NVAR)−1/2 = SNR/(1 + SNR2)−1/2

= (1–PNV)1/2

Note that the correlation coefficient represents
the mean of the distribution derived from many
noise draws for finite time series. Using the com-
mon levels of NVAR employed in PPEs (1, 4, and
16) the respective values of SNR, PNV, and r are
1, 0.5, and 0.25; 50, 80, and 94%; and 0.707,
0.447, and 0.243.

While a range of SNRs is typically employed in
PPEs, it is generally assumed that SNRs on the order
of 0.5–0.25 (by standard deviation) are representative
of the actual noise level in real-world proxy records.
This estimate is based on local correlations between
instrumental grid-point temperatures and proxies
during their interval of overlap. One assessment45

has evaluated local temperature correlations for the
MBH98 network and an additional tree-ring network
that has a spatial distribution over extratropical
Eurasia and North America. The analysis estimated
0.4 to be a conservative value of the mean SNR in the
two datasets, corresponding to a correlation between
proxy and local climate of 0.37 (assuming white noise
perturbations to the proxy climate signal). A later
study29 has performed a similar analysis of three
proxy nests in the MBH98 network, although the
approach differed from Mann et al.45 by determining
the highest correlation between the proxies and all
locations in the temperature field. This later analysis
estimated minimum proxy correlations of 0.3 and a
mean near 0.47. This latter estimate appears consistent
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FIGURE 2 | A ‘signal’ time series sampled from the annual surface temperature field of the ECHO-G ERIK2 millennial simulation35 after
interpolating to an even 5◦ latitude–longitude grid (the geographic center of the sampled grid is 57.5◦N, 2.5◦E). The time series has been normalized
to have a standard deviation of one. Shown on the left below the sampled temperature signal is a single white noise time series that has been scaled
to have variances of 1, 4, and 16. The sum of the pure-noise and temperature time series is shown in the lower right panels and represents the
pseudoproxy time series used in pseudoproxy experiments (PPEs). Signal-to-noise ratios (SNRs) and correlations between the original signal and the
signal-plus-noise series are also shown in the lower right-hand plots.

with Mann et al.,45 given that it did not apply
geographic constraints on the proxy locations and thus
estimated maximized proxy-temperature correlations.
Mann et al.45 also estimated lag-one autocorrelation
coefficients for the proxies in the MBH98 network and
found ρ = 0.32 to be a representative mean value.
This estimate compares with the peak distribution
of a more recent assessment47 of autocorrelations
in an updated multiproxy network,73 although
the values of the estimated lag-one coefficients in
McShane and Wyner47 ranged from approximately
ρ = −0.25 to 1. Regardless of the estimated noise
characteristics, almost all studies have used individual
noise realizations for each pseudoproxy in the
network. Recent studies have noted the importance
of employing ensemble experiments that test the
dependence of results on both multiple pseudoproxy

noise realizations29 and the spatiotemporal character
of the underlying model field employed in the PPE.29,59

TESTING RECONSTRUCTION
METHODS WITH PPEs

It is common to separate global or hemispheric
temperature reconstruction methods into two cate-
gories. The first involves index methods that target
indices such as northern hemisphere (NH) or global
mean temperatures; the second comprises climate field
reconstruction (CFR) methods that target hemispheric
or global patterns, i.e., spatial maps of temperature
change expressed on a grid. The methodology at the
heart of most currently applied index or CFR tech-
niques is based on the application of multivariate
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linear regression to calibrate a network of proxies
during their period of overlap with the instrumental
temperature record. This calibration typically incor-
porates matrix factorizations, i.e., eigenvalue decom-
positions, of the target field, proxy matrix, or both.
Within this framework, there are four main choices
that are typically involved in the application of a
given method: (1) whether to cast the problem as a
regression of proxies on climate, or vice versa; (2) the
degree of rank reduction of the target field after its
eigenvalue decomposition (this choice only applies to
CFR methods); (3) the degree of rank reduction of
the proxy matrix after its eigenvalue decomposition;
and (4) the type of regularization used to estimate the
regression coefficient matrix—a choice that is often
necessary because most CE reconstruction problems
are underdetermined (again applicable to CFR meth-
ods only). Some additional choices of recent discussion
are inclusion of errors in both the predictors and
predictand,37,45 local proxy calibration,32,61 and iter-
ative solutions that cast CFRs as matrix completion
problems.42,45,74 Most of the discussion in the liter-
ature about reconstruction methods centers on these
various choices and their importance, which PPEs
have been designed, in part, to test.

Testing Reconstructions of NH and Global
Means
The reconstruction of NH or global mean temperature
indices has been a central focus of large-scale
reconstruction studies,20,21 and consequently a central
focus of PPEs. Reconstruction of these large-scale
indices has been done using both index and CFR
methods. In cases where CFR methods are used, the
computed mean index is derived from a composite
average of the reconstructed field. Within index
reconstruction methods, two groups of approaches
generally exist. Composite-plus scale (CPS) methods
average collections of proxy networks into a single
index that is then scaled to have the same mean and
variance of the target time series over a common
interval of overlap. The averaging may be performed
with or without weighting based on factors such
as the geographic location of the proxies or the
correlations between the proxies and local or large-
scale temperature indices. The second group of index
methods similarly derives a time series estimate from
a weighted composite of the proxies, but the weights
and scaling are derived from a regression of the proxies
on the target temperature index, or vice versa. This
regression may be performed using all of the proxies,
or from the leading principal components of the proxy
network after it is factored.

The first PPEs using a millennial CGCM simula-
tion tested the MBH98 CFR technique for its ability
to produce skillful NH mean temperature indices.64,67

These studies showed losses of low-frequency vari-
ance throughout the reconstruction period, despite
subsequent discussions to clarify the methodologi-
cal approach65,75 and to demonstrate that the results
were not dependent on the employed millennial
simulation.44,45,51,55,69,76 Since these first publications
and discussions, there have been many PPE stud-
ies that have yielded mixed results regarding the
skill of NH and global means derived from index
and CFR methods. Multiple PPE studies have shown
specific methods to successfully reconstruct the NH
mean temperature index using representative noise
levels and proxy distributions.27,32,37,40,45 Most of
the regression-based methods tested in these studies
used a form of total least squares regression to allow
consideration of noise in both proxy and instrumen-
tal data, which may play an important role in their
NH mean skill. Several of these studies also have
applied the regressions in filtered low-frequency spec-
tral domains, which may be another important factor
in their skill.31,52 A state-space time series model using
a Kalman filter algorithm also has been shown to skill-
fully reconstruct NH means in PPEs, and to compare
well with truncated total least squares methods.40

Within the same study, a broad range of index meth-
ods were also tested, and, with few exceptions, they
were shown to skillfully reproduce NH means, par-
ticularly at decadal and lower frequencies.40 This
observation led the authors to conclude that data and
sampling differences are the more likely explanation
of differences between reconstructions of real-world
global and hemispheric temperature means. Despite
the above collections of studies reporting demon-
strated successes for index reconstructions, multiple
PPE studies27–29,31,40,48,49,54,56,58,59 also have shown a
range of methods to yield reconstructions with signif-
icant variance losses and mean biases conditional on
different PPE designs, model simulations or ensemble
experiments. Current understanding thus reflects mul-
tiple methods and PPE designs in which the derived
NH mean reconstructions may or may not contain
important shortcomings that are relevant to interpre-
tations of CE climate.

Resolving the above differences requires more
specific attention to the source of skill in applied
methodologies and more direct assessments of how
given PPE designs translate into real-world condi-
tions. This point is well illustrated by PPEs that
have tested the regularized expectation maximization
(RegEM) method74 using two different regularization
approaches. In one case, RegEM using ridge regression
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has been shown in PPEs to produce NH means with
significant mean biases and variance losses.29,54,56,58,59

In contrast to these results, RegEM employing trun-
cated total least squares has been shown to faithfully
reconstruct NH mean temperatures even at high noise
levels45,59 (see also Figure 4). Despite these different
performances in PPEs, both RegEM versions produce
real-world NH mean temperature reconstructions that
are very similar.42,45 Moreover, both of the real-
world RegEM reconstructions agree well with the
original MBH98 reconstruction,45 which was derived
using a method that also has been shown to suffer
from variance losses and mean biases in PPEs.59,65,66

Understanding these apparent contradictions between
PPE and real-world reconstruction results is thus
important and speaks to the need to better char-
acterize the source of reconstruction skill and how
PPE and real-world conditions compare (note that
important quantitative corrections regarding some of
the above RegEM studies42,43,45,54,56 were necessary
because they included model data that were incorrectly
processed51,55,57).

Testing Reconstructions of NH and Global
Fields
The promise of CFR methods is in their ability to
estimate spatial patterns of temperature variability
and thus provide dynamical insights.19,26 Despite
this utility and increasing interests in CFR applica-
tions, it nevertheless is not widely appreciated that
very few large-scale CFRs actually exist (note that
there are many regional CFRs for multiple climate
variables,7,25,77–81 but the discussion herein is specific
to hemispheric and global temperature reconstruc-
tions). Figure 3 plots the summary of NH surface tem-
perature reconstructions for the CE from Assessment
Report Four (AR4) of the Intergovernmental Panel on
Climate Change.21 As noted in Figure 3, only 2 of the
12 reconstructions are derived from CFRs. Since the
publication of the AR4, only one additional large-scale
CFR has been published.19 Research to produce these
temperature CFRs is thus still nascent. Derivations of
CFRs can be complicated by the fact that they attempt
to reconstruct more spatial locations than the number
of temporal observations in the calibration interval
(the regression problem is underdetermined), and are
more likely dependent on climate teleconnections and
proxy network distributions than index reconstruc-
tions. Much work therefore remains to refine CFR
methods and uncertainties, while expanding the proxy
networks used to produce them.59

For those PPEs that have evaluated CFR
methods, very few of them have comprehensively

assessed their spatial skill. Some studies have reported
summaries of field statistics or provided spatial plots
of limited assessment metrics,42,45,50 but the primary
evaluations of CFR methods in PPEs to date have
focused on their ability to derive skillful NH or global
mean indices. Such evaluations are insufficient for
assessing the spatial performance of CFRs. Figure 4
plots results from a PPE testing the RegEM method
using truncated total least squares exactly as it was
applied in its original CFR application.45,59 The upper
panel in the plot compares the reconstructed and
known model time series for the NH mean surface
temperature in the NCAR CCSM1.4 millennial
integration.70 As has been previously reported,45

the method reconstructs the NH mean temperature
index well, but Figure 4 also shows the grid-point
correlation coefficients and mean biases during the
reconstruction interval for the derived CFR. These
spatial measures of merit indicate that despite the
successful reconstruction of the NH mean, correlation
coefficients can drop below 0.1 and mean biases can
approach more than 1◦C within various regions of
the reconstructed field. Further evaluating the field
skill associated with CFR methods is thus critical
for assessing the robustness of their reconstructed
spatiotemporal information, which is ultimately the
principal motivation for deriving CFR products.

The few PPEs that have directly assessed spatial
skill of CFR methods have reported significant varia-
tions in regional performance. A PPE study restricted
to Europe and the North Atlantic yielded regions of
bias in reconstructions from two CFR methods of over
1◦C, particularly at SNRs approaching real-world
levels.49 These biases were present even though reduc-
tion of error statistics stayed positive throughout the
field in all experiments performed (reduction of error
values below zero are considered failed validations20).
Similarly, a pseudoproxy analysis of reconstructed
postvolcanic temperature anomalies showed one CFR
method to reproduce well the pattern of Euro-
pean temperature responses after 15 tropical volcanic
eruptions.5 The amplitude of the reconstructed tem-
perature response, however, was significantly reduced
relative to the model target. In another regional PPE
study over North America using instrumental data,
regionally variable field skill was again demonstrated
in experiments approaching realistic noise levels.61,62

In what the authors termed medium (SNR = 0.5)
and hard (SNR = 0.33) experiments, derived recon-
structions from two different CFR methods yielded
coefficients of determination approaching 0 and coeffi-
cients of efficiency approaching −1 in multiple regions
of the reconstructed field (positive values are again
the threshold for successful validation in the latter
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RegEM truncated total least squares method using a calibration interval from 1856 to 1980 Common Era (CE).59 Panel (a) compares the low-pass
filtered NH mean temperature anomalies (relative to the calibration interval) derived from the applied climate field reconstruction (CFR) method and
the known model mean. Panel (b) plots the local correlation coefficients computed between the reconstruction and known model field during the
reconstruction interval (850–1855 CE). Panel (c) is the same as in (b), but for the difference between the reconstructed and known model means, i.e.,
the reconstruction bias.
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metric20). These regional results are consistent with
hemispheric and global PPE assessments that have also
shown spatially variable skill statistics for multiple
commonly applied CFR methods.56,58,59 In the most
comprehensive of these assessments,59 four CFR meth-
ods were tested using two different millennial simula-
tions and two multiproxy distributions as the basis of
global PPEs. At realistic noise levels, these experiments
again yielded spatially variable verification statistics:
minimum grid-point correlation coefficients ranged
between 0 and 0.1, some regional biases exceeded 1◦C
and ratios between reconstructed and known model
standard deviations fell below 0.3 in multiple regions.
While some performance characteristics differed, all
four methods and associated variants performed quite
similarly—consistent with the fact that all employed
methods were based on the same underlying multivari-
ate linear model. It additionally was noted that field
skill tended to concentrate in densely sampled pseu-
doproxy regions, an observation that argues for the
need to expand the spatial sampling of current multi-
proxy networks. Finally, methodological performance
was shown to be partially dependent on the under-
lying model field, suggesting that PPE assessments of
field skill should be mindful of model dependencies.
Collectively, current assessments of CFR spatial per-
formance indicate the need to more fully vet the field
skill of contemporary methods using multiple models
and PPE designs, while more directly connecting PPE
results to the specific characteristics of real proxies
and climate fields.

FUTURE DESIGN IMPROVEMENTS
IN PPEs

Current PPEs have implemented designs that largely
represent best-case scenarios for methodological
assessments. These are useful to the degree that
even these scenarios suggest certain challenges for
the current generation of reconstruction methods that
ultimately must be addressed and evaluated. Never-
theless, real-world proxy records have signal and noise
characteristics that are unique to the physical, chemi-
cal or biological system from which they are measured.
As a result, specific proxy series likely contain nonlin-
ear, multivariate, and nonstationary signal and noise
characteristics20 that can be seasonally dependent.81

None of these characteristics are fully captured in cur-
rently employed PPEs, making their representations
of signal and noise perhaps the largest idealization.
Improvements to these current pseudoproxy designs
nevertheless can be partially addressed with available
tools. Li et al.41 have employed idealized models of
tree-ring, pollen, and borehole temperature proxies to

test their relative contributions to NH mean temper-
ature reconstructions. Similarly, multiple studies have
specifically modeled geothermal climate data using
millennial CGCM simulations and tested the perfor-
mance of contemporary borehole temperature inver-
sion techniques.36,96 Ongoing work to model the con-
nection between climate and proxy systems,36,97–100 or
proxy relevant variables,101 therefore introduces the
capability to more realistically model pseudoproxy
records from the output of millennial CGCM simu-
lations. This already has been accomplished for some
tree-ring networks, the results of which are available in
the public domain for testing and evaluation.102 Con-
tinuing efforts therefore will advance PPEs beyond
the annual temperature-plus-noise models that cur-
rently are used to construct pseudoproxy time series,
and thus emulate the multivariate and potentially
nonlinear connections between proxies and climate
expected to exist in real-world proxies. Moreover, a
multivariate focus on pseudoproxy construction will
motivate new designs for PPEs that allow testing of
other reconstruction targets such as precipitation80 or
drought metrics.7,9,77

Another immediately possible PPE improvement
is connected to the fact that most studies have
adopted temporally invariant pseudoproxy networks
that reflect the spatial distribution of the most popu-
lated nests in available multiproxy networks. Such a
convention overestimates the level of multiproxy sam-
pling during the earlier period of the CE (Figure 2),
except in those studies that explicitly test smaller net-
works with more uniform temporal sampling.37,48 PPE
designs that test either the declining number of predic-
tors in real-world multiproxy networks or use multiple
temporally invariant networks that represent high
and low-population nests are therefore warranted (see
Refs 29 and 45 for examples of pseudoproxy studies
that explicitly tested nests corresponding to temporal
subsets of multiproxy networks). Contributions from
specific proxy types and their spatiotemporal distri-
butions also should be tested by constructing subsets
of pseudoproxy networks representative of specific
kinds of proxies (following, for example, the work
of Li et al.41). Such proxy-specific experiments would
more realistically capture real-world conditions than
the temporally invariant pseudoproxy networks used
in most current PPEs, as well as quantify contribu-
tions to reconstruction skill from specific kinds of
proxy archives and their locations.

Several studies have also shown the importance
of evaluating PPEs in the context of ensembles based
on both multiple noise realizations in pseudoproxy
networks and on the underlying spatiotemporal
characteristics of the target field.29,59 For instance,
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differences between methods tested on individual noise
realizations may not be statistically significant when
uncertainties due to random errors are incorporated.
This has been shown for NH mean temperature
estimates,29 but such ensemble work has not been
done in the context of spatial CFR performance.
Future work to evaluate field skill in ensembles of
CFRs is therefore important. This is further supported
by the recent demonstration of model dependencies in
PPE results.59 The direct addition of noise to the tar-
get data or techniques such as phase randomizing29

of the target field are means of achieving ensem-
bles from single models, which can and should be
incorporated into future PPEs. The upcoming public
release of multiple millennium-length, forced tran-
sient simulations from coupled CGCMs as part of
the Coupled Model Intercomparison Project Phase
5103 provides an additional and timely opportunity to
greatly enhance the number of model simulations used
in PPEs. Incorporating these simulations into ensem-
ble PPEs will test reconstruction skill over a range of
underlying covariance structures in the model fields,
which will help characterize common methodolog-
ical performance while separating model-dependent
behavior. Studies that connect these ensemble results
to PPEs that use the observational temperature record
instead of simulated model fields will further link PPE
results to real-world conditions by identifying those
model-based PPEs that best characterize the spatial
performance of real-world CFRs. This insight will
provide guidance on how to interpret model-based
PPEs as analogs for real-world reconstructions and
therefore allow them to be more directly interpreted
for things such as optimal proxy-site selections, rep-
resentations of regional high and low reconstruction
field skill, and as measures of low-frequency fidelity.

CONCLUSIONS
PPEs always will be only approximations of reality.
While they provide flexible and controlled experimen-
tal designs, care is required when interpreting their
results for implications regarding actual reconstruc-
tions of CE climate. In this regard, it is helpful to
draw an analogy to the use of animal models in
medical research.104 Such lines of inquiry allow con-
trolled and systematic experiments that never would

be possible with human subjects and thus greatly
expand medical research progress and capabilities.
Nevertheless, research using animal models is compli-
cated by the fact it ultimately must be interpreted for
its applicability to humans. It therefore is necessary
to establish an experimental design that carries rele-
vance for human application, while steps subsequent
to animal-model experiments are often vital for deter-
mining how to translate their results for applicability
to human patients. PPEs can be viewed in a similar
light. There are no true control experiments for recon-
structing past climate, and real-world data availability
limits the extent of methodological validation. Both
of these realities restrict the range of reconstruction
evaluations that can be accomplished with real data
alone, thus giving rise to the utility of PPEs. It nev-
ertheless is important to design PPE frameworks to
more accurately represent the real-world challenges
inherent in CE reconstruction problems. Direct and
rigorous connections between PPE results and the spa-
tiotemporal characteristics of the actual climate also
need to be further explored. Attention to both of these
issues will strengthen PPE relevance and ultimately
advance climate reconstructions of the CE.

Despite the potential for further improvements,
PPEs have already yielded important insights into the
performance of reconstruction methods and the pos-
sible uncertainties in real-world reconstructions. They
have revealed potentially important deficiencies in
contemporary reconstruction methods and the likely
sources of skill in others, while allowing direct and sys-
tematic comparisons between a suite of applied recon-
struction techniques. This latter point will become
ever more important as emerging methods are applied
to the climate reconstruction problem.40,41,61,62,105

The growing number of studies38,45,47,57–63,102 making
reconstruction codes and PPE data publicly avail-
able will further drive success by compounding the
degree to which methods are tested and increasing
the creativity with which PPEs are designed. The col-
lective result will be rigorously tested methods and
an enhanced understanding of the uncertainties in
real-world reconstruction products, all of which will
inform the manner in which reconstructions are used
to answer important questions about our past climate
and its lessons for the future.

ACKNOWLEDGMENTS

I am grateful to three anonymous reviewers, all of whom strengthened this contribution with their comments
and suggestions, and to the editors for their invitation to compose this review. This work was supported in

72 © 2011 John Wiley & Sons, Ltd. Volume 3, January/February 2012



WIREs Climate Change Pseudoproxy experiments

part by NSF grant ATM0902436 and by NOAA grants NA07OAR4310060 and NA10OAR4320137. LDEO
contribution 7511.

REFERENCES
1. Zalasiewicz J, Williams M, Smith AG, Barry TL,

Coe AL, Bown PR, Brenchley P, Cantrill D, Gale A,
Gibbard P, et al. Are we now living in the Anthro-
pocene? GSA Today 2008, 18:4–8. doi:10.1130/
GSAT01802A.1.

2. Trenberth KE, Jones PD, Ambenje P, Bojariu R, East-
erling D, Klein Tank A, Parker D, Rahimzadeh F,
Renwick JA, Rusticucci M, et al. Observations: sur-
face and atmospheric climate change. In: Solomon S,
Qin D, Manning M, Chen Z, Marquis M, Averyt KB,
Tignor M, Miller HL, eds. Climate Change 2007:
The Physical Science Basis. Contribution of Work-
ing Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cam-
bridge, United Kingdom and New York, NY, USA:
Cambridge University Press; 2007.

3. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo
Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott
PA. Understanding and attributing climate change. In:
Solomon S, Qin D, Manning M, Chen Z, Marquis
M, Averyt KB, Tignor M, Miller HL, eds. Climate
Change 2007: The Physical Science Basis. Contribu-
tion of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate
Change. Cambridge, United Kingdom and New York,
NY, USA: Cambridge University Press; 2007.

4. Schmidt GA. Enhancing the relevance of paleoclimatic
model/data comparisons for assessments of future
climate change. J Quaternary Sci 2010, 25:79–87.
doi:10.1002/jqs.1314.

5. Jones PD, Briffa KR, Osborn TJ, Lough JM, van
Ommen TD, Vinther BM, Luterbacher J, Wahl ER,
Zwiers FW, Mann ME, et al. High resolution paleo-
climatology of the last millennium: a review of cur-
rent status and future prospects. Holocene 2009, 19:
3–49.

6. Cullen HM, deMenocal PB, Hemming S, Hemming G,
Brown FH, Guilderson T, Sirocko F. Climate change
and the collapse of the Akkadian empire: evidence
from the deep-sea. Geology 2000, 28:379–382.

7. Cook ER, Anchukaitis KJ, Buckley BM, DArrigo RD,
Jacoby GC, Wright WE. Asian monsoon failure and
megadrought during the last millennium. Science
2010, 328:486–489.

8. Buckley BM, Anchukaitis KJ, Penny D, Fletcher R,
Cook ER, Sano M, Le Canh Nam, Wichienkeeo A,
Ton That Minh, Truong Mai Hong. Climate as a con-
tributing factor in the demise of Angkor, Cambodia.
Proc Nat Acad Sci USA 2010, 107:6748–6752.

9. Cook ER, Seager R, Cane MA, Stahle DW. North
American drought: reconstructions, causes, and con-
sequences. Earth-Sci Rev 2007, 81:93–134.

10. Li J, Xie S-P, Cook ER, Huang GD, Arrigo R, Liu F,
Ma J, Zheng X-T. Interdecadal modulation of El Niño
amplitude during the past millennium. Nature Clim
Change 2011, 1:114–118.

11. Mann ME, Cane MA, Zebiak SE, Clement A. Vol-
canic and solar forcing of the tropical Pacific over the
past 1000 years. J Climate 2005, 18:447–456.

12. Emile-Geay J, Seager R, Cane MA, Cook ER, Haug
GH. Volcanoes and ENSO over the past millen-
nium. J Climate 2008, 21:3134–3148. doi:10.1175/
2007JCLI1884.1.

13. Vecchi GA, Wittenberg AT. El Nino and our future
climate: where do we stand? Wiley Interdiscipl Rev
Climate Change 2010, 1:260–270.

14. Hughes MK, Diaz HF. Was there a medieval warm
period, and if so, where and when? Climatic Change
1994, 26:109–142.

15. Broecker WS. Paleoclimate: was the medieval warm
period global? Science 2001, 291:1497–1499.

16. Mann ME. The value of multiple proxies. Science
2002, 297:1481–1482.

17. Bradley RS, Hughes MK, Diaz HF. Climate in medieval
time. Science 2003, 302:404–405.

18. Mann ME, Ammann CM, Bradley RS, Briffa KR,
Crowley TJ, Hughes MK, Jones PD, Oppenheimer M,
Osborn TJ, Overpeck JT, et al. On past temperatures
and anomalous late 20th-century warmth. Eos Trans
Amer Geophys 2003, 84:256–258.

19. Mann ME, Zhang Z, Rutherford S, Bradley RS,
Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F.
Global signatures and dynamical origins of the little ice
age and the medieval climate anomaly. Science 2009,
326:1256–1260. doi:10.1126/science.1177303.

20. North GR, Biondi F, Bloomfield P, Christy JR, Cuf-
fey KM, Dickinson RE, Druffel ERM, Nychka D,
Otto-Bliesner B, Roberts N, et al. Surface Tempera-
ture Reconstructions for the Last 2,000 Years. Wash-
ington DC: The National Academies Press; 2006,
196.

21. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos
R, Masson-Delmotte V, Olago D, Otto-Bliesner B,
Peltier WR, Rahmstorf S, et al. Palaeoclimate. In:
Solomon S, Qin D, Manning M, Chen Z, Marquis M,
Averyt KB, Tignor M, Miller HL, eds. Climate Change
2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change.
Cambridge, United Kingdom and New York, NY,
USA: Cambridge University Press; 2007.

Volume 3, January/February 2012 © 2011 John Wiley & Sons, Ltd. 73



Focus Article wires.wiley.com/climatechange

22. Mann ME, Rutherford S. Climate reconstruction
using pseudoproxies. Geophys Res Lett 2002, 29:
1501. doi:10.1029/2001GL014554.

23. Bradley RS. In: Jones PD, Bradley RS, Jouzel J, eds. Are
There Optimum Sites for Global Paleo-Temperature
Reconstructions? Climatic Variations and Forcing
Mechanisms of the Last 2000 Years, NATO ASI Series,
vol I 41. Berlin, Heidelberg: Springer-Verlag; 1996,
603–624.

24. Evans MN, Kaplan A, Cane MA, Villalba R. Global-
ity and optimality in climate field reconstructions from
proxy data. In: Markgraf V, ed. Interhemispheric Cli-
mate Linkages. Cambridge, United Kingdom and New
York, NY, USA: Cambridge University Press; 2001,
53–72.

25. Evans MN, Kaplan A, Cane MA. Pacific sea surface
temperature field reconstruction from coral δ18O data
using reduced space objective analysis. Paleoceanog-
raphy 2002, 17:1007. doi:10.1029/2000PA000590.

26. Ammann C, Wahl E. The Importance of the geo-
physical context in statistical evaluations of climate
reconstruction procedures. Climate Change 2007,
85:71–88. doi:10.1007/s10584-007-9276-x.

27. Ammann CM, Genton MG, Li B. Technical note:
correcting for signal attenuation from noisy proxy
data in climate reconstructions. Climate Past 2010,
6:273–279. doi:10.5194/cp-6-273-2010.

28. Bürger G, Fast I, Cubasch U. Climate reconstruction
by regression—32 variations on a theme. Tellus 2006,
58A:227–235.

29. Christiansen B, Schmith T, Thejll P. A surrogate en-
semble study of climate reconstruction meth-
ods: stochasticity and robustness. J Climate 2009,
22:951–976. doi:10.1175/2008JCLI2301.1.

30. Christiansen B, Schmith Thejll P. A surrogate ensem-
ble study of sea level reconstructions. J Climate 2010,
23:4306–4326.

31. Christiansen B, Schmith T, Thejll P. Reply. J Climate
2010, 23:2839–2844.

32. Christiansen B. Reconstructing the NH mean temper-
ature: can underestimation of trends and variability be
avoided? J Climate 2011, 24:674–692.

33. Dmitriev EV, Chavro AI. Possible causes of the under-
estimation of paleoclimate low-frequency variabil-
ity by statistical methods. Izvestiya, Atmos Ocean
Phys 2006, 42:586–597. doi:10.1134/S0001433806
050057.
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D, Jones PD, Gosjean M, Esper J, Lopez L, Wanner
H. Multi-centennial summer and winter precipita-
tion variability in southern South America. Geophys
Res Lett 2010, 37:L14708. doi:10.1029/2010GL043
680.

81. Pauling A, Luterbacher J, Wanner H. Evaluation of
proxies for European and North Atlantic tempera-
ture field reconstructions. Geophys Res Lett 2003,
30:1787. doi:10.1029/2003GL017589.

82. Jones PD, Osborn TJ, Briffa KR, Folland CK, Hor-
ton B, Alexander LV, Parker DE, Rayner NA. Adjust-
ing for sampling density in grid-box land and ocean
surface temperature time series. J Geophys Res 2001,
106:3371–3380.

83. Briffa KR. Annual climate variability in the Holocene:
interpreting the message of ancient trees. Quat Sci Rev
2000, 19:87–105.

84. Briffa KR, Osborn TJ, Schweingruber FH, Harris
IC, Jones PD, Shiyatov SG, Vaganov EA. Low-
frequency temperature variations from a northern
tree ring density network. J Geophys Res 2001, 106:
2929–2941.

85. D’Arrigo R, Wilson R, Jacoby G. On the long-term
context for late twentieth century warming. J Geophys
Res 2006, 111:D03103. doi:10.1029/2005JD006352.

86. Esper J, Cook ER, Schweingruber FH. Low-frequency
signals in long tree-ring chronologies for recon-
structing past temperature variability. Science 2002,
295:2250–2253.

87. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ. Cli-
mate sensitivity constrained by temperature recon-
structions over the past seven centuries. Nature 2006,
440:1029–1032.

88. Jones PD, Briffa KR, Barnett TP, Tett SFB. High-
resolution palaeoclimatic records for the last millen-
nium: interpretation, integration and comparison with
general circulation model control-run temperatures.
The Holocene 1998, 8:455–471.

89. Mann ME, Bradley RS, Hughes MK. Northern hemi-
sphere temperatures during the past millennium: infer-
ences, uncertainties, and limitations. Geophys Res Lett
1999, 26:759–762.

90. Mann ME, Jones PD. Global surface temperatures
over the past two millennia. Geophys Res Lett 2003,
30:1820. doi:10.1029/2003GL017814.

91. Moberg A, Sonechkin DM, Holmgren K, Datsenko
NM, Karlen W. Highly variable Northern Hemi-
sphere temperatures reconstructed from low and high-
resolution proxy data. Nature 2005, 433:613–617.

92. Oerlemans J. Extracting a climate signal from 169
glacier records. Science 2005, 308:675–677.

93. Pollack HN, Smerdon JE. Borehole climate recon-
structions: Spatial structure and hemispheric aver-
ages. J Geophys Res 2004, 109:D11106. doi:10.1029/
2003JD004163.

94. Rutherford S, Mann ME, Osborn TJ, Bradley RS,
Briffa KR, Hughes MK, Jones PD. Proxy-based
Northern Hemisphere surface temperature reconstruc-
tions: sensitivity to method, predictor network, tar-
get season, and target domain. J Climate 2005, 18:
2308–2329.

95. Zhang Z, Mann ME, Cook ER. Alternative methods
of proxy-based climate field reconstruction: applica-
tion to summer drought over the conterminous United
States back to AD 1700 from tree-ring data. Holocene
2004, 14:502–516.
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