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ABSTRACT

The Asymptotic Cone of Teichmüller Space: Thickness and Divergence

Harold Mark Sultan

Using the geometric model of the pants complex, we study the Asymptotic Cone of Teichmüller

space equipped with the Weil-Petersson metric. In particular, we provide a characterization of

the canonical finest pieces in the tree-graded structure of the asymptotic cone of Teichmüller

space along the same lines as a similar characterization for right angled Artin groups in [4]

and for mapping class groups in [8]. As a corollary of the characterization, we complete the

thickness classification of Teichmüller spaces for all surfaces of finite type, thereby answering

questions of Behrstock-Druţu [5], Behrstock-Druţu-Mosher [6], and Brock-Masur [21]. In par-

ticular, we prove that Teichmüller space of the genus two surface with one boundary component

(or puncture) can be uniquely characterized in the following two senses: it is thick of order two,

and it has superquadratic yet at most cubic divergence. In addition, we characterize strongly

contracting quasi-geodesics in Teichmüller space, generalizing results of Brock-Masur-Minsky

[23]. As a tool in the thesis, we develop a natural relative of the curve complex called the com-

plex of separating multicurves, S(S), which may be of independent interest.

The final chapter includes various related and independent results including, under mild

hypotheses, a proof of the equivalence of wideness and unconstrictedness in the CAT(0) setting,

as well as adapted versions of three preprints, [63, 64, 65]; the last was recently published in

the New York Journal of Mathematics. Specifically, in the three preprints we characterize

hyperbolic type quasi-geodesics in CAT(0) spaces, we prove that Csep(S2,0) satisfies a quasi-

distance formula and is δ-hyperbolic, and we study the net of separating pants decompositions

in the pants complex.
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Chapter 1

Introduction

“One geometry cannot be more true than another; it can only be more conve-

nient.”

-Henri Poincaré

1.1 Overview and context

For S a surface of finite type, Teichmüller space, denoted T (S),with origins in the work of

Fricke, Fenchel, and Nielsen is a classical space which parameterizes isotopy classes of hyper-

bolic structures on S. In the literature there are various natural metrics with which Teichmüller

space can be equipped. Hereinafter, we always consider T (S) with the Weil-Petersson metric.

The Weil-Petersson metric on T (S) is a complex analytically defined Riemannian metric of

variable non-positive curvature. While the space is not complete, its completion, T (S), ob-

tained by augmenting Teichmüller spaces of lower complexity surfaces corresponding to limit

points in the space with pinched curves, is a CAT(0) metric space [66, 68].

As we will see, the spectrum of non-positively curved geometries of T (S) for various

surfaces S is extremely broad. In particular, the geometry of Teichmüller spaces includes on

the one hand examples of hyperbolic and strongly relatively hyperbolic metric spaces, and on

the other hand thick of order one and thick of order two metric spaces. The example of a
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Teichmüller space which is thick of order two is a novelty of this thesis. In a similar vein, we

will see that the divergence function of Teichmüller spaces includes examples of spaces with

quadratic divergence, superquadratic yet at most cubic divergence, exponential divergence, and

infinite divergence. Again, the example of a Teichmüller space which has superquadratic yet at

most cubic divergence is a novelty of this thesis.

The above referenced notion of thickness, developed in [6] and further explored in [5],

is aptly named as it stands in stark contrast to relative hyperbolicity. In fact, if a space is

thick of any finite order than it is not strongly relatively hyperbolic, [6]. Informally the order

of thickness of a space should thought as a precise means of interpolating between product

spaces, which are thick of order zero, and (relatively)-hyperbolic spaces, which are not thick of

any finite order, or are thick of order infinity. More specifically, thickness is defined inductively.

A space is thick of order zero if none of its asymptotic cones have cut-points. More generally,

a space is thick of order at most n if the entire space is coarsely the union of a collection of

quasi-convex subsets which are thick of order n− 1, and such that given any two thick of order

n−1 subsets in the collection, there is a finite chain of thick of order n−1 subsets between the

two given subsets, such that each of the subsets in the chain coarsely intersects its neighboring

subsets in an infinite diameter set. Finally, a space is thick of order n, if n is the smallest integer

such that it is thick order at most n.

The large scale geometry of Teichmüller space has been an object of recent interest, es-

pecially within the circles of ideas surrounding Thurston’s Ending Lamination Conjecture. In

this context, the pants complex, P(S), a combinatorial complex associated to a hyperbolic

surface S, becomes relevant. Specifically, by a groundbreaking theorem of Brock [19], P(S)

is quasi-isometric to T (S). Accordingly, in order to study large scale geometric properties of

Teichmüller space, it suffices to study the pants complex of a surface. For instance, significant

recent results of Behrstock [3], Behrstock-Minsky [10], Brock-Farb [20], Brock-Masur [21],

and Brock-Masur-Minsky [22, 23], among others, can be viewed from this perspective. Simi-

larly, all of the results of this thesis regarding the coarse structure of the pants complex should

be interpreted as coarse results regarding Teichmüller space.
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The pants complex is closely related to two central objects in the field of geometric group

theory: the curve complex, C(S), and the mapping class group, MCG(S). By definition, ver-

tices of the pants complex are in correspondence with maximal simplices of the curve complex.

Moreover, a necessary condition for two vertices in the pants complex to be connected by an

edge is that their corresponding maximal simplices in the curve complex share a co-dimension

one face. In fact, for low complexity surfaces the pants complex is precisely the curve complex.

On the other hand, the pants complex also shares similarity with the mapping class group. In

fact, the mapping class group acts co-finitely and by isometries on the pants complex. However,

this action is not properly discontinuous. Nonetheless, the marking complex, a quasi-isometric

combinatorial model for the mapping class group, is strikingly similar to the pants complex.

We will exploit the similarity between the marking complex and the pants complex. Specifi-

cally, we apply numerous tools developed primarily in the course of studying the marking com-

plex (or equivalently, the mapping class group) by Behrstock [3], Behrstock-Kleiner-Minsky-

Mosher [8], Behrstock-Minsky [10], and Masur-Minsky [48], to the pants complex (or equiva-

lently, Teichmüller space).

The asymptotic cone of a metric space, a notion invented by Gromov and further developed

by van den Dries and Wilkie, is an important tool for understanding the large scale geometry

of a metric space, [36, 27]. In recent years, study of asymptotic cones has proven extremely

fruitful in considering the coarse geometry of groups and spaces. See for instance [7, 28, 30].

One aspect in common to the aforementioned studies of asymptotic cones is interest in cut-

points, namely single points whose removal disconnects the asymptotic cone. The general

theme is that cut-points in asymptotic cones correspond to a weak form of hyperbolicity in the

underlying space. One of the highlights of the thesis is a characterization of when two points

in the asymptotic cone of Teichmüller space are separated by a cut-point, see Theorem 4.2.3.

On the one hand, it is shown in [3] that in the asymptotic cone of Teichmüller space, ev-

ery point is a global cut-point. On the other hand, for high enough complexity surfaces, Te-

ichmüller space has natural quasi-isometrically embedded flats, or quasi-flats, [10, 20, 48]. In

turn, this implies the existence of naturally embedded flats in the asymptotic cone and hence
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the existence of nontrivial subsets of the asymptotic cone without cut-points. Putting things

together, for high enough complexity surfaces, the asymptotic cone of Teichmüller space is a

tree-graded space. In such a setting, there are canonically defined finest pieces of the tree-

graded structure, which are defined to be maximal subsets of the asymptotic cone subject to the

condition that no two points in a finest piece can be separated by the removal of a point. A high-

light of this thesis is the following theorem that characterizes the finest pieces in tree-graded

structure of the asymptotic cone of Teichmüller space.

Theorem 4.2.3. Let S = Sg,n, and let Pω(S) be any asymptotic cone of P(S). Then ∀aω, bω ∈

Pω(S), the following are equivalent:

1. No point separates aω and bω, or equivalently aω and bω are in the same canonical finest

piece, and

2. In any neighborhood of aω, bω, respectively, there exists a′ω, b
′
ω, with representative se-

quences (a′n),(b′n), such that limω dS(S)(a
′
n, b

′
n) <∞.

The characterization of finest pieces in Theorem 4.2.3 is given in terms of the complex of

separating multicurves S(S) which encodes information about the natural product structures

in the pants complex. The complex of separating multicurves will be defined and explored

in Chapter 3. The proof of Theorem 4.2.3 relies heavily on a notion of structurally integral

corners to be developed in Section 4.1. Roughly speaking, a structurally integral corner is

a point in the asymptotic cone whose removal disconnects particular natural product regions.

Structurally integral corners only exist for low complexity surfaces. Theorem 4.2.3 should be

compared with Theorem 4.6 of [4] and Theorem 7.9 of [8] where similar characterizations of

the finest pieces are proven for right angled Artin groups and mapping class groups, respec-

tively.

The following two celebrated theorems can be recovered as special cases of Theorem 4.2.3.

Corollary 4.2.6. ([3, 20] Theorem 5.1, Theorem 1.1). T (S1,2) and T (S0,5) are δ-hyperbolic.
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Corollary 4.2.7. ([21] Theorem 1). For S ∈ {S0,6, S1,3, S2,0}, T (S) is relatively hyperbolic

with respect to natural quasi-convex product regions consisting of all pairs of pants with a fixed

separating curve.

More generally, in the course of studying non-positively curved metric spaces, such as

T (S), one is frequently interested in families of geodesics which admit hyperbolic type prop-

erties, or properties exhibited by geodesics in hyperbolic space which are not exhibited by

geodesics in Euclidean space. In the geometric group theory literature there are various well

studied examples of such hyperbolic type properties including being Morse, being contracting,

and having cut-points in the asymptotic cone. Such studies have proven fruitful in analyzing

right angled Artin groups [4], Teichmüller space [3, 20, 21, 23], the mapping class group [3],

CAT(0) spaces [5, 13, 26], and Out(Fn) [1] among others (for instance [29, 30, 41, 55, 47]).

A morse geodesic γ is defined by the property that all quasi-geodesics σ with endpoints

on γ remain within a bounded distance from γ. A strongly contracting geodesic has the prop-

erty that metric balls disjoint from the geodesic have nearest point projections onto the geodesic

with uniformly bounded diameter. It is an elementary fact that in hyperbolic space all geodesics

are Morse and strongly contracting. On the other end of the spectrum, in product spaces such

as Euclidean spaces of dimension two and above, there are no Morse or strongly contract-

ing geodesics. Relatedly, there are no cut-points in any asymptotic cones of product spaces,

whereas all asymptotic cones of a δ-hyperbolic spaces are R-trees, and hence any two distinct

points are separated by a cut-point.

In [63], which is reproduced in Section 6.2, we prove that in CAT(0) spaces the aforemen-

tioned hyperbolic type properties of quasi-geodesics are closely related. Specifically, we have

the following theorem building on similar theorems in [13, 26, 29, 41].

Theorem 6.2.5. Let X be a CAT(0) space and γ ⊂ X a quasi-geodesic. Then, the following

are equivalent:

1. γ is (b,c)–contracting,

2. γ is strongly contracting,
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3. γ is Morse, and

4. In every asymptotic cone Xω, any two distinct points in the ultralimit γω are separated

by a cut-point.

In particular, any of the properties listed above implies that γ has at least quadratic divergence.

Combining Theorems 4.2.3 and 6.2.5, in the following Theorem we characterize all strongly

contracting (or equivalently Morse) quasi-geodesics in T (S). This family of strongly con-

tracting quasi-geodesics represents a generalization of quasi-geodesics with bounded combi-

natorics studied in [23] and similarly in [3]. In the aforementioned papers it is shown that

quasi-geodesics in P(S) which have uniformly bounded subsurface projections to all con-

nected proper essential subsurfaces, or equivalently stay in the thick part of Teichmüller space,

are necessarily contracting. Generalizing this result, we prove the following:

Theorem 4.3.3. Let γ be a quasi-geodesic in T (S), and let γ′ be a corresponding quasi-

geodesic in P(S). Then γ is strongly contracting if and only if there exists a constant C such

that for all Y ∈ SE(S), the subsurface projection πY (γ′) has diameter bounded above by C.

In particular, as an immediate consequence of Theorem 4.3.3, we have the following corol-

lary highlighting a distinction between MCG(S) and T (S).

Corollary 4.3.4. Let γ be any partial pseudo-Anosov axis in T (S) supported on a connected

nonseparating essential subsurface Y ∈ NE(S), then γ is strongly contracting.

Later in the thesis we focus in particular on the Teichmüller space of the surface S2,1 which

in the literature has previously proven to be difficult to analyze. As noted, for “small” com-

plexity surfaces which don’t admit any nontrivial separating curves, Brock-Farb [20] prove

that T (S) is hyperbolic. A new proof was later provided by Behrstock in [3]. Similarly, for

“medium” complexity surfaces, which admit nontrivial separating curves, yet have the property

that any two separating curves intersect, Brock-Masur prove that T (S) is relatively hyperbolic,

[21]. Finally, for all the remaining “large” complexity surfaces excluding S2,1, whose com-

plexes of separating multicurves only have a single infinite diameter connected component, the
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combined work of [3, 21], implies that the Teichmüller spaces of these surfaces are not rela-

tively hyperbolic and in fact are thick of order one. However, unlike all other surfaces of finite

type, the surface S2,1 has the peculiar property that it is “large enough” such that it admits dis-

joint separating curves, although “too small” such that the complex of separating multicurves

has infinitely many infinite diameter connected components. As we will see, this phenomenon

makes the study of the Teichmüller space of S2,1 quite rich.

Using Theorem 4.2.3 in conjunction with a careful analysis of the Brock-Masur construc-

tion for showing that T (S2,1) is thick of order at most two [21], we prove the following theorem

answering question 12.8 of [6].

Theorem 5.2.7. T (S2,1) is thick of order two.

Notably, Theorem 5.2.7 completes the thickness classification of the Teichmüller spaces of

all surfaces of finite type. Moreover, among all surfaces of finite type, S2,1 is the only surface

that is thick of order two.

The divergence of a metric space measures the inefficiency of detour paths. More formally,

divergence along a geodesic is defined as the growth rate of the length of detour paths connect-

ing sequences of pairs of points on a geodesic, where the distance between the pairs of points

is growing linearly while the detour path is forced to avoid linearly sized metric balls centered

along the geodesic between the pairs of points. It is an elementary fact of Euclidean geometry

that Euclidean space has linear divergence. On the other end of the spectrum, hyperbolic space

has exponential divergence.

Given this gap between the linear divergence in Euclidean space and the exponential diver-

gence in hyperbolic space, the exploration of spaces with “intermediate divergence” provides

a means of understanding a rich spectrum of non-positively curved geometries which interpo-

late between flat and negatively curved geometries. The history of this exploration goes back

to Gromov, who noticed that δ-hyperbolic spaces, like Hn, have at least exponential diver-

gence, [37]. Gromov then asked if there were non-positively curved spaces whose divergence

functions were superlinear yet subexponential, [38]. Soon afterward, Gersten answered this

question in the affirmative by constructing CAT(0) groups with quadratic divergence, [35]. In
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short order Gersten proved that in fact the family of fundamental groups of graph manifolds

provided natural examples of spaces with quadratic divergence [34]. Moreover, in recent years

it has been shown that various other well studied groups such as mapping class groups, right

angled Artin groups, and Teichmüller spaces with the Teichmüller metric also have quadratic

divergence, [3, 4, 31].

After identifying spaces with quadratic divergence, Gersten went on to reformulate Gro-

mov’s question and asked if there existed CAT(0) spaces with superquadratic yet subexponen-

tial divergence. This latter question of Gersten was recently answered in the affirmative by

independent papers of Behrstock-Druţu and Macura who each constructed CAT(0) groups with

polynomial of degree n divergence functions for every natural number n, [5, 45]. In Section 5.3

we show that a naturally occurring Teichmüller space, T (S2,1), which is CAT(0), also provides

an example answering Gersten’s question in the affirmative. In fact, we prove the following

theorem answering question 4.19 in [5]:

Theorem 5.3.7. T (S2,1) has superquadratic yet at most cubic divergence. Moreover, it is the

unique Teichmüller space with this property.

A common approach to proving that a geodesic has at least quadratic divergence is to show

that a geodesic is contracting. Contraction implies that in order for a connected subsegment of a

detour path avoiding a ball of radiusR centered on the geodesic to have nearest point projection

onto the geodesic of more than a uniformly bounded diameter, the length of the subsegment

must be linear in R. In turn, it follows that a detour path must travel at least a linear amount

of linear distances, and hence at least a quadratic distance. See [3] for such an approach in

proving that MCG has (at least) quadratic divergence. In the proof of Theorem 5.3.7 we follow

the previously sketched outline, although we pick a careful example of a quasi-geodesic such

that we can show that a detour path must in fact travel a linear amount of superlinear distances,

thereby ensuring superquadratic divergence. Since cut-points in asymptotic cones correspond

to instances of superlinear divergence, Theorem 4.2.3 has a role in the proof of Theorem 5.3.7.

It should be noted that conjecturally we believe that T (S2,1) has cubic divergence. An approach

toward proving this is presented in Section 5.4.
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In the literature there are a couple of closely related notions of thickness, see [5, 6], whose

differences stem from the following distinction between wide and unconstricted spaces. Specif-

ically, a metric space X is called wide if all asymptotic cones Xω are without cut-points. On

the other hand, a metric space X is called unconstricted if there exists some ultrafilter ω and

some sequence of scalars si such that any asymptotic cone Coneω(X, ·, (si)) does not have

cut-points. In this thesis, as in [5], we adopt a strong form of thickness which uses wide spaces

as the base case of its inductive definition. Nonetheless, while in general being unconstricted is

strictly weaker than being wide, in Section 6.1 we prove the following theorem which may be

of independent interest. The proof is based on Lemma 6.1.2, which ensures a minimal unifor-

mity of nearest point projection maps in CAT(0) spaces onto convex subspaces, and may also

be of independent interest.

Theorem 6.1.1. For X a CAT(0) space with extendable geodesics, X is wide if and only if

it is unconstricted. Moreover, if in addition X is coarsely homogeneous, then either every

asymptotic cone of X has a cut-point, or no asymptotic cone of X has a cut-point.

The final three sections of Chapter 6 represent adapted versions of the following papers,

[63, 64, 65]. In Section 6.2 we use methods of CAT(0) geometry and asymptotic cones to

study hyperbolic type quasi-geodesics in CAT(0) spaces. The proof of Theorem 6.2.5 cited

above is the highlight of the section.

In Section 6.3, using some nice properties of Farey graphs we prove that the separating

curve complex S(S2,0) is δ-hyperbolic, answering a question of Schleimer [61]. More specifi-

cally, we prove the following quasi-distance formula for S(S2,0) which is similar to as well as

motivated by quasi-distance formulas for M(S) and P(S) in [48]:

Theorem 6.4.4. There is constant K0 such that for all k ≥ K0 there exist quasi-isometry

constants such that ∀α, β ∈ S(S2,0),

dS(S2,0)(α, β) ≈
∑

Y ⊂S2,0|∂Y ̸∈S(S2,0)

{dC(Y )(α, β)}k

where the threshold function {f(x)}k := f(x) if f(x) ≥ k, and 0 otherwise.
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In Section [65], using graph theoretic methods, we provide the following asymptotically

sharp bounds on the maximal distance in the pants complex from any pants decomposition to

the set of pants decompositions containing a separating curve, Psep(S).

Theorem 6.4.1. Let S = Sg,n and set Dn(g) = max
P∈P(S)

(dP(S)(P,Psep(S))). Then, for any

fixed number of boundary components (or punctures) n, the function Dn(g) grows proportion-

ally to log(g). On the other hand, for any fixed genus g ≥ 2, ∀n ≥ 6g − 5, Dg,n = 2.

The lower bounds in Theorem 6.4.1 follow from an original and explicit constructive al-

gorithm for an infinite family of high girth at most cubic graphs with the property that the

minimum cardinality of connected cut-sets is a logarithmic function with respect to the vertex

size of the graphs.

1.2 Outline of subsequent chapters

Chapter 2 provides background material. Section 2.1 reviews background material, including

but not limited to essential subsurfaces, the curve and pants complexes, the asymptotic cone

of a space, and thickness. Section 2.2 reviews coarse geometric tools of the curve and pants

complex, most prominently subsurface projections and hierarchy paths. In addition, Section

2.2 also reviews tools of Behrstock-Kleiner-Minsky-Mosher, and Behrstock-Minsky, [8, 10]

including convex regions, regions of sublinear growth, the consistency theorem, and jets.

Chapter 3 introduces and analyzes the complex of separating multicurves, S(S). This nat-

ural combinatorial complex encodes the network of natural quasi-convex product regions in

Teichmüller space. Properties of the complex including connectivity and the existence of a

quasi-distance formula are proven. In addition, as an example which is relevant to some of the

analysis of P(S2,1) in Chapter 5, the complex S(S2,1) is considered at length and is related to

the point pushing subgroup of the mapping class group. Finally, the relationship between the

complex and asymptotic cones are considered.

In Chapter 4, we study the asymptotic cone of Teichmüller space. In particular, we charac-

terize the canonical finest pieces in the tree-graded structure of the asymptotic cone. In Section
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4.1 the notion of a structurally integral corner in the asymptotic cone of the pants complex is

developed. Informally, a structurally integral corner entails the joining of two particular natural

convex product regions in the asymptotic cone at a corner such that the removal of the corner

separates the two product regions. This separation property in the asymptotic cone of the pants

complex provided by a structurally integral corner will be a major ingredient in the proof of the

characterization of the finest pieces of the asymptotic cone of the pants complex. Structurally

integral corners are motivated by an attempt to generalize the theory of jets developed in [8] in

the context of the curve complex to the separating complex.

Section 4.2 contains the characterization of the finest pieces in the tree-graded structure

of the asymptotic cone of the pants complex. Applications of this characterization include

Corollaries 4.2.6 and 4.2.7, above. Next, Section 4.3 uses the analysis of the previous section

to characterize strongly contracting quasi-geodesics in Teichmüller space.

In Chapter 5 we prove that T (S2,1) is thick of order two. We begin in Section 5.1 by

carefully considering the construction of Brock-Masur [21], which proves that T (S2,1) is thick

of order at most two. Then, in Section 5.2, using the characterization of the finest pieces in

the tree-graded structure of the asymptotic cone of the pants complex, we show that T (S2,1)

cannot be thick of order one, by showing that a maximal thick of order one subset in the

pants complex has infinite Hausdorff distance from the entire space. Next, in Section 5.3, we

prove that T (S2,1) has superquadratic divergence by constructing an explicit example. Finally,

Section 5.4 concludes with progress toward proving that T (S2,1) has cubic divergence as well

as some related open questions.

Chapter 6 consists of four independent sections. In Section 6.1, under mild conditions we

prove the equivalence of wideness and unconstrictedness in the CAT(0) setting. In Section 6.2

we characterize hyperbolic type quasi-geodesics in CAT(0) spaces. In Section 6.3 we prove

that Csep(S2,0) is δ-hyperbolic. Finally, in Section 6.4 we study the net of pants decompositions

containing a separating curve in the pants complex.
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Chapter 2

Preliminaries

The chapter is broken up into two sections. Section 2.1 focuses on background material

and establishes some notations. Section 2.2 focuses on certain tools developed primarily in

the course of studying the large scale geometry of the mapping class group via the marking

complex. These tools are described via the curve complex.

2.1 Background

2.1.1 Quasi-Isometries and Coarse intersections

In studying the large scale properties of a space, in place of the usual notions of intersections

between subsets and continuous maps between spaces, it is useful to consider the notions of

coarse intersection and quasi-isometries. The latter notions are natural generalizations to the

large scale setting of the former notions.

Definition 2.1.1 (coarse intersection). Given a metric space X, and subsets A,B ⊂ X, the

subsets coarsely intersect, denoted A∩̂B ̸= ∅, if there exists a positive constant r such that

any two elements in the collection of subsets {NR(A) ∩NR(B)|R ≥ r} have finite Hausdorff

distance. Moreover, if C ⊂ X has finite Hausdorff distance from any set NR(A) ∩ NR(B),

then C is the coarse intersection of the subsets A and B. In particular, we will be interested in
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the situations where C has bounded diameter, in which case we say the subsets A and B have

bounded coarse intersection.

Note that two subsets may fail to coarsely intersect, although if they do, then their coarse

intersection as defined in Definition 2.1.1 is well defined, [54].

Definition 2.1.2 (quasi-isometry). Given metric spaces (X, dX), (Y, dY ), a map f : (X, dX) →

(Y, dY ) is called a (K,L) quasi-isometric embedding of X into Y if there exist constants K ≥

1, L ≥ 0 such that for all x, x′ ∈ X the following inequality holds:

K−1dX(x, x′) − L ≤ dY (f(x), f(x′)) ≤ KdX(x, x′) + L

If in addition, the map f is roughly onto, i.e. a fixed neighborhood of the image must be the

entire codomain, f is called a quasi-isometry. Two metric spaces are called quasi-isometric if

and only if there exists a quasi-isometry between them. The special case of a quasi-isometric

embedding with domain a line (segment, ray, or bi-infinite) is a quasi-geodesic.

Remark 2.1.3. To simplify notation, we sometimes write:

dX(x, x′) ≈K,L dY (y, y′) to imply K−1dX(x, x′) − L ≤ dY (y, y′) ≤ KdX(x, x′) + L

for someK,L. Similarly, we write dX(x, x′) .K,L dY (y, y′) to imply dX(x, x′) ≤ KdY (y, y′)+

L. When the constants K,L are not important, they will be omitted from the notation.

2.1.2 Curves and Essential Subsurfaces

Let S = Sg,n, by any surface of finite type. That is, S is a genus g surface with n boundary

components (or punctures). The complexity of S, denoted ξ(S), is defined to be 3g − 3 + n.

While in terms of the mapping class group there is a distinction between boundary components

of a surface and punctures on a surface, as elements of the mapping class group must fix the

former, yet can permute the latter, for the purposes of this thesis such a distinction will not

be relevant. Accordingly, throughout this thesis while we will always refer to surfaces with

boundary components, the same results hold mutatis mutandis for surfaces with punctures.



CHAPTER 2. PRELIMINARIES 14

A simple closed curve γ on a surface S is peripheral if it bounds a disk, once punctured

disk, or annulus; a non-peripheral curve is essential. Throughout the thesis we only consider

essential simple closed curves up to isotopy and by abuse of notation will refer to the isotopy

classes simply as curves. Since we consider curves up to isotopy, we can always assume that

their intersections are transverse and cannot be removed. Equivalently, S \ (γ1 ∪ γ2) does

not contain any bigons. We say that two curves are disjoint, denoted γ1 ∩ γ2 = ∅, if they

can be drawn disjointly on the surface. Otherwise, we say that the curves intersect, denoted

γ1 ∩ γ2 ̸= ∅. A multicurve is a set of disjoint non parallel curves.

An essential subsurface Y of a surface S is a subsurface Y ⊆ S such that Y is a union

of (not necessarily all) complementary components of a multicurve. Throughout the thesis we

always consider essential subsurfaces and by abuse of notation will refer to the isotopy classes

of essential subsurfaces simply as essential subsurfaces. Furthermore, we always assume every

connected component of every essential subsurface Y ⊂ S has complexity at least one. In par-

ticular, unless otherwise noted annuli or pairs of pants are not considered essential subsurfaces

and do not appear as connected components of essential subsurfaces. For a fixed surface S, let

E(S) denote the set of all connected essential subsurfaces of S.

Given any essential subsurface Y we define the essential complement of Y , denoted Y c, to

be the maximal (in terms of containment) essential subsurface in the complement S \Y if such

an essential subsurface exists, and to be the empty set otherwise. An essential subsurface Y is

called a separating essential subsurface if the complement S \ Y contains an essential subsur-

face, or equivalently Y c is nontrivial. The reason for the name separating essential subsurface

is due to that the fact that Y is a separating essential subsurface if and only if the boundary ∂Y

is a separating multicurve, an object we will consider at length in Chapter 3. All other essen-

tial subsurfaces which are not separating essential subsurfaces, are defined to be nonseparating

essential subsurfaces. For example, if Y is an essential subsurface such that the complement

S \ Y consists of a disjoint union of annuli and pairs of pants, then Y is a nonseparating es-

sential subsurface. Let the subsets SE(S),NE(S) ⊂ E(S) denote the sets of all connected

separating, nonseparating essential subsurfaces of S, respectively.
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An essential subsurface Y is proper if it is not all of S. If two essential subsurfaces W,V

have representatives which can be drawn disjointly on a surface they are said to be disjoint. On

the other hand, we say W is nested in V, denoted W ⊂ V, if W has a representative which

can be realized as an essential subsurface inside a representative of the essential subsurface

V. If W and V are not disjoint, yet neither essential subsurface is nested in the other, we say

that W overlaps V, denoted W t V. In general, if two essential subsurfaces W,V either are

nested or overlap, we say that the surfaces intersect each other. In such a setting we define the

essential intersection, denoted W ∩ V, to be the maximal essential subsurface which is nested

in both W and V, if such an essential subsurface exists, and the emptyset otherwise. Note that

W ∩V may be trivial even if the essential subsurfaces W,V are not disjoint, as the intersection

W ∩ V may be supported in a subsurface which is not essential. For instance, see Figure 1.

Similarly, the essential complement of V in W, denoted W \ V, is defined to be the maximal

essential subsurface in (S ∩W ) \ Y if such an essential subsurface exists, and to be the empty

set otherwise.

W
V

9 9
WV

Figure 1: W,V ∈ E(S), W t V. W is drawn in blue, V is drawn in yellow. Note that in this

case the essential intersection W ∩ V is the emptyset.

A multicurve C is disjoint from an essential subsurface Y, denoted C ∩ Y = ∅, if the

multicurve and essential subsurface have representatives which can be drawn disjointly on the

surface. Otherwise, the multicurve C and the essential subsurface Y are said to intersect. In

particular, given a proper essential subsurface Y ( S, the boundary parallel curve(s) ∂Y are
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disjoint from Y.

2.1.3 Curve and Pants Complex

For any surface S with positive complexity, the curve complex of S, denoted C(S), is the

simplicial complex obtained by associating a 0-cell to each curve, and more generally a k-cell

to each multicurve with k + 1 elements. In the special case of low complexity surfaces which

do not admit disjoint curves, we relax the notion of adjacency to allow edges between vertices

corresponding to curves which intersect minimally on the surface. C(S) was first defined by

Harvey [39] and is a central object in the field of geometric group theory. The curve complex

endowed with the graph metric is a locally infinite, infinite diameter, δ-hyperbolic metric space,

see [47] (as well as [16] for an independent proof).

We will be particularly interested in maximal multicurves, or pants decompositions. Equiv-

alently, a pants decomposition is a multicurve {γ1, ..., γm} such that S−{γ1, ..., γm} consists of

a disjoint union of pairs of pants, or S0,3’s. For example, in Figure 1 the multicurve {∂W, ∂V }

is a pants decomposition of S0,5.

Related to the curve complex, C(S), there is another natural complex associated to any

surface of finite type with positive complexity: the pants complex, P(S). To be sure, the pants

complex is a 2-complex, although for purposes of this thesis, since we are only interested in

the quasi-isometry type of the pants complex, it will suffice to consider the 1-skeleton of the

pants complex, the pants graph. By abuse of notation, we often refer the pants graph as the

pants complex. The pants graph has vertices corresponding to different pants decompositions

of the surface up to isotopy, and edges between two vertices when the two corresponding

pants decompositions differ by a so-called elementary pants move. Specifically, two pants

decompositions of a surface differ by an elementary pants move if the two decompositions

differ in exactly one curve and inside the unique connected complexity one essential subsurface

in the complement of all the other agreeing curves of the pants decompositions (topologically

either an S1,1 or an S0,4) the differing curves intersect minimally (namely, once if the connected

complexity one essential subsurface is S1,1 and twice if the connected complexity one essential
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subsurface is S0,4). The pants graph is connected [40], and hence it makes sense to endow

P(S) with the graph metric which we denote dP(P1, P2).

2.1.4 The Pants complex and Teichmüller space

Definition 2.1.4 (Teichmüller space). For S a surface of finite type with χ(S) < 0, the Te-

ichmüller space of S is the set of isotopy classes of hyperbolic structures on S. Formally,

T (S) = {(f,X)|f : S → X}/ ∼,

where S is a model surface (a topological surface without a metric), X is a surface with a hy-

perbolic metric, the map f is a homeomorphism called a marking, and the equivalence relation

is given by:

(g, Y ) ∼ (f,X) ⇐⇒ gf−1 is isotopic to an isometry.

Often we omit the marking from the notation.

As Teichmüller space can be equivalently defined in terms of complex structures on S,

Teichmüller space is a classical deformation space which is also of interest to complex analysts.

It is a standard result that as a topological space, T (S) homeomorphic to R6g−6+2b+3p, where

g is the genus, b is the number of boundary components, and n is the number of punctures; for

instance, see [32] for a proof. On the other hand, a more interesting and active area of research

is to study T (S) as a metric space. To be sure, there are various natural metrics throughout

the literature with which Teichmüller space can be equipped. Among these, one of the most

important metrics is the Weil-Petersson (WP) metric which is defined in terms of the complex

analytic framework. Throughout, we always assume implicitly that T (S) is equipped with

the WP metric. The WP metric is a Riemannian metric of variable non-positive curvature.

While T (S) with the WP metric is not complete, as in finite time a curve in the surface can be

degenerated to a point, its completion T (S) obtained by augmenting the Teichmüller spaces of

lower complexity nodded surfaces is CAT(0), [66, 68]. See [67] for a survey on the WP metric

and its completion.
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For purposes of this thesis, since we seek to explore the large scale geometric properties

of Teichmüller space, we will not need to use the actual integral form definition of the WP

metric but in its place will use the pants complex as a combinatorial model for studying T (S).

Specifically, as justified by the conjunction of the following two theorems, in order to study

quasi-isometry invariant properties of T (S), such as for instance thickness and divergence, it

suffices to study the quasi-isometric model of Teichmüller space given by the pants complex.

Theorem 2.1.5 ([11, 12] Bers constant). ∃ a Bers constant B(S), such that ∀X ∈ T (S), there

exists a Bers pants decomposition XB ∈ P0(S) such that ∀α ∈ XB, the length lX(α) ≤ B. In

other words, every point in Teichmüller space has a pants decomposition consisting of all short

curves, where short is measured relative to a uniform constant depending only on the topology

of the surface.

Intuitively, the proof of Theorem 2.1.5 is based on the standard fact that in hyperbolic

geometry one can make certain curves on a surface long, but since the total area of the surface

is bounded in terms of the topology of the surface, doing so is perforce at the expense of

making other curves short. For instance, see [24] for a proof. Using the mapping suggested by

Theorem 2.1.5, the following groundbreaking theorem of Brock proves that T (S) and P(S)

are quasi-isometric.

Theorem 2.1.6 ([19] Theorem 3.2). The mapping Ψ: (T (S),WP ) → (P(S), graph metric)

given by

X 7→ BX

where BX ∈ P(S) is a Bers pants decomposition of X as in Theorem 2.1.5, is coarsely well-

defined, and moreover, is a quasi-isometry.

2.1.5 Marking Complex

The marking complex can be thought of as a slight generalization of the pants complex. Specif-

ically, a complete marking µ on S is a collection of base curves {γi} and transverse curves {ti}

subject to the following conditions:
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1. The base curves {γ1, ..., γn} are a pants decomposition, i.e. n = ξ(S).

2. Each base curve γi has a corresponding transverse curve ti transversely intersecting γi

such that ti intersects γi exactly once if γi has nontrivial homology, and twice if γi is

null-homologous.

A complete marking µ is said to be clean if in addition each transverse curve ti is disjoint from

all other base curves γj.

Let µ = {(γi, ti)} be a complete clean marking, then we define an elementary move to be

one of the following two operations applied to the marking µ :

1. Twist: For some i, we replace (γi, ti) with (γi, t
′
i) where t′i is the result of one full or half

twist (when possible) of ti around γi.

2. Flip: For some i we interchange the base and transverse curves. After a flip move, it is

possible that the resulting complete marking is no longer clean, in which case as part of

the flip move we then replace the non-clean complete marking with a compatible clean

complete marking. Specifically, two complete markings µ, µ′ are compatible if they have

the same base curves and moreover for all i the annular distance dγi
(ti, t

′
i) is minimal over

all choices of t′i. See [48] for technical details regarding the annular complex. For our

purposes it suffices to use the fact that traveling in the annular complex is accomplished

by taking an arc in a regular neighborhood of the annulus and Dehn twisting it around the

core curve of the annulus. In [48] it is shown that there is a uniform bound, depending

only on the topological type of S, on the number of clean markings which are compatible

with any other given marking. Hence, a flip move is coarsely well-defined by choosing

any compatible complete clean marking.

The marking complex, M(S), is defined to be the graph formed by taking complete clean

markings of S to be vertices and connecting two vertices by an edge if they differ by an elemen-

tary move. Notice that by construction, M(S) is a locally finite graph on which MCG(S) acts

by isometries. Since there are only finitely many topological types of complete clean markings,
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the action is cocompact. Moreover, it can be checked that the action is properly discontinuous

and hence by the Milnor-Svarc Lemma (see for instance [18, 60] for explicit statements and

proofs of the Milnor-Svarc Lemma which is based on results in [51, 62]), it follows that M(S)

is quasi-isometric to MCG(S).

2.1.6 Ultrapowers and Asymptotic Cones

The asymptotic cone of a space captures the large scale geometric properties of a space. Infor-

mally, an asymptotic cone of a metric space (X, d), denoted Coneω(X), can be described as

looking at a space from far away. After introducing necessary concepts, we will give a more

formal definition of the asymptotic cone.

We begin by defining a non principal ultrafilter ω, which is a tool of logic and is useful for

example to ensure the convergence of sequences. Specifically, a non-principal ultrafilter is a

subset ω ⊂ 2N, satisfying the following properties:

1. ω is non empty; ω does not contain the empty set (filter),

2. X, Y ∈ ω =⇒ X ∩ Y ∈ ω (filter),

3. X ⊂ Y, X ∈ ω =⇒ Y ∈ ω (filter),

4. X ̸∈ ω =⇒ (N \X) ∈ ω (ultrafilter), and

5. |X| <∞ =⇒ X ̸∈ ω (non-principal).

Given a sequence of points (xi) and an ultrafilter ω, the ultralimit of (xi), denoted limω xi,

is defined to be x if for any neighborhood U of x, the set {i : xi ∈ U} ∈ ω. That is, ω almost

surely (or ω–a.s. ) xi ∈ U. Ultralimits are unique when they exist.

Remark 2.1.7 (Ultrafilter Lemma). Non principal ultrafilters exist by Zorn’s Lemma: “Every

partially ordered set, in which every totally ordered subset has an upper bound, contains at

least one maximal element.” In fact, the following argument proves that there exists an (non-

principal) ultrafilter containing an arbitrary (non-principal) filter of P (N).
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The set of (non-principal) filters is a partially ordered set under containment. Moreover, by

taking unions, every totally ordered subset has an upper bound. Hence, Zorn’s Lemma implies

there must exist a maximal (non-principal) filter. We can take such a maximal (non-principal)

filter to be our (non-principal) ultrafilter ω. It suffices to show that the maximal (non-principal)

filter ω is an ultrafilter, or equivalently that ω contains every set or its complement. Assume ω

contains neither (an infinite order set) X nor N \ X. Since X ̸∈ ω, maximality of ω implies

∃ a (infinite order) set Y ∈ ω such that |X ∩ Y | = 0, (is finite). If not, ω ∪ {X} generates a

(non-principal) filter larger than ω ⇒⇐ . Similarly, since N \X ̸∈ ω, there ∃ a (infinite order)

set Z ∈ ω such that |Z ∩ (N \ X)| = 0, (is finite). By the properties of a filter Y ∩ Z ∈ ω,

however, (Y ∩ Z) ∩X and (Y ∩ Z) ∩ (N \X) each have empty intersection (are finite sets),

implying that Y ∩Z is the empty set (a finite set) and hence cannot be an element of ω. This is

a contradiction to the assumption that ω is a (non-principal) filter.

Given any set S and an ultrafilter ω, we define the ultrapower of S, denoted Sω, as se-

quences s or (si) under the equivalence relation s ∼ s′ ⇐⇒ ω–a.s. si = s′i. Elements of

the ultrapower will be denoted sω and their representative sequences will be denoted by s or

(si). By abuse of notation we will sometimes denote elements of the ultrapower and similarly

elements of the asymptotic cone by their representative sequences.

For a metric space (X, d), we define the asymptotic cone of X, relative to a fixed choice of

ultrafilter ω, a sequence of base points in the space (xi), and an unbounded sequence of positive

scaling constants (si), as follows:

Coneω(X, (xi), (si)) ≡ lim
ω

(X, xi, di =
d

si

)

When the choice of scaling constants and base points are not relevant we denote the asymp-

totic cone of a metric space X by Xω. Elements of asymptotic cones will be denoted xω with

representatives denoted by x or (xi). For P(S) we denote Coneω(P(S), (P i
0), (si)) = Pω(S).

In particular, we assume a fixed base point of our asymptotic cone with representative given by

(P 0
i ). Furthermore, unless otherwise specified always assume a fixed ultrafilter ω.

More generally, given a subset Y ⊂ X, and a choice of asymptotic cone Xω, throughout
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we will often consider the ultralimit of Y, denoted Yω, defined as follows:

Yω =: {yω ∈ Xω|yω has a representative sequence (y′i) with y′i ∈ Y ω-a.s}

In particular, when dealing with ultralimits we will always be considering the ultralimits as

subsets contained inside an understood asymptotic cone. Furthermore, given a sequence of

subspaces Yi ⊂ X, we can similarly define the ultralimit, Yω. Based on the context it will be

clear which type of ultralimit is being considered.

Consider the following two elementary examples of asymptotic cones: For K a compact

metric space, Kω is a singleton, whereas the asymptotic cone of Zn is isometric to Rn equipped

with the so-called Manhattan distance, or L1 metric. The following theorem organizes some

well known elementary facts about asymptotic cones:

Theorem 2.1.8. For metric spaces X, Y and any asymptotic cones Xω, Yω,

1. (X × Y )ω=Xω × Yω.

2. ForX a geodesic metric space,Xω is a geodesic metric space and in particular is locally

path connected.

3. X ≈ Y implies Xω and Yω are bi-Lipschitz equivalent.

Proof. The first fact follows from the observation that the construction of the asymptotic cone

commutes with a product structure. The second fact follows from the consideration that the

ultralimit of a sequence of geodesics gives rise to a geodesic in the asymptotic cone.

For the third fact, consider f : (X, d) → (Y, d′) a (K,L) quasi-isometry. The map f

induces maps fm : (X, d
sm

) → (Y, d′

sm
) which are (K, L

sm
) quasi-isometries. In the limit we

have an induced map f∞ : Coneω(X) → Coneω(Y ) a (K, limω
L
si

) = (K, 0) quasi-isometry,

or a bi-Lipschitz map.

A couple of points regarding the relationship between elements of asymptotic cones and

elements of ultrapowers are in order. First, the equivalence relation of ultrapowers is strictly
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weaker than the equivalence relation of asymptotic cones. In the case of the ultrapowers, rep-

resentative sequences are identified precisely when they agree on a subset which is an element

of the ultrafilter; whereas in the case of the asymptotic cones, even representative sequences

which have sublinear distance, with respect to the scaling sequence, on a set in the ultrafilter are

identified. Second, ultrapowers are more general than asymptotic cones, as the construction of

an ultrapower can be applied to arbitrary sets as opposed to the construction of an asymptotic

cone which can only be applied to metric spaces. In fact, we will often be interested in ultra-

powers of objects such as Eω(S), or the ultrapower of connected essential subsurfaces of S.

Similarly, we will consider SEω(S),NEω(S)), or the ultrapowers of separating, nonseparating

connected essential subsurfaces of S, respectively.

The next elementary lemma will be useful on a couple of occasions.

Lemma 2.1.9 ([2] Lemma 2.2.6). If A is a finite set, then any α ∈ Aω is ω–a.s. constant. That

is, ∃!a0 ∈ A such that {i|αi = a0} ∈ ω. In particular, |Aω| = |A|.

As an application of Lemma 2.1.9, since any essential subsurface is either separating or

nonseparating, for any ultrapower of essential subsurfaces Y , ω–a.s. Yi is either always sepa-

rating or always nonseparating. In particular, any Y ∈ Eω(S) is either in SEω(S) or NEω(S),

and the two options are mutually exclusive. Additionally, since are only a finite number of

topological types of essential subsurfaces in any fixed surface of finite type, it follows that any

ultrapower of essential subsurfaces Y ω–a.s. has constant topological type. Accordingly, just

as we can talk about the complexity of an essential subsurface Y we can likewise talk about

the complexity of Y , denoted ξ(Y ), and define it to be the complexity of the ω–a.s. constant

topological type of Y . Similarly, since the number of connected components in any essential

subsurface is bounded above by the complexity of the fixed ambient surface of finite type, |Y |

is well-defined. Finally, along similar lines, given any pairs of ultrapowers of essential subsur-

faces, W,V ∈ Eω(S) since Wi and Vi are either disjoint, nested, or overlapping, it follows that

ω–a.s. one and only one of the relationships holds and hence we can say W and V are disjoint,

nested, or overlapping as the case may be.

The next lemma implies that Pω(S) is a homogeneous space:
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Lemma 2.1.10. MCGω(S) acts transitively by isometries on Pω(S) thereby making Pω(S) a

homogeneous space.

Proof. Since MCG(S) acts co-finitely by isometries on P(S), MCGω(S) similarly acts co-

finitely by isometries on Pω(S). Since Pω(S) consists of equivalence classes of Pω(S) which

in particular identifies uniformly bounded sequences, the desired result follows.

2.1.7 CAT(0) geometry

The terminology ”CAT(0)” was coined by Gromov and is an acronym for Cartan, Aleksandrov

and Toponogov, all three of whom are considered pioneers in the study of non-positive cur-

vature. By definition, CAT(0) spaces are geodesic metric spaces defined by the property that

all geodesic triangles are no fatter than the corresponding comparison triangles in Euclidean

space, where the comparison Euclidean triangle is the unique (up to isometry) Euclidean tri-

angle with the prescribed side lengths. Specifically, any cordal length in any geodesic triangle

is bounded above by the length of the corresponding cordal length of the comparison triangle

in Euclidean space. Using this defining property one can prove the following lemma, see [18,

Section II.2] for details.

Lemma 2.1.11. Let X be a CAT(0) space.

C1: (Projections onto convex subsets). Let C be a convex subset, complete in the induced

metric, then there is a well-defined distance non-increasing nearest point projection map

πC : X → C. In particular, πC is continuous. We will be interested in the special case

where C is a geodesic.

C2: (Convexity). Let c1 : [0, 1] → X and c2 : [0, 1] → X be any pair of geodesics parame-

terized proportional to arc length. Then the following inequality holds for all t ∈ [0, 1] :

d(c1(t), c2(t)) ≤ (1 − t)d(c1(0), c2(0)) + td(c1(1), c2(1))

C3: (Unique geodesic space). ∀x, y ∈ X there is a unique geodesic connecting x and y.
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2.1.8 (Relative) Hyperbolicity and Thickness

The following notions of hyperbolicity and relative hyperbolicity introduced by Gromov, are

fundamental in the field of geometric group theory, [37]. For points x1, x2 in any geodesic

metric space X, we use the notation [x1, x2] to denote a geodesic between the points x1 and x2.

Definition 2.1.12 (δ-hyperbolic). A geodesic metric space X is said to be δ-hyperbolic if it

satisfies the δ-thin triangles inequality. Specifically, there exists some constant δ ≥ 0 such that

for any three points in the space x1, x2, x3 and [xi, xj] any geodesic connecting xi and xj, then

[x1, x3] ⊂ Nδ([x1, x2])
∪

Nδ([x2, x3]).

A metric space is called hyperbolic if it is δ-hyperbolic for some δ.

Example 2.1.13 (R-Tree). Let T be an R-Tree, that is, a metric space with the property that be-

tween any two points there is a unique embedded arc having them as endpoints. By definition,

triangles in T are either lines or tripods. In either case it is immediate that T is 0-hyperbolic.

An important generalization of hyperbolicity is the notion of relative hyperbolicity. Infor-

mally, a metric space X is relatively hyperbolic with respect to a collection of subsets A, if

when all of the subsets in A are collapsed to finite diameter sets, the resulting “electric space,”

X/A, is hyperbolic. To exclude trivialities we can assume no set A ∈ A has finite Hausdorff

distance from X. More specifically, spaces satisfying the above are said to be weakly relatively

hyperbolic. If, in addition, a weakly relatively hyperbolic space X has the bounded coset pen-

etration property, namely quasi-geodesics with the same endpoints travel roughly through the

same subsets in A both entering and exiting the same subsets near each other, then X is said

to be strongly relatively hyperbolic. We will use the following equivalent definition of strong

relative hyperbolicity of a metric space due to [30] formulated in terms of asymptotic cones:

Definition 2.1.14 (Relatively Hyperbolic). A metric space (X, d) is said to be hyperbolic rela-

tive to a collection of peripheral subsets A if X is asymptotically tree-graded, with respect to

A. That is,
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1. Every asymptotic cone Xω is tree-graded with respect to the pieces Aω for A ∈ A. More

specifically, the intersection of each pair of distinct pieces, Aω, A
′
ω, has at most one point

and every simple geodesic triangle (a simple loop composed of three geodesics) in Xω

lies in one piece Aω.

2. X is not contained in a finite radius neighborhood of any of the subsets in A.

In contrast to earlier concepts of hyperbolicity or relatively hyperbolicity, we have the a

notion of thickness developed in [6] and explored further in [5]. We will use the following

definition of thickness of a metric space defined inductively.

Definition 2.1.15 (Thickness).

1. A space X is said to be thick of order zero if none of its asymptotic cones Xω have cut-

points, or equivalently X is wide, and moreover it satisfies the following nontriviality

condition: there is a constant c such that every x ∈ X is distance at most c from a

bi-infinite quasi-geodesic in X.

2. A space X is said to be thick of order at most n + 1 if there exist subsets Pα ⊂ X,

satisfying the following conditions:

(i) The subsets Pα are quasi-convex (namely, there exist constants (K,L,C) such

that any two points in Pα can be connected by a (K,L)-quasi-geodesic remaining inside

NC(Pα)) and are thick of order at most n when endowed with the restriction metric from

the space X,

(ii) The subsets are almost everything. Namely, ∃ a fixed constant R1 such that∪
αNR1(Pα) = X,

(iii) The subsets can be chained together thickly. Specifically, for any subsets Pα, Pβ,

there exists a sequence of subsets Pα = Pγ1 , ..., Pγn = Pβ such that for some fixed

constant R2 ≥ 0, diam(NR2(Pγi
)
∩
NR2(Pγi+1

)) = ∞. In particular, due to the quasi-
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convexity assumption in (i), it follows that the coarse intersection between consecutive

subsets being chained together is coarsely connected.

3. A space X is thick of order n if n is the lowest integer such that X is thick of order at

most n.

In Chapter 5 we will often be interested in subspaces Y ⊂ X which are thick of order

zero. Namely, we say that a subspace Y is thick of order zero if in every asymptotic cone Xω

the subset corresponding to the ultralimit Yω has the property that any two distinct points in

Yω are not separated by a cut-point (notice that this can be satisfied vacuously if Yω is trivial).

Additionally, we require that Y satisfies the nontriviality condition of every point being distance

at most c from a bi-infinite quasi-geodesic in Y.

Remark 2.1.16. It should be mentioned that Definition 2.1.15 of thickness is what is in fact

called strongly thick in [5], as opposed to the slightly more general version of thickness con-

sidered in [6]. As in [5], for our purposes the notion of strong thickness is more natural as

it proves to be more conducive to proving results regarding divergence, such as we will do in

Chapter 5. There are two differences between the different definitions of thickness which we

explain presently.

First, as opposed to requirement in Definition 2.1.15 (or equivalently in the definition of

strong thickness in [5]) that thick of order zero subsets be wide, in [6] a thick of order zero

subset is only required to be unconstricted. Namely, there exists some ultrafilter ω and some se-

quence of scalars si such that any asymptotic cone Coneω(X, ·, (si)) does not have cut-points.

Nonetheless, as noted in [6] for the special case of finitely generated groups, the definition of

thick of order zero in Definition 2.1.15 (or being wide) is equivalent to the definition considered

in [6] (or being unconstricted). Moreover, in Section 6.1, and in particular in Theorem 6.1.1,

we will prove that for CAT(0) spaces with extendable quasi-geodesics, the notions of wide and

unconstricted are similarly equivalent.

Second, the requirement for quasi-convexity in condition (i) of Definition 2.1.15 is omitted

in the definition of thickness in [6].
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The following theorem of [6], which in fact inspired the development of the notion of

thickness, captures the contrasting relationship between hyperbolicity and thickness:

Theorem 2.1.17 ([6] Corollary 7.9). A metric space X which is thick of any finite order is not

strongly relatively hyperbolic with respect to any subsets, i.e. non relatively hyperbolic (NRH).

Another perspective is to understand thickness as a means of interpolating between two

ends of the spectrum of non-positively curved spaces: product spaces and hyperbolic spaces.

On the one hand, nontrivial product spaces are thick of order zero (this follows from Theorem

2.1.8 statement (2) as nontrivial products do not contain cut-points). On the other hand, Theo-

rem 2.1.17 says that strongly relatively hyperbolic and hyperbolic spaces are not thick of any

order, or equivalently can be thought of as thick of order infinity. Then, in this sense the higher

the order of thickness of a metric space the closer the space resembles hyperbolic space and

shares features of negative curvature. From this point of view, the close connections between

thickness and divergence explored in [5] as well as in Chapter 5 are very natural.

2.1.9 Hyperbolicity/thickness of Teichmüller spaces

Excluding the genus two surface with one boundary component, S2,1, the thickness of Te-

ichmüller space for all surfaces of finite type was previously known through the work of

Behrstock-Druţu-Mosher [6] and Brock-Masur [21], and in fact is determined by complexity.

Specifically, the previously known results regarding the hyperbolicity/thickness of Teichmüller

spaces of surfaces of finite type in the literature will be classified presently. Table 1 summarizes

the results.

Surfaces with ξ(S) ∈ {1, 2}: The Teichmüller space of all of these surfaces are hyperbolic.

For S0,4, S1,1, any pants decomposition of the respective surfaces consists of a single curve.

Hence, the pants complexes are isomorphic to their curve complexes. The curve complexes

of both S0,4 and S1,1 are both isometric to the classical Farey graph and in particular is well

known to be δ-hyperbolic. For an explicit proof see [52].

The Teichmüller spaces of S0,5, S1,2, were proven to be δ-hyperbolic by Brock-Farb, [20].
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Later a new proof of this result was proven by Behrstock in [3]. Using the hyperbolicity of the

curve complex, the former authors showed that the pants complexes were strongly hyperbolic

relative to natural hyperbolic subsets. The latter author, using hierarchies, showed that the

spaces have a transitive family of quasi-geodesics with (b, c)-contraction. Specifically, it is

shown in [3] that the asymptotic cones of the spaces are R-trees, a known equivalence of

hyperbolicity, [28, 37].

Surfaces with ξ(S) = 3: The Teichmüller spaces of all of these surfaces are all strongly

relatively hyperbolic with respect to natural product regions consisting of all hyperbolic struc-

tures on S in which there is a fixed short separating curve, [21]. In fact, any quasi-flat is

coarsely contained in exactly one of these natural product regions, and any two distinct natural

product regions have bounded coarse intersection.

Surfaces with ξ(S) ∈ {4, 5}: The Teichmüller spaces of all of these surfaces are thick and

hence are all NRH. In fact, all surfaces of mid range complexity, excluding the surface S2,1,

are explicitly shown to be thick of order exactly one, [6, 21]. For the case of S2,1, as will be

explained in Section 5.1, Behrstock proved that the Teichmüller space is thick of order at least

one [3], while Brock-Masur explicitly show that the Teichmüller spaces is thick of order at

most two, [21]. In Theorem 5.2.7 we bridge the gap between their results by proving T (S2,1)

is thick of order exactly two.

Surfaces with ξ(S) ≥ 6: In [6] it is shown that the Teichmüller spaces of all of these

surfaces are thick of order exactly one and hence are all NRH. For any fixed surface there

is a bound on the maximal distance of any pants decomposition from a pants decomposition

containing a separating curve. It follows that any pants decomposition is bounded by a constant,

depending only on the topological type of surface, from a natural Z2 quasi-flat in the pants

complex. Then, the fact that T (S) is thick of order one for high complexity surfaces follows

from the connectivity of the separating curve complexes. Specifically, the connectivity of the

separating curve complex ensures that any two natural quasi-flats corresponding to regions with

short fixed separating curves can be thickly chained together.
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...
...

...
...

...
...

... . .
.

7 T1 T1 T1 T1 T1 T1 . . .

6 RH T1 T1 T1 T1 T1 . . .

5 H T1 T1 T1 T1 T1 . . .

4 H T1 T1 T1 T1 T1 . . .

3 RH T1 T1 T1 T1 . . .

2 H T1 T1 T1 T1 . . .

1 H T2 T1 T1 T1 . . .

0 RH T1 T1 T1 . . .

n ↑ g → 0 1 2 3 4 5 . . .

Table 1: Hyperbolicity/Thickness classification of Teichmüller spaces for all surfaces.

H=hyperbolic, RH=relatively hyperbolic, T1=thick of order one, and T2=thick of order two.

2.2 Tools from mapping class groups

In this section we review some tools developed by Behrstock [3], Behrstock-Kleiner-Minsky-

Mosher [8], Behrstock-Minsky [10], and Masur-Minsky [48] in their geometric analyses of

the curve complex, C(S), and the marking complex, M(S). If fact, in the aforementioned

papers, many of these tools developed for the marking complex have simplifications which

immediately apply to the pants complex.

In analogy with hyperbolic space, Hn, the curve complex C(S) is δ-hyperbolic and admits

a notion of subsurface projection which coarsely exhibits properties similar to those of nearest

point retractions onto totally geodesic subspaces in hyperbolic space. Recall that in Hn, given

a totally geodesic subspace L ⊂ Hn we have a well-defined nearest point projection map

πL : Hn → L. Moreover, we have the property that given any geodesic in the space γ (possibly

bi-infinite) such that γ ∩L ̸= ∅, πL(γ) has uniformly bounded diameter. Presently, we develop

a similar coarse subsurface projection in the curve complex.
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2.2.1 Subsurface projections

Given a curve α ∈ C(S) and a connected essential subsurface Y ∈ E(S) such that α intersects

Y, we can define the projection of α to 2C(Y ), denoted πC(Y )(α), to be the collection of vertices

in C(Y ) obtained in the following surgical manner. Specifically, the intersection α∩Y consists

of either the curve α, if α ⊂ Y, or a non-empty disjoint union of arc subsegments of α with

the endpoints of the arcs on boundary components of Y. In the former case we define the

projection πC(Y )(α) = α. In the latter case, πC(Y )(α) consists of all curves obtained by the

following process. If an arc in α ∩ Y has both endpoints on the same boundary component of

∂Y, then πC(Y )(α) includes the curves obtained by taking the union of the arc and the boundary

component containing the endpoints of the arc. Note that this yields at most two curves, at

least one of which is essential. On the other hand, if an arc in α∩ Y has endpoints on different

boundary components of ∂Y, then πC(Y )(α) includes the curve on the boundary of a regular

neighborhood of the union of the arc and the different boundary components containing the

end points of the arc. See Figure 2 for an example. Note that above we have only defined

the projection πC(Y ) for curves intersecting Y, for all curves γ disjoint from Y, the projection

πC(Y )(γ) = ∅.

In any context concerning the curve complex of an essential subsurface, C(Y ) in order to

avoid distractions we alway assume that Y ∈ E(Y ), i.e. the essential subsurface Y is connected.

If not, then by definition C(Y ) is a nontrivial join and hence has diameter two.

To simplify notation, we write dC(Y )(α1, α2) as shorthand for dC(Y )(πC(Y )(α1), πC(Y )(α2)).

In particular, this distance is only well-defined if α1, α2 intersect Y. Similarly, for A ⊂ C(S),

we write diamC(Y )(A) as shorthand for diamC(Y )(πC(Y )(A)).

The following lemma ensures that the subsurface projection πC(Y ) defined above gives a

coarsely well-defined projection πC(Y ) : C(S) → C(Y ) ∪ ∅.

Lemma 2.2.1 ([48], Lemma 2.2). For α any curve and any Y ∈ E(Y ) the set of curves πC(Y )(α)

has diameter bounded above by three. Hence, we have a coarsely well-defined subsurface pro-

jection map which by abuse of notation we refer to as πC(Y ) : C(S) → C(Y ) ∪ ∅. In particular,

if σ is any connected path in C(S) of length n, and Y is any connected subsurface such that
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W

α

β

(α)
C(W)

(β)
C(W)

Figure 2: Performing s surgery on arcs in the connected proper essential subsurface W ( S

which makes them into curves in C(W ). The arc α has both endpoints on the same boundary

component of W, whereas β has endpoints on different boundary components of W.

every curve in the path σ intersects Y, then diamC(Y )(σ) ≤ 3n.

The next theorem describes a situation in which subsurface projection maps geodesics in

the curve complex to uniformly bounded diameter subsets in the curve complex of a connected

essential subsurface.

Theorem 2.2.2 ([48], Theorem 3.1; Bounded Geodesic Image). Let Y ∈ E(S) be a connected

proper essential subsurface of S, and let g be a geodesic (segment, ray, or bi-infinite) in C(S)

such that every curve corresponding to a vertex of g intersects Y, then diamC(Y )(g) is uniformly

bounded by a constant K(S) depending only on the topological type of S.

In addition to projecting curves, we can similarly project multicurves. In particular, we can

project pants decompositions of surfaces to essential subsurfaces. Specifically, for any essential

subsurface Y we have an induced coarsely well-defined projection map:

πP(Y ) : P(S) → P(Y )

The induced map is defined as follows. Beginning with any pair of pants P ∈ P(S) there is at

least one curve α1 ∈ P intersecting Y. We then proceed to construct a pants decomposition of

Y inductively. As our first curve we simply pick any curve β1 ∈ πC(Y )(α1). Then, we consider
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the surface Y \ β1 and notice that ξ(Y \ β1) = ξ(Y ) − 1. Replace Y by Y \ β1 and repeat

this process until the complexity is reduced to zero. At this point, the curves {βi} are a pants

decomposition of the essential subsurface Y. Due to all the choice, the above process does not

produce a unique pants decomposition. Nonetheless, as in Lemma 2.2.1 the map is coarsely

well-defined and in fact is coarsely Lipschitz with uniform constants [48, 3].

The next lemma makes precise a sense in which distances under projections to curve com-

plexes of overlapping surfaces are related to each other. Intuitively, the point is that the distance

in one subsurface projection can be large only at the expense of the distance in all overlapping

essential subsurfaces being controlled.

Lemma 2.2.3 ([3, 46] Theorem 4.3, Lemma 2.5; Behrstock Inequality). For S = Sg,n, let

W,V ∈ E(S) be such that W t V. Then, ∀P ∈ P(S) :

min
(
dC(W )(µ, ∂V ), dC(V )(P, ∂W )

)
≤ 10

Utilizing the projection πP(Y ) : P(S) → P(Y ), for Y ∈ Eω(S) we can define Pω(Y ) to be

the ultralimit of P(Yi). It is clear that Pω(Y ) is isomorphic to Pω(Y ) for Y an essential subsur-

face ω–a.s. isotopic to Yi. Moreover, extending the coarsely well-defined Lipschitz projection

πP(Y ) : P(S) → P(Y ) to the asymptotic cone, we have a Lipschitz projection

πPω(Y ) : Pω(S) → Pω(Y ).

2.2.2 Tight Geodesics and Hierarchies

A fundamental obstacle in studying geodesics in the curve complex stems from the fact that

the 1-skeleton is locally infinite. In an effort to navigate this problem, in [48] Masur-Minsky

introduced a notion of tight multigeodesics, or simply tight geodesics, in C(S). Specifically, for

S a surface of finite type with ξ(S) ≥ 2, a tight geodesic in C(S) is a sequence of simplices

σ = (w0, ..., wn) such that the selection of any curves vi ∈ wi yields a geodesic in C(S) and

moreover, for 1 ≤ i ≤ n−1, the simplexwi is the boundary of the essential subsurface filled by

the curves wi−1 ∪ wi+1. In the case of a surface S with ξ(S) = 1 every geodesic is considered
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tight. For σ a tight geodesic as above, we use the notation [wi, wj] = (wi, ..., wj) to refer to a

subsegment of the tight geodesic. In [48] it is shown that any two curves in C(S) can be joined

by a tight geodesic (and in fact there are only finitely many).

Using tight geodesics, in [48] a 2-transitive family of quasi-geodesics, with constants de-

pending on the topological type of S, in P(S) called hierarchies, are developed. Since we are

interested in paths in the pants complex as opposed to the marking complex, unless specified

otherwise we use the term “hierarchies” to refer to what are in fact called “resolutions of hier-

archies without annuli” in [48]. The construction of hierarchies which are defined inductively

as a union of tight geodesics in the curve complexes of connected essential subsurfaces of S is

technical. For our purposes, it will suffice to record some of their properties in the following

theorem. See [21] Definition 9 for a similar statement.

Theorem 2.2.4 ([48] Section 4; Hierarchies). For S any surface of finite type, given P,Q ∈

P(S), there exists a hierarchy path ρ = ρ(P,Q) : [0, n] → P(S) with ρ(0) = P, ρ(n) = Q.

Moreover, ρ is a quasi-isometric embedding with uniformly bounded constants depending only

on the topological type of S, which has the following properties:

H1: The hierarchy ρ shadows a tight C(S) geodesic gS from a multicurve p ∈ P to a multic-

urve q ∈ Q, called the main geodesic of the hierarchy. That is, there is a monotonic map

ν : ρ→ gS such that ∀i, νi = ν(ρ(i)) ∈ gS is a curve in the pants decomposition ρ(i).

H2: There is a constant M1 such that if Y ∈ E(S) satisfies dC(Y )(P,Q) > M1, then there

is a maximal connected interval IY = [t1, t2] and a tight geodesic gY in C(Y ) from

a multicurve in ρ(t1) to a multicurve in ρ(t2) such that for all t1 ≤ t ≤ t2, ∂Y is

a multicurve in ρ(t), and ρ|IY
shadows the geodesic gY . Such a connected essential

subsurface Y is called an M1-component domain or simply a component domain of ρ.

By convention the entire surface S is always considered a component domain.

H3: If Y1 t Y2 are two component domains of ρ, then there is a notion of time ordering

<t of the domains with the property that Y1 <t Y2, implies dY2(P, ∂Y1) < M1 and
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dY1(Q, ∂Y2) < M1. Moreover, the time ordering is independent of the choice of the

hierarchy ρ from P to Q.

H4: For Y a component domain with IY = [t1, t2], let 0 ≤ s ≤ t1, t2 ≤ u ≤ n. Then,

dC(Y )(ρ(s), ρ(t1)), dC(Y )(ρ(u), ρ(t2)) ≤M1.

As a corollary of Theorem 2.2.4, we have the following quasi-distance formula for com-

puting distances in P(S) in terms of a sum of subsurface projection distances, where the sum

is over all connected essential subsurfaces above a certain threshold.

Theorem 2.2.5 ([48] Theorem 6.12; Quasi-Distance Formula). For S = Sg,n there exists a

minimal threshold M2 depending only on the surface S and quasi-isometry constants depend-

ing only on the surface S and the threshold M ≥M2 such that:

dP(S)(P,Q) ≈
∑

Y ∈E(S)

{dC(Y )(P,Q)}M

where the threshold function {f(x)}M := f(x) if f(x) ≥M, and 0 otherwise.

Note that by setting M ′ = max{10, K,M1,M2} we have a single constant M ′, depending

only on the topology of the surface S, which simultaneously satisfies Lemmas 2.2.1 and 2.2.3,

and Theorems 2.2.2, 2.2.4, and 2.2.5. Throughout we will use this constant M ′.

Sequences of hierarchies in the pants complex give rise to ultralimits of hierarchies in the

asymptotic cone of the pants complex. Specifically, given xω, yω ∈ Pω(S) with representatives

(xi), (yi), respectively, let ρω be the ultralimit of the sequence of hierarchy paths ρi from xi

to yi. Note that by construction, since ρi are quasi-geodesics with uniform constants, as in

Theorem 2.1.8 it follows that ρω is a (K,0)-quasi-geodesic path in the asymptotic cone from xω

to yω.

2.2.2.1 Bowditch Tight Geodesics

In [17] Bowditch introduces a slightly weaker definition of tight geodesics. Specifically, a

geodesic sequence {γi}n
i=0 ⊂ C(S) is said to be Bowditch tight if for all 0 < i < n and all
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geodesic segments γi−1, γ
′
i, γi+1, we have dC(S)(γi, γ

′
i) ≤ 1. While tight geodesics always exist,

the following combinatorial question regarding Bowditch tight geodesics remains open:

Question 2.2.6 (Bowditch). Given any two vertices in C(S) of distance at least three, does there

exist a Bowditch tight geodesic between them?

The following lemma, which in fact is closely related to Lemma 4.5 in [48], provides partial

progress toward Question 2.2.6.

Lemma 2.2.7. For S with ξ(S) ≤ 3 between any two vertices in C(S) there exists a Bowditch

tight geodesic.

Proof. Let {γi} be any C(S) geodesic. Observe that if the geodesic is not Bowditch tight at

some vertex γi, then the connected essential subsurface F (i− 1, i + 1) filled by γi−1 and γi+1

must be a separating essential subsurface. In this case, replace γi with γ′i ∈ ∂F (i − 1, i + 1).

Observe that for all surfaces covered by the statement of the lemma, separating multicurves are

in fact separating curves, and hence γ′i is a separating curve.

For surfaces with ξ(S) ≤ 3, it follows that the connected components of S \ γ′ have com-

plexity one. In particular, after replacement, the geodesic is automatically Bowditch tight at

γi−1 and γi+1. For example, consider the geodesic segment {γ′i, γi+1, γi+2}. Since γi+2 and γ′i

intersect, it follows that the connected essential subsurface F (i′, i+2) is nonseparating. Equiv-

alently, Bowditch tightness at γi+1 is guaranteed. We have shown that failure of Bowditch

tightness at any vertex can be fixed via replacement of the non-Bowditch tight vertex, and after

replacement adjacent vertices are automatically ensured to be Bowditch tight. This completes

the proof of the theorem.

2.2.3 Consistency Theorem

We have already seen in Subsection 2.2.1 that a pants decomposition can be projected to the

curve complexes of connected essential subsurfaces. In this section, we consider when this

process can be reversed. The answer is provided by the following theorem:
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Theorem 2.2.8 ([8] Theorem 4.3; Consistency Theorem). Given a tuple x
W

∈
∏

W⊆S C(W ),

such that ∃ constants c1, c2 satisfying the following consistency conditions ∀V,W ∈ E(S):

C1: V t W =⇒ min
(
dC(W )(xW

, ∂V ), dC(V )(xV , ∂W )
)
< c1

C2: V ( W and dC(W )(xW
, ∂V ) > c2 =⇒ dC(V )(xV , xW

) < c1

Then ∃ a constant c3 and P ∈ P(S) such that ∀W ∈ E(S), dC(W )(P, xW
) < c3.

The following application of Theorem 2.2.8, which is closely related to Lemma 5.3 in [8],

will be used in the proof of Lemma 4.1.7.

Lemma 2.2.9. Let P,Q,R ∈ P(S), and for W ∈ E(S) let σ
W

be a C(W ) geodesic from

P to Q. Let πσ
W

(R) be the nearest point projection of πC(W )(R) onto the geodesic σ
W
. Then∏

W
πσ

W
(R) satisfies the consistency conditions of Theorem 2.2.8 for c1 = 3M ′ and c2 = M ′.

In particular, there is a constant c3 and a pants decomposition X ∈ P(S) such that for all

W ∈ E(S) we have dC(W )(X, πσ
W

(R)) < c3.

Proof. First we show consistency condition [C1] holds. That is, assuming V t W and

dC(W )(πσ
W

(R), ∂V ) > 3M ′, we will show dC(V )(πσ
V
(R), ∂W ) < 3M ′. Notice that if

dC(W )({P,Q}, ∂V ) > M ′,

then, Lemma 2.2.3 implies

dC(V )(P, ∂W ), dC(V )(Q, ∂W ) < M ′

It follows that dC(V )(πσ
W

(R), ∂W ) < M ′ < 3M ′. Hence, without loss of generality we can

assume dC(W )(P, ∂V ) < M ′. Since we are assuming dC(W )(πσ
W

(R), ∂V ) > 3M ′, in partic-

ular, dC(W )(Q, ∂V ) > M ′. Similarly, it follows that dC(W )(R, ∂V ) > M ′. If not, since πσ
W

is a nearest point projection we would have dC(W )(R, πσ
W

(R)) < 2M ′ which leads to a con-

tradiction when considering edge lengths of triangle △(∂V,R, πσ
W

(R)) in C(W ). Namely,

dC(W )(R, πσ
W

(R)) < 2M ′ and dC(W )(R, ∂V ) < M ′, however this contradicts the fact that

dC(W )(πσ
W

(R), ∂V ) > 3M ′. Thus we can assume dC(W )(Q, ∂V ) > M ′ and dC(W )(R, ∂V ) >
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M ′. In this case, Lemma 2.2.3 implies that dC(V )(R, ∂W ) < M ′ and dC(V )(Q,R) < 2M ′.

Again, since πσ
W

is a nearest point projection we have dC(V )(R, πσ
W

(R)) < 2M ′. The follow-

ing inequality completes the proof of [C1]:

dC(V )(πσ
V
(R), ∂W ) ≤ dC(V )(πσ

V
(R), R) + dC(V )(R, ∂W )

< 2M ′ +M ′ = 3M ′.

Next, we will show that consistency condition [C2] holds. Namely, assuming V ( W and

dC(W )(πσ
W

(R), ∂V ) > M ′ we will show dC(V )(πσ
W

(R), πσ
V
(R)) < 3M ′. First assume that

dC(W )(σW
, ∂V ) > 1. In this case, since every curve in the C(W ) geodesic σ

W
intersects the

connected essential subsurface V, by Theorem 2.2.2 diamC(V )(σW
) < M ′. In particular,

dC(V )(P,Q), dC(V )(P, πσ
W

(R)) < M ′.

However, dC(V )(P,Q) < M ′ implies that dC(V )(P, πσ
V
(R)) < M ′. Then, by the triangle in-

equality we are done:

dC(V )(πσ
W

(R), πσ
V
(R)) ≤ dC(V )(πσ

W
(R), P ) + dC(V )(P, πσ

V
(R))

< M ′ +M ′ < 3M ′.

Accordingly, we can assume that dC(W )(σW
, ∂V ) ≤ 1. Since dC(W )(πσ

W
(R), ∂V ) > M ′, it

follows that either the segment σ
W
|[P,πσ

W
(R)] or the segment σ

W
|[πσ

W
(R),Q] has all of its curves

disjoint from ∂V. Without loss of generality we can assume the former, namely σ
W
|[P,πσ

W
(R)]

has all of its curves disjoint from ∂V. Similarly, the C(W ) geodesic between R and its projec-

tion πσ
W

(R) also has all of its curves disjoint from ∂V. Applying Theorem 2.2.2 it follows that

dC(V )(πσ
W

(R), R) < M ′ and dC(V )(R,P ) < 2M ′. Since πσ
V

is a nearest point projection, in

particular dC(V )(R, πσ
V
(R)) < 2M ′. The following inequality completes the proof:

dC(V )(πσ
W

(R), πσ
V
(R)) ≤ dC(V )(πσ

W
(R), R) + dC(V )(R, πσ

V
(R)) < M ′ + 2M ′ < 3M ′.
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2.2.4 Convex Regions, Extensions of Multicurves, and Regions of Sublin-

ear Growth

Given a multicurve C ⊂ C(S), by Theorem 2.2.5 we have a natural quasi-convex region:

Q(C) ≡ {P ∈ P(S)|C ⊂ P}. (2.2.1)

Consider that an element Q ∈ Q(C) is determined by a choice of a pants decomposition of

S \ C. Hence, Q(C) can be naturally identified with P(S \ C), which has nontrivial prod-

uct structure in the event that S \ C is a disjoint union of two or more connected essential

subsurfaces. For example, given W ∈ SE(S), Q(∂W ) ≈ P(W ) × P(W c).

After taking ultralimits, quasi-convex regions give rise to convex regions in the asymptotic

cone. Specifically, given an asymptotic cone Pω(S) and element of the ultrapower of multic-

urves C we have an ultralimit

Qω(C) =: {xω ∈ Pω(S)|xω has a representative (x′i) with x′i ∈ Q(Ci) ω-a.s}.

Note that unless limω
1
si
dP(S)(P

0
i ,Q(Ci)) < ∞, the ultralimit Qω(C) is trivial. On the other

hand, if limω
1
si
dP(S)(P

0
i ,Q(Ci)) <∞, then Qω(C) can be naturally identified with Pω(S\C),

which has a nontrivial product structure in the event that the multicurves Ci ω–a.s. separate the

surface S into at least two disjoint connected essential subsurfaces. Recall that we always

assume essential subsurfaces have complexity at least one.

Given a multicurve C on a surface S and a pants decomposition X ∈ P(S), we define the

coarsely well-defined extension of C by X, denoted CyX, by:

CyX ≡ C ∪ πP(S\C)(X).

More generally, for C an element of the ultrapower of multicurves satisfying

lim
ω

1

si

dP(S)(P
0
i ,Q(Ci)) <∞,

and xω ∈ Pω(S) we can define the extension of C by xω, denoted Cyxω, by:

Cyxω ≡ lim
ω

(CiyXi) ∈ Pω(S),
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where (Xi) is any representative of xω.

In [8] the set of natural quasi-convex regions Q(C) and their generalization to the asymp-

totic cone is studied at length. In particular, the following theorem is proven:

Theorem 2.2.10 ([8] Lemma 3.3, Section 3.4). Given two quasi-convex regions Q(C), Q(D)

for C,D isotopy classes of multicurves, the closest point set in Q(C) to Q(D) is coarsely

Q(CyD). In particular,

Q(C)∩̂Q(D) = Q(CyD) ∩Q(DyC).

For convex regions Qω(C), Qω(D) in the asymptotic cone Pω(S), the closest point set in

Qω(C) to Qω(D) is Qω(CyD). In fact, the intersection Qω(C) ∩ Qω(D) is nonempty if and

only if Qω(CyD) = Qω(DyC). Moreover, in this case the intersection is equal to Qω(CyD).

With the result of Theorem 2.2.5 in mind, [3] and later [10] developed a stratification of

Pω(S) by considering regions of so-called sublinear growth. Specifically, given W ∈ Eω(S)

and xω ∈ Pω(W ), we define the subset of Pω(W ) with sublinear growth from xω, denoted

FW,xω
, as follows:

FW,xω
= {yω ∈ Pω(W ) | ∀U ( W, dPω(U)(xω, yω) = 0}.

See [3] for an example showing that the sublinear growth regions FW,xω
are nontrivial.

The following theorem organizes some properties of subsets of sublinear growth.

Theorem 2.2.11 ([10] Theorem 3.1). With the same notation as above,

S1: zω ̸= z′ω ∈ FW,xω
=⇒ limω dC(Wi)(zi, z

′
i) → ∞ for (zi), (z

′
i) any representatives of

zω, z
′
ω, respectively. In particular, if γi is a hierarchy between zi and z′i shadowing a

tight main geodesic βi in C(Wi) connecting any curves in the simplices zi and z′i, then

limω |βi| is unbounded.

S2: FW,xω
⊂ Pω(W ) is a convex R-tree.
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S3: There is a continuous nearest point projection

ρW,xω
: Pω(W ) → FW,xω

where ρW,xω
is the identity on FW,xω

and locally constant on Pω(W ) \ FW,xω
.

We record a proof of property [S1] as ideas therein will be used later in the proof of Theorem

4.2.3. For a proof of the rest of the theorem see [10].

Proof. Proof of [S1]: Assume not. That is, assume ∃ a constant K ≥ 0 such that ω–a.s.

limω dC(S)(zi, z
′
i) ≤ K. Since {0, ..., K} is a finite set, by Lemma 2.1.9 there is a k ≤ K such

that ω–a.s. limω dC(S)(zi, z
′
i) = k. In particular, ω–a.s. there is a tight geodesic βi in C(S), with

simplices bi0, ..., bik such that bi0 ⊂ zi, bik ⊂ z′i. Thus ω–a.s. we can construct a quasi-geodesic

hierarchy path γi between zi and z′i with main geodesic βi of length k.

At the level of the asymptotic cone we have a quasi-geodesic γω from zω to z′ω which travels

through a finite list of regions Qω(bj) where bj = (bi,j)i ∈ C(S)ω for j ∈ {0, ..., k}. Moreover,

γω enters each region Qω(bj) at the point bjyzω and exits each region at the point bjyz′ω. Since

zω, z
′
ω ∈ FW,xω

, by definition for any Y ( W πPω(Y )(zω) = πPω(Y )(z
′
ω). In particular, this

holds for Y j with Y j
i = Wi \ bi,j for any j. It follows that the ultralimit of the hierarchy paths

γω enters and exits each region Qω(bj) at the same point. Since the regions Qω(bj) are convex,

we can assume the quasi-geodesic γω intersects each region in a single point. This leads to a

contradiction since by assumption zω ̸= z′ω, yet there is a quasi-geodesic path γω of length zero

connecting the two points.

In [10], regions of sublinear growth are used to stratify product regions in the asymptotic

cone. Specifically, for W ∈ Eω(S) such that limω
1
si
dP(S)(P

0,Q(∂Wi)) < ∞, and xω ∈

Pω(W ), we define the set PW,xω
⊂ Qω(∂W ) as follows:

PW,xω
= {yω ∈ Qω(∂W ) | πPω(W )(yω) ∈ FW,xω

} ∼= Pω(W c) × FW,xω
.

By precomposition with the projection πPω(W ) : Pω(S) → Pω(W ), the continuous nearest

point projection of property [S3] gives rise to a continuous map:

ΦW,xω
= ρW,xω

◦ πPω(W ) : Pω(S) → FW,xω
. (2.2.2)
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The following theorem regarding the above projection is an extension of Theorem 2.2.11.

Theorem 2.2.12 ([10] Theorem 3.5). ΦW,xω
restricted to PW,xω

is a projection onto the FW,xω

factor in its natural product structure, and ΦW,xω
is locally constant on Pω(S) \ PW,xω

.

The following lemma shows that the sets FW,xω
can be used to study distance in Pω(S).

Lemma 2.2.13 ([10] Theorem 3.6). ∀xω ̸= yω ∈ Pω(S), ∃W ∈ Eω(S) such that

lim
ω

1

si

dP(S)(P
0
i ,Q(∂Wi)) <∞,

with the property that πPω(W )(xω) ̸= πPω(W )(yω) ∈ FW,xω
.

Proof. Since xω ̸= yω, by definition dPω(S)(xω, yω) ̸= 0. If there is no element U ∈ Eω(S),

such that

lim
ω

1

si

dP(S)(P
0
i ,Q(∂Ui)) <∞

with the property that the projection dPω(U)(xω, yω) ̸= 0, then set W = S and we are done. If

not, we iterate the above with S replaced by U. Since the complexity of the original surface is

finite, and at each stage the complexity decreases, the proof follows by induction.

The following corollary provides sufficient condition for identifying when two sequences

representing points in the asymptotic cone, actually represent the same point in the asymptotic

cone. The proof follows immediately from Lemma 2.2.13 and property [S1] of Theorem 2.2.11.

Corollary 2.2.14. Let (xi), (yi) be sequences representing the points xω, yω ∈ P(S), and

assume for all W ∈ Eω(S) that limω dC(Wi)(xi, yi) is bounded. Then xω = yω.

2.2.5 Jets

In [8], subsets of Pω(S) called jets are developed. Jets are particular subsets of the asymptotic

cone corresponding to sequences of geodesics in the curve complexes of connected essential

subsurfaces which give rise to separation properties in Pω(S).

Fix P,Q ∈ P(S), Y ∈ E(S) a connected essential subsurface, and σ a tight geodesic in

C(Y ) from an element of πC(Y )(P ) to an element of πC(Y )(Q). If g = [α, β] is a subsegment of
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σ, (g, P,Q) is called a tight triple supported in Y with ambient geodesic σ. For (g, P,Q) a tight

triple as above, we define the initial pants of the triple, denoted ι(g, P,Q) ≡ α ∪ πP(S\α)(P ).

Similarly, we define the terminal pants of the triple, denoted τ(g, P,Q) ≡ β ∪ πP(S\β)(Q).

Then, we define the length of a tight triple supported in Y by

∥g∥ = ∥(g, P,Q)∥Y ≡ dP(Y )(ι(g, P,Q), τ(g, P,Q)).

For P ,Q ∈ Pω(S) which have nontrivial ultralimits in Pω(S), a Jet J, is a quadruple of

ultrapowers (g, Y , P ,Q),where (gi, P,Q) are tight triples supported in Yi.Associated to our jet

J with support Y we have an initial point or basepoint of our jet ι(J) = ιω(g, P ,Q) ∈ Pω(S)

with a representative ultrapower ι(gi, P,Q). Similarly, we a terminal point of our jet τ(J) =

τω(g, P ,Q) ∈ Pω(S) with a representative ultrapower τ(gi, P,Q). A jet is called macroscopic

if ι(J) ̸= τ(J) and microscopic otherwise. To simplify notation, we set ∥(gi, P,Q)∥Yi
=

∥gi∥J . We will only consider microscopic jets.

Let J be a microscopic jet with support Y and tight geodesics gi. Then we can consider the

ultralimit Qω(ι∪ ∂Y ) which can be though of as ι(J)×Pω(Y c) ⊂ Pω(S). Then we can define

an equivalence relation on Pω(S) \
(
ι(J) × Pω(Y c)

)
given by:

xω ∼J x
′
ω ⇐⇒ lim

ω
dC(Yi)(πgi

(xi), πgi
(x′i)) <∞.

The following theorems regarding the existence and separation properties of microscopic jets

will have application in Chapter 4.

Theorem 2.2.15 ([8] Lemma 7.5). Let aω, bω ∈ Pω(S) with representatives (ai), (bi) respec-

tively. Assume that W ∈ Eω(S) is such that limω dC(W )(ai, bi) → ∞. Then there exists a

microscopic jet J = (g,W, a, b) such that aω ̸∼J bω. Moreover, the subsegments gi can be

constructed to be contained in tight C(Wi) geodesic of a hierarchy between ai and bi.

Theorem 2.2.16 ([8] Theorem 7.2). For J a microscopic jet, each equivalence class under the

relation ∼J is open. In particular, xω, x
′
ω ∈ Pω(S) \

(
ι(J) × Pω(Y c)

)
, xω ̸∼J x′ω =⇒ xω

and x′ω are separated by ι(J) × Pω(Y c).
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Chapter 3

Complex of separating multicurves

Along the lines of the curve complex and the pants complex, in this section we introduce

and analyze another natural complex associated to a surface, namely the complex of separating

multicurves, or simply the separating complex. The separating complex, denoted S(S), can

be thought of as a generalizations of the separating curve complex and the Torelli Complex.

Formally, we have the following definition:

Definition 3.0.17 (Separating complex). Given a surface S of finite type, define the separating

complex, denoted S(S), to have vertices corresponding to isotopy classes of separating multi-

curves C ⊂ C(S), that is multicurves C such that at least two connected components of S \ C

are essential subsurfaces. More generally, the separating complex has k-cells corresponding

to a sets of (k + 1) isotopy classes of separating multicurves the complement of whose union

in the surface S contains an essential subsurface. As usual, we will be interested in the one

skeleton of S(S) equipped with the graph metric. See Figure 3 for an example of separating

multicurves in S(S3,0).

Notice that a vertex in the separating complex representing a separating multicurve C,

corresponds to a natural quasi-convex product regions in the pants complex, Q(C), defined

in Equation 2.2.1. More generally, k-cells in the separating complex correspond to a set of

(k + 1) quasi-convex product regions Q(C0),..., Q(Ck) such that the coarse intersection be-

tween the k + 1 regions has infinite diameter. Specifically, consider the multicurve D =
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AC

D 

B

S(S  )3,0

Figure 3: The red separating multicurve A, the blue separating multicurve B, and the yellow

separating multicurve D, form a 2-simplex in S(S3,0). On the other hand, the green separating

multicurve C is not connected to any of the other separating multicurves. In fact, C is in its

own connected component of S(S3,0).

C0yC1y...yCk, and note that by Definition 3.0.17 there is an essential subsurface Y contained

in the complement S \D. By Theorem 2.2.10, the coarse intersection between the product re-

gions
∩̂k

i=0Q(Ci) = Q(D), which in particular has infinite diameter as the complement S \D

contains an essential subsurface. This latter point of view motivates the definition of S(S).

Remark 3.0.18. Note that in Definition 3.0.17, in the definition of higher dimensional sim-

plices in S(S) we did not require disjointness between separating multicurves corresponding

to adjacent vertices. If we let S′(S) denote a natural relative of our separating complex de-

fined identically to S(S) in conjunction with an additional assumption of disjointness between

representatives of adjacent vertices, then we have the following bi-Lipschitz relation:

∀C,D ∈ S(S), dS(S)(C,D) ≤ dS′(S)(C,D) ≤ 2dS(S)(C,D). (3.0.1)

The point is that while adjacent vertices C,D ∈ S(S) need not have disjoint separating multic-

urve representatives, by definition in the complement S \ {C,D} there must exist a separating

multicurve, E. Then in S′(S) we have the connected sequence of vertices C,E,D. As we will

see, the complex S(S) is more natural from the point of view of Teichmüller space and in

particular from the point of view of the asymptotic cones. Nonetheless, there are situations in

this section where for the sake of simplifying the exposition we will prove certain results using

S′(S), and then note that the bi-Lipschitz Equation 3.0.1 implies related results for S(S).

Example 3.0.19 (S(S) for ξ(S) ≤ 3). By definition, for surfaces with ξ(S) ≤ 2, S(S) is the
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empty set as for these surfaces there are no (nontrivially) separating multicurves. For com-

plexity three surfaces, separating multicurves are precisely separating curves. Moreover, by

topological considerations any two distinct separating curves on complexity three surfaces per-

force have trivial complement in the surface. Hence, for complexity three surfaces, S(S) or

equivalently Csep(S), consists of infinitely many isolated points.

A couple of remarks relating the curve complex and its relative the separating complex are

in order. First, notice that for C,D ∈ S(S), as an immediate consequence of the definition of

S′(S) in conjunction with Equation 3.0.1 we have the following inequality:

dC(S)(C,D) ≤ dS′(S)(C,D) ≤ 2dS(S)(C,D). (3.0.2)

On the other hand, it is possible to have separating curves which are distance one in the curve

complex, yet are not even in the same connected component of the separating complex. For

example, see multicurves C and D in Figure 3. Second, recall that in C(S), two curves are

distance three or more if and only if they fill the surface. Similarly, the following elementary

lemma describes the implications of having S(S) distance bounded below by four.

Lemma 3.0.20. Let C,D ∈ S(S). dS(S)(C,D) ≥ 4 implies that any connected essential sub-

surface of S \ C overlaps any connected essential subsurface of S \D.

Proof. Assume not, then there are connected essential subsurfaces Z ⊆ S \ C, Z ′ ⊆ S \ D

such that Z and Z ′ are identical, nested, or disjoint. If Z ⊆ Z ′ (or equivalently Z ′ ⊆ Z) then

by definition, dS(S)(C,D) ≤ 1. Finally, if Z ∩ Z ′ = ∅ then dS(S)(C,D) ≤ 3, as in S(S) we

have a connected path: C, ∂Z, ∂Z ′, D⇒⇐ .

In light of our definitions, the following lemma which will have application in Chapter 5.

Lemma 3.0.21. Let W,V ∈ SEω(S) such that ω–a.s. dS(S)(∂Wi, ∂Vi) ≥ 2. Then

ΦW,xω
(Qω(∂V )) = {pt}, ΦV ,yω

(Qω(∂W )) = {pt},

where ΦW,xω
is the projection defined in Equation 2.2.2.
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Proof. Recall the definition of ΦW,xω
= ρW,xω

◦πP(W ). By assumption, the complement in the

surface S of ∂Wi ∪ ∂Vi ω–a.s. does not contain an essential subsurface. Hence, it follows that

πP(W )(Qω(∂V )) = {pt}, as for any aω ∈ Qω(∂V ) we can choose a representative (ai) of aω

which ω–a.s. contains ∂Vi. Thus, the projection to P(Wi) is coarsely entirely determined by

the projection of the curve ∂Vi.

Remark 3.0.22 (The diameter of S(S) is infinite). For surfaces S such that S(S) is disconnected

by definition the diameter of S(S) is infinte. More generally, since C(S) has infinite diameter,

see [47], and because NC(S)
1 (S(S)) = C(S), by Equation 3.0.2 it follows that S(S) has infinite

diameter. To see that NC(S)
1 (S(S)) = C(S), by the “change of coordinates principle” of [32]

it is easy to see that any curve which is not a nontrivially separating curve, is disjoint from a

nontrivially separating curve.

3.1 Properties: connectivity and quasi-distance formula

3.1.1 Separating Complex is connected

In this subsection we prove that for high enough complexity surfaces S(S) is connected and in

fact satisfies a quasi-distance formula.

Theorem 3.1.1. Let S = Sg,n, then S(S) is connected if and only if |χ(S)| ≥ 5.

The proof of Theorem 3.1.1 will follow from a couple of lemmas. The first lemma says that

for almost all surfaces with χ(S) ≤ −5, one can find certain separating multicurves which are

subsets of any pants decompositions and moreover, the distance between any two such separat-

ing multicurves is uniformly bounded. The author would like to acknowledge Lee Mosher for

his help in providing the current version of the proof of the lemma.

Lemma 3.1.2. Let S = Sg,n be a surface of finite type with χ(S) ≤ −5, excluding S =

S0,7, S0,8, S1,5. Let P ∈ P(S) and for all γ ∈ P, let Xγ ⊂ S denote the unique connected

complexity one essential subsurface of S \ (P − γ). Then ∀γ ∈ P, ∂Xγ ∈ S(S). Moreover,

diamS(S)(
∪

γ∈P ∂Xγ) is uniformly bounded.
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Remark 3.1.3. The statement of Lemma 3.1.2 is sharp in the sense that for all surfaces S

excluded by the lemma, there exists pants decompositions P containing a curve γ ∈ P such

that ∂Xγ ̸∈ S(S).

Proof. Step One: ∂Xγ ∈ S(S) or equivalently Xγ ∈ SE(S).

Notice that if |P \ (γ ∪ ∂Xγ) | ≥ 1, then we are done as it follows that the complement

S \Xγ contains an essential subsurface. However, since by topological considerations |∂Xγ| ≤

4, and because in all cases considered ξ(S) ≥ 6, step one follows.

Step Two: diamS(S)(
∪

γ∈P ∂Xγ) is uniformly bounded.

Fix some ∂Xγ, and consider any ∂Xγ′ for some γ′ ̸= γ ∈ P. It follows that |P ∩

(∂Xγ ∪ ∂Xγ′) | ≤ 8. Hence, if ξ(S) ≥ 9 then, as in step one, the complement S \ (Xγ ∪Xγ′)

contains an essential subsurface thus implying that ∂Xγ and ∂Xγ′ are adjacent in S(S). Since

γ′ ∈ P was arbitrary, in this case we are done with step two. Without loss of generality we can

assume that ξ(S) ≤ 8. Note that for the remaining cases, the surfaces S = Sg,n covered by the

theorem all have n ≥ 1. Proceeding as above we can now choose our starting fixed γ such that

|∂Xγ ∩ ∂S| ≥ 1. In this case, then |P ∩ (∂Xγ ∪ ∂Xγ′) | ≤ 7. Hence, as above if ξ(S) ≥ 8 we

are also done.

For the case of ξ(S) = 7 we will use the same argument as in the ξ(S) = 8 case, although

with a little more care. Specifically, as in the ξ(S) = 8 case, fix some γ such that |∂Xγ ∩∂S| ≥

1. Without loss of generality we can assume P = ∂Xγ ∪ ∂Xγ′ . In particular, γ ∈ ∂Xγ′ . Then,

since γ and γ′ then lie in a common pair of pants of the pants decomposition S \ P, we now

have that |P ∩ (∂Xγ ∪ ∂Xγ′) | ≤ 6, and thus we are done for ξ(S) ≥ 7.

The three remaining ξ(S) = 6 cases are S0,9, S1,6, and S2,3. Assume some pair of pants in

S \ P contains two boundary components of the ambient surface S, then fix our starting γ to

be the third curve in the pair of pants with two boundary components of the ambient surface.

As in the ξ(S) = 7 case without loss of generality we can assume P = ∂Xγ ∪ ∂Xγ′ and hence

in this case, we now have that |P ∩ (∂Xγ ∪ ∂Xγ′) | ≤ 5, and thus we are done with step two

under the assumption that some pair of pants in S \ P contains two boundary components of

the ambient surface S. Since any pants decomposition of S0,9 consists of 7 pairs of pants, by
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pigeon hole considerations the assumption that some pair of pants in S0,9 \ P contains two

boundary components of the ambient surface S0,9 must be true thus completing the proof of

step two for S0,9.

Similarly, for S1,6 since any pants decomposition of S1,6 consists of 6 pairs of pants, with-

out loss of generality we can assume that every pair of pants in S1,6 \ P contains exactly

one boundary components of the ambient surface S1,6. In particular, As usual, without loss of

generality we can assume P = ∂Xγ ∪ ∂Xγ′ and hence in this case, we similarly have that

|P ∩ (∂Xγ ∪ ∂Xγ′) | ≤ 5, thus completing the proof of step two for S1,6.

Finally, for S2,3 as usual without loss of generality we can assume ∂Xγ contains one bound-

ary component of the ambient surface and that P = ∂Xγ∪∂Xγ′ . By topological considerations,

Xγ ∪ Xγ′ is a connected separating essential subsurface of topological type S1,4 whose com-

plement in the surface S consists of two disjoint pairs of pants Q1, Q2 each of which contains

one boundary component of the ambient surface and has its other two boundary components

in ∂Xγ ∪ ∂Xγ′ . There are two topological types of situations which arise as presented in Fig-

ure 4. As noted in the caption, the statement of step two is easily verified in both cases, thus

completing the proof.

γ γ γ γ

Figure 4: For the pants decomposition on the left diamS(S)(
∪

γ∈P ∂Xγ) = 2, while for the

pants decomposition on the right, diamS(S)(
∪

γ∈P ∂Xγ) = 3.

Lemma 3.1.2 holds for almost all surfaces with χ(S) ≤ −5. The following lemma contains

a slightly weakened statement which applies for all surfaces with χ(S) ≤ −5.
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Lemma 3.1.4. For S any surface of finite type with χ(S) ≤ −5, and any P ∈ P(S), there

exists a separating multicurve C ∈ S(S), such that C ⊂ P. Moreover, for P,Q ∈ P(S) such

that dP(S)(P,Q) ≤ 1, and for any C,D ∈ S(S) such that C ⊂ P,D ⊂ Q, dS(S)(C,D) is

uniformly bounded. In particular, any two separating multicurves which are subsets of the

same pants decompositions have uniformly bounded distance in the separating complex.

Proof. Using Lemma 3.1.2 it is not hard to see that the statement of the lemma follows for all

surfaces with χ(S) ≤ −5 excluding S = S0,7, S0,8, S1,5.

Let S = S0,7, S0,8. Observe that for these surfaces, all pants decompositions contain a

separating multicurve and furthermore all separating multicurves are in fact multicurves of

separating curves. Hence, for these cases it suffices to notice that two separating curves which

intersect in at most two points have uniformly bounded distance in S(S).

Figure 5: The ten topological types of pants decompositions of S1,5. In the figure, for α a curve

in red, ∂Xα is a separating multicurve, while for β a curve in blue, ∂Xα is not a separating

multicurve.

Finally, the case S = S1,5 follows from direct consideration. Specifically, up to the action of

the mapping class group there are exactly ten types of pants decompositions of S as presented

in Figure 5. It can be verified directly that (i) any pants decomposition contains a separating

multicurve, (ii) any two separating multicurves contained in a common pants decomposition

have uniformly bounded distance in S(S), and (iii) any pants decompositions differing by an

elementary move contain separating multicurves with uniformly bounded distance in S(S).

Proof of Theorem 3.1.1. The statement of Lemma 3.1.4 in conjunction with the connectivity
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of the pants complex, [40], implies the theorem.

Remark 3.1.5. It should be noted that the lower bound cases of surfaces considered in Theorem

3.1.1 is strict. Specifically, for S = S0,6, S1,4, S2,2, S3,0, the complex S(S) has infinitely many

connected components. The problem here is that for each of these surfaces there are separating

multicurves which decompose the surface into two S ′
0,4s. Each such topological type of sepa-

rating multicurve, of which there are infinitely many distinct isotopy classes, corresponds to an

isolated point in S(S). See Figure 6 for examples.

Figure 6: Singleton connected components in S(S0,6) and S(S2,2).

3.1.2 S(S) satisfies a quasi-distance formula.

In this subsection we use machinery from Masur-Schleimer, [50], to provide a quasi-distance

formula for the separating complex, akin to the quasi-distance formula in Theorem 2.2.5 for

the pants complex.

The main object in [50] is the notion of a hole which in the context of the separating com-

plex is defined to be any connected essential subsurface Y such that all of S(S) has nontrivial

subsurface projection into it. Equivalently, holes for the separating complex are precisely the

set NE(S). Notice that no two holes of the separating complex are disjoint. The general phi-

losophy in [50] is that distances in combinatorial complexes can be approximated by summing

up distances in the curve complex projections to all holes. In this section we prove that this

philosophy holds for S(S).

We begin by recalling a Theorem of [50] which in particular ensures a quasi-lower bound
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for a quasi-distance formula for S(S).As noted by Masur-Schleimer, the proof of the following

lemma follows almost verbatim from similar arguments in [48]:

Lemma 3.1.6 ([50] Theorem 5.10). Let S be a surface of finite type, then there is a constant

C0 such that ∀c ≥ C0 there exists quasi-isometry constants such that ∀α, β ∈ S(S):∑
Y a hole for S(S)

{dC(Y )(α, β)}c . dS(S)(α, β)

In light of Lemma 3.1.6, in order to obtain a quasi-distance formula for S(S), it suffices to

obtain a quasi-upper bound on S(S) distance in terms of the sum of subsurface projections to

holes. As motivated by [50], our approach for doing so will be by relating pants decompositions

to separating multicurves and more generally hierarchy paths in the pants complex to paths in

the separating complex.

In fact, notice that Lemma 3.1.4 provides a coarsely well-defined mapping ϕ : P(S) →

S(S) which is natural with respect to elementary pants moves in the sense that if dP(S)(P,Q) ≤

1 then dS(S)(ϕ(P ), ϕ(Q)) is uniformly bounded. As exploited in the proof of Theorem 3.1.1

we have the following procedure for finding a path between any two separating multicurves.

Given α, β ∈ S(S), complete the separating multicurves into pants decompositions µ and ν.

Then construct a hierarchy path ρ in P(S) between µ and ν. Applying the mapping ϕ to our

hierarchy path ρ, and interpolating as necessary, yields a path in S(S) between the separating

multicurves α and β with length quasi-bounded above by the length of the hierarchy path ρ.

In the following theorem we show that if we are careful, the above approach gives rise to a

quasi-upper bound on S(S) distance in terms of the sum of subsurface projections to all holes

with sufficiently large projections.

Theorem 3.1.7. Let S be a surface with χ(S) ≤ −5. Then there is a constant K0 such that

∀k ≥ K0 there exists quasi-isometry constants such that ∀α, β ∈ S(S):

dS(S)(α, β) .
∑

Y ∈NE(S)

{dC(Y )(α, β)}k

Proof. As noted, we have a quasi-upper bound on S(S) distance given by the length of any

hierarchy path ρ connecting pants decompositions containing the given separating curves. In
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other words, by the quasi-distance formula of Theorem 2.2.5 we have already have a quasi-

upper bound of the form:

dS(S)(α, β) .
∑

Y ∈E(S)

{dC(Y )(α, β)}k

It suffices to show that ∀Y ∈ E(S) \ NE(S) in the above sum we can choose can choose

our mapping ϕ such that the S(S) diameter of ϕ(IY ) is uniformly bounded, where IY is as in

property [H2] of Theorem 2.2.4. However, for any Y ∈ E(S) \ NE(S) = SE(S) we have that

∂Y ∈ S(S). Hence we can choose ∂Y as a constant representative for all ϕ(IY ), thus implying

that the S(S) diameter of ϕ(IY ) is uniformly bounded. This completes the proof.

Lemma 3.1.6 and Theorem 3.1.7 imply a quasi-distance formula for S(S) :

Corollary 3.1.8. There is constant K0 such that for all k ≥ K0 there exists quasi-isometry

constants such that ∀α, β ∈ S(S):

dS(S2,0)(α, β) ≈
∑

Y ∈NE(S)

{dC(Y )(α, β)}k

Remark 3.1.9. Since S(S) satisfies a quasi-distance formula as in Corollary 3.1.8 and because

no two holes for S(S) are disjoint, it follows that for |χ(S)| ≥ 5, the complex S(S) is δ-

hyperbolic. Specifically, in Section 20 of [50] it is shown that if distance in a combinatorial

complex is approximated by a quasi-distance formula and it is known that no two holes over-

lap, then δ-hyperbolicity follows. The same ideas are implicit in [3]. To be sure, however,

an explicit theorem as described above providing sufficient conditions for δ-hyperbolicity of a

combinatorial complex, is not present in the current version of [50]. Accordingly as a conse-

quence of this fact, in conjunction with the fact that the hyperbolicity of S(S) is unnecessary

for any results in this thesis, we relegate the fact that S(S) is δ-hyperbolic to this remark.
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3.2 Separating complex of S2,1

3.2.1 Connected components of S(S2,1) and Point Pushing

In this subsection, we consider the connected components of S(S2,1), which will be of inter-

est later in Chapter 5. By Remark 3.0.18 the connected components of S′(S) and S(S) are

equivalent, and hence for the sake of simplifying the exposition, in this section we will in fact

consider the connected components of S′(S2,1). By topological considerations, S′(S2,1) con-

sists of separating curves or disjoint pairs thereof. Hence, vertices of S′(S2,1) and simplices

of Csep(S2,1) are in correspondence. Moreover, vertices in S′(S2,1) are adjacent if and only

if the corresponding simplices are adjacent in Csep(S2,1). Thus, the connected components of

S′(S2,1), or equivalently S(S2,1), are precisely the connected components of Csep(S2,1).

To study the connected components of Csep(S2,1), we begin by considering the projection

πC(S2,0) = πC(S2,0) : C(S2,1) → C(S2,0) given by forgetting about the boundary component. Up

to homeomorphism there is only one separating curve on the surfaces S2,1 and S2,0. In fact

under the projection πC(S2,0) the image of a separating curve is a separating curve, and similarly

the preimage of a separating curve is a union of separating curves.

Lemma 3.2.1. The map πC(S2,0) = πC has a natural well-defined surjective restriction

πCsep(S2,0) = πCsep : Csep(S2,1) → Csep(S2,0).

Lemma 3.2.2. The fibers of πCsep are connected.

Proof. Consider two separating curves α ̸= β ∈ π−1
Csep

(γ). If α and β are disjoint, we are done.

If not, we will complete the proof by induction on the number of intersections between the

curves α and β. Look for an innermost bigon B formed by the union of α and β, namely a

bigon with two vertices given by intersection points of the curves and such that neither of the

curves enters the interior of the bigon. By topological considerations such a bigon must exist.

We can assume that the boundary component of the surface is included in the bigon B. If not,

up to a choice of representatives of our curves α and β we reduce the intersection number.
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Then we can perform a surgery on α along the bigon B to create the curve α′, as in Figure

7. We can assume that α′ is nontrivial, for if not then our original curve γ ∈ Csep(S2,0) would

be trivial ⇒⇐ . Moreover, it is also clear that α′ ∈ π−1
Csep

(γ). Replacing our original curve α

with α′ reduces the intersection number by two, thereby completing the proof by induction.

αβ

α’

B

Figure 7: Performing surgery to a curve along a bigon to reduce intersection numbers.

Lemma 3.2.3. The fibers of πCsep coincide with the connected components of Csep(S2,1). In

particular, since there are infinitely many curves in the range, Csep(S2,0), it follows that there

are infinitely many fibers, and hence infinitely many connected components of Csep(S2,1).

Proof. Since Lemma 3.2.2 ensures that any fiber of πCsep is connected, to prove the lemma it

suffices to show that any two curves α, β which can be connected in Csep(S2,1) must satisfy

πC(α) = πC(β). Without loss of generality we can assume that α ∩ β = ∅. Ignoring the

boundary component, we have disjoint representatives of πC(α), and πC(β). However, there

are no distinct isotopy classes of separating curves in S2,0 =⇒ πC(α) = πC(β).

The point pushing subgroup is an important subgroup of the mapping class group of a

surface with boundary first considered by Birman, [15]. Specifically, for Sg,n+1 with a fixed

boundary component labeled x, such that if we fill in the boundary component x we obtain a

topological Sg,n with a marked base point x, we have the following short exact sequence:

1 → π1(Sg,n, x) � MCG(Sg,n+1) � MCG(Sg,n) → 1.
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γ
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α
Push  (α)

γ Y
α

γ

Push  (α)
γ

Figure 8: The point pushing map applied to an arcs α ⊂ S.

The second map is defined by taking a homeomorphism of Sg,n+1 and viewing it as a home-

omorphism of the surface Sg,n obtained by filling in the boundary component x. On the other

hand, the first map is give by “point pushing.” Specifically, given a loop γ ∈ π1(Sg,n, x),

the image of the point pushing map of γ, denoted Pushγ, is defined to be Tγ+ϵ ◦ T−1
γ−ϵ ∈

MCG(Sg,n+1) where γ + ϵ and γ − ϵ are the two homotopically distinct push-offs of γ in

Sg,n+1. The point pushing subgroup of the mapping class group is defined to be the group

generated by point pushing maps for all loops γ ∈ π1(Sg,n, x). See Figure 8 for examples.

By construction, the image of this point pushing map is in the kernel of the projection

p : MCG(Sg,n+1) � MCG(Sg,n) as the curves γ + ϵ and γ − ϵ viewed in the surface Sg,n are

the same up to homotopy. Specifically, since p is a homomorphism we have p(Tγ+ϵ ◦ Tγ−ϵ) =

p(Tγ+ϵ) ◦ p(T−1
γ−ϵ) = TγT

−1
γ = Id ∈ MCG(Sg,n). We have just shown the following:

Lemma 3.2.4. The point pushing subgroup Push ⊂ MCG(S2,1) preserves the connected

components of Csep(S2,1). Similarly, Push ⊂ MCG(S2,1) preserves the fibers of the projection

πP : P(S2,1) → P(S2,0).

Since there exist pseudo-Anosov point pushing maps, [42], and because pseudo-Anosov

axes have infinite diameter in C(S), [47], which in particular ensures that the axes have infinite

diameter in Csep(S), by Lemma 3.2.4 it follows that the connected components of Csep(S2,1)
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have infinite diameter. Putting together Lemmas 3.2.3 and 3.2.4, we have the following corol-

lary which uniquely characterizes the surface S2,1 and which is the underlying reason for the

unique phenomenon regarding the thickness and divergence of T (S2,1) studied in Chapter 5.

Corollary 3.2.5. Csep(S2,1), and similarly S(S2,1), has infinitely many connected connected

components, each with infinite diameter.

3.3 Sω(S), the ultralimit of S(S).

3.3.1 Asymptotic Separating Complex, Sω(S)

Throughout this section we assume a fixed asymptotic cone Pω(S), and consider the ultralimit

of S(S), which we denote Sω(S). Formally,

Definition 3.3.1 (Sω(S)). Given a surface S of finite type, define Sω(S) to have vertices cor-

responding to C ∈ S(S)ω such that limω
1
si
dP(S)(P

0
i ,Q(Ci)) < ∞. Equivalently, vertices in

Sω(S) correspond to natural convex nontrivial product regions Qω(C) ⊂ Pω(S). By abuse of

notation, we will sometimes interchange between these two equivalent descriptions of vertices

in Sω(S). Furthermore, define Sω(S) to have an edge between vertices Qω(C) and Qω(D)

if in the asymptotic cone Qω(CyD) = Qω(DyC), and moreover ω–a.s. the complement

S \ {Ci, Di} contains an essential subsurface Yi. By Theorem 2.2.10 this is equivalent to the

statement that the intersection between the convex product regions, Qω(C)∩Qω(D), has non-

trivial (in fact infinite) diameter in the asymptotic cone. We can define higher dimensional

simplices similarly, although they will not be necessary as we will only be interested in the one

skeleton of Sω(S) equipped with the graph metric.

Given our definition of Sω(S), we can define a related [0,∞]–valued pseudometric on the

asymptotic cone which gives information about the natural product structures connecting points

in the asymptotic cone. Specifically, define

dSω(S)(aω, bω) ≡ inf
A,B

dSω(S)(A,B)
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where the infimum is taken over all pairs A,B in the vertex set of Sω(S) having the property

that aω ∈ Qω(A) and bω ∈ Qω(B).

This definition is well-defined, as given any pants decompositions P ∈ P(S) there is a

bound D(S) depending only on the topological type of the surface S, such that there exists a

pants decomposition P ′ ∈ P(S) containing a separating curve and dP(S)(P, P
′) ≤ D(S). In

fact, in Section 6.4 we compute the asymptotics of D(S). In particular, given any element of

the asymptotic cone aω with any representative (Ai) there exists an alternative representative,

(A′
i), with A′

i containing a separating curve, thus making it clear that aω lies in some natural

convex product region of the asymptotic cone. The following theorem ensures appropriate

compatibility of S(S) and Sω(S).

Theorem 3.3.2. Let C,D be vertices in Sω(S). Then we have the following inequality:

dSω(S)(C,D) ≤ 2 lim
ω
dS(S)(Ci, Di) ≤ 2dSω(S)(C,D).

Moreover, when dSω(S)(C,D) is finite yet nontrivial, for each of the finite number of natural

convex product regions Qω(A) ⊂ Pω(S) traveled through in the path between Qω(C) and

Qω(D), the separating curve Ai is ω–a.s. in the same connected components as the finite S(S)

geodesic from Ci to Di.

Remark 3.3.3. The multiplicative term of 2 in the bi-Lipschitz inequality of Theorem 3.3.2 is

not believed to be necessary, although is used for technical aspects of the proof recorded below.

Proof of Theorem 3.3.2. First we will prove limω dS(S)(Ci, Di) ≤ dSω(S)(C,D). It suffices to

assume that dSω(S)(C,D) = 1 and show that limω dS(S)(Ci, Di) ≤ 1. Since

dSω(S)(C,D) = 1

it follows that in the asymptotic cone, the natural convex product regions Qω(C),Qω(D) whose

intersection is Qω(CyD) = Qω(DyC) is an infinite diameter set. In particular, S \ (Ci ∪Di)

ω–a.s. contains an essential subsurface, Yi. Accordingly, in S(S) ω–a.s. we have a connected

chain Ci, Di thus proving limω dS(S)(Ci, Di) ≤ 1 as desired.
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In order to complete the proof we will show dSω(S)(C,D) ≤ 2 limω dS(S)(Ci, Di). Consid-

ering the first part of the proof we can assume limω dS(S)(Ci, Di) is finite, which by Lemma

2.1.9 implies that ω–a.s. dS(S)(Ci, Di) = n for some non-negative constant n. By Remark

3.0.18, it follows that ω–a.s. dS′(S)(Ci, Di) = n′ ≤ 2n. Hence, ω–a.s. we have a finite S′(S)

geodesic C = C0, ..., Cn′ = D. By assumption ω–a.s. Cj
i ∩C

j+1
i are disjoint and it follows that

ω–a.s. Cj
i yCj+1

i = Cj+1
i yCj

i . Hence, limω
1
si
dP(S)(C

j
i yCj+1

i , Cj+1
i yCj

i ) = 0. Moreover, since

by assumption Cj
i , C

j+1
i are ω–a.s. connected in S′(S) by definition it follows that the com-

plement in the surface of the two multicurves ω–a.s. contains an essential subsurface. Putting

things together, in order to prove that dSω(S)(C,D) ≤ 2n, and hence complete the proof of the

lemma, it suffices to show that there are natural convex product regions Qω(Cj) ⊂ Pω(S) in

the asymptotic cone for j ∈ {1, ..., n′ − 1} corresponding to the terms in the sequence of S(S)

geodesics C0
i , ..., C

n′
i . Equivalently, it suffices to show that limω

1
si
dP(S)(P

0
i ,Q(Cj

i )) < ∞ for

all j ∈ {1, ..., n′ − 1} (by the assumptions of our lemma we already have this for j = 0, n′).

Once we show this, we will have the following chain of natural convex product regions in the

asymptotic cone with each product region intersecting its neighbor in an infinite diameter set:

Qω(C) = Qω(C0), ...,Qω(Cn′) = Qω(D).

A
B C

D

Figure 9: dS′(S2,2)(A,B) = 2 and in fact the sequence A,D,B is a S′(S) geodesic. Note that

D ̸⊂ N (A ∪ B). However, replacing D by C, we have a new S′(S) geodesic A,C,B with

C ⊂ N (A ∪B). This replacement process is akin to tightening in Subsection 2.2.2.

Fix some Cj, for j ∈ {1, ..., n′ − 1}. By replacement if necessary, we can assume Cj
i

is contained in a regular neighborhood of Cj−1
i and Cj+1

i . We denote this latter condition by

Cj
i ⊂ N (Cj−1

i ∪ Cj+1
i ). See Figure 9 for an example of such a replacement. We will show
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that limω
1
si
dP(S)(P

0
i ,Q(Cj

i )) < ∞. Then, iteratively repeating the same argument for each of

two the resulting shorter sequences C0, ..., Cj and Cj, ..., Cn′ , we eventually obtain an entire

chain of length n′ with the desired property, namely limω
1
si
dP(S)(P

0
i ,Q(Cj

i )) < ∞ for all

j ∈ {1, ..., n′ − 1}.

In order to show that limω
1
si
dP(S)(P

0
i ,Q(Cj

i )) <∞ we will show:

dP(S)(P
0
i ,Q(Cj

i )) . dP(S)(P
0
i ,Q(C0

i )) + dP(S)(P
0
i ,Q(Cn′

i )). (3.3.1)

Then assumption limω
1
si

(
dP(S)(P

0
i , C

0
i ) + dP(S)(P

0
i , C

n′
i )
)
< ∞, in conjunction with Equa-

tion 3.3.1 completes the proof of the theorem.

In order to prove equation 3.3.1, by Lemma 2.2 of [10] it suffices to show that for any

connected essential subsurface Y ∈ E(S) such that Y ∩ Cj
i ,

dC(Y )(P
0
i , C

j
i ) ≤ dC(Y )(P

0
i , {C0

i , C
n′

i }) + r′n

where r′ is some constant. First assume that Y intersects Cm
i ω–a.s. for all m ∈ {0, .., j − 1}.

In this case we are done as by Lemma 2.2.1 it follows that dC(Y )(C
0
i , C

j
i ) ≤ n′r′. Similarly,

we are done if Y intersects Cm
i ω–a.s. for all m ∈ {j + 1, ..., n′}. Since {Cj

i }n′
j0

is a geodesic

in S′(S), it follows that if Y is ω–a.s. disjoint from Ck
i then Y intersects all C l

i for all l such

that |l − k| ≥ 3. Since by assumption Y ∩ Cj ̸= ∅ and because Cj
i ⊂ N (Cj−1

i ∪ Cj+1
i ), it

follows that either Y ∩ Cj−1 ̸= ∅ or Y ∩ Cj+1 ̸= ∅. In other words, any connected essential

subsurface Y which intersects Cj
i actually intersects two consecutive separating multicurves:

either Cj−1
i , Cj

i or Cj
i , C

j+1
i . In either case, it follows that Y must ω–a.s. intersect Cm

i either

for all m ∈ {0, ..., j − 1} or for all m ∈ {j + 1, ..., n′}, thereby completing the proof.

The bi-Lipschitz relation in Theorem 3.3.2 guarantees that one of the terms is infinite if and

only if the other term is infinite. It should be stressed that the term limω dS(S)(Ci, Di) can be

infinite due to two different reasons. On the one hand, it is possible that ω–a.s. Ci and Di are

connected in S(S) however their distances are unbounded. On the other hand, it is possible

that ω–a.s. Ci and Di are in different connected components of S(S). This distinction will be

crucial in Chapter 4. Incidentally, by Theorem 3.1.1, the latter possibility cannot occur for

surfaces with χ(S) ≤ −5.
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Chapter 4

The asymptotic cone of Teichmüller space:

cut-points, finest pieces, and applications

thereof

In this chapter we explore the asymptotic cone of Teichmüller space by way of studying the

asymptotic cone of the pants complex. In particular, we characterize cut-points in the asymp-

totic cone of the pants complex. By Theorem 2.1.8, since the pants complex is quasi-isometric

to Teichmüller space [19], and because cut-points are preserved under a bi-Lipschitz map, our

characterization of cut-points in the asymptotic cone of the pants complex immediately applies

to Teichmüller space. The chapter is divided into three sections which we outline presently.

In Section 4.1 we introduce a notion called structurally integral corners which only arise in

certain low complexity surfaces and will provide a desired separation property in the asymp-

totic cone. The motivation for the construction of structurally integral corners is based on the

concept of microscopic jets developed in [8]. As an overly simplistic although conceptually

accurate analogy, structurally integral corners are to the separating complex what microscopic

jets are to the curve complex. The highlight of Section 4.2 is the proof of Theorem 4.2.3 in

which we characterize when two points in the asymptotic cone of Teichmüller space are sepa-

rated by a cut-point. Finally, in Section 4.3 we characterize the family of strongly contracting
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quasi-geodesics in Teichmüller space. This family of hyperbolic type quasi-geodesics general-

izes the family of quasi-geodesics with bounded combinatorics studied in [23].

4.1 Structurally integral corners

4.1.1 Structurally integral corners are well-defined

Informally, a structurally integral corner entails the joining of two particular natural convex

product regions in the asymptotic cone of the pants complex at a “corner” such that the removal

of the corner joining the regions separates the two product regions from each other. More

formally, fixing some ultrafilter ω, we have the following definition:

Definition 4.1.1 (structurally integral corner). Let α ̸= β ∈ Sω be such that the following

conditions hold:

1. ω–a.s. αi and βi are in different connected components of S(S). In particular, it follows

that limω dS(S)(αi, βi) → ∞ and αiyβi, βiyαi ∈ P(S). And,

2. limω dP(S)(αiyβi, βiyαi) is bounded. In particular, for any Y ∈ Eω(S), the limit

lim
ω
dC(Yi)(αiyβi, βiyαi) is bounded.

In this setting we call the point (αyβ)ω (or equivalently the point (βyα)ω) a structurally integral

corner, and denote it by αCβ.

Remark 4.1.2. It should be stressed that due to condition (1) in Definition 4.1.1, in light of

Theorem 3.1.1, structurally integral corners can only exist for surfaces S with |χ(S)| ≤ 4.

In fact, for surfaces with |χ(S)| ≥ 5, if limω dP(S)(αiyβi, βiyαi) is bounded then comparing

the quasi-distance formulas of P(S),S(S) in Theorem 2.2.5, Corollary 3.1.8, respectively, it

follows that limω dS(S)(αi, βi) is also bounded. In other words, for surfaces with |χ(S)| ≥ 5,

contradicting condition (2) in Definition 4.1.1 contradicts condition (1).
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After descending from elements of ultrapowers to elements of the asymptotic cone, the

structurally integral corners (αyβ)ω and (βyα)ω will be identified and moreover, this point will

serve as a cut-point between the quasi-convex product regions Qω(α) and Qω(β). Note that we

must assume that our cone Pω(S) contains the corner (αyβ)ω, or equivalently we must assume

the sequence (αiyβi) satisfies limω
1
si
dP(S)(P

0
i , αiyβi) <∞.

Example 4.1.3 (A structurally integral corner in Pω(S2,1)). Let αi, βi ∈ Csep(S2,1) be such that

limω
1
si
dP(S)(P

0
i ,Q(αi) < ∞, limω

1
si
dP(S)(P

0
i ,Q(βi) < ∞. Moreover, assume that ω–a.s. (i)

the intersection number i(αi, βi) is bounded, and (ii) αi, βi are in different connected compo-

nents of Csep(S). In this case αCβ is a structurally integral corner in Pω(S2,1). The only non-

trivial point to note is that the bound on the intersection number between αi and βi guarantees

condition (2) of Definition 4.1.1.

Given the notion of a structurally integral corner, we will now introduce a relation ∼α,β on

Pω(S) which descends to an equivalence relation on Pω(S)\αCβ.Moreover, each equivalence

class is open. In particular, it will follow that in the asymptotic cone, Pω(S), the corner αCβ is

a cut-point between points of Pω(S) \αCβ which are in different equivalence classes under the

relation ∼α,β . We begin with the following definition of a relation ∼α,β on Pω(S).

Definition 4.1.4. Let αCβ be a structurally integral corner. Then we have relation ∼α,β on

Pω(S) given by saying P ∼α,β Q if and only if P and Q fall into the same case under the

following trichotomy. Namely, given P,

1. P is in case one if ∃Wα ∈ SEω(S) such that the following two conditions hold:

(i) limω dS(S)(αi, ∂Wα,i) is bounded, and

(ii) limω dC(Wα,i)(Pi, βi) → ∞.

2. P is in case two if ∃Wβ ∈ SEω(S) such that the following two conditions hold:

(i) limω dS(S)(βi, ∂Wβ,i) is bounded, and

(ii) limω dC(Wβ,i)(Pi, αi) → ∞.

3. P is in case three if neither the conditions of case one nor case two apply to P
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Figure 10: A structurally integral corner αCβ ∈ Pω(S). Pω is in case one of the equivalence

relation ∼α,β, Qω is in case two, and the points Rω, Sω are in case three. In the picture we are

assuming dSω(S)(α, {β, β2, β3}) = ∞, dSω(S)({α, β, β1, β2}, γ) = ∞.

See Figure 10 for an illustration of a structurally integral corner. As a first order of business,

the following lemma guarantees the mutual exclusivity of the three cases in the definition of

∼α,β, thus ensuring that the equivalence relation of Definition 4.1.4 is well-defined.

Lemma 4.1.5. Let P ∈ Pω(S). Then P falls into one and only one of the three cases in the

trichotomy of Definition 4.1.4.

Proof. It suffices to show that P cannot simultaneously be in cases one and two. Assume not,

that is, assume ∃ elements Wα,Wβ ∈ SEω(S) such that

lim
ω
dS(S)(αi, ∂Wα,i) and lim

ω
dS(S)(βi, ∂Wβ,i)

are bounded (and by Remark 3.0.18 similarly for S′(S)), while

lim
ω
dC(Wα,i)(Pi, βi) and lim

ω
dC(Wβ,i)(Pi, αi)

are unbounded.



CHAPTER 4. ASYMPTOTIC CONE OF Tω(S) 65

Since αCβ is a structurally integral corner, in particular, we have that limω dS(S)(αi, βi) is

unbounded, and consequently by our assumptions, limω dS(S)(∂Wα,i, ∂Wβ,i) is unbounded as

well. Lemma 3.0.20 then guarantees that Wα t Wβ.

By Lemma 2.2.1 if Yi ∈ E(S) ω–a.s. intersects every separating multicurve in the bounded

path of disjoint separating multicurves in S′(S) connecting βi and ∂Wβ,i, then

lim
ω
dC(Yi)(βi, ∂Wβ,i)

is bounded as well. In particular, since the distance in S′(S) between ∂Wα,i and the bounded

path connecting βi and ∂Wβ,i, is unbounded, Lemma 3.0.20 implies that ω–a.s. ∂Wα,i intersects

every separating multicurve in the bounded path of separating multicurves in S′(S) connecting

βi and ∂Wβ,i. Hence, limω dC(Wα,i)(βi, ∂Wβ,i) is bounded. Similarly, limω dC(Wβ,i)(αi, ∂Wα,i)

is bounded. In conjunction with our assumptions, it follows that limω dC(Wα,i)(Pi, ∂Wβ,i) and

limω dC(Wβ,i)(Pi, ∂Wα,i) are unbounded. Since Wα t Wβ, this contradicts Lemma 2.2.3.

4.1.2 Equivalence relation induced by structurally integral corners

Having proven that the relation ∼α,β is well-defined, in this subsection we will prove that the

relation in fact descends to an equivalence relation on Pω(S) \α Cβ.

Theorem 4.1.6. The relation ∼α,β descends to an equivalence relation on Pω(S) \ αCβ.

Moreover, each equivalence class is open.

The proof of Theorem 4.1.6 will follow from the following technical lemma.

Lemma 4.1.7. There exists a constant C ≥ 0 such that for αCβ a structurally integral corner

if P,Q are sequences representing points Pω, Qω ∈ Pω(S), and if P ̸∼α,β Q. Then,

dPω(S)(Pω, Qω) ≥ CdPω(S)(Pω,αCβ).

Proof of Theorem 4.1.6. Assume that P and Q are representatives of the same point of the

asymptotic cone. Then by Lemma 4.1.7 either P ∼α,β Q or in the asymptotic cone, Pω = αCβ.

Hence, the relation ∼α,β descends to a relation on Pω(S)\αCβ which is reflexive. Furthermore,
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since by definition it is immediate that ∼α,β is symmetric and transitive, it follows that ∼α,β

descends to an equivalence relation on Pω(S)\αCβ. To see that each equivalence class is open,

notice that Lemma 4.1.7 implies that any point Pω ∈ Pω(S) \α Cβ has an open neighborhood

consisting entirely of points which are in the same equivalence class.

Proof of Lemma 4.1.7. Pi, Qi, αiyβi are pants decompositions of a surface and hence have non-

trivial subsurface projection to any essential subsurface. For any W ∈ E(S), let σW
i be a

C(W ) geodesic from Pi to Qi. Moreover, let πσW
i

(αiyβi) be the nearest point projection of

πC(W )(αiyβi) onto the geodesic σW
i . Notice that by definition, ∀W ∈ E(S) we have

dC(W )(Pi, Qi) ≥ dC(W )(Pi, πσW
i

(αiyβi)). (4.1.1)

By Lemma 2.2.9, there is a pants decomposition Xi with subsurface projections within

a uniformly bounded distance of πσW
i

(αiyβi) for all W ∈ E(S). That is, there is a uniform

constant k such that ∀W ∈ E(S), we have

dC(W )(Xi, πσW
i

(αiyβi)) < k. (4.1.2)

We will see that the sequence (Xi) represents an element Xω ∈ Pω(S). This can be shown

directly, although such an argument is not necessary as later in the proof we will in fact show

that Xω = (αyβ)ω = (βyα)ω.

Combining Equations 4.1.1 and 4.1.2, for all Y ∈ E(S), we have:

dC(Y )(Pi, Qi) ≥ dC(Y )(Pi, Xi) − k, (4.1.3)

where k is any constant. In particular, by Theorem 2.2.5 we have the following inequality:

dPω(S)(Pω, Qω) ≥ CdPω(S)(Pω, Xω). (4.1.4)

Using inequality 4.1.4, in order to complete the proof of the lemma it suffices to show that

Xω is in fact equal to the corner point αCβ. The remainder of the proof will deal with proving

this equality.
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In order to showXω = αCβ, by Corollary 2.2.14 it suffices to show that for any Y ∈ Eω(S)

we have that limω dC(Yi)(Xi, αiyβi) is bounded. In fact, by the definition of Xi, it suffices

to show that limω dC(Yi)(σ
Yi
i , αiyβi) is bounded. Moreover, by condition (2) in the definition

of a structurally integral corner αCβ it follows that limω diamC(Y )({αi, βi, αiyβi, βiyαi}) is

bounded, and hence, it suffices to show that limω dC(Yi)(σ
Yi
i , {αi, βi}) is bounded.

By assumption P and Q are in different equivalence classes, and hence by definition P

and Q fall into different cases in Definition 4.1.4. By symmetry of the cases, without loss of

generality we can assume that P is in case one of Definition 4.1.4, while Q is not. Namely,

∃Wα ∈ SEω(S) such that limω dS(S)(αi, ∂Wα,i) is bounded, while limω dC(Wα,i)(Pi, βi) → ∞.

Furthermore, for any element U ∈ SEω(S) such that limω dS(S)(αi, ∂Ui) is bounded, perforce

limω dC(Ui)(Qi, βi) is also bounded. By Remark 3.0.18 the same statements hold for S′(S).

We proceed by considering cases for the relationship between Y and Wα where Y is an

arbitrary element of the ultrapower of connected essential subsurfaces. By Lemma 2.1.9 since

there are only a finite number of possibilities for the relationship between two essential subsur-

faces - identical, nested, overlapping, and disjoint - it follows that there are similarly the same

finitely many possibilities for the relationship between Y and Wα. In each case we will show

limω dC(Yi)(σ
Yi
i , {αi, βi}) is bounded, thus completing the proof of the lemma.

Case 1: Either Y ⊂ Wα or Y ∩ Wα = ∅. In either case, ω–a.s. dS(S)(∂Wα,i, ∂Yi) ≤ 1

and hence by our assumptions limω dS(S)(αi, ∂Yi) is bounded. Since Q is not in case one of

the equivalence relation ∼α,β, it follows that limω dC(Yi)(Qi, βi) is bounded. In particular, this

implies that limω dC(Yi)(σ
Yi
i , {αi, βi}) is bounded, completing this case.

Case 2: Wα ⊂ Y and limω dC(Yi)(∂Wα,i, {αi, βi}) is bounded. By our assumptions,

lim
ω
dC(Wα,i)(Pi, βi) → ∞,

while limω dC(Wα,i)(Qi, βi) is bounded. In particular, limω dC(Wα,i)(Pi, Qi) → ∞. Then ω–a.s.

dC(Yi)(∂Wα,i, σ
Yi
i ) ≤ 1. If not, then Theorem 2.2.2 would imply that ω–a.s. dC(Wα,i)(Pi, Qi)

is uniformly bounded which is a contradiction. However, the assumption of the case that

limω dC(Yi)(∂Wα,i, {αi, βi}) is bounded then implies that limω dC(Yi)({αi, βi}, σYi
i ) is bounded,

thus completing this case.
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Note that the special case of Y = S must fall into this case. Specifically, recall we have

assumed that limω dS(S)(αi, ∂Wα,i) is bounded which in particular ensures the same result for

C(S) as distance in S(S) is coarsely bounded from below by C(S) distance, see Equation 3.0.2.

Case 3: Y t Wα and limω dC(Yi)(∂Wα,i, {αi, βi}) is bounded. As in Case 2, by our

assumptions limω dC(Wα,i)(Pi, βi) → ∞, while limω dC(Wα,i)(Qi, βi) is bounded. In particular,

lim
ω
dC(Wα,i)(Pi, Qi) → ∞.

Since ω–a.s. Wα,i t Yi, it follows that limω dC(Yi)(∂Wα,i, {Pi, Qi}) is uniformly bounded. If

not, then Lemma 2.2.3 implies that dC(Wα,i)(Pi, Qi) is uniformly bounded which is a contradic-

tion. However, the assumption of the case that

lim
ω
dC(Yi)(∂Wα,i, {αi, βi})

is bounded then implies that limω dC(Yi)({αi, βi}, {Pi, Qi}) is bounded. Since σYi
i is C(Yi)

geodesic between Pi andQi, it follows that limω dC(Yi)({αi, βi}, σYi
i ) is bounded, thus complet-

ing this case.

Case 4: Either Wα ⊂ Y or Y t Wα, and in both cases, limω dC(Yi)(∂Wα,i, {αi, βi}) is

unbounded. Since limω dS′(S)(αi, ∂Wα,i) is bounded, it follows that there is a bounded path of

connected multicurves in the curve complex C(S) from αi to ∂Wα,i such that each multicurve is

a separating multicurve. Call this path ρi. On the other hand, the assumption of the case is that

limω dC(Yi)(∂Wα,i, {αi, βi}) → ∞. Putting things together, by Lemma 2.2.1 it follows ω–a.s.

Yi is disjoint from some vertex in ρi. By construction, it follows that ∂Yi ∈ S(S), and in fact

limω dS(S)(αi, ∂Yi) is bounded. Since Q is not in case one of the equivalence relation ∼α,β, it

follows that limω dC(Yi)(Qi, βi) is bounded. It follows that limω dC(Yi)({αi, βi}, σYi
i ) is bounded.

This completes the proof of the final case thereby completing the proof of the lemma.

4.1.3 Separation property of structurally integral corners

As an immediate corollary of Theorem 4.1.6 we have the following useful separation property

of structurally integral corners in the asymptotic cone. This separation property should be

compared with the separation property of microscopic jets recorded in Theorem 2.2.16.
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Corollary 4.1.8. Let αCβ be a structurally integral corner, and let xω, x
′
ω ∈ Pω(S) \α Cβ be

points in the asymptotic cone such that xω ̸∼α,β x′ω. Then xω and x′ω are separated by the

corner αCβ.

Example 4.1.9. (Structurally integral corners in surfaces S with ξ(S) = 3) If the surface S

has ξ(S) = 3, then S(S) has connected components consisting of singletons. In this case, the

definition of a structurally integral corner and moreover the corresponding equivalence relation

become much simpler. Specifically, Definition 4.1.1 simplifies to αi and βi being distinct

elements in Sω(S) such that limω dP(S)(αiyβi, βiyαi) is bounded. Moreover, in Definition 4.1.4

the only possibilities for Wα, Wβ are the two complexity one connected components of S \ α,

S \ β respectively.

4.2 Finest pieces

Behrstock showed that every point in the asymptotic cone of both the mapping class group and

Teichmüller space is a global cut-point, [3]. On the other hand, it is well established that for

surfaces S with ξ(S) ≥ 2, the mapping class group admits quasi-isometric embeddings of Z′

flats, while for surfaces with ξ(S) ≥ 3 Teichmüller space admits quasi-isometric embeddings

of Z′ flats, [10, 20, 48]. Hence, for high enough complexity surfaces the mapping class group

and Teichmüller space are not δ-hyperbolic and in particular, their asymptotic cones are not R-

trees. Putting things together, for high enough complexity surfaces, the asymptotic cones of the

mapping class group and Teichmüller space are nontrivial tree-graded spaces with the property

that every point is a cut-point globally, but not locally for some nontrivial local regions. In

such settings, we have canonically defined finest pieces of the tree-graded structure which are

maximal subsets of the asymptotic cone subject to the condition that no two points in a finest

piece can be separated by the removal of a point. In this subsection, we will characterize

of the canonically defined finest pieces in the tree-graded structure of Tω(S). Our theorem is

motivated by and should be compared with the following theorem of [8]:
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Theorem 4.2.1 ([8] Theorem 7.9). Let S = Sg,n and let MCGω(S) be any asymptotic cone of

MCG(S). Then for all aω, bω ∈ MCGω(S), the following are equivalent:

1. No point separates aω and bω, and

2. In any neighborhood of aω, bω there exists a′ω, b
′
ω, with representatives (a′i), (b

′
i) respec-

tively, such that:

lim
ω
dC(S)(a

′
i, b

′
i) <∞.

Example 4.2.2 (MCG(S) vs P(S); a partial pseudo-Anosov axis). The following example

demonstrates that Theorem 4.2.1 cannot be applied without modification to P(S). Consider

a representative (P 0
i ) of the basepoint of our asymptotic cone Pω(S), and let γi ∈ P 0

i be a

non-separating curve. Let gi ∈ MCG(S \ γi) be a pseudo-Anosov map. Then consider the

following two points in the asymptotic cone:

aω = (P 0
i ), bω = (gsi

i P
0
i ).

By construction, aω ̸= bω lie on a partial psuedo-Anosov axis in the asymptotic cone. Further-

more, by construction, using notation from Subsection 2.2.4 we have:

aω, bω ∈ PS\γ,aω
= FS\γ,aω

× {γ} = R-tree × {pt} ⊂ Pω(S).

Hence, aω, and bω can be separated by a cut-point. Nonetheless, aω and bω have representatives

(P 0
i ), (gsi

i P
0
i ), respectively, each containing γi. In particular, ∀i ∈ N, dC(S)(P

0
i , g

si
i P

0
i ) = 0.

Hence in P(S), statement (1) of Theorem 4.2.1 can fail even though statement (2) holds.

Despite the fact that Theorem 4.2.1 does not apply verbatim to P(S), the following slightly

modified theorem with condition (2) strengthened does apply to P(S).

Theorem 4.2.3. Let S = Sg,n and let Pω(S) be any asymptotic cone of P(S). Then for all

aω, bω ∈ Pω(S), the following are equivalent:

1. No point separates aω and bω, or equivalently aω and bω are in the same canonical finest

piece, and
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2. In any neighborhood of aω, bω, respectively, there exists a′ω, b
′
ω, with representative se-

quences (a′i),(b
′
i), such that limω dS(S)(a

′
i, b

′
i) <∞.

A couple of remarks are in order.

Remark 4.2.4. Note that condition (2) of Theorem 4.2.3 implies condition (2) of Theorem

4.2.1 as distance in C(S) is coarsely bounded above by distance in S(S), see Equation 3.0.2.

Moreover, note that by Theorem 3.3.2, condition (2) of Theorem 4.2.3 can be replaced by the

following statement: In any neighborhood of aω, bω, respectively, there exist points a′ω, b
′
ω, such

that dSω(S)(a
′
ω, b

′
ω) <∞.

Proof of Theorem 4.2.3. (2) =⇒ (1): As noted in Remark 4.2.4, Property (2) implies that

aω, bω are limit points of sequences in the asymptotic cone which have finite Sω(S) distance.

Since the canonically defined finest pieces are closed sets [30], it suffices to show that points

in the asymptotic cone with finite Sω(S) distance cannot be separated by a point. Specifically,

assume we have a chain of natural convex nontrivial product regions Qω(γ0), ...,Qω(γK) in the

asymptotic cone Pω(S) such that a′ω ∈ Qω(γ0), b
′
ω ∈ Qω(γK), and for all j ∈ {0, ..., K − 1}

Qω(γj)
∩

Qω(γj+1) has infinite diameter intersection. Clearly, each product region cannot be

separated by a point. Furthermore, by assumption each product region cannot be separated

from its neighbor by a point. It follows that a′ω and b′ω cannot be separated by a point, thus

completing the proof of (2) =⇒ (1).

(1) =⇒ (2): We will prove the contrapositive, namely ∼ (2) =⇒ ∼ (1). The negation of

property (2) implies that there exists an r1 > 0 such that all points in r1 open neighborhoods

of aω and bω respectively have infinite or undefined Sω(S) distance. By Theorem 2.1.8, Pω(S)

is locally path connected. Let r2 > 0 be a constant such that the r2 open neighborhoods of aω

and bω are path connected. Set 3r = min(r1, r2). By choosing r1 to be sufficiently small, we

can assume that dPω(S)(aω, bω) > 6r.

Let the sequences (a′i), (b
′
i) represent any points a′ω, b

′
ω in r neighborhoods of aω, bω re-

spectively, let γi be a hierarchy path between a′i and b′i, and let γω represent its ultralimit. By

construction γω is a (K, 0)-quasi-geodesic. Let a′′ω denote a point on γω of distance r from a′ω,
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and let a′′′ω denote a point on γω of distance 2r from a′ω. Similarly, let b′′ω denote a point on

γω of distance r from b′ω, and let b′′′ω denote a point on γω of distance 2r from b′ω. See Figure

11. We will show that the quasi-geodesic γω contains a cut-point between the points a′′ω and

b′′ω. Then, local path connectedness implies that the cut-point also separates aω and bω, thus

completing the proof of the negation of (1) and hence the proof of the Theorem. Specifically,

since by assumption aω and a′ω (and similarly bω and b′ω) are within distance r of each other,

and because the cut-point between a′′ω and b′′ω is at least distance r from a′ω, (and similarly from

b′ω) it follows that a geodesic path between aω and a′ω (and similarly between bω and b′ω) does

not contain the cut-point.

We will proceed by considering two cases. In the first case we will obtain a cut-point using

the machinery of microscopic jets and in the second case we will obtain a cut-point using the

machinery of structurally integral corners.

a

aaa
b

b b
b

w

w w w
w w

w

w

3r

2r

r

’ ’’ ’’’ ’’’’’

’

Figure 11: The dotted line is a quasi-geodesic γω from a′ω to b′ω.

Case One: ∃r′ such that for all a0
ω, b

0
ω in 3r′ neighborhoods of aω, bω, with (a0

i ),(b
0
i ) any

representatives thereof, respectively, ∃Y ∈ NEω(S) with limω dC(Yi)(a
0
i , b

0
i ) → ∞.

By abuse of notation assume that we have replaced r described above by r = min{r, r′}.

In particular, since a′′′ω , b
′′′
ω are contained in 3r′ neighborhoods of aω, bω, respectively, the as-

sumption of the case ensures that for some Y ∈ NEω(S), we have limω dC(Yi)(a
′′′
i , b

′′′
i ) → ∞.

Then, by Theorem 2.2.15 there exists a microscopic jet J = (g, Y , a′′′, b′′′) with g ⊂ γω|[a′′′
ω ,b′′′ω ]

and such that a′′′ω ̸∼J b
′′′
ω . By definition, limω dC(Yi)(πgi

(a′′′i ), πgi
(b′′′i )) → ∞. By the properties
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of hierarchies in Theorem 2.2.4 it follows that limω dC(Yi)(πgi
(a′′i ), πgi

(b′′i )) → ∞, and hence

a′′ω ̸∼J b
′′
ω.

Since the complement Y c is the emptyset, ι(J)×Pω(Y c) is a single point in the asymptotic

cone. Moreover, by construction it is not equal to either a′′ω or b′′ω. Theorem 2.2.16 implies that

the initial point of the jet is a cut-point between a′′ω and b′′ω. This completes the proof of case

one. It should be noted that the proof of case one follows closely the proof of Theorem 4.2.1 in

[8]. In fact, for the special case of Y = S the proofs are identical.

Case Two: The negation of case one. Namely, in any neighborhoods of aω, bω there exists

a0
ω, b

0
ω with representatives (a0

i ),(b
0
i ), such that ∀Y ∈ NEω(S), limω dC(Yi)(a

0
i , b

0
i ) <∞.

For r neighborhoods of aω, bω set the points a0
ω, b

0
ω with representatives (a0

i ),(b
0
i ), guaran-

teed to exist by the hypothesis of the case to be equal to a′ω, b
′
ω, with representatives (a′i),(b

′
i),

respectively. Then as above, let γi be a hierarchy path between a′i and b′i, and similarly define

the points a′′i , a
′′′
i , b

′′
i , b

′′′
i . By the assumptions of the case the hierarchies γi have the property

that for all Y ∈ NE(S), the projection of γi to C(Y ) is uniformly bounded. In particular, the

hierarchies γi have uniformly bounded main geodesic length and travels for uniformly bounded

distances in all connected nonseparating essential subsurfaces Y. By Lemma 2.1.9 there is a k

such that ω–a.s. the main geodesic in γi has length exactly k. Specifically, ω–a.s. there is a tight

main geodesic in C(S), with simplices g0i, ..., gki such that g0i ⊂ a′i, gki ⊂ b′i. By construction,

the hierarchy γi travels through the finite set of quasi-convex regions, Q(g0i), ..., Q(gki). See

Figure 12.

g g

g

g

g
g0i

1i

2i

3i

4i
ki

Q(g   )

Q(g   ) Q(g   )

Q(g   )

 2i

1i

4i

ki

3i
Q(g   )

Figure 12: The ultralimit of hierarchy paths with a uniformly bounded main geodesics. Notice

that each of the vertices along the finite length main geodesic are separating multicurves.
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Without loss of generality we can assume that for all j, either γji ∈ P(S), i.e γji is an entire

pants decomposition of a surface, or for any (Wi) a sequence of connected essential subsurfaces

in the complement S \ gji, we have limω dC(Wi)(a
′
i, b

′
i) → ∞. If not, by iterating the argument

we used above for a finite length C(S) main geodesic we can ω–a.s. replace the multicurve gji

by a finite list of connected simplices in C(S) each containing gji as a proper multicurve. This

iteration process of replacing a multicurve gji from our our finite list {g0i, ..., gki} with finite

sequences of multicurves each containing the original multicurve as a proper multicurve must

terminate due to the finite complexity of the surface S. Accordingly, we have a finite list of

nontrivial quasi-convex regions and singletons through which our hierarchy path γi from a′i to

b′i ω–a.s. travels. Since the list of nontrivial quasi-convex regions and singletons is bounded

ω–a.s. , coarsely we can ignore the singletons. That is, coarsely our hierarchy path γi from

a′i to b′i ω–a.s. travels through only a finite list of nontrivial quasi-convex regions, Q(g0i),

..., Q(gk′i) such that for any (Wi) a sequence of connected component of S \ gji, we have

limω dC(Wi)(a
′
i, b

′
i) → ∞. By the assumptions of our case, for each j, ω-a.s gi,j is a separating

multicurve, or equivalently for each j the region Q(gji) is a nontrivial quasi-convex product

region. Moreover, by construction for all j, limω dP(S)(gijyg(i+1)j, g(+1)jygij, ) is bounded.

Notice that all of the above analysis holds after restricting to the subquasi-geodesic γi|a′′′
i ,b′′′i

.

Assume we have done so.

However, by the negation of condition (2) of the theorem, it follows that there exist consec-

utive separating multicurves, gji, g(j+1)i in our list such that:

lim
ω
dS(S)(gji, g(j+1),i) → ∞.

In particular, in conjunction with the analysis of the previous paragraph, we have a structurally

integral corner gj
Cgj+1

. Moreover, by construction a′′ω, b
′′
ω ̸= g′j

Cg′j+1
as the corner is on the

quasi-geodesic γω|[a′′′
ω ,b′′′ω ]. Furthermore, a′′ω ̸∼g′j ,g′j+1

b′′ω, as by our assumptions a′′ω is in case one

of the equivalence relation ∼g′j ,g′j+1
while b′′ω is in case two of the equivalence relation ∼g′j ,g′j+1

.

Corollary 4.1.8 implies that the structurally integral corner g′j
Cg′j+1

is a cut-point between the

points a′′ω, b
′′
ω. This completes the proof of the theorem.
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Remark 4.2.5. Precisely as in Remark 4.1.2, it should be stressed that Case Two in the proof of

Theorem 4.2.3 cannot occur for surfaces with |χ(S)| ≥ 5.

4.2.1 Applications of the classification of finest pieces

Special cases of Theorem 4.2.3 include the following celebrated theorems of others.

Corollary 4.2.6 ([3, 20] Theorem 5.1, Theorem 1.1). Let S = S1,2 or S0,5. Then P(S) is

δ-hyperbolic.

Proof. It suffices to show that for all choices of asymptotic cones, Pω(S) is an R-tree, see

[28, 37]. Equivalently, it suffices to show that the finest pieces in any asymptotic cone are

trivial, or equivalently, any two points aω ̸= bω ∈ Pω(S) can be separated by a point. However,

by Theorem 4.2.3 this is immediate as S(S) = ∅.

Corollary 4.2.7 ([21] Theorem 1). Let ξ(S) = 3, then P(S) is relatively hyperbolic with

respect to natural quasi-convex product regions consisting of all pairs of pants with a fixed

separating curve.

Proof. It suffices to show that P(S) is asymptotically tree-graded with respect to peripheral

subsets consisting of all natural quasi-convex product regions Q(γ) for any γ ∈ Csep(S).

By topological considerations any two separating curves γ ̸= δ ∈ Csep(S), S \ (γ ∪ δ) does

not contain an essential subsurface. Consequently, dS(S) ∈ {0,∞}, and similarly for allC,D ∈

Sω(S), the expression limω dS(S)(Ci, Di) takes values in {0,∞}. Accordingly, Theorem 4.2.3

implies any two points aω, bω are either in a common natural convex product region (such

regions are closed) or are separated by a cut-point. In particular, any simple nontrivial geodesic

triangle in Pω(S) must be contained entirely inside a single piece Qω(γ).

While stated for P(S), Corollaries 4.2.6 and 4.2.7 immediately apply to T (S) as hyperbol-

icity and strong relative hyperbolicity are quasi-isometry invariant properties.
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4.3 Hyperbolic type quasi-geodesics

In this section, after some definitions of the various types of hyperbolic type geodesics, we will

characterize hyperbolic type quasi-geodesics in Teichmüller space. See [43] for a similar anal-

ysis of strongly contracting quasi-geodesics in Teichmüller space equipped with the Lipschitz

metric. We begin with the notion of a Morse (quasi-)geodesic which has roots in the classical

paper [53]:

Definition 4.3.1 (Morse). A (quasi-)geodesic γ is called a Morse (quasi-)geodesic if every

(K,L)-quasi-geodesic with endpoints on γ is within a bounded distance from γ,with the bound

depending only on the constants K,L. Similarly, the definition of Morse can be associated to a

sequence of (quasi-)geodesic segments with uniform quasi-isometry constants.

The following generalized notion of contracting quasi-geodesics can be found for example

in [3, 21], and is based on a slightly more general notion of (a,b,c)–contraction found in [47]

where it serves as a key ingredient in the proof of the hyperbolicity of the curve complex.

Definition 4.3.2 (contracting quasi-geodesic). A quasi-geodesic γ is said to be (b,c)–contracting

if ∃ constants 0 < b ≤ 1 and 0 < c such that ∀x, y ∈ X :

dX(x, y) < bdX(x, πγ(x)) =⇒ dX(πγ(x), πγ(y)) < c.

For the special case of a (b,c)–contracting quasi-geodesic where b can be chosen to be 1, the

quasi-geodesic γ is called strongly contracting.

In [63], which is reproduced in Section 6.2, hyperbolic type quasi-geodesics in CAT(0)

spaces are analyzed. In particular, the following result is proven:

Theorem 6.2.5. Let X be a CAT(0) space and γ ⊂ X a quasi-geodesic. Then, the following

are equivalent: (1) γ is (b,c)–contracting, (2) γ is strongly contracting, (iii) γ is Morse, and

(iv) In every asymptotic cone Xω, any two distinct points in the ultralimit γω are separated by

a cut-point.
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Recall that T (S) is CAT(0). Combining Theorems 4.2.3 and 6.2.5, the following corollary

characterizes all strongly contracting quasi-geodesics in T (S). Equivalently, in light of Theo-

rem 6.2.5 the theorem also characterizes Morse quasi-geodesics in T (S). The characterization

represents a generalization of quasi-geodesics with bounded combinatorics studied in [3, 23].

Specifically, in [3, 23] it is shown that quasi-geodesics in P(S) which have uniformly bounded

subsurface projections to all connected proper essential subsurfaces. More generally, we show:

Theorem 4.3.3. Let γ be a quasi-geodesic in T (S), and using Theorem 2.1.6 let γ′ be a cor-

responding quasi-geodesic in P(S). Then γ is strongly contracting if and only if there exists

a constant C such that for all Y ∈ SE(S) the subsurface projection πY (γ′) has diameter

bounded above by C.

Proof. Assume there is no uniform bound C on the subsurface projection πY (γ′), where Y

ranges over SE(S). Then we can construct Y ∈ SEω(S) such that limi diam(πYi
(γ′)) → ∞.

By the properties of hierarchies in Theorem 2.2.4, it follows that there is a sequence of hier-

archy quasi-geodesic segments {γ′r}r with endpoints on γ′ traveling through product regions

Q(∂Yr) for unbounded connected subsegments. In particular, the sequence of quasi-geodesics

{γ′r}r are not Morse, and furthermore since the hierarchy segments γ′r are all quasi-geodesics

with uniform constants which have endpoints on γ′, the quasi-geodesic γ′ is also not Morse.

Moreover, considering the quasi-isometry taking γ′ to γ, it similarly follows that γ is not Morse.

By Theorem 6.2.5, γ is not strongly contracting.

On the other hand, assume ∀Y ∈ SE(S) that the subsurface projection πY (γ′) is uni-

formly bounded. Let Pω(S) be any asymptotic cone with aω, bω any two distinct points on γ′ω

with representatives sequences (ai), (bi) ∈ γ′, respectively. Proceeding as in Case One of the

proof of Theorem 4.2.3, consider a sequence of hierarchy quasi-geodesic segments ρ(ai, bi),

between the points ai and bi on γ′, and define distinct points a′′ω, a
′′′
ω , b

′′
ω, b

′′′
ω with representatives

(a′′i ), (a
′′′
i ), (b′′i ), (b

′′′
i ) along the sequence of hierarchy quasi-geodesic segments ρ(ai, bi). By as-

sumption, ∀Y ∈ SEω(S), limω dC(Yi)(a
′′′
i , b

′′′
i ) is bounded. On the other hand, since a′′′ω ̸= b′′′ω by

Corollary 2.2.14 there is someW ∈ Eω(S) such that limω dC(Wi)(ai, bi) is unbounded. Perforce,

W ∈ NEω(S). Then, as in Case One of the proof of Theorem 4.2.3, there exists a microscopic
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jet which gives rise to a cut-point between aω and bω. Since aω and bω are arbitrary and be-

cause cut-points in asymptotic cones are preserved by quasi-isometries, by Theorem 6.2.5 γ is

strongly contracting.

As a corollary of Theorem 4.3.3, we have the following result highlighting a strong distinc-

tion between MCG(S) and T (S). Let Y ∈ NE(S) be a connected proper essential subsur-

face, and let f be a partial pseudo-Anosov mapping class group supported on Y. That is, f is

a reducible mapping class group which restricts to a pseudo-Anosov homeomorphism on the

non-separating essential subsurface Y, and to the identity in the complement of Y. In terms of

MCGS, it is not hard to see that the axis of f in the mapping class group is not a contracting

element. In fact, the entire axis of f, < f >, is contained in a nontrivial quasi-convex prod-

uct subspace of MCG(S), as there is an infinte order Dehn twist subgroup with support the

annulus ∂Y which commutes with the subgroup < f >⊂ MCG(S). On the other hand, in

contrast to the mapping class group setting, in P(S), this same partial pseudo-Anosov axis is a

contracting quasi-geodesic.

Corollary 4.3.4. Let γ be any partial pseudo-Anosov axis in T (S) supported on a connected

nonseparating essential subsurface Y ∈ NE(S), then γ is strongly contracting.

Proof. By Theorem 4.3.3 we must show that the corresponding quasi-geodesic γ′ in P(S) has

uniformly bounded subsurface projection for all W ∈ SE(S). If W ∩ ∂Y ̸= ∅ then we are

done as the curve ∂Y is fixed along the partial pseudo-Anosov axis, and hence the subsurface

projection of γ′ into the curve complex of the essential subsurface W remains in a uniform

diameter of πC(W )(∂Y ). So without loss of generality W and ∂Y are disjoint and hence W

is nested in either Y or Y c. However, since Y ∈ NE(S), Y c is not an essential subsurface

and hence cannot contain W. So W ⊂ Y. Moreover, since Y ∈ NE(S) and W ∈ SE(S),

the essential subsurface W is properly nested in Y. Then, pseudo-Anosov axes have uniformly

bounded subsurface projections to all proper essential subsurfaces, [3, 48], thus completing the

proof.



CHAPTER 5. THICKNESS AND DIVERGENCE OF T (S) 79

Chapter 5

Thickness and Divergence of Teichmüller

Spaces

In this chapter we focus our analysis on the surface S2,1 which has previously proven to be

difficult to understand, as is apparent from the surrounding literature. In particular, in this chap-

ter we complete the thickness classification of Teichmüller space of all surfaces of finite type

described in Section 2.1 and presented in Table 1. Specifically, we prove that the Teichmüller

space of the surface S2,1 is thick of order two and has superquadratic divergence, thereby an-

swering questions of [5, 6, 21]. The proof in this chapter is broken up into three sections. In

Section 5.1 we carefully analyze from a geometric viewpoint the construction in [21] where it is

shown that T (S2,1) is thick of order at least one and at most two. Then, in Section 5.2 we prove

that T (S2,1) cannot be thick of order one. In Section 5.3 using our understanding from the

previous sections we prove that T (S2,1) can be uniquely characterized among all Teichmüller

spaces as it has a divergence function which is superquadratic yet subexponential. Finally, we

conclude with some open questions in Section 5.4. Throughout this section we will use the

pants complex as a quasi-isometric model for Teichmüller space, often making statements and

theorems about Teichmüller space with proofs obtained from considering the pants complex.
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5.1 T (S2,1) is thick of order one or two

In this section we recall results of Behrstock in [3] and Brock-Masur in [21]. Specifically,

we first recall a result of Behrstock that shows that for all surfaces T (S) is never wide. By

definition, it follows that T (S) is never thick of order zero. Then, we record a slightly adapted

version of a proof in [21] that T (S2,1) is thick of order at most two. Putting things together, this

section implies that T (S2,1) is thick of order one or two. The reason for the necessary slight

adaptation in this section of the proof in [21] is due to the various versions of thickness in the

literature, as noted in Remark 2.1.16.

We begin by recalling the following theorem of Behrstock:

Theorem 5.1.1 ([3] Theorem 7.1). Let γ be any pseudo-Anosov axis in P(S), and let γω be

its ultralimit in any asymptotic cone Pω(S). Then any distinct points on γω are separated by a

cut-point.

Since all mapping class groups of surfaces with positive complexity contain pseudo-Anosov

elements, and given any pseudo-Anosov axis, one can choose an asymptotic cone in which its

ultralimit is nontrivial, by Theorem 5.1.1 it follows that T (S) is never wide, and hence never

thick of order zero.

Next, we consider the proof in [21] proving that T (S2,1) is thick of order at most two.

Given α ∈ Csep(S2,0), let α̃ ∈ Csep(S2,1) denote any lift of α with respect to the projection π =

πC(S2,0) : Csep(S2,1) → Csep(S2,0) which forgets about the boundary component. By topological

considerations S \ α̃ = Y1 ⊔ Y2 = S1,1 ⊔ S1,2. Since diam(P(Yi)) = ∞, we can choose bi-

infinite geodesics ρi ∈ P(Yi), and in fact, by Theorem 2.2.5, the span of any two such bi-infinite

geodesics in the different connected components Y1, Y2 comprise a quasi-flat. In particular, it

follows that the sets Q(α̃) are nontrivial product regions, and in particular are wide. Again,

using Theorem 2.2.5, it is also immediate that subsets Q(α̃) are quasi-convex. Moreover, using

the property of hierarchies in Theorem 2.2.4, it follows that these subsets Q(α̃) satisfy the

non triviality property of every point having a bi-infinite quasi-geodesic through it. Hence, the

subsets Q(α̃) are thick of order zero.
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With the notation as above, set

X (α) = {Q ∈ P(S2,1) | α ∈ π(Q)} =
∪
α̃

Q(α̃) (5.1.1)

Presently we will prove the following theorem:

Theorem 5.1.2 ([21] Theorem 18). T (S2,1) is thick of order at most two.

To prove Theorem 5.1.2, Brock-Masur show that the subsets X (α) are thick of order at most

one, any two subsets X (α),X (α′) can be thickly chained together, and the union of uniform

neighborhoods of all subsets X (α) is all of P(S2,1). Each of these steps will be worked out.

1. X (α) is thick of order one: For a given separating curve α ∈ Csep(S2,0), consider the

set of all thick of order zero subsets Q(α̃), with π(α̃) = α. By definition, the union of all the

thick of order zero subsets Q(α̃) is precisely all of X (α). Furthermore, since by Lemma 3.2.2

the fiber of α under the projection map π is connected in Csep(S2,1), in order to prove thick

connectivity of elements in the set of all thick of order zero subsets Q(α̃), it suffices to notice

that for α̃ and α̃′ disjoint separating curves, the quasi-convex product regions Q(α̃) and Q(α̃′)

thickly intersect. However, this is immediate as Q(α̃) ∩ Q(α̃′) = Q(α̃ ∪ α̃′) is itself a natural

quasi-convex nontrivial product regions and in particular has infinite diameter.

2. Subsets X (α) and X (α′) can be thickly chained together: Given any separating

curves α, α′ ∈ Csep(S2,0) there is a sequence of separating curves between them such that each

separating curve intersects its neighboring curves in the sequence minimally. Specifically, there

is a sequence of separating curves

α = a0, a1, ..., an = α′

with |ai ∩ ai+1| = 4. Hence, we can assume that α, α′ intersect four times. Up to homeomor-

phism there are only a finite number of such similar situations, one of which is presented in

Figure 13.

As in Figure 13, we then have pants decompositions, P1 ∈ X (α), P ′
1 ∈ X (α′) such that

dP(S2,1)(P1, P
′
1) = D, for some uniform constant D. Then for any (partial) pseudo-Anosov
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d d

P={a,b,c,d}

b

a c

P’={a’ ,b,c,d}

b
c

a’

Figure 13: Pants decompositions with minimally intersecting separating curves that are dis-

tance two in P(S2,0). In fact, the curves {b, c, d} are in common to both pants decompositions

P, P ′ while the curves a, a′ are distance two (they intersect four times) in the connected essen-

tial subsurface S \ {b, c, d}.

element g ∈ Push ⊂ MCG(S2,1), set Pn = gnP1, P ′
n = gnP ′

1. By Lemma 3.2.4, ∀ n ∈ Z

Pn ∈ X (α), P ′
n ∈ X (α′), and moreover,

dP(S2,1)(Pn, P
′
n) = dP(S2,1)(g

nP1, g
nP ′

1) = dP(S2,1)(P1, P
′
1) = D.

It follows that diam(ND(X (α))∩ND(X (α′))) = ∞ as it contains the axes of (partial) pseudo-

Anosov elements.

3. N1(
∪

α X (α)) = P(S2,1) : This follows immediately from the observation that any pair

of pants in P(S2,1) is distance at most one from a pair of pants decomposition containing a

separating curve. For further considerations regarding the net of the separating pants complex

in the entire pants complex for a general surface of finite type, see [65] which is reproduced in

Section 6.4.

In the course of proving that P(S2,1) is thick of order two we will consider ultralimits of

the subsets X (α) in the asymptotic cone. Specifically, for a given asymptotic cone Pω(S), and

for α ∈ Cω
sep(S2,0), denote

Xω(α) =: {xω ∈ Pω(S)|xωhas a representative (x′i) with x′i ∈ X (αi) ω-a.s}. (5.1.2)

Unfortunately, the above argument for proving that P(S2,1) is thick of order at most two

is using a version of thickness which is weaker than the version of thickness in Definition

2.1.15, and hence we must adapt their proof slightly. Specifically, recall that in our definition
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of thickness to show that a space is thick of order at most two it is required that the space have

a collection of subsets that are quasi-convex, thick of order one, coarsely make up the entire

space, and thickly intersect. However, notice that in the argument above from [21] proving

that P(S2,1) is thick of order at most two we satisfied all the requirements with the exception

of quasi-convexity. In fact, Example 5.1.3 suggests that the thick of order one subsets X (α)

may not be quasi-convex. Nonetheless, we will see that we can modify the above argument

such that the conclusion that P(S2,1) is thick of order at most two remains true even with the

stronger definition of thickness as in Definition 2.1.15. The idea will be to consider particular

quasi-convex subsets of the sets X (α).

Example 5.1.3. Fix α ∈ Csep(S2,0) and let β be another separating curve of S2,0 which is ar-

bitrarily far from α in C(S2,0). Then let α̂, β̂ be any separating curves of S2,1 which project

to α, β under the map π which forgets about the boundary component, respectively. Further-

more, let P ∈ P(S2,1) be any pants decomposition containing α̂. Next, let f be a reducible

point pushing mapping class which restricts to a partial pseudo-Anosov with support on one

of the connected components of S2,1 \ β̂. Then consider a hierarchy path between the pants

decompositions P and fNP. For large N, a large component domain of the hierarchy will be

a connected component of S \ β̂. In other words the hierarchy quasi-geodesic between P and

fNP - with endpoints in the same thick of order zero subset X (α) as f is point pushing, see

Lemma 3.2.4 - will travel for an arbitrary long amount of time (at the expense of increasing

N ) in the region X (β). However, since α and β can be chosen to be arbitrarily far in C(S2,0),

it follows that the subsets X (α) and X (β) in P(S2,1) are arbitrarily far apart. In other words

we have just shown that the quasi-geodesic hierarchy connecting two points in the same subset

X (α) travels through a subset X (β) where the subset X (β) is as far as desired from X (α).

To be sure, this does not necessarily imply that the subsets X (α) are not quasi-convex as there

may exist some other (non hierarchy) quasi-geodesic connecting P and fNP while remaining

coarsely in X (α).

Let α̃ ∈ Csep(S2,1) with π(α̃) = α ∈ Csep(S2,0), and let f be any point pushing pseudo-

Anosov mapping class of S2,1, such that dCsep(S2,1)(α̃, f(α̃)) is less than some uniform bound.
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Let ρ = ρ(f, α̃, Q) be any quasi-geodesic axis of f in the pants complex which goes through

some point Q in Q(α̃). Then consider the set

X (f, α̃, Q) =: ρ
∪
n

Q(fn(α̃)).

Intuitively, this set X (f, α̃, Q) should be thought of as a point pushing pseudo-Anosov axis

thickened up by product regions which it crosses through. Note that by construction the sets

X (f, α̃, Q) are coarsely contained in X (α) and moreover, the Brock-Masur proof recorded

earlier that X (α) is thick of order one, (part (1) of the Brock-Masur proof) carries through to

show that the subsets X (f, α̃, Q) are similarly thick of order one in the induced metric from the

pants complex. In fact, all of the thick of order zero subsets Q(α) are either coarsely contained

or coarsely disjoint from the set X (f, α̃, Q). Given any thick of order zero subsets f j(α̃) and

fk(α̃) which are contained in a set X (f, α̃, Q), since f is a point pushing pseudo-Anosov map,

by Lemma 3.2.4 it follows that the thick of order zero subsets f j(α̃) and fk(α̃) are contained

in a common set X (α). Precisely these types of thick of order zero subsets were shown to

be possible to be thickly connected in part (1) of the Brock-Masur proof. In fact, by our

assumption on f, there is a uniform bound on the number of thick of order zero quasi-convex

product regions Q(C) traveled through in connecting any f j(α̃) and f j+1(α̃). Moreover, the

following lemma shows that the subsets X (f, α̃, Q) are quasi-convex.

Lemma 5.1.4. The sets X (f, α̃, Q) are quasi-convex.

Proof. Pick any elements A,B ∈ X (f, α̃, Q). We will see that they can be connected by

a hierarchy quasi-geodesic σ(A,B) that remains in a uniform neighborhood of X (f, α̃, Q).

Without loss of generality we can assume that A and B are contained in natural product re-

gions Q(f j(α̃)),Q(fk(α̃)), respectively. But then, remaining in the natural product regions

Q(f j(α̃)),Q(fk(α̃)), the points A,B can be connected to points f j(Q), fk(Q), respectively,

both of which lie on the pseudo-Anosov axis ρ.

Since pseudo-Anosov axes have uniformly bounded subsurface projections to all connected

proper essential subsurfaces [3, 48], it follows that there is a hierarchy quasi-geodesic path

connecting f j(Q) and fk(Q) in which the only component domain, for some sufficiently large
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threshold, is the entire surface S. Accordingly, in the hierarchy quasi-geodesic σ(A,B) the

only component domains, for some sufficiently large threshold, are the entire surface S and

possibly connected essential subsurfaces Y with Y ⊂ S \ f j(α̃) or with Y ⊂ S \ fk(α̃). By

definition, the portion of the σ traveling through the component domains of connected essential

subsurfaces Y with Y ⊂ S \ f j(α̃) or with Y ⊂ S \ fk(α̃) is coarsely contained in the set

X (f, α̃, Q).

Furthermore, as a special case of Corollary 4.3.4, ρ the axis of a pseudo-Anosov element in

the pants complex is Morse. In fact, the special case is actually already worked out in [3, 23].

It follows that any pants decompositions that the hierarchy path σ travels through along the

component domain corresponding to the whole surface, or equivalently the main geodesic, are

uniformly close to ρ. This completes the proof of the Theorem.

Proof of Theorem 5.1.2. Let {P}Γ be the set consisting of all thick of order zero subsets Q(γ)

for γ any separating curve in Csep(S2,1) as well as all quasi-convex thick of order one subsets

of the form X (f, γ̃, Q). It is immediate that the union of the sets is coarsely the entire space.

In fact, this is true for just the union of the thick of order zero subsets in {P}Γ. Finally, to

complete our argument we will show that any two subsets Pa, Pb ∈ {P}Γ can be thickly chained

together. Without loss of generality we can assume that Pa and Pb are thick of order zero

subsets Q(α),Q(β) for α, β in different connected components of Csep(S2,1). But then we can

construct a sequence of separating curves α = γ1, ..., γn = β such that each of the consecutive

curves are either disjoint or intersect minimally (four times), [61]. Hence, we can reduce the

situation to showing that we can thickly connect Q(α) and Q(β) where α, β are separating

curves in different connected components of Csep(S2,1) which intersect four times. Fix any

thick of order one sets Pc = X (f, α, αyβ), Pd = X (f, β, βyα). By construction, we have the

following chain of thickly intersecting subsets: Pa, Pc, Pd, Pb. Note that the fact that Pc and Pd

have infinite diameter coarse intersection was precisely what was in fact shown in part (2) of

the Brock-Masur proof recorded earlier in this section.
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5.2 T (S2,1) is thick of order two

In this section we will use our characterization of the finest pieces in the asymptotic cone

of the pants complex, Theorem 4.2.3, in order to prove that T (S2,1) cannot be thick of order

one and hence by the conclusion of Section 5.1, must be thick of order exactly two.

Recall the definition of the sets X (α),Xω(α) defined in Equations 5.1.1, 5.1.2, respectively.

In the following lemma we prove that the ultralimit Xω(α) is a closed set in the asymptotic cone.

Lemma 5.2.1. For α ∈ Cω
sep(S2,0), Xω(α) ⊂ P(S2,1) is a closed set.

Proof. Consider the continuous projection πPω(S2,0) : Pω(S2,1) → Pω(S2,0) which takes a rep-

resentative sequence (ai) for aω and maps it to a representative sequence of (πP(S2,0)(ai)) where

the map πP(S2,0) : P(S2,1) → P(S2,0) is the natural projection which forgets about the bound-

ary component. Continuity of the projection map πPω(S2,0) follows from continuity of the 1-

Lipschitz map πP(S2,0). By definition
(
πPω(S2,0)

)−1
(Qω(α)) = Xω(α). By continuity, the result

of the lemma follows from the fact that Qω(α) ⊂ Pω(S2,0) is closed. (In fact, Qω(α) is a finest

piece in the tree-graded structure of Pω(S2,0).)

Recall Lemma 3.0.21. In light of the notation developed in this section, as a special case

we have the following corollary:

Corollary 5.2.2. Assume α ̸= β ∈ Cω
sep(S2,1), and let Xω(α) =

∪
Qω(α̃) and Xω(β) =

∪Qω(β̃). Then |Qω(α̃) ∩ Qω(β̃)| ≤ 1 and moreover, for W,V ∈ Eω(S) with ∂W = α̃,

∂V = β̃ we have:

ΦW,xω
(Qω(β̃)) = {pt}, ΦV ,yω

(Qω(α̃)) = {pt},

where ΦW,xω
is the projection defined in Equation 2.2.2.

The next theorem will be used to prove that the ultralimit of any thick of order zero subset

Z in P(S2,1) must be contained entirely inside a particular single closed set of the form Xω(α).

Recall that by definition, a quasi-convex subspace Z is thick of order zero if (i) it is wide,

namely in every asymptotic cone Pω(S2,1), the subset corresponding to the ultralimit

Zω =: {xω ∈ Pω(S2,1)|xω has a representative sequence (x′i) with x′i ∈ Z ω-a.s}
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has the property that any two distinct points in Zω are not separated by a cut-point, and more-

over (ii) Z satisfies the nontriviality condition of every point being distance at most c from a

bi-infinite quasi-geodesic in Z.

Theorem 5.2.3. Let (Zi) ⊂ P(S2,1) be any sequence of subsets, and let Pω(S2,1) be any

asymptotic cone such that the ultralimit Zω does not have cut-points. Then Zω ⊂ Xω(α), for

some α ∈ Cω
sep(S2,0). Moreover, if in any asymptotic cone Pω(S2,1), the ultralimit Zω contains

at least two points, then there exists a unique such α satisfying the following condition: in any

neighborhoods of aω ̸= bω ∈ Zω there are points a′ω, b
′
ω with dSω(S2,1)(a

′
ω, b

′
ω) bounded, and

such that each of the natural quasi-convex product regions Qω(C) ∈ Pω(S) in a finite Sω(S2,1)

chain from a′ω to b′ω are entirely contained in Xω(α).

Before proving Theorem 5.2.3 we first prove the following lemma.

Lemma 5.2.4. Let (Zi) ⊂ P(S2,1) be any sequence of subsets, and let Pω(S2,1) be any

asymptotic cone such that the ultralimit Zω is nontrivial and does not have cut-points. Then

∀aω ̸= bω ∈ Zω, it follows that aω, bω ⊂ Xω(α), for some α ∈ Cω
sep(S2,0). In fact, α can be

uniquely identified by the following condition: in any neighborhoods of aω ̸= bω ∈ Zω there

are points a′ω, b
′
ω with dSω(S2,1)(a

′
ω, b

′
ω) bounded, and such that each of the natural quasi-convex

product regions Qω(C) ∈ Pω(S) in a finite Sω(S2,1) chain from a′ω to b′ω are entirely contained

in Xω(α).

Remark 5.2.5. Alternatively, as in the proof of Theorem 3.3.2 the unique characterization of

the element α ∈ Cω
sep(S2,0) in Theorem 5.2.3 and Lemma 5.2.4 can be described as follows: in

any neighborhoods of aω ̸= bω ∈ Zω there are points a′ω, b
′
ω with representatives (a′i), (b

′
i) with

limω dCsep(S2,1)(a
′
i, b

′
i) bounded, and such that ω–a.s. a finite Csep(S2,1) geodesic between (a′i)

and (b′i) is contained in the connected components of Csep(S2,1) corresponding to α.

Proof. Since Zω does not have any cut points, by Theorem 4.2.3 and Remark 4.2.4, in any

neighborhoods of aω, bω there exist points a′ω, b
′
ω with dSω(S2,1)(a

′
ω, b

′
ω) bounded. That is, there is

a finite chain of convex nontrivial product regions Qω(α̃1),...,Qω(α̃K) such that a′ω ∈ Qω(α̃1),



CHAPTER 5. THICKNESS AND DIVERGENCE OF T (S) 88

b′ω ∈ Qω(α̃K), and |Qω(α̃j) ∩ Qω(α̃j+1)| ≥ 2. As suggested by the notation, for all j ∈

{1, ..., K}, πCω(S2,0)(α̃j) = α for some fixed α ∈ Cω(S2,0) where the projection

πCω(S2,0) : Cω(S2,1) → Cω(S2,0)

is the extension to the ultrapower of the natural projection map which forgets about the bound-

ary component. In particular, all the natural convex product regions Qω(α̃j) in the chain con-

necting a′ω, b
′
ω are contained in the set Xω(α).

Since by Lemma 5.2.1 the sets Xω(α) are closed, in order to complete the proof of the

lemma it suffices to show that for all a′ω, b
′
ω in small enough neighborhoods of aω, bω, respec-

tively, such that dSω(S2,1)(a
′
ω, b

′
ω) is bounded, we have that a′ω and b′ω are all always contained in

the same set Xω(α) as above. Assume not, that is, assume that in any neighborhoods of aω, bω

there exist points a1
ω, b

1
ω and a2

ω, b
2
ω such that dSω(S2,1)(a

1
ω, b

1
ω) < ∞ and dSω(S2,1)(a

2
ω, b

2
ω) < ∞,

yet a1
ω, b

1
ω ∈ Xω(α) while a2

ω, b
2
ω ∈ Xω(β) where α ̸= β. In particular, we can assume that

a1
ω, b

1
ω lie in an r-neighborhood of aω and a2

ω, b
2
ω lie in an r-neighborhood of bω where r ≥ 0

is a constant such that open r-neighborhoods of aω, bω are path connected. In addition, we can

assume that 2r < dPω(S)(aω, bω). See Figure 14 for an illustration of this.

Let Qω(α̃1),...,Qω(α̃m) be a finite chain of convex nontrivial product regions in Xω(α)

connecting a1
ω and b1ω. Moreover, as in Theorem 4.2.3 there is a quasi-geodesic path ρ1

ω, the

ultralimit of hierarchy paths, through the product regions connecting a1
ω and b1ω. Similarly, let

Qω(β̃1),...,Qω(β̃n) be a finite chain of convex nontrivial product regions in Xω(β) connecting

a2
ω and b2ω, and let ρ2

ω be a quasi-geodesic path through the product regions connecting a2
ω and

b2ω. By omitting product regions as necessary and using properties of hierarchies in Theorem

2.2.4 we can assume that initial product region Qω(α̃1) of the path ρ1
ω has the property that

ρ1
ω exits the product region Qω(α̃1) once at a point eω ̸= a1

ω. By Lemma 2.2.13, there is some

W ∈ SEω(S) which is ω–a.s. a connected component of S \ α̃1, such that πPω(W )(a
1
ω) ̸=

πPω(W )(eω) ∈ FW,a1
ω
.

By our assumptions, a1
ω and a2

ω are connected by a path that remains entirely inside an

r-neighborhood of aω. Let [a1
ω, a

2
ω] denote such a path. Similarly, let [b1ω, b

2
ω] denote a path be-

tween the points b1ω and b2ω.We can assume that (a1
ω, a

2
ω] and (b1ω, b

2
ω] are contained in Pω(S2,1)\
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Figure 14: In neighborhoods of aω, bω there exist points a1
ω, b

1
ω and a2

ω, b
2
ω, respectively, such

that dSω(S)(a
1
ω, b

1
ω) <∞, dSω(S)(a

2
ω, b

2
ω) <∞, yet a1

ω, b
1
ω ∈ Xω(α) while a2

ω, b
2
ω ∈ Xω(β) where

α ̸= β. This situation cannot occur in Pω(S2,1).

Qω(α̃1). If not, we can replace a1
ω and/or b1ω with points closer to a2

ω and/or b2ω respectively such

that this is the case.

Consider the closed pentagon P with vertices {a1
ω, eω, b

1
ω, b

2
ω, a

2
ω} and edges

ρ1
ω|[a1

ω ,eω ], ρ
1
ω|[eω ,b1ω ], [b

1
ω, b

2
ω], ρ2

ω, [a
1
ω, a

2
ω]

It should be noted that some sides of the pentagon may be trivial, although this does not affect

the argument. Applying the continuous projection ΦW,xω
of Theorem 2.2.12 to the pentagon

P, we have ΦW,xω
(eω) = ΦW,xω

(b1ω) = ΦW,xω
(b2ω). Similarly, ΦW,xω

(a1
ω) = ΦW,xω

(a2
ω) as

by construction the edges ρ1
ω|[eω ,b1ω ], [b

1
ω, b

2
ω] and [a1

ω, a
2
ω] are contained in Pω(S2,1) \ PW,xω

.

Furthermore, by Corollary 5.2.2 and continuity of the projection, ΦW,xω
(ρ2

ω) is a single point

and is in fact equal to ΦW,xω
(a2

ω) = ΦW,xω
(b2ω). Putting things together we have

ΦW,xω
(eω) = ΦW,xω

(b1ω) = ΦW,xω
(b2ω) = ΦW,xω

(a2
ω) = ΦW,xω

(a1
ω)

However, this is a contradiction to our assumption that ΦW,xω
(a1

ω) ̸= ΦW,xω
(eω), thus complet-

ing the proof.
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Using the proof of Lemma 5.2.4, presently we prove Theorem 5.2.3.

Proof of Theorem 5.2.3. By Lemma 5.2.4 and its proof, we know that given any two dis-

tinct points aω, bω ∈ Zω, the points aω, bω are contained in a common subset Xω(α) where

α ∈ Cω
sep(S2,0) is such that in any neighborhoods of aω ̸= bω ∈ Zω there are points a′ω, b

′
ω

with dSω(S2,1)(a
′
ω, b

′
ω) bounded, and such that each of the natural quasi-convex product regions

Qω(C) in a finite Sω(S2,1) chain from a′ω to b′ω are entirely contained in Xω(α).

Let cω ∈ Zω be any third point in Zω, (possibly the same as aω or bω). Similarly, it follows

that the points aω, cω (bω, cω) are contained in a common subset Xω(β) (Xω(γ)) where β (γ) is

an element of Cω
sep(S2,0) such that in any neighborhoods of aω and cω (bω and cω) there are points

a′ω, c
′
ω (b′ω, c

′
ω) with dSω(S2,1)(a

′
ω, c

′
ω) bounded (dSω(S2,1)(b

′
ω, c

′
ω) bounded), and such that each of

the natural quasi-convex product regions Qω(C) ∈ Pω(S) in a finite Sω(S2,1) chain from a′ω

to c′ω (b′ω to c′ω) are entirely contained in β (γ). But then, considering the triangle between the

points a′ω, b
′
ω, c

′
ω and using the same projection arguments in Lemma 5.2.4 to generalize the

contradiction argument with the pentagon, it follows that α = β = γ. Notice if cω is the same

as aω or bω, the proof is identical to the proof in Lemma 5.2.4.

Since cω is arbitrary, it follows that Zω ⊂ Xω(α) where α is uniquely determined by the

property described in the statement of the theorem.

As a corollary of the proof of Lemma 5.2.4, we have the following corollary:

Corollary 5.2.6. Let (Zi), (Z
′
i) ⊂ P(S2,1) be any sequences subsets, and let Pω(S2,1) be an

asymptotic cone such that Zω, Z
′
ω ⊂ Pω(S2,1) each one contains at least two points, and each

one has no cut-points. As in Theorem 5.2.3 assume that Zω ⊂ Xω(α) and Z ′
ω ⊂ Xω(β) for

some α, β ∈ Cω
sep(S2,0), such that ω–a.s. αi ̸= βi, then:

|Zω ∩ Z ′
ω| ≤ 1.

In particular, if the asymptotic cone Pω(S2,1) has a constant base point, and the sequences of

subsets (Zi) = Z and (Z ′
i) = Z ′ are constant and quasi-convex, then the subsets Z and Z ′

have bounded coarse intersection.
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Proof. We will show |Zω ∩ Z ′
ω| ≤ 1 by contradiction. That is, assume aω ̸= bω ∈ (Zω ∩ Z ′

ω) .

By Theorem 4.2.3, in any neighborhoods of aω, bω there exist points a1
ω, b

1
ω and a2

ω, b
2
ω, such that

dSω(S2,1)(a
1
ω, b

1
ω) < ∞ and dSω(S2,1)(a

2
ω, b

2
ω) < ∞, yet a1

ω, b
1
ω ∈ Xω(α) while a2

ω, b
2
ω ∈ Xω(β)

where α ̸= β. Precisely this situation was shown to be impossible in the proof of Lemma 5.2.4.

Next, consider the special case of the first part of the Corollary in which the asymptotic

cone Pω(S2,1) has a constant base point, and the sequences of subsets (Zi) = Z and (Z ′
i) = Z ′

are constant and quasi-convex. Then the coarse intersection Z∩̂Z ′ is the constant quasi-convex,

and hence connected, sequence of subsets Z∩̂Z ′. Since our asymptotic cone has a constant base

point, assuming Z∩̂Z ′ is nontrivial (if not then we are done), its ultralimit Z∩̂Z ′ = (Z∩̂Z ′)ω in

the asymptotic cone is similarly nontrivial. That is, in the asymptotic cone (Z∩̂Z ′)ω contains at

least - and hence by the first part exactly- one point, namely the point in the cone with constant

representative sequence. It follows that the diameter of the connected coarse intersection Z∩̂Z ′

is sublinear in si. On the other hand, since the diameter of the coarse intersection Z∩̂Z ′, is not

only sublinear but also constant, it follows that Z and Z ′ have bounded coarse intersection.

Using Theorem 5.2.3 and Corollary 5.2.6, we are now prepared to prove the following

highlight of the thesis.

Theorem 5.2.7. T (S2,1) is thick of order two.

Proof. Since thickness is a quasi-isometry invariant property, [6], it suffices to prove that

P(S2,1) is thick of order two. In Section 5.1 we showed that P(S2,1) is thick of order at

most two and at least one. Hence, it suffices to show that P(S2,1) is not thick of order one. In

fact, we will show that any thick of order one subset is entirely contained inside a nontrivially

proper subset of the entire pants complex (that is, a subset which has infinite Hausdorff from

the entire pants complex).

Fix an asymptotic cone Pω(S2,1) with a constant base point and scaling sequence si. Note

that since P(S2,1) is connected, for any q ∈ P(S2,1), the constant sequence q all represent the

same base point of the asymptotic cone Pω(S2,1).

Let Z be any thick of order zero subset in P(S2,1). By hypothesis, Z coarsely contains a bi-

infinite quasi-geodesic through any point. Fix some point z ∈ Z, and some quasi-geodesic ray
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γ beginning near z and remaining in Z. Then for every si, set yi = γ(si) ∈ Z. By construction,

in the asymptotic cone the sequences z and (yi) represent distinct points contained in Zω ⊂

Pω(S2,1). In particular, we have just shown that every thick of order zero subset Z ⊂ P(S2,1)

has ultralimit Zω containing at least two distinct points in the asymptotic cone P(S2,1). By

Theorem 5.2.3 it follows that every thick of order zero subset Z in P(S2,1) can be assigned a

unique element α ∈ Cω
sep(S2,0). Moreover, Corollary 5.2.6 implies that a necessary condition

for any two thick of order zero subsets Z,Z ′ to be thickly chained together, as in condition

(ii) of 2.1.15, is that the two thick of order zero subsets Z,Z ′ are assigned the same element

α ∈ Cω
sep(S2,1).

It follows that any thick of order one subset Y of the space P(S2,1) can consist of at most the

union of thick of order zero subsets with the same labels α ∈ Cω
sep(S2,0). Hence, the ultralimit

Yω in the asymptotic cone Pω(S2,1) is entirely contained inside the subset Xω(α) which we will

see is a proper subset of Pω(S2,1). The proof of the Theorem then follows from the observation

that if a subset Y ⊂ X has finite Hausdorff distance from X, then in any asymptotic cone the

ultralimit Yω = Xω.

To see that Xω(α) is a proper subset of Pω(S2,1), notice that under under the surjective

projection π : Pω(S2,1) � Pω(S2,0), the subset Xω(α) is mapped into the natural quasi-convex

product region Qω(α), a proper subset of Pω(S2,0).

Remark 5.2.8. Theorem 5.2.7 completes the thickness classification of the pants complexes of

all surfaces of finite type as described in Section 2.1. Moreover, among all surfaces of finite

type of equal or higher complexity, S2,1 is the only surface such that its pants complex is not

thick of order one, thus making its pants complex particularly rich.

5.3 T (S2,1) has superquadratic divergence

Informally the divergence of a metric space, a notion introduced by Gromov, is a measure

of inefficiency of detours paths. More specifically, divergence quantifies the cost of going from

a point x to a point y in a (typically one-ended geodesic) metric space X while avoiding a
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metric ball based at a point z. Throughout the literature there are a couple of closely related

definitions of divergence that emerge based on stipulations regarding the points x, y, z. See [29]

for a comparison of various definitions and criterion for when the different definitions agree.

We will consider the following definition of divergence which is a lower bound on all other

definitions of divergence in the literature. In particular, it follows that the novel result in this

section regarding the superquadratic divergence of T (S2,1) remains true for any definition of

divergence.

Definition 5.3.1 (Divergence). Let γ be a coarsely arc length parameterized bi-infinite quasi-

geodesic in a one-ended geodesic metric space. Then the divergence along γ, denoted div(γ, ϵ)

is defined to be the growth rate of the function

dX\Bϵr(γ(0))(γ(−r), γ(r))

with respect to r where the scalar ϵ > 0 is chosen so that γ(±r) ̸∈ Bϵr(γ(0)). As divergence

is independent of the choice of a small ϵ, we will often omit ϵ from the notation. Divergence

can be similarly associated to a sequence of quasi-geodesic segments γi. The divergence of X

denoted div(X) is defined to be maxγ,ϵ div(γ, ϵ).

Example 5.3.2. In Rn for n ≥ 2, it is an elementary fact that divergence is linear. On the

other hand as we will demonstrate presently, div(Hn) is exponential for n ≥ 2. Due to ho-

mogeneity, it suffices to consider any standard geodesic in H2 and show that this geodesic has

exponential divergence. In particular, consider the unit disk model of H2 and let γ be the equa-

torial geodesic with y = 0. Give γ an arc length parameterization by setting γ(0) = (0, 0),

and more generally γ(r) = (0, er−1
er+1

). Then, using the fact that the element of hyperbolic

arc length in the disk model is 2|dx|
1−|x|2 , and considering the parameterized semicircle, σ(θ) =

( er−1
er+1

cos(θ), er−1
er+1

sin(θ)) with θ ∈ [0, π], explicit computation shows that

dH2\Br(0,0)(γ(−r), γ(r)) =

∫ π

0

2 er−1
er+1

1 − ( er−1
er+1

)2
dθ = π

e2r − 1

2er

In particular, the growth rate of the length of a detour path is an exponential function in r, thus

showing that H2 has exponential divergence.
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There is a relationship between the divergence of a metric space and the existence of cut-

points in the asymptotic cone of a metric space. Specifically, we have the following straight-

forward lemma.

Lemma 5.3.3 ([29] Lemma 3.15). Let X be a geodesic metric space, Xω any asymptotic cone,

and assume aω ̸= bω ∈ Xω have representative sequences (ai), (bi), respectively. Then, the

following are equivalent:

1. Xω has a global cut-point separating aω and bω.

2. ω–a.s. the sequence of geodesics [ai, bi] has superlinear divergence.

The plan for the rest of the section is to show that T (S2,1) has at least superquadratic and

at most cubic divergence. First we prove the lower bound, and then see that the upper bound

follows from Theorem 5.2.7 in conjunction with results in [5].

5.3.1 T (S2,1) has at least superquadratic divergence

Recall Theorem 6.2.5 which characterizes contracting quasi-geodesics in CAT(0) spaces. The

proof of Theorem 6.2.5 appears in Section 6.2. Presently, we will provide a standard argument

for the following small ingredient of the theorem as it serves as motivation for ideas in this

section.

Lemma 5.3.4. A (b,c)–contracting quasi-geodesic γ in a geodesic metric space X has at least

quadratic divergence.

Proof. To streamline the exposition we will assume γ is a strongly contracting geodesic, al-

though the same argument carries through for γ a (b,c)–contracting quasi-geodesic. Recall that

by Definition 4.3.2 since γ is strongly contracting geodesic there exists a constant c such that

∀x, y ∈ X if d(x, y) < d(x, γ) then d(πγ(x), πγ(y)) < c, where the map πγ : X → 2γ is

a nearest point projection. To prove the lemma we will consider an arbitrary detour path αr

connecting γ(−r) and γ(r) while avoiding the metric ball Br(γ(0)), and show that the length

of αr is at least a quadratic function in r.
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Presently we will discretize the detour path in terms of nearest point projections on to the

subgeodesic [γ(−r/2), γ(r/2)]. Specifically, for each

j ∈ {−⌊ r
2c

⌋, ...,−1, 0, 1, ..., ⌊ r
2c

⌋},

fix zjc
r ∈ αr such that zjc

r ∈ π−1
γ (γ(jc)). Notice that by construction d(zjc

r , γ) ≥ r
2
. Further-

more, since d(πγ(z
jc
r ), πγ(z

(j+1)c
r )) = c, by the strongly contracting property it follows that

d(zjc
r , z

(j+1)c
r ) ≥ d(zjc

r , γ) ≥
r

2
.

Putting things together, the following inequality gives the desired lower bound on the length of

the detour path αr :

|αr| ≥
⌊ r

c
⌋∑

j=1

d(z(j−1)c
r , zjc

r ) ≥
⌊ r

c
⌋∑

j=1

r

2
≥ r2

2c
− 1.

Since c is a uniform constant, the statement of the lemma follows.

The following lemma is closely related to ideas in [13] regarding the thinness of polygons

with edges along a contracting contracting geodesic.

Lemma 5.3.5. Using the notation from Lemma 5.3.4, let σ = σjc
r be the concatenated path

[zjc
r , γ(jc)] ∪ [γ(jc), γ((j + 1)c)] ∪ [γ((j + 1)c), z(j+1)c

r ],

then σ is a (2,c)-quasi-geodesic.

Proof. Let x, y be any points along σ. If x, y ∈ [zjc
r , γ(jc)], then it is immediate that

d(x, y) = dσ(x, y),

where dσ(x, y) represents the distance along σ from x to y. In particular, for any points x, y ∈

[zjc
r , γ(jc)], the (2, c) quasi-isometric inequality is trivially satisfied. Similarly, the same con-

clusion holds for x, y ∈ [z
(j+1)c
r , γ((j + 1)c)] or x, y ∈ [γ(jc), γ((j + 1)c)]. Moreover, since

|[γ(jc), γ((j + 1)c)]| = c, for the cases x ∈ [zjc
r , γ(jc)] ∪ [γ((j + 1)c), z

(j+1)c
r ] and y ∈

[γ(jc), γ((j + 1)c)] (or vice versa) the (2, c) quasi-isometric inequality is similarly satisfied.
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Hence, we can assume x ∈ [zjc
r , γ(jc)] and y ∈ [γ((j + 1)c), z

(j+1)c
r ]. Since x and y have

nearest point projections onto γ which are distance c apart, by (1,c)-contraction of γ we have:

max{d(x, γ(jc)), d(y, γ((j + 1)c))} = D ≤ d(x, y).

Specifically, since d(γ(jc), γ((j + 1)c)) = d(γ((j + 1)c), γ(jc)) = c the definition of (1,c)-

contraction (Definition 4.3.2) implies that:

d(x, y) ≥ d(x, γ(jc)) and similarly d(y, x) ≥ d(y, γ((j + 1)c)).

But then, we have the following inequality completing the proof:

d(x, y) ≤ dσ(x, y) = d(x, γ(jc)) + c+ d(y, γ((j + 1)c)) ≤ 2D + c ≤ 2d(x, y) + c.

Remark 5.3.6. Note that in the special case of γ a strongly contracting quasi-geodesic in

Lemma 5.3.5 we showed that the piecewise geodesic paths σjc
r are (2,c)-quasi-geodesics. More

generally, for γ a (b,c)-contracting quasi-geodesic it is not hard to see that the piecewise

geodesic paths σjc
r are (2

b
, c

b
)-quasi-geodesics. In particular, all the quasi-geodesics σjc

r have

uniformly bounded quasi-isometry constants.

We will now aim toward proving the following main theorem of this subsection.

Theorem 5.3.7. T (S2,1) has at least superquadratic divergence.

Recall in the proof of Lemma 5.3.4 we showed a contracting quasi-geodesic has at least

quadratic divergence by showing that in order for a detour path to have more than a uniformly

bounded “shadow” (i.e. nearest point projection set) onto γ the detour path must travel at least

a linear distance. In other words, the at least quadratic divergence was a consequence of the

fact that the detour path had to travel a linear amount of at least linear distances. To prove

Theorem 5.3.7 we will construct a quasi-geodesic such that a detour path must travel a linear

amount of at least superlinear distances.

More specifically, recall the sequence of quasi-geodesic segments {σjc
r }r which coincide

with γ along the segment [γ(jc), γ((j + 1)c)] in the proof of Lemma 5.3.4. By definition, the
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portion of the detour path αr which connects the endpoints of σjc
r cannot fellow travel with σjc

r .

In fact, by construction αr lies outside of the ball Nr/2([γ(jc), γ((j + 1)c)]). In particular, in

order to prove that γ has at least superquadratic divergence, we will show that the sequence of

quasi-geodesic segments {σjc
r }r for almost all j have superlinear divergence.

To be sure, showing that a detour path must travel a linear amount of superlinear distances

without controlling the degree of superlinearity does not ensure superquadratic divergence.

Specifically, consider the following example.

Example 5.3.8. Let αr be a sequence of paths with each αr partitioned into r subsegments

{τr,j}r
j=1 such that for any fixed j, the length of the sequence of segments {τr,j}r is superlinear

in r. Then,

|αr| ≥
r∑

j=1

|τr,j|

=
r∑

j=1

rϵj(r) where for any fixed j, lim
r
ϵj(r) → ∞

≥ r2
r

min
j=1

(ϵj(r)).

Taking the limit, it does not necessarily follow that |αr| is superquadratic in r. For example,

if we define the functions ϵj as follows,

ϵj(r) = 1 if r ≤ j

= r otherwise.

Notice that minr
j=1(ϵj(r)) = 1 and by our approach above, it follows that |αr| can only be

bounded below by r2.

Nonetheless, the potential problem highlighted in Example 5.3.8 will be avoided by using

the periodicity of γ in conjunction with a contradiction argument. Specifically, presently we

will prove a lemma which provides a sufficient criterion for proving superquadratic divergence.

Before stating the lemma, we fix some notation.

As in the proof of Lemma 5.3.4 let γ be a contracting quasi-geodesic, let αr be a sequence

of detour paths avoiding balls Br(γ(0)), and let zjc
r denote fixed points on αr which have
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nearest point projections to γ(jc). Then, for all jc ∈ Zc we obtain sequences of points zjc =

{zjc
r }∞r=2c|j|, and similarly sequences of quasi-geodesic paths σjc = {σjc

r }∞r=2c|j|. Let τ jc
r denote

the restriction of the quasi-geodesics σjc
r to the intersection σjc

r ∩ Br/2(γ(jc)), and by abuse

of notation refer to the endpoints of τ jc
r by zjc

r and z(j+1)c
r . In fact, by even further abuse of

notation, let {zjc
r }r represent any sequence of points of distance r/2 from γ such that the

nearest point projection of zjc
r onto γ is γ(jc), and similarly, let τ jc

r denote the quasi-geodesic

between consecutive points zjc
r and z(j+1)c

r , given by the concatenation:

τ jc
r =: [zjc

r , γ(jc)] ∪ [γ(jc), γ((j + 1)c)] ∪ [γ((j + 1)c), z(j+1)c
r ].

Lemma 5.3.9. With the notation from above, assume in addition that γ is a periodic quasi-

geodesic such that for all fixed j, the sequence of quasi-geodesic segments {τ jc
r }r has diver-

gence which is superlinear in r, the natural numbers. Then, γ has superquadratic divergence.

Similarly, the same conclusion holds if γ is a periodic quasi-geodesic such that there is a con-

stant C such that for any fixed j, and any consecutive sequence of sequences of quasi-geodesic

segments

{τ jc
r }r, {τ (j+1)c

r }r, ..., {τ (j+C)c
r }r

with each one beginning from the terminal point of the previous one, at least one of the se-

quences of quasi-geodesic segments {τ (j+m)c
r }r in the list has divergence which is superlinear

in r.

Proof. To simplify the exposition we will prove the first case, although the proof of the simi-

lar statement follows almost identically. Fix a sequence of detour paths αr and corresponding

quasi-geodesics τ jc
r . By assumption, for any fixed j the divergence of the sequence τ jc

r is su-

perlinear, say rϵj(r) where limr ϵj(r) → ∞. We will prove the lemma by contradiction. That

is, assume there is a constant N such that limr |αr| < r2N. Since γ is contracting, as in Lemma

5.3.4 we have:

|αr| ≥
⌊ r

c
⌋∑

j=1

dX\Br(γ(0)(z
(j−1)c
r , zjc

r ) &
⌊ r

c
⌋∑

j=1

rϵj(r) ≥
r2

c

r

min
j=1

(ϵj(r))
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Putting things together, it follows that

lim
r

r

min
j=1

(ϵj(r))

is uniformly bounded. (In the situation of Example 5.3.8 the uniform bound was one). Set

minr
j=1(ϵj(r)) = ϵjmin

(r). Then for all values of r ∈ N we can use the periodicity of γ to

translate the points zjminc
r to points z0

r , and correspondingly the quasi-geodesics τ jminc
r to quasi-

geodesics τ 0
r . After translation, we have a sequence of quasi-geodesic segments {τ 0

r }r with

linear divergence. This is a contradiction to the hypotheses of the theorem and hence completes

the proof by contradiction.

Next, consider the following Lemma of [57], which we will use in the construction of a

quasi-geodesic with superquadratic divergence in P(S2,1) :

Lemma 5.3.10 ([57] Theorem 2.1). For any surface Sg,n there exists an isometric embedding

i : C(Sg,n) → C(Sg,n+1) such that π ◦ i is the identity map, where π : C(Sg,n+1) → C(Sg,n) is

given by forgetting about the puncture.

Fix ᾱ0 ∈ Csep(S2,0), and let f̄ be a pseudo-Anosov axis in C(S2,0) through the curve ᾱ0.

Furthermore, assume that |f̄(ᾱ0) ∩ ᾱ0| = 4. See Figure 15 for an example.

Denote the separating curve f̄ i(ᾱ0) by ᾱi for all i ∈ Z. Since ∀i ̸= j, ᾱi, ᾱj are in dif-

ferent separating curves of Csep(S2,0), by topological considerations it follows that ᾱiyᾱj can

be coarsely identified with a pants decomposition of S2,0. In particular, for all i ∈ Z, let P̄i

denote a fixed pants decomposition of the form ᾱiyᾱi+1. Let γ̄n denote a piecewise geodesic

path in the pants complex traveling through the pairs of pants P̄−n, ..., P̄0, ..., P̄n. Moreover, let

γ̄ denote the limit of the paths γ̄n. Note that we can assume f̄ i(P̄j) = P̄i+j, and hence f̄ acts

by translations on the path γ̄. It follows that γ̄ ∈ P(S2,0) is a contracting quasi-geodesic as it is

the axis of a pseudo-Anosov mapping class and has bounded combinatorics, [3, 23]. Moreover,

it is clear that by construction in every asymptotic cone Pω(S2,0) any two distinct points on

γ̄ω are not contained in the ultralimit of a natural product region of the form Qω(α) for any

ᾱ ∈ Cω
sep(S2,0). In particular, by Theorem 4.2.3 for the special case of S2,0, it follows that any

two points on γ̄ω are separated by a cut-point.
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Figure 15: f̄ = Ta3T
−1
b2
T−1

b1
Ta2Ta1 is a non-point pushing pseudo-Anosov mapping class. Note

that in the lower left figure |f̄(ᾱ0)∩ ᾱ0| = 4. Moreover, in the lower right figure note that since

ᾱ0 and f̄(ᾱ0) are different separating curves, by topological considerations ᾱ0yf̄(ᾱ0) is a pants

decomposition.

Then, using the isometric embedding i : C(S2,0) → C(S2,1) of Lemma 5.3.10, we can lift

all the aforementioned structure from S2,0 to S2,0. Specifically, we can lift the separating curves

ᾱi to separating curves αi ∈ Csep(S2,1), the pants decompositions P̄i to pants decompositions

Pi ∈ P(S2,1), and the periodic quasi-geodesic γ̄ with bounded combinatorics to a periodic

geodesic γ ⊂ P(S2,1) which also has bounded combinatorics as it too is the axis of a pseudo-

Anosov map f which is a lift of f̄ . Then, by construction it follows that in every asymptotic

cone Pω(S2,1) any two distinct points on γω are not contained in the ultralimit of a common

subset of the form Qω(α) for ᾱ for any ᾱ ∈ Cω
sep(S2,0). Moreover, considering Corollary 4.2.7

it follows that any region of the form Qω(α) has a unique nearest point on γ̄ω whose removal

separates the region Qω(α) from the two resulting components of γ̄ω.

Presently we will prove Theorem 5.3.7 by showing that this periodic and contracting quasi-

geodesic γ ⊂ P(S2,1) has superquadratic divergence.

Proof of Theorem 5.3.7. In light of Lemma 5.3.9 in order to prove the theorem it suffices to

show that the above constructed periodic and contracting quasi-geodesic γ ⊂ P(S2,1) satisfies

the hypothesis of Lemma 5.3.9. Assume γ does not satisfy the hypothesis of Lemma 5.3.9.

Specifically, for any positive integer k there exists some consecutive sequence of sequences of
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Figure 16: The detour path αr connects γ−r and γr and avoids the metric ball B(r, γ(0)).

The points zjc
r ∈ αr project to γ(jc) under the nearest point projection onto γ. By Lemma

5.3.5, τ jc
r = [zjc

r , γ(jc)]∪ [γ(jc), γ((j + 1)c)]∪ [γ((j + 1)c), z
(j+1)c
r ] is a (2,c)-quasi-geodesic.

Furthermore, by our assumptions on γ, the sequence of quasi-geodesics {τ j
r }r almost always

has superlinear divergence.

quasi-geodesic segments

{τ jkc
r }r, {τ (jk+1)c

r }r, .., {τ (jk+k)c
r }r

each one beginning from the terminal point of the previous one, such that for each fixed m ∈

{0, ..., k}, the sequence of quasi-geodesic segments {τ (jk+m)c
r }r in the list has divergence linear

in r, the natural numbers.

Since the sequence of geodesics [z
(jk+m)c
r , γ((jk + m)c)] are contained as subsegments

of τ (jk+m)c
r with roughly half the total length, and because τ (jk+m)c

r have linear divergence,

it follows that [z
(jk+m)c
r , γ((jk + m)c)] also have linear divergence. By Lemma 5.3.3, in the

asymptotic cone Coneω(P(S2,1), γ(jkc), (rc)) the ultralimit of [z
(jk+m)c
r , γ((jk +m)c)] is non-

trivial and does not have any cut-points. By Theorem 5.2.3 it follows that the ultralimit of the

form [z
(jk+m)c
r , γ((jk +m)c)] is completely contained in subset of the form Xω(α) for a unique

α an element of Csep(S2,0)
ω.

Considering the sequence of geodesic quadrilaterals with vertices given by

{z(jk+m)c
r , z(jk+m+1)c

r , γ((jk +m+ 1)c), γ((jk +m)c)}.
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The sequence of edges [γ((jk +m)c), γ((jk +m + 1)c)] have bounded (constant) length. On

the other hand, the three remaining sequence of edges all have lengths growing linearly in r

and have linear divergence. As in Theorem 5.2.3 it follows that in same asymptotic cone

Coneω(P(S2,1), γ(jkc), (rc)),

the ultralimits of the sequences of quadrilaterals and in particular the edges of them

[z(jk+m)c
r , γ((jk +m)c)], [z(jk+m+1)c

r , γ((jk +m+ 1)c)]

are completely contained in a common subset of the form Xω(α). Repeating this argument and

using the fact that adjacent pairs of ultralimits

[z(jk+m)c
r , γ((jk +m)c)], [z(jk+m+1)c

r , γ((jk +m+ 1)c)]

and [z(jk+m+1)c
r , γ((jk +m+ 1)c)], [z(jk+m+2)c

r , γ((jk +m+ 2)c)]

have nontrivial intersection in the asymptotic cone, by Corollary 5.2.6 it follows that the con-

secutive string of sequences

[zjkc
r , γ(jkc)], ..., [z

(jk+k)c
r , γ((jk + k)c)]

have ultralimit in the asymptotic cone Coneω(P(S2,1), γ(jkc), (rc)), completely contained in

a common subset of the form Xω(α).

Now consider the asymptotic cone Coneω(P(S2,1), γ(j3r), (rc)). In particular, consider the

distinct points in the asymptotic cone with representative sequences {zj3rc
rc }rand{z(j3r+3r)c

rc }r.

We have seen that these points in the cone have representative sequences that identify them as

being contained in a common subset of the form Xω(α). Furthermore, the points

{z(j3rc)
rc }r, and {z((j3r+3r)c)

rc }r

are of distance at most (in fact exactly) one from the distinct points with representatives

{γ(j3rc)}r, and {γ((j3r + 3r)c)}r
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on the ultralimit γω, respectively. Projecting this situation from S2,1 to S2,0, we obtain points

{z̄(j3rc)
rc }r, {z̄((j3r+3r)c)

rc }r which are of distance at most one (the projection is Lipschitz) from

the distinct points with representatives {γ̄(j3rc)}r, {γ̄((j3r + 3r)c)}r on the ultralimit γ̄ω, re-

spectively. On the other hand, by assumption the points {z̄(j3rc)
rc }r, {z̄((j3r+3r)c)

rc }r are in a

common subset of the form Qω(α). It follows that there is a path ρω connecting the points

{γ̄(j3rc)}r, {γ̄((j3r+3r)c)}r which travels for distance at most two (namely {[γ̄(j3rc), z̄
(j3rc)
rc ]}r

and {[γ̄((j3r + 3r)c), z̄
(j3r+3r)c
rc ]}r each of which has length at most one) outside of the re-

gion Qω(α). However, since in the asymptotic cone Coneω(P(S2,1), γ(j3rc), (rc)), the points

{γ̄(j3rc)}r, and {γ̄((j3r + 3r)c)}r are distance three apart and because any region of the form

Qω(α) has a unique nearest point on γ̄ω whose removal separates the region Qω(α) from the

two resulting components of γ̄ω, this is a contradiction, thus completing the proof.

5.3.2 T (S2,1) has at most cubic divergence

In addition to the relationship between divergence and cut-points in the asymptotic cone as in

Lemma 5.3.3, there is a strong relationship between the divergence of a metric space and its

thickness. Preliminarily, as a consequence of Lemma 5.3.3 it follows that a geodesic metric

space is thick of order zero if and only if the divergence of the space is linear. More generally,

considering the inductive nature of the definition of degree of thickness of a space, a natural

conjecture is that the polynomial order of divergence of a sufficiently nice metric space - such

as the pants complex - is equal one plus the degree of thickness of the space, [5]. Presently we

record a theorem providing partial progress toward this conjecture.

Theorem 5.3.11 ([5] Corollary 4.17). Let X be a geodesic metric space which is thick of order

n, then the divergence of along any geodesic in X is at most polynomial of order n + 1. In

particular, by Theorem 5.2.7 it follows that T (S2,1) has at most cubic divergence.

Note that in light of Theorem 5.3.7, Theorem 5.3.11 provides an alternative proof of the

fact that T (S2,1) is thick of order at least two, as proven in Theorem 5.2.7.
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5.3.3 Divergence of Teichmüller spaces

Just as the proof of Theorem 5.2.7 uniquely characterizes T (S2,1) among all Teichmüller spaces

and completes the thickness classification of Teichmüller spaces, so too Theorems 5.3.7 and

5.3.11 also uniquely characterize T (S2,1) among all Teichmüller spaces and (almost) complete

the divergence classification of all Teichmüller spaces. See Table 2.

Notice that the Teichmüller spaces of low complexity surfaces that are either hyperbolic or

relatively hyperbolic, perforce have at least exponential divergence. It is immediate by obser-

vation that for complexity one surfaces the pants complex, or equivalently the Farey graph, has

infinitely many ends. On the other hand, it follows from recent work of [33, 58] that for com-

plexity at least two surfaces, the pants complex is one ended and hence the divergence is in fact

exponential. Specifically, building off of work of Gabai in [33]. Rafi-Schleimer in Proposition

4.1 of [58] show that the curve complex is one ended for complexity at least two surfaces. In

particular, it follows that the same result holds for the corresponding pants complexes.

5.4 An approach toward cubic divergence

In this section we present an approach toward proving that T (S2,1) has cubic divergence. In

particular, considering the proof of the previous section that T (S2,1) has superquadratic diver-

gence, in order to prove cubic divergence, our approach will be to consider the quasi-geodesics

{σjc
r }r and show that they not only have superlinear divergence, but in fact have quadratic

divergence. With this goal in mind, we will we wish to prove particular sequences of quasi-

geodesics have at least quadratic divergence.

Recalling the quasi-distance formula of Theorem 2.2.5, presently we will consider the di-

vergence of various types of sequences of quasi-geodesics in terms of the component domains

through which the hierarchy paths travel. Recall the set NE(S2,1) consists of all connected

nonseparating essential subsurfaces of S2,1. In fact for S2,1 all nonseparating essential subsur-

faces are connected. On the other hand for a fixed curve α ∈ Csep(S2,0) set Sα =: {W ∈

SE(S2,1)|πC(S2,0)(∂W ) = α}. That is, Sα ⊂ SE(S2,1) consists of all connected α-type es-
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...
...

... ...

... . .
.

7 quadratic quadratic quadratic quadratic . . .

6 exponential quadratic quadratic quadratic . . .

5 exponential quadratic quadratic quadratic . . .

4 infinite quadratic quadratic quadratic . . .

3 exponential quadratic quadratic . . .

2 exponential quadratic quadratic . . .

1 infinite superquadratic

yet at most cubic
quadratic . . .

0 exponential quadratic . . .

n ↑ g → 0 1 2 3 . . .

Table 2: Divergence of Teichmüller spaces for all surfaces of finite type, a summary.

sential subsurfaces or connected essential subsurfaces W which have quasi-convex product

regions Q(∂W ) ⊂ X (α).

In light of Example 5.1.3, we will use the following refinement of our subset of con-

nected α-type essential subsurfaces, Sα. Given any fixed separating curve α′ ∈ Csep(S2,1),

let πC(S2,0)(α
′) = α. Then for any z ∈ P(S) and constant M ≥M ′, define

SM,z
α = {W ⊂ Sα| there exists a hierarchy path ρ from Q(∂W ) to z

such that all at least M-component domains of ρ are in Sα.}

By Theorem 2.2.4 for sufficiently large values of M we can equivalently define the sets

SM,z
α to consist of all connected essential subsurfaces W ⊂ Sα such that ∀Y ̸∈ Sα, the projec-

tion dC(Y )(∂W, z) < M. Note that since Y ̸∈ Sα, by topological considerations, the subsurface
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projection πC(Y )(∂W ) is well-defined. In light of this reformulation it can been seen that for

large enough values ofM, SM,z
α is not empty. Specifically, forW ∈ Sα, the intersection number

|∂W ∩ α′| gives an upper bound on the subsurface projection distances between α and α′ into

any connected essential subsurface Y ̸∈ Sα. Additionally note that by definition if N ≥ M,

then SM,z
α ⊂ SN,z

α .

Next, we will prove a couple of lemmas to be used later in the section. We begin with a

lemma describing the relationship between connected essential subsurfaces in SM,z
α and S2M,z

α .

Lemma 5.4.1. Assume W ∈ SM,z
α and Y ̸∈ S2M,z

α then either W t Y or W ( Y.

Proof. The only other options for the relationship between W,Y are W ∩Y = ∅ or Y ⊆ W. In

both cases, it follows that ∂W, ∂Y are disjoint separating multicurves. We will see that using

this condition in conjunction with the assumption of the lemma that W ∈ SM,z
α , implies that

Y ∈ S2M,z
α which is a contradiction. This will complete the proof.

First, if W is an α-type connected essential subsurface, and ∂W and ∂Y are disjoint, then

Y must also be an α-type essential subsurface. We can assume Y is connected; if not we can

replace it by a connected component. Then similarly an elementary application of Theorem

2.2.2 to the geodesic segment ∂W, ∂Y it is clear that for any essential subsurface Z ̸∈ Sα

(which in particular implies Z intersects both ∂W and ∂Y ), we have dC(Z)(∂W, ∂Y ) < K.

Then since by definition there is a hierarchy path connecting Q(W ) to z whose component

domains are all α-type connected essential subsurfaces, the same condition holds for Q(Y ) at

the expense of possibly increasing the constant M to M +K ≤ 2M.

Next we prove the following generalized contraction property:

Lemma 5.4.2 (generalized contraction property). There is a constant C such that for all x, y ∈

P(S2,1) with ∑
Y ∈SM,z

α

{dC(Y )(x, y)} > C,

then ∑
Y ̸∈S2M,z

α

{dC(Y )([x, y], z)} is uniformly bounded.
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where [x, y] is a hierarchy in P(S2,1) between x and y.

In other words, Lemma 5.4.2 says that if x, y have sufficiently far apart projections into the

subsurface projections in the set of connected essential subsurfaces SM,z
α then a quasi-geodesic

connecting them goes close to z in every subsurface projection that is not in the set of connected

essential subsurfaces S2M,z
α .

Proof. Since by assumption
∑

Y ∈SM,z
α

{dC(Y )(x, y)} > C, it follows that there is a connected

essential subsurface W ∈ SM,z
α such that dC(W )(x, y) > M. Fix any Y ̸∈ S2M,z

α . By Lemma

5.4.1, either W t Y or W ( Y. Using Theorem 2.2.2 and Lemma 2.2.3 it follows that

dC(Y )([x, y], ∂W ) is uniformly bounded. Hence, if dC(Y )(∂W, z) is uniformly bounded, by

the triangle inequality we are done. Accordingly without loss of generality we can assume

dC(Y )(∂W, z) > M. Since W ∈ SM,z
α , and the hierarchy ρ from Q(∂W ) to z contains Y as an

M -component domain, by definition it follows that Y ∈ Sα. On the other hand, using the prop-

erties of hierarchies from Theorem 2.2.4 in conjunction with the fact that all M -component

domains of ρ are in Sα, it follows that for any Z ̸∈ Sα, the diameter diamC(Z)(ρ) < M. Putting

things together, it follows that Y ∈ S2M,z
α , which contradicting our hypotheses.

We are now prepared to analyze the divergence of particular hierarchy paths in terms of

the types of component domains traveled through. Let {γn}n be a fixed sequence of hierar-

chy quasi-geodesics between the points Pi, Qi ∈ P(S2,1) with lengths increasing as a linear

function in n. As a first case, assume a nontrivial ratio of the distance occurs in nonseparating

component domains. Specifically, assume the fraction∑
Y ∈NE(S2,1){dC(Y )(Pn, Qn)}∑

Y ⊂S{dC(Y )(Pn, Qn)}

is a linear function in n then the sequence of hierarchy paths {γn}n have at least quadratic

divergence. The reason for this is that by Theorem 4.3.3 the sequence of quasi-geodesics

satisfy strong contraction for a nontrivial ratio of their total length, and hence the argument

used in Lemma 5.3.4 applies to the nontrivial portion of the total length.

Since we wish to prove that {γn}n have at least quadratic divergence, without loss of gen-

erality we can assume that roughly all of the distance in the sequence of quasi-geodesics {γn}n
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occurs in separating component domains. Then for the quasi-geodesics {γn}n, consider the

possibilities for the relationships between the separating component domains. It is possible

that all the separating component domains are all coarsely contained in a common subset of

the form Xω(α), or alternatively, the ultralimit γω goes through a structurally integral corner

in the asymptotic cone. In the former case, we have little control over the divergence, and in

fact the divergence can easily seen to be linear, quadratic, or possibly in between. On the other

hand, regarding the latter case, which in particular we are assured of for our sequence of quasi-

geodesic segments {σjc
n }n, we conjecture that the quasi-geodesic must have at least quadratic

divergence. In particular, the generalized contraction lemma, Lemma 5.4.2, provides direction

toward proving this. We close with a couple of additional related open questions.

Question 5.4.3 ([5] Question 4.21). Let X be a coarsely homogenous CAT(0) space. If X is

thick of order n, does it follow that X has the divergence of polynomial of degree n + 1?

Equivalently, by Theorem 5.3.11 is the divergence is at least polynomial of degree n+ 1.

In particular, by Theorem 5.2.7 an affirmative answer to Question 5.4.3 guarantees cubic

divergence of T (S2,1).Another more general conjecture which may guarantee cubic divergence

of T (S2,1) is the following:

Question 5.4.4 ([5] Question 1.5). Let X be a coarsely homogenous CAT(0) space. Can X

have a divergence which is strictly superpolynomial of degree n but strictly subpolynomial of

degree n+ 1?
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Chapter 6

Odds and Ends

This chapter contains four independent and self contained although related results. In Sec-

tion 6.1 we compare the notions of wideness and unconstrictedness in the CAT(0) setting. In the

three remaining sections we present adapted versions of the following papers, [63, 64, 65]. In

Section 6.2 we prove the equivalence of various hyperbolic type properties for quasi-geodesics

in CAT(0) spaces. As a corollary, we provide a converse to the usual Morse stability lemma

in the CAT(0) setting. In addition, as a warmup we include an alternative proof of the fact,

originally proven in Behrstock-Druţu [5], that in CAT(0) spaces Morse quasi-geodesics have at

least quadratic divergence. In Section 6.3 using some nice properties of Farey graphs we prove

that the separating curve complex S(S2,0) is δ-hyperbolic, answering a question in [61]. More

specifically, we prove the following quasi-distance formula for S(S2,0) which is similar to as

well as motivated by quasi-distance formulas for P(S) in Theorem 2.2.5. Finally, in Section

6.4 we study the topological types of pants decompositions of a surface by associating to any

pants decomposition P, its pants decomposition graph, Γ(P ). This perspective provides a con-

venient way to analyze the maximum distance in the pants complex of any pants decomposition

to a pants decomposition containing a nontrivial separating curve for all surfaces of finite type.

We provide an asymptotically sharp approximation of this nontrivial distance in terms of the

topology of the surface. In particular, for closed surfaces of genus g we show the maximum

distance in the pants complex of any pants decomposition to a pants decomposition containing
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a separating curve grows asymptotically like the function log(g).

6.1 Wide versus unconstricted in CAT(0) spaces.

Recall the definitions of wide and unconstricted metric spaces. Specifically, a metric space X

is wide if all asymptotic cones Xω are without cut-points. On the other hand, a metric space X

is unconstricted if there exists some ultrafilter ω and some sequence of scalars si such that any

asymptotic cone Coneω(X, ·, (si)) does not have cut-points. Presently, we will show that under

mild hypotheses in the CAT(0) setting the notions of wide and unconstricted are equivalent.

Theorem 6.1.1. For X a CAT(0) space with extendable geodesics, X is wide if and only if it

is unconstricted. Moreover, if in addition X is coarsely homogeneous (it admits a coarsely

transitive group action by isometries), then either every asymptotic cone of X has a cut-point,

or no asymptotic cone of X has a cut-point (i.e. X is wide).

In order to prove Theorem 6.1.1, we will first prove a Lemma which represents a strength-

ened version of Property [C1] in Lemma 2.1.11. The author would like to acknowledge Igor

Belegradek for help formulating and proving the precise form of the lemma.

Lemma 6.1.2. Let X be a CAT(0) space, and γR ⊂ X a geodesic segment of length 2R and

center γ(0). For all r ≤ R, let αr denote a minimal length detour path connecting γ(−r) and

γ(r) which has interior disjoint from the metric ball Bγ(0)(r). Then, we have the following

inequality:
|αr|
r

≤ |αR|
R

.

Proof. For any small value of ϵ > 0, such that |αR|
ϵ

is an integer, discretize the detour path αR

into αR

ϵ
subsegments such that all but one have length at most ϵ, and the final one has length

at most 2ϵ, where the ith subsegment connects the points xi, xi+1 ∈ αR. For each pair of con-

secutive points xi, xi+1 consider the geodesic triangle △(xi, xi+1, γ(0)) in X. By assumption,

[xi, xi+1] has length at most ϵ. Let yi denote the point on the geodesic [γ(0), xi] with distance r

from γ(0), and similarly let yi+1 denote the point on the geodesic [γ(0), xi+1] with distance r
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from γ(0). Using the defining CAT(0) triangle comparison property, it follows that the length

of the cord [yi, yi+1] is bounded above by rϵ
R
. Performing this process for all pairs of consecutive

points xi, xi+1, we obtain the following concatenated detour path

[y0, y1] ∪ .... ∪ [yαR
ϵ

−1, yαR
ϵ

]

which by construction remains outside the ball of radius Br−ϵ(0) and has total length bounded

above by |αR|
ϵ

rϵ
R
. In particular, it follows that

|αr−ϵ| ≤
|αR|
ϵ

rϵ

R
=
r|αR|
R

.

Letting ϵ limit to 0 completes the proof of the lemma.

Proof. (Proof of Theorem 6.1.1) By definition wide implies unconstricted. Hence, to prove

the first statement of the theorem it suffices to show that assuming X is not wide yet is uncon-

stricted yields a contradiction.

AssumingX is not wide, there is an asymptotic coneConeω′(X, (xi), (si)) with a cut-point.

In particular, in light of Lemma 5.3.3 there exist sequences of points (ai) and (bi) with lengths

linear in si such that the divergence of the sequence of geodesics [ai, bi] is superlinear in si.

Let ci, be the centers of the geodesic [ai, bi]. Note that if αi are detour paths of [ai, bi] avoiding

metric balls centered at ci with radii growing linearly in si, then

lim
ω′

|αi|
si

→ ∞.

Assume that X is unconstricted. Then ∃ an ultrafilter ω and scaling sequence (ti) such that

any asymptotic cone Coneω(X, ·, (ti)) has no cut-points. Fix some A ∈ ω′, and for each ti,

let sj(i) be the largest term in the sequence (si) such that j ∈ A and moreover sj < ti. By

unconstrictedness, the asymptotic cone Coneω(X, (cj(i)), (ti)) has no cut-points.

Using the fact that geodesics in X can be extended, extend the geodesics [aj(i), bj(i)] in

both directions to geodesics [a′j(i), b
′
j(i)] which are still centered at cj(i) however now have total

length ti. Let α′
i be detour paths of [a′j(i), b

′
j(i)] avoiding metric balls centered at ci with radii
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ti. By our assumption that Coneω(X, (cj(i)), (ti)) has no cut-points, in particular it follows that

for any infinite set B ⊂ N

lim
B

|α′
i|
ti

is bounded.

However, using Lemma 6.1.2,

lim
ω′

|αi|
si

≤ lim
ω′

|α′
i|
ti
.

Putting things together, we obtain a contradiction, thus completing the proof of the first state-

ment of the theorem.

For the “moreover” statement of the theorem, assume X is not wide, then as we have

seen from the first part, X is not unconstricted. Namely, if X has some asymptotic cone with

a cut-point, then for any choices of ω and (si), there exists a sequence of base points (xi),

such that the asymptotic cone Coneω(X, (xi), (si)) has a cut-point. However, since we have

the additional hypothesis that X is coarsely homogeneous, it follows that for all choices of

basepoints (yi) the asymptotic cone Coneω(X, (yi), (si)) also has a cut-point. The completes

the proof of the theorem.

Remark 6.1.3. Considering the proof of Theorem 6.1.1 it follows that conclusion of the the-

orem that wide is equivalent to unconstricted, actually holds in greater generality than stated.

Specifically, it enough to assume that X a CAT(0) space with the extendable quasi-geodesic,

namely there exist uniform constants such that any geodesic segment can be extended to a

bi-infinite quasi-geodesic with the given quasi-isometry constants.

It is worth pointing out that Theorem 6.1.1 has applications related to a the following of

open problems of [5]:

Question 6.1.4 ([5] Questions 6.9-10). Let X be a CAT(0) space with the property that all

asymptotic cones have cut-points. Then, must X at least quadratic divergence? Must X have

a Morse geodesic? In light of Theorem 6.1.1 we have the following equivalent reformulations

for the special cases of CAT(0) spaces: Let X be a coarsely homogeneous CAT(0) space with

extendable geodesic. If X is not wide, must X at least quadratic divergence? Must X have a

Morse geodesic?
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6.2 Hyperbolic quasi-geodesics in CAT(0) spaces

In this section we will explore the close relationship between various hyperbolic type prop-

erties of quasi-geodesics in CAT(0) spaces. In fact, a highlight of this section is the proof of

Theorem 6.2.5 which was has already been recorded in both Chapters 1 and 4. Specifically, in

Theorem 6.2.5 we prove that for X a CAT(0) space and γ ⊂ X a quasi-geodesic, the follow-

ing four statements are equivalent: (i) γ is Morse, (ii) γ is (b,c)–contracting, (iii) γ is strongly

contracting, and (iv) in every asymptotic cone Xω, any two distinct points in the ultralimit γω

are separated by a cut-point.

Theorem 6.2.5 should be considered in the context of related theorems in [13, 26, 29, 41].

Specifically, in [41] it is shown that periodic geodesics with superlinear divergence have at

least quadratic divergence. In [29] it is shown that properties (3) and (4) in Theorem 6.2.5

are equivalent for arbitrary metric spaces. In [13] it is shown that in proper CAT(0) spaces

a geodesic which is the axis of a hyperbolic isometry is strongly contracting if and only if

the geodesic fails to bound a half plane. In [26] it is shown that geodesics with superlinear

lower divergence are equivalent to strongly contracting geodesics and are Morse. The proof of

Theorem 6.2.5 relies on careful applications of CAT(0) geometry and asymptotic cones.

Generalizing results of [41, 13], in [5] it is shown that in CAT(0) spaces Morse quasi-

geodesics have at least quadratic divergence. As a warmup for Theorem 6.2.5, we provide an

alternative proof of this result.

Theorem 6.2.3. ([5] Theorem 6.4). A Morse quasi-geodesic in a CAT(0) space has at least

quadratic divergence.

The plan for this section is as follows. Subsection 6.2.1 provides background. Subsection

6.2.2 includes the proof of Lemma 6.2.4 and Theorems 6.2.3 and 6.2.5.

6.2.1 Background

Recall that a (K,L) quasi-geodesic γ ⊂ X is the image of a map γ : I → X where I is a

connected interval in R (possibly all of R) such that ∀s, t ∈ I we have the following quasi-
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isometric inequality:

|s− t|
K

− L ≤ dX(γ(s), γ(t)) ≤ K|s− t| + L.

We will refer to the quasi-geodesic γ(I) by γ, and when the constants (K,L) are not relevant

omit them.

An arbitrary quasi-geodesic in any geodesic metric space can be replaced by a continu-

ous rectifiable quasi-geodesic by replacing the quasi-geodesic with a piecewise geodesic path

connecting consecutive integer valued parameter points of the original quasi-geodesic. It is

clear that this replacement process yields a continuous rectifiable quasi-geodesic which is in

a bounded Hausdorff neighborhood of the original quasi-geodesic. When doing so will not

affect an argument, by replacement if necessary we will assume quasi-geodesics are continu-

ous and rectifiable. One upshot of the assumption of continuous quasi-geodesics is that the for

γ, σ quasi-geodesics, the distance function ψ(t) = d(γ(t), σ) is continuous. More generally, for

non-continuous quasi-geodesics this distance function can have jump discontinuities controlled

by the constants of the quasi-geodesics. Throughout, for γ any continuous and rectifiable path,

we will denote its length by |γ|.

The following theorem of [29] characterizing Morse geodesics in terms of the asymptotic

cone has application:

Theorem 6.2.1 ([29] Proposition 3.24). γ is a Morse quasi-geodesic if and only if in every

asymptotic cone Xω, every pair of distinct points in the ultralimit γω are separated by a cut-

point.

6.2.2 Proof of Theorems

As a warmup for Theorem 6.2.5, we begin this subsection by giving an alternative proof of

the fact that Morse quasi-geodesics in CAT(0) spaces have at least quadratic divergence. This

result was originally proven in [5]. The present alternative proof is inspired by similar methods

in [41] and follows immediately from the following lemma. For the sake of simplifying the
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exposition, in Lemma 6.2.2 we consider the special case of γ a geodesic rather than a quasi-

geodesic. Hence, properties in Lemma 2.1.11 can be applied. Nonetheless, below we will show

that the current form of the lemma suffices to prove Theorem 6.2.3 concerning quasi-geodesics.

Lemma 6.2.2. Let X be a CAT(0) space, and γ a geodesic. If for every asymptotic cone

Xω, any two distinct points in the ultralimit γω are separated by a cut-point, then γ has at

least quadratic divergence. Similarly, the same result holds for the case of {γn} a sequence of

geodesic segments in X with lengths growing proportionally to a linear function.

γ
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Figure 17: In CAT(0) spaces subquadratic divergence implies the existence of an asymptotic

cone Xω in which distinct points in the ultralimit of the geodesic are not separated by a cut-

point.

Proof. We will prove the first statement in the Lemma. The “similarly” statement follows by

the same argument.

By contradiction. That is, assume γ has subquadratic divergence. By definition, for each

r ∈ N, there is a continuous rectifiable detour path αr connecting γ(−r) and γ(r) while

remaining outside the ball Br(γ(0)), such that |αr| ≤ ϵrr
2 where the function ϵr satisfies

limr→∞ ϵr = 0. Fix a sequence {cr}r∈N such that:

1. 4cr ≤ r,

2. limr→∞ cr → ∞, and

3. limr→∞ c2rϵr = 0.
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For example, set cr = min{ϵ−1/3
r , r

4
}.

For each r, let n ∈ {0, 1, ..., ⌊ r
cr
⌋}, and fix zn

r ∈ αr such that zn
r ∈ π−1

γ (γ(−r/2 + ncr)).

Since the total length of αr is at most ϵrr2, it follows that for some m, the distance on αr

between zm
r and zm+1

r is at most

ϵrr
2

⌊ r
cr
⌋
≤ ϵrr

2

r−cr

cr

=
ϵrcrr

2

r − cr
≤ ϵrcrr

2

r − r
4

=
4ϵrcrr

3
.

Set x1
r = zm

r , x
2
r = zm+1

r , and yi
r = πγ(x

i
r). By construction, d(x1

r, x
2
r) ≤ 4

3
ϵrcrr while

d(y1
r , y

2
r) = cr. Let ρi

r : [0, 1] → X be a geodesic parameterized proportional to arc length

joining yi
r = ρi

r(0) and xi
r = ρi

r(1). See Figure 17. Note that by construction since yi
r ∈

γ[−r/2, r/2] and xi
r ∈ αr, it follows that

|ρi
r| ≥

r

2
≥ 2cr.

Consider the function ψr(t) = d(ρ1
r(t), ρ

2
r(t)). Note that ψr(0) = cr and ψr(1) ≤ 4

3
ϵrcrr.

CAT(0) convexity (Lemma 2.1.11 property C2) implies that

ψr

(
2cr
|ρ1

r|

)
≤
(

1 − 2cr
|ρ1

r|

)
cr +

8cr
3|ρ1

r|
ϵrcrr ≤ cr +

16

3
c2rϵr.

Since limr→∞ c2rϵr = 0, for large enough r we can assume d(ρ1
r

(
2cr

|ρ1
r|

)
, ρ2

r

(
2cr

|ρ1
r|

)
) is arbitrarily

close to cr.

Since y2
r is a nearest point projection of x2

r onto γ, it follows that |ρ2
r| ≤ |ρ1

r|+ 4
3
ϵrcrr. Since

limr→∞ c2rϵr = 0 and limr→∞ cr → ∞, in particular limr→∞ crϵr = 0. Hence, for sufficiently

large r we can assume crϵr ≤ 3
8
. Then we have the following inequality:

|ρ2
r| ≤ |ρ1

r| +
4

3
ϵrcrr ≤ |ρ1

r| +
1

2
r ≤ |ρ1

r| + |ρ1
r| = 2|ρ1

r|.

Running the same argument with the roles of ρ1
r and ρ2

r reversed, it follows that

1

2
|ρ1

r| ≤ |ρ2
r| ≤ 2|ρ1

r|.

In particular, d(y2
r , ρ

2
r

(
2cr

|ρ1
r|

)
) is at most 4cr and at least cr.
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Putting things together, on the one hand we have a geodesic segment [y1
r , y

2
r ] ⊂ γ of length

cr. While on the other hand we have a piecewise geodesic path

σr = [y1
r , ρ

1
r

(
2cr
|ρ1

r|

)
]
∪

[ρ1
r

(
2cr
|ρ1

r|

)
, ρ2

(
2cr
|ρ1

r|

)
]
∪

[

(
2cr
|ρ1

r|

)
, y2

r ],

of total length arbitrarily close to at most 7cr.Moreover, note that by construction we can bound

from below the distance between the geodesics [y1
r , y

2
r ] and [ρ1

r

(
2cr

|ρ1
r|

)
, ρ2

r

(
2cr

|ρ1
r|

)
]. Specifically,

it follows that the distance

d([ρ1
r

(
2cr
|ρ1

r|

)
, ρ2

r

(
2cr
|ρ1

r|

)
], [y1

r , y
2
r ])

is at least arbitrarily close to cr. Consider the asymptotic cone Coneω(X, (y1
r), (cr)). In this

asymptotic cone, the distinct points y1
ω, y

2
ω in the ultralimit γω are not separated by a cut-point

due to the path σω connecting them. This completes the proof.

Using Lemma 6.2.2 in conjunction with Theorem 6.2.1, proven in [29], we provide an

alternative proof of the following Theorem, originally proven in [5]:

Theorem 6.2.3 ([5] Theorem 6.4). Let γ be a Morse quasi-geodesic in a CAT(0) space X, then

γ has at least quadratic divergence.

Proof. Given a Morse quasi-geodesic γ, construct a sequence of geodesic segments γ′n con-

necting the points γ(−n) and γ(n). By the Morse property, all the geodesic segments γ′n are

contained in a uniformly bounded Hausdorff neighborhood of γ. By Theorem 6.2.1, in any

asymptotic cone Xω, any distinct points in γω are separated by a cut-point. However, since the

sequence of geodesics γ′n are in a uniformly bounded Hausdorff neighborhood of γ it follows

that in any asymptotic cone Xω, any distinct points in γ′ω are similarly separated by a cut-point.

Applying Lemma 6.2.2 to the sequence of geodesic segments γ′n, it follows that the sequence

of geodesic segments has quadratic divergence. However, since the quasi-geodesic γ and se-

quence of geodesic segments γ′n are in a bounded Hausdorff neighborhood of each other they

have the same order of divergence.
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With the end goal of proving Theorem 6.4.4, presently we write down a proof of the follow-

ing generalized Morse stability lemma. While versions of Morse stability lemmas are explicit

in [1, 26] as well as implicit in [3, 29], there does not seem to be a recorded proof for the

following version of the lemma in the literature. Accordingly, presently we include an explicit

proof, closely based on a similar proofs in [1, 26].

Lemma 6.2.4. Let X be a geodesic metric space and γ ⊂ X a (b,c)–contracting quasi-

geodesic. Then γ is Morse. Specifically, if σ is a (K,L) quasi-geodesic with endpoints on

γ, then dHaus(γ, σ) is uniformly bounded in terms of only the constants b, c,K, L.

Proof. Since γ is (b,c)–contracting, in particular the nearest point projection πγ is coarsely

well-defined. Set D = max{K,L, 1}, A = 2(1+cD)
b

, and R = max{d(γ, σ) | t ∈ R}. Without

loss of generality we can assume R > A. Since we wish to show that σ is in a bounded

neighborhood of γ, by replacement if necessary we can assume σ is a continuous rectifiable

quasi-geodesic.

Let [s1, s2] be any maximal connected subinterval in the domain of σ such that ∀s ∈ [s1, s2],

we have d(σ(s), γ) ≥ A. Since σ is continuous, we can subdivide the interval [s1, s2] such that

s1 = r1, ..., rm, rm+1 = s2 where |σ(ri, ri+1)| = Ab
2

for i ≤ m and |σ(rm, rm+1)| ≤ Ab
2
. Hence,

|σ(s1, s2)| ≥ mAb

2
. (6.2.1)

Fix Pi ∈ πγ(σ(ri)). Then since d(σ(ri), Pi) ≥ A and d(σ(ri), σ(ri+1)) ≤ Ab
2
< Ab, by

(b,c)–contraction, d(Pi, Pi+1) < c. Therefore d(P1, Pm+1) < c(m+ 1). It follows that

d(σ(s1), σ(s2)) < 2(A+ L) + c(m+ 1).

Note that since we are not assuming γ is a continuous quasi-geodesic, the distance function

d(σ(t), γ) can have jump discontinuities of L. Using the fact that σ is a quasi-geodesic, it

follows that

|σ(s1, s2)| ≤ D(d(σ(s1), σ(s2))) +D ≤ D(2A+ 2L+ cm+ c+ 1). (6.2.2)

Combining inequalities 6.2.1 and 6.2.2, after some manipulation we obtain
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m <
D(2A+ 2L+ c+ 1)

Ab
2
− cD

= D(2A+ 2L+ c+ 1).

Thus, ∀s ∈ [s1, s2] we have the following inequality:

d(σ(s), γ) ≤ d(σ(s), σ(s2)) + d(σ(s2), γ)

≤ |σ[s1, s2]| + A+ L

≤ D(2A+ 2L+ cm+ c+ 1) + A+ L

< D(2A+ 2L+ c (D(2A+ 2L+ c+ 1)) + c+ 1) + A+ L

Since the constantsA,D are defined in terms of the constants b, c,K, L, the lemma follows.

Using Lemma 6.2.4, we will prove the following theorem:

Theorem 6.2.5. Let X be a CAT(0) space and γ ⊂ X a (K,L)–quasi-geodesic. Then the

following are equivalent:

1. γ is (b,c)–contracting

2. γ is (1,c)–contracting, (or strongly contracting)

3. γ is Morse, and

4. In every asymptotic cone Xω, any two distinct points in the ultralimit γω are separated

by a cut-point.

In particular, any of the properties listed above implies that γ has at least quadratic divergence.

Proof. (2) =⇒ (1): This follows immediately from the definitions. (1) =⇒ (3): This is

precisely Lemma 6.2.4. (3) =⇒ (4): This is precisely Theorem 6.2.1, proven in [29].

In the remainder of the proof we will prove (4) =⇒ (2): By contradiction. That is,

assuming γ is not (1,c)–contracting we will show that there is an asymptotic cone Xω such
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Figure 18: In a CAT(0) space, assuming a quasi-geodesic γ is not (1,c)–contracting implies it

is not Morse.

that distinct points in the ultralimit γω are not separated by a cut-point. Since γ is not (1,c)–

contracting, it follows that for all r ∈ N, we can make the following choices satisfying the

stated conditions:

(i) Fix points x1
r ∈ X \ γ, and y1

r ∈ πγ(x
1
r) such that d(x1

r, y
1
r) = Ar and

(ii) Fix points x2
r ∈ X \ γ, and a point y2

r ∈ πγ(x
2
r) such that d(x1

r, x
2
r) = Rr < Ar, and

d(y1
r , y

2
r) = Dr, for some Dr ≥ r. Set Br = d(x2

r, y
2
r).

Let ρi
r : [0, 1] → X be a geodesic parameterized proportional to arc length joining yi

r = ρi
r(0)

and xi
r = ρi

r(1). See Figure 18 for an illustration of the situation. Note we are not assuming the

nearest point projection maps πγ are even coarsely well-defined, but instead are simply picking

elements of the set of nearest points subject to certain restrictions guaranteed by the negation

of (1,c)–contraction. In fact, we cannot have assumed that y2
r could have been chosen such that

d(y1
r , y

2
r) = r, as the nearest point projection map onto quasi-geodesics need not be continuous.

Moreover, it is possible that x1
r and x2

r are even the same point.

Since d(y1
r , y

2
r) = Dr, it follows that Ar + Rr + Br ≥ Dr. Moreover, since Rr < Ar and

Br ≤ Rr + Ar, it follows that Ar >
Dr

4
. Fix t = Dr

4Ar
∈ (0, 1). Additionally, since Br < 2Ar it

follows that |[y2
r , ρ

2
r(t)]| < Dr

2
.

Since Ar > Dr/4, the ratio Dr

Ar
∈ (0, 4), and hence there exists some subsequence such that

Dr

Ar
converges.

Case 1: There exists some subsequence such that Dr

Ar
→ ϵ ̸= 0.
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Figure 19: Case (1) of the proof of Theorem 6.2.5.

CAT(0) convexity (Lemma 2.1.11 property C2) applied to the geodesics ρi
r implies:

d(ρ1
r(t), ρ

2
r(t)) ≤

(
1 − Dr

4Ar

)
Dr +

DrRr

4Ar

≤ Dr −
D2

r

4Ar

Dr +
Dr

4
≤ Dr

4

(
5 − Dr

Ar

)
.

For large enough values of r in the convergent subsequence, it follows that d(ρ1
r(t), ρ

2
r(t))

is arbitrarily close to Dr

4
(5 − ϵ) .

Let z1
r be a point on γ between y1

r and y2
r such that d(y1

r , z
1
r ) is in the range [ ϵDr

28
, ϵDr

28
+ L].

Similarly, let z2
r be a point on γ between y1

r and y2
r such that d(y2

r , z
2
r ) is in the range [ ϵDr

28
, ϵDr

28
+

L]. Since ρi
r are geodesics minimizing the distance from a fixed point to γ, it follows that ρi

r

are disjoint from the interiors of the metric balls B(zi
r,

ϵDr

56
).

Moreover, by construction, for large enough values of r in the convergence subsequence,

the geodesic [ρ1
r(t), ρ

2
r(t)] is disjoint from either the metric ball B(z1

r ,
ϵDr

56
) or the metric ball

B(z2
r ,

ϵDr

56
). For if not, then

|[ρ1
r(t), ρ

2
r(t)]| ≥ d(ρ1

r(t), {B(z1
r ,
ϵDr

56
), B(z2

r ,
ϵDr

56
)}) + d(B(z1

r ,
ϵDr

56
), B(z2

r ,
ϵDr

56
))

≥
(
Dr

4
− ϵDr

56

)
+

(
Dr − 6

ϵDr

56

)
=
Dr

4

(
5 − ϵ

2

)
.

However, this contradicts the fact that d(ρ1
r(t), ρ

2
r(t)) is arbitrarily close to Dr

4
(5 − ϵ) . On

the other hand, if for large enough values of r in the convergence subsequence, the geodesic

[ρ1
r(t), ρ

2
r(t)] is disjoint from the metric ball B(zi

r,
ϵDr

56
), then we will construct an asymptotic
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cone in which distinct points on γω are not separated by a cut-point, thus completing the proof

in this case.

Specifically, let ω be a non-principal ultrafilter such that the set of values of r in the conver-

gence subsequence are an element of ω. Consider the asymptotic cone Coneω(X, (y1
r), (Dr)).

In this asymptotic cone, the points v±ω in the intersection of γω and the metric ball B(zi
ω,

ϵDr

56
)

are not separated by a cut-point due to the existence of a path [v+
ω , z

i
ω] ∪ [zi

ω, v
−
ω ] connecting

them in the interior of the ball B(zi
r,

ϵDr

56
), as well as the path connecting them outside the ball

B(zi
r,

ϵDr

56
) given by the union of paths

[v−ω , y
1
ω] ∪ [y1

ω, ρ
1
ω(t)] ∪ [ρ1

ω(t), ρ2
ω(t)] ∪ [ρ2

ω(t), y2
ω] ∪ [y2

ω, v
+
ω ].

See figure 19 for an illustration of the proof in Case (1).

Case 2: There exists some subsequence such that Br

Dr
= 0.

y yr
 2 1

z
r
 1

ρ (t)
r
 1

xr
 2
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 1
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< 2  Dr
 D r

1

4
<        + Dr

3

4
 B r

 B r

1

4

Figure 20: Case (2) of the proof of Theorem 6.2.5.

Let σr : [0, 1] → X be a geodesic parameterized proportional to arc length joining y1
r =

σr(0) and x2
r = σr(1). By the triangle inequality, |σr| is in the range [Dr −Br, Dr +Br].

Consider the triangle in X with vertices (y1
r , x

2
r, x

1
r), and let the comparison triangle in Eu-

clidean space have vertices (y1
r , x

2
r, x

1
r), Since Rr < Ar, it follows that the angle between

the sides [x2
r, y

1
r ] and [x1

r, y
1
r ], is less than π

2
. Let ur denote the point in [y1

r , x
2
r], such that

d(y1
r , ur) = Dr

4
. Elementary Euclidean trigonometry implies that d(ρ1

r(t), ur) <
√

2Dr

4
. Hence,

by the CAT(0) property, it follows that d(ρ1
r(t), ur) <

√
2ϵDr.
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Note that d(ur, x
2
r) ≤ 3Dr

4
+Br, and hence d(ur, y

2
r) ≤ 3Dr

4
+ 2Br. Putting things together,

it follows that d(ρ1
r(t), y

2
r) <

√
2Dr

4
+ 3Dr

4
+ 2Br.

As in Case (1), let z1
r be a point on γ between y1

r and y2
r such that d(y1

r , z
1
r ) is in the range

[ (2−
√

2)Dr

16
, (2−

√
2)Dr

16
+ L]. Again as in Case (1), note that ρ1

r is disjoint from the interior of the

metric balls B(z1
r ,

(2−
√

2)Dr

32
).

Furthermore, for large enough values of r in the convergence subsequence, the geodesic

[ρ1
r(t), y

2
r ] is also disjoint from the metric ball B(z1

r ,
(2−

√
2)Dr

32
). For if not, then

|[ρ1
r(t), y

2
r ]| ≥ d(ρ1

r(t), B(z1
r ,

(2 −
√

2)Dr

32
)) + d(B(z1

r ,
(2 −

√
2)Dr

32
), y2

r)

≥

(
Dr

4
− (2 −

√
2)Dr

32

)
+

(
Dr − 3

(2 −
√

2)Dr

32

)
≥ Dr +

√
2Dr

8
.

However, in conjunction with the assumption of the case, this contradicts the fact that

d(ρ1
r(t), y

2
r) is at most 3Dr

4
+

√
2Dr

4
+ 2Br. On the other hand, if for large enough values of

r the geodesic [ρ1
r(t), y

2
r ] is disjoint from the metric ball B(z1

r ,
(2−

√
2)ϵDr

32
), then as in Case (1),

in the asymptotic cone Coneω(X, (y1
r), (Dr)) we can find distinct points on γω that are not

separated by a cut-point. This completes the proof in Case (2). See figure 20 for an illustration

of the proof in Case (2).

Case 3: We are not in Cases (1) or (2):

Since we are not in Case (2), by passing to a subsequence if necessary we can assume

that the ratio Br

Dr
either converges to ϵ′ > 0 or diverges to infinity. In the former case, set

ϵ = min(1
4
, ϵ′), and in the latter case set ϵ = 1

4
. Set s = ϵDr

Ar
. By construction s ∈ (0, 1).

Let τr : [0, 1] → X be a geodesic parameterized proportional to arc length joining x2
r =

τr(0) and x1
r = τr(1). Similarly, let σr : [0, 1] → X be a geodesic parameterized proportional

to arc length joining y2
r = σr(0) and x1

r = σr(1). By construction, |σr| is in the range [Ar, Ar +

Dr]. Since we are not in Case (1), it follows that |[σr(0), σr(s)]| is arbitrarily close to ϵDr.

Moreover, CAT(0) convexity (Lemma 2.1.11 property C2) applied to the geodesics ρ1
r and σr

immediately implies d(ρ1
r(s), σr(s)) is bounded above by Dr.

Consider the triangle in X with vertices (x1
r, x

2
r, y

2
r), and let the comparison triangle in

Euclidean space have vertices (x1
r, x

2
r, y

2
r), As in Case (1), since Rr < Ar, it follows that the
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angle between the sides [x1
r, y

2
r ] and [x2

r, y
2
r ], is less than π

2
. Let wr denote the point in [y2

r , x
2
r],

such that d(y2
r , wr) = ϵDr.Note that since |[σr(0), σr(s)]| is arbitrarily close to ϵDr, elementary

Euclidean trigonometry implies that d(σr(s), wr) is at most arbitrarily close to
√

2ϵDr. Hence,

by the CAT(0) property, it follows that d(σr(s), wr) is at most arbitrarily close to
√

2ϵDr.

Putting things together, it follows that d(ρ1
r(s), wr) is at most arbitrarily close to Dr +

√
2ϵDr.

As in Case (1), let z1
r be a point on γ between y1

r and y2
r such that d(y1

r , z
1
r ) is in the range

[ (2−
√

2)ϵDr

16
, (2−

√
2)ϵDr

16
+L]. Similarly, let z2

r be a point on γ between y1
r and y2

r such that d(y2
r , z

2
r )

is in the range [ (2−
√

2)ϵDr

16
, (2−

√
2)ϵDr

16
+ L]. For large enough values of r in the convergence

subsequence, the geodesic [ρ1
r(s), wr] is disjoint from either the metric ball B(z1

r ,
(2−

√
2)ϵDr

32
) or

the metric ball B(z2
r ,

(2−
√

2)ϵDr

32
). For if not, then

|[ρ1
r(s), wr]| ≥ d(ρ1

r(t), {B(z1
r ,

(2 −
√

2)ϵDr

32
), B(z2

r ,
(2 −

√
2)ϵDr

32
)})

+ d(B(z1
r ,

(2 −
√

2)ϵDr

32
), B(z2

r ,
(2 −

√
2)ϵDr

32
))

+ d(wr, {B(z1
r ,

(2 −
√

2)ϵDr

32
), B(z2

r ,
(2 −

√
2)ϵDr

32
)})

≥

(
ϵDr −

(2 −
√

2)ϵDr

32

)
+

(
Dr − 6

(2 −
√

2)ϵDr

32

)

+

(
ϵDr −

(2 −
√

2)ϵDr

32

)
> Dr +

3ϵDr

2
.

However, this is a contradiction to the fact that d(ρ1
r(s), wr) is at most arbitrarily close to

Dr+
√

2ϵDr.On the other hand, if for large enough values of r in the convergence subsequence,

the geodesic [ρ1
r(s), wr] is disjoint from the metric ball B(zi

r,
(2−

√
2)ϵDr

32
), then as in Case (1),

the asymptotic cone Coneω(X, (y1
r), (Dr)) contains distinct points of γω not separated by a

cut-point, thereby completing the proof in the final case and hence completing the proof of

(4) =⇒ (2). See figure 21 for an illustration of the proof in Case (3).

Finally, the “in particular” clause of the theorem follows from Theorem 6.2.3.
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Figure 21: Case (3) of the proof of Theorem 6.2.5.

6.3 A proof of the hyperbolicity of Csep(S2,0)

It is well known that the curve complex C(S) is δ-hyperbolic for all surfaces of positive com-

plexity, see [47]. On the other hand, the separating curve complex Csep(S) in general is not

δ-hyperbolic. In particular, for all closed surfaces S = Sg,0 with genus g ≥ 3, as noted

in [61], Csep(S) contains natural nontrivial quasi-flats, or quasi-isometric embeddings of Eu-

clidean flats; an obstruction to hyperbolicity. For S2,0 however, unlike closed surfaces of higher

genus, there are no natural nontrivial quasi-flats. Given this context, Schleimer conjectures that

Csep(S2,0) is δ-hyperbolic; see [61] Conjecture 2.48. In this section, we prove this conjecture

in the affirmative. Note that the natural embedding i : Csep(S) → C(S) is known not to be

a quasi-isometric embedding for all surfaces, and hence the proof of the conjecture does not

follow from the hyperbolicity of the curve complex, [47].

Remark 6.3.1. While a proof that Csep(S2,0) is δ-hyperbolic is implicit in the work of Brock-

Masur, [21], it is somewhat hidden, and so in this section we present an alternative proof of

this fact which is independent of their results. In fact, since writing up this result, I have been

informed that a recent paper of Ma, [44], proved the δ-hyperbolicity of Csep(S2,0) using the

aforementioned work of Brock-Masur.

The ideas in this section are similar to, as well as motivated by, work of Masur-Schleimer

in [50]. Specifically, in [50], using ideas implicit in [3], axioms are established for when a
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combinatorial complex has a quasi-distance formula and is δ-hyperbolic. In particular, Masur

and Schleimer use these axioms to prove that the disk complex and the arc complex are δ-

hyperbolic. While due to a technicality, the Masur-Schleimer axioms do not all hold in the

case of Csep(S2,0), nonetheless, with enough care we are able to show by a direct argument

that Csep(S2,0) has a quasi-distance formula. Furthermore, careful consideration of the Masur-

Schleimer proof of δ-hyperbolicity for a complex satisfying their axioms reveals that their proof

in fact holds in the case of Csep(S2,0).

The outline of the section is as follows. In Subsection 6.3.1 relevant background material

is introduced. Subsection 6.3.2 contains the core content of the section including a proof of the

quasi-distance formula for Csep(S2,0) as well as a proof of δ-hyperbolicity.

6.3.1 Background

6.3.1.1 Combinatorial Complexes and Holes

In this section, a combinatorial complex, G(S),will be a graph with vertices defined in terms of

multicurves on the surface and edge relations defined in terms of upper bounds on intersections

between the multicurves. In addition, we will assume that combinatorial complexes are invari-

ant under an isometric action of the mapping class group, MCG. Examples of combinatorial

complexes include the separating curve complex, Csep(S), the arc complex, A(S), the pants

complex, P(S), the marking complex, M(S), as well as many others in the literature.

A hole for G(S) is defined to be any connected essential subsurface (here unlike in the rest

of the thesis, essential subsurfaces need not have non-trivial complexity) such that the entire

combinatorial complex has nontrivial subsurface projection into it. For example, it is not hard

to see that holes for the arc complex A(S), are precisely all connected subsurfaces Y such that

∂S ⊂ ∂Y.

The central idea in [50], which is also implicit in [3], is that distance in a combinatorial

complex is approximated by summing over the distances in the subsurface projections to the

curve complexes of holes. In particular, due to the action by MCG, if a complex has dis-
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joint holes then the complex admits nontrivial quasi-flats, and hence cannot be δ-hyperbolic.

Conversely, if a combinatorial complex has the property that no two holes are disjoint, then as-

suming a couple of additional Masur-Schleimer axioms, see [50], the complex is δ-hyperbolic.

6.3.1.2 Farey Graph
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Figure 22: A finite portion of the Farey Graph with labeled vertices.

The Farey graph is a classical graph with direct application to the study of the curve com-

plex. Vertices of the Farey graph corresponding to elements of Q ∪ {∞ = 1
0
}, with edges

between two rational numbers in lowest terms p
q

and r
s

if |ps − qr| = 1. The Farey graph can

be drawn as an ideal triangulation of the unit disk as in Figure 22. A nice feature of the Farey

graph is the so-called Farey addition property which ensures that if rational number p
q

and r
s

are connected in the Farey graph, then there is an ideal triangle in the Farey graph with vertices
p
q
, r

s
, and p+r

q+s
.

The curve complexes C(S0,4) and C(S1,1) are isomorphic to the Farey graph. The isomor-

phism is given by sending the positively oriented meridional curve of the surfaces to 1
0
, the

positively oriented longitudinal curve of the surfaces to 0
1
, and more generally sending the

(p, q) curve to p
q
.



CHAPTER 6. ODDS AND ENDS 128

6.3.2 Separating curve complex of the closed genus two surface is hyper-

bolic: proof

Theorem 6.3.2. Csep(S2,0) is δ-hyperbolic.

The proof of Theorem 6.4.4 is broken down into two steps. In the first step we show by a

direct argument that Csep(S2,0) has a quasi-distance formula. In the second step, using step one,

we show that the Masur-Schleimer proof for δ-hyperbolicity of a combinatorial complex found

in Section 20 of [50] applies to Csep(S2,0) despite the fact that not all the Masur-Schleimer

axioms hold.

6.3.2.1 Step One: Csep(S2,0) has a quasi-distance formula.

We begin by recalling a lemma of [50] which ensures a quasi-lower bound for a quasi-distance

formula for Csep(S2,0).As noted by Masur-Schleimer, the proof of the following lemma follows

almost verbatim from similar arguments in [48] regarding the marking complex:

Lemma 6.3.3 ([50] Theorem 5.10). Let S be a surface of finite type, and let G(S) be a com-

binatorial complex. There is a constant C0 such that ∀c ≥ C0 there exists quasi-isometry

constants such that ∀α, β ∈ G(S):∑
Y a hole for G(S)

{dC(Y )(α, β)}c . dG(S)(α, β)

In light of Lemma 6.3.3, in order to obtain a quasi-distance formula for Csep(S2,0), it suf-

fices to obtain a quasi-upper bound on Csep(S2,0) distance in terms of the sum of subsurface

projections to holes. As motivated by [50], our approach for doing so will be by relating mark-

ings to separating curves and more generally marking paths to separating paths. In the rest of

this subsection let S = S2,0.

Let µ ∈ M(S). Presently we will define a coarsely well-defined mapping ϕ : M(S) →

Csep(S). If base(µ) contains a separating curve γi, then we define ϕ(µ) = γi.On the other hand,

if all three base curves of µ, γ1, γ2, γ3, are non-separating curves, then for any i, j, k ∈ {1, 2, 3},
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i ̸= j ̸= k ̸= i, denote the essential subsurface Si,j := S \ γi, γj ≃ S0,4. Note that C(Si,j) is a

Farey graph containing the adjacent curves γk and tk. Let ok be a curve in Si,j such that γk, tk, ok

form a triangle in C(Si,j). Note that ok is not uniquely determined by this condition; in fact,

there are exactly two possibilities for ok. Nonetheless, the Farey addition property implies that

the two possible curves for ok intersect four times and are distance two in C(Si,j). In this case,

assuming none of the base curves are separating curves, we claim that exactly one of ok or tk

is a separating curve of S, and define ϕ(µ) to be either tk or ok, depending on which one is a

separating curve.

Claim 6.3.4. With the notation from above, let γk, tk, ok form a triangle in the Farey graph

C(Si,j). Then one (and only one) of the curves tk and ok are separating curves of S.

Proof. Si,j has four boundary components which glue up in pairs inside the ambient surface

S. Moreover, any curve α ∈ C(Si,j) gives rise to a partition of the four boundary components

of Si,j into pairs given by pairing boundary components in the same connected component of

Si,j \ α.

In total there are
(
4
2

)
= 3 different ways to partition the four boundary components of

Si,j into pairs, and in fact it is not hard to see that the partition of a boundary components

determined by a curve p
q
∈ C(Si,j) is entirely determined by the parity of p and q. Specifically,

the three partitions correspond to the cases (i) p and q are both odd, (ii) p is odd and q is even,

and (iii) p is even and q is odd. By topological considerations, since we are assuming none

of the base curves of the marking are separating curves, it follows that all curves in C(Si,j)

corresponding to exactly one of the three cases, (i),(ii) or (iii), are separating curves of the

ambient surface S.

Hence, in order to prove the claim it suffices to show that any triangle in the Farey graph

has exactly one vertex from each of the three cases (i), (ii) and (iii). This follows from basic

arithmetic computation: First note that no two vertices from a single case are adjacent in the

Farey graph. For example a vertex of type (odd/odd) cannot be adjacent to another vertex of

type (odd/odd) as the adjacency condition fails, namely

|odd2 − odd2| = |odd′ − odd′| = even ̸= 1.
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Similar calculations show that two vertices of type (odd/even) or two vertices of type (even/odd)

cannot be adjacent to each other. Moreover, the Farey addition property implies that if a triangle

contains vertices of two of the different cases, then the third vertex in any such triangle perforce

corresponds to the third case. For example if a triangle has vertices of type (odd/odd) and

(odd/even), the Farey addition property implies that the third vertex in any such triangle will be

of type (even/odd). The claim follows.

The following theorem ensures that the mapping ϕ : M(S) → Csep(S) is coarsely well-

defined.

Theorem 6.3.5. Using the notation from above, let µ be a marking with no separating base

curves, and let ti, tj be transversals which are separating curves. Then ti and tj are connected

in the separating curve complex Csep(S). Similarly, if ti and oj , or oi and oj are separating

curves the same result holds.

Proof. We will prove the first case; the “similarly” statement follows from the same proof.

Specifically, we will show that the separating curves ti, tj intersect four times. Up to action

of MCG, there is only one picture for a marking µ which does not contain a separating base

curve, as presented in Figure 23. Without loss of generality we can assume ti = t1 and tj = t2.

Notice that in the essential subsurface S2,3, as in Figure 23, the base curve γ1 corresponds to

the meridional curve 1
0
, and similarly in the essential subsurface S1,3 the base curve γ2 also

corresponds to the meridional curve 1
0
. Since t1 is connected to γ1 in the Farey graph C(S2,3) it

follows that t1 ∈ C(S2,3) is a curve of the form n
1

for some integer n. Similarly, t2 ∈ C(S1,3) is

a curve of the form m
1

for some integer m. As in the examples in Figure 23 it is easy to draw

representatives of the two curves which intersect four times.

The following lemma says that our coarsely well-defined mapping ϕ which associates a

separating curve to a complete clean marking is natural with respect to elementary moves in

the marking complex.

Lemma 6.3.6. If dM(S)(µ, µ
′) ≤ 1 then dCsep(S)(ϕ(µ), ϕ(µ′)) ≤ 2.
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γ
1

γ
3 γ

2

t1 t2

Figure 23: A marking µ on S2,0 with no separating curves, with transversal curves t1, t2 sepa-

rating curves. Notice that dCsep(S)(t1, t2) = 1.

Remark 6.3.7. To be sure, as will be evident in the proof of the Lemma 6.3.6, up to choosing

appropriate representatives of ϕ(µ) and ϕ(µ′) it is in fact true that dCsep(S)(ϕ(µ), ϕ(µ′)) ≤ 1.

However, the statement of the lemma holds for any representatives of ϕ(µ) and ϕ(µ′).

Proof. The proof will proceed by considering cases. First assume µ and µ′ differ by a twist

move applied to the pair (γi, ti). If µ has a separating base curve, and hence so does µ′ as twists

do not affect base curves, then we are done as ϕ associates to both markings this common

separating base curve. On the other hand, if µ has no separating base curves, and hence neither

does µ′, we can let ϕ assign to both markings the same separating curve either tj or oj, for

i ̸= j, depending on which one is a separating curve. In either case we are done.

Next assume µ and µ′ differ by a flip move applied to the pair (γi, ti). Recall that after

the flip move is performed one must pass to a compatible clean marking. Let us consider

the situation more carefully. Specifically, assume µ = {(γi, ti), (γj, tj), (γk, tk)}. Then µ′ =

{(ti, γi), (γj, t
′
j), (γk, t

′
k)}, where the transversals t′j, t

′
k are obtained by passing to a compatible

clean marking if necessary. If γj or γk is a separating base curve we are done. If not, then if

γi is a separating curve we are similarly done as ϕ can be chosen to assign to both markings

the separating curve γi. Finally, if none of the base curves are separating curves, then we also

done as we can choose ϕ to assign to both markings the same separating curve either tj or oj,

depending on which one is a separating curve.

Combining the existence of well-defined mapping ϕ : M(S) → Csep(S) with the result of
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Lemma 6.3.6, we have the following procedure for finding a path between any two separating

curves. Given α, β ∈ Csep(S), complete the separating curves into complete clean markings

µ and ν such that α ∈ base(µ) and β ∈ base(ν). Then construct a hierarchy path ρ in M(S)

between µ and ν. Applying the mapping ϕ to our hierarchy path ρ, and interpolating as neces-

sary, yields a path in Csep(S) between the separating curves α and β with length quasi-bounded

above by the length of the marking path ρ. In fact, if we are careful we can obtain the follow-

ing corollary which provides a quasi-upper bound on Csep(S2,0) distance in terms of the sum

of subsurface projection to holes. Note that together with Lemma 6.3.3, the corollary gives a

quasi-distance formula for Csep(S), thus completing step one.

Corollary 6.3.8. For S = S2,0, there is a constant K0 such that ∀k ≥ K0 there exists quasi-

isometry constants such that ∀α, β ∈ Csep(S):

dCsep(S)(α, β) .
∑

Y a hole for Csep(S)

{dC(Y )(α, β)}k

Proof. As suggested above we have a quasi-upper bound on Csep(S) distance given by the

length any hierarchy path ρ connecting markings containing the given separating curves as

base curves. In conjunction with the quasi-distance formula for M(S) in [48], we have already

have a quasi-upper bound of the form:

dCsep(S)(α, β) .
∑

ξ(Y )≥1, or Y an annulus
{dC(Y )(α, β)}k

Hence, it suffices to show that for all components domains Y in the above sum which are not

holes of Csep(S), we can choose can choose our mapping ϕ such that the Csep(S) diameter of

ϕ(IY ) is uniformly bounded, where IY is as in property [H2] of Theorem 2.2.4.

Holes for Csep(S) consist of all connected essential subsurfaces excluding essential subsur-

faces whose boundary is a separating curve of the surface. Hence, we must show that for all

component domains Y which are either annuli or proper connected essential subsurfaces with

boundary component a separating curve of the surface, that the Csep(S) diameter of ϕ(IY ) is

uniformly bounded. First consider the case of Y an annulus. In this case, the subpath of ρ in
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the marking complex corresponding to IY is acting by twist moves on transversal curves of a

fixed base curve γi. As in the proof of Lemma 6.3.6, if there is a separating base curve in the

marking, then we are done as the base curves are fixed by the twisting and we can pick the

fixed base curve as our separating curve for all of ϕ(IY ). Otherwise, if none of the base curves

are separating then for i ̸= j we can pick tj or oj , depending on which is a separating curve, as

our constant representative for all of ϕ(IY ), as this transversal is unaffected by the twist moves

applied to the base curve γi. Next consider the case of Y a proper connected essential subsur-

face with boundary a separating curve of the surface. Since every marking in IY contains the

separating curve ∂Y, the desired result follows as we set all of ϕ(IY ) to be equal to the fixed

separating curve ∂Y.

6.3.2.2 Step Two: Csep(S2,0) is δ-hyperbolic.

In Section 13 of [50], sufficient axioms are established for implying a combinatorial complex

admits a quasi-distance formula and furthermore is δ-hyperbolic. The first axiom is that no two

holes for the combinatorial complex are disjoint. This is easily verified for Csep(S2,0). The rest

of the axioms are related to the existence of an appropriate marking path {µi}N
i=0 ⊂ M(S)

and a corresponding well suited combinatorial path {γi}K
i=0 ⊂ G(S). In particular, there is a

strictly increasing reindexing function r : [0, K] → [0, N ] with r(0) = 0 and r(K) = N. In

the event that one uses a hierarchy as a marking path, the rest of the axioms can be simplified

to the following:

1. (Combinatorial:) There is a constant C2 such that for all i, dC(Y )(γi, µr(i)) < C2 for every

hole Y, and moreover dG(S)(γi, γi+1) < C2.

2. (Replacement:) There is a constant C4 such that:

[R1] If Y is a hole and r(i) ∈ IY , then there is a vertex γ′ ∈ G(S) with γ′ ⊂ Y and

dG(S)(γ, γ
′) < C4.

[R2] If Y is a non-hole and r(i) ∈ IY , then there is a vertex γ′ ∈ G(S) with γ′ ⊂ Y

or γ′ ⊂ S \ Y and dG(S)(γ, γ
′) < C4.
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3. (Straight:) For any subinterval [p, q] ⊂ [0, K] with dC(Y )(µr(p), µr(q)) uniformly bounded,

where Y ranges over all non-holes, then dG(S)(γp, γq) . dC(S)(γp, γq).

Presently we will show that in the case of the separating curve complex Csep(S2,0) all of above

axioms with the exception of axiom [R2] hold. Let ρ = {µi}N
i=0 be a hierarchy path between

two complete clean markings each containing a separating base curve. Then define the com-

binatorial path {γi}K
i=0 ⊂ Csep(S) by interpolating between the elements of ϕ(ρ) subject to

making choices for images of the coarsely well-defined mapping ϕ such that for component

domains of ρ which are not holes of Csep(S2,0), the Csep(S) diameter of ϕ(IY ) is uniformly

bounded. This is precisely what was proven to be possible in Corollary 6.3.8. In other words,

we can assume the combinatorial path is a quasi-geodesic in the separating curve complex ob-

tained from considering the mapping ϕ applied to a hierarchy path ρ and with representative

chosen in a manner such that as the hierarchy path potentially travels for an arbitrary distance

in a non-hole component domain, the combinatorial path in the separating curve complex only

travels a uniformly bounded distance. Let the reindexing function r be given by sending an

element γi of the combinatorial path to any marking µj such that ϕ(µj) = γi.

Given this setting, the combinatorial axiom is immediate from the definition of ϕ in con-

junction with Lemma 6.3.6. Similarly, the straight axiom follows from the properties of hierar-

chy paths of Theorem 2.2.4 in conjunction with the construction of the combinatorial path. Re-

placement axiom [R1] also holds for if Y is a hole, then ∂Y contains at most two non-separating

curves. Then for all markings µ ∈ IY , base(µ) contains the at most two non-separating curves

∂Y. Let γi be a base curve of µ not in ∂Y. Then we can choose ϕ(µ) to be either γi, ti, or oi,

depending on which is a separating curve, all of which are properly contained in the connected

essential subsurface Y. Claim 6.3.4 ensures that exactly one of the three curves γi, ti, and oi is

a separating curve. On the other hand, axiom [R2] fails as if Y is an essential subsurface which

is a non-hole then it is possible that ∂Y ∈ Csep(S). In this case, by elementary topological

considerations there cannot exist any separating curve properly contained in either Y or S \ Y.

Nonetheless, while the Masur-Schleimer axioms fail due to the failure of axiom [R2], the

Masur-Schleimer proof that a combinatorial complex satisfying the axioms is δ-hyperbolic



CHAPTER 6. ODDS AND ENDS 135

carries through in the case of Csep(S2,0). Specifically, the Masur-Schleimer proof has two dis-

tinct parts. First they show that a combinatorial complex satisfying their axioms satisfies a

quasi-distance formula, and then they show that the complex is δ-hyperbolic. Moreover, the

replacement axiom [R2] is only used in the first step of the Masur-Schleimer argument, namely

the proof of the existence of a quasi-distance formula. However, replacement is not used in

the second step which uses the quasi-distance formula to obtain hyperbolicity. Accordingly,

since we have provided an independent proof of a quasi-distance formula for Csep(S2,0), the

δ-hyperbolicity of Csep(S2,0) follows from the second part of the Masur-Schleimer argument.

In fact, the idea that a complex satisfying a quasi-distance formula and has no holes is δ-

hyperbolic is in fact implicit in [3] where such methods are used to prove the hyperbolicity of

various low complexity marking and pants complexes.

6.4 Separating pants decompositions in the pants complex

As noted, the large scale geometry of Teichmüller space has been an object of interest in recent

years, and in this context, the pants complex, P(S), becomes relevant, as by Theorem 2.1.6

of Brock P(S) is quasi-isometric to the Teichmüller space. Accordingly, in order to study

large scale geometric properties of Teichmüller space, it suffices to study the pants complex

of a surface. One feature of the coarse geometry of the pants complex in common to many

analyses of the subject is the existence of natural quasi-isometrically embedded product regions

in the thin part of Teichmüller space. These product regions, which are obstructions to δ-

hyperbolicity, correspond to pants decompositions of the surface containing a fixed nontrivially

separating (multi)curve. In fact, often in the course of studying the coarse geometry of the

pants complex it proves advantageous to pass to the net of pants decompositions that contain a

nontrivially separating curve. See for instance [21, 6] in which such methods are used to prove

that the certain pants complexes are relatively hyperbolic or thick, respectively. Similarly, work

of [49], uses similar methods to prove the pants complex is one ended.

In this section, we study the net of pants decompositions of a surface that contain a non-
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8 0 2 2 3 4 4 4 5 5

7 0 2 2 3 4 4 4 5 6

6 1 2 3 4 4 4 5 5 6

5 2 3 4 4 4 5 5 6

4 2 3 4 4 4 5 5 6

3 2 3 3 4 4 4 5 5

2 2 3 3 3 4 5 5

1 1 2 3 3 4 4 5

0 1 2 3 3 4 4 5

n ↑ g → 0 1 2 3 4 5 6 7 8

Table 3: The maximum distance in the pants complex of any pants decomposition to a pants

decomposition containing a nontrivial separating curve for some low complexity surfaces.

trivially separating curve within the entire pants complex. Specifically, for all surfaces of finite

type we approximate the maximum distance in the pants complex of any pants decomposi-

tion to a pants decomposition containing a nontrivially separating curve, thereby proving the

following theorem:

Theorem 6.4.1. Let S = Sg,n and set Dg,n = max
P∈P(S)

(dP(S)(P,Psep(S))). Then, for any

fixed number of boundary components (or punctures) n, Dg,n grows asymptotically like the

function log(g), that is Dg,n = Θ(log(g)). On the other hand, for any fixed genus g ≥ 2,

∀n ≥ 6g − 5, Dg,n = 2.

Table 3 computes Dg,n for some low complexity examples.

There is a sharp contrast between the nets provided by the subcomplexes Csep(S) ⊂ C(S)

and Psep(S) ⊂ P(S). It is easy to see that N1(Csep(S)) = C(S). On the other hand, Theo-

rem 6.4.1 says that the maximal distance from an arbitrary pants decomposition to any pants

decompositions containing a nontrivial separating curve is a nontrivial function depending on
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the topology of the surface. The lower bounds in Theorem 6.4.1 follow from an original and

explicit constructive algorithm for an infinite family of high girth at most cubic graphs with the

following expander like property, namely the minimum cardinality of connected cut-sets is a

logarithmic function with respect to the vertex size of the graphs. This family of graphs may

be of independent interest.

The following lemma used in the course of proving the lower bounds in Theorem 6.4.1 may

also be of independent interest. Its proof brings together ideas related to the topology of the

surfaces and graph theory in a simple yet elegant manner.

Lemma 6.4.7. For P ∈ P(S) and Γ(P ) its pants decomposition graph, let d be the cardinality

of a minimal nontrivial connected cut-set C ⊂ Γ(P ). Then

dP(S)(P, P
′) ≥ min{girth(Γ(P )), d} − 1,

for P ′ any pants decomposition containing a separating curve cutting off genus.

The results of this section have some overlap with recent results in [25, 59]. Nonetheless,

the results presented are in fact distinct from the aforementioned articles. Specifically, due to

the fact that the quasi-isometry constants of Theorem 2.1.6 between the pants complex and Te-

ichmüller space equipped with the Weil-Petersson metric are dependent on the topology of the

surface, the results of this section are more properly related to complex of cubic graphs than

to Moduli Space. Conversely, while methods in [25] do contain lower bounds on the diame-

ter of entire complex of cubic graphs, this section focuses on the finer question of the density

of a natural subset inside the entire space. On the other hand, while methods in [59] provide

an independent and alternative (albeit nonconstructive) proof of the lower bounds achieved in

Subection 6.4.4 of this section by considering pants decompositions whose pants decompo-

sition graphs are expanders. The explicit and constructive nature of the family of graphs in

Subsection 6.4.4 is a novelty of this section.

The outline of the section is as follows. In Subsection 6.4.1 we review relevant background

concepts. In Subsection 6.4.2 we introduce a pants decomposition graph. In Subsection 6.4.3
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we prove Theorem 6.4.1 modulo a construction of an infinite family of high girth, log length

connected, at most cubic graphs, which is explicitly described in Subsection 6.4.4.

6.4.1 Preliminaries

6.4.1.1 Graph Theory

Let Γ = Γ(V,E) be an undirected graph with vertex set V and edge set E. The degree of a

vertex v ∈ V, is the number of times that the vertex v arises as an endpoint in E. The degree

of a graph is the maximal degree over all vertices. Γ is called at most cubic if the degree of Γ

is at most three, and cubic if every vertex has degree exactly three. A simple closed path in a

graph is called a cycle. A cycle of length one is a loop. The girth of a graph Γ is defined to be

the length of a shortest cycle in Γ, unless Γ is acyclic, in which case the girth is infinity.

Given a graph, Γ(V,E) for any subset S ⊂ V (Γ), the complete subgraph of S in Γ, denoted

Γ[S], is the subgraph of Γ with vertex set S and edges between any pair of vertices x, y ∈ S if

and only if there is a corresponding edge e ∈ E(Γ). A graph Γ is said to be connected if there

is a path between any two vertices of the graph, and disconnected otherwise. If a subset of

vertices, C ⊂ V, has the property that the deletion subgraph, Γ[V \C], is disconnected, then C

is called a cut-set of a graph. If the deletion subgraph Γ[V \ C], is disconnected and moreover

it has at least two connected components each consisting of at least two vertices or a single

vertex with a loop, C is said to be a nontrivial cut-set. A (nontrivial) [connected] cut-set C is

called a minimal sized (nontrivial) [connected] cut-set if |C| is minimal over all (nontrivial)

[connected] cut-sets of Γ.

We will be interested in families of graphs that are robust with regard to nontrivial dis-

connection by the removal of connected cut-sets. More formally, we define an infinite family

of graphs, Γi(Vi, Ei), with increasing vertex size to be log length connected if they have the

property that the size of minimal nontrivial connected cut-sets of the graphs, asymptotically

grows logarithmically in the vertex size of the graphs. Specifically, if we set the function f(i)

to be equal to the cardinality of a minimal nontrivial connected cut-set of the graph Γi, then
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f(i) = Θ(log(|Vi|)). The robust connectivity property of log length connected graphs is quite

different than the connectivity property enjoyed by expander graphs. Informally, a family of

graphs are expanders if the graphs are strongly connected in the sense the deletion of small

number of arbitrary vertices will not separate the graph. On the other hand, a family of graphs

are log length connected if the graphs are strongly connected in the sense that the deletion of a

small locally connected subgraph will not separate the graph. This seems to be a novel type of

connectivity property for graphs and may be of independent interest.

6.4.1.2 Curves and Pants

Among simple closed curves on a surface of finite type we differentiate between two types of

curves. Specifically, a simple closed curve γ ⊂ S is called a nontrivially separating curve,

or simply a separating curve, if S \ γ consists of two connected components Y1 and Y2 such

that ξ(Yi) ≥ 1. Any other simple closed curve is nonseparating. It should be stressed that a

trivially separating curve, that is a simple closed curve that cuts off two boundary components

of the surface for our purposes is not considered a separating curve. While counterintuitive,

this point of view is in fact quite natural in the context of Teichmüller space. Restricting C(S)

to the set of separating curves one obtains the complex of separating curves, Csep(S). Similarly,

restricting P(S) to the set of pants decompositions containing a separating curve we have the

pants complex of separating curves, Psep(S). This section analyzes the net of Psep(S) in P(S).

6.4.2 Pants Decomposition Graph

By topological considerations, for P ∈ P (Sg,n), |P | = ξ(S) = 3g − 3 + n, while the number

of connected components, or “pairs of pants,” in the complement S \ P is equal to |χ(S)| =

2(g−1)+n.Given P ∈ P(S) we define its pants decomposition graph, Γ(P ), as follows: Γ(P )

is a graph with vertices corresponding the connected components of S \ P, and edges between

vertices corresponding to connected components that share a common boundary curve. See

Figure 24 for an example.

Remark 6.4.2. The notion of pants decomposition graphs is considered in [24] as well as in
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P

Figure 24: Γ(P ) for P ∈ P (S2,1).

[56]. Moreover, replacing the vertices in Γ(P ) with edges and vice versa yields the adjacency

graph in [9].

The following self evident lemma organizes elementary properties of Γ(P ) and gives a one

to one correspondence between certain graphs and pants decomposition graphs:

Lemma 6.4.3. For P ∈ P(Sg,n), and Γ(P ) its pants decomposition graph:

1. Γ(P ) is a connected graph with 2(g−1)+n vertices and 3(g−1)+n edges. In particular,

π1(Γ(P )) is the free group of rank g.

2. Γ(P ) is at most cubic

Moreover, for all q, p ∈ N, given any connected, at most cubic graph Γ = Γ(V,E) with

|V | = 2(p − 1) + q and |E| = 3(p − 1) + q, there exists a pants decomposition P ∈ P(Sp,q)

with Γ(P ) ∼= Γ.

6.4.2.1 Elementary moves and pants decomposition graphs.

Recall the two types of elementary moves:

E1 Inside a S1,1 component of the surface in the complement of all of the pants curves except

α, the curve α is replaced with β where α and β intersect once.

E2 Inside a S0,4 component of the surface in the complement of all of the pants curves except

α, the curve α is replaced with β where α and β intersect twice.
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Elementary move E1 has a trivial action on Γ(P ), while the impact of the elementary move E2

can be described as follows: identify any two adjacent vertices, v1, v2 in the pants decompo-

sition graph connected by an edge e, then the action of an elementary move E2 on the pants

decomposition graph has the effect of interchanging any edge other than e impacting v1, or

possibly the empty set, with any edge other than e, impacting v2, or possibly the empty set.

The one stipulation is that in the event that the empty set is being interchanged with an edge,

the result of the action must yield a connected at most cubic graph.

A C

B D

A C

B D

A

B

C

D

A

B

C

D

Figure 25: An example of an elementary pants move action on Γ(P )

6.4.2.2 Adding boundary components

Any pants decomposition of Sg,n+1 can be obtained by beginning with a suitable pants decom-

position of Sg,n, adding a boundary component appropriately, and then appropriately complet-

ing the resulting multicurve into a pants decomposition of Sg,n+1. The effect that this process of

adding a boundary component has on the pants decomposition graph has two forms as depicted

in Figure 26.

A C

B D

A C

B D

A C

B D

Option 1 Option 2

Figure 26: Adding a boundary component to a pants decomposition graph.
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6.4.2.3 Separating curves and pants decomposition graphs.

Notice that a curve in a pants decomposition is a separating curve if and only if the effect of

removing the corresponding edge in Γ(P ) nontrivially separates the graph into two connected

components. Recall that a nontrivial separation of a graph is a separation such that there are at

least two connected components each consisting of at least two vertices or a single vertex and

a loop.

We differentiate two categories of separating curves, separating curves that cut off genus

and separating curves that cut off boundary components. By the former, we refer to separating

curves whose removal separates that surface into two nontrivial essential subsurfaces each with

genus at least one. By the latter, we refer to separating curves whose removal separates that

surface into two nontrivial essential subsurfaces at least one of which is a topological sphere

with boundary components. Equivalently, a separating curve cuts off genus if the removal of

the edge in Γ(P ) corresponding to the curve disconnects the graph into two cyclic components,

otherwise if at least one of the connected components is acyclic, then the separating curve cuts

off boundary components. Separating curves that cut off genus only exist on surfaces Sg,n with

g ≥ 2, while separating curves that cut off boundary components only exist on surfaces with

n ≥ 3.

6.4.3 Proof of Theorem 6.4.1

In this section we will prove the following theorem which in particular implies Theorem 6.4.1.

The proof will from directly from the combination of the Lemmas and Corollaries. To simplify

the exposition we will first deal with the case of closed surfaces, and then we will explain how

boundary components affect the arguments.

Theorem 6.4.4. Let S = Sg,n and set Dg,n = max
P∈P(S)

(dP(S)(P,Psep(S))). Then, for any

fixed number of boundary components (or punctures) n, Dg,n grows asymptotically like the

function log(g). that is Dg,n = Θ(log(g)). In particular, for closed surfaces of sufficiently large
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genus,
log2(2g + 2)

2
− 2 ≤ Dg,0 ≤ ⌊2 log2(g − 1) + 1⌋

On the other hand, for any fixed genus g ≥ 2, ∀n ≥ 6g − 5, Dg,n = 2.

Note 6.4.5. It is not hard to see by direct consideration that D0,6 = 1. More generally, for

n ≥ 7, D0,n = 0, and ∀n ≥ 3, D1,n = 2. The exact terms in the upper and lower bounds on

Dg,0 while necessary for the technical details in the proofs are not believed to be sharp.

6.4.3.1 Upper bounds for closed surfaces using girth

Lemma 6.4.6. For P ∈ P(S) and Γ(P ) its pants decomposition graph,

dP(P,Psep) ≤ girth(Γ(P )) − 1.

In particular, Dg,0 ≤ ⌊2 log2(g − 1) + 1⌋.

Proof. By valence considerations, a loop in Γ(P ) implies P contains a separating curve.

Hence, to prove the first statement it suffices to show that given any cycle of length n ≥ 2,

there exists an elementary move decreasing the length of the cycle by one. See Figure 27.

Regarding the second statement, it is known that a girth h cubic graph must have at least

2h/2 vertices, [14]. It follows that any cubic graph Γ with 2(g − 1) vertices, has girth(Γ) ≤

2 log2(g − 1) + 2⌋. The second statement now follows from the first one.

6.4.3.2 Lower bounds for closed surfaces

Recall that a separating curve γ ∈ Csep(S) is said to cut off genus if S \ γ consists of two

connected essential subsurfaces neither of which is topologically a sphere with boundary com-

ponents. Also recall that for a graph Γ(V,E), a subset C ⊂ V is called a nontrivial connected

cut-set of Γ if Γ[C] is a connected graph and Γ[V \ C] has at least two connected components

each consisting of at least two vertices or a vertex and a loop. The following lemma gives a

lower bound on the distance of a pants decomposition to a pants decomposition which cuts off

genus.
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n-cycle

elementary 

pants move

(n-1)-cycle

Figure 27: Elementary pants move decreasing the length of a cycle in Γ.

Lemma 6.4.7. For P ∈ P(S) and Γ(P ) its pants decomposition graph, let d be the cardinality

of a minimal nontrivial connected cut-set C ⊂ Γ(P ). Then

dP(S)(P, P
′) ≥ min{girth(Γ(P )) − 1, d− 1}

for P ′ any pants decomposition containing a separating curve cutting off genus.

Proof. Let γ be any curve in the pants decomposition P , and let α be any separating curve

of the surface S that cuts off genus. It suffices to show that the number of elementary moves

needed to take the curve γ to α is at least min{girth(Γ(P )) − 1, d − 1}. In fact, considering

the effect of an elementary move, it suffices to show that α nontrivially intersects at least

min{girth(Γ(P )), d} different connected components of S \ P .

Corresponding to α consider the subgraph [α] ⊂ Γ(P ) consisting of all vertices in Γ(P )

corresponding to connected components of S \ P nontrivially intersected by α, as well as all

edges in Γ(P ) corresponding to curves of the pants decomposition P nontrivially intersected

by α. By construction, the subgraph [α] is connected. Note that the subgraph [α] need not

be equal to the induced subgraph Γ[α], but may be a proper subgraph of it. Nonetheless,

V (Γ[α]) = V ([α]). (See Figure 28 for an example of a subgraph [a] ⊂ Γ(P ).)

As noted, it suffices to show |V (Γ[α])| ≥ min{girth(Γ(P )), d}. Assuming not, by the

girth condition it follows that Γ[α] is acyclic. However, this implies that α is entirely con-

tained in a union of connected components of S \ P such that in the ambient surface S, the
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connected components glue together to yield a subsurface Y, which is topologically a sphere

with boundary components. Moreover, by the cardinality of the minimal nontrivial connected

cut-set condition, it follows that the removal of the subsurface Y, or any subsurface thereof,

from the ambient surface S does not, nontrivially separate S. In particular, for all U ⊂ Y,

S \ U consists of a disjoint union of at most one nontrivial subsurface as well as some number

of pairs of pants. It follows that α cannot be a separating curve cutting off genus.

[a]

a

Figure 28: An example of a subgraph [a] ⊂ Γ(P ) corresponding to a separating curve a ⊂

S3,0, cutting off genus. In this example, the girth of Γ(P ) is three and there are no nontrivial

connected cut-sets of Γ(P ) . By Lemma 6.4.7, the distance from P to any pants decomposition

with a separating curve cutting off genus is at least (and in fact exactly) two.

In Subsection 6.4.4 for any even number 2m, such that h is the largest integer satisfying(
⌈2h−4

h−4
⌉
)
·h ≤ 2m,we construct a graph, Γ2m, such that |V (Γ2m)| = 2m, girth(Γ2m) = h, and

any connected cut-set of the graph contains at least ⌊h
2
⌋ vertices. By Lemma 6.4.7, the pants

decomposition corresponding to Γ2m is distance at least h
2
− 2 from a pants decomposition

containing a separating curve. Because the pants decomposition graph Γ2m corresponds to a

pants decomposition of a closed surfaces of genus m−1, it follows that h
2
−2 < Dm−1,0. Since

for large enough values of h,

2m <

(
⌈2h+1 − 4

h− 3
⌉
)
· (h+ 1) < 2h+2,

after algebraic manipulation one obtains log2(2(m−1)+2)
2

−2 < h
2
−2. In conjunction with Lemma

6.4.6 we have proven the following:

Corollary 6.4.8. For large enough values of g, we have the bounds on Dg,0 recorded in Theo-

rem 6.4.4. In particular, Dg,0 = Θ(log(g))
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6.4.3.3 Adding boundary components

In this section we modify the previously described arguments to allow for the case that our

surface S has boundary components. We begin with a lemma describing a local situation

in Γ(P ) ensuring that a pants decomposition is close to a pants decomposition containing a

separating curve.

Lemma 6.4.9. For P ∈ P(S) and Γ(P ) its pants decomposition graph. If Γ(P ) has three

consecutive vertices of degree at most two, then dP(P,Psep) ≤ 2.

Proof. See Figure 29.

A C

B D

A C

B D

A

B

elementary 

pants move

C

D

elementary 

pants move

Figure 29: Two elementary moves creating a separating curve that cuts off boundary compo-

nents in Γ beginning from a pants decomposition graph with three consecutive valence at most

two vertices.

Using Lemma 6.4.9, presently we generalize Lemma 6.4.6 to surfaces with boundary.

Corollary 6.4.10. ∀g ≥ 2, Dg,n ≤ ⌊2 log2(g − 1) + 3⌋.

Proof. Recall that in Lemma 6.4.6 we obtained an upper bound of ⌊2 log2(g− 1)+1⌋ on Dg,0.

Specifically, this upper bound was obtained by taking the smallest cycle C in the graph Γ(P )

which had length at most ⌊2 log2(g − 1) + 2⌋ and then successively decreasing the length of

cycle C by elementary pants moves as in the proof of Lemma 6.4.6. Consider what can happen

to this cyclic subgraph C as we add boundary components to our surface as in subsection

6.4.2.2. If the added boundary components do not affect the length of cycle C, the upper bound

is unaffected. On the other hand, if the added boundary components increase the length of the
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cycle C by adding one (two) degree two vertex (vertices) to the cycle C, then the distance to

a separating curve increases by at most one (two). However, once at least three degree two

vertices have been added to the cycle C, instead of reducing the cycle to a loop, we can use

elementary moves to gather together three consecutive vertices of degree two and then create a

separating curve locally, as in Lemma 6.4.9. The statement of the corollary follows.

Again using Lemma 6.4.9 we have the following corollary, also proving a special case of

Theorem 6.4.4.

Corollary 6.4.11. For all g ≥ 2, n ≥ 6g − 5 =⇒ Dg,n = 2.

Proof. By Lemma 6.4.3 for P ∈ P(Sg,n), Γ(P ) is a connected at most cubic graph with

2(g− 1)+n vertices and 3(g− 1)+n edges. Since n ≥ 6g− 5, by pigeon hole considerations

it follows that Γ(P ) has three consecutive vertices of degree at most two. By Lemma 6.4.9,

Dg,n ≤ 2. Then to see that Dg,n = 2 it suffices to explicitly exhibit connected at most cubic

graphs with 2(g − 1) + n vertices and 3(g − 1) + n edges for all g ≥ 2, n ≥ 6g − 5 such

that the graphs neither contain nontrivial cut edges nor are one elementary move away from a

graph with a nontrivial cut edge. See Figure 30 for an explicit construction of such a family of

graphs.

6

 5

1

2

3

3(g-1)-1

3(g-1)-2 3(g-1)

3(g-1)+13(g-1)+n

4 6

 5

Figure 30: Pants decompositions graphs of pants decompositions which are distance two from

a pants decomposition containing a separating curve.

Generalizing the aforementioned family of cubic graphs, Γ2m, in Subsection 6.4.4 we show

that for any fixed n ∈ N we can add n boundary components to the our graphs, Γ2m, creating
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a family of pants decomposition graphs Γn
2m, whose corresponding pants decompositions have

girth, minimum nontrivial cut-set size, and distance between valence less than three vertices

growing logarithmically in the vertex size of the graph. By Lemma 6.4.7, the fact that girth

and minimum nontrivial connected cut-set size grow logarithmically in the vertex size of the

graph implies that the distance between pants decompositions corresponding to the constructed

graphs to any pants decompositions containing a separating curve cutting off genus grows

logarithmically in the vertex size of the graph. Moreover, the fact that the distance between

valence less than three vertices grows logarithmically in the vertex size of the graphs, implies

that the distance between pants decompositions corresponding to the constructed graphs to

any pants decompositions containing a separating curve cutting off boundary components also

grows logarithmically in the vertex size of the graphs. As a corollary, we have:

Corollary 6.4.12. For any fixed n ∈ N, Dg,n = Θ(log(g)).

6.4.4 Construction of Large Girth, Log Length Connected Graphs

We first describe a construction for a family, Γh, of cubic girth h ≥ 5 graphs with(
⌈2h − 4

h− 4
⌉
)
· h+ {0, 1}

vertices (where the final term is simply to ensure the total number of vertices is even), which

have the property that any connected cut-set of Γh contains at least ⌊h
2
⌋ vertices. Afterward, we

generalize our construction, interpolating between the family of graphs Γh. Specifically, for all

m ∈ N, such that h ≥ 5 is the largest integer satisfying 2m ≥
(
⌈2h−4

h−4
⌉
)
·h, there exists a cubic

girth h graph Γ2m with 2m vertices and the property that any connected cut-set of the graph

contains at least ⌊h
2
⌋ vertices. Finally, we demonstrate that for any fixed number of boundary

components n, we can add n boundary components to our graphs Γ2m yielding a family of

graphs Γn
2m with the same desired properties.
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6.4.4.1 Construction of Γh

Begin with
(
⌈2h−4

h−4
⌉
)

disjoint cycles each of length h (possibly one of length h+1 if necessary

to make the total number of vertices even). Then, chain together these disjoint cycles into an

at most cubic connected tower Th, connecting each cycle to its neighboring cycle(s) by adding

two edges between pairs of vertices, one from each cycle, such that each of the two vertices

from the same cycle, to which edges are being attached, are of distance at least ⌊h
2
⌋.

Figure 31: T8, an at most cubic girth eight tower graph.

By construction, the tower graphs, Th, have the following properties:

T1 Th has
(
⌈2h−4

h−4
⌉
)
· h+ {0, 1} vertices.

T2 Th is an at most 3-regular and at least 2-regular graph with girth h.

T3 If we denote the subset of vertices of Th of valence two by V Th
2 , then |V Th

2 | ≥ 2h.

T4 Any connected cut-set of Th has at least ⌊h
2
⌋ vertices.

6.4.4.2 Algorithm completing Th to a 3-regular graph Γh

Motivated by ideas in [14], presently we describe a constructive algorithm to add edges to the

tower Th completing it to a 3-regular graph Γ = Γh which also has girth h, and retains the

property that any connected cut-set of Γh has at least ⌊h
2
⌋ vertices. By abuse of notation, we

will always refer to the graph that has been constructed up to the current point as Γ. In terms

of ensuring the girth condition, the main observation being used implicitly throughout is that
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removing edges from a graph never decreases girth, while adding an edge connecting vertices

which were previously at least distance h− 1 apart, in a girth at least h graph, yields a girth at

least h graph.

Step One An Easy Opportunity to Add an Edge

If Γ is 3-regular, we’re done. If not, fix a vertex v ∈ V Th
2 of valence two. If there exists

another vertex x ∈ V Th
2 with dΓ(v, x) ≥ h− 1, add an edge between x and v.

Step Two Exhaust Easy Opportunities

Iterate step one until all possibilities to add edges to Γ are exhausted.

Step Three One Step Backward, Two Steps Forward

If Γ is 3-regular, we’re done. If not, since the total number of vertices is even, there must

exist at least two vertices, x and y, of valence two. Consider the sets U = NΓ
h−2(x) ∪

NΓ
h−2(y) and I = NΓ

h−2(x) ∩ NΓ
h−2(y). Due to the valence considerations, since x, y are

valence TWO vertices in an at most cubic graph it follows that |NΓ
h−2(x)| ≤ 1+2+ ...+

2h−2 = 2h−1 − 1, and similarly for NΓ
h−2(y). Note that |U | = |NΓ

h−2(x)| + |NΓ
h−2(y)| −

|I| ≤ 2h − 2 − |I|. Then consider the set W = V Th
2 \ U. Since |V Th

2 | ≥ 2h, it follows

that |W | ≥ 2 + |I|. In particular, the set W is nonempty. Furthermore, considering that

step two was completed to exhaustion, it follows that ∀w ∈ W, w is of valence three in

Γ. Moreover, by definition, the vertex w is of valence two in Th. Denote the vertex that is

connected to w in Γ but not in Th by w′. Perforce, w′ is distance at least h− 2 from both

x and y. In fact, we can assume that w′ is not exactly distance h − 2 from both x and y

because |W | > |I|. For concreteness, we can assume that dΓ(x,w′) ≥ h− 1.

Remove from Γ the edge e connecting w to w′, and in its place include two edges: e1

between x and w′, and e2 between w and y. Adding the two edges e1 and e2 does not

decrease girth to less than h as they each connect vertices that were distance at least

h− 1 apart: After removing e, the vertices w and w′ are distance at least h− 1 because Γ

was girth at least h. Hence, even after adding edge e1 we can still be sure that the vertices
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y and w remain distance at least h− 1 apart, thereby allowing us to add edge e2 without

decreasing girth to less than h.

Step Four Repeat

If Γ is not yet 3-regular, return to step three.

The algorithm terminates as if the graph is not yet 3-regular Step three can be performed,

and net effect of Step three increases the number of edges in the at most 3-regular graph. By

construction the graph Γh has girth h. Moreover, as that the algorithm never removes edges

from the tower Th, and hence the resulting graph Γh includes the tower Th as a subgraph.

Using the girth condition in conjunction with the fact that any connected cut-set of Γh is a

cut-set of Th, it is not hard to see that any connected cut-set of Γh has at least ⌊h
2
⌋ vertices.

6.4.4.3 Construction of Γ2m

For any even number of vertices 2m such that 2m ≥ |V (Γh)|, for some h, we can construct

a 3-regular girth h graph on 2m vertices, which we denote Γ2m, with the property that any

connected cut-set of Γ2m contains at least ⌊h
2
⌋ vertices. In fact, we can construct Γ2m using

the exact same process as in the construction of Γh with the exception that we now start with

⌊2m
h
⌋ cycles of length h, and (h + 1) as necessary, in the building our initial tower which is

subsequently completed to a cubic graph.

6.4.4.4 Adding a fixed number n of boundary components to Γ2m

For any fixed number n ∈ N, we can add n boundary components to the graphs Γ2m, to obtain

graphs Γn
2m. Moreover, we can ensure that no two added boundary components are within

distance ⌊h
2
⌋ from each other, past some minimal threshold for 2m. This is because for x, an

added boundary component in Γ2m, |N⌊h
2
⌋(x)| ≤ 2⌊

h
2
⌋+1, while |V (Γ2m)| ≥ 2h. It follows

that that for any fixed number of boundary components n, we have a family of graphs Γn
2m

with girth, nontrivial minimum cut-set size, and the distance between valence less than three

vertices all growing logarithmically in the vertex size of the graph.
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