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ABSTRACT

Genus Distributions of Graphs Constructed
Through Amalgamations

Mehvish Irfan Poshni

Graphs are commonly represented as points in space connected by lines. The points in

space are the vertices of the graph, and the lines joining them are the edges of the graph. A

general definition of a graph is considered here, where multiple edges are allowed between

two vertices and an edge is permitted to connect a vertex to itself. It is assumed that graphs

are connected, i.e., any vertex in the graph is reachable from another distinct vertex either

directly through an edge connecting them or by a path consisting of intermediate vertices

and connecting edges. Under this visual representation, graphs can be drawn on various

surfaces. The focus of my research is restricted to a class of surfaces that are characterized

as compact connected orientable 2-manifolds. The drawings of graphs on surfaces that

are of primary interest follow certain prescribed rules. These are called 2-cellular graph

embeddings, or simply embeddings.

A well-known closed formula makes it easy to enumerate the total number of 2-cellular

embeddings for a given graph over all surfaces. A much harder task is to give a surface-wise

breakdown of this number as a sequence of numbers that count the number of 2-cellular

embeddings of a graph for each orientable surface. This sequence of numbers for a graph is

known as the genus distribution of a graph. Prior research on genus distributions of graphs

has primarily focused on making calculations of genus distributions for specific families of

graphs. These families of graphs have often been contrived, and the methods used for finding

their genus distributions have not been general enough to extend to other graph families.

The research I have undertaken aims at developing and using a general method that frames

the problem of calculating genus distributions of large graphs in terms of a partitioning of

the genus distributions of smaller graphs. To this end, I use various operations such as edge-



amalgamation, self-edge-amalgamation, and vertex-amalgamation to construct large graphs

out of smaller graphs, by coupling their vertices and edges together in certain consistent

ways. This method assumes that the partitioned genus distribution of the smaller graphs

is known or is easily calculable by computer, for instance, by using the famous Heffter-

Edmonds algorithm. As an outcome of the techniques used, I obtain general recurrences

and closed-formulas that give genus distributions for infinitely many recursively specifiable

graph families. I also give an easily understood method for finding non-trivial examples

of distinct graphs having the same genus distribution. In addition to this, I describe an

algorithm that computes the genus distributions for a family of graphs known as the 4-

regular outerplanar graphs.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

For over a century, drawings of graphs on various surfaces have been a source of many inter-

esting questions that have captivated the imaginations of mathematicians. These drawings

of graphs, called graph embeddings, have spurred interest not only in a characterization

of the embeddings themselves but also in the properties of the underlying surfaces that

contain those embeddings. The research herein falls in the former category and aims at

finding genus distributions for many graph families. A genus distribution is an inventory

that catalogues the number of embeddings of a graph into each surface.

While the study of genus distributions spans only a few decades, its origins can be

attributed to the classical Heawood map-coloring problem that arose in the nineteenth

century and was an open problem for the better part of the subsequent 78 years. The

problem was eventually resolved in 1968 by Ringel and Youngs, and came to be known

as the Heawood map-coloring theorem. The Heawood map-coloring theorem characterizes

for each surface, other than the sphere, the minimum number of colors that are needed to

color any possible map on that surface, such that mutually adjacent countries of the map

are assigned distinct colors. The solution of the Heawood map-coloring problem hinged

upon establishing a closed formula for a graph invariant known as the minimum genus, for

the complete graph Kn, for all n ≥ 3. In fact, a surface is uniquely characterized by a

number known as the genus of that surface. The minimum genus of a graph, as the name

suggests, refers to the surface of smallest genus in which the graph can be embedded. It

was in this context that the problem of minimum genus gained impetus and created interest
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in other graph invariants such as maximum genus, average genus, genus distribution, etc.

The research that constitutes the core of this document involves determination of genus

distributions of graphs that are produced from smaller graphs through specific operations.

A few fundamental concepts, including a formal definition of genus distribution, are

reviewed here, followed by a description of the undertaken research. We refer the reader

to [Gross and Tucker, 2001], [Bonnington and Little, 1995], [White, 2001], and [Mohar and

Thomassen, 2001] for developing greater familiarity with the basics in topological graph

theory, and we recommend [Beineke et al., 2009] as a compendium of historical and recent

trends in the area.

1.1 Preliminaries

Graphs as Topological Spaces

Graphs are well understood as abstract combinatorial structures comprising a set of vertices

and a set of edges, each of which is incident on one or two vertices. We use a general

definition of graphs that permits multi-edges and self-loops. Since our primary concern is

with drawing graphs on surfaces, it is useful to regard them as topological spaces, with

the vertices of the graphs corresponding to points in the Euclidean space R3 and edges

corresponding to curves that can be parameterized by the [0, 1] unit interval. Thus every

edge, including self-loops, has two edge-ends. Under this parameterization, the parts of

an edge e that correspond to the intervals [0, ε) and (1 − ε, 1], for ε << 1, are known as

the 0-end and the 1-end of the edge e, respectively. They are also known collectively as

the edge-ends of the edge e. As long as we are consistent when considering a particular

edge, it is not important which end we consider the 0-end and which end the 1-end. For

visualization, we give artificial directions to the edges under which the 0-end corresponds

to the tail of the directed-edge and the 1-end corresponds to its head. We denote the 0-end

of edge e by e+ and the 1-end by e−.
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Surfaces

A 2-manifold is a subspace of R3 in which each point has a neighborhood homeomorphic

to an open disc. A 2-manifold that cannot be represented as a disjoint union of other 2-

manifolds is said to be connected, and it is said to be compact if (i) there is a real number

N such that the distance between any point on it and a fixed point of origin is less than N

and (ii) the endpoints of an open arc lying in the surface also lie in the surface. We refer

to a connected compact 2-manifold as a surface.

The connected sum of two surfaces is an operation on the surfaces, where an open

disc is excised from each of the two surfaces followed by gluing the surfaces together along

their boundaries.

Surfaces are of two types: orientable and non-orientable. Orientable surfaces are

those which do not contain a Möbius band as a subspace. These are completely classified,

by a well-known result in topology, as the sphere S0, the torus S1, and the k-torus Sk, for

integer k ≥ 2, where Sk is defined recursively by taking a connected sum of Sk−1 and S1.

Orientable surfaces of genus three or less are shown in Figure 1.1. The subscript k in Sk is

known as the genus of the orientable surface Sk, for k ≥ 0.

Figure 1.1: Orientable surfaces S0, S1, S2 and S3.

Amongst the non-orientable surfaces, the projective plane N1 is the simplest surface; it

is obtained by removing an open disc from a sphere and gluing it to a Möbius band along

its boundary. Non-orientable surfaces are completely classified as Nk, for k ≥ 1, where

Nk is the surface obtained by a connected sum of k projective planes. These non-orientable

surfaces are embeddable in 4-space, but not in 3-space. The subscript k in Nk is known as

the crosscap number of the non-orientable surface Nk, for k ≥ 1.

Other than surfaces, graph embeddings have been studied on an n-page book space,

consisting of a collection of n half-planes that share a common boundary, as well as on

generalized pseudo-surfaces, which are surfaces containing finitely many points that do
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not have neighborhoods homeomorphic to open discs. While embeddings on these other

topological spaces have been a subject of prior investigations, we confine our focus only to

embeddings on orientable surfaces.

Embeddings and Rotation Systems

A crossing-free drawing of a graph G on an oriented surface is referred to as an embedding.

More formally, if G is regarded as a topological space, then it is the 1−1 function ι : G→ S

that maps the graph G to its image ι(G) on the surface S. Given an embedding ι : G→ S,

the connected components of S−ι(G) are known as the regions of that embedding. A region

with its boundary is known as a face of the embedding. Embeddings that belong to the

same equivalence class under an orientation-preserving homeomorphism of the underlying

surface are regarded as equivalent.

A 2-cellular embedding is an embedding in which every region is homeomorphic to

an open disc. The regions of a 2-cellular embedding can be made non-cellular by attaching

handles to them, that is, by excising one or more disjoint open discs from the interior of

each region to be made non-cellular, followed by excising an equal number of disjoint open

discs from another surface S and subsequently gluing the boundaries of S to the boundaries

of the surface of embedding. The constraint of 2-cellularity on the regions of an embedding

renders the class of 2-cellular embeddings finite, and consequently makes the notion of

embedding graphs on surfaces more structured and meaningful. Moreover, a 2-cellular

embedding is related to the genus of the underlying surface through an algebraic relation

known as the Euler polyhedral formula. We assume, therefore, that all graph embeddings

under discussion are 2-cellular embeddings unless indicated otherwise. This implies that

graphs are connected, since embedding a disconnected graph on a surface would always

induce one or more regions that are not homeomorphic to open discs.

Let G = (V,E) be a connected graph with V as the set of vertices and E as the set

of edges. Given a 2-cellular embedding ι : G → Sk on an oriented surface, we refer to the

subscript k as the genus of the embedding. The Euler polyhedral formula for the

orientable surfaces specifies that all embeddings of a graph into a fixed surface Sk also have

the same number of faces. It relates the genus k of an oriented embedding to the cardinality
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|F | of its set of faces as:

|V | − |E|+ |F | = 2− 2k

An embedding on a sphere can also be regarded as a planar embedding under the

Riemann projection of the sphere, with the point at infinity lying in the “outer” face.

For this reason, it is not unusual to use the expression “planar embeddings” to indicate

embeddings on the sphere.

A rotation at a vertex v is the cyclic permutation of the edge-ends incident on it. A

vertex of degree d has (d − 1)! rotations. A rotation-system is a set of rotations, one

for each vertex. Thus, a graph that has vertices v1, · · · , vn having degrees d1, · · · , dn has∏
i(di − 1)! rotation systems. A well-known result pioneered by Heffter and rediscovered

by Edmonds states that there is a 1 − 1 correspondence between rotation systems and 2-

cellular graph embeddings. In fact, a rotation system is a combinatorial representation of

an embedding. Figure 1.2 shows a toroidal embedding of the dipole graph D3 to the left

and the corresponding rotation system to the right, where the dipole Dn consists of two

vertices connected by n multi-edges, for n ≥ 1.

v
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Figure 1.2: Toroidal embedding of D3 and corresponding rotation system.

Genus Distribution

The genus distribution of a connected graph G is a graph invariant. It is defined as

a sequence of numbers g0(G), g1(G), g2(G), · · · , where gk(G) is the number of 2-cellular

embeddings of the graph G in the oriented surface Sk. It is usually encoded as a finite

univariate polynomial:

g[G](x) = g0 + g1x+ g2x
2 + · · ·



CHAPTER 1. INTRODUCTION 6

For example, the dipole D3 has a total of 2 embeddings on a sphere and 2 embeddings on a

torus and, therefore, has genus distribution 2+2x1. The finiteness of the genus distribution

polynomial follows from the finiteness of the number of distinct embeddings of a graph.

1.2 Problem Statement

A survey of the research efforts invested into the problem of calculating the genus distri-

butions of graphs reveals that much of that research has been geared towards graphs that

are highly symmetrical. Typically, such research is carried out on families of graphs that

have bounded degree. In a few cases, the graphs have an arbitrary degree, as is the case for

bouquets [Gross et al., 1989], dipoles [Rieper, 1990], and the more recent result on general-

ized fan graphs [Chen et al., 2011a], but there, too, the scope is usually limited to specific

graph families. The methods that have been used in such instances are also exploitative of

this symmetry and for this reason it is not practicable to extend the techniques used on one

graph family to another graph family.

This thesis focuses on genus distributions of graphs built from smaller graphs using

various kinds of amalgamations. It is possible to define amalgamation operations on graphs

where a graph can be pasted to another graph on a vertex, an edge or even on subgraphs.

Whereas amalgamating on arbitrary subgraphs is an ambitious future goal, work on genus

distributions of graphs produced by amalgamating vertices and edges has met with con-

siderable progress under the aegis of an umbrella project by Gross, Khan and the author.

The research included here fits under this large project. A large portion of the research

discussed in §2 − §4 has also been published elsewhere (see [Poshni et al., 2010], [Poshni et

al., 2011] and [Poshni et al., 2012]).

In this document, we describe a general method that frames the problem of calculating

genus distribution of large graphs in terms of known partitioned genus distributions of

smaller graphs. This method is employed to calculate the genus distributions of those

infinite families of graphs that are obtained by iteratively amalgamating copies of smaller

graphs, called base graphs, along their root-edges. It is presumed here that the partitioned

genus distributions of the base graphs are known and that their root-edges have two 2-valent
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endpoints. I augment this general method to enable calculations of genus distributions

for graphs produced by identifying together the two root-edges of the same graph. The

afore-mentioned techniques involve analyzing face-boundary walks of graph embeddings

and modeling the information collectively in what we refer to as partials and productions.

These partials and productions are designed and adapted depending on the context, and

they are used for deriving simultaneous recurrences or formulas for genus distributions. I

demonstrate the power of these techniques by describing an easily understood method for

generating examples of non-homeomorphic graphs having identical genus distributions.

In contrast to historical trends where genus distributions have been calculated for graph

families that have mostly been artificially constructed and have not been a source of prior

interest, outerplanar graphs have been of great interest to graph theorists working in other

areas (see [Brehaut, 1977], [Sys�lo, 1979], [Heath, 1986], and [Bienstock and Dean, 1992]).

I describe an O(n2)-time algorithm for calculating the genus distribution of 4-regular out-

erplanar graphs. This is a significant improvement over the O(6n) time-complexity of the

naive Heffter-Edmonds algorithm. The new algorithm breaks down a given instance of a

4-regular outerplanar graph into an auxiliary graph with multiple components, and then

applies amalgamations to those components, while finding the genus distribution of the orig-

inal graph, with active use of the contextually developed notions of partials, productions

and partitioned genus distribution.

Remark 1. It should be pointed out that Gross, Khan and the author are the first to

conceptualize the useful notions of “partitioned genus distribution” and “production” in

[Gross et al., 2010] in the context of vertex-amalgamation on 2-valent vertices.

1.3 Related Literature

Minimum genus and maximum genus of a graph are graph invariants that refer to the

smallest and largest genus of an orientable surface on which the graph can be embedded

2-cellularly. Prior to the 1980’s much of the work on oriented graph embeddings was focused

on characterizing the minimum or the maximum genus of graphs (see [Ringel, 1955], [Battle

et al., 1962], [Ringel, 1965], and [Ringel and Youngs, 1968] for some classical results on
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minimum genus, and see [Nordhaus et al., 1971], [Xuong, 1979a], and [Ringeisen, 1979] for

results on maximum genus), or was concerned with the related problem of finding triangular

or other highly symmetric embeddings of important or interesting graphs [Goddyn et al.,

2007], [Grannell et al., 2002].

Youngs published an algorithm, now known as the Heffter-Edmonds algorithm, to find

the minimum genus of a surface on which a graph can be embedded [Youngs, 1963]. The

algorithm combinatorially generates all rotation systems and uses these to specify the faces

of the corresponding graph embeddings. The number of faces obtained in this manner for

each embedding can then be used with the Euler-polyhedral equation to obtain the genus

of the embedding. Since the algorithm requires enumeration of all
∏
i(di − 1)! rotation

systems, its time-complexity is superexponential in the size of the graph. It is now known

that the genus problem, i.e., the problem of deciding if the minimum genus of a given

graph is bounded by a given integer, is NP-complete [Thomassen, 1989]. In fact, the genus

problem is also NP-complete for cubic graphs [Thomassen, 1997] as well as for apex graphs

[Mohar, 2001]. Other works on minimum genus are of an enumerative nature that involve

counting graph embeddings for interesting graphs in a minimum-genus surface. These

include [Bonnington et al., 2000], [Grannell and Griggs, 2008], [Goddyn et al., 2007], and

[Korzhik and Voss, 2002].

A better understood topological invariant for graphs is the maximum genus of a graph.

An oft-cited result by Duke, now known as the interpolation theorem, establishes that all the

numbers that fall in the interval between the minimum and the maximum genus of a graph,

are valid genus values for the embeddings of that graph [Duke, 1966]. Duke’s interpolation

theorem generated interest in maximum genus. Pioneering work on the maximum genus

came by Nordhaus, Stewart and White in [Nordhaus et al., 1971], where they established

many general results, including an easily provable upper bound of bβ(G)
2 c on the maximum

genus of a graph G in terms of its Betti number β(G). Graphs that achieve this upper bound

are said to be upper-embeddable (see [Jungerman, 1978], [Xuong, 1979b], and [Cai et al.,

2010]). In 1979, Xuong characterized maximum genus by giving a closed formula [Xuong,

1979a]. However, Xuong’s formula used a graph invariant that required consideration of all

spanning trees for its computation and is, therefore, not computationally feasible. In 1988,
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Furst, Gross and McGeoch designed a polynomial-time algorithm for finding maximum

genus [Furst et al., 1988]. Maximum genus is now considered quite well-understood. Recent

research has focused on obtaining lower bounds on maximum genus in terms of connectivity,

Betti number, independence number, girth and minimum degree [Skoviera, 1991], [Huang

and Liu, 2000], [Huang and Zhao, 2005] and [Ouyang et al., 2010].

In 1987, Gross and Furst laid out a program of research in which they introduced several

new graph invariants for connected graphs [Gross and Furst, 1987]. Genus distribution is

one such invariant. Other invariants introduced by them include average genus, region-size

distribution and embedding distribution.

The average genus γavg(G) of a graph G is the average value of the genus of G over

all of its oriented embeddings. For example, γavg(D3) = (2 × 0 + 2 × 1)/4 = 1/2. This

invariant has received considerable attention [Chen and Gross, 1992a], [Chen and Gross,

1992b], [Chen and Gross, 1993], [Gross et al., 1993], [Chen et al., 1995], [Stahl, 1995a],

[Stahl, 1995b].

The region-size or face-size distribution is another invariant expressed as a fintite

polynomial, s[G](x) = f0 + f1x + f2x
2 + · · · , where fj(G) denotes the number of j-sided

faces of G taken over all oriented embeddings. For example, s[D3](x) = 6x2 + 2x6.

The embedding distribution i[G](zj) of a graph G is a multi-variate polynomial. Each

multi-variate monomial corresponds to a type of embedding of the graph G and consists of

factors of the form zkj , signifying that the corresponding embedding has k regions that are

j-sided. For example, i[D3](zj) = 2z16 + 2z32 is the embedding distribution of the dipole D3.

It indicates that D3 has two embeddings with one 6-sided face and two embeddings with

three 2-sided faces.

[Gross and Furst, 1987] pointed out that these invariants (and the previously known

invariants of minimum and maximum genus) are in a hierarchical relationship shown in

Figure 1.3 with respect to the amount of information contained within each of these. Thus,

for instance, if the number of vertices in a graph are known then one can calculate the genus

distribution polynomial from the embedding polynomial. Similarly, given the embedding-

distribution polynomial, one can calculate the region-size distribution with recourse to no

other information. This can be seen readily in the examples of the embedding and region-
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size distributions calculated above for D3. For example, the terms 2z32 in the embedding

polynomial forD3 are the only terms that encode embeddings with a 2-sided face. Therefore,

these terms contribute 2 x 3 = 6 2-sided regions over all oriented embeddings of D3. This

accounts for the term 6x2 in the region-size polynomial for D3.

Minimum genus

Embedding distribution polynomial

Region-size distributionGenus polynomial

Maximum genus

Average genusGenus range Average region-size

Figure 1.3: Hierarchy of invariants.

Some of the invariants introduced by Gross and Furst garnered more attention than

others. Of particular interest amongst these is the genus distribution of a graph or, its

counterpart for non-orientable surfaces, the crosscap distribution of a graph. Perhaps they

are at the right level of “granularity” with regard to the information embodied. They

represent a birds-eye view of the trends pertaining to embeddings of a graph, but at the

same time they don’t require drilling down to the much finer structural level details, as is

the case with the invariants of embedding distribution or region-size distribution. They are

also sufficiently high in the hierarchy to make them easy to use in finding other important

topological invariants of minimum, maximum and average genus or crosscap.

The first calculation of genus distribution was made for two infinite graph families

called the closed-end ladders and cobblestone paths by [Furst et al., 1989] in 1989. The

genus distribution sequences for both of these families was derived in the form of nice closed

formulas. This was followed by calculations of genus distributions (and crosscap distribu-

tions) for many other graph families. For instance, McGeoch as part of his dissertation

calculated the genus distribution of circular and Möbius ladders [McGeoch, 1987]. Rieper

[Rieper, 1990] and later Kwak and Lee [Kwak and Lee, 1993] independently calculated the

genus distribution of dipoles. Other examples include but are not limited to calculations

for (r, s)-type necklaces [Gross et al., 1993], Ringel ladders by Tesar [Tesar, 2000] etc. Some

of these graph families are shown in Figure 1.4.
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Figure 1.4: Graph families left to right, top to bottom: closed-end ladders Ln, cob-

blestone paths Jn, Ringel ladders Rn, circular ladders CLn, Möbius lad-

ders MLn, bouquets Bn, dipoles Dn, and generalized fan graphs F(1,n) and

Ft1,··· ,tn .

Genus distributions for these and other graph families have been calculated in many dif-

ferent forms such as closed formulas, generating functions, recurrences, enumerative tables

and algorithms. A variety of combinatorial and topological techniques have been employed

to obtain such results. For example, a result published in 1989 marks the first use of rep-

resentation theory for calculating the genus distribution for the infinite graph family of

bouquets of circles [Gross et al., 1989]. [Kwak and Shim, 2002] uses edge-attaching surgery

for calculating both genus and crosscap distributions for dipoles and bouquets. [Chen et

al., 1994], [Chen et al., 2006], [Chen et al., 2011b] use Mohar’s overlap matrices to calculate

both the genus and crosscap distributions for many graph families for which genus distribu-

tion had been computed before. Wan and Liu in [Wan and Liu, 2008] calculate the genus

distributions for three different types of cubic graphs, using a surface generating method

on the basis of joint trees of a graph which were introduced by [Liu, 2003]. A noticeable

trend amongst these calculations are that they are carried out on graph families that are

highly symmetric. Stahl considers, what he refers to as, the H-linear graph families [Stahl,

1991a]. By an H-linear family of graphs Gn, he means graphs constructed from n copies of
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the graph H, chained together in some consistent manner. He describes how to construct

recursively defined matrices that can be used for finding generating functions for the region

distributions of these graph families. The region distributions of graphs can, in turn, be

used for finding their genus distributions.

As for more general results pertaining to genus distributions, not many are known. The

seminal paper by Gross and Furst [Gross and Furst, 1987] established a general result that

specifies the genus distribution of the bar-amalgamation of two graphs. Bar-amalgamation

refers to obtaining a new graph from two distinct graphs by adding an edge (called a bar)

between any of their vertices. Gross and Furst established that the genus distribution of

the graph obtained by running an edge (u, v) between the vertex u of a graph G and the

vertex v of a graph H is the convolution of the genus distributions of G and H times a

constant, that is the product of degrees of u and v in G and H, respectively.

In 1989, Gross et al. conjectured that the genus sequence for any graph is a (strongly)

unimodal sequence [Gross et al., 1989]. This is now known as the (strong) unimodality

conjecture. Pioneering calculations proving unimodality of genus distributions for certain

families of graphs were made by [Furst et al., 1989] and [Gross et al., 1989]. In [Stahl, 1990],

Stahl used group characters theory to show that the genus distribution of every bouquet

is proportional to the unsigned Stirling numbers of the first kind, which are well known to

form a unimodal sequence of numbers. Rieper around the same time showed that the genus

distribution of every dipole is proportional to the Stirling numbers [Rieper, 1990]. In 1991

Stahl conjectured that the Stirling-like nature of the genus distribution is true for almost

all graphs and verified the conjecture for wheels and for other graphs obtained by joining

some of the vertices of a forest to an exterior vertex with an arbitrary number of edges

or multi-edges [Stahl, 1991b]. In 1997 Stahl proved that the genus distribution of several

infinite families of graphs are log concave, and are therefore unimodal [Stahl, 1997]. Stahl

also conjectured that the zeros of the genus polynomial are all real and negative, which

if true would imply strong-unimodality of the genus polynomial. However, this conjecture

was proved false by Chen and Liu in [Chen and Liu, 2010]. There are no known graphs for

which the (strong) unimodality conjecture fails, and it is still considered an open problem.
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More recently, [Gross et al., 2010] and [Gross, 2011a] calculate genus distributions for

graphs produced as a result of amalgamating 2-valent vertices of distinct smaller graphs or

graphs produced as a result of identifying two 2-valent vertices of the same graph. [Khan

et al., 2010] generalizes this to calculate genus distributions for graphs produced by amal-

gamating vertices of distinct graphs, where one of the vertices is 2-valent and the other

can have an arbitrarily high degree. [Khan et al., 2011] determines the genus distribution

of graphs produced by edge-addition and self-amalgamation on vertices of the same graph,

one of which is 2-valent and the other n-valent, for n ≥ 2. Gross in [Gross, 2010] examines

the effect on genus distribution of operations like adding an edge, contracting an edge, and

splitting a vertex (which is the inverse operation of contracting an edge). In this context,

he proves that given a graph G with a 4-valent vertex w,

2gd(G) = gd(H1) + gd(H2) + gd(H3)

where the function gd, applied to a graph, represents the genus polynomial of that graph,

and where H1, H2, and H3 are the three graphs produced by splitting the vertex w of G

into two new vertices, with an edge running between them, so as to render the new vertices

3-valent.

A predecessor to the algorithm on genus distribution of 4-regular outerplanar graphs is

the quadratic-time algorithm for calculating genus distribution of cubic outerplanar graphs

[Gross, 2011b]. Two recent results that focus on hybrid operations include a 3-way π-merge

for calculating genus distributions of cubic Halin graphs and a simultaneous edge-addition

for calculating genus distributions of the graphs P3 × Pn (see [Gross, 2011c] and [Khan et

al., 2012]). These results provide hope that perhaps characterization of genus distributions

is more tractable when its scope is limited to graphs of bounded degree and bounded tree-

width.

1.4 Content Organization

The rest of this document is organized along the following lines:

1. §2 highlights how genus distributions can be calculated for graphs that are produced

from the edge-amalgamation operation. In doing so, attention is paid to some foun-
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dational ideas that will be useful in conceptualizing the theoretical underpinnings of

other results in this document. An easy method is given for producing examples of

non-homeomorphic graphs having the same genus distribution.

2. §3 further develops the ideas in §2 to derive closed formulas for other families of infinite

graphs that are called closed chains.

3. §4 describes an algorithm that calculates the genus distribution of any given 4-regular

outerplanar graph.

4. §5 gives some concluding remarks. In addition, it suggests future directions for re-

search by discussing my work in the larger context of some significant problems.

5. Appendix A includes the complete set of productions for edge-amalgamations, as

well as all the recurrences for genus distributions of graphs produced from edge-

amalgamation.
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Chapter 2

Genus Distributions of

Edge-Amalgamated Graphs

This section discusses techniques that enable us to formulate recurrences that specify genus

distributions for the arbitrarily large graphs known as open chains. An open chain can

be constructed by iteratively amalgamating smaller graph units of known partitioned genus

distributions on root-edges that have two 2-valent endpoints. These smaller graphs, called

base graphs, may have arbitrarily large degrees at vertices on which the root-edges are not

incident. In this manner, one can construct open chains consisting of copies of the same

graph or, alternatively, one can interleave copies of many distinct graphs. In the first half

of this section, we discuss how to obtain recurrences for single-edge-rooted graphs. While

in the second half, these ideas are extended to obtain recurrences for double-edge-rooted

graphs. Both discussions are followed by a few applications to demonstrate the use of these

recurrences in computing genus distributions for different graph families. Also given in §2.6

is some insight into a simple technique for generating examples of non-homeomorphic graphs

having identical genus distributions. The discussion is preceded with a note on terminology.

A double-edge-rooted graph is a graph that has two distinct edges designated as root-

edges, or more simply, as roots. Each root-edge is required to have two 2-valent endpoints.

The notation (G, e, f) signifies that the graph G is double-edge-rooted, with edges e and f

serving as root-edges. The graph (G, e, f) is abbreviated as G where it is clear from context

that a double-edge-rooted graph is intended.
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The edge-amalgamation of a pair of double-rooted graphs (G, e, d) and (H, g, f) is

the graph obtained by merging the roots d and g. This operation is denoted by an asterisk:

(G, e, d) ∗ (H, g, f) = (W, e, f)

where W is the merged graph and e and f are its roots. There are two different ways

of amalgamating edges d and g, depending on how the endpoints of d are paired up with

the endpoints of g. This information is not captured in the above notation, and it is

usually obvious from context what is intended for a particular scenario. Insofar as the

genus distributions are concerned, it will later be established that graphs resulting from

either way of edge-amalgamation have identical genus distributions.

The definition of edge-amalgamation for graphs carries over naturally to the edge-

amalgamation of graph embeddings. The embeddings of the graph W = G∗H are obtained

by combining the rotation systems for the graphs G and H in all possible ways. Thus, each

embedding ιW of the graph W induces unique embeddings ιG and ιH of the graphs G and

H, respectively, such that the rotation system corresponding to ιW is consistent with the

rotation systems corresponding to ιG and ιH .

A closed walk traced just inside the boundary of a face of an embedding is referred to

as a face-boundary walk. The abbreviation fb-walk is used for face-boundary walk. A

related concept is that of a strand with respect to a root-edge e (or an e-strand for

short), which is defined to be an open subwalk of an fb-walk that runs between any two

occurrences of the endpoints of e, such that it has in its interior neither an occurrence of e

nor of the endpoints of e.

The effects of amalgamating two graph embeddings are analyzed by using schematic

representations called productions, which will be described later in this section.

2.1 Partitioned Genus Distributions

In order to explain what a production is, we first describe ways to categorize an embedding

of a double-rooted graph. We are primarily interested here in the fb-walks incident on the

root-edges, as the crux of the work in this section focuses on how these fb-walks change in

response to the amalgamation operation on the graphs. Each root-edge has two 2-valent
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endpoints, which implies that either each root has two distinct face-boundaries incident on

it, or the same fb-walk is incident on both sides of it. Accordingly, the mnemonic d is used

for double and the mnemonic s for single in defining the double-root partials in Table 2.1.

Note that the subscript i in the definitions refers to the genus of the surface Si.

Table 2.1: Double-root partials of (G, e, f).

Partial Counts these embeddings in Si

ddi(G, e, f) e and f both occur on two fb-walks

dsi(G, e, f) e occurs on two fb-walks and f on one fb-walk

sdi(G, e, f) e occurs on one fb-walk and f on two fb-walks

ssi(G, e, f) e occurs on one fb-walk and f on one fb-walk

Moreover, the fb-walk incident once or twice on one root-edge might also be incident

on the other root-edge. Thereby arises the need for refinement of these partials into sub-

partials. It will be seen later in this section and in §3 that this abstraction may necessitate

an additional level of refinement to facilitate the calculation of genus distributions of double-

rooted open chains as well as other graph families known as closed chains. For this reason,

the sub-partials at the first level of abstraction are termed as first-order sub-partials.

These sub-partials are defined as follows:

First-order Sub-partials of (G, e, f)

The following three numbers are the sub-partials of ddi(G, e, f):

dd0i (G, e, f) = the number of embeddings of type ddi such that

neither fb-walk at e is incident on f .

dd′i(G, e, f) = the number of embeddings of type ddi such that

exactly one fb-walk at e is incident on f .

dd′′i (G, e, f) = the number of embeddings of type ddi such that

both fb-walks at e are incident on f .
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We observe, by definition, that

ddi(G) = dd0i (G) + dd′i(G) + dd′′i (G)

Similarly, the sub-partials of dsi(G, e, f) and sdi(G, e, f) are as follows:

ds0i (G, e, f) = the number of embeddings of type dsi such that

neither fb-walk at e is incident on f .

ds′i(G, e, f) = the number of embeddings of type dsi such that

exactly one fb-walk at e is incident on f .

sd0i (G, e, f) = the number of embeddings of type sdi such that

the fb-walk at e is not incident on f .

sd′i(G, e, f) = the number of embeddings of type sdi such that

the fb-walk at e is incident on f .

Thus,

dsi(G) = ds0i (G) + ds′i(G) and sdi(G) = sd0i (G) + sd′i(G)

Finally, the partial ssi(G, e, f) has these sub-partials:

ss0i (G, e, f) = the number of embeddings of type ssi such that

the fb-walk at e is not incident on f .

ss1i (G, e, f) = the number of embeddings of type ssi such that

removing the two occurrences of the edge e from

the fb-walk breaks it into two strands, exactly

one of which contains both occurrences of f .

ss2i (G, e, f) = the number of embeddings of type ssi such that

removing the two occurrences of the edge e from

the fb-walk breaks it into two strands, each

containing an occurrence of f .

Clearly,

ssi(G) = ss0i (G) + ss1i (G) + ss2i (G)
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The partitioning of genus distribution of a graph into partials and sub-partials constitutes

a partitioned genus distribution of the graph. It follows from these definitions that

gi(G) = ddi(G) + dsi(G) + sdi(G) + ssi(G)

Single-root partials of (G, e)

Similarly, the embeddings of single-rooted graphs can be differentiated into two distinct

types depending on whether the two occurrences of the root-edge are in the same or in

different fb-walks of an embedding. Thus, the number gi(G, e) is the sum of the following

single-root partials:

si(G, e) = The number of embeddings of G such that

e occurs twice on the same fb-walk.

di(G, e) = The number of embeddings of G such that

e occurs on two different fb-walks.

2.2 Modeling Edge-Amalgamation

A construct known as production models the effect of applying an operation to one or

more graph embeddings. Accordingly, the definition of production needs to be tailored

to the operation for which it is being conceived. In this section, only the productions for

edge-amalgamation are considered.

Let p and q be any of the partials such as those discussed above. Then a production

for edge-amalgamation expresses how an embedding of the single-rooted graph (G, e)

of type p on surface Si and an embedding of the double-rooted graph (H, g, f) of type q

on surface Sj amalgamate on root-edges e and g to give certain types of embeddings of the

single-rooted graph (W, f). This is represented as

pi(G) ∗ qj(H) −→ c1uk1(W ) + c2vk2(W ) + c3wk3(W ) + c4zk4(W )

where c1, c2, c3, c4 are integer constants and k1, k2, k3, k4 are integer-valued functions of i

and j. Such a production can be read as follows:
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An embedding of the graph (G, e) of type p on surface Si and an embedding

of the graph (H, g, f) of type q on surface Sj amalgamate on edges e and g to

give c1, c2, c3 and c4 embeddings of the graph (W, f) having types u, v, w and z,

respectively, on surface Sk1 , Sk2 , Sk3 and Sk4 .

The left-hand side of the production is known as the production head and the right-

hand side of the production as the production body. The number of terms in the produc-

tion body could be larger if the degrees of the endpoints of root-edges were larger. This is

also true for productions defined for other graph operations, such as those encountered in

subsequent sections.

Remark 2. In §2.8, we see a variation in the definition of a production for edge-amalgamation

where the amalgamand graph G is taken to be a double-edge-rooted graph, as is the graph

W resulting from the edge-amalgamation.

2.3 Productions for Amalgamands: (G, e) and (H, g, f)

Since there are two single-root partials for G and ten first-order double-root sub-partials

for H, there are a total of twenty productions. While these are not so many in number,

their derivations are fairly routine; thus, the only productions derived are those that are

necessary for developing our examples.

Theorem 1. Let (G, e) be a single-edge-rooted graph and (H, g, f) a double-edge-rooted

graph, where each of the root-edges has two 2-valent endpoints. Then the following two

productions, which cover all possible cases of edge-amalgamation where the embedding of H

is of type dd′′, hold true:

di(G) ∗ dd′′j (H) −→ 2di+j(W ) + 2si+j+1(W ) (2.1)

si(G) ∗ dd′′j (H) −→ 4di+j(W ) (2.2)

Proof. When an embedding of (G, e) is amalgamated with an embedding of (H, g, f), the

fb-walks on edges e and g are broken into strands that recombine into new fb-walks in

the resulting embedding of (W, f), i.e., the embedding whose rotations at all vertices are
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consistent with those of the embeddings of G and H. On the amalgamated edge there

are two possibilities for the rotations at each of its two endpoints. This is illustrated in

Figure 2.1, which gives a pictorial representation of the Production (2.1). The production

head shows the types of embeddings to undergo amalgamation on their root-edges, where

the three root-edges of the single-rooted and the double-rooted amalgamands are shown

parallel to each other. The production body shows the four types of embeddings of the

single-rooted graph that is produced as result of the edge-amalgamation. The figure also

demonstrates the changes in the fb-walks resulting from recombining the strands. In all

four cases there is a decrease of 2 vertices and 1 edge after the amalgamation.

*
Figure 2.1: Production di(G) ∗ dd′′j (H) −→ 2di+j(W ) + 2si+j+1(W ).

The first and the last embedding of W show a decrease of 1 face, as only one fb-walk at

edge e combines with only one fb-walk at edge g. These are d-type embeddings of W . By

using the Euler polyhedral equation, it can be established that the genus of the resulting

embedding of W is the sum of the genera of the embeddings of G and H.

The second and the third embedding of W show a decrease of 3 faces as the 2 fb-walks

at e and the 2 at g are merged into a single fb-walk. Both of these embeddings are s-type

embeddings of W . By the Euler polyhedral equation, one can see that the genus of the

resulting embedding of W is the sum of the genera of the embeddings of G and H with an

additional increment of one. This proves Production (2.1).

Production (2.2) similarly follows from the Euler polyhedral equation and yields em-

beddings of type d in all four cases for embeddings of W as evident from Figure 2.2.



CHAPTER 2. GENUS DISTRIBUTIONS OF EDGE-AMALGAMATED GRAPHS 23

*

Figure 2.2: Production si(G) ∗ dd′′j (H) −→ 4di+j(W ).

Theorem 2. Let (G, e) be a single-edge-rooted graph and (H, g, f) a double-edge-rooted

graph, where each of the root-edges has two 2-valent endpoints. Then the following produc-

tions, which cover all possible cases of edge-amalgamation where the embedding of H is of

type ss0 or ss1, hold true:

di(G) ∗ ss0j (H) −→ 4si+j(W ) (2.3)

si(G) ∗ ss0j (H) −→ 4si+j(W ) (2.4)

di(G) ∗ ss1j (H) −→ 4si+j(W ) (2.5)

si(G) ∗ ss1j (H) −→ 4si+j(W ) (2.6)

Proof. For Productions (2.3) and (2.4), the fb-walk at edge f remains unaffected by the

amalgamation. Thus, all four embeddings of W induced by the amalgamation of an em-

bedding of G with an embedding of H are s-type embeddings. An examination of the

recombinant strands tells us that the amalgamation merges two faces incident at the root-

edges. This is shown for Production (2.3) in Figure 2.3.

*

Figure 2.3: Production di(G) ∗ ss0j (H) −→ 4si+j(W ).
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The same is also true for the Productions (2.4), (2.5) and (2.6). The proofs for Pro-

duction (2.4) and (2.5) are omitted and the proof of Production (2.6) is demonstrated in

Figure 2.4.

*

Figure 2.4: Production si(G) ∗ ss1j (H) −→ 4si+j(W ).

Theorem 3. Let (G, e) be a single-edge-rooted graph and (H, g, f) be a double-edge-rooted

graph, where all roots have two 2-valent endpoints. Then the following productions hold

true:

di(G) ∗ dd0j (H) −→ 2di+j(W ) + 2di+j+1(W )

si(G) ∗ dd0j (H) −→ 4di+j(W )

di(G) ∗ dd′j(H) −→ 2di+j(W ) + 2di+j+1(W )

si(G) ∗ dd′j(H) −→ 4di+j(W )

di(G) ∗ ds0j (H) −→ 2si+j(W ) + 2si+j+1(W )

si(G) ∗ ds0j (H) −→ 4si+j(W )

di(G) ∗ ds′j(H) −→ 2si+j(W ) + 2si+j+1(W )

si(G) ∗ ds′j(H) −→ 4si+j(W )

di(G) ∗ sd0j (H) −→ 4di+j(W )

si(G) ∗ sd0j (H) −→ 4di+j(W )

di(G) ∗ sd′j(H) −→ 4di+j(W )

si(G) ∗ sd′j(H) −→ 4di+j(W )
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di(G) ∗ ss2j (H) −→ 2di+j(W ) + 2si+j(W )

si(G) ∗ ss2j (H) −→ 4si+j(W )

Proof. The proof is omitted for the sake of brevity.

To illustrate a technique that uses productions, a derivation of the genus distribution of

the historically significant family of closed-end ladders is presented here [Furst et al., 1989].

In revisiting the closed-end ladders, the intent is to bring to attention how, in some cases, it

may be possible to solve the recurrences and obtain closed formulas. As another application

of this technique, a new family formed from open chains of copies of the closed-end ladder

L̈2 is also examined.

2.4 Application: Closed-End Ladders

Let L0 be the closed-end ladder with end-rungs but no middle-rung. It is equivalent under

barycentric sub-division to the 4-cycle C4, with two non-adjacent edges serving as the root-

edges. Let Ln be the closed-end ladder with n middle rungs; one end-rung is trisected, and

the middle third serves as a single root-edge. Thus, Ln = Ln−1 ∗ L0 (for n ≥ 1). See

Figure 2.5.

L 0 L 1 L 2 L 3

Figure 2.5: Closed-end ladders.

Remark 3. For L1 = L0 ∗ L0, it is understood here that the first amalgamand is single-

rooted, whereas the second is double-rooted.

Applying the face-tracing algorithm [Gross and Tucker, 2001] on L0 reveals that dd′′0

is the only non-zero partial of L0. Theorem 1 lists the productions necessary for edge-

amalgamation when the second amalgamand is a dd′′-type embedding, and it has the fol-

lowing implications:
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Theorem 4. Let (Ln, f) = (Ln−1, e)∗(L0, g, f), where each of the root-edges e, g, f has two

2-valent endpoints. Then

dk(Ln) =
∑k

i=0
(2di(Ln−1) + 4si(Ln−1))× dd′′k−i(L0) (2.7)

sk(Ln) =
∑k−1

i=0
2di(Ln−1)× dd′′k−1−i(L0) (2.8)

Proof. Production (2.1) indicates that amalgamating a d-type embedding of the single-

rooted graph Ln−1 on Si with a dd′′-type embedding of L0 on surface Sj induces four

embeddings of the single-rooted graph Ln, two on the surface Si+j and two on the surface

Si+j+1. This explains the terms
∑k

i=0 2di(Ln−1)×dd′′k−i(L0) of Equation (2.7) and accounts

for the Equation (2.8). The terms
∑k

i=0 4si(Ln−1)×dd′′k−i(L0) of Equation (2.7) follow from

the Production (2.2).

Since dd′′i (L0) = 1 for i = 0 and 0 otherwise, we obtain the recurrences:

dk(Ln) = (2dk(Ln−1) + 4sk(Ln−1))× dd′′0(L1) = 2dk(Ln−1) + 4sk(Ln−1) (2.9)

sk(Ln) = 2dk−1(Ln−1)× dd′′0(L1) = 2dk−1(Ln−1) (2.10)

which are analogous to the forms of recurrences obtained for cobblestone paths in [Furst et

al., 1989], and which can be solved identically to produce this formula, which was also first

computed by [Furst et al., 1989]. This can be done as follows by substituting the value of

sk(Ln−1) from Equation 2.10 into Equation 2.9:

dk(Ln) = 2dk(Ln−1) + 4sk(Ln−1) = 2dk(Ln−1) + 4× 2dk−1(Ln−2)

= 2dk(Ln−1) + 8dk−1(Ln−2) (2.11)

The notation dk,n is used to denote dk(Ln) in the following algebraic manipulations. Mul-

tiplying both sides of the Equation 2.11 by xn and summing over all n ≥ 2, we have:

∑∞

n=2
dk,nx

n = 2
∑∞

n=2
dk,n−1x

n + 8
∑∞

n=2
dk−1,n−2x

n
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Let Dk(x) be the generating function for dk,n. Then Dk(x) =
∑∞

n=0 dk,nx
n. We know

that dk,0 = 0 and dk,1 = 0 for all k > 1. Therefore, for k > 1,

Dk(x)− dk,0 − dk,1 = 2
∑∞

n=2
dk,n−1x

n + 8
∑∞

n=2
dk−1,n−2x

n

Dk(x) = 2xDk(x) + 8x2Dk−1(x)

=
8x2

1− 2x
Dk−1(x)

=

(
8x2

1− 2x

)k−1
D1(x) for k > 1

Equation 2.11 implies that d0,n = 2n and consequently D0(x) = (1− 2x)−1. This fact and

Equation 2.11 is used to conclude that

d1,n = 2d1,n−1 + 8d0,n−2 = 2d1,n−1 + 8× 2n−2

= (n− 1)2n+1 for n ≥ 1

This expression enables us to find the generating function for D1(x) as follows:

D1(x) =
∑∞

n=0
d1,nx

n

=
∑∞

n=1
(n− 1)2n+1xn ∵ d1,0 = 0

= 8x2
∑∞

n=1
(n− 1)2n−2xn−2

= 8x2
∑∞

n=0
(n+ 1)2nxn

=⇒

D1(x) =
8x2

(1− 2x)2

=⇒

Dk(x) =

(
8x2

1− 2x

)k−1
D1(x)

=

(
8x2

1− 2x

)k−1
8x2

(1− 2x)2

=

(
8x2
)k

(1− 2x)k+1

= 8kx2k (1− 2x)−(k+1) for k > 1 (2.12)
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From the expressions for D0(x) and D1(X), it is clear that Equation 2.12 holds not only

for k > 1 but for all values of k. The coefficient of xn−2k in the power series expansion of

(1− 2x)−(k+1) is (
(n− 2k) + (k − 1) + 1

n− 2k

)
2n−2k =

(
n− k
k

)
2n−2k

Therefore, the coefficient of xn in Dk(x) is

dk,n = 8k
(
n− k
k

)
2n−2k =

(
n− k
k

)
2n+k

This along with Equation 2.10 implies that

gk(Ln) = dk(Ln) + sk(Ln)

=

(
n− k
k

)
2n+k + 2

(
n− k
k − 1

)
2n+k−2

= 2n+k−1
[
2

(
n− k
k

)
+

(
n− k
k − 1

)]
= 2n+k−1

[(
n− k
k

)
+

(
n− k + 1

k

)]
= 2n+k−1

(
n− k + 1

k

)[
n− 2k + 1

n− k + 1
+ 1

]
= 2n+k−1

(
n− k + 1

k

)
2n− 3k + 2

n− k + 1

gk(Ln) =


2n−1+k

(
n+1−k

k

)
2n+2−3k
n+1−k for k ≤ n+1

2 ,

0 otherwise

2.5 Application: Open Chains of Copies of L̈2

Let L̈2 be the graph obtained from the ladder L2 by trisecting the two side-rungs and

designating the middle third of these trisected edges as root-edges. Let G0 be a single-rooted

graph homeomorphic to L̈2, with the middle third of the only trisected side-rung serving

as a root-edge. An open chain Gn of copies of L̈2 can be formed by taking Gn = Gn−1 ∗ L̈2

(for n ≥ 1) as shown in Figure 2.6.

Face-tracing of L̈2 demonstrates that its only non-zero-valued double-root first-order

sub-partials are dd′′0(L̈2), ss
0
1(L̈2) and ss11(L̈2). Thus, the only productions needed for
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G0 G2G1

Figure 2.6: Open chains of copies of L̈2.

calculating the genus distribution of an open chain of copies of L̈2 are those listed in

Theorems 1 and 2. These productions make contributions to dk(Gn) or sk(Gn) as captured

in the following equations:

dk(Gn) =
∑k

i=0

[
2di(Gn−1) ∗ dd′′k−i(L̈2) + 4si(Gn−1) ∗ dd′′k−i(L̈2)

]
sk(Gn) =

∑k

i=0

[
4di(Gn−1) ∗ ss0k−i(L̈2) + 4si(Gn−1) ∗ ss0k−i(L̈2) + 4di(Gn−1) ∗ ss1k−i(L̈2)

+ 4si(Gn−1) ∗ ss1k−i(L̈2)
]

+
∑k−1

i=0

[
2di(Gn−1) ∗ dd′′k−1−i(L̈2)

]
=
∑k

i=0

[
4gi(Gn−1) ∗ ss0k−i(L̈2) + 4gi(Gn−1) ∗ ss1k−i(L̈2)

]
+
∑k−1

i=0

[
2di(Gn−1)

∗ dd′′k−1−i(L̈2)
]

Genus distribution of Gn

Since dd′′0(L̈2) = 4, ss01(L̈2) = 4, ss11(L̈2) = 8, it follows that

dk(Gn) = 2dk(Gn−1) ∗ dd′′0(L̈2) + 4sk(Gn−1) ∗ dd′′0(L̈2)

sk(Gn) = 4gk−1(Gn−1) ∗ ss01(L̈2) + 4gk−1(Gn−1) ∗ ss11(L̈2) + 2dk−1(Gn−1) ∗ dd′′0(L̈2)

=⇒

dk(Gn) = 8gk(Gn−1) + 8sk(Gn−1) (2.13)

sk(Gn) = 48gk−1(Gn−1) + 8dk−1(Gn−1) (2.14)

As L̈2
∼= G0, the partitioned genus distribution of L̈2 implies that d0(G0) = 4 and

s1(G0) = 12. Therefore, we can iteratively plug values into Equations (2.13) and (2.14),

and calculate the genus distributions of open chains Gn, for n ≥ 1. The genus distributions

of G1, G2, and G3 are given in Tables 2.2−2.4.
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Table 2.2: Genus distribution of G1.

k k = 0 k = 1 k = 2 k ≥ 3

dk(G1) 32 192 0 0

sk(G1) 0 224 576 0

gk(G1) 32 416 576 0

Table 2.3: Genus distribution of G2.

k k = 0 k = 1 k = 2 k = 3 k ≥ 4

dk(G2) 256 5120 9216 0 0

sk(G2) 0 1792 21504 27648 0

gk(G2) 256 6912 30720 27648 0

Table 2.4: Genus distribution of G3.

k k = 0 k = 1 k = 2 k = 3 k = 4 k ≥ 5

dk(G3) 2048 69632 417792 442368 0 0

sk(G3) 0 14336 372736 1548288 1327104 0

gk(G3) 2048 83968 790528 1990656 1327104 0

Remark 4. From Tables 2.2−2.4, the genus distributions for open chains of copies of L̈2

appear to support the unimodality conjecture that all graphs have unimodal genus distribu-

tions. The amalgamation approach is likely to be useful in such contexts either by producing

counterexamples to the conjecture or by providing recurrences like Equations (2.13) and

(2.14) which may be instrumental in proving unimodality for certain families of graphs.

2.6 Non-Homeomorphic Graphs with Identical Genus Dis-

tributions

The earliest published example for non-homeomorphic graphs with identical genus distri-

butions is given in [Gross et al., 1993]. [McGeoch, 1987] provides a more general method
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for generating such pairs. A simple method for constructing such examples is also given

here. Whereas all previously known pairs of graphs exhibiting this property have been

homeomorphic to non-simple graphs, pairs of graphs generated through this method are

not subject to this restriction.

There are two ways of edge-amalgamating the graphs (G, e) and (H, f), depending on

how the endpoints of the root-edges e and f are paired. It can be observed that all the

productions for edge-amalgamation in Theorems 1 – 3 are independent of how the endpoints

of the respective root-edges are paired, that is, they are true for both possible pairings. Thus,

for both ways of pasting, we get the same genus distribution.

One can exploit this fact to construct pairs of non-homeomorphic graphs having the

same genus distribution. For instance, Figure 2.7 shows two non-homeomorphic graphs

resulting from the two ways of edge-amalgamating the same graphs. They have the same

genus distributions. To prove that they are non-isomorphic, consider the set of distances

between the two double adjacencies. Since these two graphs are 3-regular, they are also

non-homeomorphic.

Figure 2.7: Non-homeomorphic graphs with the same genus distribution: 32 + 928x+

6720x2 + 7680x3 + 1024x4.

2.7 Second-Order Sub-Partials

The first-order sub-partials that can be further partitioned into second-order sub-partials

are characterized by having an fb-walk incident on both roots, but not on all four occur-

rences of these roots. In particular, these are dd′, dd′′, ds′ and sd′. These four first-order

sub-partials are further refined into second-order sub-partials. To define these, we assign

arbitrary orientations to root-edges e and f of the graph (G, e, f). These assigned orienta-

tions are referred to as pasting-orientations of root-edges. Given an oriented embedding
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of (G, e, f), as we walk along the oriented root-edge e towards its head, the left side of the

edge is labeled 1 and the right side is labeled 2. Whereas when we walk along root-edge f

towards its head, the left side is labeled 3 and the right side is labeled 4. This is illustrated

in Figure 2.8.

1 2 3 4
e f

Figure 2.8: Labeling edge-sides of root-edges for second-order sub-partials.

Distinguishing which of these labeled sides come together in an fb-walk is an important

piece of information, which we would like to capture in our second-order sub-partial, as it

is essential for double-rooted edge-amalgamation. Thus, for example, a dd′-type embedding

may combine the faces 1 and 3, faces 1 and 4, faces 2 and 3, or faces 2 and 4. Accordingly,

the second-order sub-partials for dd′ are defined as illustrated in the top half of Figure 2.9.

The remaining sub-partials are shown in the bottom half of the figure.

3
4

2

1

dd '' dd '' ds ' ds ' sd ' sd '

dd ' dd 'dd ' dd '

Figure 2.9: Models for second-order sub-partials.

The second-order sub-partials are thus defined as follows:
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dd′i(G, e, f) = the number of embeddings of type dd′i such that

the sides 1 and 4 occur in the same fb-walk.

d̃d′i(G, e, f) = the number of embeddings of type dd′i such that

the sides 2 and 3 occur in the same fb-walk.

−→
dd′i(G, e, f) = the number of embeddings of type dd′i such that

the sides 1 and 3 occur in the same fb-walk.

←−
dd′i(G, e, f) = the number of embeddings of type dd′i such that

the sides 2 and 4 occur in the same fb-walk.

Similarly,

−→
dd′′i(G, e, f) = the number of embeddings of type dd′′i such that

the sides 1 and 4 occur in the same fb-walk and

the sides 2 and 3 in another.

←−
dd′′i(G, e, f) = the number of embeddings of type dd′′i such that

the sides 1 and 3 occur in the same fb-walk and

the sides 2 and 4 in another.

And finally,

−→
ds′i(G, e, f) = the number of embeddings of type ds′i such that

the sides 1,3,4 occur in the same fb-walk.

←−
ds′i(G, e, f) = the number of embeddings of type ds′i such that

the sides 2,3,4 occur in the same fb-walk.

−→
sd′i(G, e, f) = the number of embeddings of type sd′i such that

the sides 1,2,4 occur in the same fb-walk.

←−
sd′i(G, e, f) = the number of embeddings of type sd′i such that

the sides 1,2,3 occur in the same fb-walk.
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2.8 Productions for Double-Edge-Rooted Amalgamands

A complete list of productions for edge-amalgamation using only double-root partials can

be derived in a manner akin to the method in §2.2. One could work out all 16× 16 = 256

productions by using only the double-root first-order sub-partials and substituting the use

of dd′, dd′′, ds′ and sd′ by their respective second-order sub-partials defined in §2.7. We

proceed to derive the few productions needed for the first of our target applications in §2.9.

The complete set of productions for edge-amalgamation of double-edge-rooted graphs are

listed in Appendix A.

Theorem 5. Let (G, e, d) and (H, g, f) be double-edge-rooted graphs, where all four roots

have two 2-valent endpoints. Then the following productions apply when the fb-walks on

both roots of the embedding of G are distinct from each other and the embedding of H is of

type
−→
dd′′:

dd0i (G) ∗
−→
dd′′j(H) −→ 2dd0i+j(W ) + 2ds0i+j+1(W ) (2.15)

ds0i (G) ∗
−→
dd′′j(H) −→ 4dd0i+j(W ) (2.16)

sd0i (G) ∗
−→
dd′′j(H) −→ 2sd0i+j(W ) + 2ss0i+j+1(W ) (2.17)

ss0i (G) ∗
−→
dd′′j(H) −→ 4sd0i+j(W ) (2.18)

Proof. Productions (2.15) and (2.17) are both of form

xd0i (G, e, d) ∗
−→
dd′′j(H, g, f) −→ 2xd0i+j(W, e, f) + 2xs0i+j+1(W, e, f)

where x is d in the former case and s in the latter case. Figure 2.10 shows how the fb-walks

change in response to the breaking of fb-walks incident on the root-edges and recombining

of the resulting strands. The first and last embeddings show one less face as a result of

amalgamation, while the middle two embeddings show a decrease of three faces. The result

follows from the Euler polyhedral equation.

In all cases, the fb-walks at edge e remain unaffected. Thus, the resulting embedding

for graph W has d or s for x, depending on whether there are two distinct fb-walks incident

on edge e or only one in the graph G. The proofs of Productions (2.16) and (2.18) are very

similar, and are omitted.
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dd j
''

xd i
0

xd i+j
0

xd i+j
0

xs i+j+1
0

xs i+j+1
0

Figure 2.10: Production xd0i (G) ∗ dd′′j (H) −→ 2xd0i+j(W ) + 2xs0i+j+1(W ).

Theorem 6. Let (G, e, d) and (H, g, f) be double-edge-rooted graphs, where all four roots

have two 2-valent endpoints. Then the following productions apply to the remaining cases

where the fb-walks on each of the two roots of the embedding of G are distinct and the

embedding of H is of type
−→
dd′′.

dd′i(G) ∗
−→
dd′′j(H) −→ dd0i+j(W ) + dd′i+j(W ) + 2

−→
ds′i+j+1(W ) (2.19)

d̃d′i(G) ∗
−→
dd′′j(H) −→ dd0i+j(W ) + d̃d′i+j(W ) + 2

←−
ds′i+j+1(W ) (2.20)

−→
dd′i(G) ∗

−→
dd′′j(H) −→ dd0i+j(W ) +

−→
dd′i+j(W ) + 2

−→
ds′i+j+1(W ) (2.21)

←−
dd′i(G) ∗

−→
dd′′j(H) −→ dd0i+j(W ) +

←−
dd′i+j(W ) + 2

←−
ds′i+j+1(W ) (2.22)

−→
dd′′i(G) ∗

−→
dd′′j(H) −→ dd′i+j(W ) + d̃d′i+j(W ) + 2ss2i+j+1(W ) (2.23)

←−
dd′′i(G) ∗

−→
dd′′j(H) −→

−→
dd′i+j(W ) +

←−
dd′i+j(W ) + 2ss2i+j+1(W ) (2.24)

Proof. As before, we consider the way amalgamation on the root-edges in embeddings of

graphs G and H generates new fb-walks by recombining strands in the embedding of the

graph W . For the proof of Production (2.19), Figure 2.11 shows the new fb-walks of W as

they arise from fb-walks in embeddings of G and H.

Productions (2.20−2.22) also deal with amalgamation of a dd′-type embedding of G with

a
−→
dd′′-type embedding of H. However, in each case the particular second-order partial of dd′

causes different types of embeddings to be generated. For example, Figure 2.12 highlights

this contrast by providing the proof for Production (2.21).
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ds i+j+1
' ds i+j+1

'dd i+j
' dd i+j

0

Figure 2.11: Production dd′i(G) ∗
−→
dd′′j(H) −→ dd0i+j(W ) + dd′i+j(W ) + 2

−→
ds′i+j+1(W ).

*

dd j
''

dd i
'

ds i+j+1
' ds i+j+1

'dd i+j
0

dd i+j
'

Figure 2.12: Production
−→
dd′i(G) ∗

−→
dd′′j(H) −→ dd0i+j(W ) +

−→
dd′i+j(W ) + 2

−→
ds′i+j+1(W ).

Similarly, the picture proof of the Production (2.24) is given in Figure 2.13. The first

and last embedding of the graph W in the production body show one less face, while the

second and the third embedding of W show a decrease of 3 faces as all the faces at root-

edges merge into a single face. The result follows. The proofs of the remaining productions

are omitted.
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Figure 2.13: Production
←−
dd′′i(G) ∗

−→
dd′′j(H) −→

−→
dd′i+j(W ) +

←−
dd′i+j(W ) + 2ss2i+j+1(W ).

Theorem 7. Let (G, e, d) and (H, g, f) be double-edge-rooted graphs, where all four roots

have two 2-valent endpoints. Then the following productions apply when the embedding of

G is of type ds′ or sd′ and the embedding of H is of type
−→
dd′′.

−→
ds′i(G) ∗

−→
dd′′j(H) −→ 2dd′i+j(W ) + 2

−→
dd′i+j(W ) (2.25)

←−
ds′i(G) ∗

−→
dd′′j(H) −→ 2d̃d′i+j(W ) + 2

←−
dd′i+j(W ) (2.26)

−→
sd′i(G) ∗

−→
dd′′j(H) −→ sd0i+j(W ) +

−→
sd′i+j(W ) + 2ss1i+j+1(W ) (2.27)

←−
sd′i(G) ∗

−→
dd′′j(H) −→ sd0i+j(W ) +

←−
sd′i+j(W ) + 2ss1i+j+1(W ) (2.28)

Proof. The proof for Production (2.25) follows from Figure 2.14. In all four cases that can

arise as a consequence of amalgamation, the fb-walks incident at the root-edge d of graph

G and the root-edge g of graph H break into strands that merge to yield one less face.

Thus, the resulting genus of the embedding of graph W is precisely the sum of the genera

of embeddings of G and H.

The proof of Production (2.27) is similar. It follows by face-tracing, using as a model

for
−→
sd′ a 180◦ rotation of the model for

−→
ds′ that we used in Figure 2.14.

Production (2.28) is illustrated by Figure 2.15. It is easy to use a 180◦ rotation of the

model used for
←−
sd′ and to use face-tracing to establish the proof of Production (2.26).
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Figure 2.14: Production
−→
ds′i(G) ∗

−→
dd′′j(H) −→ 2dd′i+j(W ) + 2

−→
dd′i+j(W ).

*
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'
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'

Figure 2.15: Production
←−
sd′i(G) ∗

−→
dd′′j(H) −→ sd0i+j(W ) +

←−
sd′i+j(W ) + 2ss1i+j+1(W ).

Theorem 8. Let (G, e, d) and (H, g, f) be double-edge-rooted graphs, where all four roots

have two 2-valent endpoints. Then the following productions apply to all the remaining cases

where the embedding of G is of type ss and the embedding of H is of type
−→
dd′′.

ss1i (G) ∗
−→
dd′′j(H) −→ 2

−→
sd′i+j(W ) + 2

←−
sd′i+j(W ) (2.29)

ss2i (G) ∗
−→
dd′′j(H) −→

−→
dd′′i+j(W ) +

←−
dd′′i+j(W ) +

−→
sd′i+j(W ) +

←−
sd′i+j(W ) (2.30)
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Proof. The proofs of Productions (2.29) and (2.30) are clear from Figures 2.16 and 2.17,

respectively. For both productions, in all four cases, the genus of the induced embedding

surface of graph W is equal to the sum of the genera of the embedding surfaces of the graphs

G and H. However, the embedding types of the graph W yielded by both productions are

different.

*

dd j
''

ss i
1

sd i+j
' sd i+j

' sd i+j
' sd i+j

'

Figure 2.16: Production ss1i (G) ∗
−→
dd′′j(H) −→ 2

−→
sd′i+j(W ) + 2

←−
sd′i+j(W ).

*

dd j
''

ss i
2

dd i+j
''dd i+j

''sd i+j
' sd i+j

'

Figure 2.17: Production ss2i (G) ∗
−→
dd′′j(H) −→

−→
dd′′i+j(W ) +

←−
dd′′i+j(W ) +

−→
sd′i+j(W ) +

←−
sd′i+j(W ).

The results of Theorems 5–8 are summarized in Table 2.5, where the partials are abbre-

viated through omission of the graphs G, H and W .
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Table 2.5: A subset of the productions for the edge-amalgamation (G, e, d) ∗ (H, g, f).

Productions

dd0i ∗
−→
dd′′j −→ 2dd0i+j + 2ds0i+j+1

dd′i ∗
−→
dd′′j −→ dd0i+j + dd′i+j + 2

−→
ds′i+j+1

d̃d′i ∗
−→
dd′′j −→ dd0i+j + d̃d′i+j + 2

←−
ds′i+j+1

−→
dd′i ∗

−→
dd′′j −→ dd0i+j +

−→
dd′i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

−→
dd′′j −→ dd0i+j +

←−
dd′i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

−→
dd′′j −→ dd′i+j + d̃d′i+j + 2ss2i+j+1

←−
dd′′i ∗

−→
dd′′j −→

−→
dd′i+j +

←−
dd′i+j + 2ss2i+j+1

ds0i ∗
−→
dd′′j −→ 4dd0i+j

−→
ds′i ∗

−→
dd′′j −→ 2dd′i+j + 2

−→
dd′i+j

←−
ds′i ∗

−→
dd′′j −→ 2d̃d′i+j + 2

←−
dd′i+j

sd0i ∗
−→
dd′′j −→ 2sd0i+j + 2ss0i+j+1

−→
sd′i ∗

−→
dd′′j −→ sd0i+j +

−→
sd′i+j + 2ss1i+j+1

←−
sd′i ∗

−→
dd′′j −→ sd0i+j +

←−
sd′i+j + 2ss1i+j+1

ss0i ∗
−→
dd′′j −→ 4sd0i+j

ss1i ∗
−→
dd′′j −→ 2

−→
sd′i+j + 2

←−
sd′i+j

ss2i ∗
−→
dd′′j −→

−→
dd′′i+j +

←−
dd′′i+j +

−→
sd′i+j +

←−
sd′i+j

In general, when amalgamating copies of a base graph, some of the partials of the base

graph may be zero-valued. Accordingly, one can eliminate a lot of unnecessary work by

using a smaller subset of productions relevant to a particular application. The productions

in Table 2.5 lead to Theorem 9.

Theorem 9. Let (W, e, f) = (G, e, d) ∗ (H, g, f), where each of the root-edges e, d, g, f has

two 2-valent endpoints and the embeddings of the graph H are of type
−→
dd′′. Then

dd0k(W ) =
∑k

i=0
(2dd0i (G) + dd′i(G) + 4ds0i (G))×

−→
dd′′k−i(H) (2.31)

dd′k(W ) =
∑k

i=0
(dd′i(G) +

−→
dd′′i(G) + 2

−→
ds′i(G))×

−→
dd′′k−i(H) (2.32)

d̃d′k(W ) =
∑k

i=0
(d̃d′i(G) +

−→
dd′′i(G) + 2

←−
ds′i(G))×

−→
dd′′k−i(H) (2.33)
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−→
dd′k(W ) =

∑k

i=0
(
−→
dd′i(G) +

←−
dd′′i(G) + 2

−→
ds′i(G))×

−→
dd′′k−i(H) (2.34)

←−
dd′k(W ) =

∑k

i=0
(
←−
dd′i(G) +

←−
dd′′i(G) + 2

←−
ds′i(G))×

−→
dd′′k−i(H) (2.35)

−→
dd′′k(W ) =

∑k

i=0
ss2i (G)×

−→
dd′′k−i(H) (2.36)

←−
dd′′k(W ) =

∑k

i=0
ss2i (G)×

−→
dd′′k−i(H) (2.37)

ds0k(W ) =
∑k−1

i=0
2dd0i (G)×

−→
dd′′k−1−i(H) (2.38)

−→
ds′k(W ) =

∑k−1

i=0
2(dd′i(G) +

−→
dd′i(G))×

−→
dd′′k−1−i(H) (2.39)

←−
ds′k(W ) =

∑k−1

i=0
2(d̃d′i(G) +

←−
dd′i(G))×

−→
dd′′k−1−i(H) (2.40)

sd0k(W ) =
∑k

i=0
(2sd0i (G) + sd′i(G) + 4ss0i (G))×

−→
dd′′k−i(H) (2.41)

−→
sd′k(W ) =

∑k

i=0
(
−→
sd′i(G) + 2ss1i (G) + ss2i (G))×

−→
dd′′k−i(H) (2.42)

←−
sd′k(W ) =

∑k

i=0
(
←−
sd′i(G) + 2ss1i (G) + ss2i (G))×

−→
dd′′k−i(H) (2.43)

ss0k(W ) =
∑k−1

i=0
2sd0i (G)×

−→
dd′′k−1−i(H) (2.44)

ss1k(W ) =
∑k−1

i=0
2sd′i(G)×

−→
dd′′k−1−i(H) (2.45)

ss2k(W ) =
∑k−1

i=0
2dd′′i (G)×

−→
dd′′k−1−i(H) (2.46)

Proof. Consider the production:

dd0i (G) ∗
−→
dd′′j(H) −→ 2dd0i+j(W ) + 2ds0i+j+1(W )

It indicates that each dd0-type embedding of G on Si when amalgamated with a
−→
dd′′-type

embedding of H on surface Sj , induces two embeddings of W having type dd0 on surface

Si+j and two of type ds0 on surface Si+j+1.

These contributions account for the terms
∑k

i=0 2dd0i ×
−→
dd′′k−i in Equation (2.31) and

for the Equation (2.38). Taking into account all contributions made by the productions in

Table 2.5, the result follows.

Remark 5. The complete sets of productions for edge-amalgamations and the recurrences

obtained from them are given in Appendix A.
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2.9 Application: Double-rooted Closed-End Ladders

It was shown in §2.4 how the single-root partials for the genus distributions of closed-end

ladders can be computed. The same can be accomplished for double-root partials of closed-

end ladders. It is known by face-tracing that all partials for L0 are zero-valued except

for
−→
dd′′0(L0), whose value is 1. Using the value of this partial, Theorem 9 can be applied

iteratively to obtain the partitioned genus distribution for the closed-end ladders. The

partitioned genus distribution for some small closed-end ladders is derived in this manner

in Table 2.6.

Table 2.6: Double-root partials of Ln.

Ln L0 L1 L2 L3 L4 L5

k 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3

dd0k 0 0 0 2 0 6 0 0 14 40 0 30 168 0 0

dd′k 0 1 0 1 0 1 6 0 1 10 0 1 14 56 0

d̃d′k 0 1 0 1 0 1 6 0 1 10 0 1 14 56 0
−→
dd′k 0 0 0 0 0 0 6 0 0 10 0 0 14 56 0
←−
dd′k 0 0 0 0 0 0 6 0 0 10 0 0 14 56 0
−→
dd′′k 1 0 0 0 2 0 0 0 0 0 8 0 0 0 0
←−
dd′′k 0 0 0 0 2 0 0 0 0 0 8 0 0 0 0

ds0k 0 0 0 0 0 0 4 0 0 12 0 0 28 80 0
−→
ds′k 0 0 0 0 2 0 2 0 0 2 24 0 2 40 0
←−
ds′k 0 0 0 0 2 0 2 0 0 2 24 0 2 40 0

sd0k 0 0 0 0 0 0 4 0 0 12 0 0 28 80 0
−→
sd′k 0 0 0 0 2 0 2 0 0 2 24 0 2 40 0
←−
sd′k 0 0 0 0 2 0 2 0 0 2 24 0 2 40 0

ss0k 0 0 0 0 0 0 0 0 0 0 8 0 0 24 0

ss1k 0 0 0 0 0 0 0 8 0 0 8 0 0 8 96

ss2k 0 0 2 0 0 0 0 8 0 0 0 0 0 0 32

gk 1 2 2 4 12 8 40 16 16 112 128 32 288 576 128
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Remark 6. The fact that
−→
dd′′0(L0) = 1 is the only non-zero-valued partial for L0 is the

vital piece of information utilized by us in selecting the sixteen productions listed in Table

2.5, from amongst a total of two hundred and fifty six productions listed in Appendix A.

Remark 7. In §3, these double-root partials are used for calculating genus distributions of

closed chains which are “cycles” of copies of a given base graph. The two closed chains

corresponding to closed-end ladders are circular ladders and Möbius ladders.

One can observe that the values for gk(Ln) agree with the values first obtained by

[Furst et al., 1989]. It may also be observed that the same results could have also been

achieved using first-order sub-partials and may question the need for using second-order sub-

partials for amalgamating double-rooted graphs. However, in general, with more complex

applications requiring amalgamations of double-rooted graphs having higher degrees, one

is likely to need the additional information captured in second-order sub-partials to obtain

closed chains from open chains. One such application is calculating the genus distribution

of an open chain of copies of the prism graph given in §2.10. Another is genus distribution

calculation of an open chain of copies of K3,3 in §2.11.

2.10 Application: Open Chains of Copies of a Triangular

Prism Graph

A triangular prism graph is illustrated in Figure 2.18 at the left, where two of its edges

are trisected and their middle-thirds are designated as root-edges. The root-edges are

shown darker by convention. Let ∆G denote the double-edge-rooted triangular prism graph.

Figure 2.18 shows some small double-edge-rooted open chains of copies of the graph ∆G.

An open chain consisting of n copies of ∆G is denoted by Prn.

Figure 2.18: Open chains of copies of a triangular prism graph.



CHAPTER 2. GENUS DISTRIBUTIONS OF EDGE-AMALGAMATED GRAPHS 44

The detailed calculations for genus distributions for Pr1, Pr2 and Pr3 are omitted

and only the results computed by using Theorems 23−38 from Appendix A are listed in

Tables 2.7 − 2.8.

Table 2.7: Genus distributions of the open chains Pr1 and Pr2 of 1 and 2 copies of ∆G,

respectively.

Prn Pr1 Pr2

k 0 1 2 0 1 2 3 4

dd0k 0 0 0 6 176 704 0 0

dd′k 1 0 0 1 46 400 0 0

d̃d′k 1 0 0 1 46 400 0 0
−→
dd′k 0 0 0 0 22 256 0 0
←−
dd′k 0 0 0 0 22 256 0 0
−→
dd′′k 0 12 0 0 0 48 0 0
←−
dd′′k 0 0 0 0 0 48 0 0

ds0k 0 4 0 0 44 800 384 0
−→
ds′k 0 4 0 0 6 272 960 0
←−
ds′k 0 4 0 0 6 272 960 0

sd0k 0 4 0 0 44 800 384 0
−→
sd′k 0 4 0 0 6 272 960 0
←−
sd′k 0 4 0 0 6 272 960 0

ss0k 0 0 0 0 0 320 1888 0

ss1k 0 0 24 0 0 72 1664 2304

ss2k 0 2 0 0 0 8 288 0

gk 2 38 24 8 424 5200 8448 2304
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Table 2.8: Genus distributions of the open chain Pr3 of 3 copies of ∆G.

Prn Pr3

k 0 1 2 3 4 5 6

dd0k 30 2080 40000 211840 67584 0 0

dd′k 1 82 2608 27104 38400 0 0

d̃d′k 1 82 2608 27104 38400 0 0
−→
dd′k 0 46 2176 25376 38400 0 0
←−
dd′k 0 46 2176 25376 38400 0 0
−→
dd′′k 0 0 0 288 3456 0 0
←−
dd′′k 0 0 0 288 3456 0 0

ds0k 0 212 11744 149568 336896 36864 0
−→
ds′k 0 6 640 17664 113792 92160 0
←−
ds′k 0 6 640 17664 113792 92160 0

sd0k 0 212 11744 149568 336896 36864 0
−→
sd′k 0 6 640 17664 113792 92160 0
←−
sd′k 0 6 640 17664 113792 92160 0

ss0k 0 0 1496 61728 393728 417792 0

ss1k 0 0 72 6144 112000 411648 221184

ss2k 0 0 0 32 3456 0 0

gk 32 2784 77184 755072 1866240 1271808 221184

2.11 Application: Open Chains of Copies of K3,3

Trisect two edges of K3,3 as shown in Figure 2.19 and use the middle-thirds as root-edges.

Figure 2.19: Open chains K1
3,3, K

2
3,3, K

3
3,3.
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This open chain is denoted by K1
3,3. An open chain of n copies of K3,3 is denoted by Kn

3,3 and

it consists of n edge-amalgamated copies of K1
3,3. We use Theorems 23−38 from Appendix A

to compute the results listed in Table 2.9. In particular, we list only the non-zero columns.

Table 2.9: Genus distributions of open chains of copies of K3,3.

Kn
3,3 K1

3,3 K2
3,3 K3

3,3

k 1 2 2 3 4 3 4 5 6

dd0k 0 0 1656 0 0 262976 436224 0 0

dd′k 4 0 344 440 0 13296 78064 31040 0

d̃d′k 4 0 344 440 0 13296 78064 31040 0
−→
dd′k 6 0 280 440 0 13808 78064 31040 0
←−
dd′k 6 0 280 440 0 13808 78064 31040 0
−→
dd′′k 0 0 24 144 0 144 2160 5184 0
←−
dd′′k 6 0 24 144 0 144 2160 5184 0

ds0k 2 0 424 1040 0 58784 339488 171392 0
−→
ds′k 2 0 104 1016 0 4384 68256 158336 0
←−
ds′k 2 0 104 1016 0 4384 68256 158336 0

sd0k 2 0 424 1040 0 58784 339488 171392 0
−→
sd′k 2 0 116 1088 0 4336 68688 160064 0
←−
sd′k 2 0 92 944 0 4432 67824 156608 0

ss0k 0 0 96 664 0 12928 133312 280576 0

ss1k 0 12 32 704 2016 1408 36416 230336 214272

ss2k 2 12 8 168 288 32 1440 8640 6912

gk 40 24 4352 9728 2304 466944 1875968 1630208 221184

2.12 Application: Open Chains of Alternating Copies of Two

Distinct Graphs

Genus distribution calculations are also streamlined for open chains consisting of different

base graphs. Here, the base graphs ∆G and K3,3 from our previous two applications are
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used to form open chains using alternating copies of these two graphs. The open chains

Al2 and Al3, shown in Figure 2.20, consist of two and three base graphs, respectively. The

partitioned genus distributions for these open chains is given in Table 2.10.

Figure 2.20: Open chains Al2 and Al3.

Table 2.10: Genus distributions of open chains Al2 and Al3.

Aln Al2 Al3

k 1 2 3 4 1 2 3 4 5 6

dd0k 104 1232 0 0 808 27488 220416 67584 0 0

dd′k 10 308 0 0 18 1320 22256 36672 0 0

d̃d′k 10 308 0 0 18 1320 22256 36672 0 0
−→
dd′k 18 404 0 0 26 1512 23408 36672 0 0
←−
dd′k 18 404 0 0 26 1512 23408 36672 0 0
−→
dd′′k 0 36 144 0 0 0 240 2880 0 0
←−
dd′′k 0 36 144 0 0 0 240 2880 0 0

ds0k 24 440 384 0 0 5744 123360 379264 36864 0
−→
ds′k 4 176 816 0 0 264 11840 105856 92160 0
←−
ds′k 4 176 816 0 0 264 11840 105856 92160 0

sd0k 0 792 1408 0 0 5744 123360 379264 36864 0
−→
sd′k 0 172 1456 0 0 276 11984 105856 92160 0
←−
sd′k 0 148 1456 0 0 252 11696 105856 92160 0

ss0k 0 176 1136 0 0 0 40736 353920 550912 0

ss1k 0 48 1072 2304 0 0 3168 80192 437504 221184

ss2k 0 8 192 0 0 0 32 2496 6912 0

gk 192 4864 9024 2304 896 45696 650240 1838592 1437696 221184



CHAPTER 3. GENUS DISTRIBUTIONS OF SELF-EDGE-AMALGAMATED
GRAPHS 48

Chapter 3

Genus Distributions of

Self-Edge-Amalgamated Graphs

In this section, two closed formulas are developed that use the partitioned genus distribution

of a double-edge-rooted graph to calculate the genus distribution of the graph obtained from

it by pasting together the two root-edges. Combined with the results derived in the previous

section, one can first obtain a recursion for the genus distributions of an infinite family of

open chains of edge-amalgamated copies of a base graph, and then apply the two formulas

derived in this section to obtain genus distributions of the corresponding one or two infinite

families of closed chains. In this manner, it is possible to calculate the genus distribution for

arbitrarily large graphs. While the results in this section are predominantly self-contained,

there is heavy reliance on the concepts of partials and productions defined in §2.

The self-edge-amalgamation of a graph is an operation whereby two root-edges of a

double-edge-rooted graph are pasted together. Informally, the expression pasting refers to

any kind of amalgamation. Where it is clear from context that a self-edge-amalgamation

is intended, the terminology self-amalgamation may be used. This operation is denoted

by a monadic operator acting on a double-edge-rooted graph operand (G, e, f):

W = ∗ef (G, e, f)

The self-edge-amalgamation of a double-edge-rooted graph (G, e, f) produces a graph W

obtained from G by identifying edges e and f . The pasting-orientations on the root-edges e
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and f are fixed arbitrarily. Accordingly, the edge-ends of e and f at the tail are e− and f−,

while the ones at the head are e+ and f+. The edges e and f can then be pasted in two

different ways. One way of pasting, called co-self-amalgamation, identifies the edge-end

e− with f− and the edge-end e+ with f+. The other way of pasting, called contra-self-

amalgamation, pairs the edge-end e− with f+ and the edge-end e+ with f−. These two

ways of self-edge-amalgamating a graph produces graphs which may be non-isomorphic, as

seen later in this paper.

Remark 8. When introducing second-order partials in §2.7, we required that the assign-

ment of labels 1 through 4 to the edge-sides of root-edges be relative to these same pasting-

orientations.

Graphs that are obtained from a self-amalgamation of double-edge-rooted open chains

are referred to as closed chains. Depending on which type of pasting is used, these may be

classified as co-pasted or contra-pasted closed chains. For example, circular ladders and

Möbius ladders are co- and contra-pasted closed chains obtained by self-edge-amalgamating

closed-end ladders.

We work under the assumption that we already have the partitioned genus distribution

of the graph that we wish to self-edge-amalgamate. For smaller graphs, this can be done

easily by using the Heffter-Edmonds algorithm [Gross and Tucker, 2001]. For large open

chains, one can rely on the recurrences presented in Appendix A for finding partitioned

genus distributions.

3.1 Productions for Self-Edge-Amalgamation

In §2, productions were used to highlight the behavior of fb-walks of two embeddings as

they underwent edge-amalgamation. The concept of production is now adapted for the

self-edge-amalgamation operation.

Let xi be any double-root sub-partial. Then a production for self-edge-amalgamation

is used to represent the ways in which an embedding of a double-edge-rooted graph (G, e, f)

of type x on surface Si self-edge-amalgamates on the root-edges e and f to give various types
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of embeddings of the resulting graph W . Formally, we write

xi(G, e, f) −→ gk1(W ) + gk2(W ) + gk3(W ) + gk4(W )

where k1, k2, k3, k4 are (not necessarily distinct) integer-valued functions of i. This can be

read as follows:

An embedding of (G, e, f) of type x on surface Si self-amalgamates on the

root-edges e and f to give four embeddings of the graph W on the surfaces

Sk1 , Sk2 , Sk3 and Sk4 .

The production, as defined above, does not specify whether the self-amalgamation is

a co-self-paste or a contra-self-paste. However, as we shall see, for an application that

seeks to find the genus distribution of a self-amalgamated graph, the system of productions

will consistently refer to only one of the two types of self-pasting. While considering the

self-edge-amalgamation for an embedding on an oriented surface and modeling it using

a production, it is important to maintain a sense of orientation of the strands. Each

embedding of a self-edge-amalgamated graph W = ∗ef (G, e, f) induces a unique embedding

of the graph G, such that the rotation system of W is consistent with the rotation system

of G.

Theorem 10. Let (G, e, f) be a double-edge-rooted graph, where both root-edges have two

2-valent endpoints. Then the following productions apply to all scenarios of co-self-paste and

contra-self-paste in which no fb-walk of the embedding of G is incident on both root-edges e

and f :

dd0i (G) −→ 2gi+1(W ) + 2gi+2(W ) (3.1)

ds0i (G) −→ 4gi+1(W ) (3.2)

sd0i (G) −→ 4gi+1(W ) (3.3)

ss0i (G) −→ 4gi+1(W ) (3.4)

Proof. The proof of Production (3.1) follows by face-tracing of the fb-walks incident on

both root-edges of the graph G. The recombination of strands caused by a self-edge-

amalgamation is now examined where the embedding of graph G is of type dd0. The
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production shown in the upper half of Figure 3.1 depicts the case of a co-self-paste while

the drawing in the lower half shows a contra-self-paste on the same root-edges. Both cases

yield the same results.

*
*

Figure 3.1: Productions for co-self-pasting and contra-self-pasting a dd0-type embed-

ding of (G, e, f).

The self-amalgamation produces two fewer vertices and one less edge in each of the

four resultant graph embeddings. The first and last embeddings shown for each production

have two fb-walks merging as a consequence of self-amalgamation. In the second and third

embeddings, all four fb-walks that are incident on the two root-edges merge into a single

fb-walk. Applying the Euler polyhedral equation, it can be seen that in the former case

the decrease of a single face results in a genus increment of 1, while in the latter case the

decrease of three fb-walks results in a genus increment of 2. The proofs for the remaining

productions are similar and also follow by face-tracing. For the sake of brevity, these are

omitted.

For embeddings in which one or two fb-walks are incident on both root-edges, the

productions for co-self-pasting and contra-self-pasting may differ. In particular, for dd′ and

dd′′ we get different results for both ways of pasting.
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Theorem 11. Let (G, e, f) be a double-edge-rooted graph, where both root-edges have two

2-valent endpoints. Then the following productions describe all cases of co-self-pasting for

embeddings of G of type dd′:

dd′i(G) −→ gi(W ) + 3gi+1(W ) (3.5)

d̃d′i(G) −→ gi(W ) + 3gi+1(W ) (3.6)

−→
dd′i(G) −→ 4gi+1(W ) (3.7)

←−
dd′i(G) −→ 4gi+1(W ) (3.8)

Furthermore, the following productions describe all cases of co-self-pasting for embeddings

of G of type dd′′:

−→
dd′′i(G) −→ 4gi(W ) (3.9)

←−
dd′′i(G) −→ 2gi(W ) + 2gi+1(W ) (3.10)

Proof. For illustration of Production (3.5), which describes the effects of co-self-pasting a

dd′-type embedding of G, we refer to the upper half of Figure 3.2. Observe that the first

embedding of graph W stands out from the other three, in that there is a net increase of

one fb-walk as the fb-walk incident on both roots of the embedding of G breaks into two

fb-walks during self-pasting. This does not occur in the other three cases, where there is a

net decrease of one fb-walk in the resulting embedding. The former results in an unchanged

genus of the resultant graph embedding, while the latter results in a genus increment of

one. This accounts for Production (3.5).

For Production (3.7), the illustration in the bottom half of Figure 3.2 shows that all

four embeddings resulting from the self-pasting of G end up with one less face, thereby

warranting a genus increment of 1 for the resulting embeddings. Proofs for Productions

(3.6) and (3.8) are similar to the proofs for (3.5) and (3.7), respectively, and are omitted

for brevity.

Productions (3.9) and (3.10) for co-self-pasting a
−→
dd′′- or a

←−
dd′′-type embedding of G

can also be derived by using the same technique. Figure 3.3 is included for aiding with the

proof of Production (3.10), and the proof of Production (3.9) is omitted.
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Figure 3.2: Productions for co-self-pasting dd′-type and
−→
dd′-type embeddings of

(G, e, f).

*
Figure 3.3: Production for co-self-pasting a

←−
dd′′-type embedding of (G, e, f).

Theorem 12. Let (G, e, f) be a double-edge-rooted graph, where both root-edges have two

2-valent endpoints. Then the following productions apply for contra-self-pasting all dd′-type

embeddings of G:

dd′i(G) −→ 4gi+1(W ) (3.11)

d̃d′i(G) −→ 4gi+1(W ) (3.12)

−→
dd′i(G) −→ gi(W ) + 3gi+1(W ) (3.13)

←−
dd′i(G) −→ gi(W ) + 3gi+1(W ) (3.14)

Furthermore, the following productions apply for contra-self-pasting all dd′′-type embeddings

of G:
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−→
dd′′i(G) −→ 2gi(W ) + 2gi+1(W ) (3.15)

←−
dd′′i(G) −→ 4gi(W ) (3.16)

Proof. Figure 3.4 illustrates Production (3.12) in the upper half and Production (3.14) in the

bottom half. For Production (3.12), in all four embeddings resulting from the contra-self-

pasting, the three fb-walks incident on the root-edges of the graph G break into strands that

merge into two fb-walks, as shown in Figure 3.4. While, for Production (3.14), this happens

for only three of the resulting embeddings of graph W . For the remaining embedding,

the fb-walks break into strands that recombine to give four distinct fb-walks. Proofs of

Productions (3.11) and (3.13) are similar.

*
*

Figure 3.4: Productions for contra-self-pasting d̃d′-type and
←−
dd′-type embeddings of

(G, e, f).

Similarly, applying contra-self-pasting to the root-edges of a
−→
dd′′-type embedding of

(G, e, f) results in two embeddings of W where all the fb-walks incident on the roots merge

into a single fb-walk, and two embeddings where they break into strands that recombine

into three distinct fb-walks, as shown in Figure 3.5. This proves Production (3.15). Proof

for Production (3.16) is similar and is omitted for brevity.
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*

Figure 3.5: Production for contra-self-pasting
−→
dd′′-type embeddings of (G, e, f).

Theorem 13. Let (G, e, f) be a double-edge-rooted graph, where both roots have two 2-

valent endpoints. Then the following productions cover all scenarios for co-self-pasting and

contra-self-pasting, where the embedding of G is of type ds′ or sd′:

ds′i(G) −→ 2gi(W ) + 2gi+1(W ) (3.17)

sd′i(G) −→ 2gi(W ) + 2gi+1(W ) (3.18)

Proof. Due to the symmetry of the models
−→
ds′ and

−→
sd′, and of

←−
ds′ and

←−
sd′, we need only

provide the proof for one of the two Productions (3.17) and (3.18).

*
*

Figure 3.6: Productions for co-pasting and contra-pasting a
−→
ds′-type embedding of

(G, e, d).

Figure 3.6 illustrates the proof for the co-self-pasted and contra-self-pasted
−→
ds′-type

embedding of G. Both operations result in two embeddings with a genus increment of 0
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and two with a genus increment of 1. The proof for a
←−
ds′-type embedding of G is similar and

leads to the observation that the production body for the embedding type
←−
ds′ is identical

to the production body for the embedding type
−→
ds′. This is true for both co-self-pasting

and contra-self-pasting operations. This completes the proof of Production (3.17).

Theorem 14. Let (G, e, f) be a double-edge-rooted graph, where both roots have two 2-valent

endpoints. Then the following productions apply for co-self-pasting or contra-self-pasting an

ss1 or ss2-type embedding of G:

ss1i (G) −→ 4gi(W ) (3.19)

ss2i (G) −→ 3gi(W ) + gi−1(W ) (3.20)

Proof. When the embedding of a double-edge-rooted graphG is of type ss1, a self-amalgamation

on the root-edges breaks the single fb-walk incident on both roots into strands that recom-

bine to give two fb-walks in all the corresponding embeddings of the self-amalgamated graph

W . The additional face balances out the decrease of two vertices and one edge to retain the

same genus in each of the four resulting embeddings of W . This holds for co-self-pasting as

well as contra-self-pasting as evident from Figure 3.7. The proof of Production 3.20 for the

self-amalgamation of an ss2-type is also similar and is omitted.
*

*

Figure 3.7: Productions for co-self-pasting and contra-self-pasting an ss1-type embed-

ding of (G, e, f).
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A convenient table summarizing the results of Theorems 10–14 appears in Table 3.1.

Table 3.1: The productions for self-edge-amalgamation.

co- and contra-paste productions reference

dd0i (G) −→ 2gi+1 + 2gi+2 (3.1)

ds0i (G) −→ 4gi+1 (3.2)

sd0i (G) −→ 4gi+1 (3.3)

ss0i (G) −→ 4gi+1 (3.4)

ds′i(G) −→ 2gi + 2gi+1 (3.17)

sd′i(G) −→ 2gi + 2gi+1 (3.18)

ss1i (G) −→ 4gi (3.19)

ss2i (G) −→ 3gi + gi−1 (3.20)

co-paste productions reference

dd′i(G) −→ gi + 3gi+1 (3.5)

d̃d′i(G) −→ gi + 3gi+1 (3.6)
−→
dd′i(G) −→ 4gi+1 (3.7)
←−
dd′i(G) −→ 4gi+1 (3.8)
−→
dd′′i(G) −→ 4gi (3.9)
←−
dd′′i(G) −→ 2gi + 2gi+1 (3.10)

contra-paste productions reference

dd′i(G) −→ 4gi+1 (3.11)

d̃d′i(G) −→ 4gi+1 (3.12)
−→
dd′i(G) −→ gi + 3gi+1 (3.13)
←−
dd′i(G) −→ gi + 3gi+1 (3.14)
−→
dd′′i(G) −→ 2gi + 2gi+1 (3.15)
←−
dd′′i(G) −→ 4gi (3.16)
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Remark 9. As it turns out, the productions for second-order sub-partial types of dd′ and

dd′′ are the only ones that disagree for a co-self-paste and a contra-self-paste. Moreover, the

results for the co- and contra-self-amalgamation for both dd′- and dd′′-type embeddings are

symmetric in the sense that the production body for co-self-pasting a
−→
dd′′-type (or a

←−
dd′′-type)

embedding of G is the same as the production body for contra-self-pasting
←−
dd′′-type (or a

−→
dd′′-

type) embedding of G. Likewise, for the pairs of dd′-, d̃d′-types of embeddings of G which

show a symmetry with the
−→
dd′- ,

←−
dd′-types of embeddings of G.

Theorem 15. Let W be the graph formed by co-self-pasting of (G, e, f). Then

gi(W ) = 2dd0i−2(G) + 2dd0i−1(G) + 3dd′i−1(G) + 3d̃d′i−1(G) + 4
−→
dd′i−1(G)

+ 4
←−
dd′i−1(G) + 2

←−
dd′′i−1(G) + 4ds0i−1(G) + 2ds′i−1(G) + 4sd0i−1(G)

+ 2sd′i−1(G) + 4ss0i−1(G) + dd′i(G) + d̃d′i(G) + 4
−→
dd′′i(G) + 2

←−
dd′′i(G)

+ 2ds′i(G) + 2sd′i(G) + 4ss1i (G) + 3ss2i (G) + ss2i+1(G) (3.21)

Proof. The Production (3.1):

dd0i (G) −→ 2gi+1(W ) + 2gi+2(W )

indicates that each dd0-type embedding of (G, e, f) on the surface Si when self-amalgamated,

induces two embeddings of W on Si+1 and two on the surface Si+2. These contributions

account for the first two terms 2dd0i−2(G) + 2dd0i−1(G) on the right-hand side of Equation

(3.21). Taking into account all the contributions made by productions listed in Theorems

10–14, the result follows.

Theorem 16. Let W be the graph formed by contra-self-pasting of (G, e, f). Then

gi(W ) = 2dd0i−2(G) + 2dd0i−1(G) + 3
−→
dd′i−1(G) + 3

←−
dd′i−1(G) + 4dd′i−1(G)

+ 4d̃d′i−1(G) + 2
−→
dd′′i−1(G) + 4ds0i−1(G) + 2ds′i−1(G) + 4sd0i−1(G)

+ 2sd′i−1(G) + 4ss0i−1(G) +
−→
dd′i(G) +

←−
dd′i(G) + 4

←−
dd′′i(G) + 2

−→
dd′′i(G)

+ 2ds′i(G) + 2sd′i(G) + 4ss1i (G) + 3ss2i (G) + ss2i+1(G) (3.22)

Proof. The proof for Equation (3.22) is obvious from Equation (3.21) and our earlier remarks

on the symmetries of the productions for dd′ and dd′′ second-order sub-partial types.
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Thus, depending on whether one plans on forming a closed chain through a co-self-

amalgamation or through a contra-self-amalgamation, the genus distribution of the closed

chain is calculated by using Theorems 15 or 16, respectively. For instance, the partitioned

genus distributions calculated for the closed-end ladders in §2.9 can now be used with

Theorems 15 and 16 to obtain the partitioned genus-distributions for both circular and

Möbius ladders.

3.2 Application: Revisiting Circular Ladders and Möbius

Ladders

The genus distributions of circular ladders and Möbius ladders were first derived by [Mc-

Geoch, 1987]. §2.9 shows how calculation of the double-root genus distributions of closed-end

ladders is reducible to a routine recursion. This in turn reduces the derivation of the genus

distributions of circular and Möbius ladders, in turn, to a routine substitution into an

equation.

Let Ln be the closed-end ladder with 2 end-rungs and n interior rungs, as shown in

Figure 3.8. Let CLn denote the circular ladder with n rungs as illustrated in Figure 3.9.

L 1 L 2 L 3

Figure 3.8: Closed-end ladders Ln.

Observe that co-self-pasting the closed-end ladder Ln on the root-edges yields CLn+1.

CL
2

CL
3 CL

4

Figure 3.9: Circular ladders CLn.
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Similarly, a Möbius ladder with n rungs is denoted by MLn, as shown in Figure 3.10. It

can be observed that contra-self-pasting the closed-end ladder Ln on the root-edges yields

MLn+1 .

ML
2

ML
3

ML
4

Figure 3.10: Möbius ladders MLn.

A small example is given here to demonstrate how the genus distributions of CL4 and

ML4 can be calculated from the partitioned genus distribution of L3. We begin by repro-

ducing in Table 3.2 the partitioned genus distribution of the closed-end ladder L3 originally

derived in §2.9.

Table 3.2: Double-root partials of L3.

L3

k 0 1 2 k 0 1 2

dd0k 6 0 0
−→
ds′k 0 2 0

dd′k 1 6 0
←−
ds′k 0 2 0

d̃d′k 1 6 0 sd0k 0 4 0
−→
dd′k 0 6 0

−→
sd′k 0 2 0

←−
dd′k 0 6 0

←−
sd′k 0 2 0

−→
dd′′k 0 0 0 ss0k 0 0 0
←−
dd′′k 0 0 0 ss1k 0 0 8

ds0k 0 4 0 ss2k 0 0 8

Simply plugging the values from Table 3.2 into Equation (3.21) yields the genus distributions

of circular ladder CL4.
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g0(CL4) = dd′0(L3) + d̃d′0(L3) + 4
−→
dd′′0(L3) + 2

←−
dd′′0(L3) + 2ds′0(L3) + 2sd′0(L3)

+ 4ss10(L3) + 3ss20(L3) + ss21(L3)

= 1 + 1 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 0 = 2

g1(CL4) = 2dd00(L3) + 3dd′0(L3) + 3d̃d′0(L3) + 4
−→
dd′0(L3) + 4

←−
dd′0(L3) + 2

←−
dd′′0(L3)

+ 4ds00(L3) + 2ds′0(L3) + 4sd00(L3) + 2sd′0(L3) + 4ss00(L3) + dd′1(L3)

+ d̃d′1(L3) + 4
−→
dd′′1(L3) + 2

←−
dd′′1(L3) + 2ds′1(L3) + 2sd′1(L3) + 4ss11(L3)

+ 3ss21(L3) + ss22(L3)

= 2× 6 + 3× 1 + 3× 1 + 4× 0 + 4× 0 + 2× 0 + 4× 0 + 2× 0 + 4× 0

+ 2× 0 + 4× 0 + 6 + 6 + 4× 0 + 2× 0 + 2× 4 + 2× 4 + 4× 0 + 3× 0

+ 8 = 54

g2(CL4) = 2dd00(L3) + 2dd01(L3) + 3dd′1(L3) + 3d̃d′1(L3) + 4
−→
dd′1(L3) + 4

←−
dd′1(L3)

+ 2
←−
dd′′1(L3) + 4ds01(L3) + 2ds′1(L3) + 4sd01(L3) + 2sd′1(L3) + 4ss01(L3)

+ dd′2(L3) + d̃d′2(L3) + 4
−→
dd′′2(L3) + 2

←−
dd′′2(L3) + 2ds′2(L3) + 2sd′2(L3)

+ 4ss12(L3) + 3ss22(L3) + ss23(L3)

= 2× 6 + 2× 0 + 3× 6 + 3× 6 + 4× 6 + 4× 6 + 2× 0 + 4× 4 + 2× 4

+ 4× 4 + 2× 4 + 4× 0 + 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 8

+ 3× 8 + 0 = 200

g3(CL4) = 0

Whereas, plugging the values from Table 3.2 into Equation (3.22) produces the genus

distribution of the Möbius ladder ML4:

g0(ML4) =
−→
dd′0(L3) +

←−
dd′0(L3) + 4

←−
dd′′0(L3) + 2

−→
dd′′0(L3) + 2ds′0(L3) + 2sd′0(L3)

+ 4ss10(L3) + 3ss20(L3) + ss21(L3)

= 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 0 = 0

g1(ML4) = 2dd00(L3) + 3
−→
dd′0(L3) + 3

←−
dd′0(L3) + 4dd′0(L3) + 4d̃d′0(L3) + 2

−→
dd′′0(L3)

+ 4ds00(L3) + 2ds′0(L3) + 4sd00(L3) + 2sd′0(L3) + 4ss00(L3) +
−→
dd′1(L3)
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+
←−
dd′1(L3) + 4

←−
dd′′1(L3) + 2

−→
dd′′1(L3) + 2ds′1(L3) + 2sd′1(L3) + 4ss11(L3)

+ 3ss21(L3) + ss22(L3)

= 2× 6 + 3× 0 + 3× 0 + 4× 1 + 4× 1 + 2× 0 + 4× 0 + 2× 0 + 4× 0

+ 2× 0 + 4× 0 + 6 + 6 + 4× 0 + 2× 0 + 2× 4 + 2× 4 + 4× 0 + 3× 0

+ 8 = 56

g2(ML4) = 2dd00(L3) + 2dd01(L3) + 3
−→
dd′1(L3) + 3

←−
dd′1(L3) + 4dd′1(L3) + 4d̃d′1(L3)

+ 2
−→
dd′′1(L3) + 4ds01(L3) + 2ds′1(L3) + 4sd01(L3) + 2sd′1(L3) + 4ss01(L3)

+
−→
dd′i(L3) +

←−
dd′i(L3) + 4

←−
dd′′i(L3) + 2

−→
dd′′i(L3) + 2ds′i(L3) + 2sd′i(L3)

+ 4ss1i (L3) + 3ss2i (L3) + ss2i+1(L3)

= 2× 6 + 2× 0 + 3× 6 + 3× 6 + 4× 6 + 4× 6 + 2× 0 + 4× 4 + 2× 4

+ 4× 4 + 2× 4 + 4× 0 + 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 8

+ 3× 8 + 0 = 200

g3(ML4) = 0

3.3 Application: Closed Chains of Copies of a Triangular

Prism Graph

Open chains of copies of the triangular prism graph were encountered in §2.10. As an

example of two entirely new calculations of genus distributions of closed chains, consider

the closed chains of copies of the triangular prism graph. As before, the double-edge-rooted

triangular prism graph is denoted by ∆G and the open chain consisting of n copies of ∆G

by Prn. The partitioned genus distribution of the open chains Pr1, Pr2 and Pr3 were

produced in Tables 2.7−2.8.

Let CPrn be the co-self-amalgamated closed chain of n copies of ∆G, as shown in Figure

3.11. We plug the values from Table 2.7 into Equation (3.21) to calculate genus distributions

for CPr1 and CPr2.

This is illustrated as follows:
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Figure 3.11: Co-pasted closed chains of copies of a triangular prism graph.

g0(CPr1) = dd′0(Pr1) + d̃d′0(Pr1) + 4
−→
dd′′0(Pr1) + 2

←−
dd′′0(Pr1) + 2ds′0(Pr1)

+ 2sd′0(Pr1) + 4ss10(Pr1) + 3ss20(Pr1) + ss21(Pr1)

= 1 + 1 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 2

= 4

g1(CPr1) = 2dd00(Pr1) + 3dd′0(Pr1) + 3d̃d′0(Pr1) + 4
−→
dd′0(Pr1) + 4

←−
dd′0(Pr1)

+ 2
←−
dd′′0(Pr1) + 4ds00(Pr1) + 2ds′0(Pr1) + 4sd00(Pr1) + 2sd′0(Pr1)

+ 4ss00(Pr1) + dd′1(Pr1) + d̃d′1(Pr1) + 4
−→
dd′′1(Pr1) + 2

←−
dd′′1(Pr1)

+ 2ds′1(Pr1) + 2sd′1(Pr1) + 4ss11(Pr1) + 3ss21(Pr1) + ss22(Pr1)

= 2× 0 + 3× 1 + 3× 1 + 4× 0 + 4× 0 + 2× 0 + 4× 0 + 2× 0

+ 4× 0 + 2× 0 + 4× 0 + 0 + 0 + 4× 12 + 2× 0 + 2× 8 + 2× 8

+ 4× 0 + 3× 2 + 0

= 92

g2(CPr1) = 2dd00(Pr1) + 2dd01(Pr1) + 3dd′1(Pr1) + 3d̃d′1(Pr1) + 4
−→
dd′1(Pr1)

+ 4
←−
dd′1(Pr1) + 2

←−
dd′′1(Pr1) + 4ds01(Pr1) + 2ds′1(Pr1) + 4sd01(Pr1)

+ 2sd′1(Pr1) + 4ss01(Pr1) + dd′2(Pr1) + d̃d′2(Pr1) + 4
−→
dd′′2(Pr1)

+ 2
←−
dd′′2(Pr1) + 2ds′2(Pr1) + 2sd′2(Pr1) + 4ss12(Pr1) + 3ss22(Pr1)

+ ss23(Pr1)

= 2× 0 + 2× 0 + 3× 0 + 3× 0 + 4× 0 + 4× 0 + 2× 0 + 4× 4 + 2× 8

+ 4× 4 + 2× 8 + 4× 0 + 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0

+ 4× 24 + 3× 0 + 0

= 160
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g0(CPr2) = dd′0(Pr2) + d̃d′0(Pr2) + 4
−→
dd′′0(Pr2) + 2

←−
dd′′0(Pr2) + 2ds′0(Pr2)

+ 2sd′0(Pr2) + 4ss10(Pr2) + 3ss20(Pr2) + ss21(Pr2)

= 1 + 1 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 0

= 2

g1(CPr2) = 2dd00(Pr2) + 3dd′0(Pr2) + 3d̃d′0(Pr2) + 4
−→
dd′0(Pr2) + 4

←−
dd′0(Pr2)

+ 2
←−
dd′′0(Pr2) + 4ds00(Pr2) + 2ds′0(Pr2) + 4sd00(Pr2) + 2sd′0(Pr2)

+ 4ss00(Pr2) + dd′1(Pr2) + d̃d′1(Pr2) + 4
−→
dd′′1(Pr2) + 2

←−
dd′′1(Pr2)

+ 2ds′1(Pr2) + 2sd′1(Pr2) + 4ss11(Pr2) + 3ss21(Pr2) + ss22(Pr2)

= 2× 6 + 3× 1 + 3× 1 + 4× 0 + 4× 0 + 2× 0 + 4× 0 + 2× 0 + 4× 0

+ 2× 0 + 4× 0 + 46 + 46 + 4× 0 + 2× 0 + 2× 12 + 2× 12 + 4× 0

+ 3× 0 + 8

= 166

g2(CPr2) = 2dd00(Pr2) + 2dd01(Pr2) + 3dd′1(Pr2) + 3d̃d′1(Pr2) + 4
−→
dd′1(Pr2)

+ 4
←−
dd′1(Pr2) + 2

←−
dd′′1(Pr2) + 4ds01(Pr2) + 2ds′1(Pr2) + 4sd01(Pr2)

+ 2sd′1(Pr2) + 4ss01(Pr2) + dd′2(Pr2) + d̃d′2(Pr2) + 4
−→
dd′′2(Pr2)

+ 2
←−
dd′′2(Pr2) + 2ds′2(Pr2) + 2sd′2(Pr2) + 4ss12(Pr2) + 3ss22(Pr2)

+ ss23(Pr2)

= 2× 6 + 2× 176 + 3× 46 + 3× 46 + 4× 22 + 4× 22 + 2× 0 + 4× 44

+ 2× 12 + 4× 44 + 2× 12 + 4× 0 + 400 + 400 + 4× 48 + 2× 48

+ 2× 544 + 2× 544 + 4× 72 + 3× 8 + 288

= 5080

g3(CPr2) = 2dd01(Pr2) + 2dd02(Pr2) + 3dd′2(Pr2) + 3d̃d′2(Pr2) + 4
−→
dd′2(Pr2)

+ 4
←−
dd′2(Pr2) + 2

←−
dd′′2(Pr2) + 4ds02(Pr2) + 2ds′2(Pr2) + 4sd02(Pr2)

+ 2sd′2(Pr2) + 4ss02(Pr2) + dd′3(Pr2) + d̃d′3(Pr2) + 4
−→
dd′′3(Pr2)

+ 2
←−
dd′′3(Pr2) + 2ds′3(Pr2) + 2sd′3(Pr2) + 4ss13(Pr2) + 3ss23(Pr2)

+ ss24(Pr2)
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= 2× 176 + 2× 704 + 3× 400 + 3× 400 + 4× 256 + 4× 256 + 2× 48

+ 4× 800 + 2× 544 + 4× 800 + 2× 544 + 4× 320 + 0 + 0 + 4× 0

+ 2× 0 + 2× 1920 + 2× 1920 + 4× 1664 + 3× 288 + 0

= 31360

g4(CPr2) = 2dd02(Pr2) + 2dd03(Pr2) + 3dd′3(Pr2) + 3d̃d′3(Pr2) + 4
−→
dd′3(Pr2)

+ 4
←−
dd′3(Pr2) + 2

←−
dd′′3(Pr2) + 4ds03(Pr2) + 2ds′3(Pr2) + 4sd03(Pr2)

+ 2sd′3(Pr2) + 4ss03(Pr2) + dd′4(Pr2) + d̃d′4(Pr2) + 4
−→
dd′′4(Pr2)

+ 2
←−
dd′′4(Pr2) + 2ds′4(Pr2) + 2sd′4(Pr2) + 4ss14(Pr2) + 3ss24(Pr2)

+ ss25(Pr2)

= 2× 704 + 2× 0 + 3× 0 + 3× 0 + 4× 0 + 4× 0 + 2× 0 + 4× 384

+ 2× 1920 + 4× 384 + 2× 1920 + 4× 1888 + 0 + 0 + 4× 0 + 2× 0

+ 2× 0 + 2× 0 + 4× 2304 + 3× 0 + 0

= 28928

In a similar manner, one can compute the genus distributions for CPrn for higher values

of n. We omit details but list the genus distributions of CPr3.

g0(CPr3) = 2 g1(CPr3) = 278 g2(CPr3) = 17480

g3(CPr3) = 447648 g4(CPr3) = 3920896 g5(CPr3) = 8667648

g6(CPr3) = 3723264

Let KPrn be the contra-self-amalgamated closed chain of n copies of ∆G, as illustrated in

Figure 3.12. The genus distributions for contra-self-amalgamated closed chains KPr1 and

KPr2 are calculated by substituting values from Table 2.7 into Equation (3.22) as follows:

Figure 3.12: Contra-pasted closed chains of copies of a triangular prism graph.
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g0(KPr1) =
−→
dd′0(Pr1) +

←−
dd′0(Pr1) + 4

←−
dd′′0(Pr1) + 2

−→
dd′′0(Pr1) + 2ds′0(Pr1)

+ 2sd′0(Pr1) + 4ss10(Pr1) + 3ss20(Pr1) + ss21(Pr1)

= 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 2

= 2

g1(KPr1) = 2dd00(Pr1) + 3
−→
dd′0(Pr1) + 3

←−
dd′0(Pr1) + 4dd′0(Pr1) + 4d̃d′0(Pr1)

+ 2
−→
dd′′0(Pr1) + 4ds00(Pr1) + 2ds′0(Pr1) + 4sd00(Pr1) + 2sd′0(Pr1)

+ 4ss00(Pr1) +
−→
dd′1(Pr1) +

←−
dd′1(Pr1) + 4

←−
dd′′1(Pr1) + 2

−→
dd′′1(Pr1)

+ 2ds′1(Pr1) + 2sd′1(Pr1) + 4ss11(Pr1) + 3ss21(Pr1) + ss22(Pr1)

= 2× 0 + 3× 0 + 3× 0 + 4× 1 + 4× 1 + 2× 0 + 4× 0 + 2× 0 + 4× 0

+ 2× 0 + 4× 0 + 0 + 0 + 4× 0 + 2× 12 + 2× 8 + 2× 8 + 4× 0 + 3× 2

+ 0

= 70

g2(KPr1) = 2dd00(Pr1) + 2dd01(Pr1) + 3
−→
dd′1(Pr1) + 3

←−
dd′1(Pr1) + 4dd′1(Pr1)

+ 4d̃d′1(Pr1) + 2
−→
dd′′1(Pr1) + 4ds01(Pr1) + 2ds′1(Pr1) + 4sd01(Pr1)

+ 2sd′1(Pr1) + 4ss01(Pr1) +
−→
dd′2(Pr1) +

←−
dd′2(Pr1) + 4

←−
dd′′2(Pr1)

+ 2
−→
dd′′2(Pr1) + 2ds′2(Pr1) + 2sd′2(Pr1) + 4ss12(Pr1) + 3ss22(Pr1)

+ ss23(Pr1)

= 2× 0 + 2× 0 + 3× 0 + 3× 0 + 4× 0 + 4× 0 + 2× 12 + 4× 4 + 2× 8

+ 4× 4 + 2× 8 + 4× 0 + 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 24

+ 3× 0 + 0

= 184

g0(KPr2) =
−→
dd′0(Pr2) +

←−
dd′0(Pr2) + 4

←−
dd′′0(Pr2) + 2

−→
dd′′0(Pr2) + 2ds′0(Pr2)

+ 2sd′0(Pr2) + 4ss10(Pr2) + 3ss20(Pr2) + ss21(Pr2)

= 0 + 0 + 4× 0 + 2× 0 + 2× 0 + 2× 0 + 4× 0 + 3× 0 + 0

= 0
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g1(KPr2) = 2dd00(Pr2) + 3
−→
dd′0(Pr2) + 3

←−
dd′0(Pr2) + 4dd′0(Pr2) + 4d̃d′0(Pr2)

+ 2
−→
dd′′0(Pr2) + 4ds00(Pr2) + 2ds′0(Pr2) + 4sd00(Pr2) + 2sd′0(Pr2)

+ 4ss00(Pr2) +
−→
dd′1(Pr2) +

←−
dd′1(Pr2) + 4

←−
dd′′1(Pr2) + 2

−→
dd′′1(Pr2)

+ 2ds′1(Pr2) + 2sd′1(Pr2) + 4ss11(Pr2) + 3ss21(Pr2) + ss22(Pr2)

= 2× 6 + 3× 0 + 3× 0 + 4× 1 + 4× 1 + 2× 0 + 4× 0 + 2× 0 + 4× 0

+ 2× 0 + 4× 0 + 22 + 22 + 4× 0 + 2× 0 + 2× 12 + 2× 12 + 4× 0

+ 3× 0 + 8

= 120

g2(KPr2) = 2dd00(Pr2) + 2dd01(Pr2) + 3
−→
dd′1(Pr2) + 3

←−
dd′1(Pr2) + 4dd′1(Pr2)

+ 4d̃d′1(Pr2) + 2
−→
dd′′1(Pr2) + 4ds01(Pr2) + 2ds′1(Pr2) + 4sd01(Pr2)

+ 2sd′1(Pr2) + 4ss01(Pr2) +
−→
dd′2(Pr2) +

←−
dd′2(Pr2) + 4

←−
dd′′2(Pr2)

+ 2
−→
dd′′2(Pr2) + 2ds′2(Pr2) + 2sd′2(Pr2) + 4ss12(Pr2) + 3ss22(Pr2)

+ ss23(Pr2)

= 2× 6 + 2× 176 + 3× 22 + 3× 22 + 4× 46 + 4× 46 + 2× 0 + 4× 44

+ 2× 12 + 4× 44 + 2× 12 + 4× 0 + 256 + 256 + 4× 48 + 2× 48

+ 2× 544 + 2× 544 + 4× 72 + 3× 8 + 288

= 4840

g3(KPr2) = 2dd01(Pr2) + 2dd02(Pr2) + 3
−→
dd′2(Pr2) + 3

←−
dd′2(Pr2) + 4dd′2(Pr2)

+ 4d̃d′2(Pr2) + 2
−→
dd′′2(Pr2) + 4ds02(Pr2) + 2ds′2(Pr2) + 4sd02(Pr2)

+ 2sd′2(Pr2) + 4ss02(Pr2) +
−→
dd′3(Pr2) +

←−
dd′3(Pr2) + 4

←−
dd′′3(Pr2)

+ 2
−→
dd′′3(Pr2) + 2ds′3(Pr2) + 2sd′3(Pr2) + 4ss13(Pr2) + 3ss23(Pr2)

+ ss24(Pr2)

= 2× 176 + 2× 704 + 3× 256 + 3× 256 + 4× 400 + 4× 400 + 2× 48

+ 4× 800 + 2× 544 + 4× 800 + 2× 544 + 4× 320 + 0 + 0 + 4× 0

+ 2× 0 + 2× 1920 + 2× 1920 + 4× 1664 + 3× 288 + 0

= 31648
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g4(KPr2) = 2dd02(Pr2) + 2dd03(Pr2) + 3
−→
dd′3(Pr2) + 3

←−
dd′3(Pr2) + 4dd′3(Pr2)

+ 4d̃d′3(Pr2) + 2
−→
dd′′3(Pr2) + 4ds03(Pr2) + 2ds′3(Pr2) + 4sd03(Pr2)

+ 2sd′3(Pr2) + 4ss03(Pr2) +
−→
dd′4(Pr2) +

←−
dd′4(Pr2) + 4

←−
dd′′4(Pr2)

+ 2
−→
dd′′4(Pr2) + 2ds′4(Pr2) + 2sd′4(Pr2) + 4ss14(Pr2) + 3ss24(Pr2)

+ ss25(Pr2)

= 2× 704 + 2× 0 + 3× 0 + 3× 0 + 4× 0 + 4× 0 + 2× 0 + 4× 384

+ 2× 1920 + 4× 384 + 2× 1920 + 4× 1888 + 0 + 0 + 4× 0

+ 2× 0 + 2× 0 + 2× 0 + 4× 2304 + 3× 0 + 0

= 28928

Similarly, one can routinely compute the genus distributions for KPrn for higher values of

n. We conclude this section by listing the genus distributions of KPr3 obtained similarly.

g0(KPr3) = 0 g1(KPr3) = 208 g2(KPr3) = 16688

g3(KPr3) = 445056 g4(KPr3) = 3924352 g5(KPr3) = 8667648

g6(KPr3) = 3723264

3.4 Application: Closed Chains of Copies of K3,3

Let CKn
3,3 be the co-self-amalgamated closed chain of n copies of K3,3, as shown in Figure

3.13 and let KKn
3,3 be the contra-self-amalgamated closed chain of n copies of K3,3, as

illustrated in Figure 3.14.

Figure 3.13: Co-self-amalgamating open chains of n copies of K3,3.

The genus distributions for CKn
3,3 and KKn

3,3 are calculated by substituting values from

Table 2.9 into Equation (3.21) and Equation (3.22), respectively. The genus distribution
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Figure 3.14: Contra-self-amalgamating open chains of n copies of K3,3.

polynomials for some small co-pasted and contra-pasted closed chains of copies of K3,3 are

given as follows:

g[CK1
3,3](x) = 2 + 54x+ 200x2

g[CK2
3,3](x) = 8x+ 1984x2 + 25752x3 + 37792x4

g[CK3
3,3](x) = 32x2 + 69696x3 + 2147296x4 + 8604864x5 + 5955328x6

g[KK1
3,3](x) = 2 + 70x+ 184x2

g[KK2
3,3](x) = 8x+ 1856x225880x3 + 37792x4

g[KK3
3,3](x) = 32x2 + 70720x3 + 2146272x4 + 8604864x5 + 5955328x6

3.5 Application: Closed Chains of Alternating Copies of Two

Distinct Graphs

The last example of this section draws on the partitioned genus distribution calculated

in §2.12 for open chains Al2 and Al3 consisting respectively of two and three interleaved

copies of the triangular prism graph ∆G and the complete bipartite graph K3,3. Their

corresponding co-pasted chains CAl2 and CAl3 are shown in Figure 3.15 and their genus

distributions are given as follows:

Figure 3.15: Co-self-amalgamating open chains Al2 and Al3.
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g[CAl2](x) = 44x+ 3108x2 + 29616x3 + 32768x4

g[CAl3](x) = 36x+ 6716x2 + 280608x3 + 3334272x4 + 8899840x5 + 4255744x6

The corresponding contra-pasted chains KAl2 and KAl3 are shown in Figure 3.16 and their

genus distributions are given as follows:

g[KAl2](x) = 60x+ 3284x2 + 29424x3 + 32768x4

g[KAl3](x) = 52x+ 7084x2 + 282528x3 + 3331968x4 + 8899840x5 + 4255744x6

Figure 3.16: Contra-self-amalgamating open chains Al2 and Al3.
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Chapter 4

Genus Distributions of 4-Regular

Outerplanar Graphs

This section describes an O(n2)-time divide-and-conquer algorithm for calculating genus

distribution of any 4-regular outerplanar graph. One special importance of 4-regular graphs

is that they occur as projections of knots and links. Another is that the medial graph of

any embedded graph is a 4-regular graph. Outerplanar and outerembeddable graphs have

been a subject of interest, especially in the area of graph minors and obstructions [Brehaut,

1977], [Sys�lo, 1979], [Heath, 1986], and [Bienstock and Dean, 1992].

A graph G is called an outerplanar graph if it has a planar embedding in which

some face-boundary walk contains every vertex of G. We refer to such an embedding as

an outerplane embedding, and we denote the face containing all the vertices by f∞,

to indicate that it contains the point at infinity. An outerplane embedding is said to be

normalized if all self-loops of the graph lie on the face-boundary walk of the face f∞. We

designate the edges that constitute the face-boundary walk of f∞ as exterior edges, in

contrast to the usage of interior edges for the remaining edges. We refer to the edge-ends

of exterior and interior edges as exterior edge-ends and interior edge-ends, respectively.

Figure 4.1 shows a 4-regular outerplane embedding before normalization, with the exterior

edges shown darker than interior edges.
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Figure 4.1: An unnormalized outerplane embedding of a 4-regular outerplanar graph.

In the previous two sections, we were dealing with rooted graphs containing one or

two root-edges. In this section, we use methods that employ a variation on the concepts

developed in §2 and §3. We deal strictly with vertices, instead of edges, as roots. In

this context, we extend some old terminology to encompass more general ideas, as well as

introduce new terminology.

Any vertex in a graph may be designated a root-vertex. Insofar as the exposition of

this section is concerned, a root always refers to a root-vertex, and a graph with one or

more root-vertices is known as a rooted graph. Here, we primarily deal with graphs having

two roots. We refer to such a graph as a double-rooted graph. We assume that each root-

vertex in a double-rooted graph is 2-valent. If a 2-valent root-vertex u occurs twice in an

fb-walk, it breaks the fb-walk into two strands, which are the maximal subwalks such that

u is not an interior point. We refer to these strands as u-strands. For a double-rooted

graph (G, u, v), the vertex u is referred to as the first-root of the graph G and the vertex

v is referred to as the second-root of the graph G.

The layout of the rest of this section is as follows: In §4.1 and §4.2, we lay groundwork

for exploiting the structure of 4-regular outerplanar graphs for our present purpose. In §4.3,

we discuss the algorithm, and we do a dry run on a small example. In §4.4, the complexity

of the algorithm is discussed. The proof of correctness is given in §4.5.

4.1 Split Graphs and Incidence Trees

Given a normalized outerplane embedding of a 4-regular outerplanar graph G, we classify

its vertices into two types. A Type-I vertex has two exterior and two interior incident

edge-ends, whereas a Type-II vertex has four exterior incident edge-ends. Thus, every
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cut-vertex is a Type-II vertex. Moreover, by requiring that every self-loop lie on the fb-walk

of the face f∞, we can make its single endpoint be a Type-II vertex. All other vertices are

Type-I.

The general term splitting of a vertex vi is used to mean either of the following two

operations on the vertex vi:

• Type-I Vertices: In the rotation at a Type-I vertex vi in the outerplane embedding,

the exterior edge-ends e1 and e2 incident on vi are contiguous, as are the interior

edge-ends d1 and d2. Let the cyclic counter-clockwise order of the edge-ends incident

on vi be (e1, e2, d1, d2) in the outerplane embedding of graph G. Then splitting the

vertex vi consists of introducing two new vertices v′i and v′′i , called single-primed

and double-primed vertices, respectively, with the edge-ends d2 and e1 incident on

v′i instead of on vi, and with the edge-ends e2 and d1 incident on v′′i instead of on vi.

The vertex vi is deleted. This is illustrated in Figure 4.2.

v'i
e1 e2

d1

d2

v''iv i

e1

e2

d1

d2

Figure 4.2: Splitting a Type-I vertex vi.

• Type-II Vertices: Let the exterior edge-ends of vi be cyclically ordered as (e1, e2,

e3, e4), where e1 and e4 belong to one block and e2 and e3 either belong to another

block or are the two edge-ends of the same self-loop. Then splitting the vertex vi

consists of introducing two new vertices v̇i and v̈i. We refer to either of these as a

dotted vertex. The edge-ends e1 and e4 are made incident on v̇i, while the edge-ends

e2 and e3 are made incident on v̈i instead of on vi. The vertex vi is deleted.

In this manner, every vertex of the normalized outerplane embedding of a 4-regular outer-

planar graph G may be split, thereby obtaining a graph G′ where each vertex is 2-valent

and, therefore, each component is a cycle Cn for some n. We refer to G′ as the split graph

for the graph G, and we refer to each pair of vertices obtained from a split as coupled

vertices. The two vertices in a coupled pair belong to different components. These two
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components are called coupled components with respect to that pair of vertices. An

example of a 4-regular outerplanar graph and its split graph is shown in Figure 4.3.

Figure 4.3: A 4-regular outerplanar graph and the split graph obtained from its nor-

malized outerplane embedding.

Remark 10. Each component of a split graph is the boundary of a 2-cell, which is regarded

as having a counter-clockwise orientation induced from the orientation of the outerplane

embedding.

It is easy to visualize how the original graph G can be reassembled by amalgamating

each pair of coupled vertices in G′. The devised algorithm utilizes this reconstructability

of a 4-regular outerplanar graph. It calculates genus distribution of the outerplanar graph

by simulating its reconstruction, while calculating the genus distributions for the subgraphs

assembled at each step of the algorithm.

Component graph of the split graph C(G′) refers to the graph whose nodes are the

components of the split graph, and in which two nodes are adjacent if they are coupled. An

algorithm for building an ordered tree that can be regarded as a depth-first spanning tree

of C(G′) is described as follows:

1. Designate an arbitrary component in the component graph C(G′) as the root node

of the tree. Represent the root node visually with a round-shaped vertex.
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2. Construct a depth-first ordered tree rooted at the root node in the component graph

C(G′), such that the child components for each tree node C correspond to the com-

ponents coupled with it only with respect to its single-primed and dotted vertices.

3. By ordered tree, we mean that the counter-clockwise rotation at each tree node im-

poses a linear ordering on its children. The order prescribed for the children of each

tree node C is that in which these coupled child components are encountered under

the counter-clockwise orientation on C in G′. The first child node of the root node is

chosen arbitrarily since the root node has no parent node. In contrast, for any other

tree node C coupled with parent node P, the first child node of C is chosen to be the

first component coupled with it after P under the counter-clockwise orientation on C.

4. Each new node added to the tree in step 2 is represented visually by a square node

if it corresponds to a component coupled to its parent with respect to dotted vertices,

otherwise it is represented by a round node.

The ordered tree formed in this manner is unique for a fixed root and a fixed first child of the

root, and is referred to as the incidence tree of the outerplanar graph G with respect to

the given outerplane embedding. Depending on the context, the tree nodes of an incidence

tree may interchangeably be regarded as the components of C(G′) or as their more abstract

round and square visual representations. For the split graph in Figure 4.3 and a particular

choice of the root component and the first child component, the corresponding incidence

tree is shown in Figure 4.4. The darker round node 18 shown in Figure 4.4 is the root

node. The arbitrarily selected first child of the root is illustrated by the dark directed edge

incident on it from the root node.

The post-order traversal of an incidence tree prescribes the order in which coupled

vertices are amalgamated when simulating the reconstruction of the outerplanar graph. In

this sense, the incidence tree for a 4-regular outerplanar graph fills the same role as the

“inner tree” for a 3-regular outerplanar graph in [Gross, 2011b]. However, as we have just

seen, its construction involves more subtleties.

Remark 11. The purpose in introducing component graphs is to facilitate the conceptual-

ization of incidence trees. In practice, an incidence tree can be constructed directly from a

split graph without recourse to construction of the component graph.
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Figure 4.4: An incidence tree for the split graph from Figure 4.3.

4.2 Vertex-Amalgamations and Self-Vertex-Amalgamations

In order to simulate the reconstruction of a 4-regular outerplanar graph, we require two

graph operations that involve amalgamation of root-vertices. These are vertex-amalgamation

and self-vertex-amalgamation. For simplicity, we refer to these as amalgamation and self-

amalgamation, respectively. As before, we define productions for these operations that

algebraically represent the embeddings of the resulting graph. We also specify the rele-

vant set of double-root partials, albeit with respect to root-vertices. The set of double-root

partials in turn enables a precise understanding of what is entailed by partitioned genus

distribution.

Double-Root Partials

Double-Root partials for double-rooted graphs are defined analogously to the first-order

partials for double-edge-rooted graphs with the difference that the roots in question are

vertices and not edges. Any given 2-valent vertex appears exactly twice in the set of fb-

walks of an embedding. This enables a partitioning of the embeddings of a double-rooted

graph (G, u, v) on a surface Si into the four basic types: ddi, dsi, sdi, and ssi. The first

letter of each type represents the first-root u, and the second letter represents the second-
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root v. The letters s and d are mnemonics for “same” and “distinct”, indicating whether

the corresponding 2-valent root vertex occurs twice on the same fb-walk or once on each

of two distinct fb-walks. Each double-root partial counts the number of embeddings of

one of these four basic types. The four double-root partials are further refined by [Gross et

al., 2010] to express the specific relationships of the fb-walks incident on both roots. These

refinements are known as sub-partials and are as follows:

• dd0i , ds0i , sd0i and ss0i are the numbers of embeddings of G on surface Si of types dd,

ds, sd and ss, respectively, such that no fb-walk incident on u is incident on v.

• dd′i, ds′i, and sd′i are the numbers of embeddings of G on surface Si of types dd, ds

and sd, respectively, such that exactly one fb-walk incident on u is also incident on v.

• dd′′i is the number of embeddings of G on surface Si of type dd such that both fb-walks

incident on u are also incident on v.

• ss1i and ss2i partition the number of embeddings on surface Si of type ss where ss1

counts the cases where exactly one u-strand contains both occurrences of the root v,

while ss2 counts the cases where each u-strand contains an occurrence of v.

It follows from these definitions that each double-root partial is the sum of its sub-partials.

Moreover,

gi(G) = ddi(G) + dsi(G) + sdi(G) + ssi(G)

There are also additional sub-partials that are refinements for the sub-partials sd′ and ss1.

We build the context in which these sub-partials are needed and provide their definitions

in §4.2.

The collection of values of the sub-partials, for all values of i, is the partitioned genus

distribution of the graph (G, u, v). This collection includes the values of sub-partials

defined as refinements of sd′ and ss1 in §4.2.

Productions for Self-Vertex-Amalgamation

A self-vertex-amalgamation of a double-rooted graph is an operation (G, u, v) −→ W ,

where the two roots of the graph are merged together to produce a new graph. Here,
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we use the simpler alternative self-amalgamation to mean the same. We know from

[Gross, 2011a] that when both roots u and v are 2-valent, an embedding ιG of G under

self-amalgamation induces six unique embeddings of W such that the rotations at vertices

in ιG are consistent with rotations at vertices in the six corresponding embeddings of W .

We also know that the genus of each of these embeddings of W is a function of the genus of

the embedding surface of ιG and of the configuration of fb-walks on which the roots of G lie.

This information can be represented in a form known as a production for self-amalgamation.

Let pi be a double-root sub-partial of the double-rooted graph (G, u, v). Then the

standard representation for a self-amalgamation production, as laid out in [Gross, 2011a],

is of the form:

pi(G, u, v) −→ α1gi+k1(W ) + α2gi+k2(W )

where α1, α2 are non-negative integers whose sum is 6, and where k1, k2 are integers within

the range of -1 to 2. This can be interpreted as follows:

A type p embedding of (G, u, v) on surface Si self-amalgamates on the root-

vertices u and v to give six embeddings of the graphW . Out of these six resulting

embeddings, α1 embeddings are on surface Si+k1 , and α2 are on surface Si+k2 .

The complete set of productions for self-amalgamation on 2-valent roots is given in

[Gross, 2011a]. However, the form of the production defined above does not capture root-

related information for the graph W that is produced as a result of self-amalgamation.

This is problematic since we need to be able to repeatedly apply self-amalgamations and

vertex-amalgamations, in order to build a larger graph from many of the smaller subgraphs.

For this reason, after self-amalgamation, we pop new root vertices on the exterior edge e

incident on the first-root u of the graph (G, u, v). This is illustrated in Figure 4.5, where

the edges e and f are incident on the first-root u before self-amalgamation. The edge f is

necessarily an interior edge. New roots are popped on the edge e after self-amalgamation.

Nota bene, the root popped closer to the amalgamated vertex is considered the second-root

of the resulting graph.

This entails adapting the production body to reflect the new roots. In particular, we

need to replace each occurrence of gi in the production body by the relevant double-root
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Figure 4.5: A model representing self-amalgamation.

sub-partial that is consistent with the face-boundaries incident on these new roots. In light

of this, a production for self-vertex-amalgamation is redefined as follows:

pi(G, u, v) −→
∑

xk ranges over all

sub-partial types

with k∈{i−1,i,i+1,i+2}

αxkxk(W, s, v)

where each xk is a double-root sub-partial type for the graph W and where the numbers

αxk are non-negative integers whose sum is 6.

Since both new roots are popped on the same edge, the same fb-walk that passes through

one root also passes through the other. Thus, each sub-partial in the production body for

a self-amalgamation production is either of type dd′′ or of type ss1.

Adaptation of productions in this manner is straightforward for all sub-partials pi in

the production head, except for the sub-partials sd′i and ss1i . To facilitate the adaptation

of productions for these two sub-partials, we further refine them as follows:

↑sdi′(G, u, v) = the number of type sd′i embeddings such that the

u-strand that contains the occurrence of vertex v

also contains both occurrences of exterior edge e

in it (see Figure 4.6).

↓sdi′(G, u, v) = the number of type sd′i embeddings such that the

u-strand that contains the occurrence of vertex v

does not contain the two occurrences of exterior edge e

in it (see Figure 4.6).
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Therefore,

sd′i(G, u, v) = ↑sdi′(G, u, v) + ↓sdi′(G, u, v)

Similarly,

↑ssi1(G, u, v) = the number of type ss1i embeddings such that the

u-strand that contains both occurrences of the vertex v

also contains both occurrences of exterior edge e in it

(see Figure 4.6).

↓ssi1(G, u, v) = the number of type ss1i embeddings such that the

u-strand that contains both occurrences of the vertex v

does not contain the two occurrences of exterior edge e

in it (see Figure 4.6).

Thus,

ss1i (G, u, v) = ↑ssi1(G, u, v) + ↓ssi1(G, u, v)

u v u vu v u v

ss 1 ss 1sd
1sd1

e ee e

Figure 4.6: Refined partials types of sd′ and ss1.

The proofs in [Gross, 2011a] can now be adapted by popping two new roots on edge e, as

shown on the right side of Figure 4.5. This chosen edge e corresponds to the exterior edge of

the outerplane embedding that is incident on the first-root undergoing self-amalgamation.

The following theorem adapts the productions for self-amalgamation by making the

modification above.

Theorem 17. When an embedding of a double-rooted graph (G, s, t) with 2-valent roots is

self-amalgamated, the following productions hold:

dd0i (G, u, v) −→ 4dd′′i+1(W, s, t) + 2↓ss1i+2(W, s, t) (4.1)
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dd′i(G, u, v) −→ dd′′i (W, s, t) + 3dd′′i+1(W, s, t) + 2↓ss1i+1(W, s, t) (4.2)

dd′′i (G, u, v) −→ 4dd′′i (W, s, t) + 2↓ss1i+1(W, s, t) (4.3)

ds0i (G, u, v) −→ 6dd′′i+1(W, s, t) (4.4)

ds′i(G, u, v) −→ 3dd′′i (W, s, t) + 3↓ss1i+1(W, s, t) (4.5)

sd0i (G, u, v) −→ 6↓ss1i+1(W, s, t) (4.6)

↑sd′i(G, u, v) −→ 3dd′′i (W, s, t) + 3↓ss1i+1(W, s, t) (4.7)

↓sd′i(G, u, v) −→ 3↓ss1i (W, s, t) + 3↓ss1i+1(W, s, t) (4.8)

ss0i (G, u, v) −→ 6↓ss1i+1(W, s, t) (4.9)

↑ss1i (G, u, v) −→ 6dd′′i (W, s, t) (4.10)

↓ss1i (G, u, v) −→ 6↓ss1i (W, s, t) (4.11)

ss2i (G, u, v) −→ dd′′i−1(W, s, t) + 3dd′′i (W, s, t) + 2↓ss1i (W, s, t) (4.12)

Proof. An sd′-type embedding of (G, u, v) has one fb-walk incident on root u and two on

root v. Moreover, the fb-walk incident on u is also incident on root v. When such an

embedding is self-amalgamated, the resulting graph W has six corresponding embeddings.

This however results in two different scenarios based on whether the embedding of G is

of sub-type ↑sd′i or ↓sd′i. The first scenario, corresponding to an ↑sd′i-type embedding of

(G, u, v), is portrayed in Figure 4.7.

e

u v

Figure 4.7: Self-amalgamation of a ↑sdi-type embedding of G.

The six embedding models shown at the right of the figure correspond to the embeddings

of W resulting from the self-amalgamation of an embedding of G. As a result of self-
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amalgamation, the fb-walks incident on both root vertices of (G, u, v) break into strands,

that recombine to make new fb-walks. Two new roots are popped on the exterior edge e

after self-amalgamation, as shown in the figure. The root farther from the amalgamated

vertex is the first-root, and the one closer to it is the second-root. One observes that half of

the embeddings of W resulting from self-amalgamation are of type dd′′, while the remaining

are of type ↓ss1. This accounts for Production 4.7.

Contrast this with the second scenario illustrated in Figure 4.8. This constitutes the

proof of Production 4.8.

e
u v

Figure 4.8: Self-amalgamation of a ↓sdi-type embedding of G.

Remark 12. Figure 4.5 makes it clear that the ss1-type partials resulting from the self-

amalgamation are always ↓ss1-sub-type.

The proofs for other productions are identical in substance to the proofs given for the

corresponding productions in [Gross, 2011a]. However, a fine-tuning of the classification

of the embeddings resulting from self-amalgamation is necessitated, as in the proof of the

productions above. For the sake of brevity, the remaining productions are left for the reader

to verify.

Productions for Vertex-Amalgamation

Let (G, s, t) be a graph with the vertices s and t designated as roots, and let (H,u, v) be a

graph with the vertices u and v as roots. Then amalgamating the graph G at root vertex

t with the graph H at root vertex u yields a new graph (W, s, v) with the vertices s and v
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serving as roots. The vertex-amalgamation operation is denoted by an asterisk as follows:

(W, s, v) = (G, s, t) ∗ (H,u, v)

It is assumed that the roots are 2-valent. Thus, when an embedding ιG of G and an

embedding ιH of H amalgamate, they induce six unique embeddings of W , in which the

rotations at all vertices of W are consistent with the rotations at the corresponding vertices

in both ιG and ιH . Moreover, the genus of each of these embeddings of W is a function

of the genera of ιG and ιH and of the fb-walks on which the roots of G and H lie as they

undergo amalgamation.

Let pi and qj be double-root sub-partials. Then a production for vertex-amalgamation

represents the ways in which a type pi embedding of (G, s, t) and a type qj embedding of

(H,u, v) amalgamate on their root vertices t and u, respectively, to give various types of

embeddings of the resulting graph (W, s, v). We write

pi(G, s, t) ∗ qj(H,u, v) −→
∑

xk ranges over all

sub-partial types

with k∈{i+j,i+j+1}

αxkxk(W, s, v)

where the coefficients αxk are non-negative integers that sum to six, and where each term in

the production body indicates that there are αxk embeddings of the graph produced by the

amalgamation, that have genus k and a sub-partial type xk. This can be read as follows:

Amalgamating a p-type embedding of (G, s, t) on surface Si with a q-type embed-

ding of (H,u, v) on surface Sj on the root-vertices t and u yields six embeddings

of the graph (W, s, v). Each of these six embeddings corresponds to a partial

type x on the surface Si+j or Si+j+1, as specified by the subscript of x.

A method for deriving productions for vertex-amalgamation was presented in [Gross,

2011a], but no distinction was made between the ↑ss1 and ↓ss1 sub-partials, or between the

↑sd′ and ↓sd′ sub-partials. The method in [Gross, 2011a] works equally well for these new

sub-partials. The complete list of productions needed for our algorithm is given in Table 4.1.

The productions not involving sub-partial types ↑sd′, ↓sd′, ↑ss1 or ↓ss1 in the production

body are taken from [Gross, 2011a] and are listed here only for the sake of completion. For

brevity, we abbreviate the double-root partials by omitting the double-rooted graphs.
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Even though there are twelve sub-partials defined in this paper, the number of pro-

ductions directly needed for our algorithm is 2 × 12 = 24. This is because the order in

which the various graph components are amalgamated necessitates that the roots of the

first amalgamand in any vertex-amalgamation be adjacent. This allows three possibilities

for the sub-partial types of such a component: dd′′, ↑ss1, and ↓ss1. It turns out that an

embedding of the first amalgamand is never of type ↑ss1. The first amalgamand has an

ss1-type embedding only as an outcome of a previous self-amalgamation or as an outcome

of a step in our algorithm that involves vertex-amalgamating a pair of dotted vertices. In

our earlier remark, it was mentioned that self-amalgamation produces only ↓ss1-type em-

beddings. The same is also true for the latter scenario as will become evident in the next

section. Therefore, the sub-partials of the first amalgamand are limited to only two valid

types: dd′′ and ↓ss1.

Table 4.1: Productions for vertex-amalgamation (G, s, t) ∗ (H,u, v) where the embed-

ding of graph G has partial type dd′′ or ↓ss1.

dd′′i (G, s, t) productions ↓ss1i (G, s, t) productions

dd′′i ∗ dd0j −→ 4dd0i+j + 2sd0i+j+1 ↓ss1i ∗ dd0j −→ 6sd0i+j

dd′′i ∗ dd′j −→ 2dd0i+j + 2dd′i+j + ↓sd′i+j+1 + ↑sd′i+j+1 ↓ss1i ∗ dd′j −→ 3↓sd′i+j + 3sd0i+j

dd′′i ∗ dd′′j −→ 4dd′i+j + 2ss2i+j+1 ↓ss1i ∗ dd′′j −→ 6↓sd′i+j
dd′′i ∗ ds0j −→ 4ds0i+j + 2ss0i+j+1 ↓ss1i ∗ ds0j −→ 6ss0i+j+1

dd′′i ∗ ds′j −→ 2ds0i+j + 2ds′i+j + ↓ss1i+j+1 + ↑ss1i+j+1 ↓ss1i ∗ ds′j −→ 3ss0i+j + 3↓ss1i+j
dd′′i ∗ sd0j −→ 6dd0i+j ↓ss1i ∗ sd0j −→ 6↓sd′i+j
dd′′i ∗ ↓sd

′
j −→ 6dd′i+j ↓ss1i ∗ ↑sd′j −→ 6↓sd′i+j

dd′′i ∗ ↑sd
′
j −→ 6dd′i+j ↓ss1i ∗ ↓sd′j −→ 6↓sd′i+j

dd′′i ∗ ss0j −→ 6ds0i+j ↓ss1i ∗ ss0j −→ 6ss0i+j

dd′′i ∗ ↑ss
1
j −→ 6ds′i+j ↓ss1i ∗ ↑ss1j −→ 6↓ss1i+j

dd′′i ∗ ↓ss
1
j −→ 6ds′i+j ↓ss1i ∗ ↓ss1j −→ 6↓ss1i+j

dd′′i ∗ ss2j −→ 4ds′i+j + 2dd′′i+j ↓ss1i ∗ ss2j −→ 6↓ss1i+j
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4.3 Algorithm

This section describes the algorithm that calculates the genus distribution of a 4-regular

n-vertex outerplanar graph in O(n2) time. The later part of this section also demonstrates

how the algorithm works by illustrating it for a simple example.

Input: A rotation system that specifies an outerplane embedding of a 4-regular outerplanar

graph G.

Algorithm:

1. Normalize the outerplane embedding by changing rotations of all vertices that have

a self-loop incident on them and by making the self-loops lie on the boundary of the

face f∞.

2. Obtain the split graph G′ from the normalized outerplane embedding, and form an

incidence tree T with respect to an arbitrarily designated root component and an

arbitrarily chosen first child of the root component. At the outset, the only non-zero

double-root sub-partial for each component of the split graph G′ is dd′′0 = 1. As we

see in an example developed in this section, splitting the base vertex of a self-loop

leads to a component of G′ with only one vertex and one edge. However, we pop a new

root vertex adjacent to that one vertex and regard that component as also having two

roots and as having the double-root partial dd′′0 = 1, thereby avoiding exceptional

handling of this case.

3. Perform a post-order traversal of the incidence tree T and process all the nodes

of T in that order. Processing each node requires a vertex-amalgamation, a self-

amalgamation, or both operations on its associated component, in addition to certain

other actions. When performing a vertex-amalgamation or a self-amalgamation, one

calculates the double-root sub-partials for the resulting subgraph by applying the rele-

vant productions to the non-zero double-root sub-partials of the components involved

in the operation.

We elaborate on how to process a node based on its type:
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(a) Processing a round node of T requires two steps:

i. First the component associated with the round node is vertex-amalgamated

on its first-root to the component associated with its parent node in the

incidence tree.

ii. After the vertex-amalgamation, check whether the vertex coupled with the

second-root of the component belongs to a different component or to the

same component. If it is the same component, perform a self-amalgamation.

(b) Processing a square node simulates the amalgamation of coupled vertices that

were initially produced by splitting a Type-II vertex. Let P be the component

associated with the parent node of a square node, and let S be the component

associated with the square node. Then processing the square node involves the

following steps:

i. First the component P is vertex-amalgamated on its second-root to the com-

ponent S. The resulting graph has the first-root on what was previously the

component P, while the second-root is on what was previously the com-

ponent S. There are no further amalgamations to be performed on the

subgraph S, whereas we still need two root vertices on the subgraph P in or-

der to process the parent node of the square node in the post-order traversal

of the incidence tree. This necessitates dropping the second-root and pop-

ping a new root vertex adjacent to the first-root. Depending on whether the

first-root lies in a type d or a type s embedding, the two new roots will now

be in a type dd′′ or in a type ↓ss1 embedding, respectively. This explains

the next step.

ii. All ddi and dsi partials for the graph produced in the previous step are added

and saved as dd′′i for each i, and all sdi and ssi partials for each i are added

and saved as ↓ss1i . Other than these two sub-partials, all other sub-partials

are made zero-valued.

4. Once the entire incidence tree has been processed, the values of sub-partials constitute

the partitioned genus distribution of the given graph G. The genus distribution can
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now be calculated by summing all non-zero double-root sub-partials for each i, i.e.,

gi(G) =
∑

xi ranges over all

sub-partials

xi(G, u, v)

Working Out an Example

We simulate the algorithm on a simple example of a 4-regular outerplanar graph, shown in

Figure 4.9. The split graph and its corresponding incidence tree for an arbitrarily chosen

root component are also shown in Figure 4.9. For ease of referencing, the components of

the split graph are labeled with letters of the alphabet.

1

3 4

5

A

B

C

E
2

D

Figure 4.9: Graph G, its split graph and incidence tree.

1. Processing tree node 1 involves a vertex-amalgamation of components A and B, fol-

lowed by a self-amalgamation. We refer to the subgraph obtained as a result of the

vertex-amalgamation as U1, and to the subgraph resulting from the self-amalgamation

of U1 as U2.

(a) Since dd′′0(A) = 1 and dd′′0(B) = 1 are the only non-zero sub-partials of compo-

nents A and B, there is only one applicable production for vertex-amalgamation:

dd′′i (A) ∗ dd′′j (B) −→ 4dd′i+j(U1) + 2ss2i+j+1(U1)

=⇒

dd′k(U1) = 4dd′′k(A)× dd′′0(B) = 4dd′′k(A)× 1 = 4dd′′k(A)

ss2k(U1) = 2dd′′k−1(A)× dd′′0(B) = 2dd′′k−1(A)× 1 = 2dd′′k−1(A)

=⇒

dd′0(U1) = 4dd′′0(A) = 4× 1 = 4

ss21(U1) = 2dd′′0(A) = 2× 1 = 2
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(b) For self-amalgamation of U1, we need Productions 4.2 and 4.12:

dd′i(U1) −→ dd′′i (U2) + 3dd′′i+1(U2) + 2↓ss1i+1(U2)

ss2i (U1) −→ dd′′i−1(U2) + 3dd′′i (U2) + 2↓ss1i (U2)

=⇒

dd′′k(U2) = dd′k(U1) + 3dd′k−1(U1) + ss2k+1(U1) + 3ss2k(U1)

↓ss1k(U2) = 2dd′k−1(U1) + 2ss2k(U1)

=⇒

dd′′0(U2) = dd′0(U1) + 0 + ss21(U1) + 0 = 4 + 2 = 6

dd′′1(U2) = 0 + 3dd′0(U1) + 0 + 3ss21(U1) = 3× 4 + 3× 2 = 18

↓ss11(U2) = 2dd′0(U1) + 2ss21(U1) = 2× 4 + 2× 2 = 12

2. Processing tree node 2 involves two steps, since it is a square vertex:

(a) The first step involves amalgamating the component C to the component D.

Remark 13. Notice that even though D has a single vertex, we can consider a

second-root vertex adjacent to the single vertex and then work as before, using

dd′′0(D) = 1 as the only non-zero sub-partial.

Since dd′′0(C) = 1 and dd′′0(D) = 1, this case is similar to what occurred while

processing tree node 1, where components A and B were vertex-amalgamated.

The resulting graph U3 = C ∗ D will have the same values for sub-partials as

were produced for the subgraph U1 = A ∗ B. Thus, before the second step, the

partials for U3 are dd′0(U3) = 4 and ss21(U3) = 2.

(b) In the second step, we save all partials of U3 as dd′′i and ↓ss1i in order to simulate

dropping the second-root of U3 and popping the new root on that part of U3

which was previously the component C:

dd′′0(U3) = 4, ↓ss11(U3) = 2
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3. Processing tree node 3 means amalgamating the component U2, that was produced

while processing node 1, to the component U3 produced while processing node 2. We

refer to the component U2 ∗ U3 as U4.

The non-zero sub-partials of U2 are

dd′′0(U2) = 6, dd′′1(U2) = 18, ↓ss11(U2) = 12

and the non-zero sub-partial of U3 are

dd′′0(U3) = 4, ↓ss11(U3) = 2

The productions needed for vertex-amalgamation of U2 and U3 are

dd′′i (U2) ∗ dd′′j (U3) −→ 4dd′i+j(U4) + 2ss2i+j+1(U4)

↓ss1i (U2) ∗ dd′′j (U3) −→ 6↓sd′i+j(U4)

dd′′i (U2) ∗ ↓ss1j (U3) −→ 6ds′i+j(U4)

↓ss1i (U2) ∗ ↓ss1j (U3) −→ 6↓ss1i+j(U4)

=⇒

dd′k(U4) = 4dd′′k(U2)× dd′′0(U3) = 4dd′′k(U2)× 4 = 16dd′′k(U2)

ss2k(U4) = 2dd′′k−1(U2)× dd′′0(U3) = 2dd′′k−1(U2)× 4 = 8dd′′k−1(U2)

↓sd′k(U4) = 6↓ss1k(U2)× dd′′0(U3) = 6↓ss1k(U2)× 4 = 24↓ss1k(U2)

ds′k(U4) = 6dd′′k−1(U2)× ↓ss11(U3) = 6dd′′k−1(U2)× 2 = 12dd′′k−1(U2)

↓ss1k(U4) = 6↓ss1k−1(U2)× ↓ss11(U3) = 6↓ss1k−1(U2)× 2 = 12↓ss1k−1(U2)

=⇒

dd′0(U4) = 16dd′′0(U2) = 16× 6 = 96 ↓sd′1(U4) = 24↓ss11(U2) = 24× 12 = 288

dd′1(U4) = 16dd′′1(U2) = 16× 18 = 288 ds′1(U4) = 12dd′′0(U2) = 12× 6 = 72

ss21(U4) = 8dd′′0(U2) = 8× 6 = 48 ds′2(U4) = 12dd′′1(U2) = 12× 18 = 216

ss22(U4) = 8dd′′1(U2) = 8× 18 = 144 ↓ss12(U4) = 12↓ss11(U2) = 12× 12 = 144
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4. Processing tree node 4 involves amalgamating subgraphs E and U4, followed by a self-

amalgamation. We refer to the subgraph E ∗ U4 as U5, and we refer to the subgraph

that results from self-amalgamating U5 as U6.

(a) For this purpose, five productions are needed for the cases dd′′ ∗ dd′, dd′′ ∗ ss2,

dd′′ ∗ ↓sd′, dd′′ ∗ ds′, and dd′′ ∗ ↓ss1, since dd′′0(E) = 1 is the only non-zero

sub-partial of E. These are the relevant productions:

dd′′i (E) ∗ dd′j(U4) −→ 2dd0i+j(U5) + 2dd′i+j(U5) + ↑sd′i+j+1(U5) + ↓sd′i+j+1(U5)

dd′′i (E) ∗ ss2j (U4) −→ 4ds′i+j(U5) + 2dd′′i+j(U5)

dd′′i (E) ∗ ↓sd′j(U4) −→ 6dd′i+j(U5)

dd′′i (E) ∗ ds′j(U4) −→ 2ds0i+j(U5) + 2ds′i+j(U5) + ↓ss1i+j+1(U5) + ↑ss1i+j+1(U5)

dd′′i (E) ∗ ↓ss1j (U4) −→ 6ds′i+j(U5)

=⇒

dd0k(U5) = 2dd′′0(E)× dd′k(U4) = 2dd′k(U4)

dd′k(U5) = 2dd′′0(E)× dd′k(U4) + 6dd′′0(E)× ↓sd′k(U4) = 2dd′k(U4) + 6↓sd′k(U4)

↑sd′k(U5) = dd′′0(E)× dd′k−1(U4) = dd′k−1(U4)

↓sd′k(U5) = dd′′0(E)× dd′k−1(U4) = dd′k−1(U4)

ds′k(U5) = 4dd′′0(E)× ss2k(U4) + 2dd′′0(E)× ds′k(U4) + 6dd′′0(E)× ↓ss1k(U4)

= 4ss2k(U4) + 2ds′k(U4) + 6↓ss1k(U4)

dd′′k(U5) = 2dd′′0(E)× ss2k(U4) = 2ss2k(U4)

ds0k(U5) = 2dd′′0(E)× ds′k(U4) = 2ds′k(U4)

↑ss1k(U5) = dd′′0(E)× ds′k−1(U4) = ds′k−1(U4)

↓ss1k(U5) = dd′′0(E)× ds′k−1(U4) = ds′k−1(U4)

=⇒

dd00(U5) = 2dd′0(U4) = 2× 96 = 192

dd01(U5) = 2dd′1(U4) = 2× 288 = 576
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dd′0(U5) = 2dd′0(U4) + 6↓sd′0(U4) = 2× 96 + 0 = 192

dd′1(U5) = 2dd′1(U4) + 6↓sd′1(U4) = 2× 288 + 6× 288 = 2304

↑sd′1(U5) = dd′0(U4) = 96

↑sd′2(U5) = dd′1(U4) = 288

↓sd′1(U5) = dd′0(U4) = 96

↓sd′2(U5) = dd′1(U4) = 288

ds′1(U5) = 4ss21(U4) + 2ds′1(U4) + 6↓ss11(U4)

= 4× 48 + 2× 72 + 0 = 336

ds′2(U5) = 4ss22(U4) + 2ds′2(U4) + 6↓ss12(U4)

= 4× 144 + 2× 216 + 6× 144 = 1872

dd′′1(U5) = 2ss21(U4) = 2× 48 = 96

dd′′2(U5) = 2ss22(U4) = 2× 144 = 288

ds01(U5) = 2ds′1(U4) = 2× 72 = 144

ds02(U5) = 2ds′2(U4) = 2× 216 = 432

↑ss12(U5) = ds′1(U4) = 72

↑ss13(U5) = ds′2(U4) = 216

↓ss12(U5) = ds′1(U4) = 72

↓ss13(U5) = ds′2(U4) = 216

(b) Productions 4.1−4.5, 4.7−4.8, and 4.10−4.11 are needed for self-amalgamation

of U5:

dd0i (U5) −→ 4dd′′i+1(U6) + 2↓ss1i+2(U6) dd′i(U5) −→ dd′′i (U6) + 3dd′′i+1(U6)

dd′′i (U5) −→ 4dd′′i (U6) + 2↓ss1i+1(U6) + 2↓ss1i+1(U6)

ds0i (U5) −→ 6dd′′i+1(U6) ds′i(U5) −→ 3dd′′i (U6) + 3↓ss1i+1(U6)

↑sd′i(U5) −→ 3dd′′i (U6) + 3↓ss1i+1(U6) ↓sd′i(U5) −→ 3↓ss1i (U6) + 3↓ss1i+1(U6)

↑ss1i (U5) −→ 6dd′′i (U6) ↓ss1i (U5) −→ 6↓ss1i (U6)

=⇒
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dd′′k(U6) = 4dd0k−1(U5) + dd′k(U5) + 3dd′k−1(U5) + 4dd′′k(U5) + 6ds0k−1(U5)

+ 3ds′k(U5) + 3↑sd′k(U5) + 6↑ss1k(U5)

↓ss1k(U6) = 2dd0k−2(U5) + 2dd′k−1(U5) + 2dd′′k−1(U5) + 3ds′k−1(U5)

+ 3↑sd′k−1(U5) + 3↓sd′k(U5) + 3↓sd′k−1(U5) + 6↓ss1k(U5)

=⇒

dd′′0(U6) = 0 + dd′0(U5) + 0 + 0 + 0 + 0 + 0 + 0 = 192

dd′′1(U6) = 4dd00(U5) + dd′1(U5) + 3dd′0(U5) + 4dd′′1(U5) + 0 + 3ds′1(U5)

+ 3↑sd′1(U5) + 0

= 4× 192 + 2304 + 3× 192 + 4× 96 + 3× 336 + 3× 96 = 5328

dd′′2(U6) = 4dd01(U5) + 0 + 3dd′1(U5) + 4dd′′2(U5) + 6ds01(U5) + 3ds′2(U4)

+ 3↑sd′2(U5) + 6↑ss12(U5)

= 4× 576 + 3× 2304 + 4× 288 + 6× 144 + 3× 1872 + 3× 288

+ 6× 72 = 18144

dd′′3(U6) = 0 + 0 + 0 + 0 + 6ds02(U5) + 0 + 0 + 6↑ss13(U5) = 6× 432

+ 6× 216 = 3888

↓ss10(U6) = 0

↓ss11(U6) = 0 + 2dd′0(U5) + 0 + 0 + 0 + 3↓sd′1(U5) + 0 + 0

= 2× 192 + 3× 96 = 672

↓ss12(U6) = 2dd00(U5) + 2dd′1(U5) + 2dd′′1(U5) + 3ds′1(U5) + 3↑sd′1(U5)

+ 3↓sd′2(U5) + 3↓sd′1(U5) + 6↓ss12(U5)

= 2× 192 + 2× 2304 + 2× 96 + 3× 336 + 3× 96 + 3× 288

+ 3× 96 + 6× 72 = 8064

↓ss13(U6) = 2dd01(U5) + 0 + 2dd′′2(U5) + 3ds′2(U5) + 3↑sd′2(U5) + 0 + 0

+ 3↓sd′2(U5) + 6↓ss13(U5)



CHAPTER 4. GENUS DISTRIBUTIONS OF 4-REGULAR OUTERPLANAR
GRAPHS 93

= 2× 576 + 2× 288 + 3× 1872 + 3× 288 + 3× 288 + 6× 216

= 10368

5. Processing tree node 5 returns immediately, since it is the root node. Thus, the

assembled graph U6 is the outerplanar graph G.

6. The genus distribution for G can be obtained by summing the sub-partials as follows:

g0(G) = dd′′0(G) + 0 = 192

g1(G) = dd′′1(G) + ↓ss11(G) = 5328 + 672 = 6000

g2(G) = dd′′2(G) + ↓ss12(G) = 18144 + 8064 = 26208

g3(G) = dd′′3(G) + ↓ss13(G) = 3888 + 10368 = 14256

4.4 Time-Complexity Analysis

Normalizing the outerplane embedding and obtaining the split graph are O(n) operations,

where n is the number of vertices of the given graph. Since the split graph has fewer than

n components, it follows that forming an incidence tree is also O(n).

Theorem 18. A connected subgraph H of a 4-regular outerplanar graph on k vertices has

O(k) number of partials.

Proof. Let k be the number of vertices in a subgraph H assembled using the algorithm. A

connected 4-regular graph with k vertices has cycle rank β = k + 1. Since H is a subgraph

of a connected 4-regular graph, the maximum genus of H is bounded by
⌊
β(H)
2

⌋
≤
⌊
k+1
2

⌋
.

As there are 12 sub-partial types, the number of sub-partials of H is bounded from above

by 12×
⌊
k+1
2

⌋
.

1. Time-Complexity of an Amalgamation Operation: If the parent component has

p vertices and the child component has q vertices, then by Theorem 18 their number

of partials are O(p) and O(q), respectively. Applying a single production for an

amalgamation step is O(1). Consequently, the complexity of applying all productions

for a single amalgamation is O(pq). The number of vertices in the subgraph resulting

from amalgamation is O(p+ q).
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2. Time-Complexity of a Self-Amalgamation Operation: If the graph component

undergoing self-amalgamation has p vertices then the complexity of applying self-

amalgamation productions is O(p). The number of vertices in the resulting graph

component is O(p).

Let n1, n2, · · · , nr be the number of vertices in the components of the split graph

of a graph G. From the first point above, it follows that if a component of size
∑

i∈I ni

amalgamates to a component of size
∑

j∈J nj , where I and J are some disjoint sets, then

the time-complexity of performing the operation is

∑
i∈I

ni
∑
j∈J

nj

and the size of the resulting graph is ∑
i∈I∪J

ni

As each coupled pair of vertices is amalgamated only once, the complexity of reconstructing

the original graph is O(
∑

i∈I, j∈J ninj) for some disjoint sets I and J . Therefore, the

complexity of the given algorithm is O((n1 + · · ·+nr)(n1 + · · ·+nr)) = O(n ·n) = O(n2).

4.5 Correctness

In order to show that the algorithm given in §4.3 correctly computes genus distribution of

4-regular outerplanar graphs, we need to address the question of whether root vertices will

be available at the right time and the right place for amalgamations and self-amalgamations.

As before, we regard the components represented by round and square nodes of an incidence

tree as nodes of the tree themselves, and we use expressions like “parent component”,

“child component” etc. We argue inductively for a tree node that the graph constructed by

processing each of the child nodes of that node contains two root vertices and that these

roots are available for the next amalgamation operation on that graph.

Lemma 19. Coupled components of an incidence tree are always in an ancestor-descendant

relationship.
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Proof. When two components are not coupled, they are said to be separated. Since an inci-

dence tree is created in a depth-first manner and since depth-first trees have no cross-edges,

it follows that the components from sibling subtrees of an incidence tree are separated from

each other. Thus, the vertices that recombine under amalgamation or self-amalgamation

must initially belong to coupled components that are in an ancestor-descendant relation-

ship.

Theorem 20. Let P be a component with one or more child components, none of which

correspond to square nodes. Then every graph in the sequence of graphs produced by process-

ing the children of P contains two root vertices, such that these root vertices are available

for the next amalgamation.

Proof. Before any of its child nodes are processed, P is homeomorphic to a cycle graph

and has two roots. When P has more than one child, processing its first child involves

an amalgamation of the child with P and necessarily ends with a self-amalgamation that

produces two consecutive roots on the resulting graph. This is illustrated in Figure 4.10.

2
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Figure 4.10: An example of propagation of root vertices.

The first-root of the double-rooted graph produced as a result of the self-amalgamation

corresponds to the vertex popped farther in the counter-clockwise direction, as shown. The

first- and second-root of each amalgamand are labeled 1 and 2, respectively. Thus, the roots
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are available at the right place for the next child to be processed. All but the last child will

be eventually processed similarly during the post-order traversal. In case of the last child

or the only child, if P has exactly one child component, its eventual amalgamation with P

may or may not be immediately followed by a self-amalgamation. If there is an immediate

self-amalgamation then as before, it will produce two adjacent roots, which can again be

used for attaching the resulting subgraph to its parent. On the other hand, if there is no

immediate self-amalgamation, then the second-root is preserved till a later time, when it

undergoes a self-amalgamation while processing an ancestor of P or P itself.

Lemma 21. No self-amalgamation is required while processing a square node.

Proof. Processing a square node represents the need to amalgamate coupled vertices that

arise either by splitting a cut vertex or by splitting the endpoint of a loop. A square node

has descendant components only in the former case. The descendants of a square node

are separated from its ancestor components since these two sets of components arise from

splitting different blocks of the outerplanar graph embedding. In addition, a component

corresponding to a square node has exactly one vertex coupled to its parent component.

Therefore, no self-amalgamation is required when processing a square node.

Theorem 22. Let P be a component with at-least one child component corresponding to

a square node. Then every graph in the sequence of graphs produced by processing the

children of P contains two root vertices, such that these root vertices are available for the

next amalgamation.

Proof. Let S be the first child component of P corresponding to a square node. Then

S is necessarily separated from its siblings as well as from the ancestor of P, by Lemma

19 and 21. The amalgamation of S to its parent component produces two roots on the

resulting graph, only the first of which lies on its subgraph P. The other root, that lies on

the subgraph S, is redundant by Lemma 21. This redundant root is dropped and only the

information for the first-root is retained in the form of single-root partials si and di. We

then pop up a new second-root adjacent to our first-root on the subgraph P and re-adjust

the numbers we had for si and di as ↓ss1i and dd′′i , respectively. Thus, as we continue to
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process the remaining child components of P or P itself, both roots will be available for the

next amalgamation.

By Theorem 20 and 22, each component is readily amalgamated to its parent node. If

a self-amalgamation is required, it is performed as soon as the opportunity presents itself.

In this bottom up fashion, eventually the entire graph is reconstructed.
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Part II

Conclusions
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Chapter 5

Conclusions

In approaching the genus distribution problem, I follow the divide-and-conquer approach of

computing genus distributions of large graphs in terms of the genus distributions of their

smaller constituent subgraphs. Under this guiding principle, I look at graphs constructed

from small base graphs through various kinds of edge- and vertex- amalgamations. Accord-

ingly, there are three main components of my research.

1. Recurrences are devised to specify genus distributions of chain-like graphs that are

constructed from base graphs pasted together along their edges. It is assumed that

the edges being pasted have 2-valent endpoints. It is also assumed that the par-

titioned genus distributions of these base graphs are known, where the partitioned

genus distribution of a graph is understood to be a breakdown of its total number of

embeddings into an inventory that specifies the number of embeddings of the graph

for each surface and each type under a classification system formulated here.

2. Two closed formulas are derived for computing the genus distribution of graphs ob-

tained from other graphs, by an amalgamation operation that involves identification

of edges of the same graph. Though there are two different ways of performing such

an identification, this operation is broadly qualified as self-edge-amalgamation. It is

assumed, as in the case of edge-amalgamation, that the partitioned genus distribution

of the graph undergoing self-edge-amalgamation is known and that the endpoints of

the edges undergoing the pasting are 2-valent.
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3. A quadratic-time algorithm is demonstrated for calculating the genus distribution of

any 4-regular outerplanar graph. The algorithm causes a 4-regular outerplanar graph

to split into its constituent subgraphs, and then simulates the synthesis of the original

graph, by identifying the necessary vertices in a prescribed order. In the process, it

utilizes the genus distributions of the constituent subgraphs to calculate the genus

distribution for the reassembled outerplanar graph.

5.1 Contributions

The salient contributions of my dissertation are summarized as follows:

1. It provides a general method based on edge-amalgamation that enables us to calculate

the genus distribution of recursively defined infinite families of graphs, a task that

has been not possible hitherto without recourse to the brute-force Heffter-Edmonds

algorithm. The methods discussed have theoretical importance in view of the scope of

prior research on the genus distribution problem, which has, on one hand, tended to

focus on highly symmetrical graphs and has, on the other hand, focused on techniques

that are specific to a particular graph family without applicability to other families

of graphs. Apart from theoretical importance, there is also practical value in making

genus distribution calculations computationally viable for many families of graphs.

2. This general plan enables genus distribution calculations for various edge-pasted chains

constructed by using copies of different types of graphs or by using multiple copies

of the same graph. In this manner, genus distributions can be computed for various

infinite families of 3-regular graphs, apart from many other infinite classes.

3. This is taken a step further, to find the genus distribution of graphs produced as a

result of self-edge-amalgamation. Thus, further expanding the set of graphs for which

genus distributions can be computed.

4. The recurrences for edge-amalgamation can in some cases be solved, whereby to yield

closed formulas. These recurrences and formulas may be analyzed for proving uni-

modality for some classes of graphs. More importantly, they may provide an op-
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portunity for producing a counterexample to the unimodality conjecture, if such a

counterexample exists. Such opportunities for insight into the unimodality conjecture

also present themselves through the two closed-formulas given for graphs undergoing

self-edge-amalgamation.

5. §2.6 gives an easily understood method for constructing pairs of non-homeomorphic

graphs with the same genus distribution.

6. The results in §2 have been used by [Gross, 2011b] to construct a quadratic-time

algorithm for calculating the genus distribution of any 3-regular outerplanar graph.

7. An O(n2)-time algorithm is described for calculating the genus distributions of 4-

regular outerplanar graphs. Insofar as time-complexity is concerned, this is a signif-

icant improvement over the previous O(6n) time-complexity encountered when ap-

plying the Heffter-Edmonds algorithm to 4-regular outerplanar graphs. Outerplanar

graphs and their embeddings have been of particular interest to mathematicians work-

ing in the branch of topological graph theory that deals with obstructions and minors.

Thus, whereas many of the graph families for which genus distributions have been cal-

culated in the past are felt to be somewhat contrived, the class of outerplanar graphs

is certainly an interesting family in its own right.

5.2 Future Research

My research has possibly made progress towards some very important problems in the

area. We discuss some of these distant goals and explore avenues of future research that

may have the potential to contribute something of use to the larger body of knowledge

pertaining to these problems. However, the feasibility of conducting future research to

solve these problems based on my research is an unknown.

1. The Heawood map-coloring problem is a classical problem in topological graph

theory. Map-coloring refers to a coloring of the regions of an embedding such that

all adjacent regions use distinct colors. The Heawood map-coloring problem asks how

many colors suffice for a map-coloring on a given surface? A landmark solution to the
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Heawood map-coloring problem came in 1968 [Ringel and Youngs, 1968]. A major

part of the solution consisted of finding the minimum genus of the complete graphs

Kn, for all n ≥ 3. The Ringel-Youngs proof for the Heawood map-coloring problem

comprised over 300 pages. Gross’s topological generalization of current graphs reduced

the length of the proof to about half [Gross and Alpert, 1974]. It might be possible

to build upon the methods discussed earlier to find genus distributions of complete

graphs through a unified approach that perhaps sheds light on the behavior of genus

distributions of covering graphs. If this is accomplished, it might potentially simplify

the solution, as well as further reduce the length of the existing solution.

2. The Genus distribution of planar graphs is an important problem. A step in that

direction would be to improve upon my algorithm for 4-regular outerplanar graphs to

the class of 4-regular Hamiltonian planar graphs.

A special case of 4-regular outerplanar graphs are the 4-regular Hamiltonian outerpla-

nar graphs, which can be embedded on the sphere in such a way that a Hamiltonian

cycle forms the boundary for the face at infinity, and such that the remaining edges

of the graph can be regarded as comprising of polygons inscribed inside the Hamil-

tonian cycle. One observes that all 4-regular Hamiltonian planar graphs can also be

characterized in a similar manner, as a Hamiltonian cycle with “outer” polygons as

well as “inner” polygons. Are the techniques covered here, therefore, extendible to

4-regular planar Hamiltonian graphs?

3. The Unimodality conjecture has been an open problem for more than 20 years.

For the first time, there is a general method available for examining embedding trends

for large classes of graphs. There is great potential for an in-depth analysis of why

graph families generated in certain systematic ways, such as ours, are unimodal.

One finds oneself motivated to ask if open as well as closed chains of base graphs

with strongly unimodal genus distributions are unimodal? We saw a formulation of

the genus distribution of closed chains as a linear combination of sub-partials of the

corresponding open chains. In turn, each of these sub-partials of an open chain is

calculated as a linear combination of convolutions of sub-partials of its constituent
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subgraphs. Although convolutions of strongly unimodal sequences are strongly uni-

modal, linear combinations of unimodal sequences need not be unimodal, unless the

modes are sufficiently close together. The task at hand seems quite complicated, due

to the large number of sub-partials. Nevertheless, the analysis of the recurrences and

closed-formulas presented here may prove to be useful for establishing structural re-

sults related to genus distributions as well as for providing insights into the larger

question of unimodality. The recurrences and formulas can also be of great computa-

tional assistance in attempting to uncover a counterexample, if one exists.

4. It has not been explored how this technique would work in combination with other

techniques. This is an avenue ripe for further investigation and can greatly extend

the classes of graphs for which genus distribution can be computed.

5. The impact of bounding tree-width on genus distribution should also be examined

in the light of these and other related techniques.

6. Adapting these ideas to the non-orientable case appears to be fairly accessible.

7. Other problems include the following:

• Calculating the genus distributions of graphs produced by amalgamating other

graphs on edges with higher-valent endpoints as well as of graphs produced by

amalgamating on more general subgraphs than K1 and K2

• Calculating the genus distributions of k-regular graphs for higher values of k,

and the generalization of such calculations to outer-embeddable graphs.
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Appendix A

Productions and Recurrences for

Edge-Amalgamations

Table A.1: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type dd0.

production

dd0i ∗ dd0j −→ 2dd0i+j + 2dd0i+j+1

dd′i ∗ dd0j −→ 2dd0i+j + 2dd0i+j+1

dd′′i ∗ dd0j −→ 2dd0i+j + 2sd0i+j+1

ds0i ∗ dd0j −→ 4dd0i+j

ds′i ∗ dd0j −→ 4dd0i+j

sd0i ∗ dd0j −→ 2sd0i+j + 2sd0i+j+1

sd′i ∗ dd0j −→ 2sd0i+j + 2sd0i+j+1

ss0i ∗ dd0j −→ 4sd0i+j

ss1i ∗ dd0j −→ 4sd0i+j

ss2i ∗ dd0j −→ 2dd0i+j + 2sd0i+j
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Table A.2: Set I of III: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f)

where the embedding of graph H has partial type dd′.

production

dd0i ∗ dd′j −→ 2dd0i+j + 2dd0i+j+1

ds0i ∗ dd′j −→ 4dd0i+j

sd0i ∗ dd′j −→ 2sd0i+j + 2sd0i+j+1

ss0i ∗ dd′j −→ 4sd0i+j

dd′i ∗ dd′j −→ dd0i+j + dd′i+j + 2dd′i+j+1

d̃d′i ∗ dd′j −→ 2dd0i+j + 2
←−
dd′i+j+1

−→
dd′i ∗ dd′j −→ 2dd0i+j + 2dd′i+j+1

←−
dd′i ∗ dd′j −→ dd0i+j +

←−
dd′i+j + 2

←−
dd′i+j+1

−→
dd′′i ∗ dd′j −→ dd0i+j + dd′i+j + 2

−→
sd′i+j+1

←−
dd′′i ∗ dd′j −→ dd0i+j +

←−
dd′i+j + 2

−→
sd′i+j+1

−→
ds′i ∗ dd′j −→ 2dd0i+j + 2dd′i+j
←−
ds′i ∗ dd′j −→ 2dd0i+j + 2

←−
dd′i+j

−→
sd′i ∗ dd′j −→ sd0i+j +

−→
sd′i+j + 2

−→
sd′i+j+1

←−
sd′i ∗ dd′j −→ 2sd0i+j + 2

−→
sd′i+j+1

ss1i ∗ dd′j −→ 2sd0i+j + 2
−→
sd′i+j

ss2i ∗ dd′j −→ dd′i+j +
←−
dd′i+j + sd0i+j +

−→
sd′i+j



APPENDIX A. PRODUCTIONS AND RECURRENCES FOR
EDGE-AMALGAMATIONS 115

Table A.3: Set II of III: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f)

where the embedding of graph H has partial type dd′.

production

dd′i ∗ d̃d′j −→ 2dd0i+j + 2
−→
dd′i+j+1

d̃d′i ∗ d̃d′j −→ dd0i+j + d̃d′i+j + 2d̃d′i+j+1

−→
dd′i ∗ d̃d′j −→ dd0i+j +

−→
dd′i+j + 2

−→
dd′i+j+1

←−
dd′i ∗ d̃d′j −→ 2dd0i+j + 2d̃d′i+j+1

−→
dd′′i ∗ d̃d′j −→ dd0i+j + d̃d′i+j + 2

←−
sd′i+j+1

←−
dd′′i ∗ d̃d′j −→ dd0i+j +

−→
dd′i+j + 2

←−
sd′i+j+1

−→
ds′i ∗ d̃d′j −→ 2dd0i+j + 2

−→
dd′i+j

←−
ds′i ∗ d̃d′j −→ 2dd0i+j + 2d̃d′i+j
−→
sd′i ∗ d̃d′j −→ 2sd0i+j + 2

←−
sd′i+j+1

←−
sd′i ∗ d̃d′j −→ sd0i+j +

←−
sd′i+j + 2

←−
sd′i+j+1

ss1i ∗ d̃d′j −→ 2sd0i+j + 2
←−
sd′i+j

ss2i ∗ d̃d′j −→ d̃d′i+j +
−→
dd′i+j + sd0i+j +

←−
sd′i+j
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Table A.4: Set III of III: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f)

where the embedding of graph H has partial type dd′.

production

dd′i ∗
−→
dd′j −→ dd0i+j +

−→
dd′i+j + 2

−→
dd′i+j+1

d̃d′i ∗
−→
dd′j −→ 2dd0i+j + 2d̃d′i+j+1

−→
dd′i ∗

−→
dd′j −→ 2dd0i+j + 2

−→
dd′i+j+1

←−
dd′i ∗

−→
dd′j −→ dd0i+j + d̃d′i+j + 2d̃d′i+j+1

−→
dd′′i ∗

−→
dd′j −→ dd0i+j +

−→
dd′i+j + 2

←−
sd′i+j+1

←−
dd′′i ∗

−→
dd′j −→ dd0i+j + d̃d′i+j + 2

←−
sd′i+j+1

−→
ds′i ∗

−→
dd′j −→ 2dd0i+j + 2

−→
dd′i+j

←−
ds′i ∗

−→
dd′j −→ 2dd0i+j + 2d̃d′i+j

−→
sd′i ∗

−→
dd′j −→ sd0i+j +

←−
sd′i+j + 2

←−
sd′i+j+1

←−
sd′i ∗

−→
dd′j −→ 2sd0i+j + 2

←−
sd′i+j+1

ss1i ∗
−→
dd′j −→ 2sd0i+j + 2

←−
sd′i+j

ss2i ∗
−→
dd′j −→ d̃d′i+j +

−→
dd′i+j + sd0i+j +

←−
sd′i+j

dd′i ∗
←−
dd′j −→ 2dd0i+j + 2dd′i+j+1

d̃d′i ∗
←−
dd′j −→ dd0i+j +

←−
dd′i+j + 2

←−
dd′i+j+1

−→
dd′i ∗

←−
dd′j −→ dd0i+j + dd′i+j + 2dd′i+j+1

←−
dd′i ∗

←−
dd′j −→ 2dd0i+j + 2

←−
dd′i+j+1

−→
dd′′i ∗

←−
dd′j −→ dd0i+j +

←−
dd′i+j + 2

−→
sd′i+j+1

←−
dd′′i ∗

←−
dd′j −→ dd0i+j + dd′i+j + 2

−→
sd′i+j+1

−→
ds′i ∗

←−
dd′j −→ 2dd0i+j + 2dd′i+j

←−
ds′i ∗

←−
dd′j −→ 2dd0i+j + 2

←−
dd′i+j

−→
sd′i ∗

←−
dd′j −→ 2sd0i+j + 2

−→
sd′i+j+1

←−
sd′i ∗

←−
dd′j −→ sd0i+j +

−→
sd′i+j + 2

−→
sd′i+j+1

ss1i ∗
←−
dd′j −→ 2sd0i+j + 2

−→
sd′i+j

ss2i ∗
←−
dd′j −→ dd′i+j +

←−
dd′i+j + sd0i+j +

−→
sd′i+j
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Table A.5: Set I of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type dd′′.

production

dd0i ∗ dd′′j −→ 2dd0i+j + 2ds0i+j+1

ds0i ∗ dd′′j −→ 4dd0i+j

sd0i ∗ dd′′j −→ 2sd0i+j + 2ss0i+j+1

ss0i ∗ dd′′j −→ 4sd0i+j

dd′i ∗
−→
dd′′j −→ dd0i+j + dd′i+j + 2

−→
ds′i+j+1

d̃d′i ∗
−→
dd′′j −→ dd0i+j + d̃d′i+j + 2

←−
ds′i+j+1

−→
dd′i ∗

−→
dd′′j −→ dd0i+j +

−→
dd′i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

−→
dd′′j −→ dd0i+j +

←−
dd′i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

−→
dd′′j −→ dd′i+j + d̃d′i+j + 2ss2i+j+1

←−
dd′′i ∗

−→
dd′′j −→

−→
dd′i+j +

←−
dd′i+j + 2ss2i+j+1

−→
ds′i ∗

−→
dd′′j −→ 2dd′i+j + 2

−→
dd′i+j

←−
ds′i ∗

−→
dd′′j −→ 2d̃d′i+j + 2

←−
dd′i+j

←−
sd′i ∗

−→
dd′′j −→ sd0i+j +

←−
sd′i+j + 2ss1i+j+1

−→
sd′i ∗

−→
dd′′j −→ sd0i+j +

−→
sd′i+j + 2ss1i+j+1

ss1i ∗
−→
dd′′j −→ 2

−→
sd′i+j + 2

←−
sd′i+j

ss2i ∗
−→
dd′′j −→

−→
dd′′i+j +

←−
dd′′i+j +

−→
sd′i+j +

←−
sd′i+j
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Table A.6: Set II of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type dd′′.

production

dd′i ∗
←−
dd′′j −→ dd0i+j +

−→
dd′i+j + 2

−→
ds′i+j+1

d̃d′i ∗
←−
dd′′j −→ dd0i+j +

←−
dd′i+j + 2

←−
ds′i+j+1

−→
dd′i ∗

←−
dd′′j −→ dd0i+j + dd′i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

←−
dd′′j −→ dd0i+j + d̃d′i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

←−
dd′′j −→

−→
dd′i+j +

←−
dd′i+j + 2ss2i+j+1

←−
dd′′i ∗

←−
dd′′j −→ dd′i+j + d̃d′i+j + 2ss2i+j+1

−→
ds′i ∗

←−
dd′′j −→ 2dd′i+j + 2

−→
dd′i+j

←−
ds′i ∗

←−
dd′′j −→ 2d̃d′i+j + 2

←−
dd′i+j

−→
sd′i ∗

←−
dd′′j −→ sd0i+j +

←−
sd′i+j + 2ss1i+j+1

←−
sd′i ∗

←−
dd′′j −→ sd0i+j +

−→
sd′i+j + 2ss1i+j+1

ss1i ∗
←−
dd′′j −→ 2

−→
sd′i+j + 2

←−
sd′i+j

ss2i ∗
←−
dd′′j −→

−→
dd′′i+j +

←−
dd′′i+j + 2

−→
sd′i+j



APPENDIX A. PRODUCTIONS AND RECURRENCES FOR
EDGE-AMALGAMATIONS 119

Table A.7: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ds0.

production

dd0i ∗ ds0j −→ 2ds0i+j + 2ds0i+j+1

dd′i ∗ ds0j −→ 2ds0i+j + 2ds0i+j+1

dd′′i ∗ ds0j −→ 2ds0i+j + 2ss0i+j+1

ds0i ∗ ds0j −→ 4ds0i+j

ds′i ∗ ds0j −→ 4ds0i+j

sd0i ∗ ds0j −→ 2ss0i+j + 2ss0i+j+1

sd′i ∗ ds0j −→ 2ss0i+j + 2ss0i+j+1

ss0i ∗ ds0j −→ 4ss0i+j

ss1i ∗ ds0j −→ 4ss0i+j

ss2i ∗ ds0j −→ 2ds0i+j + 2ss0i+j
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Table A.8: Set I of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ds′.

production

dd0i ∗ ds′j −→ 2ds0i+j + 2ds0i+j+1

ds0i ∗ ds′j −→ 4ds0i+j

sd0i ∗ ds′j −→ 2ss0i+j + 2ss0i+j+1

ss0i ∗ ds′j −→ 4ss0i+j

ss1i ∗ ds′j −→ 2ss0i+j + 2ss1i+j

dd′i ∗
−→
ds′j −→ ds0i+j +

−→
ds′i+j + 2

−→
ds′i+j+1

d̃d′i ∗
−→
ds′j −→ 2ds0i+j + 2

←−
ds′i+j+1

−→
dd′i ∗

−→
ds′j −→ 2ds0i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

−→
ds′j −→ ds0i+j +

←−
ds′i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

−→
ds′j −→ ds0i+j +

−→
ds′i+j + 2ss1i+j+1

←−
dd′′i ∗

−→
ds′j −→ ds0i+j +

←−
ds′i+j + 2ss1i+j+1

−→
ds′i ∗

−→
ds′j −→ 2ds0i+j + 2

−→
ds′i+j

←−
ds′i ∗

−→
ds′j −→ 2ds0i+j + 2

←−
ds′i+j

−→
sd′i ∗

−→
ds′j −→ ss0i+j + ss1i+j + 2ss1i+j+1

←−
sd′i ∗

−→
ds′j −→ 2ss0i+j + 2ss1i+j+1

ss2i ∗
−→
ds′j −→ ss0i+j + ss1i+j +

−→
ds′i+j +

←−
ds′i+j
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Table A.9: Set II of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ds′.

production

dd′i ∗
←−
ds′j −→ 2ds0i+j + 2

−→
ds′i+j+1

d̃d′i ∗
←−
ds′j −→ ds0i+j +

←−
ds′i+j + 2

←−
ds′i+j+1

−→
dd′i ∗

←−
ds′j −→ ds0i+j +

−→
ds′i+j + 2

−→
ds′i+j+1

←−
dd′i ∗

←−
ds′j −→ 2ds0i+j + 2

←−
ds′i+j+1

−→
dd′′i ∗

←−
ds′j −→ ds0i+j +

←−
ds′i+j + 2ss1i+j+1

←−
dd′′i ∗

←−
ds′j −→ ds0i+j +

−→
ds′i+j + 2ss1i+j+1

−→
ds′i ∗

←−
ds′j −→ 2ds0i+j + 2

−→
ds′i+j

←−
ds′i ∗

←−
ds′j −→ 2ds0i+j + 2

←−
ds′i+j

−→
sd′i ∗

←−
ds′j −→ 2ss0i+j + 2ss1i+j+1

←−
sd′i ∗

←−
ds′j −→ ss0i+j + ss1i+j + 2ss1i+j+1

ss2i ∗
←−
ds′j −→ ss0i+j + ss1i+j +

−→
ds′i+j +

←−
ds′i+j
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Table A.10: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type sd0.

production

dd0i ∗ sd0j −→ 4dd0i+j

dd′i ∗ sd0j −→ 4dd0i+j

dd′′i ∗ sd0j −→ 4dd0i+j

ds0i ∗ sd0j −→ 4dd0i+j

ds′i ∗ sd0j −→ 4dd0i+j

sd0i ∗ sd0j −→ 4sd0i+j

sd′i ∗ sd0j −→ 4sd0i+j

ss0i ∗ sd0j −→ 4sd0i+j

ss1i ∗ sd0j −→ 4sd0i+j

ss2i ∗ sd0j −→ 4sd0i+j
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Table A.11: Set I of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type sd′.

production

dd0i ∗ sd′j −→ 4dd0i+j

ds0i ∗ sd′j −→ 4dd0i+j

sd0i ∗ sd′j −→ 4sd0i+j

ss0i ∗ sd′j −→ 4sd0i+j

dd′i ∗
−→
sd′j −→ 2dd0i+j + 2dd′i+j

d̃d′i ∗
−→
sd′j −→ 2dd0i+j + 2

←−
dd′i+j

−→
dd′i ∗

−→
sd′j −→ 2dd0i+j + 2dd′i+j

←−
dd′i ∗

−→
sd′j −→ 2dd0i+j + 2

←−
dd′i+j

−→
dd′′i ∗

−→
sd′j −→ 2dd′i+j + 2

←−
dd′i+j

←−
dd′′i ∗

−→
sd′j −→ 2dd′i+j + 2

←−
dd′i+j

−→
ds′i ∗

−→
sd′j −→ 4dd′i+j

←−
ds′i ∗

−→
sd′j −→ 4

←−
dd′i+j

−→
sd′i ∗

−→
sd′j −→ 2sd0i+j + 2

−→
sd′i+j

←−
sd′i ∗

−→
sd′j −→ 2sd0i+j + 2

−→
sd′i+j

ss1i ∗
−→
sd′j −→ 4

−→
sd′i+j

ss2i ∗
−→
sd′j −→ 4

−→
sd′i+j
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Table A.12: Set II of II: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type sd′.

production

dd′i ∗
←−
sd′j −→ 2dd0i+j + 2

−→
dd′i+j

d̃d′i ∗
←−
sd′j −→ 2dd0i+j + 2d̃d′i+j

−→
dd′i ∗

←−
sd′j −→ 2dd0i+j + 2

−→
dd′i+j

←−
dd′i ∗

←−
sd′j −→ 2dd0i+j + 2d̃d′i+j

−→
dd′′i ∗

←−
sd′j −→ 2d̃d′i+j + 2

−→
dd′i+j

←−
dd′′i ∗

←−
sd′j −→ 2d̃d′i+j + 2

−→
dd′i+j

−→
ds′i ∗

←−
sd′j −→ 4

−→
dd′i+j

←−
ds′i ∗

←−
sd′j −→ 4d̃d

′
i+j

−→
sd′i ∗

←−
sd′j −→ 2sd0i+j + 2

←−
sd′i+j

←−
sd′i ∗

←−
sd′j −→ 2sd0i+j + 2

←−
sd′i+j

ss1i ∗
←−
sd′j −→ 4

←−
sd′i+j

ss2i ∗
←−
sd′j −→ 4

←−
sd′i+j
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Table A.13: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ss0.

production

dd0i ∗ ss0j −→ 4ds0i+j

dd′i ∗ ss0j −→ 4ds0i+j

dd′i ∗ ss0j −→ 4ds0i+j

dd′′i ∗ ss0j −→ 4ds0i+j

ds0i ∗ ss0j −→ 4ds0i+j

ds′i ∗ ss0j −→ 4ds0i+j

sd0i ∗ ss0j −→ 4ss0i+j

sd′i ∗ ss0j −→ 4ss0i+j

ss0i ∗ ss0j −→ 4ss0i+j

ss1i ∗ ss0j −→ 4ss0i+j

ss2i ∗ ss0j −→ 4ss0i+j
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Table A.14: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ss1.

production

dd0i ∗ ss1j −→ 4ds0i+j

dd′i ∗ ss1j −→ 2ds0i+j + 2
−→
ds′i+j

d̃d′i ∗ ss1j −→ 2ds0i+j + 2
←−
ds′i+j

−→
dd′i ∗ ss1j −→ 2ds0i+j + 2

−→
ds′i+j

←−
dd′i ∗ ss1j −→ 2ds0i+j + 2

←−
ds′i+j

−→
dd′′i ∗ ss1j −→ 2

←−
ds′i+j + 2

−→
ds′i+j

←−
dd′′i ∗ ss1j −→ 2

←−
ds′i+j + 2

−→
ds′i+j

ds0i ∗ ss1j −→ 4ds0i+j
−→
ds′i ∗ ss1j −→ 4

−→
ds′i+j

←−
ds′i ∗ ss1j −→ 4

←−
ds′i+j

sd0i ∗ ss1j −→ 4ss0i+j

sd′i ∗ ss1j −→ 2ss0i+j + 2ss1i+j

ss0i ∗ ss1j −→ 4ss0i+j

ss1i ∗ ss1j −→ 4ss1i+j

ss2i ∗ ss1j −→ 4ss1i+j
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Table A.15: Productions for edge-amalgamation (G, e, d) ∗ (H, g, f) where

the embedding of graph H has partial type ss2.

production

dd0i ∗ ss2j −→ 2dd0i+j + 2ds0i+j

dd′i ∗ ss2j −→ dd′i+j +
−→
dd′i+j + ds0i+j +

−→
ds′i+j

d̃d′i ∗ ss2j −→ d̃d′i+j +
←−
dd′i+j + ds0i+j +

←−
ds′i+j

−→
dd′i ∗ ss2j −→ dd′i+j +

−→
dd′i+j + ds0i+j +

−→
ds′i+j

←−
dd′i ∗ ss2j −→ d̃d′i+j +

←−
dd′i+j + ds0i+j +

←−
ds′i+j

−→
dd′′i ∗ ss2j −→

−→
dd′′i+j +

←−
dd′′i+j +

−→
ds′i+j +

←−
ds′i+j

←−
dd′′i ∗ ss2j −→

−→
dd′′i+j +

←−
dd′′i+j +

−→
ds′i+j +

←−
ds′i+j

ds0i ∗ ss2j −→ 4ds0i+j
−→
ds′i ∗ ss2j −→ 4

−→
ds′i+j

←−
ds′i ∗ ss2j −→ 4

←−
ds′i+j

sd0i ∗ ss2j −→ 2sd0i+j + 2ss0i+j
−→
sd′i ∗ ss2j −→

−→
sd′i+j +

←−
sd′i+j + ss0i+j + ss1i+j

←−
sd′i ∗ ss2j −→

−→
sd′i+j +

←−
sd′i+j + ss0i+j + ss1i+j

ss0i ∗ ss2j −→ 4ss0i+j

ss1i ∗ ss2j −→ 4ss1i+j

ss2i ∗ ss2j −→ 2ss1i+j + 2ss2i+j

The productions in Tables A.1-A.15 lead to Theorems 23 - 38. In stating the recurrences

for sub-partials in Theorems 23 - 38, we abbreviate the double-edge-rooted graph (X, e, f)

as X, as before, and omit the graphs G and H altogether. We also omit the proofs and refer

the reader to the proof of Theorem 9 as an aid for transposing the productions to obtain

the following results:
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Theorem 23. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

dd0k(X) =
k∑
i=0

[
(2dd0i + 2dd′i + 2dd′′i + 4ds0i + 4ds′i + 2ss2i )× dd0k−i + (dd′i + 2

−→
dd′i +

←−
dd′i

+ 2d̃d′i)× dd′k−i + (2dd′i + d̃d′i +
−→
dd′i + 2

←−
dd′i)× d̃d′k−i + (dd′i + 2

−→
dd′i +

←−
dd′i

+ 2d̃d′i)×
−→
dd′k−i + (2dd′i +

−→
dd′i + 2

←−
dd′i + d̃d′i)×

←−
dd′k−i + (2dd0i + dd′′i + 4ds0i

+ 2ds′i)× dd′k−i + (2dd0i+ dd′i + 4ds0i )× dd′′k−i + 4(dd0i + dd′i + dd′′i + ds0i

+ ds′i)× sd0k−i + (4dd0i + 2dd′i + 4ds0i )× sd′k−i + 2dd0i ∗ ss2k−i
]

+
k−1∑
i=0

[
(2dd0i

+ 2dd′i)× dd0k−1−i + 2dd0i × dd′k−1−i
]

Theorem 24. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

dd′k(X) =
k∑
i=0

[
(dd′i +

−→
dd′′i + 2

−→
ds′i + ss2i )× dd′k−i + (

−→
dd′i +

←−
dd′′i + 2

−→
ds′i + ss2i )×

←−
dd′k−i

+ (dd′i +
−→
dd′′i + 2

−→
ds′i)×

−→
dd′′k−i + (

−→
dd′i +

←−
dd′′i + 2

−→
ds′i)×

←−
dd′′k−i + (2dd′i

+ 2
−→
dd′i + 2dd′′i + 4

−→
ds′i)×

−→
sd′k−i + (dd′i +

−→
dd′i)× ss2k−i

]
+
k−1∑
i=0

[
(2dd′i

+ 2
−→
dd′i)× dd′k−1−i + (2dd′i + 2

−→
dd′i)×

←−
dd′k−1−i

]

Theorem 25. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

d̃d′k(X) =

k∑
i=0

[
(d̃d′i +

−→
dd′′i + 2

←−
ds′i + ss2i )× d̃d′k−i + (

←−
dd′i +

←−
dd′′i + 2

←−
ds′i + ss2i )×

−→
dd′k−i

+ (d̃d′i +
−→
dd′′i + 2

←−
ds′i)×

−→
dd′′k−i + (

←−
dd′i +

←−
dd′′i + 2

←−
ds′i)×

←−
dd′′k−i + (2d̃d′i

+ 2
←−
dd′i + 2

−→
dd′′i + 2

←−
dd′′i + 4

←−
ds′i)×

←−
sd′k−i + (d̃d′i +

←−
dd′i)× ss2k−i

]
+

k−1∑
i=0

[
(2d̃d′i + 2

←−
dd′i)× d̃d′k−1−i + (2d̃d′i + 2

←−
dd′i)×

−→
dd′k−1−i

]
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Theorem 26. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

−→
dd′k(X) =

k∑
i=0

[
(
−→
dd′i +

←−
dd′′i + 2

−→
ds′i + ss2i )× d̃d′k−i + (dd′i +

−→
dd′′i + 2

−→
ds′i + ss2i )×

−→
dd′k−i

+ (
−→
dd′i +

←−
dd′′i + 2

−→
ds′i)×

−→
dd′′k−i + (dd′i +

−→
dd′′i + 2

−→
ds′i)×

←−
dd′′k−i + (2dd′i

+ 2
−→
dd′i + 2

−→
dd′′i + 2

←−
dd′′i + 4

−→
ds′i)×

←−
sd′k−i + (dd′i +

−→
dd′i)× ss2k−i

]
+

k−1∑
i=0

[
(2dd′i + 2

−→
dd′i)× d̃d′k−1−i + (2dd′i + 2

−→
dd′i)×

−→
dd′k−1−i

]

Theorem 27. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

←−
dd′k(X) =

k∑
i=0

[
(
←−
dd′i +

←−
dd′′i + 2

←−
ds′i + ss2i )× dd′k−i + (d̃d′i +

−→
dd′′i + 2

←−
ds′i + ss2i )×

←−
dd′k−i

+ (
←−
dd′i +

←−
dd′′i + 2

←−
ds′i)×

−→
dd′′k−i + (d̃d′i +

−→
dd′′i + 2

←−
ds′i)×

←−
dd′′k−i + (2d̃d′i

+ 2
←−
dd′i + 2

−→
dd′′i + 2

←−
dd′′i + 4

←−
ds′i)×

−→
sd′k−i + (d̃d′i +

←−
dd′i)× ss2k−i

]
+

k−1∑
i=0

[
(2
←−
dd′i + 2d̃d′i)× dd′k−1−i + (2d̃d′i + 2

←−
dd′i)×

←−
dd′k−1−i

]

Theorem 28. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

−→
dd′′k(X) =

k∑
i=0

[
ss2i × dd′′k−i + dd′′i × ss2k−i

]

Theorem 29. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

←−
dd′′k(X) =

k∑
i=0

[
ss2i × dd′′k−i + dd′′i × ss2k−i

]
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Theorem 30. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

ds0k(X) =
k∑
i=0

[
(2dd0i + 2dd′i + 2dd′′i + 4ds0i + 4ds′i + 2ss2i )× ds0k−i + (dd′i + 2d̃d′i + 2

−→
dd′i

+
←−
dd′i + dd′′i + 2ds′i)×

−→
ds′k−i + (2dd′i + d̃d′i +

−→
dd′i + 2

←−
dd′i + dd′′i + 2ds′i)

×
←−
ds′k−i + (2dd0i + 4ds0i )× ds′k−i + 4(dd0i + dd′i + dd′′i + ds0i + ds′i)× ss0k−i

+ (4dd0i + 2dd′i + 4ds0i )× ss1k−i + (2dd0i + dd′i + 4ds0i )× ss2k−i
]

+
k−1∑
i=0

[
2dd0i × dd′′k−1−i + (2dd0i + 2dd′i)× ds0k−1−i + 2dd0i × ds′k−1−i

]

Theorem 31. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

−→
ds′k(X) =

k∑
i=0

[
(dd′i +

−→
dd′′i + 2

−→
ds′i + ss2i )×

−→
ds′k−i + (

−→
dd′i +

←−
dd′′i + 2

−→
ds′i + ss2i ) ∗

←−
ds′k−i

+ (2dd′i + 2
−→
dd′i + 2dd′′i + 4

−→
ds′i)× ss1k−i + (dd′i +

−→
dd′i + dd′′i + 4

−→
ds′i)× ss2k−i

]
+
k−1∑
i=0

[
(2dd′i + 2

−→
dd′i)×

−→
dd′′k−1−i + (2dd′i + 2

−→
dd′i)×

←−
dd′′k−1−i + (2dd′i + 2

−→
dd′i)

×
−→
ds′k−1−i + (2dd′i + 2

−→
dd′i)×

←−
ds′k−1−i

]

Theorem 32. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

←−
ds′k(X) =

k∑
i=0

[
(
←−
dd′i +

←−
dd′′i + 2

←−
ds′i + ss2i )×

−→
ds′k−i + (d̃d′i +

−→
dd′′i + 2

←−
ds′i + ss2i )×

←−
ds′k−i

+ (2d̃d′i + 2
←−
dd′i + 2dd′′i + 4

←−
ds′i)× ss1k−i + (d̃d′i +

←−
dd′i + dd′′i + 4

←−
ds′i)× ss2k−i

]
+

k−1∑
i=0

[
(2d̃d′i + 2

←−
dd′i)× dd′′k−1−i + (2d̃d′i + 2

←−
dd′i)× ds′k−1−i

]
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Theorem 33. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

sd0k(X) =
k∑
i=0

[
(2sd0i + 2sd′i + 4ss0i + 4ss1i + 2ss2i )× dd0k−i + (2sd0i + 4ss0i )× dd′k−i + (

−→
sd′i

+ 2
←−
sd′i + 2ss1i + ss2i )× dd′k−i + (2

−→
sd′i +

←−
sd′i + 2ss1i + ss2i )× d̃d′k−i + (

−→
sd′i

+ 2
←−
sd′i + 2ss1i + ss2i )×

−→
dd′k−i + (2

−→
sd′i +

←−
sd′i + 2ss1i + ss2i )×

←−
dd′k−i + (2sd0i

+ sd′i + 4ss0i )× dd′′k−i + 4(sd0i + sd′i + ss0i + ss1i + ss2i )× sd0k−i + (4sd0i

+ 2sd′i + 4ss0i )× sd′k−i + 2sd0i × ss2k−i
]

+
k−1∑
i=0

[
(2dd′′i + 2sd0i + 2sd′i)

× dd0k−1−i + 2sd0i × dd′k−1−i
]

Theorem 34. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

−→
sd′k(X) =

k∑
i=0

[
(
−→
sd′i + 2ss1i + ss2i )× dd′k−i + (

←−
sd′i + 2ss1i + ss2i )×

←−
dd′k−i + (

−→
sd′i

+ 2ss1i + ss2i )×
−→
dd′′k−i + (

←−
sd′i + 2ss1i + 2ss2i )×

←−
dd′′k−i + (2sd′i + 4ss1i

+ 4ss2i )×
−→
sd′k−i + sd′i × ss2k−i

]
+
k−1∑
i=0

[
(2
−→
dd′′i + 2

←−
dd′′i + 2

−→
sd′i + 2

←−
sd′i)

× dd′k−1−i + (2
−→
dd′′i + 2

←−
dd′′i + 2

−→
sd′i + 2

←−
sd′i)×

←−
dd′k−1−i

]

Theorem 35. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

←−
sd′k(X) =

k∑
i=0

[
(
←−
sd′i + 2ss1i + ss2i )× d̃d′k−i + (

−→
sd′i + 2ss1i + ss2i )×

−→
dd′k−i + (

←−
sd′i + 2ss1i

+ ss2i )×
−→
dd′′k−i + (

−→
sd′i + 2ss1i )×

←−
dd′′k−i + (2sd′i + 4ss1i + 4ss2i )×

←−
sd′k−i
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+ sd′i × ss2k−i
]

+

k−1∑
i=0

[
(2
−→
dd′′i + 2

←−
dd′′i + 2

−→
sd′i + 2

←−
sd′i)× d̃d′k−1−i + (2dd′′i

+ 2sd′i)×
−→
dd′k−1−i

]

Theorem 36. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

ss0k(X) =
k∑
i=0

[
(2sd0i + 2sd′i + 4ss0i + 4ss1i + 2ss2i )× ds0k−i + (

−→
sd′i + 2

←−
sd′i)×

−→
ds′k−i + (2

−→
sd′i

+
←−
sd′i)×

←−
ds′k−i + (2sd0i + 4ss0i + 2ss1i + ss2i )× ds′k−i + 4(sd0i + sd′i + ss0i + ss1i

+ ss2i )× ss0k−i + (4sd0i + 2sd′i + 4ss0i )× ss1k−i + (2sd0i + sd′i + 4ss0i )× ss2k−i
]

+

k−1∑
i=0

[
2sd0i × dd′′k−1−i + (2dd′′i + 2sd0i + 2sd′i)× ds0k−1−i + 2sd0i × ds′k−1−i

]

Theorem 37. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

ss1k(X) =
k∑
i=0

[ −→
sd′i ×

−→
ds′k−i +

←−
sd′i ×

←−
ds′k−i + (2ss1i + ss2i )× ds′k−i + (2sd′i + 4G.ss1i + 4ss2i )

× ss1k−i + (sd′i + 4ss1i + 2ss2i )× ss2k−i
]

+
k−1∑
i=0

[
2sd′i × dd′′k−1−i + (2dd′′i

+ 2sd′i)× ds′k−1−i
]

Theorem 38. Let (X, e, f) = (G, e, d) ∗ (H, g, f), where e, d, g, f all have two 2-valent

endpoints. Then

ss2k(X) =
k∑
i=0

2ss2i × ss2k−i +
k−1∑
i=0

2dd′′i × dd′′k−1−i
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