
Methods for Computing Genus Distribution Using
Double-Rooted Graphs

Imran Farid Khan

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012



c©2012

Imran Farid Khan

All Rights Reserved



ABSTRACT

Methods for Computing Genus Distribution Using
Double-Rooted Graphs

Imran Farid Khan

This thesis develops general methods for computing the genus distribution of various types

of graph families, using the concept of double-rooted graphs, which are defined to be graphs

with two vertices designated as roots (the methods developed in this dissertation are limited

to the cases where one of the two roots is restricted to be of valence two). I define partials

and productions, and I use these as follows: (i) to compute the genus distribution of a graph

obtained through the vertex amalgamation of a double-rooted graph with a single-rooted

graph, and to show how these can be used to obtain recurrences for the genus distribution

of iteratively growing infinite graph families. (ii) to compute the genus distribution of a

graph obtained (a) through the operation of self-vertex-amalgamation on a double-rooted

graph, and (b) through the operation of edge-addition on a double-rooted graph, and finally

(iii) to develop a method to compute the recurrences for the genus distribution of the graph

family generated by the Cartesian product P32Pn.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Graphs are defined combinatorially, and although graphs are often drawn on paper in order

to illustrate various concepts intuitively, almost everything to be said about graphs can

be said without referring to such drawings. A distinguishing feature of topological graph

theory is that it provides a topological structure to a graph, in order to study embeddings

of a graph on surfaces. This structure makes it possible to refer to a drawing of a graph in

a mathematically precise way, and it also becomes possible to discuss different drawings of

the same graph.

Though much of the topological graph theory employs advanced combinatorial tech-

niques, the topology remains indispensible. Very little knowledge of topology is assumed

here, and we will provide the necessary definitions with brief explanations.

1.1 Basic Concepts and Definitions

We take a graph to be connected; a graph need not be simple, i.e., it may have self-loops

and multiple edges between two vertices. We use the words degree and valence of a vertex

to mean the same thing. Each edge has two edge-ends, in the topological sense, even if it

has only one endpoint.

A surface is defined to be a two-dimensional manifold, which we envision as having a

model that is embedded in some Euclidean space; it is closed if its model is (a) boundary-

less, (b) finite (in the sense that there exists a real number such that the maximum distance
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between any two points of the surface is less than that real number), and (c) the end-points

of any open arc in the surface are in the surface itself.

A theorem of topology classifies the closed surfaces into two categories: orientable and

non-orientable (an orientable surface is a surface in which one can define and rely on a

global notion of “left” and “right”, whereas in a non-orientable surface, one cannot). All

of the surfaces within these two categories are completely known. Figure 1.1 illustrates the

surfaces: in the top row we give the orientable surfaces, i.e. sphere, torus, double-torus, etc,

and in the bottom row we give representations of the non-orientable surfaces, i.e. surface

with one crosscap (also known as the projective plane), surface with two crosscaps (also

known as the Klein bottle), surface with three crosscaps, etc. A crosscap is constructed by

first excising an open disc from the sphere, and then closing off the boundary created with

a Möbius band.

S0 S1 S2

N1 N2 N3

Figure 1.1: Classification of closed surfaces.

All of the surfaces mentioned hereafter in this document are assumed to be both ori-

entable and closed.

An embedding is represented by a crossing-free drawing of a graph on a surface. More

precisely, an embedding ιG of a graph G on a surface SG is constructed as follows: we

define a function fVG that maps each of the vertices of the graph G to distinct points on

SG; then for each edge e with endpoints u and v, we define a continuous, bijective function

fe : I = [0, 1] → SG, where fe(0) := fVG(u) and fe(1) := fVG(v) such that (i) the interior

of fe(I) does not intersect any of the points in fVG(VG), and (ii) for any two edges e and

d, the intersection of the interiors of fe(I) and fd(I) is empty. Every edge e thus has two
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edge-ends, i.e. near fe(0) an edge-end e+, and near fe(1) an edge-end e−. We visualize

an edge-end as a short half-open line-segment that contains a little bit of the interior of the

edge as well, rather than just the endpoint.

The regions of an embedding ιG → SG are defined to be the connected components

of SG\iG. If each region of an embedding is homeomorphic to an open disc, then that

embedding is said to be a cellular embedding. A face is defined to be a region along with

its boundary. All of the embeddings discussed in this document are assumed to be cellular.

The genus of an embedding of a graph G is defined to be the genus of the surface on

which the graph is embedded. To compute the genus g of an embedding, we use Euler’s

polyhedral formula for orientable surfaces, i.e. #v − #e + #f = 2 − 2g, where #v,#e

and #f correspond to the number of vertices, the number of edges and the number of faces

of the embedding, respectively.

A rotation at a vertex v is defined to be a cyclic permutation of the edge-ends incident

on vertex v. These edge-ends are then interpreted as being cyclically incident on vertex v

in the counter-clockwise direction (the choice of the direction is arbitrary, but it needs to

remain consistent within an analysis). A rotation system of a graph G is an assignment

of rotations to all vertices of the graph, as illustrated in Figure 1.2.

wu

v

x

a

b

c

d e

: c− a− b+v

: a+ d−u

: e+ b− d+x

: c+ e−w

Figure 1.2: A spherical embedding and the corresponding rotation system

Since there are (deg(v) − 1)! different rotations that are possible at a vertex, the total

number of distinct rotation systems is

∏
v∈VG

(deg(v)− 1)!

It is easy to see that every embedding induces a unique rotation system of a graph, and

with the aid of Heffter-Edmonds face-tracing algorithm, it can be shown that every rotation
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system of a graph induces a unique equivalence class of embeddings (two embeddings are

said to be equivalent if they have the same set of face-boundary walks, also abbreviated

as fb-walks).

The Heffter-Edmonds face-tracing algorithm takes as input a rotation system of a

graph G. Using this algorithm, we start constructing an fb-walk with any edge-end, say k+,

that has not yet been explored, and check which rotation of a vertex has the other edge-end

(i.e. k−) in it. Then we read the edge-end that follows k−, say lσ (where σ ∈ {+,−}),

and write it after k+ in the fb-walk being constructed. We keep on doing this until we

arrive back at k+, at which point we consider the construction of fb-walk to be complete.

Similarly, we continue listing other fb-walks until all edge-ends have been explored. For

instance in Figure 1.2, if we start reading the fb-walk from the edge-end e+, then the next

edge-end in the fb-walk would be c+ since it follows e− in the rotation system. Continuing

this way, we would have (e+c+a−d−), (e−b−c−) and (a+b+d+) as the three fb-walks. The

list of fb-walks can then be used to construct an embedding of the graph on the surface

of the genus indicated by the number of fb-walks using Euler’s polyhedral equation. For

instance, in Figure 1.2, we have 4 − 5 + 3 = 2 − 2g, correctly giving g = 0 as the genus of

the graph embedding corresponding to the given rotation system.

The problem of computation of the genus distribution of a graph is concerned with the

genus of all orientable embeddings of that graph, i.e. the genus distribution is the sequence

g0(G), g1(G), ... where gi(G) represents the number of embeddings of the graph G on surface

of genus i. Clearly, ∑
i=0

gi(G) =
∏
v∈VG

(deg(v)− 1)!

.

1.2 Related Work

Computation of the genus distribution was first introduced as an invariant for graphs in 1987

by Gross and Furst in [Gross and Furst, 1987]. Explicit formulas for the genus distribution

of two families of graphs (closed-end ladders and cobblestone paths) were computed by

Furst, Gross and Statman in [Furst et al., 1989]. These were the first explicit computations
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of genus distributions for infinite families of graphs. Later, McGeoch, in his Phd thesis

[McGeoch, 1987], computed the genus distributons for circular and Möbius ladders (the

seeming chronological discrepency arises from the accelerated publication date of a thesis).

Gross, Robbins and Tucker were able to compute the the genus distribution of bouquets of

circles in [Gross et al., 1989], using a combinatorial formula of Jackson [Jackson, 1987]. In

1989, it was shown by Thomassen [Thomassen, 1989] that the minimum genus problem is

NP-complete. However, it was still possible to compute the genus distributions for many

families of graphs, for instace, those having a high-degree of symmetry, so the interest in

this problem continued. In 1990 Rieper, in his Phd thesis [Rieper, 1990], was able to use

group characters to enumerate the genus distribution of dipoles. Over the next two decades,

there have been numerous investigations of genus distributions. These include [Chen et al.,

2011b], [Kwak and Lee, 1993], [Kwak and Lee, 1994], [Mull, 1999], [Stahl, 1990], [Stahl,

1991a], [Stahl, 1991b], [Tesar, 2000], [Visentin and Wieler, 2007], [Wan and Liu, 2006], and

[Wan and Liu, 2008].

Researchers have developed several methods to compute the genus distributions, as well

as total embedding distributions (that include orientable as well as non-orientable embed-

dings). Most of these methods are very specific to the particular graph families whose genus

distribution is being computed, as they rely on the particular symmetries in those graph

families. Of note among the methods that also have some general applicability, are methods

that employ overlap matrices and edge-attaching surgery.

Overlap matices were first defined and employed by Mohar in [Mohar, 1989]. The main

theorem states that if a certain overlap matrix is associated with a graph embedding, then

the genus of the embedding is equal to half the rank of the associated overlap matrix if the

embedding is orientable, or is equal to it if the embedding is non-orientable. This theorem

was later used by Chen, Gross and Rieper in [Chen et al., 1994] to derive recurrences for the

rank-distribution polynomial of certain graph families (necklaces, closed-end ladders, and

cobblestone paths), that can then be used to compute the total embedding distributions of

a graph family. Subsequently, this method has been used to compute genus distributions

of numerous graph families. For instance, [Chen et al., 2011d] uses these methods to derive

recurrences for rank-distribution polynomial for the Ringel ladders (also see [Chen et al.,
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2006]). In order to compute total embedding distributions of a graph family using this

method, recursively defined rank-distribution polynomials need to be set-up for that graph

family (which is nontrivial for all but very few simple graph families). By solving the

recurrences, it has been possible to compute closed formulas for genus distributions of a few

graph families.

Edge-attaching surgery was developed in [Kwak and Shim, 2002] to compute the total

embedding distribution of bouquets Bn (and dipoles Dn) by considering three different

ways of attaching an edge to Bn−1: (i) attaching it in one face with a twist, (ii) without a

twist, and (iii) attaching it so that one edge-end is in one face and the second edge-end in

another face (with or without a twist – where by the term twist we mean that traversing

the edge reverses the rotational sense). In this process, the method recursively generates

all embeddings of Bn = Bn−1 + e. In order to use this method, each iteration of the

computation needs to be explicitly carried out. That is, the embedding distribution of Bi

is computed from that of Bi−1 for each i < n− 1. The embedding distribution polynomial

of Bn−1 contains information about the number of embeddings of each type t1 · · · t2(i−1),

where 2(i − 1) is equal to twice the number of edges of the bouquet Bi−1, and where tk

represents that there are tk k-sided regions in the embedding (for instance, the embedding

given in Figure 1.2 is of type t23t4). This method is hard to generalize, and it was used for

computing total embedding distributions only of bouquets and dipoles.

Our recent work, starting with [Gross et al., 2010] and including [Gross, 2011c], [Gross,

2011b], [Poshni et al., 2010], [Poshni et al., 2012], [Khan et al., 2010], [Khan et al., 2011],

is general in its application, in the sense that no graph-family-specific proofs are needed.

Morever, there are infinitely many graph families whose genus distribution can be computed

using these methods. The content of [Khan et al., 2010] and [Khan et al., 2011] is the basis

for Chapters 2–4 of this thesis.

Most of the graph-families for which genus distribution has been computed are linear

graph-families. By this we mean that there is one fundamental graph whose iterated amal-

gamations with itself define the infinite graph family. The earliest such linear graph-families

for which the genus distribution was computed were, as mentioned earlier, closed-end lad-

ders and cobblestone paths [Furst et al., 1989]. The method used there was significantly
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generalized in [Gross et al., 2010], using the concept of rooted partitioned genus distribu-

tions. The key idea was based on having a partitioned genus distribution of a double-rooted

graph (G, u, v), where deg(u) = deg(v) = 2, that contained information about the number

of fb-walks that are incident on root vertices u and v, and also about the characteristics of

these fb-walks. This information was shown to be enough for deriving recurrences for the

genus distribution of an infinite family of graphs that is iteratively constructed from the

base graph (G, u, v) using repeated vertex amalgamations. Chapter 2 presents a significant

generalization of these results.

Using these ideas, [Gross, 2011c] develops methods for computing the genus distribution

of the self-vertex-amalgamation of a double-rooted graph (G, u, v), i.e. the genus distribu-

tion of the graph obtained via amalgamating the two root vertices with each other. Chapters

3 and 4 develop a generalization of this.

Other important results related to the methods developed in this work are concerned

with computations of genus distributions using edge-amalgamation [Poshni et al., 2010],

self-edge-amalgamation [Poshni et al., 2012], and of non-linear graph families like cubic

outerplanar graphs [Gross, 2011b], 4-regular outerplanar graphs [Poshni et al., 2011], 3-

regular Halin graphs [Gross, 2011a], and P32Pn [Khan et al., 2012] – this also makes up

the last chapter of this thesis.
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1.3 Thesis Statement

As mentioned earlier, my work is concerned with developing methods for computing the

genus distributions of graph families. The methods that I have developed are more general

than the methods that already exist, and they can be used to compute genus distributions

of infinitely many graph families, without proving graph-family specific theorems.

Chapters 2–4 of my thesis develop methods that can be used to compute

• the genus distribution of the graph families obtained through iterative amalgamations

of a double-rooted graph (G, u, v) with itself, where deg(u) ≥ 2 and deg(v) = 2. We

refer to these as open chains (Chapters 2 and 4),

• the genus distribution of closed chains, obtained though self-vertex-amalgamation of

the two root vertices of the open chains with each other, and the genus distributions

of the graph family obtained through adding an edge between the root vertices of the

open chain (Chapters 3 and 4).

Finally, the last part (Chapter 5) of my research gives a graph-family specific compu-

tation, that has the potential of being generalized. I give a surgical method that can be

used with some of the structures developed in Chapters 3 and 4 to compute the genus

distributions of the graph family generated by the Cartesian product P32Pn.



9

Part I

Thesis
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Chapter 2

Vertex Amalgamation

This chapter is concerned with counting the embeddings of a graph in a surface. In [Gross

et al., 2010], we showed how to calculate the genus distribution of an iterated amalgamation

of copies of a graph whose genus distribution is already known and is further analyzed into

a partitioned genus distribution (which is defined for a double-rooted graph). Our methods

were restricted there to the case with two 2-valent roots. In this chapter we substantially

extend the method in order to allow one of the two roots to have arbitrarily high valence.

2.1 Introduction

By the vertex-amalgamation of the rooted graphs (G, t) and (H,u), we mean the graph

obtained from their disjoint union by merging the roots t and u. We denote the operation

of amalgamation by an asterisk, i.e.,

(G, t) ∗ (H,u) = (X,w)

where X is the amalgamated graph and w the merged root.

Remark Some of the calculations in this chapter are quite intricate, and it appears that

taking the direct approach here to amalgamating two graphs at roots of arbitrarily high

degree might be formidable. We observe that a vertex of arbitrary degree can be split (by

inverse contraction) into two vertices of smaller degree. Effects on the genus distribution

that arise from splitting a vertex are described by [Gross, 2010].
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Embeddings induced by an amalgamation of two embedded graphs

We say that the pair of embeddings ιG : G → SG and ιH : H → SH induce the set of

embeddings of X = G ∗H whose rotations have the same cyclic orderings as in G and H,

and that this set of embeddings of X is the result of amalgamating the two embeddings

ιG : G→ SG and ιH : H → SH .

Proposition 1. For any two embeddings ιG : G → SG and ιH : H → SH of graphs into

surfaces, the number of embeddings of the amalgamated graph (X,w) = (G, t)∗(H,u) whose

rotation systems are consistent with the embeddings ιG : G→ SG and ιH : H → SH is

(deg(u) + deg(t)− 1) ·
(
deg(t) + deg(u)− 2

deg(u)− 1

)
(2.1)

Proof. Formula (2.1) is a symmetrization of Formula (1.1) of [Gross et al., 2010].

In the amalgamation (G, t) ∗ (H,u) = (X,w), when one of the roots t and u is 1-valent,

the genus distribution of the resulting graph is easily derivable via bar-amalgamations (see

[Gross and Furst, 1987]). For the case where

deg(t) = deg(u) = 2,

methods for calculating the genus distribution are developed in [Gross et al., 2010]. For

the purposes of this chapter, we assume that deg(t) = 2 and deg(u) = n ≥ 2. A pair of

such embeddings ιG : G→ SG and ιH : H → SH induce, in accordance with Formula (2.1),

n2 +n embeddings of the amalgamated graph X. We observe that for each such embedding

ιX : X → SX , we have

γ(SX) =


γ(SG) + γ(SH) or

γ(SG) + γ(SH) + 1

Terminology The difference γ(SX) − (γ(SG) + γ(SH)) is called the genus increment

of the amalgamation, or more briefly, the genus increment or increment.

Proposition 2. In any vertex-amalgamation (G, t) ∗ (H,u) = (X,w) of two graphs, the

increment of genus lies within these bounds:⌈
1− deg(t)− deg(u)

2

⌉
≤ γ(SX)− (γ(SG) + γ(SH)) ≤

⌊
deg(t) + deg(u)− 2

2

⌋
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Proof. See [Gross et al., 2010].

Double-rooted graphs

By a double-rooted graph (H,u, v) we mean a graph with two vertices designated as roots.

Double-rooted graphs were first introduced in [Gross et al., 2010] as they lend themselves

natrually to iterated amalgmation. For the purposes of this chapter, root u is assumed to

have degree n ≥ 2, whereas root v is 2-valent. Our focus here, is the graph amalgamation

(G, t) ∗ (H,u, v) when deg(t) = deg(v) = 2 and deg(u) = n ≥ 2. This is illustrated in

Figure 2.1.

u

*

vt

Figure 2.1: (G, t) ∗ (H,u, v) when deg(t) = deg(v) = 2 and deg(u) = n ≥ 2.

When two single-rooted graphs are amalgamated, the amalgamated graph has the

merged vertices of amalgamation as its root. If we iteratively amalgamate several single-

rooted graphs, we obtain a graph with a root of whose degree is the sum of the degrees of

the constituent roots. We use double-rooted graphs when we want to calculate the genus

distribution of a chain of copies (as in §3 and §4) of the same graph (or of different graphs).

2.2 Double-root Partials and Productions

The genus distribution of the set of embeddings of (X,w) = (G, t) ∗ (H,u) whose rotation

systems are consistent with those of fixed embeddings G → SG and H → SH , depends

only on γ(SG), γ(SH), and the respective numbers of faces of the embeddings G→ SG and

H → Sh in which the two vertices of amalgamation t and u lie. Accordingly, we partition

the embeddings of a single-rooted graph (G, t) with deg(t) = 2 in a surface of genus i into

the subset of type-di embeddings, in which root t lies on two distinct fb-walks, and the

subset of type-si embeddings, in which root t occurs twice on the same fb-walk. Moreover,
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we define

di(G, t) = the number of embeddings of type-di, and

si(G, t) = the number of embeddings of type-si.

Thus,

gi(G, t) = di(G, t) + si(G, t).

The numbers di(G, t) and si(G, t) are called single-root partials. The sequences {di(G, t) |

i ≥ 0} and {si(G, t) | i ≥ 0} are called partial genus distributions.

Since deg(u) = n in a double-rooted graph (H,u, v), there are n face corners incident

at u (i.e., u occurs n times in the fb-walks — we will call them u-corners from now on),

some or all of which might belong to the same face.

Suppose further that the n occurrences of root u in fb-walks of different faces are dis-

tributed according to the partition p1p2 · · · pr of n (where r is the number of faces incident

at root u). For each such partition p1p2 · · · pr, we define the following double-root par-

tials of the genus distribution of a graph (H,u, v), such that root u is n-valent and root v

is 2-valent:

fp1p2···prdi = the number of embeddings of (H,u, v) in the surface Si

such that the n occurrences of root u are distributed

in r fb-walks, according to the partition p1p2 · · · pr, and

the two occurrences of v lie on two different fb-walks.

fp1p2···prsi = the number of embeddings of (H,u, v) in the surface Si

such that the n occurrences of root u are distributed

in r fb-walks, according to the partition p1p2 · · · pr, and

that the two occurrences of v lie on the same fb-walk.

Notation We write the partition p1p2 · · · pr of an integer in non-ascending order.

A production for an amalgamation

(G, t) ∗ (H,u, v) = (X, v)



CHAPTER 2. VERTEX AMALGAMATION 14

of a single-rooted graph (G, t) with a double-rooted graph (H,u, v) (where deg(t) = deg(v) =

2, and deg(u) ≥ 2) is an expression of the form

pi(G, t) ∗ qj(H,u, v) −→ α1 di+j(G ∗H, v) + α2 di+j+1(G ∗H, v)

+α3 si+j(G ∗H, v) + α4 si+j+1(G ∗H, v)

where pi is a single-root partial and qj is a double-root partial, and where α1, α2, α3, and

α4 are integers. It means that amalgamation of a type-pi embedding of graph (G, u) and

a type-qj embedding of graph (H,u, v) induces a set of α1 type-di+j , α2 type-di+j+1, α3

type-si+j , and α4 type-si+j+1 embeddings of G ∗H. We often write such a rule in the form

pi ∗ qj −→ α1 di+j + α2 di+j+1 + α3 si+j + α4 si+j+1

Sub-partials of fp1p2···prdi

In the course of developing productions for amalgamating a single-rooted graph (G, t) to a

double-rooted graph (H,u, v), we shall discover that we sometimes need to refine a double-

root partial into sub-partials. The following two types of numbers are the sub-partials of

fp1p2···prdi:

fp1p2···prd
′
i = the number of type-fp1p2···prdi embeddings such

that at most one of the r fb-walks incident at u

is the same as one of the two fb-walks incident at

v;

fp1p2···prd
(pl,pm)
i = the number of type-fp1p2···prdi embeddings such

that the two fb-walks (corresponding to subscripts

l and m) incident at v have pl and pm occurrences

of u, where l < m (so that, in general, pl ≥ pm),

and r > 1.

Note that the value of the latter sub-partial of a graph (H,u, v) would be the same for any

two pairs (pa, pb) and (pl, pm) such that (pl, pm) = (pa, pb). Also note that, in general, we
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have

fp1p2···prdi = fp1p2···prd
′
i +

∑
over all distinct
pairs (pl,pm)
with l<m

fp1p2···prd
(pl,pm)
i

Example 3. For instance, f112d4 = f112d
′
4 + f112d

(1,1)
4 + f112d

(1,2)
4 , since (1, 1) and (1, 2)

are the distinct pairs.

Lemma 4. Let x represent a face of an embedded graph (H,u, v) with px > 0 u-corners.

There are px(px + 1) ways to insert two edge-ends into the u-corners of this face.

Proof. Since there are px u-corners, there are px choices for the location of the first edge-

end. After the first edge-end is inserted, the number of u-corners is px + 1. Thus, there are

px + 1 choices for the second edge-end. Hence, there are a total of px(px + 1) choices (see

Figure 2.2).

u

u u

u

u

Figure 2.2: Since px = 5, there are 30 = 5 ∗ 6 ways to insert two edge-ends into the u-corners

of this face.

Lemma 5. Let x and y be two faces of an embedded graph (H,u, v), with px > 0 and py > 0

u-corners, respectively. There are 2pxpy ways to insert two edge-ends at root u, such that

one edge-end is in face x and the other in face y.

Proof. There are px choices for the edge-end that is inserted into face x, and for each such

choice, there are py choices for the other edge-end (see Figure 2.3). Since either of the two

edge-ends can be the one that is inserted into face x, we need to multiply pxpy by 2.
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u

u u

u u

u u

Figure 2.3: Since px = 3 and py = 4, there are 24 = 2 · 3 · 4 ways to insert two edge-ends with

one edge-end in each of the two faces.

2.3 Vertex Amalgamation

In theorems 6–8 below, productions are listed and proven for the case where the embedding

of the double-rooted graph is of type fp1p2···prdj .

Theorem 6. Let p1p2 · · · pr be a partition of an integer n ≥ 2. Suppose that a type-di

embedding of a single-rooted graph (G, t) is amalgamated to a type-fp1p2···prdj embedding

of a double-rooted graph (H,u, v), with deg(v) = deg(t) = 2 and deg(u) = n. Then the

following production holds:

di ∗ fp1p2···prd′j −→

(
r∑

x=1

px(px + 1)

)
di+j

+

 r∑
x=1

r∑
y=x+1

2pxpy

 di+j+1 (2.2)

Proof. Since at most one of the r faces incident at root u of H is incident at root v of H,

it follows that no matter how the root t of G is amalgamated to u, at most one of the two

faces incident at v are affected by this amalgamation. It follows that in the amalgamated

graph the two occurrences of v remain on two different faces. There are two cases:

case (i) is when both edge-ends incident at root t of graph G are placed into one of the

r faces of graph H incident at u. In this case, no new handle is needed, and thus, the genus

increment is 0. The coefficient
∑r

x=1 px(px + 1) of di+j counts the number of ways this can

happen. The summation goes from 1 to r, since we can put the two edge-ends incident at

t into any of the r faces. The term px(px + 1) follows from Lemma 4.

case (ii) is when the two edge-ends incident at root t of graph G are placed into two

different faces incident at u. This necessitates adding a new handle — resulting in a genus
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increment of 1. The coefficient
∑r

x=1

∑r
y=x+1 2pxpy of di+j+1 counts the number of ways

this can happen, by Lemma 5.

Theorem 7. Let p1p2 · · · pr be a partition of an integer n ≥ 2, and let (pl, pm) be a pair

such that 1 ≤ l < m ≤ r. Suppose that a type-di embedding of a single-rooted graph (G, t)

is amalgamated to a type-fp1p2···prd
(pl,pm)
j embedding of a double-rooted graph (H,u, v), with

deg(v) = deg(t) = 2 and deg(u) = n. Then the following production holds:

di ∗ fp1p2···prd
(pl,pm)
j −→

(
r∑

x=1

px(px + 1)

)
di+j

+

 r∑
x=1

r∑
y=x+1

2pxpy

 − 2plpm

 di+j+1

+ 2plpmsi+j+1 (2.3)

Proof. Let ϕl and ϕm be the two faces incident at root u that are also incident at v, with

u occurring pl times on fb-walk of face ϕl, and pm times on fb-walk of face ϕm. We note

that unless we place one edge-end incident at root t of graph (G, t) into face ϕl and the

other edge-end into face ϕm, at most one of the two faces ϕl and ϕm is affected by this

amalgamation. Thus, case (i) remains the same as in Theorem 6. The first term of the

Production (2.3) reflects this similarity. Moreover, case (ii) remains the same as in Theorem

6, unless x and y correspond to the faces ϕl and ϕm, which is why we subtract 2plpm from

the second sum in Production (2.3). If x and y correspond to the faces ϕl and ϕm, then as

a result of the amalgamation, the two faces (ϕl and ϕm) combine to become one face having

both occurrences of v in its boundary (see Figure 2.4). The third term of the production

reflects this.

u

u u

v

u

u v

u u

Figure 2.4: Here pl = 3 and pm = 4. Amalgamation combines the two faces, and the resultant

face contains both occurrences of v.
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Notation We sometimes use the shorthand fp1p2···prd
•
j in place of fp1p2···prdj , to emphasize

the absence of any superscript after dj .

Theorem 8. Let p1p2 · · · pr be a partition of an integer n ≥ 2. Suppose that a type-si

embedding of a single-rooted graph (G, t) is amalgamated to a type-fp1p2···prd
•
j embedding

of a double-rooted graph (H,u, v), with deg(v) = deg(t) = 2 and deg(u) = n. Then the

following production holds:

si ∗ fp1p2···prd•j −→ (n2 + n)di+j (2.4)

Proof. Suppose that in a type-fp1p2···prd
•
j embedding of graph (H,u, v), the two occurrences

of root-vertex v lie on on two different fb-walks W1 and W2 that may or may not contain the

root-vertex u. Suppose further that the two occurrences of root-vertex t of graph (G, t) lie

on fb-walk X. The two occurrences of root-vertex v continue being on two different fb-walks

after the operation of vertex amalgamation, unless the fb-walks W1 and W2 combine with

the fb-walk X under amalgamation into a single fb-walk. But this cannot happen when the

embedding of (G, t) is a type-si embedding, since a reduction of two faces forces the Euler

characteristic to be of odd parity, which is not possible. Thus, there is no genus-increment

and all n2 + n resulting embeddings are type-di+j embeddings.

Sub-partials of fp1p2···prsi

To define the sub-partials of fp1p2···prsi we need the concept of strands, which was introduced

and used extensively in [Gross et al., 2010]. When two embeddings are amalgamated, these

strands recombine with other strands to form new fb-walks.

Definition 9. We define a u-strand of an fb-walk of a rooted graph (H,u, v) to be a

subwalk that starts and ends with the root vertex u, such that u does not appear in the

interior of the subwalk.

The following two types of numbers are the relevant sub-partials of the partial fp1p2···prsi

for graph (H,u, v):
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fp1p2···prs
′
i = the number of type-fp1p2···prsi embeddings of H such

that the two occurrences of v lie in at most one u-

strand.

fp1p2···prs
(pl,c)
i = the number of type-fp1p2···prsi embeddings of H such

that the two occurrences of v lie in two different u-

strands of the fb-walk that is represented by pl, and

such that there are q ≥ 1 intermediate u-corners be-

tween the two occurrences of v. We take c to be equal

to min(q, pl− q), i.e., equal to the smaller number of

intermediate u-corners between the two occurrences

of root-vertex v.

Note that the last sub-partial would be the same for any other pair (pa, c) such that pa = pl.

Theorem 10. Let p1p2 · · · pr be a partition of an integer n ≥ 2. Suppose that a type-di

embedding of a single-rooted graph (G, t) is amalgamated to a type-fp1p2···prs
′
j embedding of a

double-rooted graph (H,u, v), with deg(v) = deg(t) = 2 and deg(u) = n. Then the following

production holds:

di ∗ fp1p2···prs′j −→

(
r∑

x=1

px(px + 1)

)
si+j

+

 r∑
x=1

r∑
y=x+1

2pxpy

 si+j+1 (2.5)

Proof. Since both occurrences of root v of H lie in at most one u-strand of one of the r

fb-walks, it follows that regardless of how the u-strands recombine in the amalgamation

process, these two occurrences remain on that same u-strand; thus, in all of the resultant

embeddings, the two occurrences of v are on the same fb-walk. As discussed in the proof of

Theorem 6, there are
∑r

x=1 px(px+1) embeddings that do not result in any genus-increment

(corresponding to both edge-ends at t being inserted into the same face at u), whereas

there are
∑r

y=x+1 2pxpy embeddings that result in a genus increment of 1 (corresponding

to inserting both edge-ends at t into the different faces at u).
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Theorem 11. Let p1p2 · · · pr be a partition of an integer n ≥ 2. Then for each distinct pl,

with l ∈ {1, · · · , r}, and for each integer c in the integer interval [1,
⌊pl
2

⌋
], when a type-di

embedding of a single-rooted graph (G, t) is amalgamated to a type-fp1p2···prs
(pl,c)
j embedding

of a double-rooted graph (H,u, v), with deg(v) = deg(t) = 2 and deg(u) = n, the following

production holds:

di ∗ fp1p2···prs
(pl,c)
j −→

((
r∑

x=1

px(px + 1)

)
− pl(pl + 1)

)
si+j

+ 2c(pl − c) di+j

+ [c(c+ 1) + (pl − c)(pl − c+ 1)] si+j

+

 r∑
x=1

r∑
y=x+1

2pxpy

 si+j+1 (2.6)

Proof. Let ϕl be the face corresponding to pl, and let w1 and w2 be the two (different)

u-strands that contain the two occurrences of root v of H (with c intermediate u-corners

between the two occurrences of v). It follows that unless the two edge-ends incident at root

t of G are both placed into the face ϕl, the two occurrences of root v will lie on the same

fb-walk after amalgamation. The first and last terms of the production reflect this.

Now we consider the case when the two edge-ends incident at root t of graph (G, t) are

both placed into the face ϕl. Let estart1 and estart2 be the initial edge-ends of u-strands w1

and w2, similarly let eend1 and eend2 be the terminal edge-ends of u-strands w1 and w2 (we

consider that a u-strand starts and ends at root u). This is illustrated in Figure 2.5.

c occurrences of u

w2w1 v v

u u u u

u u u u

eend1 estart2

pl − c occurrences of u

Figure 2.5: Fb-walk of a type-fp1p2···prs
(pl,c)
j embedding.

.
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It is clear that in the fb-walk of the face ϕl, the cyclic order of these four edge-ends is:

estart1 , eend1 , estart2 , eend2 . If one of the two edge-ends incident at root t is placed between

eend1 and estart2 and the other between eend2 and estart1 , then after the strands are recom-

bined, one of the u-strands containing one occurrence of root v clearly recombines with the

one t-strand of (G, t) to make a new face (see Figure 2.6, left).

t-strand

c occurrences of u

w2w1 v v

u u u u

u u u u

eend1 estart2

pl − c occurrences of u

c occurrences of u

w2w1 v v

u u u u

u u u u

eend1 estart2

pl − c occurrences of u

t-strand

Figure 2.6: The two ways of inserting t-strands.

.

It follows that in this case the two occurrences of root v will lie on two different faces.

Since there are a total of pl u-corners in face ϕl, and there are c intermediate u-corners

between the two occurrences of root v of graph (H,u, v), there are 2c(pl − c) ways in all of

inserting the two edge-ends incident at root t of graph (G, t) in this way. We multiply by 2

since either of the two edge-ends can be chosen as the first edge-end. The second term of

the production reflects this case.

If both of the edge-ends incident at root t are placed between eend1 and estart2 , or between

eend2 and estart1 , then the two occurrences of root v lie on the same face after u-strands and

t-strands are recombined (see Figure 2.6, right). There are c(c + 1) + (pl − c)(pl − c + 1)

ways this can happen, since there are c and pl − c intermediate u-corners between w1 and

w2.

Notation We sometimes use the shorthand fp1p2···prs
•
j in place of fp1p2···prsj , to emphasize

the absence of any superscript after sj .
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Theorem 12. Let p1p2 · · · pr be a partition of an integer n ≥ 2. Suppose that a type-si

embedding of a single-rooted graph (G, t) is amalgamated to a type-fp1p2···prsj embedding

of a double-rooted graph (H,u, v), with deg(v) = deg(t) = 2 and deg(u) = n. Then the

following production holds:

si ∗ fp1p2···prs•j −→ (n2 + n)si+j (2.7)

Proof. Since the two occurrences of root v of H lie on the same fb-walk. One necessary

condition for the operation of vertex amalgamation to change this is that both edge-ends at

root t of G are inserted into that face. However, since both occurrences of root t are on the

same fb-walk, both ends of each t-strand lie in the same u-corner of that face, as illustrated

in Figure 2.7. This implies that no new handle is needed as a result of the amalgamation.

Thus, there is no genus-increment.

estart1

t-strands

eend2

v v

u u u u

u u u u

eend1 estart2

v v

u u u u

u u u u

eend1 estart2

Figure 2.7: Even after the amalgamation, the two occurrences of v remain on the same fb-walk.

.

Corollary 13. Let (X, v) = (G, t) ∗ (H,u, v), where deg(v) = deg(t) = 2 and deg(u) = n

for n ≥ 2. Then for

αp1p2···pr =
r∑

x=1

px(px + 1) and βp1p2···pr =
r∑

x=1

r∑
y=x+1

2pxpy

we have

dk(X) =
∑

over all partitions
p1p2···pr of n

[ k∑
i=0

αp1p2···pr dk−ifp1p2···prd
′
i
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+

k−1∑
i=0

βp1p2···pr dk−i−1fp1p2···prd
′
i

+
k∑
i=0

∑
over all

distinct (pl,pm)
l <m

αp1p2···pr dk−ifp1p2···prd
(pl,pm)
i

+
k−1∑
i=0

∑
over all

distinct (pl,pm)
l <m

(βp1p2···pr − 2plpm) dk−i−1fp1p2···prd
(pl,pm)
i

+
k∑
i=0

(n2 + n) sk−ifp1p2···prd
•
i

+

k∑
i=0

∑
over all

distinct pl

b pl
2
c∑

c=1

2c(pl − c) dk−ifp1p2···prs
(pl,c)
i

]
(2.8)

Proof. This equation is derived from Theorems 6, 7, 8 and 11 by a routine transposition of

the productions that have the single-root partial d on their right-hand-side.

Corollary 14. Let (X, v) = (G, t) ∗ (H,u, v), where deg(v) = deg(t) = 2 and deg(u) = n

for n ≥ 2. Then for

αp1p2···pr =
r∑

x=1

px(px + 1) and βp1p2···pr =
r∑

x=1

r∑
y=x+1

2pxpy

we have

sk(X) =
∑

over all partitions
p1p2···pr of n

[ k∑
i=0

αp1p2···pr dk−ifp1p2···prs
′
i

+

k−1∑
i=0

βp1p2···pr dk−i−1fp1p2···prs
′
i

+
k−1∑
i=0

∑
over all

distinct (pl,pm)
l <m

2plpm dk−i−1fp1p2···prd
(pl,pm)
i

+

k∑
i=0

∑
over all

distinct pl

b pl
2
c∑

c=1

(
c(c+ 1) + (pl − c)(pl − c+ 1)

+ αp1p2···pr − pl(pl + 1)

)
dk−ifp1p2···prs

(pl,c)
i
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+
k−1∑
i=0

∑
over all

distinct pl

b pl
2
c∑

c=1

βp1p2···pr dk−i−1fp1p2···prs
(pl,c)
i

+
k∑
i=0

(n2 + n) sk−ifp1p2···prs
•
i

]
(2.9)

Proof. This equation is derived from Theorems 7, 10, 11 and 12 by a routine transposition

of the productions that have the single-root partial s on their right-hand-side.

Remark 15. In writing Recursions 2.8 and 2.9, we have suppressed indication of graphs

G and H as arguments, in order that they not occupy too many lines. In the examples to

follow, we see how restriction of these recursions to particular genus distributions of interest

greatly simplifies them. The reason for placing the index variable i of each sum with the

second factor, rather than the first, also becomes clear in the applications.

Example 16. We can specify a sequence of open chains of copies of a double-rooted

graph (G, u, v) recursively.

(X1, t1) = (G, v) (suppressing co-root u) (2.10)

(Xm, tm) = (Xm−1, tm−1) ∗ (G, u, v) for m ≥ 1 (2.11)

For example, consider a chain of copies of the graph (K̇4, u, v) obtained from the complete

graph (K4, u) by inserting a vertex v as a subdivision point of any edge of the graph (Figure

2.8). We observe that each of the amalgamations results in a vertex of degree 5.

X1 X2 X3

Figure 2.8: Xm is an open chain of m copies of (K̇4, u, v).

By face-tracing the embeddings of (K̇4, u, v), we obtain Table 2.1.
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Table 2.1: Nonzero partials of (K̇4, u, v).

k f111d
′
k f21d

(2,1)
k f21s

(2,1)
k f3d

′
k dk sk gk

0 2 2 2

1 6 6 2 8 6 14

By using Recurrences (2.8) and (2.9) for deg(u) = n = 3, and the values from Table 2.1,

we obtain the following two recurrences, for m ≥ 2, k ≥ 0:

dk(Xm) = 12dk(Xm−1) + 24sk(Xm−1) + 96dk−1(Xm−1) + 96sk−1(Xm−1) (2.12)

sk(Xm) = 48dk−2(Xm−1) + 36dk−1(Xm−1) + 72sk−1(Xm−1) (2.13)

Another way of obtaining these recurrences without having to use Recurrences (2.8) and

(2.9), is to first list all productions that are relevant for the example at hand (i.e. corre-

sponding to the non-zero double-root partials) using Theorems 6–12; we list the productions

for this example in Table 2.2. We can then transpose these productions, and use the values

of double-root partials from Table 2.1 on the transposed productions to come up with the

desired recurrences.

Table 2.2: The non-zero productions when deg(u) = 3.

di ∗ f111d′j −→ 6di+j + 6di+j+1

si ∗ f111d•j −→ 12di+j

di ∗ f21d(2,1)j −→ 8di+j + 4si+j+1

di ∗ f21s(2,1)j −→ 2di+j + 6si+j + 4si+j+1

si ∗ f21d•j −→ 12di+j

si ∗ f21s•j −→ 12si+j

di ∗ f3d′j −→ 12di+j

si ∗ f3d•j −→ 12di+j

Using these recurrences and the values of single-root partials in Table 2.1, we obtain the

values of single-root partials for X2, that are listed in Table 2.3. We can then use values of
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the partials for X2 to obtain the values of single-root partials for X3, also listed in Table

2.3. We can iterate this to obtain the genus distribution of Xm for any value of m.

Table 2.3: Single-root partials of X2 and X3.

X2 X3

k dk sk gk dk sk gk

0 24 0 24 288 0 288

1 432 72 504 9216 864 10080

2 1344 816 2160 84096 21888 105984

3 384 384 216576 127872 344448

4 36864 92160 129024

Example 17. As another illustration of the method, we compute the recurrences for the

open chains of a graph (G, u, v) in which deg(u) = n = 6 (see Figure 2.9). Where, as in

previous example, X1 is the graph G with root s suppressed.

X1 X2 X3

Figure 2.9: Xm is an open chain of m copies of G.

By face-tracing the embeddings of (G, u, v), we obtain Table 2.4.
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Table 2.4: Nonzero partials of (G, u, v).

type k = 0 k = 1

f51d
(5,1) 16

f2211d
(2,2) 8

f2211d
(2,1) 16

f42s
(4,2) 8

f42d
(4,2) 16

f33d
(3,3) 8

f3111d
(3,1) 16

f51s
(5,2) 32

dk 40 40

sk 40

gk 40 80

Using Recurrences (2.8) and (2.9), we obtain the following two recurrences for m ≥

2, k ≥ 0:

dk(Xm) = 672dk(Xm−1) + 1680sk(Xm−1)

+ 2352dk−1(Xm−1) + 1680sk−1(Xm−1) (2.14)

sk(Xm) = 1008dk−2(Xm−1) + 1008dk−1(Xm−1) + 1680sk−1(Xm−1) (2.15)

Table 2.5 records the values that these recurrences give us for X2 and X3.
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Table 2.5: Single-root partials of X2 and X3.

X2 X3

k dk sk gk dk sk gk

0 26880 0 26880 18063360 0 18063360

1 188160 40320 228480 257402880 27095040 284497920

2 161280 147840 309120 867041280 284497920 1151539200

3 0 40320 40320 695439360 600606720 1296046080

4 67737600 230307840 298045440

Remark As illustrated in the preceding examples that when we use the method derived

in this chapter for computing the genus distribution of the open chain of a double-rooted

graph (G, u, v) (where deg(u) ≥ 2 and deg(v) = 2), once we have the system of recurrences

〈dk, sk : k = 0, 1, 2, · · · 〉, computing the genus distribution of the graph family is a routine

task of evaluating those recurrences, that can be done in linear time. Also, the derivation

of the system of recurrences is a task that is independent of k (though it does depend on

the valence of the root u of the double-rooted graph (G, u, v)). This observation holds true

of all methods derived in this dissertation.
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Chapter 3

Operations on Double-rooted

Graphs

In Chapter 2, we developed a method for computing the genus distribution of open chains

of any double-rooted graph (G, u, v) provided that one of the two roots has valence two.

In order to do this, we defined double-root partials, and we refined them into sub-partials.

The information encoded in those sub-partials can be put to further use. For instance, with

a minor refinement in the definition of the double-root sub-partials (Section 3.1), we can

derive productions to calculate the effect of amalgamating the two root vertices with each

other (Section 3.2), and also the effect of adding an edge between the two root vertices of

the double-rooted graph (Section 3.3).

In the next chapter, we will see how we can use these productions to compute the genus

distribution of closed chains of any double-rooted graph, where one of the two roots is

restricted to be of valence two. A closed chain is the graph obtained from an open chain

(Xn, u, v) by merging both of its roots.

3.1 Refinement of Sub-partials

We start with the same assumption as at the start of Chapter 2, namely, that we have a

double-rooted graph (G, u, v) in which deg(u) = n ≥ 2 and deg(v) = 2. To capture the

different ways in which the two roots of a double-rooted graph can occur in shared fb-walks
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for the purpose of self-vertex-amalgamation, the sub-partials defined in Chapter 2 need to

be further refined.

The following three types of numbers are the sub-partials of fp1p2···prdi(G, u, v):

fp1p2···prd
0
i = the number of type-fp1p2···prdi embeddings of (G, u, v) such

that none of the fb-walks incident on u is also incident on

v;

fp1p2···prd
pk
i = the number of type-fp1p2···prdi embeddings of (G, u, v) such

that an fb-walk with pk occurrences of root u is the same

as one of the two fb-walks incident on v;

fp1p2···prd
(pl,pm)
i = the number of type-fp1p2···prdi embeddings of (G, u, v) such

that the two fb-walks incident on v have pl and pm occur-

rences of u, respectively, where l < m (so that, in general,

pl ≥ pm), and r > 1.

The following three types of numbers are the relevant sub-partials of the partial fp1p2···prsi

for graph (G, u, v):

fp1p2···prs
0
i = the number of type-fp1p2···prsi embeddings of (G, u, v) such

that none of the fb-walks incident on root u is also incident

on root v.

fp1p2···prs
pk
i = the number of type-fp1p2···prsi embeddings of (G, u, v) such

that both occurrences of v lie in one u-strand, in the fb-walk

represented by pk.

fp1p2···prs
(pk,c)
i = the number of type-fp1p2···prsi embeddings such that the two

occurrences of v lie in two different u-strands of the fb-walk

represented by pk, and such that there are q ≥ 1 intermediate

u-corners between the two occurrences of v. We take c to be

equal to min(q, pk − q), i.e., equal to the smaller number of

intermediate u-corners between the two occurrences of root-

vertex v.
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3.2 Self-vertex-amalgamation

Productions for the self-vertex-amalgamation of the two roots of a double-rooted graph

(G, u, v), giving graph G′, are of the following form:

pi(G, u, v) −→ α1 gi−1(G
′) + α2 gi(G

′) + α3 gi+1(G
′)

where pi(G, u, v) is a sub-partial and the coefficients αk are integers whose sum is n2+n, i.e.

given any embedding ιG of the double-rooted graph (G, u, v), there are n2+n embeddings of

the graph G′ whose rotation systems are consistent with the rotation system corresponding

to the embedding ιG. This essentially follows from Proposition 1, which was, in turn, a

symmetrization of Formula (1.1) of [Gross et al., 2010].

The negative-genus increment here might be surprising, but the scenario does arise

during self-vertex-amalgamation of an embedding of type fp1p2···prs
(pk,c)
i (see case (iii) in

the proof of Production 3.6 below).

Theorem 18. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G′ be the graph obtained by merging the roots u and v. Then for each partition p1p2 · · · pr

of deg(u), the following production holds:

fp1p2···prd
0
i (G, u, v) −→

(
r∑

x=1

px(px + 1)

)
gi+1(G

′)

+

 r∑
x=1

r∑
y=x+1

2pxpy

 gi+2(G
′) (3.1)

Proof. In an embedding of type fp1p2···prd
0
i (G, u, v), none of the fb-walks incident on root u

are incident on root v. This implies that no matter how the two edge-ends incident at root

v are inserted into the rotation system at root vertex u, at least two fb-walks are merged

with each other. Figure 3.1 shows an embedding of this type. The fb-walks ψx and ψy have

px and py u-corners, respectively, though we only show one u-corner for simplicity’s sake

(see the remark that immediately follows this proof).

Thus, there will be a genus-increment of at least one during self-vertex-amalgamation

of an embedding of type fp1p2···prd
0
i (G, u, v). Let α and β be the two edge-ends incident on

root v. There are two cases depending on where these two edge-ends are inserted:
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ψxψy

v

u

α β

Figure 3.1: A graph embedding of type fp1p2···pr
d0i (G, u, v)

ψy
u α

β

ψy
u

α

β

Figure 3.2: Case (i) – when both edge-ends are inserted into one fb-walk
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case (i) is when the two edge-ends incident at root v are inserted into one fb-walk

incident at root u, say in the fb-walk ψx containing px u-corners. In this case, according to

Lemma 4, there will be px(px + 1) new embeddings of the graph G′. Since both edge-ends

are inserted into the the same fb-walk, there is no additional genus-increment. In Figure 3.2

we show the two ways of inserting edge-ends α and β into ψx, one with a “twist” (bottom)

and one without (top). The first term of the production corresponds to this case.

case (ii) is when α and β are inserted into two different fb-walks incident at root u, say

in ψx and ψy. In this case, since these two fb-walks are merged as a consequence of this

operation, there will be another genus-increment (thus the genus rises by two overall) (see

Figure 3.3). There are 2pxpy ways of doing this, according to Lemma 5. The second term

of the production corresponds to this case. ♦

u
α β

u
αβ

Figure 3.3: Case (ii) – when both edge-ends are inserted into two different fb-walks, with a

twist (bottom), without a twist (top)
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Remark In order to avoid unnecessary clutter, we simplified all of the figures in the

previous proof, by showing that each fb-walk contained only one u-corner. We could afford

this simplification only because in each of the fb-walks that were involved in the self-vertex-

amalgamation, only one strand from each of the involved fb-walks took part in self-vertex-

amalgamation. This abstraction works in all of the subsequent proofs as well, except in

the case of Production 3.6. The reason why this abstraction doesn’t work there is that in

an embedding of type fp1p2···prs
(pk,c)
i (G, u, v), two u-strands of the fb-walk containing pk

u-corners are involved in the amalgamation, instead of only one (as in the embeddings of

all other types).

Theorem 19. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G′ be the graph obtained by merging the roots u and v. Then for each partition p1p2 · · · pr

of deg(u), the following production holds:

fp1p2···prd
pk
i (G, u, v) −→

 r∑
x=1
x 6=k

px(px + 1)

 gi+1(G
′)

+
pk(pk + 1)

2

(
gi(G

′) + gi+1(G
′)
)

+

 r∑
x=1
x 6=k

r∑
y=x+1
y 6=k

2pxpy

 gi+2(G
′)

+

 r∑
x=1
x 6=k

2pkpx

 gi+1(G
′) (3.2)

Proof. In an embedding of type fp1p2···prd
pk
i (G, u, v), one of the fb-walks containing pk u-

corners (denoted by φ) also contains one v-corner, such that the fb-walk (denoted by ϕ)

containing the other v-corner is not incident on root u. There are four cases:
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φψx

v

u

α β

ϕ

Figure 3.4: A graph embedding of type fp1p2···pr
dpk

i (G, u, v)

case (i) and (ii) are similar to the cases (i) and (ii) in the proof of Production 3.1,

except that x 6= k, y 6= k. The first term of the production corresponds to case (i), and the

third term corresponds to case (ii).

case (iii) is when the two edge-ends incident on root v are inserted into the fb-walk φ.

Since deg(v) = 2, there are two sub-cases: case (iii-a) when the insertion is done with a

twist, and case (iii-b) when the insertion is done without a twist. Since φ contains only

one of the two v-corners, in one of these two cases ϕ is merged with φ (resulting in a

genus-increment) – see Figure 3.5 (bottom) – since the number of fb-walks is reduced by

one, whereas in the other case the fb-walk φ is divided into two fb-walks (with no genus-

increment) – see Figure 3.5 (top) – since the number of fb-walk increases by one. The

second term of the production corresponds to these two sub-cases.

case (iv) is when the two edge-ends incident on root v are inserted into two different

fb-walks, one of which is φ. In this case there will be a genus increment of only one (see

Figure 3.6 – the number of fb-walks is reduced by one in both cases). The last term of the

production corresponds to this case. ♦
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ψx
u α

β

ψx
u

α

β

Figure 3.5: Case (iii) – when both edge-ends are inserted into φ.

u
α β

u
αβ

Figure 3.6: Case (iv) – when the two edge-ends are inserted into two different fb-walks one of

which is φ, with a twist (bottom), without a twist (top)
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Theorem 20. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G′ be the graph obtained by merging the roots u and v. Then for each partition p1p2 · · · pr

of deg(u), the following production holds:

fp1p2···prd
(pl,pm)
i (G, u, v) −→

 r∑
x=1

x 6=l,x 6=m

px(px + 1)

 gi+1(G
′)

+
pl(pl + 1)

2

(
gi(G

′) + gi+1(G
′)
)

+
pm(pm + 1)

2

(
gi(G

′) + gi+1(G
′)
)

+

 r∑
x=1

x 6=l,x 6=m

r∑
y=x+1
y 6=l,y 6=m

2pxpy

 gi+2(G
′)

+

 r∑
x=1

x 6=l,x 6=m

(2plpx + 2pmpx)

 gi+1(G
′)

+ 2plpm gi(G
′) (3.3)

Proof. The proof of this production is similar to the proof of the previous production,

except for case (iii) and case (iv), since here both of the fb-walks incident on root v are also

incident on root u (we call them φ and ψ), instead of only one (as in the case of previous

production).

φψ

v

u

α β

Figure 3.7: A graph embedding of type fp1p2···pr
d
(pl,pm)
i (G, u, v)
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case (iii) is similar to the case (iii) of the previous proof, except that there it dealt

with the scenario when the two edge-ends incident on root v were inserted into fb-walk φ,

whereas here it deals with the scenario when the two edge-ends are inserted into the fb-walk

φ, or into the fb-walk ψ. The analysis remains the same in both cases. The second and

third terms of the production correspond to this case.

case (iv) – in an embedding of type fp1p2···prd
(pl,pm)
i (G, u, v), there is one additional

sub-case of case (iv) of the previous proof: when the two edge-ends incident on root v are

inserted into two different fb-walks, one of which is φ and the other ψ. In this case, the

two fb-walks divide up into three fb-walks, and thus there is no genus increment. Figure

3.8 shows one of the two ways of inserting the two edge-ends in these two fb-walks (the

other way gives similar results, we leave its drawing for the reader). The last term of the

production corresponds to this case. ♦

u
α β

Figure 3.8: Case (iv) – when the two edge-ends are inserted into two different fb-walks one of

which is φ and the other is ψ (we show only one of the two possible ways of doing

this).

Theorem 21. Let (G, u, v) be a double-rooted graph where deg(u) = n ≥ 2 and deg(v) = 2,

and let G′ be the graph obtained by merging the roots u and v. Then for each partition

p1p2 · · · pr of deg(u), the following production holds:

fp1p2···prs
0
i (G, u, v) −→ (n2 + n) gi+1(G

′) (3.4)

Proof. In an embedding of type fp1p2···prs
0
i (G, u, v), none of the fb-walks incident on root

u are incident on root v. This shows that there is a genus-increment of at least one, also
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there is no additional genus-increment, since both edge-ends incident on root v lie on the

same fb-walk. Thus, all n2 + n embeddings are of type gi+1. ♦

Theorem 22. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G′ be the graph obtained by merging the roots u and v. Then for each partition p1p2 · · · pr

of deg(u), the following production holds:

fp1p2···prs
pk
i (G, u, v) −→

 r∑
x=1
x 6=k

px(px + 1)

 gi+1(G
′)

+ pk(pk + 1) gi(G
′)

+

 r∑
x=1
x 6=k

r∑
y=x+1
y 6=k

2pxpy

 gi+1(G
′)

+

 r∑
x=1
x 6=k

pkpx

 gi(G
′) +

 r∑
x=1
x 6=k

pkpx

 gi+1(G
′) (3.5)

Proof. In an embedding of type fp1p2···prs
pk
i (G, u, v), of the r fb-walks incident on root u,

only one is incident on root v (we refer to this fb-walk as φ) such that only one u-strand

(denoted by s1) contains both occurrences of root v. There are four cases:

φψx

v

u

α β

Figure 3.9: A graph embedding of type fp1p2···prs
pk

i (G, u, v).

case (i) When the two edge-ends incident on root v are inserted into one fb-walk ψx

such that ψx 6= φ. From Lemma 4 we know there are px(px+1) ways of doing that. There is

a genus-increment since the fb-walk φ (that contains both occurrences of root v) is merged

with ψx (see Figure 3.10). The first term of the production represents this.
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φ
uα

β

Figure 3.10: Case (i) – since the two fb-walks are merged with each other, there is a genus-

increment of one (we show only one of the two possible ways of doing this).

case (ii) is when the two edge-ends incident on root v are inserted into fb-walk φ. It is

clear that there is no genus-increment in this case, since fb-walk φ is split into two fb-walks

(see Figure 3.11). The second term of the production represents this.

ψx
u α

β

Figure 3.11: Case (ii) – since the two fb-walks are merged with each other, there is a genus-

increment of one (we show only one of the two possible ways of doing this).

case (iii) When the two edge-ends incident on root v are inserted into two different

fb-walks (that we denote with ψx and ψy), neither of which is φ. In this case the fb-walk φ

is split into two strands, each of which recombines with one of the two fb-walks ψx and ψy,

yielding two fb-walks (which is a reduction in the number of fb-walks by one). Thus there

is no genus increment in this case. According to Lemma 5, there are 2pxpy ways of doing

that. The third term of the production represents this.
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φ
ψx

v

u

α β

ψy

uα

β

Figure 3.12: Case (iii) – when both edge-ends are inserted into two different fb-walks. The

embedding before the amalgamation (left), and after the amalgamation (right)

(we show only one of the two possible ways of doing this)

u
α β

u
αβ

Figure 3.13: Case (iv) – when both edge-ends are inserted into two different fb-walks, one of

which is φ. There are two ways of doing this, one of which results in a genus

increment.

case (iv) is similar to case (iii), except that one of the two fb-walks is φ. There are two

ways of doing this (shown in Figure 3.13). In the first case, the fb-walk φ is split into three

strands, one of which recombines with fb-walk φx, and the other two make two new fb-walks
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(the number of fb-walks rises by one, so the genus remains the same). In the second case,

φ splits into three strands as well, but these strands recombine with each other, and with

fb-walk φx to give only one fb-walk (the number of fb-walks decreases by one, resulting in

a genus-increment). The last term of the production reflects this. ♦

Theorem 23. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G′ be the graph obtained by merging the roots u and v. Then for each partition p1p2 · · · pr

of deg(u), the following production holds:

fp1p2···prs
(pk,c)
i (G, u, v) −→

 r∑
x=1
x 6=k

px(px + 1)

 gi+1(G
′)

+ c(pk − c) gi−1(G′) + [pk(pk + 1)− c(pk − c)] gi(G′)

+

 r∑
x=1
x 6=k

r∑
y=x+1
y 6=k

2pxpy

 gi+1(G
′)

+

 r∑
x=1
x 6=k

pkpx

 gi(G
′) +

 r∑
x=1
x6=k

pkpx

 gi+1(G
′) (3.6)

Proof. In an embedding of type fp1p2···prs
(pk,c)
i (G, u, v), of the r fb-walks incident on root u,

only one is incident on root v (we refer to this fb-walk as φ) such that the two occurrences

of root v lie in two different strands (denoted by s1 and s2), separated by c u-corners. Let

α and β be the two edge-ends incident on root v. Without any loss of generality, we can

assume that in u-strand s1, edge-end β appears before α in the chosen orientation (since

deg(v) = 2, it is clear that these two edge-ends appear in fb-walks consecutively), whereas

in u-strand s2, edge-end α appears before β. We can further assume that in fb-walk φ, the

sub-walk w1 containing c intermediate u-corners starts after s1 and ends before s2 (in the

chosen orientation). It follows that sub-walk w2 containing the remaining pk − c u-corners

starts after s2 and ends before s1 (in the chosen orientation). Figure 3.14 illustrates these

assumptions (we assume that the two ends of the thick dotted line-segments that appear

at the start and end of the fb-walk φ are connected, though we have not shown this in the

figure, to avoid unnecessary clutter).



CHAPTER 3. OPERATIONS ON DOUBLE-ROOTED GRAPHS 43

fb-walk φψx

v

u

α β

s2 s1

w1

w2

w2

Figure 3.14: A graph embedding of type fp1p2···prs
(pk,c)
i (G, u, v).

Depending on where edge-ends α and β are inserted during the self-vertex-amalgamation,

there are four cases:

case (i) is when the two edge-ends are inserted into an fb-walk, say ψx, such that ψ 6= φ.

In each of the two ways of doing this, the two fb-walks are merged, reducing the number of

fb-walks by one. Thus there is a genus-increment (Figure 3.15 shows one of these two ways,

we leave the other drawing for the reader). The first term of the production corresponds to

this case.

u
α

β

Figure 3.15: Case (i) – α and β are inserted into ψx 6= φ.
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case (ii) is when the two edge-ends incident on root v are inserted into φ. There are

two sub-cases: sub-case (ii-a) when α is inserted into the sub-walk w1, and α is inserted

into the sub-walk w2, thus splitting each of the two sub-walks w1, w2 and the u-strands

s1, s2 into strands. These strands then recombine to form four different fb-walks as shown

in Figure 3.16, thus resulting in a negative genus-increment. There are c(pk − c) ways of

doing this, since there are c u-corners in w1 an pk − c u-corners in w2. The second term of

the production deals with this scenario.

ψx

u

α

β

Figure 3.16: Sub-case (ii-a)

sub-case (ii-b) corresponds to all of the remaining pk(pk+1)−c(pk−c) ways of inserting

the two edge-ends into the fb-walk φ, i.e. (i) when both edge-ends are inserted into either

w1 or into w2 (see Figure 3.17 – top), and (ii) when α is inserted into w2 aand β is inserted

into w1 (see Figure 3.17 – bottom). In each of these cases, φ is split into two fb-walks (so

there is no genus increment). The third term of the production corresponds to this scenario.

case (iii) is when the two edge-ends, α and β are inserted into two different fb-walks,

ψx and ψy, such that ψx 6= ψy 6= φ. In this case, φ is split into two strands, one of which

recombines with ψx to form a new fb-walk, and the other strand recombines with ψy to

form another fb-walk. Thus the number of fb-walks reduces by one overall, resulting in a

negative genus-increment (see Figure 3.18). The fourth term of the production corresponds

to this case.
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α

β

ψx

u

ψx

u
α

β

Figure 3.17: Sub-case (ii-b)

φ
ψx

v

u

α β

ψy

u

β

α

Figure 3.18: Case (iii) the two edge-ends are inserted into two different fb-walks, neither

of which is φ. The embedding before the amalgamation (left), and after the

amalgamation (right) (we show only one of the two possible ways of doing this)
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case (iv) Corresponds to the scenario when the two edge-ends incident on root v are

inserted into two different fb-walks, one of which is φ. As with case (iv) of the proof of

Production 3.5, there are two sub-cases. We illustrate these sub-cases in Figure 3.19. The

last two terms of the production correspond to this scenario. ♦

u
α β

u
αβ

Figure 3.19: Case (iv) the two edge-ends are inserted into two different fb-walks, one of which

is φ.

Example 24. We’ll illustrate an application of these productions by computing the genus

distribution of the graph obtained through self-vertex-amalgamation of a double-rooted

graph (G, u, v), where deg(u) = 3 and deg(v) = 2.

Since deg(u) = 3, the following are the only possible sub-partials for the double-rooted

graph:

f111d
0
i , f111d

1
i , f111d

(1,1)
i , f21d

0
i , f21d

1
i , f21d

2
i , f21d

(2,1)
i , f3d

0
i , f3d

3
i , f111s

0
i , f111s

1
i , f21s

0
i ,

f21s
1
i , f21s

2
i , f21s

(2,1)
i , f3s

0
i , f3s

3
i , f3s

(3,1)
i
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Using Theorems 18–23, we obtain the following productions for self-vertex-amalgamation

of a double-rooted graph (G, u, v), where deg(u) = 3 and deg(v) = 2.

f111d
0
i (G, u, v) −→ 6 gi+1(G

′) + 6 gi+2(G
′)

f111d
1
i (G, u, v) −→ gi(G

′) + 9 gi+1(G
′) + 2 gi+2(G

′)

f111d
(1,1)
i (G, u, v) −→ 4 gi(G

′) + 8 gi+1(G
′)

f21d
0
i (G, u, v) −→ 8 gi+1(G

′) + 4 gi+2(G
′)

f21d
1
i (G, u, v) −→ gi(G

′) + 11 gi+1(G
′)

f21d
2
i (G, u, v) −→ 3 gi(G

′) + 9 gi+1(G
′)

f21d
(2,1)
i (G, u, v) −→ 8 gi(G

′) + 4 gi+1(G
′)

f3d
0
i (G, u, v) −→ 12 gi+1(G

′)

f3d
3
i (G, u, v) −→ 6 gi(G

′) + 6 gi+1(G
′)

f111s
0
i (G, u, v) −→ 12 gi+1(G

′)

f111s
1
i (G, u, v) −→ 4 gi(G

′) + 8 gi+1(G
′)

f21s
0
i (G, u, v) −→ 12 gi+1(G

′)

f21s
1
i (G, u, v) −→ 4 gi(G

′) + 8 gi+1(G
′)

f21s
2
i (G, u, v) −→ 8 gi(G

′) + 4 gi+1(G
′)

f21s
(2,1)
i (G, u, v) −→ gi−1(G

′) + 7 gi(G
′) + 4 gi+1(G

′)

f3s
0
i (G, u, v) −→ 12 gi+1(G

′)

f3s
3
i (G, u, v) −→ 12 gi(G

′)

f3s
(3,1)
i (G, u, v) −→ 2 gi−1(G

′) + 10 gi(G
′)

After transposition, we get the following formula:

gi(G
′) = 6 f111d

0
i−1 + 6 f111d

0
i−2 + f111d

1
i + 9 f111d

1
i−1 + 2 f111d

1
i−2

+ 4 f111d
(1,1)
i + 8 f111d

(1,1)
i−1 + 8 f21d

0
i−1 + 4 f21d

0
i−2

+ f21d
1
i + 11 f21d

1
i−1 + 3 f21d

2
i + 9 f21d

2
i−1

+ 8 f21d
(2,1)
i + 4 f21d

(2,1)
i−1 + 12 f3d

0
i−1
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+ 6 f3d
3
i + 6 f3d

3
i−1 + 12 f111s

0
i−1

+ 4 f111s
1
i + 8 f111s

1
i−1 + 12 f21s

0
i−1

+ 4 f21s
1
i + 8 f21s

1
i−1 + 8 f21s

2
i + 4 f21s

2
i−1

+ f21s
(2,1)
i+1 + 7 f21s

(2,1)
i + 4 f21s

(2,1)
i−1 + 12 f3s

0
i−1

+ 12 f3s
3
i + 2 f3s

(3,1)
i+1 + 10 f3s

(3,1)
i (3.7)

This formula can be used to compute the genus distribution of the self-vertex-amalgamation

of any double-rooted graph (G, u, v) such that deg(u) = 3 and deg(v) = 2, provided that

we are given the partitioned genus distribution of (G, u, v).

For instance, for the double-rooted graph (K̇4, u, v) (as defined in Chapter 2 – i.e., a

graph obtained from the complete graph (K4, u) by inserting a vertex v as a subdivision

point of any edge of the graph) the partitioned genus distribution is given in Table 3.1.

u v

Figure 3.20: Self-vertex-amalgamation of double-rooted graph (K̇4, u, v).

Table 3.1: Nonzero partials of (K̇4, u, v).

k f111d
1
k f21d

(2,1)
k f3d

3
k f21s

(2,1)
k f3s

(3,1)
k gk

0 2 2

1 6 2 6 14

We can use the values given in Table 3.1 as base-cases to recursively evaluate For-

mula 3.7, to compute the genus distribution of the graph K̇ ′4 obtained through self-vertex-

amalgamation of (K̇4, u, v). Table 3.2 gives the results of this evaluation.
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Table 3.2: Genus distribution of the resulting graph

k gk

0 8

1 120

2 64

3.3 Edge-addition

In this section, we’ll derive productions for calculating the effect of the operation of edge-

addition on the double-rooted sub-partials of a double-rooted graph (G, u, v). This enables

us to compute the genus distribution of the graph G+ e directly from the partitioned genus

distribution of (G, u, v). We’ll see in the next chapter how these productions can be used

to compute the genus distribution of iteratively constructed chains of graphs by adding an

edge between the two root vertices of open chains.

Theorem 25. Let (G, u, v) be a double-rooted graph where deg(u) ≥ 2 and deg(v) = 2, and

let G + e be the graph obtained by adding an edge e between roots u and v. Then for each

partition p1p2 · · · pr of deg(u), the following productions hold:

fp1p2···prd
0
i (G, u, v) −→ 2n gi+1(G+ e) (3.8)

fp1p2···prd
pk
i (G, u, v) −→ (2n− pk) gi+1(G+ e) + pk gi(G+ e) (3.9)

fp1p2···prd
(pl,pm)
i (G, u, v) −→ (2n− pl − pm) gi+1(G+ e) + (pl + pm) gi(G+ e) (3.10)

fp1p2···prs
0
i (G, u, v) −→ 2n gi+1(G+ e) (3.11)

fp1p2···prs
pk
i (G, u, v) −→ (2n− 2pk) gi+1(G+ e) + 2pk gi(G+ e) (3.12)

fp1p2···prs
(pk,c)
i (G, u, v) −→ (2n− 2pk) gi+1(G+ e) + 2pk gi(G+ e) (3.13)

Proof. Since in any embedding of the double-rooted graph (G, u, v), there are n u-corners

and two v-corners, the number of ways of adding an edge between the root u and the root

v is 2n. This explains why the sum of the coefficients in each of these productions is 2n.

In an embedding of type fp1p2···prd
0
i (G, u, v) and fp1p2···prs

0
i (G, u, v), none of the fb-walks

incident on root u are also incident on root v. Thus, when an edge is added between u and
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v, the corresponding two fb-walks are merged with each other, reducing the number of faces

by one. We use Euler’s polyhedral equation to compute the genus increment:

#v − (#e+ 1) + (#f − 1) = (#v −#e+ #f)− 2.

Thus, there is a genus increment of 1.

In an embedding of type fp1p2···prd
pk
i (G, u, v), one of the fb-walks incident on root u

(containing pk occurrences of u), is also incident on root v. Let this fb-walk be represented

by φ. If both of the edge-ends of edge e are inserted in φ, there will not be any genus-

increment, and in every other case there will be a genus-increment of 1, as argued earlier.

Since there are pk u-corners and only one v-corner in φ, there are pk ways of adding e in

this face. The second term in Production 3.9 corresponds to this case, and the first term

corresponds to all other cases.

In an embedding of type fp1p2···prd
(pl,pm)
i (G, u, v), two of the fb-walks that are incident

on root u are also incident on root v. The second term in Production 3.10 corresponds to

the cases where edge e is added in these two fb-walks, whereas the first term corresponds

to all other cases.

Productions 3.12 and 3.13 are derived similarly, and we note that the fb-walk containing

pk u-corners also contains two v-corners (and thus there are 2pk ways of adding edge e in

this face). ♦

Example 26. For the sub-partials of a double-rooted graph (G, u, v), such that deg(u) = 3

and deg(v) = 2, these productions become:

f111d
0
i (G, u, v) −→ 6 gi+1(G+ e)

f111d
1
i (G, u, v) −→ gi(G+ e) + 5 gi+1(G+ e)

f111d
(1,1)
i (G, u, v) −→ 2 gi(G+ e) + 4 gi+1(G+ e)

f21d
0
i (G, u, v) −→ 6 gi+1(G+ e)

f21d
1
i (G, u, v) −→ gi(G+ e) + 5 gi+1(G+ e)

f21d
2
i (G, u, v) −→ 2 gi(G+ e) + 4 gi+1(G+ e)

f21d
(2,1)
i (G, u, v) −→ 3 gi(G+ e) + 3 gi+1(G+ e)

f3d
0
i (G, u, v) −→ 6 gi+1(G+ e)
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f3d
3
i (G, u, v) −→ 3 gi(G+ e) + 3 gi+1(G+ e)

f111s
0
i (G, u, v) −→ 6 gi+1(G+ e)

f111s
1
i (G, u, v) −→ 2 gi(G+ e) + 4 gi+1(G+ e)

f21s
0
i (G, u, v) −→ 6 gi+1(G+ e)

f21s
1
i (G, u, v) −→ 2 gi(G+ e) + 4 gi+1(G+ e)

f21s
2
i (G, u, v) −→ 4 gi(G+ e) + 2 gi+1(G+ e)

f21s
(2,1)
i (G, u, v) −→ 4 gi(G+ e) + 2 gi+1(G+ e)

f3s
0
i (G, u, v) −→ 6 gi+1(G+ e)

f3s
3
i (G, u, v) −→ 6 gi(G+ e)

f3s
(3,1)
i (G, u, v) −→ 6 gi(G+ e)

After transposition, we get:

gi(G+ e) = 6 f111d
0
i−1 + f111d

1
i + 5 f111d

1
i−1

+ 2 f111d
(1,1)
i + 4 f111d

(1,1)
i−1 + 6 f21d

0
i−1

+ f21d
1
i + 5 f21d

1
i−1 + 2 f21d

2
i + 4 f21d

2
i−1

+ 3 f21d
(2,1)
i + 3 f21d

(2,1)
i−1 + 6 f3d

0
i−1

+ 3 f3d
3
i + 3 f3d

3
i−1 + 6 f111s

0
i−1

+ 2 f111s
1
i + 4 f111s

1
i−1 + 6 f21s

0
i−1

+ 2 f21s
1
i + 4 f21s

1
i−1 + 4 f21s

2
i + 2 f21s

2
i−1

+ 4 f21s
(2,1)
i + 2 f21s

(2,1)
i−1 + 6 f3s

0
i−1

+ 6 f3s
3
i + 6 f3s

(3,1)
i (3.14)

Using this formula for the graph (K̇4, u, v) with the values given in given in Table 3.1 as

base cases, we obtain the genus distribution of K̇4 + e, given in Table 3.3.
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u v

Figure 3.21: Joining the roots of the double-rooted graph (K̇4, u, v).

Table 3.3: Genus distribution of K̇4 + e.

k gk

0 2

1 58

2 36

Remark Using the results of this chapter, we can compute the genus distribution of the

self-vertex-amalgamation of a double-rooted graph (G, u, v), and also the genus distribution

of the graph G + e, obtained by adding an edge between the two root vertices, where one

of the two root vertices is restricted to be of valence two. Since at this point we do not

have a way of computing double-root partitioned genus distribution of open chains of a

double-rooted graph, the applications of the productions derived in this chapter are limited.

In the next chapter, we’ll develop a method for computing the double-root partitioned

genus distributions of open chains of a double-rooted graph (G, u, v), using its double-root

partitioned genus distribution only.
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Chapter 4

Extended Vertex Amalgamation

In Chapter 3, we developed methods for computing the genus distribution of graphs obtained

through the operations of self-vertex-amalgamation and edge-addition, provided that we are

given the partitioned genus distribution of a double-rooted graph (G, u, v) with deg(u) ≥ 2

and deg(v) = 2. In order to use these methods iteratively on the sequence of open chains

of a double-rooted graph, we need to extend the methods developed in Chapter 2 so that

we obtain double-root partitioned genus distributions of open chains.

In this chapter, we derive a method for computing the partitioned genus distribution

of the vertex amalgamation of two double rooted graphs, (G, u, v) and (H, a, b), such that

deg(u) ≥ 2, deg(a) ≥ 2, and deg(v) = deg(b) = 2, in which vertex v is merged with vertex

a. The resultant vertex amalgamated graph will be a double-rooted graph (X,u, b). This

method is then used to compute the double-root partitioned genus distributions of open

chains of any double-rooted graph.

These double-rooted partitioned genus distributions can then be used in coordination

with the methods derived in the previous chapter, to compute the genus distributions of

closed chains of double-rooted graphs that meet the stated conditions. Also, we use these

distributions to compute the genus distributions of the graph families obtained through

connecting the two roots of a double-rooted graph with an edge.
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4.1 Double-rooted Amalgamations

We extend the definition of a production for vertex amalgamation to the case in which both

of the graphs being amalgamated are double-rooted. A production for the double-rooted

vertex amalgamation

(G, u, v) ∗ (H, a, b) = (X,u, b)

of a double-rooted graph (G, u, v) with a double-rooted graph (H, a, b) (where deg(v) =

deg(b) = 2, and deg(u) ≥ 2, deg(a) ≥ 2) is an expression of the form

pi(G, u, b) ∗ qj(H, a, b) −→
∑

r ranges over the
six sub-partials

(c1rri+j(X,u, b) + c2rri+j+1(X,u, b))

where p and q are the double-root sub-partials, and where c1r, and c2r are integers. It means

that amalgamation of a type-pi embedding of graph (G, u, v) and a type-qj embedding of

graph (H, a, b) induces a set of c1r type-ri+j and c2r type-ri+j+1 embeddings of (X,u, b).

Again, it follows from Formula (2.1), that the sum of the integers c1r and c2r (over all r’s)

in each production is six. Since there are a total of six different double-root sub-partials,

there are a total of thirty-six different productions.

In the theorems that follow, we prove a subset of these productions, in which the em-

bedding of the graph (H, a, b) is of type fq1q2···qtd
qs
j . The two edge-ends incident at root

vertex v are denoted by α and β, and the fb-walk containing qs a-corners that also contains

one of the two occurrences of root b, is denoted by ϕ. When we say that an amalgamation

results in a “genus-increment” of m, we mean that the genus of the resultant embedding is

i+ j+m. It should be noted that the genus-increment and the type of the second root b in

the vertex-amalgamated graph (X,u, b) has to be consistent with the productions derived

in Chapter 2. This is the reason why we do not focus on these details in our proofs below.

While stating the theorems below, we omit the triple (G, u, v) from the first amalgamand

in the production-head, (H, a, b) from the second amalgamand, and (X,u, b) from each of

the terms in the production-body, in order to conserve space.

Theorem 27. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-

mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr



CHAPTER 4. EXTENDED VERTEX AMALGAMATION 55

of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prd
0
i ∗ fq1q2···qtd

qs
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prd
0
i+j+1 (4.1)

Proof In an embedding of type fp1p2···prd
0
i (G, u, v), none of the fb-walks that are incident

on root u contain root v. Note that in a vertex-amalgamation, the only fb-walks that are

affected are those that are incident either on root v or on root a. This implies that for

an embedding of type fp1p2···prd
0
i (G, u, v), the r fb-walks that are incident on root u before

vertex-amalgamation, remain incident on it after the amalgamation. This explains why

the integer partition p1 · · · pr remains unchanged in all of the terms in the production-body

of Production 4.1. Also, in an embedding of type fq1q2···qtd
qs
j (H, a, b) only one of the t

fb-walks incident on root a is incident on root b, thus after the vertex-amalgamation, the

two occurrences of root b continue to be on two different fb-walks. This explains why the

second root is of type d in all of the sub-partials of the production-body. It follows further

that no matter how root v is amalgamated with root a of the double-rooted graph (H, a, b),

none of the fb-walks that are incident on root u in the amalgamated graph (X,u, b) become

incident on root b. This explains the superscript of 0 in each of the terms in production body.

The coefficients and genus increments follow from Lemmas 4 and 5 and Euler’s polyhedral

equation. We have seen similar coefficients and genus-increments in earlier chapters, so I

do not elaborate here. ♦

Theorem 28. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-

mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr

of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prd
pk
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

0
i+j
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+

(
qs(qs + 1)

2

)
fp1p2···prd

pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prd
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···prd
pk
i+j+1 (4.2)

Proof In this amalgamation, we need to consider only those cases in which both of the

fb-walks φ (containing pk u-corners) and the fb-walk containing ϕ (containing ps a-corners)

are involved – since in all other cases, what was said in the proof of Production 4.1 suffices

(as is also evidenced by the first and the second-last terms in the production-body). There

are two cases:

case (i) is when both edge-ends α and β are inserted into the fb-walk ϕ. For any

choice of two a-corners for this operation, there are two ways of doing this: the “first”

edge-end is inserted either into the “first” a-corner or into the “second” a-corner. For both

of these choices, the fb-walk ϕ is split into two strands, one of which recombines with the

fb-walk φ, and the other with the other fb-walk incident on root v. Since only one of these

two strands contains the occurrence of root b, one of the embeddings produced is of type

fp1p2···prd
0
i+j(X,u, b) and the other embedding is of type fp1p2···prd

pk
i+j(X,u, b). The second

and third terms in the production-body represent these two cases. The total number of

embeddings produced in this scenario is qs(qs+ 1) (from Lemma 4), half of which are of the

first type and half of the second type. This explains the coefficients in these two terms.

case (ii) When α and β are inserted in two different fb-walks, one of which is ϕ (denote

the other by ψx). After the amalgamation, the two fb-walks are merged into one fb-walk.

Thus, φ, ϕ and ψx all become one fb-walk that also contains an occurrence of root b. The

last term in the production body represents this scenario. Again, the coefficient comes from

Lemma 5. ♦

Theorem 29. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-

mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr
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of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

pg
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

ph
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
pg+ph
i+j+1

(4.3)

Proof This is similar to the proof of Production 4.2 with two key differences.

The first difference is that in case (i), since both of the fb-walks incident on root v are

also incident on root u (as opposed to the case (i) of the previous proof, where only one

fb-walk is incident on root v), when the two strands are recombined, one of the embeddings

produced is of type fp1p2···prd
pg
i+j(X,u, b) and the other of type fp1p2···prd

ph
i+j(X,u, b). The

second and third terms of the production-body reflect this.

The second difference affects the last two terms of the production-body, i.e., it affects

the cases when α and β are inserted into two different fb-walks. As a consequence of this

operation, the two fb-walks incident on root v are merged together. In an embedding of

type fp1p2···prd
(pg ,ph)
i , both of the fb-walks incident on root v contain u-corners. Since the

total number of u-corners in these two fb-walks is pg+ph, and since these two are merged, it

follows that after the amalgamation, the partition representing the distribution of u corners

is p1p2 · · · (pg + ph) · · · p̂g · · · p̂h · · · pr instead of p1p2 · · · pr as before. The hatˆ signs on pg

and ph represent that the fb-walks corresponding to these two numbers are no longer there,

but are merged with each other, represented by the addition of a new part pg + ph in the

partition. ♦

Theorem 30. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-
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mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr

of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prs
0
i ∗ fq1q2···qtd

qs
j −→ (n2 + n) fp1p2···prd

0
i+j (4.4)

Proof The proof of this production is easy, and is essentially follows from the proof of the

Production 8 in Chapter 2. ♦

Theorem 31. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-

mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr

of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prs
pk
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+ qs(qs + 1) fp1p2···prd
pk
i+j

+

 t∑
x=1
x6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prd
0
i+j

+

 t∑
x=1
x6=s

qxqs

 fp1p2···prd
0
i+j

+

 t∑
x=1
x6=s

qxqs

 fp1p2···prd
pk
i+j (4.5)

Proof In an embedding of type fp1p2···prs
pk
i , the edge-ends α and β lie on the same u-

strand. Thus, there is no genus increment in this case (also see the relevant production in

Chapter 2). As in the case of the proof of Production 4.2, we need to specifically consider

only two cases, as the remaining cases are essentially covered in the proof of Production

4.4.

case (i) is when α and β are inserted into ϕ. Since both α and β lie on the same

u-strand, the partition representing the distribution of the u-corners in fb-walks remains

the same after vertex-amalgamation. As opposed to the case (i) of the proof of Production
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4.2, the fb-walks φ and ϕ are completely merged with each other since both α and β lie on

the same u-strand. This implies that in all of the resultant embeddings, the newly merged

fb-walk contains one occurrence of root b (the occurrence that was previously on ϕ). The

second term of the production-body reflects this.

case (ii) is when α and β are inserted into two different fb-walks, one of which is ϕ (we

denote the other fb-walk by ψx). In this case, the u-strand containing both occurrences of

v is split into two fragments. One fragment recombines with ψx, and the other fragment

recombines with ϕ. The fragment that recombines with ϕ now contains an occurrence of

root b. According to Lemma 5, there are a total of 2pxpk embeddings that are yielded, half

of these are of each type. The last two terms of the production-body represent this. ♦

Theorem 32. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalga-

mating these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr

of deg(u) and q1q2 · · · qr of deg(a), the following productions hold:

fp1p2···prs
(pk,d)
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+ qs(qs + 1) fp1p2···prd
pk
i+j

+

 t∑
x=1
x6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···p̂k···prd(pk−d)d
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)d
d
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)d
pk−d
i+j

(4.6)

Proof The proof for this production is essentially similar to the proof of Production 4.5,

with one important difference: in an embedding of type fp1p2···prs
(pk,d)
i , the edge-ends α and

β lie in two different u-strands (denoted by s1 and s2). So during the amalgamation, if α and

β are inserted into two different fb-walks, say into ψx and ψy, then one of the two strands
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recombines with ψx and the other with ψy, thus yielding two fb-walks, both of which now

contain u-corners. Since there are d intermediate u-corners between the u-strands s1 and

s2, one of the two fb-walks now contains d u-corners and the other fb-walk contains pk − d

u-corners. This implies that the partition that represents the distribution of u-corners after

the amalgamation in this case looks like this: p1p2 · · · p̂k · · · prd(pk − d), where the hat sign

ˆover pk implies that the fb-walk corresponding to this part is no longer there, but is now

divided into two parts, as represented by the addition of two new parts in the partition d

and pk − d at the end. This affects last three terms of the production. ♦

Of the thirty-six productions that are possible, we have given the proof of only six here.

The proofs of the remaining productions can be derived using similar techniques. We have

listed them in Appendix A as Theorem 43.

Genus Distribution of the Double-Rooted Open Chain of (K̇4, u, v)

Example 33. We extend the definition of the open chain given in Example 16 to so that

it has two roots instead of only one. As before, we can specify a sequence of open chains of

copies of a double-rooted graph (G, u, v) recursively.

(X1, s1, t1) = (G, u, v) (4.7)

(Xm, sm, tm) = (Xm−1, sm−1, tm−1) ∗ (G, u, v) for m ≥ 1 (4.8)

In order to compute the partitioned genus distribution of the sequence of open chains of

the double-rooted graph (K̇4, u, v), we note that since deg(u) = 3 and deg(v) = 2, 111, 21

and 3 are the only partitions we need to consider in this case. Table 4.1 lists the non-zero

partials of (K̇4, u, v).

X1 X2 X3

Figure 4.1: Sequence of open-chains of the double-rooted graph (K̇4, u, v).
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Table 4.1: Nonzero partials of (K̇4, u, v).

j f111d
1
j f21d

(2,1)
j f3d

3
j f21s

(2,1)
j gj

0 2 2

1 6 2 6 14

Plugging these values into the second amalgamand of the relevant productions of Theorem

43 in Appendix A, and transposing the consequent productions, we obtain the following

recurrences (for the intermediate steps, see Appendix B):

f111d
0
i = 12 f111d

0
i + 96 f111d

0
i−1 + 10 f111d

1
i + 40 f111d

1
i−1 + 8 f111d

(1,1)
i + 24 f111s

0
i

16 f111s
1
i + 96 f111s

0
i−1 + 4 f21s

(2,1)
i

f111d
1
i = 2 f111d

1
i + 8 f111s

1
i + 4 f111d

(1,1)
i + 56 f111d

1
i−1 + 72 f111d

(1,1)
i−1 + 96 f111s

1
i−1+

8 f21s
(2,1)
i

f111d
(1,1)
i = 12 f111d

(1,1)
i−1 + 24 f21s

(2,1)
i−1

f21d
0
i = 4 f111d

(1,1)
i−1 + 12 f21d

0
i + 96 f21d

0
i−1 + 10 f21d

2
i + 40 f21d

2
i−1 + 10 f21d

1
i+

40 f21d
1
i−1 + 8 f21d

(2,1)
i + 24 f21s

0
i + 16 f21s

2
i + 16 f21s

1
i + 8 f21s

(2,1)
i +

96 f21s
0
i−1 + 4 f3s

(3,1)
i

f21d
1
i = 2 f21d

1
i + 2 f21d

(2,1)
i + 8 f21s

1
i + 56 f21d

1
i−1 + 36 f21d

(2,1)
i−1 + 96 f21s

1
i−1 + 4 f3s

(3,1)
i

f21d
2
i = 8 f111d

(1,1)
i−1 + 2 f21d

2
i + 56 f21d

2
i−1 + 2 f21d

(2,1)
i + 36 f21d

(2,1)
i−1 +

8 f21s
2
i + 4 f21s

(2,1)
i + 96 f21s

2
i−1 + 72 f21s

(2,1)
i−1 + 4 f3s

(3,1)
i

f21d
(2,1)
i = 12 f21d

(2,1)
i−1 + 24 f3s

(3,1)
i−1

f3d
0
i = 4 f21d

(2,1)
i−1 + 12 f3d

0
i + 96 f3d

0
i−1 + 10 f3d

3
i + 40 f3d

3
i−1 + 24 f3s

0
i+

16 f3s
3
i + 8 f3s

(3,1)
i + 96 f3s

0
i−1

f3d
3
i = 8 f21d

(2,1)
i−1 + 2 f3d

3
i + 56 f3d

3
i−1 + 8 f3s

3
i + 4 f3s

(3,1)
i + 96 f3s

3
i−1+

72 f3s
(3,1)
i−1

f111s
0
i = 36 f111d

0
i−1 + 24 f111d

0
i−2 + 48 f111d

1
i−1 + 12 f111d

(1,1)
i−1 + 72 f111s

0
i−1 + 24 f111s

1
i−1

f111s
1
i = 48 f111d

1
i−2 + 12 f111d

1
i−1 + 24 f111d

(1,1)
i−1 + 48 f111s

1
i−1 + 24 f21s

(2,1)
i−1
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f21s
0
i = 36 f21d

0
i−1 + 48 f21d

0
i−2 + 24 f21d

2
i−1 + 24 f21d

1
i−1 + 12 f21d

(2,1)
i−1 + 72 f21s

0
i−1+

24 f21s
2
i−1 + 24 f21s

1
i−1 + 12 f21s

(2,1)
i−1

f21s
1
i = 48 f21d

1
i−2 + 12 f21d

1
i−1 + 12 f21d

(2,1)
i−1 + 48 f21s

1
i−1 + 12 f3s

(3,1)
i−1

f21s
2
i = 24 f111d

(1,1)
i−2 + 48 f21d

2
i−2 + 12 f21d

2
i−1 + 12 f21d

(2,1)
i−1 + 48 f21s

2
i−1 + 24 f21s

(2,1)
i−1 + 12 f3s

(3,1)
i−1

f21s
(2,1)
i = 24 f111d

(1,1)
i−2 + 12 f21s

(2,1)
i−1

f3s
0
i = 36 f3d

0
i−1 + 48 f3d

0
i−2 + 24 f3d

3
i−1 + 72 f3s

0
i−1 + 24 f3s

3
i−1 + 12 f3s

(3,1)
i−1

f3s
3
i = 24 f21d

(2,1)
i−2 + 48 f3d

3
i−2 + 12 f3d

3
i−1 + 48 f3s

3
i−1 + 24 f3s

(3,1)
i−1

f3s
(3,1)
i = 24 f21d

(2,1)
i−2 + 12 f3s

(3,1)
i−1

Table 4.2 lists the evaluation of these sub-partials for X2, X3.
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Table 4.2: Partitioned Genus Distribution of X1, X2 and X3.

X1 X2 X3

i 0 1 0 1 2 3 0 1 2 3 4

f111d
0
i 20 104 280 6464 26272

f111d
1
i 2 4 160 8 736 14336 33408

f111d
(1,1)
i 144 3456

f21d
0
i 96 1632 28992 49536

f21d
1
i 12 216 24 1824 22176

f21d
2
i 36 648 72 5472 66528

f21d
(2,1)
i 6 72 864 3456

b f3d
0
i 20 104 280 6464 26272

f3d
3
i 2 4 160 8 736 14336 33408

f111s
0
i 48 816 12576 12480

f111s
1
i 24 240 48 3264 24384

f21s
0
i 144 4608 44352

f21s
1
i 72 144 7488 12096

f21s
2
i 216 432 22464 36288

f21s
(2,1)
i 6 72 864 3456

f3s
0
i 48 816 12576 12480

f3s
3
i 24 240 48 3264 24384

f3s
(3,1)
i 144 3456
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Genus Distributions of X ′m and Xm + e

As we mentioned towards the end of Chapter 3, that the Formulas (3.7) and (3.14) are valid

for any double-rooted graph (G, u, v) where deg(u) = 3 and deg(v) = 2. Since this condition

is met in all of the terms of the open chain Xm, evaluating these formulas by substituting

the values given in Table 4.2, we obtain the genus distribution of both the sequence of closed

chains of the complete graph (K4, u, v) and the sequence of graphs obtained through the

addition of an edge between the two roots of the open chain (Xm, sm, tm). Tables 4.3 and

4.4 list these evaluations.

X ′1 X ′2 X ′3

Figure 4.2: The sequence X ′m.

Table 4.3: Genus distribution of X ′m.

k gk(X
′
1) gk(X

′
2) gk(X

′
3)

0 8 4 8

1 120 628 2968

2 64 12776 130176

3 23456 1686368

4 4373632

5 884736
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X1 + e X2 + e X3 + e

Figure 4.3: The sequence Xm + e.

Table 4.4: Genus distribution of Xm + e.

k gk(X1 + e) gk(X2 + e) gk(X3 + e)

0 2 4 8

1 58 444 2744

2 36 7136 97600

3 10848 1015552

4 2109696

5 313344
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Chapter 5

Genus Distribution of P32Pn

In this chapter, we derive a recursion for the genus distribution of the graph family P32Pn

with the aid of a modified form of double-root partials, and also of a new kind of pro-

duction, which corresponds to a surgical operation more complicated than the vertex- or

edge-amalgamation operations used in our earlier work.

5.1 Introduction

A common feature of the graph families whose genus distributions can be computed using the

methods that have been developed in earlier chapters (and in our other recent collaborative

and individual work), is that they grow linearly and that the iteration step used to obtain

the graph family is either a vertex-amalgamation or an edge-amalgamation. An important

step beyond amalgamation occurs in the computation of genus distribution of 3-regular

Halin graphs [Gross, 2011a]. In this chapter, I present a method to compute the genus

distribution of the linear graph family P32Pn (see Figure 5.1), for which the iteration step

is once again more complicated than a vertex- or an edge-amalgamation.

P32P2 P32P3 P32P4

Figure 5.1: P32Pn
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After computing the genus distributions for various ladder-type graph families, a next nat-

ural step is computing the genus distributions of grid-type graph families. This is the first

result in this direction, and it further illustrates the power of the methods that we have

been developing in the recent years.

Proposition 34. For a double-rooted graph (G, u, v) such that deg(u) = 3 and deg(u) = 2,

the possible sub-partials are f111d
0
i , f111d

1
i , f111d

(1,1)
i , f21d

0
i , f21d

1
i , f21d

2
i , f21d

(2,1)
i , f3d

0
i , f3d

3
i ,

f111s
0
i , f111s

1
i , f21s

0
i , f21s

1
i , f21s

2
i , f21s

(2,1)
i , f3s

0
i , f3s

3
i , f3s

(3,1)
i . ♦

The distribution of all of these six sub-partials over all surfaces is called the partitioned

genus distribution of the double-rooted graph (G, u, v).

Let (Xn, u, v) be the graph family depicted by Figure 5.2. Since the root vertex u is

3-valent and the root vertex v is 2-valent, it follows that in any embedding of Xn, root u

occurs a total of three times in the fb-walks and root v a total of two times.

X2 X3 X4

u v u v u v

Figure 5.2: The graph sequence Xn

Proposition 35. In any embedding of (Xn, u, v), at least one of the fb-walks incident on

root u is also incident on root v

Proof Let c = vx, d = ux and e = zx be the three edges incident on the vertex x, as shown

in Figure 5.3. Thus, the six oriented edges incident on vertex x are c+, c−, d+, d−, e+, e−.

u v

x

y

z e
cd

c− c+

d+

e+

d−

e−

Figure 5.3: The graph Xn (left), and the oriented edges at vertex x (right)
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In the bipartite graph at the right, each of the oriented edges leading into vertex x is joined

to the two oriented edges that can follow it in an fb-walk of an embedding. Thus, each em-

bedding of Xn induces one of two possible perfect matchings. One of these perfect matchings

contains c−d+, which goes from vertex v to u, and the other matching contains d−c+, which

goes from vertex u to v. Thus, whichever matching is induced, the corresponding embedding

has an fb-walk that contains both u and v. ♦

Proposition 36. An embedding of (Xn, u, v) cannot be any of the following types: (i)

fp1···prd
0
i , (ii) fp1···prs

0
i , (iii) fp1···prs

pk

Proof Proposition 35 rules out types (i) and (ii).

To rule out type (iii), suppose that there exists such an embedding. Then there exists

an fb-walk with a u-strand that contains both occurrences of root v. Using the vertex-labels

shown in Figure 5.3, it would look like:

u · · · yvx · · ·xvy · · ·u.

Here, since the two occurrences of vertex x cannot be consecutive in this u-strand, there

must be some intermediate vertices between the two occurrences of x. Root u cannot be one

of these intermediate vertices, as otherwise this u-strand would break-up into two u-strands,

contradicting the assumption. Root v cannot be one of these intermediate vertices, as v

can occur only twice in the fb-walks of an embedding. Thus, vertex z must be one of these

intermediate vertices (since there are only three neighbors of vertex x). It also follows that

z must be the vertex that immediately follows the first occurrence of x, and also the vertex

that immediately precedes the second occurrence of x. Thus, the walk looks like:

u · · · yvxz · · · zxvy · · ·u

where the vertices u and v do not appear as intermediate vertices between the two occur-

rences of z. But this is impossible because then whatever fb-walk traverses the edge ux

would be forced to have the sequence uxu. ♦

Corollary 37. The only possible non-zero sub-partials for the graph family (Xn, u, v) are

in this list:

f111d
1
i , f111d

(1,1)
i , f21d

1
i , f21d

2
i , f21d

(2,1)
i , f3d

3
i , f21s

(2,1)
i , f3s

(3,1)
i
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Proof List all possible sub-partials for (Xn, u, v), and then eliminate the sub-partials

excluded by Proposition 36. ♦

Grid-growth Operation

The details of the grid-growth operation are illustrated by Figure 5.4.

u v
=u′ v′

a

b

u′ v′

(Xn−1, u, v) (Xn, u
′, v′)

Figure 5.4: The grid-growth operation

The operation consists of the following steps:

• Subdivide the two edges incident on root v, and call the two new vertices a and b, as

shown; there is only one way to do this in the given embedding of Xn−1.

• Add an edge joining a and b, sub-divide it, and call the new vertex v′; there are

four ways to insert the new edge into the embedding, since vertices a and b are both

2-valent.

• Add an edge joining roots u and v; there are 6 ways of adding an edge between roots

u and v since deg(u) = 3 and deg(v) = 2.

Thus, there are 24 ways of performing this operation on an embedding of Xn−1.

Productions

Our key idea is to represent the partitioned genus distribution of Xn in terms of the parti-

tioned genus distribution of Xn−1. To do so, we define an operation that is applied to each

of the types of embeddings of Xn−1 in order to obtain embeddings of Xn. We once again

represent this operation as a production :

pi(Xn−1, u, v) −→
∑

j ranges over all
sub-partials resulting
from sub-partial pi

cjqj(Xn, u
′, v′)
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where pi is a sub-partial for Xn−1 and j is a function that determines the genus of the

resulting sub-partial, and where cj is the corresponding coefficient. Note that these coeffi-

cients sum to 24, as argued earlier. The left-hand-side of the production is referred to as

the production-head, and the right-hand-side is the production-body.

Our strategy is first to compute the partitioned genus distribution of the double-rooted

graph (Xn, u, v) in the next section, and then to use the productions for the operation of

edge-addition to a double-rooted graph (as derived in [Khan et al., 2011]) to compute the

genus distribution of P32Pn in Section 5.3.

5.2 Genus Distribution of (Xn, u, v)

To calculate the distribution of the embeddings of Xn from the distribution of the embed-

dings of Xn−1, we derive the productions listed in Theorem 38.

Theorem 38. The following are valid productions. (We omit the triple (Xn−1, u, v) from

the production-head and (Xn, u
′, v′) from the production-body in order to conserve space.)

f111d
1
i −→ f111d

1
i + 4 f21d

1
i+1 + 4 f21d

2
i+1 + 3 f21d

(2,1)
i+1 + f3d

3
i+1

+ 3 f21s
(2,1)
i+1 + 8 f3s

(3,1)
i+2

f111d
(1,1)
i −→ 2 f111d

1
i + 2 f21d

1
i+1 + 2 f21d

2
i+1 + 6 f21d

(2,1)
i+1 + 2 f3d

3
i+1

+ 6 f21s
(2,1)
i+1 + 4 f3s

(3,1)
i+2

f21d
1
i −→ f111d

1
i + 4 f21d

1
i+1 + 4 f21d

2
i+1 + 3 f21d

(2,1)
i+1 + f3d

3
i+1

+ 3 f21s
(2,1)
i+1 + 8 f3s

(3,1)
i+2

f21d
2
i −→ 2 f111d

1
i + 2 f21d

1
i+1 + 2 f21d

2
i+1 + 6 f21d

(2,1)
i+1 + 2 f3d

3
i+1

+ 6 f21s
(2,1)
i+1 + 4 f3s

(3,1)
i+2

f21d
(2,1)
i −→ 3 f111d

1
i + 9 f21d

(2,1)
i+1 + 3 f3d

3
i+1 + 9 f21s

(2,1)
i+1

f3d
3
i −→ 3 f111d

1
i + 9 f21d

(2,1)
i+1 + 3 f3d

3
i+1 + 9 f21s

(2,1)
i+1

f21s
(2,1)
i −→ 8 f111d

(1,1)
i + 8 f21d

(2,1)
i+1 + 8 f3s

(3,1)
i+1

f3s
(3,1)
i −→ 12 f111d

(1,1)
i + 12 f3s

(3,1)
i+1
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Proof We can represent an embedding of the type f111d
1
i using a drawing of the type

shown in Figure 5.5.

u v

Figure 5.5: f111d1i

For each of the four ways of inserting an edge between the vertices used to subdivide

the two edges incident on root v in Xn−1, we show in Figures 5.6–5.9 the six ways in which

an edge between the roots u and v can be added, along-with its effect on the fb-walks.

This information is then sufficient to derive the production for f111d
1
i . In the captions of

each of the Figures 5.6–5.9, we give the types of each of the six embeddings in left-to-right,

top-to-bottom order.

Figure 5.6: f111d1i , f21d
1
i+1, f21d

1
i+1, f3d

3
i+1, f21d

2
i+1, f21d

2
i+1
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Figure 5.7: f21s
(2,1)
i+1 , f3s

(3,1)
i+2 , f3s

(3,1)
i+2 , f21d

(2,1)
i+1 , f3s

(3,1)
i+2 , f3s

(3,1)
i+2

Figure 5.8: f21s
(2,1)
i+1 , f3s

(3,1)
i+2 , f3s

(3,1)
i+2 , f21d

(2,1)
i+1 , f3s

(3,1)
i+2 , f3s

(3,1)
i+2

Figure 5.9: f21s
(2,1)
i+1 , f21d

2
i+1, f21d

2
i+1, f21d

(2,1)
i+1 , f21d

1
i+1, f21d

1
i+1

Collecting the terms given in these captions, we get the production for the sub-partial

f111d
1
i . The remaining productions are derived similarly, by using similar models for the
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embedding-types, as given in Figures 5.10–5.16. ♦

u v

Figure 5.10: f111d
(1,1)
i

u v

Figure 5.11: f21d
1
i

u v

Figure 5.12: f21d
2
i

u v

Figure 5.13: f21d
(2,1)
i

u v

Figure 5.14: f3d
3
i

u v

Figure 5.15: f21s
(2,1)
i

u v

Figure 5.16: f3s
(3,1)
i

Theorem 39. After transposing the productions given in Theorem 38, i.e. by moving terms

on the right-hand-side to the left-hand-side, we obtain the following recurrences. (We here

omit the triple (Xn, u, v) from the term on the left-hand-side of the equation and the triple

(Xn−1, u, v) from the terms on the right-hand-side.)

f111d
1
i = f111d

1
i + 2 f111d

(1,1)
i + f21d

1
i + 2 f21d

2
i + 3 f21d

(2,1)
i + 3 f3d

3
i

f111d
(1,1)
i = 8 f21s

(2,1)
i + 12 f3s

(3,1)
i

f21d
1
i = 4 f111d

1
i−1 + 2 f111d

(1,1)
i−1 + 4 f21d

1
i−1 + 2 f21d

2
i−1

f21d
2
i = 4 f111d

1
i−1 + 2 f111d

(1,1)
i−1 + 4 f21d

1
i−1 + 2 f21d

2
i−1

f21d
(2,1)
i = 3 f111d

1
i−1 + 6 f111d

(1,1)
i−1 + 3 f21d

1
i−1 + 6 f21d

2
i−1 + 9 f21d

(2,1)
i−1
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+ 9 f3d
3
i−1 + 8 f21s

(2,1)
i−1

f3d
3
i = f111d

1
i−1 + 2 f111d

(1,1)
i−1 + f21d

1
i−1 + 2 f21d

2
i−1 + 3 f21d

(2,1)
i−1

+ 3 f3d
3
i−1

f21s
(2,1)
i = 3 f111d

1
i−1 + 6 f111d

(1,1)
i−1 + 3 f21d

1
i−1 + 6 f21d

2
i−1 + 9 f21d

(2,1)
i−1

+ 9 f3d
3
i−1

f3s
(3,1)
i = 8 f111d

1
i−2 + 4 f111d

(1,1)
i−2 + 8 f21d

1
i−2 + 4 f21d

2
i−2 + 8 f21s

(2,1)
i−1

+ 12 f3s
(3,1)
i−1 ♦

Computations

By face-tracing, we obtain the double-root partials for (X2, u, v) given in Table 5.1.

Table 5.1: Nonzero partials of (X2, u, v).

k f111d
1
k f111d

(1,1)
k f21d

1
k f21d

2
k f21d

(2,1)
k f3d

3
k f21s

(2,1)
k f3s

(3,1)
k gk

0 2 2

1 6 2 6 14

Plugging these values into the recurrences of Theorem 39, yields the values for the

sub-partials of (X3, u, v) given in Table 5.2.

Table 5.2: Nonzero partials of (X3, u, v).

k f111d
1
k f111d

(1,1)
k f21d

1
k f21d

2
k f21d

(2,1)
k f3d

3
k f21s

(2,1)
k f3s

(3,1)
k gk

0 2 2

1 24 48 8 8 6 2 6 102

2 120 24 72 64 280

By substitution of these values into the recurrences, we next obtain the values for the

sub-partials of (X4, u, v) given in Table 5.3.

By a similar substitution we obtain the following values for the sub-partials of (X5, u, v):
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Table 5.3: Nonzero partials of (X4, u, v).

k f111d
1
k f111d

(1,1)
k f21d

1
k f21d

2
k f21d

(2,1)
k f3d

3
k f21s

(2,1)
k f3s

(3,1)
k gk

0 2 2

1 168 48 8 8 6 2 6 246

2 432 1344 240 240 552 168 504 64 3544

3 1872 432 1296 1824 5424

Table 5.4: Nonzero partials of (X5, u, v).

k f111d
1
k f111d

(1,1)
k f21d

1
k f21d

2
k f21d

(2,1)
k f3d

3
k f21s

(2,1)
k f3s

(3,1)
k gk

0 2 2

1 312 48 8 8 6 2 6 390

2 6000 4800 816 816 984 312 936 64 14728

3 6912 32256 5856 5856 22032 6000 18000 6432 103344

4 31104 6912 20736 43968 102724

5.3 Genus Distribution of P32Pn

In this section, we use the productions for edge-addition to a double-rooted graphs that were

derived in Chapter 3, to obtain the genus distribution of P32Pn. The relevant productions

for (Xm, u, v) are:

fp1p2···prd
pk
i (G, u, v) −→ (2n− pk) gi+1(G

′) + pk gi(G
′)

fp1p2···prd
(pl,pm)
i (G, u, v) −→ (2n− pl − pm) gi+1(G

′) + (pl + pm) gi(G
′)

fp1p2···prs
(pk,c)
i (G, u, v) −→ (2n− 2pk) gi+1(G

′) + 2pk gi(G
′)
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Theorem 40. The following productions hold:

f111d
1
i (Xn−1, u, v) −→ 5 gi+1(P32Pn) + gi(P32Pn)

f111d
(1,1)
i (Xn−1, u, v) −→ 4 gi+1(P32Pn) + 2 gi(P32Pn)

f21d
1
i (Xn−1, u, v) −→ 5 gi+1(P32Pn) + gi(P32Pn)

f21d
2
i (Xn−1, u, v) −→ 4 gi+1(P32Pn) + 2 gi(P32Pn)

f21d
(2,1)
i (Xn−1, u, v) −→ 3 gi+1(P32Pn) + 3 gi(P32Pn)

f3d
3
i (Xn−1, u, v) −→ 3 gi+1(P32Pn) + 3 gi(P32Pn)

f21s
(2,1)
i (Xn−1, u, v) −→ 2 gi+1(P32Pn) + 4 gi(P32Pn)

f3s
(3,1)
i (Xn−1, u, v) −→ 6 gi(P32Pn)

Proof Rewrite the relevant productions given above for deg(u) = 3 (using the fact that

the number 3 has these three partitions: 111, 21 and 3). ♦

Theorem 41. The genus distribution of P32Pn is as follows:

gi(P32Pn) = 5 f111d
1
i−1(Xn−1, u, v) + f111d

1
i (Xn−1, u, v)

+ 4 f111d
(1,1)
i−1 (Xn−1, u, v) + 2 f111d

(1,1)
i (Xn−1, u, v)

+ 5 f21d
1
i−1(Xn−1, u, v) + f21d

1
i (Xn−1, u, v)

+ 4 f21d
2
i−1(Xn−1, u, v) + 2 f21d

2
i (Xn−1, u, v)

+ 3 f21d
(2,1)
i−1 (Xn−1, u, v) + 3 f21d

(2,1)
i (Xn−1, u, v)

+ 3 f3d
3
i−1(Xn−1, u, v) + 3 f3d

3
i (Xn−1, u, v)

+ 2 f21s
(2,1)
i−1 (Xn−1, u, v) + 4 f21s

(2,1)
i (Xn−1, u, v)

+ 6 f3s
(3,1)
i (Xn−1, u, v)

Proof Simple transposition of the productions given in Theorem 40. ♦

Using Theorem 41, we compute the values in Table 5.5.
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Table 5.5: Genus distribution of P32Pn.

k P32P3 P32P4 P32P5 P32P6

0 2 2 2 2

1 58 202 346 490

2 36 1524 9540 27924

3 576 35904 345984

4 9504 797184

5 155520
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Chapter 6

Conclusions

6.1 Conclusions

My research contributes to the study of the computations of genus distributions of graphs

in general, as well as in specific ways. The general part of my research is summarized in

the following points.

• If one is given the single-root partial genus distribution of a single-rooted graph (G, t),

and single-root partitioned genus distribution of a single-rooted graph (H,u), when

deg(t) = 2 and deg(u) ≥ 2, then one can compute the genus distribution of the graph

G ∗ H obtained through their vertex-amalgamation. One simply adds up all terms

on the right-hand-sides of Recurrences (2.8) and (2.9) after converting double-root

partials to single-root partials (by ignoring the second root).

• If one is given the double-root partitioned genus distribution of a double-rooted graph

(G, u, v) where deg(v) = 2 and deg(u) can be arbitrarily large, then one can use results

of Chapter 2 to compute the recurrences for the single-root partitial genus distribution

of the sequence of open chains of the double-rooted graph.

• If one is given the double-root partitioned genus distribution of two double-rooted

graphs (G, u, v) and (H, a, b), when deg(v) = deg(b) = 2, deg(u) ≥ 2 and deg(a) ≥ 2,

then one can use results of Chapter 4 to compute the double-root partitioned genus
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distribution of the graph obtained through the vertex-amalgamation of the two graphs,

amalgamated at root vertices u and a.

• If one is given the double-root partitioned genus distribution of a double-rooted graph

(G, u, v), when deg(v) = 2 and deg(u) ≥ 2, then one can use results of Chapter 4

to compute the recurrences for the double-root partitioned genus distribution of the

sequence of open chains of the double-rooted graph.

• If one is given the double-root partitioned genus distribution of a double-rooted graph

(G, u, v), when deg(v) = 2 and deg(u) ≥ 2, then one can use results of Chapters 3 and

4 to compute the genus distribution of the sequence of closed chains obtained through

amalgamation of the two root vertices in the open chains, and also to compute the

genus distribution of the sequence of graph chains obtained through the addition of

an edge between the two root vertices in the open chains.

It is interesting to note that extending the methods developed in Chapters 2–4 to the

cases where neither root vertex has valence 2 may present complications. As illustrated

in Example 42, the genus-increment can sometimes be negative (see Research Problem 1

below).

Example 42. Figure 6.1 shows two toroidal embeddings of the single-rooted dipole (D3, u).

*

Figure 6.1: A consistent embedding of D3 ∗D3 with negative genus-increment.

One of the 40 embeddings of the amalgamated graph X = (D3, u) ∗ (D3, u) that is

consistent with those two embeddings is also shown in the figure. Note that this is also a

toroidal embedding, since
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V − E + F = 3− 6 + 3 = 0.

Thus, the genus-increment in this case is −1.

Research Problem 1. Develop methods for computing the genus distributions when both

amalgamated vertices may have arbitrarily large degrees. For instance, one might augment

the present approach with other surgical operations, such as splitting a vertex.

Research Problem 2. Develop methods to solve simultaneous recurrences like (2.12),

(2.13) and (2.14), (2.15).

Research Problem 3. The genus distributions that we have computed using our methods

are all unimodal. This appears to support the conjecture that all graphs have unimodal

genus distributions. A natural question to ask is whether the vertex-amalgamation of two

graphs with unimodal distributions has a unimodal genus distribution? Also, whether the

operations of self-vertex-amalgamation and edge-addition on a graph with unimodal genus

distribution produced graphs with unimodal distributions?

Research Problem 4. Results of [Poshni et al., 2010] have been successfully used to

compute the genus distributions of cubic outerplanar graphs in [Gross, 2011b]. Can the

results of this thesis be similarly used to compute the genus distributions of other non-

linear families of graph?

The specific part of my research enables one to compute the genus distribution of the

graph family P32Pn. Theorem 39 is a set of recurrences for calculating the genus distri-

bution of the mesh graphs P32Pn. This calculation is based on a complex graph surgery

operation by which the auxiliary graph Xn is obtained from Xn−1, after which an edge is

added to construct P32Pn by joining the two roots of Xn.

As indicated by Bodlaender [Bodlaender, 1998], the mesh graphs P32Pn have treewidth

3, as do the Halin graphs. This is in contrast to the families of graphs whose genus distri-

bution were more easily calculated and were either of treewidth 2, or derivable by simple

surgery on a graph of treewidth 2. A recent result by Gross [Gross, 2012] has developed

a quadratic-time algorithm for computing the genus distribution of graph families of fixed
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treewidth and bounded degree, based on newly general forms of partials and productions.

Research Problem 5 There is no consistent and simple notation for the partials of a

k-rooted graph. Nonetheless, there may be a straightforward (albeit tedious) extension of

the method given here for computing the genus distribution of P42Pn, or more generally of

Pk+12Pn.

6.2 Future Directions

We have already specified a few of the research problems that are of immediate interest in

the previous section, but more broadly speaking there may be other potential uses of the

ideas developed in my work.

My work (and the work of my coauthors) is a foundation for a variety of problems. The

most important problem in this area is definitely the computation of the genus distributions

of the complete graphs Kn, because of the importance of this problem in the history of

topological graph theory. Computation of the minimum genus of complete graphs Kn was

the main hurdle in the proof of Heawood’s conjecture on coloring maps on surfaces of higher

genus. The eventual solution by Ringel and Youngs in 1968 had to break down the problem

into twelve different cases, each of which was solved separately. The proof consisted of 300

pages, but it was arguably the methods employed in that proof that helped established

the discipline of topological graph theory. If our work leads to the computation of genus

distribution of complete graphs, it might significantly simplify the proof.

Additionally, since our results are giving us genus distributions of graph families like

P32Pn, cubic and 4-regular outerplanar graphs, cubic Halin graphs, one might hope that in

the near future genus distributions of many familiar graph families would be known (graph

families like wheels, Peterson graphs, circulant graphs, bipartite graphs, planar graphs,

graphs with known minimum genus etc.), as opposed to largely artificially constructed

graph families like closed-end ladders and cobblestone paths.

It is known that the shadow graphs of knots are all 4-regular planar graphs. Since

we have been computing genus distributions of graph families like 4-regular outerplanar

graphs, it might be interesting to investigate if there is any relationship between the knot
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polynomials and the genus distribution polynomials of the shadow graphs.

The methods we have developed compute a property (genus distributions) of graphs

inductively through amalgamations and other similar operations. Are there other properties

of graphs that can be similarly computed using productions and/or analogically defined

partials?
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Appendix A

Complete Set of Productions for

Extended Vertex Amalgamation

Theorem 43. Let (G, u, v) and (H, a, b) be two double-rooted graphs such that deg(u) ≥

2, deg(a) ≥ 2 and deg(v) = deg(b) = 2, and let (X,u, b) be the graph obtained by amalgamat-

ing these two graphs on root vertices v and a. Then for each pair of partitions p1p2 · · · pr of

deg(u) and q1q2 · · · qr of deg(a), the following productions hold (we omit the triple (G, u, v)

from the first amalgamand in the production-head, (H, a, b) from the second amalgamand,

and (X,u, b) from each of the terms in the production-body) :

fp1p2···prd
0
i ∗ fq1q2···qtd

0
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prd
0
i+j+1 (A.1)

fp1p2···prd
pk
i ∗ fq1q2···qtd

0
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prd
0
i+j+1 (A.2)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qtd0j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j
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+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
0
i+j+1

(A.3)

fp1p2···prs
0
i ∗ fq1q2···qtd

0
j −→ (n2 + n) fp1p2···prd

0
i+j (A.4)

fp1p2···prs
pk
i ∗ fq1q2···qtd

0
j −→ (n2 + n) fp1p2···prd

0
i+j (A.5)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qtd0j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···p̂k···prd(pk−d)d
0
i+j

(A.6)

fp1p2···prd
0
i ∗ fq1q2···qtd

qs
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prd
0
i+j+1 (A.7)

fp1p2···prd
pk
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prd
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···prd
pk
i+j+1 (A.8)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prd

pg
i+j
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+

(
qs(qs + 1)

2

)
fp1p2···prd

ph
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
pg+ph
i+j+1

(A.9)

fp1p2···prs
0
i ∗ fq1q2···qtd

qs
j −→ (n2 + n) fp1p2···prd

0
i+j (A.10)

fp1p2···prs
pk
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+ qs(qs + 1) fp1p2···prd
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prd
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···prd
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···prd
pk
i+j (A.11)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qtd

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prd
0
i+j

+ qs(qs + 1) fp1p2···prd
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···p̂k···prd(pk−d)d
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)d
d
i+j
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+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)d
pk−d
i+j

(A.12)

fp1p2···prd
0
i ∗ fq1q2···qtd

(ql,qm)
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prd

0
i+j

+

 t∑
x=1

xnel,x6=m

t∑
y=x+1
y 6=l,y 6=m

2qxqy

 fp1p2···prd
0
i+j+1

+ 2qlqm fp1p2···prs
0
i+j+1 (A.13)

fp1p2···prd
pk
i ∗ fq1q2···qtd

(ql,qm)
j −→

 t∑
x=1

x6=l,x6=m

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
ql(ql + 1)

2
+
qm(qm + 1)

2

)
fp1p2···prd

0
i+j

+

(
ql(ql + 1)

2
+
qm(qm + 1)

2

)
fp1p2···prd

pk
i+j

+

 t∑
x=1

x 6=l,x6=m

t∑
y=x+1
y 6=l,y 6=m

2qxqy

 fp1p2···prd
0
i+j+1

+

 t∑
x=1

x 6=l,x6=m

(2qxql + 2qxqm)

 fp1p2···prd
pk
i+j+1

+ 2qlqm fp1p2···prs
pk
i+j+1 (A.14)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qtd

(ql,qm)
j −→

 t∑
x=1

x 6=l,x6=m

qx(qx + 1)

 fp1p2···prd
0
i+j

+

(
ql(ql + 1)

2
+
qm(qm + 1)

2

)
fp1p2···prd

pg
i+j

+

(
ql(ql + 1)

2
+
qm(qm + 1)

2

)
fp1p2···prd

ph
i+j
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+

 t∑
x=1

x 6=l,x6=m

t∑
y=x+1
y 6=l,y 6=m

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
0
i+j+1

+

 t∑
x=1

x 6=l,x6=m

(2qxql + 2qxqm)

 fp1p2···(pg+ph)···p̂g ···p̂h···prd
pg+ph
i+j+1

+ 2qlqm fp1p2···(pg+ph)···p̂g ···p̂h···prs
(pg+ph,min(pg ,ph))
i+j+1

(A.15)

fp1p2···prs
0
i ∗ fq1q2···qtd

(ql,qm)
j −→ (n2 + n) fp1p2···prd

0
i+j (A.16)

fp1p2···prs
pk
i ∗ fq1q2···qtd

(ql,qm)
j −→

 t∑
x=1

x 6=l,x6=m

qx(qx + 1)

 fp1p2···prd
0
i+j

+ (ql(ql + 1) + qm(qm + 1)) fp1p2···prd
pk
i+j

+

 t∑
x=1

x 6=l,x6=m

t∑
y=x+1
y 6=l,y 6=m

2qxqy

 fp1p2···prd
0
i+j

+

 t∑
x=1

x 6=l,x6=m

(qxql + qxqm)

 fp1p2···prd
0
i+j

+

 t∑
x=1

x 6=l,x6=m

(qxql + qxqm)

 fp1p2···prd
pk
i+j

+ 2qlqm fp1p2···prd
pk
i+j (A.17)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qtd

(ql,qm)
j −→

 t∑
x=1

x 6=l,x6=m

qx(qx + 1)

 fp1p2···prd
0
i+j

+ (ql(ql + 1) + qm(qm + 1)) fp1p2···prd
pk
i+j

+

 t∑
x=1

x6=l,x6=m

t∑
y=x+1
y 6=l,y 6=m

2qxqy

 fp1p2···p̂k···prd(pk−d)d
0
i+j

+

 t∑
x=1

x 6=l,x6=m

(qxql + qxqm)

 fp1p2···p̂k···prd(pk−d)d
d
i+j
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+

 t∑
x=1

x 6=l,x6=m

(qxql + qxqm)

 fp1p2···p̂k···prd(pk−d)d
pk−d
i+j

+ 2qlqm fp1p2···p̂k···prd(pk−d)d
(d,pk−d)
i+j

(A.18)

fp1p2···prd
0
i ∗ fq1q2···qts

0
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prs

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prs
0
i+j+1 (A.19)

fp1p2···prd
pk
i ∗ fq1q2···qts

0
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prs

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prs
0
i+j+1 (A.20)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qts0j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prs

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prs
0
i+j+1

(A.21)

fp1p2···prs
0
i ∗ fq1q2···qts

0
j −→ (n2 + n) fp1p2···prs

0
i+j (A.22)

fp1p2···prs
pk
i ∗ fq1q2···qts

0
j −→ (n2 + n) fp1p2···prs

0
i+j (A.23)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qts0j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prs

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···p̂k···prd(pk−d)s
0
i+j

(A.24)

fp1p2···prd
0
i ∗ fq1q2···qts

qs
j −→

(
t∑

x=1

qx(qx + 1)

)
fp1p2···prs

0
i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prs
0
i+j+1 (A.25)
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fp1p2···prd
pk
i ∗ fq1q2···qts

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prs

0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prs

pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prs
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···prs
pk
i+j+1 (A.26)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qts

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prs

pg
i+j

+

(
qs(qs + 1)

2

)
fp1p2···prs

ph
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prs
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···(pg+ph)···p̂g ···p̂h···prs
pg+ph
i+j+1

(A.27)

fp1p2···prs
0
i ∗ fq1q2···qts

qs
j −→ (n2 + n) fp1p2···prs

0
i+j (A.28)

fp1p2···prs
pk
i ∗ fq1q2···qts

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+ qs(qs + 1) fp1p2···prs
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prs
0
i+j
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+

 t∑
x=1
x 6=s

qxqs

 fp1p2···prs
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···prs
pk
i+j (A.29)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qts

qs
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+ qs(qs + 1) fp1p2···prs
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···p̂k···prd(pk−d)s
0
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)s
d
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)s
pk−d
i+j

(A.30)

fp1p2···prd
0
i ∗ fq1q2···qts

(qs,c)
j −→

 t∑
x=1
x6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+ [c(c+ 1) + (qs − c)(qs − c+ 1)] fp1p2···prs
0
i+j

+ 2c(qs − c) fp1p2···prd0i+j

+

 t∑
x=1

t∑
y=x+1

2qxqy

 fp1p2···prs
0
i+j+1 (A.31)

fp1p2···prd
pk
i ∗ fq1q2···qts

(qs,c)
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+

(
c(c+ 1)

2
+

(qs − c)(qs − c+ 1)

2

)
fp1p2···prs

0
i+j
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+

(
c(c+ 1)

2
+

(qs − c)(qs − c+ 1)

2

)
fp1p2···prs

pk
i+j

+ 2c(qs − c) fp1p2···prd
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prs
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···prs
pk
i+j+1 (A.32)

fp1p2···prd
(pg ,ph)
i ∗ fq1q2···qts

(qs,c)
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+

(
c(c+ 1)

2
+

(qs − c)(qs − c+ 1)

2

)
fp1p2···prs

pg
i+j

+

(
c(c+ 1)

2
+

(qs − c)(qs − c+ 1)

2

)
fp1p2···prs

ph
i+j

+ 2c(qs − c) fp1p2···prd(
(pg ,ph)
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···(pg+ph)···p̂g ···p̂h···prs
0
i+j+1

+

 t∑
x=1
x 6=s

2qxqs

 fp1p2···(pg+ph)···p̂g ···p̂h···prs
pg+ph
i+j+1

(A.33)

fp1p2···prs
0
i ∗ fq1q2···qts

(qs,c)
j −→ (n2 + n) fp1p2···prs

0
i+j (A.34)

fp1p2···prs
pk
i ∗ fq1q2···qts

(qs,c)
j −→

 t∑
x=1
x6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+ qs(qs + 1) fp1p2···prs
pk
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···prs
0
i+j

+

 t∑
x=1
x6=s

qxqs

 fp1p2···prs
0
i+j
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+

 t∑
x=1
x 6=s

qxqs

 fp1p2···prs
pk
i+j (A.35)

fp1p2···prs
(pk,d)
i ∗ fq1q2···qts

(qs,c)
j −→

 t∑
x=1
x 6=s

qx(qx + 1)

 fp1p2···prs
0
i+j

+ (c(c+ 1) + (qs − c)(qs − c+ 1)) fp1p2···prs
pk
i+j

+ 2c(qs − c) fp1p2···prs
(pk,d)
i+j

+

 t∑
x=1
x 6=s

t∑
y=x+1
y 6=s

2qxqy

 fp1p2···p̂k···prd(pk−d)s
0
i+j

+

 t∑
x=1
x6=s

qxqs

 fp1p2···p̂k···prd(pk−d)s
d
i+j

+

 t∑
x=1
x 6=s

qxqs

 fp1p2···p̂k···prd(pk−d)s
pk−d
i+j

(A.36)

Proof The proofs of these productions can be obtained by considering the various cases

in which the fb-walks split into strands and then recombine. These are in spirit similar to

the proofs already given. ♦
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Appendix B

Derivation of the Recurrences for

The Open Chain of (K4, u, v)

Table B.1 lists the non-zero partials of (K̇4, u, v).

u v

Figure B.1: Self-vertex-amalgamation of double-rooted graph (K̇4, u, v).

Table B.1: Nonzero partials of (K̇4, u, v).

j f111d
1
j f21d

(2,1)
j f3d

3
j f21s

(2,1)
j gj

0 2 0 0 0 2

1 0 6 2 6 14

Plugging in these values for the second amalgamant in the relevant productions of Theorem

43, we obtain the following 24 productions.
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For f111d
1
0 = 2, we obtain the following six productions:

fp1p2···prd
0
i ∗, 2 −→ 6 fp1p2···prd

0
i + 6 fp1p2···prd

0
i+1

fp1p2···prd
pk
i ∗, 2 −→ 5 fp1p2···prd

0
i + fp1p2···prd

pk
i

+ 2 fp1p2···prd
0
i+1 + 4 fp1p2···prd

pk
i+1

fp1p2···prd
(pg ,ph)
i ∗, 2 −→ 4 fp1p2···prd

0
i + fp1p2···prd

pg
i

+ fp1p2···prd
ph
i + 2 fp1p2···(pg+ph)···p̂g ···p̂h···prd

0
i+1

+ 4 fp1p2···(pg+ph)···p̂g ···p̂h···prd
pg+ph
i+1

fp1p2···prs
0
i ∗, 2 −→ 12 fp1p2···prd

0
i

fp1p2···prs
pk
i ∗, 2 −→ 8 fp1p2···prd

0
i + 4 fp1p2···prd

pk
i

fp1p2···prs
(pk,d)
i ∗, 2 −→ 4 fp1p2···prd

0
i + 2 fp1p2···prd

pk
i

+ 2 fp1p2···p̂k···prd(pk−d)d
0
i

+ 2 fp1p2···p̂k···prd(pk−d)d
d
i

+ 2 fp1p2···p̂k···prd(pk−d)d
pk−d
i

For f3d
3
1 = 2, we obtain the following six productions:

fp1p2···prd
0
i ∗, 2 −→ 12 fp1p2···prd

0
i+1

fp1p2···prd
pk
i ∗, 2 −→ 6 fp1p2···prd

0
i+1 + 6 fp1p2···prd

pk
i+1

fp1p2···prd
(pg ,ph)
i ∗, 2 −→ 6 fp1p2···prd

pg
i+1 + 6 fp1p2···prd

ph
i+1

fp1p2···prs
0
i ∗, 2 −→ 12 fp1p2···prd

0
i+1

fp1p2···prs
pk
i ∗, 2 −→ 12 fp1p2···prd

pk
i+1

fp1p2···prs
(pk,d)
i ∗, 2 −→ 12 fp1p2···prd

pk
i+1

For f21d
(2,1)
1 = 6, we obtain the following six productions:
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fp1p2···prd
0
i ∗, 6 −→ 8 fp1p2···prd

0
i+1 + 4 fp1p2···prs

0
i+2

fp1p2···prd
pk
i ∗, 6 −→ 4 fp1p2···prd

0
i+1 + 4 fp1p2···prd

pk
i+1

+ 4 fp1p2···prs
pk
i+2

fp1p2···prd
(pg ,ph)
i ∗, 6 −→ 4 fp1p2···prd

pg
i+1 + 4 fp1p2···prd

ph
i+1

+ 4 fp1p2···(pg+ph)···p̂g ···p̂h···prs
(pg+ph,min(pg ,ph))
i+2

fp1p2···prs
0
i ∗, 6 −→ 12 fp1p2···prd

0
i+1

fp1p2···prs
pk
i ∗, 6 −→ 8 fp1p2···prd

pk
i+1 + 4 fp1p2···prd

pk
i+1

fp1p2···prs
(pk,d)
i ∗, 6 −→ 8 fp1p2···prd

pk
i+1 + 4 fp1p2···p̂k···prd(pk−d)d

(d,pk−d)
i+1

And, finally, for f21s
(2,1)
1 = 6, we obtain the following six productions:

fp1p2···prd
0
i ∗, 6 −→ 2 fp1p2···prs

0
i+1 + 4 fp1p2···prs

0
i+1

+ 2 fp1p2···prd
0
i+1 + 4 fp1p2···prs

0
i+2

fp1p2···prd
pk
i ∗, 6 −→ 2 fp1p2···prs

0
i+1 + 2 fp1p2···prs

0
i+1

+ 2 fp1p2···prs
pk
i+1 + 2 fp1p2···prd

pk
i+1

+ 4 fp1p2···prs
pk
i+2

fp1p2···prd
(pg ,ph)
i ∗, 6 −→ 2 fp1p2···prs

0
i+1 + 2 fp1p2···prs

pg
i+1

+ 2 fp1p2···prs
ph
i+1 + 2 fp1p2···prd

(pg ,ph)
i+1

+ 4 fp1p2···(pg+ph)···p̂g ···p̂h···prs
pg+ph
i+2

fp1p2···prs
0
i ∗, 6 −→ 12 fp1p2···prs

0
i+1

fp1p2···prs
pk
i ∗, 6 −→ 2 fp1p2···prs

0
i+1 + 6 fp1p2···prs

pk
i+1

+ 2 fp1p2···prs
0
i+1 + 2 fp1p2···prs

pk
i+1

fp1p2···prs
(pk,d)
i ∗, 6 −→ 2 fp1p2···prs

0
i+1 + 4 fp1p2···prs

pk
i+1

+ 2 fp1p2···prs
(pk,d)
i+1 + 2 fp1p2···p̂k···prd(pk−d)s

d
i+1
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+ 2 fp1p2···p̂k···prd(pk−d)s
pk−d
i+1

For p1 · · · pr = 111, these twenty-four productions become:

2 f111d
0
i −→ 6 f111d

0
i + 6 f111d

0
i+1

2 f111d
1
i −→ 5 f111d

0
i + f111d

1
i + 2 f111d

0
i+1 + 4 f111d

1
i+1

2 f111d
(1,1)
i −→ 4 f111d

0
i + 2 f111d

1
i + 2 f21d

0
i+1 + 4 f21d

2
i+1

2 f111s
0
i −→ 12 f111d

0
i

2 f111s
1
i −→ 8 f111d

0
i + 4 f111d

1
i

2 f111d
0
i −→ 12 f111d

0
i+1

2 f111d
1
i −→ 6 f111d

0
i+1 + 6 f111d

1
i+1

2 f111d
(1,1)
i −→ 12 f111d

1
i+1

2 f111s
0
i −→ 12 f111d

0
i+1

2 f111s
1
i −→ 12 f111d

1
i+1

6 f111d
0
i −→ 8 f111d

0
i+1 + 4 f111s

0
i+2

6 f111d
1
i −→ 4 f111d

0
i+1 + 4 f111d

1
i+1 + 4 f111s

1
i+2

6 f111d
(1,1)
i −→ 8 f111d

1
i+1 + 4 f21s

(2,1)
i+2

6 f111s
0
i −→ 12 f111d

0
i+1

6 f111s
1
i −→ 12 f111d

1
i+1

6 f111d
0
i −→ 6 f111s

0
i+1 + 2 f111d

0
i+1 + 4 f111s

0
i+2

6 f111d
1
i −→ 4 f111s

0
i+1 + 2 f111s

1
i+1 + 2 f111d

1
i+1 + 4 f111s

1
i+2

6 f111d
(1,1)
i −→ 2 f111s

0
i+1 + 4 f111s

1
i+1 + 2 f111d

(1,1)
i+1 + 4 f21s

2
i+2

6 f111s
0
i −→ 12 f111s

0
i+1

6 f111s
1
i −→ 4 f111s

0
i+1 + 8 f111s

1
i+1
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For p1 · · · pr = 21, pg = 2, ph = 1 and for pk = 1 or 2, these are:

2 f21d
0
i −→ 6 f21d

0
i + 6 f21d

0
i+1

2 f21d
2
i −→ 5 f21d

0
i + f21d

2
i + 2 f21d

0
i+1 + 4 f21d

2
i+1

2 f21d
1
i −→ 5 f21d

0
i + f21d

1
i + 2 f21d

0
i+1 + 4 f21d

1
i+1

2 f21d
(2,1)
i −→ 4 f21d

0
i + f21d

2
i + f21d

1
i + 2 f3d

0
i+1 + 4 f3d

3
i+1

2 f21s
0
i −→ 12 f21d

0
i

2 f21s
2
i −→ 8 f21d

0
i + 4 f21d

2
i

2 f21s
1
i −→ 8 f21d

0
i + 4 f21d

1
i

2 f21s
(2,1)
i −→ 4 f21d

0
i + 2 f21d

2
i + 2 f111d

0
i + 2 f111d

1
i + 2 f111d

1
i

2 f21d
0
i −→ 12 f21d

0
i+1

2 f21d
2
i −→ 6 f21d

0
i+1 + 6 f21d

2
i+1

2 f21d
1
i −→ 6 f21d

0
i+1 + 6 f21d

1
i+1

2 f21d
(2,1)
i −→ 6 f21d

2
i+1 + 6 f21d

1
i+1

2 f21s
0
i −→ 12 f21d

0
i+1

2 f21s
2
i −→ 12 f21d

2
i+1

2 f21s
1
i −→ 12 f21d

1
i+1

2 f21s
(2,1)
i −→ 12 f21d

2
i+1

6 f21d
0
i −→ 8 f21d

0
i+1 + 4 f21s

0
i+2

6 f21d
2
i −→ 4 f21d

0
i+1 + 4 f21d

2
i+1 + 4 f21s

2
i+2

6 f21d
1
i −→ 4 f21d

0
i+1 + 4 f21d

1
i+1 + 4 f21s

1
i+2

6 f21d
(2,1)
i −→ 4 f21d

2
i+1 + 4 f21d

1
i+1 + 4 f3s

(3,1)
i+2

6 f21s
0
i −→ 12 f21d

0
i+1

6 f21s
2
i −→ 8 f21d

2
i+1 + 4 f21d

2
i+1

6 f21s
1
i −→ 8 f21d

1
i+1 + 4 f21d

1
i+1
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6 f21s
(2,1)
i −→ 8 f21d

2
i+1 + 4 f111d

(1,1)
i+1

6 f21d
0
i −→ 6 f21s

0
i+1 + 2 f21d

0
i+1 + 4 f21s

0
i+2

6 f21d
2
i −→ 2 f21s

0
i+1 + 2 f21s

0
i+1 + 2 f21s

2
i+1 + 2 f21d

2
i+1 + 4 f21s

2
i+2

6 f21d
1
i −→ 2 f21s

0
i+1 + 2 f21s

0
i+1 + 2 f21s

1
i+1 + 2 f21d

1
i+1 + 4 f21s

1
i+2

6 f21d
(2,1)
i −→ 2 f21s

0
i+1 + 2 f21s

2
i+1 + 2 f21s

1
i+1 + 2 f21d

(2,1)
i+1 + 4 f3s

3
i+2

6 f21s
0
i −→ 12 f21s

0
i+1

6 f21s
2
i −→ 2 f21s

0
i+1 + 6 f21s

2
i+1 + 2 f21s

0
i+1 + 2 f21s

2
i+1

6 f21s
1
i −→ 2 f21s

0
i+1 + 6 f21s

1
i+1 + 2 f21s

0
i+1 + 2 f21s

1
i+1

6 f21s
(2,1)
i −→ 2 f21s

0
i+1 + 4 f21s

2
i+1 + 2 f21s

(2,1)
i+1 + 2 f111s

1
i+1 + 2 f111s

1
i+1

For p1 · · · pr = 3, pk = 3, d = 1, these are:

2 f3d
0
i −→ 6 f3d

0
i + 6 f3d

0
i+1

2 f3d
3
i −→ 5 f3d

0
i + f3d

3
i + 2 f3d

0
i+1 + 4 f3d

3
i+1

2 f3s
0
i −→ 12 f3d

0
i

2 f3s
3
i −→ 8 f3d

0
i + 4 f3d

3
i

2 f3s
(3,1)
i −→ 4 f3d

0
i + 2 f3d

3
i + 2 f21d

0
i + 2 f21d

1
i + 2 f21d

2
i

2 f3d
0
i −→ 12 f3d

0
i+1

2 f3d
3
i −→ 6 f3d

0
i+1 + 6 f3d

3
i+1

2 f3s
0
i −→ 12 f3d

0
i+1

2 f3s
3
i −→ 12 f3d

3
i+1

2 f3s
(3,1)
i −→ 12 f3d

3
i+1

6 f3d
0
i −→ 8 f3d

0
i+1 + 4 f3s

0
i+2

6 f3d
3
i −→ 4 f3d

0
i+1 + 4 f3d

3
i+1 + 4 f3s

3
i+2

6 f3s
0
i −→ 12 f3d

0
i+1
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6 f3s
3
i −→ 8 f3d

3
i+1 + 4 f3d

3
i+1

6 f3s
(3,1)
i −→ 8 f3d

3
i+1 + 4 f21d

(2,1)
i+1

6 f3d
0
i −→ 6 f3s

0
i+1 + 2 f3d

0
i+1 + 4 f3s

0
i+2

6 f3d
3
i −→ 2 f3s

0
i+1 + 2 f3s

0
i+1 + 2 f3s

3
i+1 + 2 f3d

3
i+1 + 4 f3s

3
i+2

6 f3s
0
i −→ 12 f3s

0
i+1

6 f3s
3
i −→ 2 f3s

0
i+1 + 6 f3s

3
i+1 + 2 f3s

0
i+1 + 2 f3s

3
i+1

6 f3s
(3,1)
i −→ 2 f3s

0
i+1 + 4 f3s

3
i+1 + 2 f3s

(3,1)
i+1 + 2 f21s

1
i+1 + 2 f21s

2
i+1

After transposition, we get the following recurrences:

f111d
0
i = 12 f111d

0
i + 96 f111d

0
i−1 + 10 f111d

1
i + 40 f111d

1
i−1 + 8 f111d

(1,1)
i + 24 f111s

0
i

16 f111s
1
i + 96 f111s

0
i−1 + 4 f21s

(2,1)
i

f111d
1
i = 2 f111d

1
i + 8 f111s

1
i + 4 f111d

(1,1)
i + 56 f111d

1
i−1 + 72 f111d

(1,1)
i−1 + 96 f111s

1
i−1+

8 f21s
(2,1)
i

f111d
(1,1)
i = 12 f111d

(1,1)
i−1 + 24 f21s

(2,1)
i−1

f21d
0
i = 4 f111d

(1,1)
i−1 + 12 f21d

0
i + 96 f21d

0
i−1 + 10 f21d

2
i + 40 f21d

2
i−1 + 10 f21d

1
i+

40 f21d
1
i−1 + 8 f21d

(2,1)
i + 24 f21s

0
i + 16 f21s

2
i + 16 f21s

1
i + 8 f21s

(2,1)
i +

96 f21s
0
i−1 + 4 f3s

(3,1)
i

f21d
1
i = 2 f21d

1
i + 2 f21d

(2,1)
i + 8 f21s

1
i + 56 f21d

1
i−1 + 36 f21d

(2,1)
i−1 + 96 f21s

1
i−1 + 4 f3s

(3,1)
i

f21d
2
i = 8 f111d

(1,1)
i−1 + 2 f21d

2
i + 56 f21d

2
i−1 + 2 f21d

(2,1)
i + 36 f21d

(2,1)
i−1 +

8 f21s
2
i + 4 f21s

(2,1)
i + 96 f21s

2
i−1 + 72 f21s

(2,1)
i−1 + 4 f3s

(3,1)
i

f21d
(2,1)
i = 12 f21d

(2,1)
i−1 + 24 f3s

(3,1)
i−1

f3d
0
i = 4 f21d

(2,1)
i−1 + 12 f3d

0
i + 96 f3d

0
i−1 + 10 f3d

3
i + 40 f3d

3
i−1 + 24 f3s

0
i+

16 f3s
3
i + 8 f3s

(3,1)
i + 96 f3s

0
i−1

f3d
3
i = 8 f21d

(2,1)
i−1 + 2 f3d

3
i + 56 f3d

3
i−1 + 8 f3s

3
i + 4 f3s

(3,1)
i + 96 f3s

3
i−1+
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72 f3s
(3,1)
i−1

f111s
0
i = 36 f111d

0
i−1 + 24 f111d

0
i−2 + 48 f111d

1
i−1 + 12 f111d

(1,1)
i−1 + 72 f111s

0
i−1 + 24 f111s

1
i−1

f111s
1
i = 48 f111d

1
i−2 + 12 f111d

1
i−1 + 24 f111d

(1,1)
i−1 + 48 f111s

1
i−1 + 24 f21s

(2,1)
i−1

f21s
0
i = 36 f21d

0
i−1 + 48 f21d

0
i−2 + 24 f21d

2
i−1 + 24 f21d

1
i−1 + 12 f21d

(2,1)
i−1 + 72 f21s

0
i−1+

24 f21s
2
i−1 + 24 f21s

1
i−1 + 12 f21s

(2,1)
i−1

f21s
1
i = 48 f21d

1
i−2 + 12 f21d

1
i−1 + 12 f21d

(2,1)
i−1 + 48 f21s

1
i−1 + 12 f3s

(3,1)
i−1

f21s
2
i = 24 f111d

(1,1)
i−2 + 48 f21d

2
i−2 + 12 f21d

2
i−1 + 12 f21d

(2,1)
i−1 + 48 f21s

2
i−1 + 24 f21s

(2,1)
i−1 + 12 f3s

(3,1)
i−1

f21s
(2,1)
i = 24 f111d

(1,1)
i−2 + 12 f21s

(2,1)
i−1

f3s
0
i = 36 f3d

0
i−1 + 48 f3d

0
i−2 + 24 f3d

3
i−1 + 72 f3s

0
i−1 + 24 f3s

3
i−1 + 12 f3s

(3,1)
i−1

f3s
3
i = 24 f21d

(2,1)
i−2 + 48 f3d

3
i−2 + 12 f3d

3
i−1 + 48 f3s

3
i−1 + 24 f3s

(3,1)
i−1

f3s
(3,1)
i = 24 f21d

(2,1)
i−2 + 12 f3s

(3,1)
i−1
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