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ABSTRACT 

Luyten and Roemmich have shown a strong semiannual signal in zonal velocity in the upper, western part 
of the equatorial Indian Ocean. Their observations are modeled by assuming that they are directly forced by 
the observed semiannual component of zonal wind stress, which is relatively large in the equatorial Indian 
Ocean. The model is linear, periodic, has linear damping, uses the long-wave approximation, and can be solved 
analytically. A good comparison with the observations is obtained for the phase of the oscillation across the 
array. The predicted magnitude is somewhat smaller than in the observations. The model sensitivity to friction 
and the spatial distribution of the wind stress is explored. Some additional model simplifications are discussed, 
but it is concluded that they all detract substantially from the comparison. The main conclusion is that the 
observations can be accounted for as a directly forced response to the semiannual component of the near­
equatorial zonal winds. 

1. Introduction and model assumptions 

Luyten and Roemmich (1982) have analyzed cur­
rent-meter observations that were taken in the western 
equatorial Indian Ocean from April 1979 to June 1980. 
The moorings were mainly on the equator between 
500 E and 62°E, at nominal depths of 200, 500, and 
750 m. By far the most energetic signal at all depths 
was a semiannual oscillation in the zonal velocity (see 
Luyten and Roemmich, Fig. 5, which is reproduced 
here as Fig. 1). The semiannual component in merid­
ional velocity is small, containing only ~th of the 
energy in the zonal velocity, and the annual component 
in both velocities is small, and not well resolved by 
the observations. The oscillation has a magnitude of 
about 15 em S-I, and has zonal and vertical scales that 
are very long compared to the dimensions of the array. 
The observations show upward phase, and hence, by 
analogy with vertically propagating equational waves, 
downward energy, propagation and, much less cer­
tainly, westward phase propagation (see Section 4). 
The basic premise of this paper is that this oscillation 
is forced by the basin-wide semiannual component of 
zonal wind stress TX. This component of T X is strong 
in the central equatorial Indian Ocean where it dom­
inates the annual component; for example, see 
McPhaden (1982, Fig. 2), who shows T X at Gan (0°4O'S, 
73°E). 

I The National Center for Atmospheric Research is sponsored by 
the National Science Foundation. 
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With some caveats noted below, we take the dy­
namics to be linear. Since we are interested in the 
dominant semiannual signal, we consider the ocean 
response to be periodic at a single frequency, (a). The 
driving is modeled as a body force in the mixed layer 
(see Lighthill, 1969). In fact, the surface layers of the 
ocean down through the thermocline are not linear: 
the currents there are strong, of the order of a meter 
per second. Philander and Pacanowski (1981) have 
analyzed periodic forcing in a multi-level primitive 
equation model. For semiannual period, they do indeed 
find differences below the thermocline depending upon 
whether the ocean is assumed to be linear or nonlinear 
(see their Fig. 4). An alternative, therefore, would be 
to postulate the forcing below the surface layer which 
drives the linear ocean beneath. It is not clear how 
best to do this; a nonlinear numerical model is probably 
necessary. Cane (1980) applied a three-layer numerical 
model to the Indian Ocean. With westerly winds, which 
predominate in the equatorial Indian Ocean, he found 
that nonlinearity near the surface drives the deeper 
ocean by downward advection of eastward momentum. 
The response to this advection is local in space and 
rapid in time, so that it would change the amplitude, 
but 1)ot the phase, of the deeper ocean response. The 
amplitude in our linear model is directly proportional 
to the magnitude of the wind-stress data of Hellerman 
and Rosenstein (1983), and this is not known very 
accurately anyway. 

We force the model only by T% because the T Y semi­
annual component is weaker, and, at this low fre-
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FIG. 1. Luyten and Roemmich (1982, Fig. 5) a) composite spectrum 
of u at 200 m, formed by averaging five records; b) as in a) except 
at 750 m and eight records; and c) as in a) except for v. 

quency, is only O(w) as effective as rX in driving the 
ocean. Another immediate consequence of small w is 
that the meridional velocity is small, equal to O(w) 
times the zonal velocity, in agreement with the ob­
servations of Luyten and Roemmich (1982). Our final 
major assumption is that damping in the model is 
caused by Rayleigh friction and Newtonian cooling of 
equal magnitude. This is convenient because it means 
the solution is still separable, and can be solved an­
alytically as a sum of vertical modes. However, this 
assumption ignores coupling between the vertical 
modes. McCreary (1981a,b) made a different as­
sumption about damping, but with the same basic 
result that the solution is separable. Using a model 
similar to ours, and idealized buoyancy profiles and 
surface forcings, he has produced an undercurrent in 
the steady case and vertically propagating beams of 
energy in the periodic case. The present model is an 
extension of Cane and Sarachik's (1981) work which 
was applied to a single vertical mode. The extensions 
are to a three-dimensional solution by a sum over 
vertical modes, the inclusion of friction and cooling, 

and allowing the surface forcing to be spatially arbitrary 
rather than simple analytic functions oflatitude alone. 

2. Model equations 

The linearized primitive equations on an equatorial 
,8-plane, with the assumptions discussed in the last 
section are (see Moore and Philander, 1977): 

UI - ,8yv + Px = exp(iwt)r z X(x, y, z) - ru, (1) 

VI + ,8yu + Py = -rv, 

Ux + Vy + Wz = 0, 

pz = b, 

hI + N 2w = -rb, 

(2) 

(3) 

(4) 

(5) 

where P is pressure, w the frequency, r a damping 
coefficient with the dimension of frequency, b the 
buoyancy and N the buoyancy frequency defined by 

N 2 = dh/dz, (6) 

where h is the horizontally and time averaged buoy­
ancy. Eqs. (1)-(5) can be separated by assuming vertical 
dependence such that 

, ) b dFn 
U, V, P a::. Fn(z , a::. dz ' dFn / N2 wa::. dz . (7) 

The structure functions F", satisfy the equation 

~ (dFn N-2 ) + F C -2 = 0 (8) 
dzdz nn, 

where c" 2 is the separation constant, and the boundary 
conditions are 

dFn + N
2 

F = 0 at z = 0 
dz g n 

(9) 
dFn -=0 at z=-H 
dz 

We follow Lighthill (1969) and assume that the stress 
acts like a body force in a mixed layer of depth d and 
not below, and define a projection coefficient P" such 
that 

HIO /1° 2 Pn = - Fndz Fn dz. 
d -d -H 

(10) 

The equations are nondimensionalized in the usual 
equatorial way with velocities a::. Cn, lengths a::. (cn / 

,8)1/2, frequency a::. (Cn,8)1/2 and pressure a::. c/o Then, 
in the long-wave approximation, where wand zonal 
derivatives are assumed to be small, Eqs. (1)-(5) for 
the nth vertical mode reduce to (see Cane and Sarachik, 
1981) 

UI - yv + Px = Pn exp(iwnt)rX(x, y) - rnu, (11) 

yu + Py = 0, (12) 

PI + Ux + Vy = -rnp. (13) 
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rX is now the surface stress, rn equals r(cnf3)-1/2, and 
the long-wave approximation means the zonal flow is 
geostrophically balanced everywhere. The solution of 
(11)-(13) is given by Cane and Sarachik (1981) with 
the damping terms accommodated by replacing Wn by 

(14) 

everywhere it occurs except in the time dependent 
term. The solution does not include the short Rossby 
waves that propagate eastwards from the western 
boundary. These waves have very small group velocity 
and would be dissipated by friction before they pen­
etrate into the interior. The solution also ignores the 
Rossby waves that are trapped to the eastern boundary. 
These waves form the poleward traveling coastal Kelvin 
waves at large distances from the equator, and thus 
the solution is not valid for large IYI. This becomes 
important for the higher-order Rossby waves polewards 
of about 10°, but they have smaller amplitude and 
are more heavily damped than the graver Rossby 
waves. The number oflong propagating Rossby waves 
for each vertical mode is calculated from the exact 
equatorial dispersion relation, but then those retained 
are all assumed to be nondispersive with group and 
phase velocities given by -(2m + 1)-1. The solution 
and details of its calculation are given in the appendix. 

If the damping coefficient r is taken to be of Rayleigh 
type, i.e., a constant in Eqs. (1)-(5), then, because it 
has the dimension of frequency, 

(15) 

with q = 0.5. This form offriction is convenient because 
it allows vertical separation. McCreary (1981a) 
achieved the same end by assuming the vertical damp­
ing to be proportional to 

d ( -2 d) -2 
dz N dz oc en , (16) 

from the vertical structure function [Eq. (8)]. Thus in 
McCreary's work q = 2.5 in Eq. (15). Alternatively, 
the linear damping can be thought of as an approxi­
mation to horizontal Laplacian damping. The hori­
zontallength scale is proportional to Cn

l
/
2

, so that this 
interpretation gives q = 1.5. Approximating a bihar­
monic horizontal friction in the same way would again 
give q = 2.5. In the absence of any justification for 
one value of q over any other, we have run cases for 
q = 0.0,0.5, 1, 1.5,2 and 2.5, and called q = 1.5 the 
standard case mainly on the basis of it being in the 
middle of the values used. In sequences of runs using 
different values of q, we have used the same value of 
friction for the first vertical mode, and then higher 
modes are successively more heavily damped as q in­
creases. The magnitude of the friction on the first mode 
is governed by the spindown time chosen for r. We 
have used spindown times of one, two and three years, 
with the two-year spindown time being the standard 

case. Assuming vertical and horizontal length scales 
of 100 m and 300 km respectively, a two-year spindown 
time gives vertical and horizontal c~ddy viscosities of 
1.6 cm2 S-I and 1.4 X 107 cm2 S-I" respectively: rea­
sonable values for the equatorial ocean and certainly 
in the same range as those used in large numerical 
models. 

3. Results using Hellerman and Rosenstein's wind 
stress 

The model was forced using the semiannual com­
ponent of rX calculated from the monthly wind-stress 
data set of Hellerman and Rosenstein (1983). The data 
set is averaged for every month and for every 2° of 
latitude and longitude. We extractc~d the semiannual 
component of rX and confirmed that this is consid­
erably larger than the annual compone:nt in the center 
of the Indian Ocean. The magnitude: of the semiannual 
component along the equator is shown in Fig. 2. It 
shows that the component is large over the central 
third of the Indian Ocean and has a secondary max­
imum near the coast of Africa. The spatial distribution 
of the semi-annual component of 7·

X over the tropical 
Indian Ocean is shown in Fig. 3 in terms of amplitude 
and phase relative to 1 January. The dominant feature 
is in the Arabian Sea where the maximum amplitude 
is 0.84 dyn cm-2

• The annual component of rX is of 
the same order of magnitude there, and both are due 
to the very strong winds of the monsoon circulation 
in the Arabian Sea. The two components are about 
equal there because the wind is strong southwesterly 
for about four months of the year rather than the six 
required for the annual component to dominate. 
However, this dominant feature has only a small effect 
on the results along the equator (see Section 5). The 
phase diagram indicates that the semiannual com­
ponent is a maximum on the equator first in late April 
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FIG. 2. The average of Hellerman and Rosenstein's semiannual 
components of.,x at ION and I oS across the Indian Ocean. 
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b) PHASE 

FIG. 3. Spatial distribution of a) amplitude and b) phase of the semiannual component of T X from Hellerman and Rosenstein's 
data between 43°E and 97°E and 200N to 200S. The amplitude unit is dyn cm-2• The phases are calculated relative to I January 
by assuming that the monthly averages apply at the middle of each month. . 

at about 8,1 °E. The maximum travels westward, and 
reaches 53°E about seven weeks later. Note that our 
phase convention is that propagation is indicated by 
increasing values of phase. The maximum on the Af­
rican coast propagates northeastward, occurring earlier 
at the equator than farther north. 

We interpolated Hellerman and Rosenstein's data 
to our resolution, which is 1 ° in latitude and longitude, 
and now describe the solution with q = 1.5 and a 
spindown time of two years. These are our standard 
parameters because they give the best comparison with 
the observations. A buoyancy profile was calculated 
using all CTD data taken along 53°E between 5°N 
and 0.75°S during May and June of 1976. It has a 
resolution of 25 m over the whole depth of the ocean, 
which is taken to be 5 km. Details are given by O'Neill 

N 

(1982), In this model, N is used as if it is the time and 
space average of the buoyancy profile in the whole of 
the equatorial Indian Ocean. We took the average 
mixed-layer depth to be 50 m because this is the value 
at Gan as calculated by McPhaden (1982). We then 
set the buoyancy profile to zero over the depth of this 
idealized mixed layer, where the stress is assumed to 
act as a body force. The upper 1 km of the buoyancy 
profile N used to calculate the vertical modes is shown 
in Fig. 4, and has a maximum of 13.5 cycles per hour 
(cph) at about 90 m. The upper kilometer of the first 
five vertical modes, multiplied by their respective pro­
jection coefficients Pn , is also shown in Fig. 4. The 
second vertical mode is excited most strongly and is 
dominant at the surface in our solutions. This mode 
is zero just above 200 m, and has a subsurface max-

200r-r---~---------+--~~---f----------~200 

500~r4--------------+-4-~~-+------------~500 

150~r+-------------+-4--~~------------~150 

I~O~O~~~4~~8~~~~~~~~~~~~~~~WIO~O 

CYCLES/HR 

FIG. 4. Profiles of the model buoyancy frequency N and the first five vertical 
modes mUltiplied by their projection coefficients p., over the upper I km. 
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imum between 600 and 850 m. At 750 m, there is 
almost no contribution from the third mode. We have 
taken ii to be 14 in Eq. (A20) because the higher pro­
jection coefficients are less than 1 % of the largest, 
which is P2. Details of the vertical modes are given in 
Table 1. 

Horizontal sections of the amplitude ofthe spatially 
varying components of u, v and geopotential height 
(h == pig) at 750 m are shown, in Fig. 5. The second 
vertical mode dominates at this depth and the most 
obvious feature in Fig. 5 is the Rossby wave focus for 
this mode which occurs almost in the center of the 
ocean where W(XE - X)/C2 = 7r/4 (Schopf et al. 1981; 
Cane and Moore 1981). The solution is meridionally 
confined in the western half of the basin, but gradually 
increases in width toward the eastern boundary where 
it is meridionally unconfined because the height field 
is constant along that boundary in the long-wave ap-

. proximation. This characteristic of the solution is in­
dependent of depth, but the dominance of the second­
mode focus is not. This can be seen from Fig. 6, which 
shows the amplitude of u at 500 m and u and h at 
200 m; these are the other depths of the observations. 
At SOO m no single mode dominates, but the focus of 
the second mode can be seen near the center of the 
ocean at about 67°E. The second vertical mode is 
almost zero at 200 m. At this depth the focus for the 
third mode can clearly be seen at about 80oE, and 
there are hints of a first mode focus near the western 
boundary. The locations of these foci are again ac­
counted for by the theory of Schopf et al. (1981). 

The height field at 200 m shows signs of a relative 
maximum under the dominant feature in the Arabian 
Sea. This maximum becomes more evident above 200 
m, and is very clear in the surface-height field. The 
surface in our model is dominated by the second ver­
tical mode (see Fig. 4), and the maximum zonal velocity 

EQ EQ 

EQ 

FIG. 5. Horizontal sections ofthe amplitude of the spatially varying 
component of a) u, b) v and c) h between lOON and S at a depth 
of 750 m. U and v are in cm S-I, h is in cm and the contour interval 
(CI) is listed below each plot. 

at the focus is -80 cm S-I. Nonlinearity is important 
in the surface layer, as discussed in the introduction, 
and would act to reduce the magnitude of this max­
imum. We note, however, that this surface maximum 
in u occurs at the correct time and longitude of the 
observed surface jet described by Wyrtki (1973). Our 
model is unrealistic in the surface layer, so it is excluded 
from the vertical sections of velocity in subsequent 

TABLE 1. Details' of the vertical structure and friction of the model. 

Values of r"/w" using 
Number of Projection two-year spindown 

Equivalent Kelvin propagating coefficient time* 
Mode depth wave speed Length scale Time scale Rossby 

number (cm) (cm S-I) (km) (days) waves p" q =, 1.5 q = 2.5 

I 79.9 280 349 1.4 49 3.9 0.04 0.04 
2 30.5 173 275 1.8 30 5.5 0.06 0.10 
3 12.6 111 220 2.3 19 2.5 0.10 0.25 
4 6.5 80 187 2.7 13 2.1 0.14 0.49 
5 4.4 66 170 3.0 11 1.7 0.17 0.72 
6 2.9 53 153 3.3 9 1.4 0.21 1.09 
7 2.1 46 141 3.6 7 1.3 0.24 1.49 
8 1.6 40 132 3.8 6 1.5 0.28 1.98 
9 1.3 35 124 4.1 5 1.4 0.31 2.48 

10 1.1 32 119 4.3 5 1.3 0.34 2.98 
11 0.9 29 113 4.5 4 1.8 0.38 3.67 
12 0.8 28 111 4.6 4 1.4 0.40 3.95 
13 0.7 26 106 4.8 4 0.3 0.43 4.75 
14 0.6 24 102 5.0 3 0.1 0.47 5.57 

* When q = 0.5, r"/w" is 0.04 for all the vertical modes. 
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FIG. 6. Horizontal sections of the amplitude of a) u at 500 m, b) 
u at 200 m and e) h at 200 m between lOoN and 100S. The units 
are em s-' and cm. 

figures. On the other hand, vertically integrated quan­
tities such as dynamic topography are not strongly 
affected by nonlinearity. The surface geopotential 
height relative to 500 m at 49°E has an amplitude of 
4.4 em, which is only slightly smaller than the observed 
semiannual component there taken from vertical pro­
files analyzed by Bruce (1981, Fig. 12). 

Figure 7 shows the amplitude and phase of u in a 
section along the equator and from a depth of 150 m 
to the bottom at 5 km. The amplitude maximum at 
depth is at the longitude of the focus for the second 
vertical mode and is at about 800 m which is the depth 
of the subsurface maximum of this mode (see Fig. 4). 
The phase diagram shows upward phase propagation 
in the upper and western part of the basin with west­
ward phase propagation in the west. The phase is much 
more complicated in the eastern third of the basin with 
no overall propagation characteristics. Fig. 8 shows 
profiles ofu at both ends of the array (50 0 E and 62°E) 
at times wt = 0, 45 0, 90°, 135 ° and 180°, from 150 
m to the ocean bottom. Both show broad jets that 
migrate vertically during the oscillation cycle. There 
is very little structure in the deep ocean. 

4. Comparison with the observations 

In order to compare our results with those of Luyten 
and Roemmich (1982), we show in Fig. 9 the upper 
western half of the ocean from Fig. 7. It shows the 
amplitude and phase of u along the equator between 
43 and 700E and between 150 and 850 m. The in­
strument locations are marked in Fig. 9 with a cross: 
note that all three at 62°E are 50 m higher than at 
the other longitudes. The amplitude and phase of u 
from the observations (Luyten and Roemmich, Table 
1) and from our model are listed in Table 2. The 
observational uncertainty in amplitude is fairly small, 
and Luyten and Roemmich estimate the uncertainty 
in any phase difference to be 20°. 

The model amplitudes are somewhat smaller than 
those observed (see Table 2). The second vertical mode, 
which dominates at most other depths, is zero just 
above 200 m (see Fig. 4) so that the model amplitudes 

FIG. 7. Vertical section of a) amplitude and b) phase of u along the equator 
between ISO m and 5 km. The amplitude unit is cm s-'. 
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FIG. 8. Profiles of u on the equator at a) 500 E and'b) 62°E between 150 m 
and 5 km at times wt '" 0, 45°, 90°, 135° and 180°. The unit is cm S-I. 

are small at this depth, but see Section 5a. Reducing 
friction on the higher modes by decreasing the value 
of q has the counter-intuitive result of reducing the 
amplitudes at 750 m at the array longitudes, although 
overall the amplitude of the oscillation in the deep 
ocean is increased. The low model amplitudes could 
be caused by the assumption of linear surface dynamics 
as discussed in the introduction. We also note that we 
are comparing a climatological average solution with 
observations from one particular year. 

The model phases given in Table 2 reproduce those 
of the observations much better, although the fact that 
the second mode is zero close to 200 m means that 
the model phases there are strong functions of depth: 
phase changes of nearly 40° can be seen over 50 m 
near 65°E (see Fig. 9). The model shows upward phase, 
and hence by analogy downward energy, propagation 
at all array longitudes, as do the observations. The 
model also has westward propagation at all array points 

at all depths. Luyten and Roemmich deduced overall 
westward propagation from the observations, but it is 
not consistent between all instruments at 200 and 750 
m. They calculated an average phase difference between 
200 and 750 m as 70°, whereas the model has 61 ° . 
The average phase difference across the array at 500 
and 750 m is 22° in the observations as compared to 
39° in the model. The absolute magnitudes of the 
model phases are also close to those of the observations. 
An average over all array points shows that the ob­
servations lead the model by 5° or 2.5 days on average, 
which is much smaller than the time resolution of the 
data. Individual phase differences are much larger, 
however, up to 47°. 
5. Model sensitivities 

a. N and the depth of the mixed layer 

The vertical-structure functions depend upon the 
buoyancy profile N, and it is known that they can 
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FIG. 9. Vertical section of a) amplitude and b) phase of u along the equator 
between 43 and 700E and ISO to 850 m. The amplitude unit is cm 5-1. 
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TABLE 2. Amplitude (cm s-') and phase of u at four longitudes 
on the equator. The phases are relative to 1 January. 

Nominal 
depth 

200 m 
500 m 
750 m 

200m 
500 m 
750 m 

Observations 

15 (161°) 18 (170°) 
10 (142°) 
14 (I W) 14 (97°) 

10.8 (187°) 
7.8 (136°) 
6.0 (128°) 

Model" 

9.9 (174°) 
7.9 (119°) 
6.3 (113°) 

17 (194°) 
15 (136°) 
14 (107°) 

10.0 (147°) 
8.8 (106°) 
7.8 (103°) 

14 (164°) 
18 (122°) 
9 (92°) 

6.9 (170°) 
10.0 (96°) 
11.2 (91°) 

.. q = 1.5 and spindown time of two years. 

change substantially in the surface layer due to small 
changes in N. In our model the second mode has a 
zero very close to 200 m, so that we do not consider 
the relatively small magnitudes at 200 m in Table 2 
as a major discrepancy .. 

Changing the depth of the mixed layer has two sep­
arate effects. First, we set the buoyancy profile to zero 
down to depth d, which changes the vertical modes. 
These changes are moderate if d >f 75 m, but large if 
d is 100 m because the maximum in the observed N 
is at about 90 m (see Fig. 4). Second, it alters the 
projection coefficients, and again the changes are only 
moderate for d ~ 75 m, but larger if d = 100 m. This 
can be seen from Table 3 which lists Pn for the first 
five modes when d takes the values 50, 75, and 
100 m. 

b. Friction 

Friction is necessary in the model because it does 
act in the ocean, and is required to control the near­
singularity that would occur in u in the inviscid case 
(see Cane and Moore, 1981). It is not clear how best 
to model friction, so we vary our assumed form con­
siderably in this section to assess model sensitivity. 

We have run the Hellerman and Rosenstein semi­
annual -rX forcing with a spindown time of two years 
with q = 0-2.5 in steps of 0.5 and for spindown times 
of one and three years with q = 1.5. Certain properties 

TABLE 3. Projection coefficierits p. for various 
mixed layer depths. 

Mode number 

I 
2 
3 
4 
5 

50 

3.9 
5.5 
2.5 
2.1 
1.7 

Depth of mixed layer 
(m) 

75 

3.7 
5.2 
2.4 
1.7 
1.4 

100 

3.2 
4.4 
2.4 
1.5 
1.5 

of the phases from these model runs are given in Table 
4. The table shows that when friction is weak (either 
q ~ 1 for a spindown time of two years, or a spindown 
time of three years), upward phase propagation does 
not occur at all array longitudes. When q ~ 1 westward 
phase propagation does not occur at all array points 
at 500 and 750 m. These properties do occur when 
the friction is stronger and in the observations. In­
creasing friction tends to produce a larger phase dif­
ference between 200 and 750 m, but also increases the 
horizontal phase difference across the array at 500 and 
750 m. The vertical phase properties noted above are 
consistent with the fact that, when friction is weak, 
more energy reflects from the ocean bottom than when 
it is strong, so that upward energy propagation at any 
point is more likely in the former case than in the 
latter. 

Table 4 shows that phase properties in the array are 
sensitive to the form of friction. Certain features of 
the solution are very sensitive to friction. The mag­
nitude of the subsurface maximum of the focus for 
the second mode is a good example. This can be seen 
from Fig. 10, which is a plot of the amplitude of u 
along the equator between 150 m and 2.5 km for 
q = 0.5 and 2.5 with a spindown time of two years, 
and for spindown times of one and three years when 
q = 1.5. The same plot for the standard case is shown 
in Fig. 7. The magnitude of the maximum varies be­
tween 11.0 and 26.6 cm S-I. In summary, although 
many aspects of the solution are very sensitive to fric­
tion, the results in the array area are only sensitive as 
long as rn/wn for the dominant modes is not order one 
or larger. 

TABLE 4. Sensitivity to friction and rX. 

Spindown time 
q (years) 

0.0 2 
0.5 2 
1.0 2 
1.5 2 
2.0 2 
2.5 2 
1.5 I 
1.5 3 

Zonal extent 

All basin 
Western half 
Eastern half 

Upward phase 
propagation at 

all array 
longitudes? 

Does phase 
always increase 
to the west at 

500 and 750 m? 

Hellerman and Rosenstein 
wind stress 

No No 
No No 
No No 
Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 
No Yes 

rX = 0.25 exp[-(y/L)2] dyn cm-2, 
L = 750 km. 

No Yes 
No No 
Yes Yes 
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700 E CI= 3 em/s 

c) SOT = 1 YR, Q = 1.5 d) SOT = 3 YR, Q=I.5 

1.5 

1.5 

o 

0.5 

1.5 

km2.5~---------------L----------------~~---------~---L~---------
430 E 700 E CI = 3 em/s 97°E 430 E 700 E CI = 3em/s 

FIG. 10. Vertical section· of the amplitude of u along the equator between 150 m and 2.5 km a) for 
q = 0.5 and b) for q = 2.5 with a spindown time of two years; and spindown times of c) one year and d) three years when q 
= 1.5. The unit is em S-I. . 

c. T
X as a function of y 

We tested the model sensitivity to T
X as a function 

of y in two ways. First, we simulated the Arabian Sea 
feature of Hellerman and Rosenstein's data shown in 
Fig. 3 whose maximum is over four times the maxi­
mum found along the equator. We ran two cases both 
of which were forced only by "Gaussian hills" in T X 

of magnitude 0.8 dyn cm-2 centered at l2°N, 60o E. 
The first had an e-folding scale of550 km, which means 
that the stress is essentially zero south of 4 oN, and the 
second a scale of880 km, which means that T X is about 
0.1 dyn cm-2 on the equator in the region of 58 to 
62°E. In the first case the equatorial response was very 
small with the subsurface maximum in u being 1.3 
cm S-I, whereas in the second case the maximum was 
4.8 cm S-I which is about one-quarter of the value 
obtained using Hellerman and Rosenstein's data (see 
Fig. 7). The main response to this type of off-equatorial 
forcing was in the surface-height field. 

Second, we tested the model using an idealized wind 
stress ofthe form 0.25 exp[-(y/L)2] dyn cm-2, applied 
across the whole basin for various values of L. We 
found that, provided L was larger than about 500 km, 
the results on the equator were insensitive to the preCise 
value of L. For example, the magnitude of the second 
mode focus maximum of u in the center of the ocean 
varied between 44.0 cm S-':I when L = 500 km and 
49.3 cm S-I when L = 1500 km. In conclusion, the 
model results on the equator are insensitive to the 
forcing polewards of approximately 4 ON and 4 oS. 

d. T
X as a function .of x 

The solution on the equator is very sensitive to both 
the magnitude and phase of the forcing T X along the 
equator. This is most easily demonstrated by solutions 
when T

X has the form 0.25 exp[_·(y/L)2] dyn cm-2, 

where L = 750 km, but acts over different longitude 
ranges. We ran three cases which are for stress over 
the whole ocean basin, the western half and the eastern 
half of the basin. Properties of the pha-res of these runs 
at the array are also listed in Table 4. It shows that 
the model strongly distinguishes between forcing in 
the west and east because the whole pattern of forcing 
and reflections changes. Forcing over the western half 
of the basin does not produce upward vertical phase 
propagation at all array longitudes nor westward prop­
agation at all points at 500 and 750 m, whereas forcing 
in the eastern half has both these properties. The am­
plitude of the subsurface maximum in u near the center 
of the ocean is also very sensitive to the zonal extent 
of the forcing. The maxima for the three cases listed 
in Table 4 are 47.3, 19.6 and 28.5 cm S-I, respectively. 

6. Model simplifications 

a. Only the second vertical mode 

If only the second vertical mode is retained in the 
solution then, obviously, the horizontal patterns will 
be a good approximation at any depth where the second 
mode dominates, between 600 and 850 m for example, 
but will be very poor near 200 m where the second 



DECEMBER 1983 GENT, O'NEILL AND CANE 2157 

mode is small. Fig. 11 is a plot of the amplitude and 
phase of the simpler solution along the equator between 
150 m and 2.5 km. Comparison with Fig. 7 shows that 
the amplitude is quite good, but the phase is completely 
wrong because a single vertical mode cannot show 
vertical propagation. The observed phases also cannot 
be simulated well by this simplified solution. Thus, 
this is not a good overall approximation to the full 
solution, even though this mode has the largest pro­
jection coefficient in that solution. 

b. Only the Kelvin and first Rossby waves 

In this simplification only the Kelvin and first Rossby 
waves are retained in all 14 vertical modes of the model. 
This solution can only work well very near the equator 
where these two gravest waves are dominant. Fig. 12 
shows the amplitude and phase of u along the equator 
between 150 m and 2.5 km for this simpler solution, 
and should again be compared to Fig. 7. Comparison 
shows that the upward and westward phase propagation 
of the observations and the standard case over the 
array is captured quite well by this simplified solution. 
However, the magnitude is underestimated; the sub­
surface maximum in u is only 10.5 rather than 18.1 
cm S-I. The explanation for this is that many Rossby 
waves are needed for a good representation of this 
second-mode focus, and here there is only one rather 
than the 30 of the full solution. Thus, this simplified 
solution only works reasonably well on the equator, 
and cannot be good away from it. 

c. Non-reflecting boundaries 

Non-reflecting, or the absence of, lateral boundaries 
can easily be simulated in the model. This is achieved 
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fiG. II. Vertical section of a) amplitude and b) phase of u along, 
the equator between 150 m and 2.5 km when only the second vertical 
mode is retained. The amplitude unit is cm s-'. 
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FIG. 12. Vertical section of a) amplitude and b) phase of u along 
the equator between 150 m and 2.5 km when only the Kelvin and 
first Rossby waves are retained. The amplitude unit is cm s-'. 

by setting Pn equal to zero in Eqs. (A13) and (AI9), 
and adding a Kelvin wave to (AI3) such that ak is zero 
at the western boundary, 43°E. Fig. 13 shows the re­
sulting amplitUde and phase of u along the equator 
between 150 m and 2.5 km. The most striking feature 
of the figure is that the amplitude is very small every­
where below 300 m. The reason is that the gravest 
waves that have significant amplitude propagate ver­
tically at the shallowest angles to the horizontal. The 
high Rossby waves can reach the bottom still under 
the forcing region, but these waves have very small 

0) AMPLITUDE ° 
o~~~~~~~~~~~~~~~~~ 

0.5 0.5 

1.5 1.5 

70° E CI = 3 em's 

FIG. 13. Vertical section ora) amplitude and b) phase ofu along 
the equator between 150 m and 2.5 km when the lateral boundaries 
are non-reflecting. The amplitude unit is cm s-'. 
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amplitudes. The second mode focus in the center of 
the ocean is, of course, absent in this case because 
there are no boundary reflections. What Fig. 13 illus­
trates is that our full solution is very dependent upon 
the efficiency of wave reflection from the lateral 
boundaries, which we have assumed occurs perfectly. 

In our vertically finite model, very little energy re­
turns to the surface after reflection off the bottom when 
the friction is strong. Thus, the results of this subsection 
would be little different if we assumed a semi-infinite 
domain, as did Wunsch (1977). The important dif­
ferences between our full solution and his are the in­
clusion of lateral boundaries and the spatially com­
plicated wind-stress forcing. As we have seen, the sim­
plified solution without reflections due to lateral 
boundaries is very different from the full solution and 
simulates the observations poorly. 

d. Vertically propagating waves 

The previous paragraph raises the question of the 
relation between our solution and one expressed in 

. terms of vertically propagating waves. In general~ there 
are two commonly used procedures for solving forced 
problems of the kind considered in this work (see Phi­
lander, 1978). In the one employed here, the vertically 
standing modes of the ocean are found first, and the 
horizontal structure of each mode is then calculated, 
before finally summing over the vertical modes. The 
second procedure is used for the atmosphere, where 
the absence of an upper lid means that there isn't a 
complete set of vertically standing free modes. One 
first solves for the horizontal modes, then calculates 
the vertical propagation corresponding to each, before 
finally summing over all the horizontal modes. Either 
procedure can be used to solve the oceanic problem, 
and they yield the same answer. One may choose be­
tween them on the basis of convenience, or because 
one or the other approach presents the result in a 
physically more revealing form. All other things being 
equal, the standing-mode approach is easier to compute 
than the vertically propagating one. This is not the 
case if the total response can be represented as just a 
few vertically propagating waves; for example, if 
boundaries are unimportant and the forcing spectrum 
has only a single zonal wavenumber, as by Wunsch 
(1977). 

Visual inspection of our solutions (see Fig. 7) shows 
how hard it would be to characterize the response in 
terms of vertically propagating rays. Such rays are cer­
tainly present in our figures; the difficulty is that they 
are ubiquitous: rays emanate from every point of the 
surface and sidewalls. In this realistic problem a de­
scription in terms of rays is no more revealing than 
one in terms of standing modes, and perhaps less so: 
we are able to characterize many features solely in 
terms of the second baroclinic mode. In the present 
problem, boundaries are important and the wavenum-

ber spectrum of the forcing is quite rich, so that a 
description in terms of a few vefltically propagating 
waves is not possible. 

7. Conclusions and discussion 

Our main conclusion is that although the physics 
in the model is very simple, namely a linear ocean 
forced at the surface at a single frequency, yet it works 
quite well in simulating the observations of Luyten 
and Ro~~mmich (1982). As discussed in Section 4, the 
model amplitudes are somewhat smaller than in the 
observations, but the phases reproduce those of the 
observations well. Comparison of the solution with 
point m<:asurements is sensitive to the precise locations, 
e.g., phase changes rapidly at 200 m (see Fig. 9). Also 
the model solution is the long teml average, whereas 
the observations are one year's realization. Both Schott 
and Fernandez-Partagas (1981) and Wylie and Hinton 
(1982) agree that the very strong monsoon Winds off 
Somalia did not start to blow until 10 June 1979, 
which is about two weeks later than average. However, 
from their data, it is very hard to tell whether the large 
semiannual oscillation in rX in the central equatorial 
Indian Ocean was also late in 1979. Given these ca­
veats, the comparison is quite good. 

Conclusions from Section 5 are that the results in 
the array area are only moderately sensitive to the 
depth of the mixed layer providing it is less than about 
75 m, but are sensitive to the exact form of friction 
when rn/wn is small for the gravest modes. However, 
other features of the solution are very sensitive to fric­
tion. Another important conclusion is that the form 
of the wind stress polewards of about 4 0 has very little 
influence on the solution at the equator. However, as 
is to be expected, the solution at the equator is very 
sensitive to the form of rX along the equator. 

Conclusions from Section 6 are that simplified so­
lutions having just the second vertical mode, or non­
reflecting lateral boundaries do not approximate the 
full solution, nor simulate the observations, very well. 
The simplified solution retaining just the Kelvin and 
first Rossby waves works reasonably well on the equa­
tor, and hence in simulating the observations, but can­
not be good away from it. The final conclusion is that 
in this realistic problem, where the lateral boundaries 
are important and the forcing has a fairly rich wave­
number spectrum, a description in temlS of a few ver­
tically propagating waves is not possible. 

Finally, we discuss some physical processes omitted 
from the model. We are aware that the surface layer 
dynamics are not linear, and that nonlinearities in the 
upper ocean alter the solution below. Cane (1980) has 
shown that nonlinear effects, notably the downward 
advection of eastward momentum, tend to concentrate 
momentum at the equator and inject it at depths below 
the mixed layer. We think that neglect of such non­
linearities is the greatest flaw in our study, but a fully 
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nonlinear multi-layer numerical model would be 
needed to take proper account of them. Another as­
sumption to which the model solution is very sensitive 
is the reflection properties of the long propagating 
waves at the coasts. We have assumed that the incom­
ing mass to the boundaries is perfectly reflected by the 
Kelvin and Rossby waves. Non-reflecting lateral 
boundaries, as discussed in Section 6, alter the solution 
profoundly, and the data comparison is much better 
when they are retained. It might be improved using 
some assumption about less than perfect reflection at 
the coasts. We have also assumed that the African and 
Sumatran coastlines are oriented north to south. The 
wave reflections at these coasts would also be changed 
if their true orientations could be included. Another 
factor influencing the wave reflections near Africa could 
well be the Somali Current, which is a direct response 
to the winds along the coast. This strong current 
doubtless alters the details of the reflection process, 
although it seems unlikely it would alter the essential 
integral boundary condition (A 11) that determines the 
Kelvin wave amplitude. A more significant effect is 
probably the generation of Kelvin waves by the current 
itself. These last physical processes are beyond the scope 
of the present model. 
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APPENDIX 

The Model Solution 

The general solution of Eqs. (11)-(13) is given in 
Eq. (9) of Cane and Sarachik (1981). The long-time 
asymptotic part of the forced solution is that propor­
tional to exp(iwnt). The Fourier Transform (FT) of this 
forced solution is 

FT[un, Pn] = Pn exp(iwnt){ dk(k)K(y)/i(k - wn) 

M(n) 

+ L: irm(k)Rm(y)(2m + 1)/(k + (2m + l)wn)}' 
m=O 

(AI) 

where the projections dk and r m are defined by 

dk = FT[ dk = 2-1
/
2 L: rX'I1odyJ ' (A2) 

rm = FT[rm = 1: [ryX - (2m + 1)-lyrX]'I1mdyJ ' 
(A3) 

and '11m are the Hermite functions given by 

'11m = Hm(y) exp(-y2/2)/(1I"1/22mm!)1/2, (A4) 

where Hm is the Hermite polynomial of degree m. The 
vector functions K and Rm are defined by 

K = 2-1/2['110 , '110 ], (AS) 

Rm = 8-1/2[(m + 1)-1/2'11m+1 - m- I/2'11m_J. 

(m + 1)-1/2'11m+1 + m- I/2'11m_d, (A6) 

and M(n) is the number of long propagating Rossby 
waves for the nth vertical mode. Now it is easily shown 
that 

1 . 
i(k + b) = FT[exp(lbx)], (A7) 

for any quantity b that is independent of k. Thus the 
coefficients ofK and Rm inside the braces ofEq. (A1) 
can be written as the products 

(A8) 
and 

FT[-rm(2m + 1)]FT[exp(i(2m + l)wnx)], (A9) 

respectively. These coefficients can be evaluated using 
the convolution theorem for Fourier transforms, which 
is 

FT[ft]FT[Ji] 

= FT[L: ft(x l) f2(x - xl)dx l]. (A 10) 

and the fact that dk and r m are zero outside the basin, 
i.e., for x < 0 and x > X E • X E is taken to be 54° from 
43°E to 97°E. 

The short Rossby waves at the western boundary, 
which are not included in the solution, merely redis­
tribute mass along that boundary. Thus the correct 
boundary conditions are 

L: udy = 0 at x = 0 1 
(AI 1) 

u = 0 at x = XE 

We define 

c/> = wnXE and ~ = (x - XE)/XE. (A12) 

Then the solution to Eqs. (11)-(13) satisfying (All) 
is (see Cane and Sarachik, 1981) 

[un' Pn] = Pn(iwn)-I exp(iwnt){ ak(x)K(y) 
M(n) 

+ L: am(x)Rm(y) + Pn[K exp(-ic/>~) 
m=O 

M(n) 

+ L: 2amRm exp(ic/>~(2m + I»]}. (A 13) 
m=O 

Here 

ak(x) = - LO 
dk(f) exp[ic/>(f - ~)]ic/>df, (AI4) 

am(x) = LO 
rm(e) exp[-i(2m + 1)c/>(f - m 

X (2m + l)iCPd~', (A15) 
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and am and Pn are defined by 
[(2m + 1)!]l/2 

a - .::...:.------'-~-
2m+l - 2mm! 

am = 0, m even, (AI6) 

{

M(n) } 

m~o [2m(m + l)rlamam - ak (~ = -1) 

Pn = 
exp(i¢)[l - exp(-2i¢)S(exp(2i¢») 

where 
(AI7) 

S[exp(2i¢») 
M(n) 

= ~ [m(m + 1»)-lam
2 exp[-2im¢). (AI8) 

m=O 

The corresponding solution for Vn can be calculated 
similarly, and is 

{

M(n) [ fel) 
Vn = Pn exp(iwnt) m~o am(x) - -00 TyXwmdy 

+ 2pnamexp(i¢~(2m + l)Jwm(y)}. (AI9) 

The total solution is 
;; 

[u, v, p) = ~ Fn[un, vn. Pn), (A20) 
n=1 

where ii is the number of vertical modes retained in 
the calculation. 

REFERENCES 

Bruce, J. G., 1981: Variations in the thermal structure and wind 
field occurring in the western Indian Ocean during the monsoons. 
Tech. Rep. TR-272, Naval Oceanographic Office, 193 pp. 

Cane, M. A., .1980: On the dynamics of equatorial currents, with 
application to the Indian Ocean. Deep-Sea Res., 27, 525-544. 

--, and D. W. Moore, 1981: A note on low-frequency equatorial 
basin modes. J. Phys. Oceanogr., 11, 1578·-1584. 

--, and E. S. Sarachik, 1981: The response of a linear baroclinic 
ocean to periodic forcing. J. Mar. Res .. 39,651-693. 

Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind 
stress over the world ocean with error estima.tes. J. Phys. Ocean­
ogr., 13, 1093-1104. 

Lighthill, M. J., 1969: Dynamic response of the Indian Ocean to 
onset of the southwest monsoon. Phil. Trans. Roy. Soc. London, 
A265, 45-92. 

Luyten, J. R., and D. H. Roemmich, 1982: Equatorial currents at 
semi-annual period in the Indian Ocean. J. Phys. Oceanogr., 
12,406-413. 

McCreary, J. P., 1981a: A linear stratified ocean model of the equa­
torial undercurrent. Phil. Trans. Roy. Soc. London, A298, 603-
635. . 

--, 1981 b: Modeling deep equatorial jets. Recent Progress in 
Equatorial Oceanography, J. P. McCreary, D. W. Moore and 
J. Witte, Eds., Nova/MIT Press, 373-380. 

McPhaden, M. J., 1982: Variability in the central equatorial Indian 
Ocean. Part 1: Ocean dynamics. J. Mar. Res., 40, 157-176. 

Moore, D. W., and S. G. H. Philander, 1977: Modeling of the tropical 
ocean circulation. The Sea, Vol. 6, Interscience, 319-361. 

O'Neill, K., 1982: Observations of vertically propagating equatorialIy­
trapped waves in the deep western Indian Ocean. Ph.D. dis­
sertation, Johns Hopkins University, 162 pp. [Also WHO! Tech. 
Rep. 82-11.]. 

Philander, S. G. H., 1978: Forced oceanic waves. Rev. Geophys. 
Space Phys., 16, 15-46. 

--, and R. C. Pacanowski, 1981: Response of equatorial oceans 
to periodic forcing. J. Geophys. Res., 86, 1903-1916. 

Schopf, P. S., D. L. T. Anderson and R. Smith, 1981: Beta dispersion 
oflow-frequency Rossby waves. Dyn. Almos. Oceans, 5, 187-
214. 

Schott, F., and J. Fernandez-Partagas, 1981: The onset of the summer 
monsoon during the FGGE 1979 experiment off the east African 
coast: A comparison of wind data collected by different means. 
J. Geophys. Res., 86, 4173-4180. 

Wunsch, c., 1977: Response of an equatorial ocean to a periodic 
monsoon. J. Phys. Oceanogr., 7, 497-511. 

Wylie, D. P., and B. B. Hinton, 1982: The wind stress patterns over 
the Indian Ocean during the summer monsoon of 1979. J. 
Phys. Oceanogr., 12, 186-199. 

Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 
181, 262-264. 


