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Abstract
Observed changes such as increasing global temperatures and the intensification of the
global water cycle in the 20th century are robust results of coupled general circulation
models (CGCMs). In spite of these successes, model-to-model variability and biases that
are small in first order climate responses, however, have considerable implications for
climate predictability especially when multi-model means are used. We show that most
climate simulations of the 20th and 21st century A2 scenario performed with CMIP3
(Coupled Model Inter-comparison Project Phase 3) models have deficiencies in simulating
the global atmospheric moisture balance. Large biases of only a few models (some biases
reach the simulated global precipitation changes in the 20th and 21st centuries) affect the
multi-model mean global moisture budget. An imbalanced flux of −0.14 Sv exists while
the multi-model median imbalance is only −0.02 Sv. Moreover, for most models the
detected imbalance changes over time. As a consequence, in 13 of the 18 CMIP3 models
examined, global annual mean precipitation exceeds global evaporation, indicating that
there should be a ‘leaking’ of moisture from the atmosphere whereas for the remaining five
models a ‘flooding’ is implied. Nonetheless, in all models, the actual atmospheric moisture
content and its variability correctly increases during the course of the 20th and 21st
centuries. These discrepancies therefore imply an unphysical and hence ‘ghost’ sink/source
of atmospheric moisture in the models whose atmospheres flood/leak. The ghost
source/sink of moisture can also be regarded as atmospheric latent heating/cooling and
hence as positive/negative perturbation of the atmospheric energy budget or non-radiative
forcing in the range of −1 to +6 W m−2 (median +0.1 W m−2). The inter-model
variability of the global atmospheric moisture transport from oceans to land areas, which
impacts the terrestrial water cycle, is also quite high and ranges from 0.26 to 1.78 Sv. In the
21st century this transport to land increases by about 5% per century with a
model-to-model range from 1 to 13%. We suggest that this variability is weakly correlated
to the land–sea contrast in air temperature change of these models. Spatially heterogeneous
forcings such as aerosols contribute to the variability in moisture transport, at least in one
model. The polewards shifts of dry zones in climate simulations of the 21st century are also
assessed. It is shown that the multi-model means of the two subsets of models with negative
and positive imbalances in the atmospheric moisture budget produce spatial variability in
the dry zone positions similar in size to the spatial shifts expected from 21st century global
warming. Thus, the selection of models also affects the multi-model mean dry zone
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extension. In general, we caution the use of multi-model means of E − P fields and suggest
self-consistency tests for climate models.

Keywords: global water cycle, climate model validation, atmospheric moisture
convergence, ghost forcing, climate predictions, dry zones

1. Introduction

As understanding of the Earth’s climate system increased
substantially over the years, modeling of climate also
progressed rapidly. Observed changes such as increasing
global temperatures and the intensification of the water
cycle are now common, robust features of coupled general
circulation models (CGCMs) as described in the 4th
Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC-AR4). Due to these consistencies between
models and observations, CGCMs are used more and more
to predict other complex climate responses of natural and
anthropogenic perturbations. Such responses are for example
shifts in the edge of the dry zones. Model-to-model variability
that may appear small in first order effects may, however
have unexpected implications for more complex responses.
Lucarini et al (2008) investigated future changes in the
hydrology of the Danube Basin with CMIP3 CGCMs and
discovered significant discrepancies in model predictions for
this important transition region. Reichler and Kim (2008)
suggested as approach to overcome model uncertainty the
combination of atmospheric variables and models. They
showed that multi-model means of combined variables of
climate simulations represent the best estimates of the
climate state when compared to 20th century observations.
Their analysis was performed with data from the CMIP3
archive. Calculating multi-model means of simulations and
multi-model means of subsets of simulations became a
common approach in recent years. Climate forcings such as
ozone recovery, and their climate responses were studied with
multi-model means of hierarchies of models (e.g., Son et al
2008). Although, with this approach a few outlier models
may be able to significantly skew outcomes and may result
in misleading conclusions. Another issue in predicting future
climate and source of prediction uncertainty originates from
model evaluations with 20th century observations that may
not necessarily represent future responses and be prone to
uncertainty itself. Hence tests that are designed independently
of observations and observational uncertainty are preferable.

Arguably the largest uncertainty in both climate
observations and models arises from the hydrological cycle.
While the basic processes are well known and the acceleration
of the water cycle with global warming is well studied, the
inter-model variability of variables describing hydrological
processes remains high (Liepert and Previdi 2009). Here
we investigate these inter-model variability and biases of
the global water cycle in CMIP3 models. We focus on the
atmospheric branch of the hydrological cycle because of its
intrinsic connection to the energy budget of the atmosphere
and thus to climate forcings and feedbacks (see e.g. Liepert
2010). Although the atmospheric moisture content is by far

the smallest storage term in the global water cycle, even
small variations can play key roles in the energy balance of
the planet. Latent heating redistributes energy in the vertical
column and cloud formation affects the emission of infrared
and reflection of solar radiation while water vapor absorbs
near-infrared and infrared radiation (e.g., Hansen et al 1997
and Previdi and Liepert 2011). The atmospheric moisture
transport from oceans to land constitutes the moisture input
to the continental freshwater cycle. Hence reliable climate
impact assessments require accurately predicted atmospheric
‘oceans to land’ moisture transport. Another important
predictor of the atmospheric moisture balance is the boundary
of the dry zones on Earth defined as the spatial distribution of
the zero net fluxes of precipitation and evaporation. This study
investigates these processes as well. Described in section 2 is
CMIP3 model data and data handling, and in section 3 the
analysis of biases of the global atmospheric moisture balance
in climate models including its implications. Inter-model
variability of atmospheric moisture transport from oceans to
land and variability of extensions of dry zones are discussed
in sections 4 and 5.

2. Climate modeling data

The climate modeling experiments analyzed here are the
archived CMIP3 simulations of fully coupled ocean–
atmosphere general circulation models. Investigated are the
20th century scenarios with climate forcings determined by
the individual modeling groups, and the 21st century scenario
A2. Data from all runs of 18 models were downloaded from
the archive (www-pcmdi.llnl.gov/ipcc/ipcc data status.php).
The 21st century runs were available for only 16 of the 18
models. The data sets of the 20th and the 21st century were
combined into one time series. The models are listed in table 1
and the abbreviations that follow the IPCC-AR4 nomenclature
are in the note of table 1. For the atmospheric moisture
balance analysis we examined ensemble means of all runs
for each model and one arbitrary chosen run for each model.
There were no differences in outcomes of the ensemble means
versus the individual runs. Hence all results presented here are
based on the analysis of individual model runs. For one model
the analysis was performed with daily as well as monthly data.
The finer temporal resolution did not change the outcome and
hence monthly datasets are used in this study. All datasets for
each model are processed in the spatial resolution provided by
the modeling groups and archived in CMIP3. No re-gridding
was necessary for this analysis except for the calculation
of the multi-model mean dry zone distributions. Available
column integrated data were obtained from the archive and
no vertical integration was performed, except one model that

2

www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php
www-pcmdi.llnl.gov/ipcc/ipcc_data_status.php


Environ. Res. Lett. 7 (2012) 014006 B G Liepert and M Previdi

Table 1. Global annual means, inter-annual variability and linear trends of residuals of the atmospheric moisture balance
Res = (E − P− ∂W

∂t ) as described in (3) for CMIP3 climate models. Listed are global annual means and standard deviations for the model
time series of the 20th and 21st scenario A2. Also listed are global precipitation (P) trends and the percentage of residual (Res) trend to
precipitation (P) trend for the same simulations. The excess latent heating that corresponds to the moisture imbalance is given in W m−2.
Models with flux correction are marked with *, no cloud ice data available **, and models without cloud ice/water data are marked with
***. (Note: BCCR-BCM2.0, 2005 Bjerknes Centre for Climate Research, Norway. CCSM3, 2005 National Center for Atmospheric
Research, USA. CGCM3.1(T47), 2005 Canadian Centre for Climate Modeling and Analysis, Canada. CNRM-CM3, 2004
Météo-France/Centre National de Recherches Météorologiques, France. CSIRO-MK3.0, 2001 Commonwealth Scientific and Industrial
Research Organization (CSIRO) Atmospheric Research, Australia. ECHAM5/MPI-OM, 2005 Max Planck Institute for Meteorology,
Germany. ECHO-G, 2004 Meteorological Institute of the University of Bonn, Germany. FGOALS-g1.0, 2004 National Key Laboratory of
Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics, China.
GFDL-CM2.0, 2005 US Department of Commerce/National Oceanic and Atmospheric Administration (NOAA)/Geophysical Fluid
Dynamics Laboratory (GFDL), USA. GISS-EH, 2004 NASA/GISS, USA. GISS-ER, 2004 NASA/GISS, USA. INM-CM3.0, 2004 Institute
for Numerical Mathematics, Russia. IPSL-CM4, 2005 Institut Pierre Simon Laplace, France. MIROC3.2(medres), 2004 Center for Climate
System Research (University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change
(JAMSTEC), Japan. MRI-CGCM2.3.2, 2003 Meteorological Research Institute, Japan. PCM, 1998 National Center for Atmospheric
Research, USA. UKMO-HadCM3, 1997 Hadley Centre for Climate Prediction and Research/Met Office, UK. UKMO-HadGEM1, 2004
Hadley Centre for Climate Prediction and Research/Met Office, UK.)

CMIP3 Model*
Mean ± Std. dev.
Res = (E− P− ∂W

∂t ) (Sv)

Trend
Res= (E−P− ∂W

∂t )

(Sv/100 yr)
Trend
P (Sv/100 yr)

Trend
Res/trend P (%)

Excess latent
heat (W m−2)

BCCR-BCM2.0 −0.453± 0.010 −0.010 0.41 −2.44 −2.22
CCSM3 −0.018± 0.006 −0.000 0.53 −0.06 −0.09
CGCM3.1(T47)* −0.005± 0.005 −0.002 0.53 −0.36 −0.03
CNRM-CM3 −0.752± 0.013 −0.027 0.48 −5.51 −3.69
CSIRO-MK3.0 0.007± 0.006 0.004 0.28 1.52 0.03
ECHAM5-MPI-OM −0.053± 0.007 −0.001 0.40 −0.16 −0.26
ECHO-G** 0.053± 0.006 0.006 0.20 2.93 0.26
FGOALS-g1.0 −1.339± 0.020 −0.044 −0.02 199.19 −6.56
GFDL-CM2.0 0.014± 0.005 −0.005 0.16 −3.34 0.07
GISS-EH −0.013± 0.004 −0.000 −0.02 0.38 −0.06
GISS-ER −0.022± 0.004 0.001 0.36 0.29 −0.11
INM-CM3.0* −0.065± 0.005 0.007 0.66 1.07 −0.32
IPSL-CM4 0.198± 0.005 −0.007 0.56 −1.25 0.97
MIROC3.2(medres) −0.019± 0.006 −0.001 0.09 −1.16 −0.09
MRI-CGCM2.3.2*** −0.079± 0.009 0.009 0.50 1.84 −0.39
PCM (NCAR)*** −0.022± 0.005 0.001 0.40 0.18 −0.11
UKMO-HadCM3 0.003± 0.005 −0.000 0.25 −0.08 0.02
UKMO-HadGEM1 −0.017± 0.005 0.000 0.09 0.22 −0.09
Mean −0.136± 0.009 −0.004 0.32 — −0.70
Median −0.018± 0.006 −0.000 0.38 — −0.09

did not provide column integrated water vapor for the archive
(see table 1). Individual model land masks were used for
the calculation of the ocean to land atmospheric moisture
transport. In case of models with mixed land–ocean grid cells,
cells with land areas over 50% were considered land cells.
The spatial integration was performed by summation of grid
cell values, after multiplication with the calculated rectangular
grid cell areas.

The variables that were obtained are monthly means of
surface latent heat flux and monthly mean precipitation rates
for each model. Precipitation consists of solid and liquid
fluxes including negative values for dew and frost. Ocean
evaporation was calculated from the available surface latent
heat flux divided by the latent heat of vaporization (Lvap =

2501 J g−1). Sublimation of sea ice was calculated from the
surface latent heat flux over sea ice divided by the latent
heat of sublimation (Lsub = 2835 J g−1). Evapo-transpiration
and sublimation over land was calculated from the surface
latent heat flux divided by the latent heat of vaporization
(Lvap = 2501 J g−1). This procedure slightly overestimates
sublimation rates over land ice and snow because latent heat of

vaporization is slightly smaller than latent heat of sublimation.
Snow/ice coverage over land was not available for all models.
For one model we calculated land sublimation explicitly over
ice and snow with the latent heat of sublimation and did not
find accountable discrepancies after global integration. In the
following we will use the expression ‘evaporation’ for the sum
of evapo-transpiration, evaporation and sublimation. From the
CMIP3 archive we further obtained the archived monthly
means of column integrated water vapor for each model. For
most models column integrated cloud liquid and ice water
content was also available (marked in table 1). The solid and
liquid contributions to total atmospheric moisture are small
compared to the contribution in the gas phase. Atmospheric
moisture content was calculated as the sum of solid, liquid
water, and water vapor.

3. Global atmospheric moisture balance

3.1. Method

According to Peixoto and Oort (1992) the moisture balance
of an atmospheric column can be described in its vertically
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Figure 1. Global atmospheric moisture fluxes E − P in blue and moisture content change in red for CMIP3 climate models. Shown are
long-term annual means in columns and standard deviations in error bars. The calculations were performed with the time series of the 20th
and 21st scenarios A2. The light blue columns are too large to be shown but the corresponding values are given on the column. Note that
models with flux correction are marked with *, without cloud ice with **, and without cloud ice and water with ***.

integrated form as follows:

∂W

∂t
+ E∇h · EQ = E − P

with EQ =
∫
∞

z=0
Evq dz W =

∫
∞

z=0
q dz. (1)

The vector Ev is the horizontal wind velocity and q the
atmospheric moisture content (vapor, liquid, solid) of the
vertical layer dz. When integrated over the globe, the
horizontal moisture divergence E∇h · EQ in the atmospheric
column disappears. The column integrated atmospheric
moisture storage change ∂W

∂t is then balanced by the sources
and sinks of atmospheric moisture, which are the surface
fluxes of evaporation minus precipitation E−P. Furthermore,
when applied to temporally discrete data indexed ‘i’, the
global atmospheric moisture gain or loss within the time
period of n time steps can be described by the net
accumulation of sources Ei and sinks Pi as noted on the right
side of (2):

∂W

∂t
= E − P⇒ 〈Wn −W1〉 =

n∑
i=1

〈Ei − Pi〉. (2)

This implies that the global mean of the atmospheric moisture
content changes balances the net fluxes in and out of the
atmosphere. Applied to monthly modeling data (2) requires
that the annual atmospheric moisture gains/losses (e.g., from
January to December or any other 12-month period) are
balanced by the yearlong net accumulation of monthly Ei

minus Pi.

Res = E − P−
∂W

∂t
⇒ Res(y)

≡

12∑
i=1

〈Ei − Pi〉 − 〈W12 −W1〉. (3)

Thus for the annual atmospheric moisture budget, a potential
residual or imbalance Res for the year y can be calculated
and a time series of these annual residuals can be constructed
after (3).

3.2. Results

Figure 1 summarizes 20th–21st century long-term annual
means and inter-annual variability of the two components
of the atmospheric moisture balance on the left side of (3)
for each CMIP3 model. The inter-annual variability in all
cases is calculated as standard deviation of the annual means
after the linear trends of the data records were removed. This
procedure seems appropriate for most models (see figure 2)
albeit the estimates might be too high for the few models
with large non-linear inter-annual trends. We discuss these
models in more detail below. The units for all moisture fluxes
considered here are given in Sverdrup (1 Sverdrup = 1 Sv =
106 m3 s−1

= 31.6× 1012 m3 a−1).
Illustrated in figure 1 in red error bars is the inter-annual

variability of the time series of ∂W
∂t . Not recognizable in

figure 1 are the mean annual atmospheric moisture changes.
The long-term multi-model mean of moisture change within a
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Figure 2. Global atmospheric moisture imbalances in CMIP3 climate models. Shown are time series of annual mean residuals for the 20th
and 21st scenarios A2 combined. The initial imbalances were removed from the time series. The residuals are given in Sverdrup.

year is 0.000 48 Sv. A positive, albeit small, increase like this
is expected due to the increasing moisture-holding capacity of
the atmosphere with global warming. An increase in global
atmospheric moisture content W of about 3.03 × 1012 m3

over the 200 yr period can be calculated from the multi-model
mean of these data. These changes in atmospheric moisture
content and content variability are small compared to other
storage terms of the water cycle. Nonetheless the atmospheric
moisture increases are important in the climate system
because they initiate the radiative water vapor and cloud
feedbacks (Previdi 2010).

Also shown in figure 1 are the long-term annual means of
the time series of E − P in columns and their inter-annual
variability in error bars, both in blue. Mean E − P values
exceed the actual variability of moisture storage changes ∂W

∂t
(red error bars) in almost all models and hence result in
unbalanced moisture budgets (3). The analysis was repeated
with all available simulations and no differences in the results
were obtained. As mentioned before, the original data are
only multiplied with grid cell areas before summation. Hence
it is unlikely that numerical errors from the integration can
cause these residuals. Also mentioned in section 2 are missing
cloud ice water content data for some models as well as
the treatment of land sublimation as evaporation. We further
tested the possible biases due to these uncertainties with one
model that includes all data records. Omitting these data sets
could not account for the observed deficiencies.

The long-term means, inter-annual variability and long-
term trends of the residuals are also listed in table 1. As

pointed out in table 1 some models balance the atmospheric
moisture budget. For example the model CGCM3.1 (T47),
which is flux corrected (marked with ‘*’ in table 1),
closes the atmospheric moisture budget, while other models
(CSIRO-MK3.0 and UKMO-HadCM3) that are without flux
adjustments are also in closure within the uncertainty range
(information on flux adjustments was taken from IPCC-AR4
2007 table 8.1). Positive biases could be identified for five
and negative biases for thirteen models. Negative E − P
values in table 1 and figure 1 indicate, ‘leaking’ of moisture
from the atmospheres, and positive E − P values indicate,
‘flooding’ of model atmospheres. The multi-model mean is
negative with −0.14 Sv and therefore models tend to ‘leak’
on average. The residuals are generally small compared to
the calculated global annual mean precipitation trends in the
20th and 21st century (table 1). Nonetheless, the unphysical
multi-model mean leaking is about one third the size of the
multi-model mean precipitation trend (table 1). This is the
case because, for a few models, the biases are so large that
they can reach the magnitude of the inter-annual variability of
precipitation. Consequently the more appropriate multi-model
median of the residuals is calculated, which is significantly
smaller with −0.02 Sv. It is important to point out that the
leaking or flooding of the atmosphere that is anticipated based
on the global imbalances of E and P, is not reflected in
the actually simulated atmospheric moisture content W and
its inter-annual variation ∂W

∂t as discussed above and shown
in figure 1. In the flooding models, the actually simulated
moisture content changes ∂W

∂t are significantly smaller than
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would be expected from the modeled E − P, while in the
leaking models the simulated increases of ∂W

∂t are smaller and
of opposite sign than expected from the modeled E−P values.
This result therefore implies the appearance of an artificial or
unphysical source of atmospheric moisture in the models that
leak and an unphysical sink in the models that flood.

In general the global atmospheric moisture imbalances
are small compared to precipitation and other fluxes in the
global water cycle. They are also not unexpected in climate
models (see e.g., Rodrı́guez et al 2011 and Kavetski and Clark
2010). These small biases in atmospheric moisture however,
become important if we consider them as perturbation of
the atmospheric energy budget. Additional moisture translates
into excessive latent heat release into the atmosphere through
phase transition in precipitation formation (see also Edwards
2007). The atmosphere responds to this ‘ghost’ latent heating
with various feedback processes, which cannot be identified
easily. Hence the artificial source of moisture can be
interpreted as ‘instantaneous’, non-radiative forcing in the
atmospheric energy budget. Table 1 lists for each model the
‘excess latent heat’ added to the atmosphere, which are in the
range of −1 to +6 W m−2 with a small positive multi-model
median of +0.1 W m−2. This result is in line with Lucarini
and Ragone (2011) who derived an energetic imbalance of the
atmosphere between−1 and+3 W m−2 in CMIP3 models for
the pre-industrial control runs.

In contrast to energetic imbalances, climate predictions
of water cycle strengths are not necessarily influenced by
biases, because considered in climate model analyses are often
differences of two climate states in energetic equilibrium or
changes over time from a control run. Changes over time
(drifts) of these biases on the other hand, would influence
climate predictions of water cycle strength. Tendencies of
biases in each model, calculated as linear trends for the annual
residuals are listed in table 1. We chose a linear trend analysis
for simplicity reason albeit some drifts appear of higher order
(figure 2). As consequence the calculated linear trends of the
time series should be considered as first order estimates. In
general the analysis reveals positive and negative drifts of
the residuals in most models as illustrated in figure 2 (the
initial imbalance of each run is removed). The drifts are by
and large negligible compared to global precipitation trends
(see table 1). Although for some models, the trends in the
residuals can be as large as 5% of predicted precipitation
changes and in one climate model the bias drift reaches twice
the precipitation trend of the 100 yr period. Consequently
multi-model means of global precipitation trends should be
considered with caution and multi-model medians should be
calculated instead.

4. Global atmospheric moisture transport from
oceans to land

4.1. Method

The net atmospheric moisture transport from oceans to
land connects ocean fresh water cycle and land hydrology
and is hence a crucial parameter in climate impact studies

and applications. Continental runoff, which is not explicitly
investigated here constitutes the return flow and eventually
closes the global water cycle. Atmospheric moisture transport
is commonly calculated as atmospheric moisture convergence
with three-dimensional wind and moisture fields (1). Because
of the potentially high uncertainty in numerical precision
in directly calculating vertically integrated convergence,
we chose the more indirect atmospheric moisture budget
approach (see also Lucarini et al 2008). The atmospheric
moisture supply for all land areas is derived from the moisture
budget over the oceans.
{

∂Oc
dES · EQ =

y

Oc
E∇h · EQ dV

=

y

Oc

(
E − P−

∂W

∂t

)
dV. (4)

The left side of (4) describes the integration of Gauss’s flux
theorem. Horizontal moisture flux EQ through the surfaces dES
of the atmospheric columns over the oceans is equal to the
moisture convergence in the volumes dV of the atmospheric
columns over the oceans. This is the case because fluxes
through the air–sea boundary are E and P while the fluxes
at the top of the atmosphere are expected to be zero. The
moisture convergence can then be replaced by the atmospheric
moisture budget of (1). The globally integrated formulation
of the atmospheric moisture transport from oceans to land is
therefore:

x

∂Oc
dES · EQ =

〈
−

∂W

∂t
+ E − P

〉
Oc

. (5)

The brackets 〈 〉Oc symbolize the integration of all columns
over the ocean areas. Time series of annual atmospheric
moisture transports from oceans to land can now be calculated
for all CMIP3 climate models using (5).

4.2. Results

As indicated in table 2 the long-term average atmospheric
moisture transport from oceans to land varies quite
significantly from model-to-model with a range from 0.26
to 1.78 Sv. The multi-model mean of 1.1 Sv and median of
1.2 Sv for the 20th and 21st century simulations however,
remain close to the observational estimate of 1.2 Sv (e.g.,
Baumgartner and Reichel 1975). The inter-annual variability
(calculated as standard deviation after the record was linearly
detrended) is on average about 5–6% of the total transport
in the models. In CMIP3 models, a significant portion of
the long-term variability stems from underlying trends toward
increasing moisture transport to land areas. The linear trends
in moisture transports from oceans to land areas in the 20th
and 21st century are shown in figure 3. Overall, land areas
will receive on average about 0.04–0.05 Sv (about 4%) more
moisture per 100 yr through atmospheric transport. This
average increase amounts to an extra moisture input to land
of about the size of the discharge of the River Nile in hundred
years (e.g., Gupta 2007). In the models CCSM3 and ECHO-G,
the intensified moisture transports reach up to 0.13 Sv in
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Figure 3. Simulated future changes in global atmospheric moisture transport from ocean to land for CMIP3 climate models. Shown are
linear trends of annual mean moisture transport in blue bars and linear trends of annual mean residuals in the atmospheric moisture budgets
in orange bars. The calculations were performed with the combined time series of the 20th and 21st (A2) century scenarios.

Table 2. Global annual means, inter-annual variability and linear trends of atmospheric moisture transport from ocean to land areas as
described in (5) for CMIP3 climate models. Listed are global annual means and standard deviations for the model time series of the
combined 20th and 21st scenario A2. Further listed is the area of the dry zones as fractions of the area of the globe for the first 20 yr period
of the 21st century scenario A2. The difference in global area fraction of the dry zones between the first (2001–20) and the last (2081–2100)
20 yr periods are also listed. Models written in italic have positive biases in their atmospheric moisture balance (flooding models).

CMIP3 Model

Mean ± std. dev. atm.
moisture transport
ocean–land (Sv)

Trend atm. moisture
transport ocean–land
(Sv/100 yr)

Mean (2001–20)
global dry zone area
fraction

Difference
(2001–20)–(2081–2100)
global dry zone area fraction

BCCR-BCM2.0 1.01± 0.04 0.04 0.406 −0.005
CCSM3 1.44± 0.05 0.13 0.391 −0.002
CGCM3.1(T47)* 1.32± 0.04 0.06 0.406 −0.002
CNRM-CM3 0.55± 0.05 −0.01 0.385 −0.006
CSIRO-MK3.0 1.02± 0.04 0.02 0.411 −0.005
ECHAM5-MPI-OM 0.96± 0.05 0.04 0.395 −0.030
ECHO-G** 1.21± 0.06 0.11 0.365 0.009
FGOALS-g1.0 0.26± 0.06 −0.05 No data No data
GFDL-CM2.0 1.25± 0.06 0.01 0.403 −0.012
GISS-EH 1.18± 0.03 0.02 No data No data
GISS-ER 1.78± 0.05 0.08 0.398 −0.011
INM-CM3.0* 1.11± 0.05 0.09 0.404 0.008
IPSL-CM4 1.44± 0.04 0.08 0.409 0.007
MIROC3.2(medres) 1.20± 0.07 0.02 0.378 0.012
MRI-CGCM2.3.2*** 1.29± 0.12 0.01 0.401 0.004
PCM (NCAR)*** 1.12± 0.04 0.06 0.442 0.001
UKMO-HadCM3 1.25± 0.06 0.08 0.391 −0.004
UKMO-HadGEM1 1.27± 0.06 0.02 0.417 −0.008
Mean 1.15± 0.07 0.05 0.400 −0.002
Median 1.21± 0.06 0.04 0.403 −0.006
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Figure 4. Changes in global atmospheric moisture transport from
ocean to land versus ratio of ocean–land near surface temperature
changes calculated for each CMIP3 climate model. The calculations
were performed with the combined time series of the 20th and 21st
(A2) century scenarios. The model results of FGOALS-g1.0 were
removed from the analysis.

100 yr or an increase of 10% of the total atmospheric, ocean
to land transport.

Further shown in figure 3 are the linear trends of the
residuals of the atmospheric moisture balances of simulations
of the 20th and 21st centuries (table 1). In figure 3 the
two models (CNRM-CM3 and FGOALS-g1.0) with reduced
atmospheric moisture transport are also the models with
strong increasing artificial leaking from model atmospheres.
The median of the drifts in atmospheric moisture balances
is coincidently zero due to compensation amongst models.
We suspect that drifts in the atmospheric moisture imbalance
affect the atmospheric moisture transport from oceans to
land areas because the largest flux in the global water cycle
is ocean evaporation. For most models however, the trends
in the global residuals are small compared to the trends
in atmospheric moisture transport (see multi-model mean
and median in figure 3). The atmospheric moisture transport
from ocean to land redistributes energy and thus reduces the
ocean–land temperature contrast. In climate change context
this atmospheric bridge can therefore be correlated to the
temperature change contrast between land and ocean. Figure 4
illustrates as a scatter plot the regression of atmospheric
moisture transport changes from ocean to land and air
temperature changes of ocean versus land for the CMIP3
model scenarios of the 20th and 21st century. There is indeed
a weak correlation of R2

= 0.10 of temperature change
contrasts and moisture flux changes amongst the models.
More detailed analyses are currently in process and will be
published in the future.

5. Extension of the dry zone edges

5.1. Method

Several approaches exist for identifying the edges of the
dry zones in the subtropics (see Seidel et al 2008 for

an overview). For example, the descending branch of the
Hadley circulation determines the edges of the subsidence
region, which can be identified as the position of the jet
streams or the zero net flow of mass from north to south
in the lower atmosphere. Other distinct characteristics such
as the stratospheric Brewer–Dobson circulation realized in
the stratospheric ozone distribution or the tropopause height
identify the width of the tropics and hence the edges of the
dry zones as well. The ascending branch of the Hadley cell
also produces cloud bands whose edges mark the beginning
of the dry zone. The gradient of outgoing long-wave radiation
is used for this approach. At the surface, dry zones are regions
with evaporation exceeding precipitation and the edges are the
contour line of E − P = 0 or E = P. This definition has been
used in observations and modeling studies (see e.g., Previdi
and Liepert 2007).

5.2. Results

Figure 5(a) shows the E − P = 0 contours for all CMIP3
models in light blue or light red color. Models with negative
residuals in the moisture budget are marked in red and
with positive residuals in blue. The inter-model variability
of the position of the dry zones is large. Dry zone edges in
bold colors represent the mean positions of the multi-model
composites of the two model subsets with artificially leaking
atmospheres is in bold red and artificially flooding in bold
blue. As illustrated in figure 5(a) the different positions
between the multi-model means of the subsets are minor
compared to the inter-model spread and rarely systematic.
Although some features are recognizable such as the reduced
areal extend of the dry zones in Africa and Australia in
the leaking model composite (bold red). Differences in the
Eastern Pacific Walker circulation are also revealed with
a zonal stretched dry zone edge of the descending branch
in the tropical Pacific in the flooding model composite
(bold blue) compared to the leaking subset. This pattern
indicates a more pronounced double ITCZ for the models
that experience positive biases. Overall, the model-to-model
variability remains dominant.

In a former study (Previdi and Liepert 2007) we found as
a robust result of all CMIP3 models the pole-ward extensions
of the dry zone edges of about 1◦ of latitude with 21st century
global warming. Here the formerly published pole-ward
extensions are reproduced for the CMIP3 models. The spatial
distributions of the dry zone edges of each model of the first
20 yr period in blue and the last 20 yr period of the 21st
century in green are shown in figure 5(b). The contours of the
multi-model means of these two time intervals are plotted in
bold blue for the first and bold green for the last two decades.
The inter-model variability of the dry zone edges for the
predictions is again quite large and the shifts in dry zone edges
in the 21st century as identified by the bold lines are similarly
difficult to distinguish as the means of the two subsets in
the climate models with different biases. The differences and
shifts may be clearer shown as zonal averages, because of the
latitudinal structures of E − P fields. Zonal averaging was
performed as follows: grid cell values with precipitation >

8
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Figure 5. Predicted long-term mean positions of dry zone edges of the 21st century (A2) scenario for CMIP3 climate models. (Top) 21st
century multi-model means for two subsets of models. In red are the contours of models with artificial leaking (globally negative
atmospheric moisture imbalance) and in blue with artificial flooding of the atmospheres (globally positive atmospheric moisture imbalance).
(Bottom) 21st century multi-model means for two 20 yr periods. In green are the contours of the dry zone edges from the means of the last
two (2081–2100) and in blue for the first two decades (2001–20). Shown are the contour lines of balanced atmospheric moisture budget,
which corresponds to E − P = 0, where evaporation equals precipitation. The thick contour lines represent the multi-model composites of
dry zone edges of the corresponding subsets and time periods, while the thin lines represent results of individual models.

evaporation (‘wet’ cells) were set to the discrete value ‘−1’
and grid cell values with evaporation ≥ precipitation (‘dry’
cells) were set to ‘+1’. These fields of discrete values were
then zonal averaged for each model. A zonal average of −1
means dry zones are outside this latitude band.

The statistical analysis performed on these zonal dry zone
edges are shown for the subsets of leaking (blue) and flooding
models (red) at the top of figure 6, and for the first (blue) and
last (green) two decades of the 21st century at the bottom of
figure 6. There is significant overlap of the 25–75 percentiles
for the bias subsets and time intervals in each latitude band.
This means, due to the large model-to-model variability the
shift in the dry zones and the differences between subsets of
positive and negative imbalance models cannot be properly
identified even in the zonal average.

We repeat the analysis for the combination of the
negative and positive residual subsets and the two 20 yr time
intervals of the 21st century predictions of the models. In
this illustration of figure 7 only the multi-model means of
the following subsets are plotted. The first and the last 20 yr
period of the averages of the leaking models are in solid and
dashed lines, shown in red, and the first and last 20 yr period of
the flooding models are shown in solid (2001–20) and dashed

(2081–2100) lines shown in blue. The differences between the
first and the last 20 yr periods are similar for the two model
subsets. The mean dry zone edge shifts slightly southward on
the pole-ward side of the SH dry zone (around 40◦S). Both
NH dry zone edges also shift south (equator-ward) in the
21st century (solid to dashed lines). Nonetheless this result
is overshadowed by the significant inter-model variability
identified in the bias subsets of figure 7. Therefore we
suggest using other atmospheric parameters described above
for identifying shifting dry zones in climate models.

We further calculate the areal extent of the dry zones as
fraction of the total area of the globe, which indicates whether
the dry zones are shrinking or expanding. The areal fractions
in table 2 reveal no significant differences between the two
model subsets. The dry zones cover on average about 40%
of the globe in these models. The calculation is repeated with
the 21st century scenario experiments. The differences in areal
sizes of the dry zones between the first two and the last two
decades of the 21st century project no significant tendencies.
In ten models the dry zones shrink slightly and in six models
an equally small extension (less than 1%) is calculated. The
models with negative or positive net moisture budgets do not
show any preference for shrinking or expanding either. The
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Figure 6. Statistics of the zonal mean positions of CMIP3 multi-model dry zone edges. (Top) Results for the subsets of artificially leaking
(globally negative atmospheric moisture imbalance) models in red and flooding (globally positive atmospheric moisture imbalance) models
in blue; (bottom) results of the first (in blue) and last (in green) 20 yr periods of the 21st century A2 scenario. The zonal means are
calculated for the atmospheric moisture budgets, with value ‘−1’ set for grid boxes where E < P, and value ‘+1’ set E ≥ P. The boxes
represent the 25–75 percentile, the whiskers the range, the open circles the outliers and the black dotted circles the medians of the model
spread for each latitude band.

Figure 7. Zonal mean positions of CMIP3 multi-model mean dry
zone edges of the first (full line) and last (dashed line) 20 yr periods
of the 21st century A2 scenario. The multi-model means are
separated into subsets of artificially leaking (globally negative
atmospheric moisture imbalance) models in red and flooding
(globally positive atmospheric moisture imbalance) models in blue.
The zonal means are calculated for the atmospheric moisture
budgets, with value ‘−1’ set for grid boxes where E < P, and value
‘+1’ for E ≥ P.

areal extent analysis is hence inconclusive and in line with the
zonal analysis. In general, the areal fraction of the dry zones
seems a robust feature of the climate system similar to the
global mean relative humidity.

6. Discussion and conclusions

In this study we assessed global atmospheric moisture budgets
in CMIP3 climate model simulations of the 20th and 21st
century scenario A2. For these models Reichler and Kim
(2008) showed that for combinations of atmospheric variables
the multi-model means represent the best estimates of the
climate state when compared to 20th century observations.
Based on our investigations, we suggest that for water cycle
variables like precipitation or the E − P field however,
a few models can bias multi-model means considerably.
Hence we propose the general use of medians for calculating
multi-model averages. This is concluded from the global
atmospheric moisture budget, which is out of balance by
−0.14 Sv in the multi-model mean whereas the multi-model
median is only out of balance by−0.02 Sv. The discrepancies
in the moisture balances vary hugely amongst models and
range from −1.34 to 0.20 Sv. The biases are also not constant
over time and can drift significantly. Positive and negative
drifts were detected for the simulations of the 20th and 21st
century. The trends in the model biases range from less than a
tenth of a per cent of simulated global precipitation trends to
a few per cent. For one model the trend in the bias is 200% of
the predicted precipitation change in a 100 yr period. Hence
we suggest closure tests should be performed and models
with large drifts should be excluded from multi-model average
calculations.

The global biases in moisture balance can also be
regarded as artificial ‘leaking’ of moisture from the
atmosphere when the imbalances are negative (which is the
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case in thirteen of the eighteen models). This leaking is
artificial in the sense that the actual moisture content of
the atmosphere is simulated to increase during the 20th and
21st centuries. Thus, discrepancies between the simulated
∂W
∂t and E − P implies an unphysical, ‘ghost’ source of

moisture. This ‘ghost’ moisture source can also be described
as excess latent heating of the atmosphere and therefore
as energy perturbation or non-radiative ‘ghost’ forcing. The
excess latent heating ranges from −1 to +6 W m−2, with a
small multi-model median of +0.1 W m−2. By calculating
the global energy budget directly, Lucarini and Ragone
(2011) identify imbalances of the atmospheric energy budget
of similar magnitude (−1 to 3 W m−2) in pre-industrial
runs of CMIP3 models. They link these unphysical energy
sinks or sources to the fact that kinetic energy dissipation
by various processes is not accounted for in most GCMs.
Kinetic processes mentioned are viscosity and diffusion,
cloud parameterization and boundary layer interactions. It is
worth noting that radiative forcings of non-CO2 greenhouse
gases are in the same size range and provoke considerable
feedback mechanisms.

The model-to-model variability of atmospheric moisture
transport from oceans to land is quite high and ranges from
0.26 to 1.78 Sv in CMIP3 simulations, while the inter-annual
standard deviations are around 0.06 Sv in the 20th and
21st century scenarios. The global flux is 1.2 ± 0.3 Sv in
the multi-model median, which matches observations quite
well (Baumgartner and Reichel 1975, Schanze et al 2010).
The changes over the 100 yr time period are all positive
(except the two models with strongly drifting moisture
imbalances). Based on our study we expect that land areas
receive on average about 4% more moisture or 0.08 Sv
in the 21st century. This is about a third of the observed
drainage of a major river such as the Lena in Siberia that
has an annual runoff of 0.17 Sv (see e.g., Gupta 2007).
The variation of moisture transport is weakly correlated
with the land–sea contrast of air temperature change. In
general, the models with higher temperature change contrasts
experience higher moisture transports toward land areas.
The reasons for increased temperature change contrasts
between ocean and land air masses with global warming are
complex and hence outside the scope of this study. Spatially
inhomogeneous or regional radiative forcings however, may
contribute to some of the observed variations. In Liepert and
Previdi (2009) we suggested that the discrepancies noted in
precipitation changes between models and observations at the
end of the 20th century may be due to the various ways
natural and anthropogenic aerosols are treated in IPCC-AR4
climate models. Here we use the same hypothesis for the
moisture transport and show how spatially inhomogeneous,
anthropogenic aerosols can effect atmospheric moisture
transport in one model. Two special 20th century runs of
the GISS-ER fully coupled model (prepared for IPCC-AR4)
were used where anthropogenic forcings were introduced
individually (see Hansen et al 2005). In this model version
the global atmospheric moisture budget is almost balanced
and no drift over time could be detected. The atmospheric
moisture transports from oceans to land is calculated from

outputs of the control (i.e., unforced) run, the 20th century
anthropogenic greenhouse gases only run and of the 20th
century anthropogenic aerosols (including direct, indirect,
and semi-direct effect) experiments where the anthropogenic
aerosol forcing is spatially and temporally non-homogeneous.
The GISS model results lie well within the variability of the
models shown in figure 3. The resulting atmospheric moisture
transports from oceans to land in the 20th century are 0.90 Sv
in the control run, 0.95 Sv in the GHG and 0.99 Sv in the
anthropogenic aerosol experiment. The moisture transport to
land areas increases by 0.13 Sv per 100 yr in the GHG and
only by 0.06 Sv per 100 yr in the anthropogenic aerosol
experiment. This is the case in spite of a similar sized, albeit
opposite in sign, response of the surface radiative energy
budget (Romanou et al 2007). The result suggests that the
inclusion of spatially distinct aerosol distributions in climate
models affect the atmospheric moisture transport from oceans
to land differently than spatially homogeneous GHG forcings.

Furthermore, the analysis of the dry zone extension
reveals large model-to-model variability as well. The
differences in spatial pattern between model subsets with
positive and negative moisture imbalances are comparable to
the differences in the predicted pattern due to climate changes
in the 21st century. Thus quantification of the pole-ward shifts
of dry zones based on E − P fields are dependent on the
selection of models used for the analysis. Hence multi-model
assessments should be evaluated with caution and other
meteorological parameters as described above should be
added to such an analysis. The current study has not addressed
the possible causes of the biases, which is subject of future
research and beyond the scope of the letter. Our overarching
goal, however was investigating the self-consistency (Lucarini
and Ragone 2011) of climate models in the CMIP3 archive
and provide guidance for applying and improving the next
generation on Earth system and climate models in CMIP5 and
beyond.
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