
Action Amplification: A New Approach To Scalable Administration

Kostas G. Anagnostakis Angelos D. Keromytis
Internet Security Lab, Institute for Infocomm Research CS Department, Columbia University

21 Heng Mui Keng Terrace, Singapore 1214 Amsterdam Ave., New York, NY 10027, USA
kostas@i2r.a-star.edu.sg angelos@cs.columbia.edu

Abstract— We present a systems-management approach that
enables administrators to effectively handle the challenge of
increasing numbers of hosts, routers, users, and services in
the networks to manage. Our approach is to map the actions
of an administrator on a single host (such as creating a new
user account) to the network at large, while maintaining the
exact same interface. Our system amplifies the administrator’s
actions appropriately throughout the network, and confirms
the correct propagation of all configuration changes throughout
the distributed system. We argue that this approach allows
administrators to easily manage several aspects of a large domain,
because it provides a familiar and intuitive interface. Such a
system can be used as a front-end to any other automation system
used to manage large domains. To determine the feasibility of
our approach, we implemented it on the OpenBSD system. We
discuss the prototype implementation, along with the limitations
to our approach that it exposes.

I. INTRODUCTION

Effective systems management is a problem faced by all
organizations. The difficulty of managing such networks in-
creases with their scale and complexity. Since the capacity of
administrators remains constant over time, other approaches
must be used to lighten this burden. These include using
more administrators and using increasingly more sophisticated
workflow and service provisioning tools that automate repet-
itive actions and minimize the time needed to complete any
task [12].

Unfortunately, there are some limitations inherent to these
approaches. Although automated tools can help considerably,
they often suffer from non-intuitive interfaces, which negate
much of the benefit derived from the automation (since the
administrator has to spend some time determining how to
achieve the task at hand). This applies to systems that are
based on graphical user interfaces (GUIs) as well as language-
driven ones. Increasing the number of administrators does
not scale well, and introduces the potential for conflicting
configurations.

We propose a new approach to managing large-scale sys-
tems. We specifically focus on system administration and
network configuration, and do not consider other management
functions (such as monitoring) in this paper. Our starting point
is the observation that administrators can handle small systems
fairly easily1. Our approach is to use the same interface
administrators use to manage such a small system, amplifying
all relevant actions such that they take effect throughout the
network using autonomic computing techniques to monitor

1Whether this is because of more intuitive interfaces, better training, or
some other reason, is not important for the purpose of our discussion.

and validate the correctness of the resulting configuration.
Thus, we can map the creation of a new user in a unix
system to a series of actions that, for example, create the new
user in the corporate LDAP repository, issue the appropriate
X.509 certificates, create VPN configuration entries on the
firewall such that the user can tele-commute, grant access to
the corporate document database, etc. From the administrator’s
point of view, the only action necessary was to add the
appropriate line in the /etc/passwd file.

To determine the feasibility of our approach, we wrote a
prototype implementation using the OpenBSD system. We
used systrace [15], a mechanism originally devised for sand-
boxing applications through system-call monitoring, to capture
all “interesting” actions undertaken by the administrator (such
as editing /etc/passwd or configuring network interfaces). Our
back-end processing then analyzes these actions and issues
the appropriate directives. Using a graphical user interface,
the back-end can notify the administrator of inconsistencies
or provide other important information. Our conclusion is
that such a system can easily capture many of the tasks
administrators are responsible for in a large network.

Our prototype also exposes some limitations in our ap-
proach. Perhaps the most important is the fact that certain
tasks (e.g., deploying and running a new service on a large
number of servers) do not map well to the file-based interface
used in unix-like system administration. Furthermore, tasks
that require intermediate state can complicate the processing
logic in our system. Despite these limitations, we believe
our system offers administrators a natural approach to large-
network management.

A. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II presents our approach. Section III describes our imple-
mentation using OpenBSD and systrace. Section IV gives
a brief overview of related work, and we conclude the paper
with Section V.

II. OUR APPROACH

As we discussed in the previous section, our goal is to
enable administrators to easily manage arbitrarily large in-
stallations by presenting them with a familiar and intuitive
user interface. The system can then interpret and amplify the
administrator’s actions. Arguably, the best interface that fits
these criteria is the one used to manage a single host: user ad-
dition/deletion, network interface and packet filtering/firewall

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

action capture interface
(systrace-based)

configuration tools
(editors, etc.)

administrator
actions

action filter
 machine

amplification
rules

event
handler

action
scheduler

servers

firewalls

routers
triggers,
policy,

consistency,
action

database

snapshots,
history,

event state

Fig. 1. Overview of the Action Amplification Architecture.

configuration, process (in our case, network daemons) man-
agement, user quotas, etc. Administrators have been using such
management interfaces, either directly or through shell scripts
and other tools, for many years; our empirical observations
(and our own experience in system administration) indicate
that single-host management tasks are one of the few pieces
of knowledge shared by all administrators.

Our architecture then, as shown in Figure 1, captures single-
host management actions and amplifies them to network-wide
operations. Several components are necessary to realize such
a system. First, we need a suitably configured host (either as
a stand-alone system or running inside an emulator, such as
VMWare) that is explicitly used as the “amplifying engine”.
On this host, we need an action capture interface that monitors
all interesting actions undertaken by the administrator. The
actions are filtered according to a set of pre-defined rules,
which weed out uninteresting actions (such as opening a
file that has no significance from a management viewpoint,
or simply reading /etc/passwd). Those actions that are
deemed interesting are conveyed to the event handler, which
consults the network-wide configuration and issues a number
of configuration directives for the relevant hosts and services.
At this point, various consistency checks are performed on the
request and, if any problems are detected, the administrator
is notified through a management interface. Otherwise, the
directives are passed on to the action scheduler, which is
responsible for distributing and applying them to the affected
network components and services, and for reporting any
problems to the administrator. We assume that the systems
and services that must be configured are either known a
priori (e.g., recorded in a database) or can be discovered
dynamically; the details are not pertinent to our discussion,
so we will assume the former case.

We call the action filters, the system policy, and the con-
sistency checks, all of which are organization-specific, the
amplification rules. These rules are kept on a database that
resides on the amplifying engine. This database is modified
as new nodes and services are added, new user roles are
created, and the organization’s policy changes. Effectively,
the amplification rules capture the organization’s management

policy for operations such as adding new users, removing
existing users, etc. Multiple such databases (and rules) may
exist inside an organization, if the management task is some-
how partitioned (e.g., with different administrative entities
responsible for different branches of the network).

Note that we have not posed any requirements on the actual
single-host management interface, other than the fact that it
be auditable (i.e., we can monitor all administration actions).
Thus, it should be possible to create different administration
front ends, e.g., a Windows-based and a unix-based one,
allowing us to better suit the system to an administrator’s job
experience.

In the remainder of this paper, we assume a unix-like
management interface. That is, most of the administration
effort involves editing various files, such as /etc/passwd,
/etc/groups, /etc/inetd.conf and so on. This al-
lows us to model administrator actions as differences between
two versions of a file: comparing the contents of the file before
and after an administrator has edited it reveals the desired
action. For example, if a new line has been added to the
/etc/passwd file, the system can determine that a new user has
been added to the system, and (through the event handler)
issue the appropriate network-wide configuration directives
(e.g., creating the user in the LDAP directory, creating an
RSA public/private key and X.509 certificate for use with
the corporate web site, installing appropriate policy entries
in the VPN firewall so that the user can tele-commute, etc.).
Similarly, if an existing line has changed, the appropriate
action for that user can be taken (e.g., if the group ID has
changed, then the appropriate ACL entries in the web server
will be updated). The fact that most such files in unix are
simply text-based makes the implementation easier, since we
can use tools like diff and awk to implement much of the
back-end of our system, as we shall see in the next section.

Note that certain administrator actions cannot be derived
from file-version differences, e.g., configuring a network in-
terface or installing some packet filtering rules. Thus, we
need to be able to capture more than file-based operations.
Furthermore, we do not wish to directly modify tools such
as adduser, since not all administrators use them to add

a user; instead, we want a more general mechanism that can
capture all potentially interesting actions and act on the subset
of those identified by the action filters.

Furthermore, our description of the architecture so far
implies an information push model: actions are undertaken as
a result of administrator-issued events, and information (in the
form of configuration entries) is pushed to the relevant hosts
and services. While this can capture much of the administra-
tion task, we can also use the system in an information pull
method. For example, the system dynamically instantiates the
contents of a file (such as /etc/passwd), by retrieving the
necessary information from all the relevant databases (e.g.,
a network-wide LDAP directory) on demand. In that case,
the management files can be considered as simple views of
the relevant information, which itself is distributed among
any number of systems and databases. Although we note the
potential of our architecture to operate in this way, we will
focus on the information-push aspects in this paper.

In terms of synchronization, our system must make sure
that conflicting simultaneous actions undertaken by different
administrators do not occur, or can be resolved. Fortunately,
most single-host management interfaces already utilize some
form of locking to prevent simultaneous access, e.g., to
/etc/passwd. For the remainder, we simply have to ensure
serialization, i.e., if two administrators configure a network
interface in different ways, the configuration issued second
should take effect. Fortunately, this is fairly straightforward
when done in the context of a single operating system.

Actions that span multiple files (e.g., creating a new group,
then creating a new user belonging to that group) can be
viewed as independent actions that have a particular temporal
ordering. Thus, we do not need to consider system-wide action
serialization and ordering. Should the situation arise in the
future, we can treat such actions as part of a larger database
transaction and perform rollback as needed. We do not inves-
tigate this option further in this paper; when inconsistencies
arise (as in the case where a new user is created as belonging
to a non-existing group), we notify the administrator through
a management interface and abort the latest operation (i.e.,
overwrite the file with the previous version).

In the next section, we describe our prototype implementa-
tion of the architecture.

III. IMPLEMENTATION

Our OpenBSD-based prototype implements the components
presented in Figure 1. In this section, we present these
components in more detail.

A. Action Capture Interface

We use systrace [15], as shown in Figure 2, for inter-
cepting relevant administrator actions. systrace is an op-
erating system facility for intercepting and processing system
calls, e.g., calls by applications to operating system facilities
such as file, network or memory management operations. This
facility has many uses in performing policy compliance checks
for applications, detecting intrusion attempts and logging

Action Amplification Sandbox

Admin. shell

config. commands

system call

Modified system call gateway

action filter

call arguments
accept/forward

return values
accept/forward

on system call invocation

system call results modified
systrace

rules events

Fig. 2. Adaptation of systrace for the Action Capture Interface.

system events. The operating system kernel is instrumented
to intercept system calls and trigger the kernel-level systrace
facility for determining whether the call should be permitted,
denied or if further processing is necessary. The kernel-level
decisions are based on simple rules that can be evaluated
fast enough e.g., for system calls that should be always
accepted or always denied without costly analysis of their
arguments. If further processing is necessary the kernel part
forwards the relevant information to a user-space daemon. This
distinction between fast-path and slow-path processing ensures
that systrace operation does not add significant processing
overheads to the system. Communication between kernel-level
and user-level parts of systrace is performed through the
/dev/systrace pseudo-device. When the kernel defers
system call processing to the user-level daemon, it suspends
the process until it gets a response.

Since systrace was designed with the goal of performing
policy checks, examining system calls upon entry is usually
sufficient. For example, policies relating to file system opera-
tions can usually be checked when a file is opened by examin-
ing the system call arguments. Any subsequent attempt to read
or write are assumed to be permitted since the open call was
authorized. The case of action amplification is slightly more
complicated because it is necessary to examine sequences of
related operations. For example, tracking modifications to a
configuration file requires matching a call to open indicating
the beginning of a configuration action with a call to close,
indicating that the action is complete. The name of the file is
passed as an argument to open and can therefore be easily
intercepted and checked against a list of files associated with
configuration actions. However, subsequent operations on the
file are performed through a file-descriptor instead of the file-
name and can therefore not be intercepted unless the file-
descriptor is known to the action filter. Since this information
is only available when the system call operation is complete,
we have modified syscall to also intercept the results of
system calls. The filtering process is the same as for system
call entry: the system first consults a small in-kernel ruleset to

rule pwd_seq =
{
native-open:
CONDITION { filename=="/etc/passwd" &&
(mode & (O_CREAT|O_RDWR|O_WRONLY)) }
ACTION { state_add(pwd_seq,fd,pid); },
:,
native-close:
CONDITION { state_lookup(pwd_seq,fd)==pid }
ACTION { passwd_action(); }

}

Fig. 3. Example action filter rule for user account management.

determine if the event may be of interest, and either ignores
it or notifies the user-level daemon.

For the purpose of action amplification, we have imple-
mented our own user-space daemon that analyzes system call
sequences to intercept administration actions that need to be
amplified. The daemon is configured using a set of CONDI-
TION/ACTION rules as shown in the example of Figure 3.
Note that any element in the intercepted system call sequence
can be associated with an action. If the CONDITION part
becomes true, then the daemon notifies the event handler to
process the ACTION part.

B. Event handler

The event handler receives notifications from the action
capture interface and is responsible for deciding how to
amplify the intercepted actions. For convenience, our current
system uses awk scripts for action processing, combining a
familiar scripting language with the ability to trigger external
scripts or system commands if necessary – this is important
as it allows the event handler to interact with a configuration
database for bookkeeping, consistency checks, etc. Although
the amplification actions could be performed by the event
handler, the need for action serialization and aggregation
requires the introduction of a separate “action scheduler” for
orchestrating the actual execution of the amplification actions.
The event handler’s task is therefore restricted to submitting
job requests to the scheduler.

C. Action scheduler

The action scheduler receives action requests from event
handlers and manages their execution. There are three main
tasks for the action scheduler. First, it resolves potential
conflicts between different actions, such as two administrators
resetting a user’s password at approximately the same time.
Second, it aggregates many actions for the same resource
into batch requests, and regulates the rate of job execution to
avoid overloading the network or the target resource. Third, it
monitors the progress of jobs and reports to the administrator
(e.g., through a console pop-up window) on possible failures.

D. Portability

Although we have implemented the action amplification
system on OpenBSD, porting to other operating systems
should be straightforward. systrace is also available for
the Linux, Mac OS X and NetBSD operating systems and the

adminboxes:*:3000:root
bigcluster:*:3001:bob,alice
roadwarriors:*:3002:uday,qusay
wifitest:*:3003:root
workstations:*:3004:user000,user001,user002

Fig. 5. Example /etc/group configuration.

modifications needed for tracing the results of system calls are
platform-independent and can therefore easily be incorporated
in a kernel patch.

E. Examples

a) User account management: We can track modifica-
tions to the UNIX password file by intercepting a sequence
of system calls that starts with an open system call to write
/etc/passwd and ends with a call to close. The open
call is associated with an internal action of the system that
takes a snapshot of the password file before the modifica-
tions are committed. The close call is the last call in the
sequence and triggers the rest of the amplification procedure.
An example filter rule for intercepting modifications to the
password file is shown in Figure 3. The system compares the
snapshot of the file before the change with the current image
of the file using diff and determines what type of action was
performed e.g., account creation or deletion, password change,
etc. An example diff is shown in Figure 4. Depending on
the type of action, the system then determines how to amplify
it by consulting the amplification rules.

When a new user is added to the system, we create accounts
on the Windows Domain Server, the NIS server, and the
RADIUS server. We create an RSA public/private key pair,
issue an X.509 certificate, and push that information on the
organization’s LDAP directory. Depending on the group(s) the
user belongs to (or is added to), access control lists on the
web server, the file server, the corporate database, and the
print server are modified, and appropriate quotas (for disk
space, CPU time, and pages printed) are enforced. Finally,
the firewall configuration is changed to allow remote VPN
connections from this user (identified by the X.509 certificate
that was just created).

Likewise, when a user is deleted, the appropriate actions
are undertaken (e.g., the X.509 certificate is added to the
Certificate Revocation List posted on the LDAP directory, and
any running user processes are terminated on all systems).

Group membership (e.g., as specified in the /etc/group
file) is used for more complicated configurations where access
to certain systems is restricted, and cases where a certain
group of users is allowed remote access through the firewall,
as shown in Figure 5.

b) Network interface management: Our amplifying en-
gine contains a number of virtual network interfaces (along
with one or more real ones, that permit it to connect to the
various servers) that represent the various firewalls, important
routers, and connections to the public network. Configuring
each interface “up” or “down” (via the ifconfig command)

--- passwd.orig Tue Aug 12 21:03:28 2003
+++ passwd Tue Aug 12 21:03:58 2003
@@ -18,3 +18,4 @@
proxy:*:71:71:Proxy Services:/nonexistent:/sbin/nologin
nobody:*:32767:32767:Unprivileged user:/nonexistent:/sbin/nologin
angelos:*:7709:7709:Angelos D. Keromytis:/home/angelos:/usr/local/bin/bash

+anagnost:*:7805:7805:Kostas Anagnostakis:/home/anagnost:/usr/local/bin/bash

Fig. 4. Difference between original and modified /etc/file indicating the addition of a user.

enables or disables the relevant link2.
More interestingly, installing packet filtering or Network

Address Translation (NAT) rules on an interface will instan-
tiate them on the relevant router(s) or firewall(s). Note that
a pseudo-interface may correspond to more than one such
systems. For example, the virtual interface fr-all0 may
correspond to all the firewalls in the organization, whereas
rt-cisco1 may represent all Cisco routers; the interface
names can be named such that it is easy to determine their
scope. The different sets of nodes represented by the various
virtual interfaces need not be disjoint, i.e., the same router may
be affected by an action on rt-cisco1 and on fr-all0.

c) VPN configuration: On most unix systems,
most VPN configuration (using IPsec [8] and IKE [7])
is done through a combination of file editing (e.g.,
/etc/isakmpd/isakmpd.conf on OpenBSD) and
command-line directives (on OpenBSD, via the ipsecadm
command). We can capture these actions and translate them to
the appropriate configuration directives for the organization’s
VPN gateways. Security-configuration management for a web
server, such as Apache, can be implemented in a similar
manner.

d) Network services management: Administrators
can select which services to run by editing files
like /etc/services, /etc/protocols, and
/etc/inetd.conf. One potential problem here is
the fact that it is impossible to determine which subset of
hosts should be affected by any particular change in some
of these files, e.g., /etc/inetd.conf. As a result, we
use multiple different versions of such files for the different
classes of hosts we are interested about, such as web servers.
We differentiate between these files by using a naming
convention of file.’’class’’, i.e., we use a mnemonic
name for each class as the file-name suffix.

e) Host management: The amplifying engine can assist
in managing hosts on the network by tracking modifications
to the /etc/hosts file. When a new host is added, the
amplification engine can configure the DNS server and add
client declarations to the DHCP server configuration so that
the host can automatically obtain an IP address. Since DHCP
can also provide network boot services, we can easily set up an

2Note that it is possible that disabling a managed router’s or host’s interface
will make it impossible to enable it again, because connectivity to the relevant
router or host will have been lost. It is difficult to discern intent in this case,
i.e., whether the action is mistaken or intended. Our system can detect such
ambiguous directives and prompt the administrator for confirmation prior to
undertaking the requested action.

automatic install procedure for new machines on the network.3

f) Software management: Finally, the administrator can
centrally maintain file system images for different groups
of hosts, and push new software and software patches by
simply installing the software or moving files to the right
directory. We must note that this can be different and much
more complicated than simple mirroring. The flexibility of our
amplification architecture allows the system to perform more
complicated update tasks like license management, registry
editing, etc.

IV. RELATED WORK

Most efforts in automating system and network administra-
tion tasks are orthogonal to action amplification as presented
here. To the best of our knowledge, this paper is the first to
introduce and analyze the action amplification approach as a
means of improving configuration management.

Early work on automating system management tasks for
large-scale system installations has focused mostly on user
account management for servers and workstations. The Moira
system developed for Project Athena at MIT [16] main-
tains a centralized relational database of user accounts and
other configuration information and periodically generates new
configuration files customized for each managed host. After
performing a series of necessary consistency checks, the new
files are pushed to the hosts.

Sun’s Yellow Pages (YP) and Network Information Service
(NIS) [18] have been widely used for administering system
access, naming of resources, etc. in large scale computing
facilities. YP/NIS maintains a set of files called maps contain-
ing site-wide configuration information on centralized servers
called YP masters. Remote clients need to communicate with
YP masters when the configuration information they need to
access is not maintained locally.

Increasing size, heterogeneity and complexity of system
installations has led to more sophisticated configuration tools
[3], [5]. For instance, cfengine [3] takes a language-based
approach [17] for specifying abstract administration tasks
and policies and mapping them to configuration actions. The
introduction of a system administration language provides
significant benefits in terms of simplifying repetitive tasks
as well as allowing customization through an object-oriented
interface.

3The /etc/hosts file typically only specifies host-name and IP address,
but we can overload the comment field for indicating any additional parame-
ters such as the host operating system and the physical ethernet address.

The network management community has developed a range
of technologies for managing heterogeneous networks, includ-
ing models, mechanisms and standards for efficiently man-
aging networks, including performing low-level configuration
tasks on managed elements [2], [4], [6], [14], [1], [11], [13],
[19]. This technology is usually combined with higher-level
GUIs and is therefore subject to the same set of problems
outlined in Section I.

V. CONCLUDING REMARKS

We have presented a management system that enables
administrators to effectively handle the scalability challenge in
network management. Our approach is to map administration
actions in a single-host environment to the network at large,
amplifying the effects of such simple operations as user
addition/deletion, network interface management, etc. We de-
scribed our prototype implementation, based on OpenBSD and
using the systrace facility, which was originally developed
as a mechanism for monitoring the behavior of critical appli-
cations and enforcing a security policy. Our implementation,
which extends systrace in some minor ways, captures
interesting operations on “interesting” files and maps them
to a series of configuration directives for the appropriate
network elements and services. Although we focused on a
unix-like environment, the same principles can be applied on
a Windows-based interface.

We believe that our approach is simultaneously simple
and powerful enough to capture a large number of man-
agement tasks common to a large network. Its novelty lies
in leveraging a management interface that is familiar to
administrators, to make many common operations intuitive
and easy to perform. Our examples of use demonstrate the
flexibility of our approach, which can be used to handle such
diverse tasks as management of users, routers/firewalls/VPN
gateways, network services, host configurations, and software.
Our system is easily expandable, can be tailored to a number
of environments, and can be combined with many of the
management tools currently in use. Our plans for future work
include integration with such a system, and combining it with
the [9], [10].

REFERENCES

[1] L. Artusio. Profile-based subscriber service provisioning. In Proceedings
of the 8th IEEE/IFIP Network Operations and Management Symposium
(NOMS), April 2002.

[2] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Raja, and A. Sastry.
The COPS (Common Open Policy Service) Protocol. RFC 2748,
http://www.rfc-editor.org/, January 2000.

[3] M. Burgess and R. Ralston. Distributed resource administration using
cfengine. Software practice and experience, 27:1083, 1997.

[4] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin. Simple Network
Mangement Protocol (SNMP). RFC1157/STD0015, http://www.rfc-
editor.org/, May 1990.

[5] L. Cons and P. Poznanski. Pan: A High-Level Configuration Language.
In Proceedings of the USENIX Large Installation System Administration
Conference (LISA), 2002.

[6] G. Goldszmidt and Y. Yemini. Distributed management by delegation.
In Proc. of the 15th International Conference on Distributed Computing
Systems, pages 333–340, 1995.

[7] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). Request for
Comments (Proposed Standard) 2409, Internet Engineering Task Force,
Nov. 1998.

[8] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.
Request for Comments (Proposed Standard) 2401, Internet Engineering
Task Force, Nov. 1998.

[9] A. D. Keromytis. STRONGMAN: A Scalable Solution to Trust Manage-
ment in Networks. PhD thesis, University of Pennsylvania, December
2001.

[10] A. D. Keromytis, S. Ioannidis, M. Greenwald, and J. Smith. The
STRONGMAN Architecture. In Proceedings, DARPA Information
Survivability Confernce and Exhibition, volume 1, pages 178–188. IEEE
Press, April 2003.

[11] I. Khalil and T. Braun. Automated service provisioning in heterogeneous
large-scale environment. In Proceedings of the 8th IEEE/IFIP Network
Operations and Management Symposium (NOMS), April 2002.

[12] A. Konstantinou, S. Bhatt, S. Rajagopalan, and Y. Yemini. Managing
Security in Dynamic Networks. In Proceedings of the 13

th USENIX
Systems Administration Conference (LISA), November 1999.

[13] I. Lück, S. Vögel, and H. Krumm. Model-based configuration of
VPNs. In Proceedings of the 8th IEEE/IFIP Network Operations and
Management Symposium (NOMS), April 2002.

[14] G. Pavlou. OSI Systems Management, Internet SNMP and ODP/OMG
CORBA as Technologies for Telecommunications Network Manage-
ment. In Telecommunications Network Management: Technologies and
Implementations, S. Aidarous, T. Plevyak, eds, IEEE Press, pages 63–
109, 1998.

[15] N. Provos. Improving Host Security with System Call Policies. In
Proceedings of the 12th USENIX Security Symposium, pages 257–272,
August 2003.

[16] M. A. Rosenstein, D. E. jr. Geer, and P. J. Levine. The athena service
management system. In Proceedings of the USENIX Winter 1988
Technical Conference, pages 203–212, Berkeley, CA, 1988. USENIX
Association.

[17] D. Spinellis and V. Guruprasad. Lightweight languages as software
engineering tools. In Proceedings of the USENIX Conference on Domain
Specific Languages, page 67, 1997.

[18] Sun Microsystems. The network information service. In System and
network administration, pages 469–511, 1990.

[19] A. Tal, B. Rochwerger, G. Goldszmidt, and Y. Koren. Khnum - A
Scalable Application Deployment System for Dynamic Hosting Infras-
tructures. In Proceedings of IM 2003, 2003.

