
Countering DoS Attacks With Stateless Multipath Overlays∗

Angelos Stavrou
Department of Computer Science

Columbia University

angel@cs.columbia.edu

Angelos D. Keromytis
Department of Computer Science

Columbia University

angelos@cs.columbia.edu

ABSTRACT
Indirection-based overlay networks (IONs) are a promising approach
for countering distributed denial of service (DDoS) attacks. Such
mechanisms are based on the assumption that attackers will attack
a fixed and bounded set of overlay nodes causing service disruption
to a small fraction of the users. In addition, attackers cannot eaves-
drop on links inside the network or otherwise gain information that
can help them focus their attacks on overlay nodes that are critical
for specific communication flows. We develop an analytical model
and a new class of attacks that considers both simple and advanced
adversaries. We show that the impact of these simple attacks on
IONs can severely disrupt communications.

We propose a stateless spread-spectrum paradigm to create per-
packet path diversity between each pair of end-nodes using a modi-
fied ION access protocol. Our system protects end-to-end commu-
nications from DoS attacks without sacrificing strong client authen-
tication or allowing an attacker with partial connectivity informa-
tion to repeatedly disrupt communications. Through analysis, we
show that an Akamai-sized overlay can withstand attacks involv-
ing over 1.3M “zombie” hosts while providing uninterrupted end-
to-end connectivity. By using packet replication, the system can
resist attacks that render up to 40% of the nodes inoperable. Sur-
prisingly, our experiments on PlanetLab demonstrate that in many
cases end-to-end latency decreases when packet replication is used,
with a worst-case increase by a factor of 2.5. Similarly, our system
imposes less than 15% performance degradation in the end-to-end
throughput, even when subjected to a large DDoS attack.

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Denial of Service; C.2.1 [Network
Topology]: Overlay Networks

General Terms
Security, Reliability.

Keywords
Spread-spectrum communications, key agreement.
∗This work was supported by the National Science Foundation un-
der grant ITR CNS-0426623.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

1. INTRODUCTION
Solving the network denial of service (DoS) problem is extremely

hard, given the fundamentally open nature of the Internet and the
apparent reluctance of router vendors and network operators to de-
ploy and operate new, potentially complex mechanisms. Overlay-
based approaches such as SOS [13] and MayDay [1] offer an at-
tractive alternative, as they do not require changes to protocols and
routers, and need only minimal collaboration from Internet Service
Providers (ISPs). Such systems use an Internet-wide network of
nodes that act as first-level firewalls, discriminating between legit-
imate traffic and potentially malicious traffic, based on some form
of user or end-host authentication. Their distributed nature requires
an extremely well provisioned adversary to suppress their function-
ality, since attack traffic must be split among all the nodes to disrupt
protected communications.

Indirection-based overlay network (ION) approaches depend on
the inability of an adversary to discover connectivity information
for a given client and the infrastructure (e.g., which overlay node
a client is using to route traffic). This makes them susceptible to
a variety of easy-to-launch attacks that are not considered in the
standard threat model of such systems. For example, adversaries
may possess real-time knowledge of the specific overlay node(s) a
client is routing traffic through, or may be attacking nodes using a
time-based scheme that will try to maximize the impact of the at-
tack on clients’ connectivity. Such attacks can be network-oriented
(e.g., TCP SYN attacks) or application-related “sweeping” attacks
or “targeted” attacks.

In targeted attacks, an attacker that has knowledge of the client’s
communication parameters can “follow” the client connections and
bring down the nodes that he tries to connect to. As soon as the
client realizes (typically after some timeout period) that the overlay
node is unresponsive and switches to a new node, the attacker also
switches the attack to this new node. Thus, an attacker that can
bring down a single node can create a targeted DoS for specific
clients. Similar attacks, exploiting information that must only be
available to trusted components of the system but which an attacker
can feasibly gain access to, are possible against almost all proposed
anti-DDoS mechanisms [24, 4, 11].

In sweeping attacks, the attacker uses its power (which is in-
sufficient to bring down the whole ION) to attack a small per-
centage of the overlay nodes at a time. This type of attack tar-
gets the application-level state maintained by the overlay node re-
sponsible for a client. Destroying this state forces the client to re-
establish both network and application-level connectivity, degrad-
ing the clients’ connection and leading to DoS for time-critical or
latency-dependent applications. Thus, although IONs can counter
blind DoS attacks, they remain vulnerable to a range of simple but
debilitating attacks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1 Our Approach
We believe that these inherent limitations of first generation overlay-

based traffic redirection mechanisms can be addressed by adopting
a spread-spectrum like communication paradigm1. In a “spread-
spectrum” approach, the client spreads its packets randomly across
all access points, preventing an attack from “following”. The path
diversity naturally exhibited by a distributed overlay network serves
as the “spectrum” over which communications are “spread.” In our
system, a token issued by the overlay network to the client is used to
verify the authenticity of each packet communicated by the client.
The use of a token (akin to a Kerberos ticket) alleviates the ne-
cessity to maintain application or network-level state at any of the
overlay nodes (unlike previous IONs), at the expense of bandwidth
(since the ticket must be included in every packet routed through
the ION). In return, our system is impervious to the attacks that use
this state dependence to attack the overlay.

The main challenges we must address relate to the scheme’s ef-
ficiency (in terms of performance and latency of the end-to-end
path), resiliency to attacks, amount of state that needs to be main-
tained by each overlay node (necessary to prevent packet replay
or forging attacks), and the elimination of communication pinch
points on which attackers can focus their attention.

We argue that such a system is feasible, and describe our specific
approach and its implementation in Sections 2 and 3, respectively.
For an attacker to successfully attack our system, he will have to
subvert or suppress 40% or more of the overlay nodes before the
system becomes unusable for all users. Thus, our system has an
operational threshold in the order of 40% of the nodes being sub-
verted. Before this 40% threshold is reached, the users will not
notice a significant impact to their connectivity. As a comparison,
in the original SOS architecture, the user had to find an access point
that was not under attack, which becomes increasingly difficult as
we increase the portion of nodes under attack. We quantify the
increase in the system’s resistance to attacks using a simple ana-
lytical model, and provide experimental validation by deploying a
prototype over PlanetLab, a wide-area overlay network testbed.
PlanetLab nodes are distributed across the Internet, serving as an
ideal platform for experimentation.

Our analysis shows that an Akamai-sized ION (∼ 2500 nodes)
can withstand attacks that bring down up to 40% of the overlay.
This corresponds to attacks that involve several million “zombie”
(attacking) hosts, which is an order of magnitude larger than the
biggest zombie network seen to date. One expects that using an
ION will impose a performance penalty. In our case, end-to-end
latency increases by a factor of 2 in the worst case, but by using
packet replication we maintain latency at the same level as the di-
rect connection case. These results confirm the findings from other
research on multipath routing [10, 3, 2]. Furthermore, end-to-end
throughput is not significantly degraded, with an overhead of less
than 15% relative to the direct-connection case.

1.2 Contributions
The contributions of our work are:

• We introduce a realistic threat model against IONs, in which
opponents can use their limited attack capabilities against a
time-changing set of overlay nodes. In addition, we consider
more sophisticated attackers with access to information that
can be used for targeted and/or adaptive attacks against the
protection mechanisms themselves.

1Note that although we use the term “spread-spectrum” to describe
our approach, our work is not geared towards wireless networks,
nor does it touch on physical-layer issues.

• Second, we present an architecture for an overlay-based anti-
DDoS mechanism that is resistant to DDoS attacks in the new
threat model, by using stateless tokens and traffic spreading.

• Third, we provide a first attempt at an analytical model for
quantifying security in overlay-based DDoS protection mech-
anisms.

• Fourth, we demonstrate the feasibility of our approach in a
realistic set of experiments over the Internet using PlanetLab.

• Finally, we show that the overhead of our overlay-based mech-
anism on end-to-end latency is close to zero in several us-
age scenarios, including real-time traffic, which is acceptable
even for time-critical applications.

Paper Organization Section 2 describes our system architecture
using a spread-spectrum-like paradigm. The system design and
implementation are thoroughly explained in Section 3. Section 4
gives our evaluation of the system, in terms of the improvement in
resistance to attacks. Section 5 experimentally evaluates the per-
formance and attack resilience characteristics of our approach. The
paper ends with a discussion of related work and conclusions.

2. SYSTEM ARCHITECTURE
We begin by giving an overview of how indirection-based mech-

anisms operate and describing the security issues present in the cur-
rent generation. We then describe our approach, which uses state-
less multipath overlay routing to send each packet through a ran-
domly selected overlay node. The main components of our design
are (a) a stateless protocol for authenticating users to the infrastruc-
ture such that they are not vulnerable to “step zero” attacks (DoS
attacks that prevent them from contacting the overlay), and (b) an
efficient per-packet authentication scheme that allows the system to
scale to millions of users.

2.1 Overlay Protection Mechanisms & Attack
Model

The goal in combating DoS attacks is to distinguish between au-
thorized and unauthorized traffic; the former is allowed to reach the
destination, while the latter is dropped or is rate-limited. Thus, at
a very basic level, we need the functionality of a firewall “deep”
enough in the network that the access link to the target does not be-
come congested. This imaginary firewall performs access control
by using protocols such as IPsec or TLS. Traffic is then routed to
a secret location, which may be the server itself or a node that is
allowed to contact the server (called “secret servlet” in SOS [13]),
with all other traffic being filtered. The reason for having a small
number of secret servlets is to minimize the number of filtering
rules, as they can affect router performance. The secret servlet may
vary over time, and may differ for each protected site.

Most such systems concern themselves with naive attackers, i.e.,
those without internal knowledge of the system (other than the
list of participating nodes). We assume that such an attacker can
mount a DoS attack against a small set of nodes in the overlay for
short periods of time, which will force clients using those overlay
nodes to reset their connections to new nodes. This attacker blindly
“sweeps” all the nodes participating in overlay network focusing
the attack from one set of overlay nodes to another, selecting nodes
not previously attacked. Presently, a number of DoS attacks can be
used as “sweeping” attacks: TCP SYN, ICMP flooding and TCP
congestion attacks are among them. If the overhead of detecting
the failure and switching to a new access point is high, compared to
how long an attack must be sustained to force the connection reset,

an attacker can cause significant disruption in the communications.
Performance can be seriously degraded, and long-lived connections
(such as a teleconference or a large file transfer) can be repeatedly
disrupted, rendering them ineffective as communication carriers.
This attack is similar to a radio jammer that is randomly broad-
casting noise in various channels, forcing communicating parties
to continuously reset their network parameters.

Although less efficient against a single user compared to a tar-
geted attack, this attack can be more effective, degrading the con-
nection characteristics or preventing connectivity on most of the
clients connected to the overlay. The success of the attack depends
on factors such as the attack intensity2, and the time required to
detect the connection failure and then find a new overlay node that
is healthy and re-establish both network connection and client au-
thentication credentials (usually on the application level). More-
over, the client’s authentication can be complex, e.g., using X.509
certificates for authentication or Graphic Turing Tests [21] to allow
anonymous human users. Most such authentication mechanisms
require time and user interaction, which make these sweeping at-
tacks a serious problem for real-world deployed overlays.

A more sophisticated attacker, explicitly not considered in other
proposed IONs, may know which overlay node a client is using. An
attacker can get this information by eavesdropping on an appropri-
ate edge-network link: the client’s wireless communications to his
access point or the link to his ISP. Such an attacker can “follow”
the client and direct DoS traffic against the overlay nodes that he
tries to communicate with. The client, detecting a failure in com-
munications, will select another node to access the overlay, which
will become the attacker’s new target. Using the radio communica-
tions analogy, this is akin to an adversary that is eavesdropping on
wireless communications, jamming frequencies where traffic is de-
tected; after a short period of time, the adversary searches for new
frequencies the attacked parties may have switched to. [1] identi-
fies possible ways an adversary can gain such information; other
possibilities include snooping on the local network link, e.g., in a
wide-area wireless network such as the upcoming WiMAX, or in
some enterprise-wide 802.11 (WiFi) environments.

This threat model is considerably stronger than the typical sce-
narios anti-DDoS mechanism designers have considered in the past.
We can address all of the above attacks by employing a nearly-
stateless spread-spectrum communication paradigm in conjunction
with an overlay network.

2.2 Traffic Spreading
The first problem we address is how to protect the communi-

cations of a client of the overlay from attackers that either have
partial knowledge of the communication parameters (i.e., can de-
termine which overlay nodes a client is communicating with), or
are blindly attacking overlay nodes using “sweeping” attacks, thus
forcing clients to keep re-establishing connections to new overlay
nodes. For simplicity, we temporarily assume that the reverse chan-
nel (from the overlay to the client) is protected by the overlay in the
same manner communications to the server are protected, or is oth-
erwise safe from interference.

Our approach, shown in Figure 1, is straightforward: spread the
packets from the client across all overlay nodes in a pseudo-random
manner storing no network or application level state in the overlay
nodes. An attacker will not know which nodes to direct an attack
to; randomly attacking a subset of them will only cause a fraction of
the client’s traffic to be dropped. By using forward error correction
(FEC) or simply duplicating packets (i.e., sending the same packet

2In this context, attack intensity is the percentage of overlay nodes
that can be brought down simultaneously by the attacker.

Figure 1: Spreading traffic across multiple overlay access points. At-
tacks that render a number of overlay nodes ineffective do not impact
end-to-end communications.

through two or more different access points simultaneously), we
can guarantee packet delivery with high probability, if we place an
upper bound on the number of nodes an attacker can simultaneously
attack. We quantify this increase in attack resistance in Section 4.
In designing our system, we must address several issues:

• First, it should not be possible for an attacker to impersonate
a legitimate user and conduct a DoS attack through the over-
lay. This means that each packet from the user to the overlay
must be properly authenticated.

• The second issue we must address is the state that each over-
lay node must maintain per client: since all overlay nodes
can potentially receive traffic from all users, the memory re-
quirements can quickly become prohibitive. Furthermore, a
client’s end-to-end connection must not depend on the net-
work availability of a small set of overlay nodes. Keeping
state that is essential for a client’s network or application
level connectivity makes the system vulnerable to sweeping
or targeted attacks.

• Third, even legitimate clients should not be allowed to “pump”
unlimited amounts of data through the overlay; verifying this
is complicated due to the packet-spreading approach.

• Finally, the selection of the overlay node to forward a packet
through should be as random as possible from the point of
view of an external observer (i.e., an attacker), yet verifiable
by individual nodes, to avoid flooding attacks by compro-
mised clients.

In the remainder of this section we describe two protocols: one
used to establish a restricted ticket and secret session-key between
a client and the overlay, and a second protocol used as a stateless
communication protocol that allows overlay nodes to verify the va-
lidity of received packets without requiring maintenance of large
amounts of state.

2.3 Key and Ticket Establishment Protocol
To achieve a stateless communication with the overlay network,

a client has to acquire a ticket, which is then included in all sub-
sequent packets sent through the overlay. As we will see in de-
tail in the next section, the ticket is used by the overlay nodes to
authenticate the user, validate the routing decisions, and prevent
malicious (or subverted) nodes from utilizing a disproportionate
amount of bandwidth. Thus, node authentication and ticket acqui-
sition/maintenance is a key component of our approach. Although
any authentication protocol could be used, most such protocols re-
quire at least two round-trips between the two parties (as well as

Figure 2: Redirection-based authentication and key establishment.
An attacker observing the interactions of a user and the overlay cannot
determine which overlay node(s) to target.

considerable computation). However, an attacker that is observ-
ing communications between the client and the overlay can direct
a congestion-based DoS attack3 against any overlay node that is
contacted by the client for authentication purposes. Since the client
does not yet have a spreading sequence, it seems at first impossible
to protect the key establishment phase.

Our proposed approach is to randomly redirect the authentication
request, as shown in Figure 2. Briefly, the client selects an overlay
node at random and sends a packet containing its public key cer-
tificate and a request to initiate authentication. The receiving node
immediately forwards the request to another overlay node at ran-
dom; thus, an attacker (who cannot react fast enough to prevent a
packet from being forwarded on) does not have a target.

The second overlay node selects a random session key Ku and
creates a ticket for that client. The ticket contains Ku, a range of
packet sequence numbers for which Ku and the ticket are valid, a
randomly selected identifier for the client, the current time-stamp,
and flags indicating that this is a “restricted” ticket (more on this
later), all encrypted and authenticated under KM , a secret key ne-
gotiated periodically (e.g., every few hours) among all overlay nodes
(see Figure 3). The last part of the ticket is a UMAC [6] signa-
ture of the encrypted ticket using KM and a 64-bit nonce, which
consists of the first 64 bits of the encrypted ticket. Note that only
overlay nodes can validate and decrypt the ticket. The client’s cer-
tificate is validated, and a second copy of Ku is independently en-
crypted under the client’s public key. Both operations are relatively
lightweight (compared to operations involving RSA private keys);
as was shown in [14], a node can perform a few thousand public-
key operations (i.e., signature verifications or public-key encryp-
tions) per second. The ticket and the encrypted session key are
then sent to the client. An extra, optional message can be sent
from the overlay to the client with the list of overlay nodes’ IP ad-
dresses. This one-round-trip protocol is stateless (for the overlay)
and computationally fast, resisting both memory and CPU exhaus-
tion attacks on the overlay nodes.

To make it even more difficult for the attacker to mount a CPU
exhaustion or IP spoofing attack, we can add one more round-
trip on the key establishment protocol, forcing the client to send
a UMAC-signed certificate before generating the ticket (which re-
quires validation of the client certificate). Figure 4 displays both
the one round-trip and the two round-trip key establishment proto-
col in detail. In the two-round-trip protocol, the client sends his cer-

3Computational DoS attacks can be partially mitigated using proof-
of-work techniques [12, 7].

tificate to overlay node A. A redirects the request to B, a randomly
selected overlay node. B treats the certificate as a random num-
ber, which he UMAC-signs with the shared key KM . The client’s
IP address and the system’s timestamp are the nonce used in the
UMAC operation. B sends the UMAC signature and the nonce to
the client. To prove liveness, the client contacts another randomly
selected overlay node, C, sending its certificate, the UMAC signa-
ture and the nonce. C validates the authenticity of the UMAC and
redirects the request to D, another randomly selected overlay node.
Finally, D generates a ticket for the client, encrypting it with the
client’s public key (retrieved from the certificate). In the two-round
protocol, only the last step is computationally expensive (compared
to simple UMAC verification). Thus, the two-round-trip protocol,
guarantees client liveness. For the one-round-trip protocol we only
use the first and the last communication i.e., from A to D as shown
in Figure 4. Finally, if there is a version mismatch between the list
of overlay nodes’ IP addresses stored locally in the client (commu-
nicated by the client in the first message) and the one stored in the
overlay network, a random overlay node, E, is chosen by D to send
the list differences to the client.

2.4 Client Authentication
The ticket obtained from the previous protocol can only be used

by the client to continue the authentication protocol (i.e., prove live-
ness for both the overlay and the client. Once two-party authenti-
cation is completed, the last overlay node provides the client with
a ticket that is not “restricted,” i.e., the corresponding flag inside
the ticket is cleared. The tickets are periodically refreshed, to avoid
situations where a malicious user distributes the session key and
ticket to a large number of zombies that try to access the overlay.

This authentication step can be followed by a secondary authen-
tication phase that uses a Graphic Turing Test (GTT) [21] to discern
the presence of a human at the client node (versus a remotely con-
trolled DDoS zombie). This step can prevent legitimate nodes that
have been subverted by an attacker from being used as entry points
to the overlay, but can only be used for those applications that have
a GUI — such as a web browser. We can implement the secondary
GTT-based authentication by issuing a second restricted ticket after
the completion of the two-phase authentication step (from above),
which only allows client nodes to contact the GTT server. This
server is implemented locally by each overlay node, as was shown
in [18]. Once the GTT step is successfully performed, the GTT
server issues an unrestricted ticket to the client node. The GTT
authentication can be performed periodically (to confirm the con-
tinued presence of a human). Naturally, this step is not applicable
for applications where there is no human being directly controlling
the client, or where displaying a graphic is infeasible or impractical
(or for vision-impaired persons).

2.5 Client-Overlay Communication Protocol
Once the client has received a session key and an unrestricted

ticket, he may start sending packets to the remote destination through
the overlay. Each packet sent by a client to an overlay node con-
tains three overlay-related fields: the ticket, an authenticator, and a
monotonically increasing sequence number, as shown in Figure 3.
The ticket contains the session key and a sequence range for which
the ticket is valid, as we discussed previously, and is encrypted and
authenticated under a secret key KM , known to all overlay nodes.
Note that these overlay nodes are not user machines, but are hosts
dedicated to offering a DoS protection service.

The sequence number is a 32-bit value that is incremented by the
client for each packet transmitted through the overlay with a given
session key. The client identifier is a random 32-bit value that is se-

Figure 3: The layout of the various packets and the ticket used to establish a communication and transmit packets between the client and overlay
nodes. All numbers are in bytes, unless otherwise indicated.

Figure 4: Key & Ticket Establishment protocol: The client sends
node A his certificate. A immediately redirects the request to B, in the
two-round-trip protocol, or to D for the one-round-trip protocol. The
four-message protocol is more resilient against computational attacks
since it ensures the client’s liveness before generating an encrypted ver-
sion of the ticket. A 5th message is transmitted when the client’s ver-
sion for the list overlay nodes is old.

lected by the overlay node that authenticated the client, and is used
as an index in the table of last-seen sequence numbers per client,
maintained by each overlay node. The authenticator is a message
authentication code (MAC) using a fast transform such as UMAC
and the session key Ku. The UMAC is computed over the whole
packet, which includes the ticket and the sequence number of the
packet. For the UMAC nonce we use the sequence number con-
catenated with the client’s IP address. Thus, the ticket is bound to
a specific IP address and cannot be distributed to other clients. The
only state each overlay node needs to maintain per client consists of
the client identifier and the last sequence number seen by that par-
ticular client. This state is not network or application related and
is used solely to prevent “replay” attacks. Assuming that both the
client identifier and the sequence number are 32-bit values, each
overlay node needs to maintain only 64 bits of state for each client;
thus, if the overlay could support 1 million active clients (in terms
of network capacity), we will only need 8 MB of state.

A client transmitting a packet through the overlay uses the ses-

sion key and the sequence number as inputs to a pseudo-random
function (PRF). The output is treated as an index to the list of over-
lay nodes, through which the packet will be routed. The list of
available overlay nodes does not need to change frequently, even if
nodes become unavailable (e.g., for maintenance purposes). There
are various ways a client can obtain the list of overlay nodes. For
example, it can be done the first time it connects to the overlay
network by requesting it after the key establishment phase, or by
downloading it independently of the protected communication. Af-
ter the first time, the client can maintain the freshness of the list by
comparing the version of his list with the one stored in the overlay,
downloading only the differences of the two versions.

The client then encapsulates the original packet (addressed to
the final destination) inside a packet for the overlay node, along
with the information identified above (ticket, sequence number, au-
thenticator). This packet is forwarded through the overlay to the
appropriate secret servlet, and from there to the final destination.

Upon reception of a packet, the overlay node checks the validity
of the ticket. This is a UMAC validation, a fast operation prevent-
ing computational DoS attacks against the overlay nodes. After
validating the authenticity of the ticket, the ticket is decrypted and
the authenticator is verified. This prevents spoofing attacks from
an adversary who obtains a valid ticket and generates packets to
all overlay nodes with randomly selected sequence numbers, thus
preventing the client with the valid ticket to communicate. Further-
more, to detect any replay attacks, an overlay node that receives
such a packet verifies that the sequence number on the packet is
larger than the last sequence number seen from that client by us-
ing the client identifier to index the internal table. The overlay
node also verifies that the sequence number is within the acceptable
range of sequence numbers for this ticket. Finally, it uses the key
and the sequence number along with the PRF to determine whether
the client correctly routed the traffic. If all steps are successful, the
overlay node updates the sequence number table and forwards the
packet to the secret servlet. Packets with lower or equal sequence
numbers are considered duplicates (either accidental reordering or
malicious replays by attackers) and are quietly dropped.

To avoid reuse of the same ticket by multiple DDoS zombies,
the range of valid sequence numbers for the ticket is kept relatively
small (and contained inside the ticket), e.g., 500 packets. Moreover,
the ticket is bound to the client’s IP, since to authenticate the packet
the overlay uses the UMAC including the client’s IP address as part
of the UMAC nonce. In addition, each packet contains a timestamp
with which we can validate the freshness of the ticket. After a
configurable period of time (e.g., 1 or 2 hours) the overlay expires
the ticket. Overlay nodes that receive valid tickets about to expire
simply re-issue a new ticket with the same session key but a new

range of valid sequence numbers. This approach, combined with
the state kept by each node, makes it prohibitive for attackers to
reuse the same ticket from a large number of distinct nodes (each of
which is only transmitting to a specific overlay node), since the new
valid ticket needs to be continuously propagated to all zombies.

The shared key under which the ticket is encrypted is periodi-
cally established among all overlay nodes, using a group key man-
agement protocol. The precise properties of this protocol are not
relevant to this discussion, and there exist a large number of such
protocols in the research literature.

3. IMPLEMENTATION
The implementation consists of the code for the overlay nodes,

as well as code running on each client that does the encapsulation
and initial routing. On the client, a routing-table entry redirects all
IP packets destined for the protected servers to a virtual interface,
implemented using the tun pseudo-device driver. This device acts
as a virtual network interface intercepting messages to and from a
real network interface. IP packets sent to the tun0 network interface
can be read by a user process reading the device /dev/tun0. Simi-
larly, if the process writes a complete IP packet to /dev/tun0 this
will appear in the kernel’s IP input queue as if it were coming from
the network interface tun0. Thus, whenever an application on the
client tries to access a protected server, all outgoing traffic is inter-
cepted by the virtual interface. A user-level proxy daemon process
reading from the corresponding device captures each outgoing IP
packet, encapsulates it in a UDP packet along with authentication
information, and sends it to one of the overlay nodes according
to the protocol. The code running on overlay nodes receives these
UDP packets, authenticates and forwards them to the secret servlet,
which forwards them to the final destination. There, the packets are
decapsulated and delivered to the original intended recipient (e.g.,
web server). The decapsulation can be done by a separate box or
by the end-server itself. In addition to the decapsulation code on
the overlay nodes, there is also a daemon listening for connection
establishment packets from the clients.

Connection Establishment Phase: When a client attempts to
contact the protected server for the first time, it receives a small list
of randomly selected overlay nodes’ IP addresses via regular DNS
name resolution. It selects one of them and transmits a “connection
initiation” packet (shown in Figure 3) to authenticate itself, acquire
a ticket and a session key, and to update its list of overlay nodes.
Thus, for the very first IP packet that the proxy daemon on the
client’s host receives for a previously unknown server, it constructs
a connection initiation which it sends to a randomly selected over-
lay node. The connection request is a UDP packet to a well-known
port. It contains the version number of the list of overlay nodes’
IP addresses stored locally, if any, along with its public key Pcl, as
shown in Figure 3. When an overlay node receives such a request,
it forwards it to another node at random.

This second overlay node generates a 288-bit (36 bytes) ticket.
The first 224 bits of the ticket consist of a 128-bit session key Ku,
a 64-bit packet sequence range for which the ticket is valid with
the starting sequence randomly selected, and a 64-bit field with the
Client ID, time-stamp and flags that is used also to avoid public-key
dictionary attacks; this part is AES-encrypted using a Master Key
KM shared among overlay nodes. A 32-bit UMAC authenticator
is appended, computed over all fields in the ticket using again the
master key KM . The ticket, the starting packet sequence and the
session key Ku (encrypted under the client’s public key) are sent
to the client. Another optional packet containing differences of the
current list of the IP addresses of all overlay nodes is also sent to
the client, depending on the version indicated in the connection

initiation packet.
Packet Transmission Phase: After receiving a session key and

ticket, the client constructs a “forward request” UDP packet con-
taining the packet sequence number, the ticket, and the original IP,
as shown in Figure 3. It then determines which overlay node to
send the packet to by using the session key, the packet sequence
(start sequence plus one for the first packet) and the publicly avail-
able sorted list of IP addresses of the overlay nodes. Assuming that
the number of overlay nodes is n, the client computes the index in
the sorted list of IPs as:

index = UMAC(Ku ⊕ sequence number)mod(n)

The receiving overlay node validates the ticket using the ticket
UMAC. Then the ticket is decrypted using Km and the packet au-
thenticity is verified. The sequence number is compared against
the one stored in the overlay node for this client identifier, if there
is one (otherwise, this is assumed to be a packet from a new client).
If the sequence number on the packet is bigger, the overlay node
stores the new sequence number and checks if the ticket is expired
(i.e., packet sequence > max packet sequence), after decrypting the
ticket. Then, computing the index as above, it checks whether the
packet was correctly routed to this node. If any of the checks fails,
the packet is dropped. Otherwise, the packet is routed to the secret
servlet, and from there to the actual server.

Ticket Renewal Phase: During the packet transmission phase,
overlay nodes may receive requests using valid tickets that are about
to expire. In that case, the overlay node issues a new ticket with the
same session key but larger max sequence number, and sends the
client a connection-request reply packet containing the new ticket.

4. QUANTIFYING ATTACK RESISTANCE
We now evaluate the security of our scheme using a simple an-

alytical model, which we apply to first-generation IONs that are
vulnerable to targeted or sweeping attacks. We then quantify the
attack resistance generally offered by IONs using a simple model
of an ISP and typical POP speeds. In the next section we will char-
acterize the impact of our system on latency and throughput in a
series of experiments over the Internet using PlanetLab.

4.1 Impact of Sweeping Attacks
First-generation IONs were geared towards service connection

availability. No provision is made for attacks that cause the user
to reset his connection, either because the overlay node is unre-
sponsive or because the connection quality is low. After resetting
the connection, the user has to re-establish connectivity and re-
authenticate himself, making the system unrealistic for real-time
applications. Moreover, frequently forcing the user to re-authenticate
through a challenge-response or a CAPTCHA will render the sys-
tem unusable for any type of application.

We assume that an attacker can mount a DoS attack against a
small set of nodes in the overlay for short periods of time, which
(in first-generation IONs) will force clients using those overlay
nodes to reset their connections to new nodes. This attacker blindly
sweeps all the nodes participating in the overlay network, focus-
ing his attack from one set of overlay nodes to another, keeping
the sets disjoint. Not all of these attacks can be easily detected by
the current infrastructure: an attacker can mount a low-rate TCP
attack [16] reducing the effective bandwidth of the victim to zero.
Thus, a sweeping attacker can cause significant disruption in the
end-to-end communication.

To analyze a sweeping attack and quantify its impact to the clients’
connection characteristics in first-generation IONs, we create a sim-
ple static model. We assume that the attacker can bring down pd

percentage of the overlay nodes simultaneously. For an attack to
be successful on these nodes, it needs ta time of sustained attack.
This is the time required to either drop or severely rate-limit the
connections of all the clients connected to nodes under attack. Let
tu be the average time a client is connected to the system. Also,
let td be the time that is necessary for the client to detect the attack
and connect to another overlay node. Moreover, we assume that the
overlay repairs the nodes under attack immediately after the attack
focus has shifted to another set of nodes (zero reboot or repair time)
so the time to repair tr = 0. Finally, we assume that clients are
connected uniformly across all overlay nodes in a first-generation
ION, i.e., if there are N clients and O overlay nodes, each has N

O

clients. The percentage of clients that will have their connection
reset by a sweeping attack at least once during the time that they

use the system is P1(tu, ta, pd) =
tu

ta

· pd assuming tdet = 0.

The above formula is very intuitive: from the attacker’s perspec-
tive, there are 1

pd

disjoint sets of nodes in the overlay network. To

attack all of them the attacker needs ta

pd

time. Assuming a system
where we have no joins, an attacker will affect the connectivity of
tu

ta
· pd clients. Note that some of the clients may never experi-

ence the attack because they might have finished their connection
by the time the attack reaches them. For this simple model, we
have assumed that there is no detection time: the user selects an-
other overlay node to connect to as soon as the attack starts to affect
him. Even with this very conservative model (td = 0, tr = 0, no
client arrivals while the system is under attack) we can see that the
attack can be significant, depending on the usage time, the size of
the attack compared to the size of the overlay and the time required
for an attack to be successful. For example, assuming that we have
clients with average usage time of an hour, an adversary that can at-
tack 2.5% of the overlay nodes and shifts the attack every 5 minutes
will affect 30% of the clients. We can also compute the percentage
of nodes that will have to reset their connections more than once.
The percentage of nodes that will have to reset their connections at
least k > 1 times during the attack is:

Pk =

b
tu

ta
c

P

i=1

P(k−1)([tu − i · ta], ta, pd) · pd

In general, for td < ta, we have:

Pk =

b tu

ta
c

P

i=1

P(k−1)([tu + td − i · ta], ta, pd) · pd

whereas if td ≥ ta, we have: Pk = (
tu

ta

· pd)
k

The probability that a client will be affected does not change,
since the attack will continue to another set of overlay nodes and
thus when the client tries to reconnect he will have the same prob-
ability of being affected, assuming he wants to keep using the sys-
tem paying a penalty of td for each reset. Appendix A provides a
rigorous computation of all the previous probability formulas.

Our spread-traffic system is invulnerable to these attacks, since
there is no single node that maintains all client-specific state for a
given client. Attacking a small percentage of overlay nodes will
cause a corresponding packet loss in the end-to-end communica-
tion. If the attacked nodes are a small percentage of overlay nodes
(corresponding to low packet loss), the end-to-end transport proto-
col (e.g., TCP) should be able to recover. In Section 5 we show
that, with a modest amount of packet replication and striping at the
client, we can handle even massive DoS attacks against the overlay.

4.2 General ION Attack Resistance
It is worth estimating the attack volume that any ION system can

withstand. Since ISP backbones are well provisioned, the limiting

factors are going to be the links close to the target of the attack. The
aggregate bandwidth for most major ISP POPs is on the order of 10
to 20 Gbps4. If the aggregate bandwidth of the attack plus the le-
gitimate traffic is less than or equal to the POP capacity, legitimate
traffic will not be affected, and the POP routers can drop the attack
traffic (by virtue of dropping any traffic that did not arrive through
the overlay). Unfortunately, there do not exist good data on DDoS
attack intensities; network telescopes [17] tend to underestimate
their volume, since they only detect response packets to spoofed
attack packets. However, we can attempt a simple back of the en-
velope calculation of the effective attack bandwidth available to an
attacker that controls X hosts that are (on average) connected to
an aDSL network, each with 256 Kbps uplink capacity. Assuming
an effective yield (after packet drops, self-interference, and lower
capacity than the nominal link speed) of 50%, the attacker controls
128 × X Kbps of attack traffic. If the POP has an OC-192 link
(10 Gbps) to the rest of the ISP, an attacker needs 78, 000 hosts to
saturate the POP’s links. If the POP has a capacity of 20 Gbps,
the attacker needs 156, 000 hosts. Although we have seen attack
clouds of that magnitude (or larger), the ones used in actual attacks
seem to be much smaller in practice. Thus, an overlay-protected
system should be able to withstand the majority of DDoS attacks.
If attacks of that magnitude are a concern, we can expand the scope
of the filtering region to neighboring POPs of the same ISP (and
their routers); this would increase the link capacity of the filtered
region significantly, since each of the neighboring POPs see only a
fraction of the attack traffic. Our discussion is not meant as a proof
of security against DDoS attacks, but as an exploration of the lim-
its of such mechanisms. It is important to note that these findings
agree with other similar studies [22].

These numbers give us a baseline from which to determine how
much more resistant our spread-spectrum system is compared to a
basic indirection approach. Assume an attacker can create an ef-
fective attack bandwidth of K Mbps, and that each overlay node
can be disabled through an attack sustaining D Mbps; thus, an at-
tacker can simultaneously disable K

D
out of the N overlay nodes.

When an attacker can observe a client’s actions (i.e., which overlay
nodes a client routes traffic through), the effectiveness of the attack
(defined as the probability of disrupting communications) is 1, as
long as K > D. What is a likely value for D? The Click software
router with commodity hardware [15] claims a switching capacity
of 435,000 64-byte packets, or 222 Mbps. Taking a more conserva-
tive value of 50 Mbps, an attacker can saturate an overlay node by
using 1, 740 hosts. Furthermore, an attacker controlling 100, 000
nodes (not enough to directly attack the target) can render approxi-
mately 60 geographically dispersed, well connected overlay nodes
inaccessible at a time. Assuming an overlay network of a size com-
parable to Akamai’s (approximately 2, 500 nodes), the attacker can
render 2.5% of the overlay unusable.

To guarantee packet delivery at a given probability Ps in the
presence of such attacks, we need to select the number of packet
replicas R such that Ps = 1 − (K

D×N
)R or Ps = 1 − fR, where

f is the percentage of the attacked nodes. If we assume that users
initiate TCP connections with the protected server, then Ps should
be no less than 90%, otherwise the connections stall [19]. From the
formula for Ps and using the fact that Ps = 0.9 for TCP, we can
compute the required bandwidth given the size of the network, or
the fraction of nodes that need to be successfully attacked to disrupt
the user’s TCP session. For example, if we send each packet twice,
i.e., have a packet replication R = 2, the attacker has to bring down
32% of the nodes participating in the overlay network. For an over-

4For example, see http://global.mci.com/about/
network/interactive

lay network of 2, 500 nodes, an attacker needs to gain access and
coordinate a network of 1, 375, 000 zombies. In addition, if we
increase the packet replication value to R = 3, the percentage of
nodes that need to get compromised jumps to 46% — almost half
of the nodes in the overlay network.

To avoid imposing extra traffic on the network by replicating
each packet, we can instead select the packets that we replicate
at random with a probability Pr . Now Ps becomes Ps = 1 −

f(1 − Pr(1 − f)) since the probability that a packet will fail the
first time transmitted is f and the failure probability for the possi-
bly replicated packet is (1−Pr(1−f)). Again, using Ps = 0.9 for
TCP, we see that if we replicate 50% of the transmitted packets, the
fraction of the nodes that need to get compromised is 17%, which
is significant for medium to large overlay networks. Another ap-
proach to replication is to use forward error correction codes such
as Erasure Codes, which we intend to examine in future work.

We experimentally verified the validity of this analysis with the
prototype on the PlanetLab network, as we discuss next.

5. PERFORMANCE EVALUATION
Just as important as security is the impact of our system on regu-

lar communications, whether under attack conditions or otherwise;
a prohibitively expensive mechanism (in terms of increased end-
to-end latency or decreased throughput) is obviously not an attrac-
tive solution. In our experiments, we measured the communication
overhead of our system in terms of end-to-end throughput and la-
tency. To provide a realistic network environment, we deployed
and used our prototype with 76 PlanetLab nodes.

Figure 5: Throughput results in KB/sec. When we increase the repli-
cation, the results become closer to what we have observed for the direct
connection (1250 KB/sec).

For our evaluation, we used a testbed consisting of Planetlab ma-
chines located at various sites in the continental US. Those ma-
chines were running UML Linux on commodity x86 hardware and
were connected using Abilene’s Internet-2 network. Using these
fairly distributed machines, we constructed our overlay network of
access points by running a small forwarding daemon on each of
the participating machines. In addition, we used two more ma-
chines, acting as client and server respectively. In our experiments,

we measured link characteristics such as end-to-end latency and
throughput when we interposed the overlay network of access points
between the client and the target server. To measure throughput,
we used a target server that was located at Columbia. For our la-
tency measurements, we used www.cnn.com as the target. In
both cases, the goal of the client was to establish a communication
with the target server. To do so, the client used UDP encapsu-
lation on the TCP packets generated by an SCP session and then
spread the UDP packets to the nodes participating on the overlay
network, as we described in Section 2.2. Those packets were in
turn forwarded to a pre-specified overlay node (the secret servlet).
This node decapsulated and forwarded the TCP frames to the target
server. Since our throughput connection measurements involve a
client and a server that were co-located, we effectively measured
the worst possible scenario (since our otherwise local traffic had to
take a tour of the Internet). A non-co-located server would result
in a higher latency and lower throughput for a direct client-server
connection, leading to comparatively better results when we use the
overlay. Surprisingly, in some cases we can achieve better latency
using the overlay rather than connecting directly to the server.

Figure 6: End-to-end average latency results for the index page and
a collection of pages for www.cnn.com. The different points denote the
change in the end-to-end latency through the overlay (To) when com-
pared to the direct connection (Td). Different lines represent different
sized overlays. Increasing the replication factor, and for larger net-
works, we get lower average latency results because of the multipath
effect on the transmitted packets.

Figure 5 shows that the impact on the downlink is only 33% in
the worst case scenario, and it is easily amended by adding packet
replication in the uplink direction. Again, we notice that the repli-
cation factor can cause a drop in the throughput for values > 100%
in small overlay networks. Looking at the end-to-end average la-
tency results in Figure 6, we notice that as we increase the replica-
tion factor, and for larger networks, we get better average latency
results. In the worst-case scenario, we get a 2.5 increase in latency,
which drops to 1.5 with 50% packet replication (i.e., probability of
replicating a packet of 50%).

Figure 7: Throughput results in KB/sec when we utilize the uplink of
our client under attack. The attack happens on a random fraction of
the overlay nodes. Packet replication helps us achieve higher network
resilience, something that we expected from our analytical results.

To measure the effectiveness of our system in the presence of at-
tacks, we performed an attack by bringing down overlay nodes at
random. In our experiment, the client kept spreading data across all
overlay nodes, since he was unaware which of the overlay nodes
were being attacked. We then varied the portion of the overlay
nodes we attacked and we measured the throughput of the result-
ing link. Figure 7 shows the decrease in the uplink throughput of
the system when under attack. The attack happens on a random
fraction of the overlay nodes. When we do not use any replication
and depend on TCP to “recover” the lost packets, the connection
performs relatively well when the losses are up to 9%-10% of the
total packets transmitted. Notice that as we increase the packet
replication factor, we achieve higher network resilience, something
that we also expected from our analysis. Corresponding results for
latency are given in Figure 8.

Finally, we measured the number of tickets a single overlay node
can generate. The ticket can be broken into four parts: the session
key generation, the AES encryption of the ticket, the computation
of the UMAC tag and the encryption of the packet using the client’s
public key. It appears that even for small size public keys (e.g., 256
bits) the public key encryption takes up 95% of the ticket genera-
tion time. The number of tickets that can be produced by an overlay
node decreases as we increase the size of the client’s public key, as
shown in Figure 9. Using a 3GHz Intel Pentium 4 machine, we
were able to generate approximately 11,862 tickets/sec. In an ION
with 128 nodes, the ticket-generation subsystem could sustain 1.5
million new users per second, assuming a random distribution of
users across ION nodes.

6. RELATED WORK
As a result of its increased popularity and usefulness, the In-

ternet contains both interesting targets and enough malicious and
ignorant users that DoS attacks are simply not going to disappear
on their own; indeed, although the press has stopped reporting such

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

 0 10 20 30 40 50

L
at

en
cy

 (
s)

% Node Failures

 0%
 50%

 100%
 200%

Figure 8: Impact of attacks against the overlay network on end-to-end
latency. Different curves represent varying levels of packet replication.
With 200% packet replication, latency increases by less than 25% when
up to 50% of nodes are rendered unusable by an attacker.

Figure 9: Tickets/sec produced from a single overlay node as we vary
the size of the client’s public key. The machine used was a 3GHz Intel
Pentium 4 with 1GB of RAM.

incidents, recent studies have shown a surprisingly high number of
DoS attacks occurring constantly throughout the Internet [17, 5].

SOS [13] first suggested the concept of using an overlay network
to preferentially route traffic from legitimate users to a secret node
(that can change over time), which is allowed to reach the protected
server. All other traffic is restricted at the ISP’s POP, which in most
cases has enough capacity to handle all attack and legitimate traf-
fic (the bottleneck is typically in the protected server’s access link).
Since the routers perform white-list filtering, the overhead of the
system is negligible. In the original SOS approach, admission to
the overlay was done based on public-key (or, more generally, cryp-
tographic) authentication, requiring prior knowledge of the set of
legitimate users. WebSOS [18] relaxes this restriction by adding a
Graphic Turing Test to the overlay, allowing the system to differen-
tiate between human users and attack zombies. MOVE [20] elim-
inates the dependency on network filtering at the ISP POP routers
by keeping the current location of the server secret and using pro-
cess migration to move away from targeted locations. Mayday

[1] explores separately the two main facets of the SOS architec-
ture, filtering and overlay routing, with several alternative mech-
anisms considered. It is observed that in some cases, the various
security properties offered by SOS can still be maintained using
mechanisms that are simpler and more predictable. However, some
second-order properties, such as the ability to rapidly reconfigure
the architecture in anticipation of or in reaction to a breach of the
filtering identity (e.g., identifying the secret servlet) are compro-
mised. In most other respects, the two approaches are very simi-
lar. An analysis of some security/performance design tradeoffs in
IONs appears in [23]. Wang et al. [22] used an online network
simulator to investigate the resistance of proxy networks (such as
SOS) against simple DoS attacks. They conclude that the resis-
tance of a proxy network to flooding attacks increases linearly with
its size. However, they assume that users can instantaneously detect
attacked ION nodes and switch to new ones with zero overhead, an
assumption that did not hold for any ION architecture prior to ours.

[24] is the first system to create stateless flow filtering by hav-
ing each router add “capabilities” to packets that traverse them; the
receiver of these packets is then responsible for sending these capa-
bilities to its peers, which will allow them to send traffic at higher
rates (privileged traffic). Unprivileged traffic is limited to a frac-
tion of the available bandwidth; thus, although a DoS attack can
prevent new connections from being established (by overloading
the control channel used to communicate these capabilities), exist-
ing connections will be unharmed. Estrin et al. first proposed a
capability-like mechanism for network packets in [8].

Gligor [9] proposed the use of a server that can produce tickets
at line speeds. Clients must obtain a ticket from this server be-
fore they are allowed to access a protected service. The approach
is primarily geared towards application-level DoS protection. An-
derson et. al [4] subsequently proposed a similar system for use
at the network layer of an Internet-like architecture designed with
a clean slate, assuming a distributed token server architecture and
rate-limiting/filtering traffic on routers based on these tokens.

7. CONCLUSIONS
We examined the vulnerability of indirection-based overlay net-

works (IONs), as used for DDoS protection, to more sophisticated
attackers than have been considered to date by proposed systems
such as SOS, I3, MayDay and Tor. Our scope is both the simple
types of flooding attacks, as well as more sophisticated attackers
that can eavesdrop the victim’s communication link and focus their
attack on the specific hosts the victim attempts to connect to. Even
with limited resources, a sophisticated attacker can disrupt all the
victim’s attempts to communicate with other nodes. We presented
an analytical model that quantifies the impact of such attacks on the
throughput of end-to-end communications, and quantified the re-
silience of ION DDoS defenses to simple congestion-based DDoS
attacks. To our knowledge, this is the first non-trivial attack model
for DoS attacks in the literature.

We proposed the use of a spread-spectrum-like paradigm to cre-
ate per-packet path diversity. Using the same analytical models, we
quantified the resistance resistance of our system to DDoS attacks
and we showed that a reasonably sized overlay network can resist
attacks much larger than we have seen to date. Our performance
measurements using an experimental prototype on PlanetLab show
that, despite the interjection of an overlay mechanism between com-
municating peers, there is very little to no increase in end-to-end
latency when our system uses packet replication, and that through-
put drops by less than 15% in all cases. Finally, we show that we
can withstand attacks that involve millions of attackers, causing up
to 40% of overlay nodes to become unreachable.

Our approach offers an attractive solution against congestion-
based denial of service attacks in most environments, as it does not
require modifications to clients, servers, protocols, or routers both
in terms of hardware and in terms of existing software. Our plans
for future work include a better characterization of the tradeoffs
that we have explored so far, by introducing a coding scheme for
the data transmission that will adapt to the network characteristics
of each path used. Furthermore, we are looking into mechanisms
to protect our system against attackers that can take over overlay
nodes, subverting part of the infrastructure. Finally, we are inter-
ested in deployment and use of such a protection system on a larger
scale than our experimental testbed to acquire operational experi-
ence in a real environment.

8. REFERENCES
[1] D. G. Andersen. Mayday: Distributed Filtering for Internet

Services. In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS), March 2003.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. N.
Rao. Improving Web Availability for Clients with MONET.
In Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI), May 2005.

[3] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan.
Best-Path vs. Multi-Path Overlay Routing. In Proceedings of
the Internet Measurement Conferencee, October 2003.

[4] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet Denial-of-Service with Capabilities. In Proceedings
of the 2nd Workshop on Hot Topics in Networks (HotNets-II),
November 2003.

[5] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson.
The Internet Motion Sensor: A Distributed Blackhole
Monitoring System. In Proceedings of the ISOC Symposium
on Network and Distributed Systems Security (SNDSS),
pages 167–179, February 2005.

[6] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway. UMAC: Fast and Secure Message
Authentication. Lecture Notes in Computer Science,
1666:216–233, 1999.

[7] T. Diament, H. K. Lee, A. D. Keromytis, and M. Yung. The
Dual Receiver Cryptogram and Its Applications. In
Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS), October 2004.

[8] D. Estrin, J. Mogul, and G. Tsudik. VISA Protocols for
Controlling Inter-Organizational Datagram Flow. IEEE
Journal on Selected Areas in Communications, May 1989.

[9] V. D. Gligor. Guaranteeing Access in Spite of Distributed
Service-Flooding Attacks. In Proceedings of the Security
Protocols Workshop, April 2003.

[10] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M.
Levy, and D. Wetherall. Improving the Reliability of Internet
Paths with One-hop Source Routing. In Proceedings of the
6th Symposium on Operating Systems Design &
Implementation, December 2004.

[11] J. Ioannidis and S. M. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In
Proceedings of the ISOC Symposium on Network and
Distributed System Security (SNDSS), February 2002.

[12] M. Jakobsson and A. Juels. Proofs of Work and Bread
Pudding Protocols. In Proceedings of the IFIP TC6 & TC11
Joint Conference on Communications and Multimedia
Security, September 1999.

[13] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure

Overlay Services. In Proceedings of ACM SIGCOMM, pages
61–72, August 2002.

[14] A. D. Keromytis, J. L. Wright, and T. de Raadt. The Design
of the OpenBSD Cryptographic Framework. In Proceedings
of the USENIX Annual Technical Conference, pages
181–196, June 2003.

[15] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems (ToCS), 18(3):263–297, August 2000.

[16] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted
Denial of Service Attacks. In Proceedings of ACM
SIGCOMM, pages 75–86, August 2003.

[17] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial-of-Service Activity. In Proceedings of the 10th

USENIX Security Symposium, pages 9–22, August 2001.
[18] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis,

V. Misra, and D. Rubenstein. Using Graphic Turing Tests to
Counter Automated DDoS Attacks Against Web Servers. In
Proceedings of the 10th ACM International Conference on
Computer and Communications Security (CCS), pages 8–19,
October 2003.

[19] E. M. Nahum, M.-C. Rosu, S. Seshan, and J. Almeida. The
effects of wide-area conditions on WWW server
performance. In Proceedings of the ACM SIGMETRICS,
pages 257–267, June 2001.

[20] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and
D. Rubenstein. MOVE: An End-to-End Solution To Network
Denial of Service. In Proceedings of the ISOC Symposium on
Network and Distributed System Security (SNDSS), pages
81–96, February 2005.

[21] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using Hard AI Problems For Security. In
Proceedings of EUROCRYPT, May 2003.

[22] J. Wang, X. Liu, and A. A. Chien. Empirical Study of
Tolerating Denial-of-Service Attacks with a Proxy Network.
In Proceedings of the 14th USENIX Security Symposium,
pages 51–64, August 2005.

[23] D. Xuan, S. Chellappan, and X. Wang. Analyzing the Secure
Overlay Services Architecture under Intelligent DDoS
Attacks. In Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS),
pages 408–417, March 2004.

[24] A. Yaar, A. Perrig, and D. Song. An Endhost Capability
Mechanism to Mitigate DDoS Flooding Attacks. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

APPENDIX

A. ANALYSIS OF SWEEPING ATTACKS
PROPOSITION 1. The percentage of users that will have to reset

their connections at least k > 1 times during the attack is:

Pk(tu, ta, pd) =

b tu

ta
c

X

i=1

P(k−1)(tu − i · ta, ta, pd) · pd (1)

with tu: avg user time, ta: attack time, pd: % of nodes attacked
simultaneously. We assume immediate attack detection (td = 0).

PROOF. The percentage of users that will be affected by the at-
tack at least once is:

P1(tu, ta, pd) =
tu

ta

· pd (2)

Notice that the above probability can go above 100% if tu >>

ta, meaning that the attack will certainly affect the clients possibly
more than once. When P1 > 100% we say that P1 = 100%, i.e.,
P1 = min(100, tu

ta
· pd). We will prove (1) using induction.

Base case for k = 2, in that case (1) becomes:

P2(tu, ta, pd) =

b tu

ta
c

X

i=1

P1(tu − i · ta, ta, pd) · pd (3)

In our model, the attacker can only attack tu

ta
· pd sets of nodes.

We say that a client suffers an attack when the set of overlay nodes
that he is connected to is attacked. The probability for a client to
be at the first node is pd. After realizing an attack is underway, in
td time, the client will select a new overlay node. The probability
that this new overlay node is part of the attack window, and thus
the client will suffer another attack, is P1(tu − ta, ta, pd) since the
attacker will have to spent ta time attacking the first set of nodes.

Thus, the probability to be attacked at least twice when the client
happens to be in the first set of attacked nodes is P1(tu−ta, ta, pd)·
pd. For a client connected to the second set of nodes the probability
to be attacked twice is P1(pd, tu − 2 · ta, ta) · pd since the attacker
will have to spent 2 · ta time attacking the first and the second node
before reaching any other node. Another way of saying the same
thing is that the user will have tu − 2 · ta time left in the system re-
ducing the probability of being attacked. A client that is connected
to a node in the ith set has a probability P1(tu − i · ta, ta, pd) to
be re-attacked. A client has probability pd to be connected to a set
and by summing up the fraction of clients connected to ith set for
which tu − i · ta > 0, we get (3).

We assume that the formula holds for k = j and we will prove
that it holds for k = j+1. Pk is the probability that a client will be
re-attacked at least k times. If the client is on the first set attacked,
the probability of being attacked j + 1 times is the probability of
initially being at the first set, which is pd, multiplied by the proba-
bility that he will select overlay nodes which can be re-attacked j

times in the tu − ta remaining time. The probability of both be-
ing in the first attacked set and being re-attacked j more times is:
P 1

j+1 = Pj(tu − ta, ta, pd) · pd. For a node that connects initially
to the ith set we get that the probability of being attacked j + 1
times is P i

j+1 = Pj(tu − i · ta, ta, pd) · pd. If we sum all the sets
i for which tu − i · ta > 0, we get (1).

PROPOSITION 2. In the general case. where td ≥ 0, the per-
centage of nodes that will have to reset their connections at least
k > 1 times during the attack is:

a) if td ≥ ta we have that: Pk(tu, ta, pd) = (
tu

ta

· pd)
k

b) if td < ta we have:

Pk(tu, ta, pd) =

b
tu

ta
c

X

i=1

P(k−1)([tu + td − i · ta], pd, ta) · pd (4)

PROOF. To compute the probability when td > 0, we assume
that the user is not going to be discouraged by the attack and will
want to use the system for tu time.

We derive (2) using the fact that since td ≥ ta, the client will
have the same probability to select a set of overlay nodes that will
be attacked as it had at the beginning of the attack: tu

ta
· pd. The

percentage of the users that will be attacked k times is (tu

ta
· pd)

k

Equation (4) follows from proposition 1 if we change the usage
time of a user from tu to tu + td, i.e., the user will have to pay
a penalty of td each time he is attacked, increasing his total time
usage time by the same amount.

