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ABSTRACT

Topics in Genomic Signal Processing

Guido Hugo Jajamovich

Genomic information is digital in its nature and admits mathematical mod-

eling in order to gain biological knowledge. This dissertation focuses on

the development and application of detection and estimation theories for

solving problems in genomics by describing biological problems in mathe-

matical terms and proposing a solution in this domain. More specifically, a

novel framework for hypothesis testing is presented, where it is desired to

decide among multiple hypotheses and where each hypothesis involves un-

known parameters. Within this framework, a test is developed to perform

both detection and estimation jointly in an optimal sense. The proposed

test is then applied to the problem of detecting and estimating periodicities

in DNA sequences. Moreover, the problem of motif discovery in DNA se-

quences is presented, where a set of sequences is observed and it is needed

to determine which sequences contain instances (if any) of an unknown mo-

tif and estimate their positions. A statistical description of the problem is

used and a sequential Monte Carlo method is applied for the inference. Fi-

nally, the phasing of haplotypes for diploid organisms is introduced, where

a novel mathematical model is proposed. The haplotypes that are used

to reconstruct the observed genotypes of a group of unrelated individuals

are detected and the haplotype pair for each individual in the group is esti-



mated. The model translates a biological principle, the maximum parsimony

principle, to a sparseness condition.
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Chapter 1

Introduction

Watson and Crick showed that the molecular structure of deoxyribonucleic

acid (DNA) has “great simplicity” as it can be described as a double helix

consisting of two strands [1]. Each strand is composed of a chain of bases

of four types: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T),

each with different biochemical properties. The two strands run in opposite

directions and are connected to each other by chemical pairing of each base

on one strand to a specific partner on the other strand. The pairing is es-

tablished only between complementary bases also called base pairs; that is,

A forms an hydrogen bond with its complementary base T , and C with G.

This fact constrains the two strands to consist largely of the same informa-

tion. Within this description, information in DNA is digital in its nature

and is encoded as a sequence where each character belongs to the alphabet

{A,C, T,G}. The analogy with a computer is evident, whereas in the latter

case, information is encoded digitally as sequences of zeros and ones.

The central dogma of molecular biology describes how biological infor-
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mation is transferred [2, 3]. The normal flow of this information is from

DNA to ribonucleic acid (RNA) (transcription) and from RNA to proteins

(translation). Proteins are an essential part of organisms and are involved in

most of the processes within cells. A protein consists of a sequence of amino

acids that is defined by the sequence of bases in a DNA segment called a

gene.

The genome comprises of most DNA of an organism containing all the

biological information needed to build and maintain that organism. It in-

cludes both genes and other segments of DNA. For example, the human

genome is comprised of approximately 25, 000 genes and is around 3 billion

base pairs long [4]. Each cell of an organism contains a complete copy of

the genome, and despite the fact that the genome is the same in each cell,

cells actually produce different amounts and types of proteins. Moreover,

a cell produces different proteins at different stages within its cycle of life.

Protein production is influenced by the internal environment and by signals

from other cells. Thus the transcription and translation of genes to proteins

is a part of a complex network of interactions involving genes, proteins,

and RNA, as well as other factors such as temperature and the presence or

absence of nutrients within the cell.

Genomics is an interdisciplinary field concerned with the study of the

genomes of organisms. This discipline has four main goals [5]. First, it aims

at determining the sequence of bases of the genomes of different species

and finding differences and similarities among the different species. Tradi-

tionally, the sequences have been read using Sanger’s method [6] with an

accuracy of 99.999%, but with limited level of parallelization [7]. The need
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for faster and cheaper methods has led to the advent of next-generation se-

quencing technologies that parallelized the reading process at the expense

of accuracy [7]. These technologies read short subsequences that need to

be assembled to determine the whole DNA sequence by solving ambiguous

repeat regions. Sequencers from 454 Life Sciences/Roche, Solexa/Illumina

and Applied Biosystems (SOLiD technology) read subsequences of 35 − 40

base pairs long [8]. This progress in high-throughput platforms is moving

towards an era of synthetic genomics and personalized medicine [9].

Second, the genes need to be discovered and the function of the associ-

ated proteins uncovered. Given the vast wealth of DNA sequences produced

by the sequencing platforms, it is required to identify the segments that

correspond to genes. Methods to find genes can be classified as those that

use a single genome and those that utilize a comparative approach, where

information about one organism is used to understand another related one.

In particular, methods that rely on only one genome make use of particular

properties of genes, like its statistical tendencies concerning the distribution

of triplet of DNA bases [5].

Third, it is important to understand how genes and proteins interact in

order to control cellular processes. It is known that different cells have a

copy of the same genome, but each cell produces a different set of proteins.

Moreover, the set changes over time, even though the genome continues

to be the same. The transcription and translation of genes is typically

controlled by complex networks of regulatory interactions which involves

proteins attaching to highly specific nucleic acid sequences activating or

repressing the amount of protein generated by a given gene. These networks
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need to be uncovered in order to understand the underlying mechanisms used

by cells.

Fourth, genomics aims at discovering associations between gene muta-

tions and diseases. The genomes of any two organisms, even within a same

species, differ considerably as DNA sequences present variations. There are

multiple sources for these variations, such as mutations, leading to suscepti-

bility to diseases. For example, sickle-cell disease is an inherited hemoglobin

disorder characterized by red blood cells that assume an abnormal, less

malleable, sickle shape and occurs because of a mutation in the hemoglobin

gene [10].

This thesis focuses on solving problems in genomics by proposing novel

statistical and mathematical models, where the problem in hand can be

stated as a detection and estimation problem. In most of the aforementioned

problems, we have observations and we need, based on these observations,

to detect and estimate among different scenarios with unknown parameters.

1.1 Thesis Overview

In Chapter 2, the problem of detecting and estimating periodicities in DNA

sequences is introduced. DNA sequences present numerous types of reg-

ularities and repetitions related with the underlying structure of the se-

quences, e.g., a periodicity of 21 bases is linked with α-helix formation pro-

tein molecules [11] and a periodicity of three is identified with protein coding

regions of the DNA. In order to perform an optimal detection and estimation

of these periodicities, a novel framework is introduced for composite binary
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hypothesis testing, where the objective is to decide between two hypotheses

each of which involves unknown parameters of interest and to be estimated.

The existing approaches on composite hypothesis testing place the primary

emphasis on the detection part by solving this part optimally and treating

the estimation part suboptimally. The proposed framework, in contrast,

treats both problems simultaneously and in a jointly optimal manner. The

resulting test exhibits the flexibility to achieve any desired balance between

the detection and estimation performances. By exploiting this flexibility,

depending on the application in hand, this new technique offers the freedom

to put different emphasis on the detection and estimation subproblems. The

proposed optimal joint detection and estimation framework is also extended

to multiple composite hypothesis test. The proposed test is then applied

to the problem of detecting and estimating periodicities in DNA sequences,

where it is shown the advantages of the new framework compared to the

classical Neyman-Pearson approach and the GLRT [12].

In Chapter 3, the problem of motif discovery in DNA sequences is ex-

amined. Motifs occur in many places within the genome, and they usually

carry evolutionary or functional significance. In particular, genes with in-

stances of a motif nearby often indicate that they are being regulated by

the same protein, which can reveal gene regulatory relationships. In a mo-

tif discovery problem, we are given a set of DNA sequences to discover a

common motif that is shared within these sequences. A priori knowledge

of such motif features as length or composition is likely to either be incom-

plete, uncertain, or even entirely absent. We consider the number, length,

and locations of individual motif instances in each sequence to be unobserv-
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able directly. The available data consists solely of the sequences themselves,

wherein motif patterns of interest, which remain to be discovered, may (or

may not) be embedded. The proposed approach for motif discovery is based

on a statistical description of the problem within a Bayesian framework and

it outperforms the traditional motif discovery approaches [13].

Finally, the problem of haplotype inference is presented in Chapter 4. A

haplotype is the set of bases in DNA sequences where variations are known

to happen. In diploid organisms, haplotypes come in pairs, one inherited

from each parent, and the knowledge of the haplotype pair of an individual

can be used to predict diseases, help designing drugs and it is key to the

development of personalized medicine. However, experimentally determin-

ing haplotypes is expensive and time-consuming, so genotypes are usually

measured instead. A genotype is a single set representation of the haplotype

pair that needs to be phased in order to recover the haplotype pairs, which

is not possible if only one genotype is observed. However, given the set of

genotypes for a group of unrelated individuals, it is possible to infer the

haplotype pair for each individual based on side-information from popula-

tion genetics: the maximum parsimony principle. Two related formulations

of the haplotype inference problem are proposed that translate the maxi-

mum parsimony principle into the sparse representation of genotypes. The

proposed solutions are tested with different data sets and the performances

are compared with the state-of-the-art methods, achieving similar or better

results [14].

Each chapter is self-contained, has its own notation and can be read

independently.
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Chapter 2

Optimal Detection and Estimation:

Discovering Periodicities in DNA

Sequences

2.1 Introduction

Applications that involve simultaneous detection and parameter estimation

are frequently found in practice. Composite hypothesis testing involves mak-

ing a decision among multiple hypotheses, and upon deciding in favor of one

hypothesis, also making an estimate of some unknown parameters associated

with that hypothesis. It has applications in a broad range of areas such as

wireless communications, genetics, neuroscience and finance.

It is well established how to solve, optimally, the detection problem and

the estimation problem separately. But little is known as to how to treat the

joint detection and estimation problem optimally. These two subproblems

in composite hypothesis testing can be solved separately in a decoupled
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manner, where given a constraint on the probability of false alarm, detection

is performed first to decide among the different hypotheses by using the

Neyman-Pearson test [15] that achieves the optimal detection performance.

Then, Bayesian estimation can be employed to estimate the parameters

associated with the hypothesis resulted from the detection step without

taking into account the uncertainty of the detection step. Such an approach

guarantees the optimal detection performance but there is no control over

the estimation performance.

Another common approach to composite hypothesis testing is the well-

known generalized likelihood ratio test (GLRT). This test first performs the

maximum-likelihood (ML) estimation of all unknown parameters and then

replaces the unknown parameters with their ML estimates, transforming

the original problem into a simple hypothesis testing problem. This latter

detection problem is then solved through the likelihood ratio test such that

a constraint on false alarm probability is satisfied. In GLRT, the primary

emphasis is on the detection performance and the estimation performance is

treated as a secondary performance measure. This test offers no flexibility

in terms of detection and estimation performance tradeoff. Moreover, it is

known that the GLRT is not always optimal [16, 17] in a Neyman-Pearson

sense; that is, among the decision rules with a constraint on the probability

of false alarm, it does not necessarily minimize the probability of miss de-

tection. However, optimality results are known for this test in the limiting

case of a large number of observations [18]. Note that when the hypotheses

are simple ones, the GLRT becomes the Neyman-Pearson test.

An alternative approach is given in [19], where a test is developed that is
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optimal under the Bayesian criterion, i.e., in the sense of minimum average

risk under different coupling schemes between the detection and estimation

tasks. The test assumes, however, that the two hypotheses correspond to

a signal in noise and noise alone respectively, and allows only the signal to

contain unknown parameters. In [20], the theory in [19] is extended to the

multiple hypothesis testing case, where the unknown parameters need to be

energy-type parameters, e.g, amplitude and duration of a signal. Yet an-

other approach was introduced in [21], where the error probabilities under

the two hypotheses are replaced by estimation costs. The test is found by

constraining the estimation cost under the nominal hypothesis while opti-

mizing the corresponding cost under the alternative hypothesis.

In [22], a multi-hypothesis test is proposed based on the worst-case es-

timation and worst-case detection performances subject to a false-alarm

constraint. The unknown parameters are fixed, nonrandom and belong to

a finite discrete set, which makes it possible to convert the estimation sub-

problem to an extra detection subproblem. More recently, in [23], the com-

bined problem is treated for the case that only the nominal hypothesis has

unknown parameters and all parameters in the alternative hypothesis are

known. A new test is proposed based on an optimization formulation with

an objective function that is associated with the estimation performance

and with constraints on the detection performance. In deriving the test, the

fact that unknown parameters are associated with only one hypothesis plays

a crucial role, which makes it possible to show that the constraints on the

detection performance are achieved with equality. This fact further simpli-

fies the objective estimation performance measure, making the extension to
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the general case with unknown parameters in both hypotheses a nontrivial

problem.

In this chapter we allow both hypotheses to have unknown parameters,

in order to develop the general theory of optimal joint detection and esti-

mation. We further extend the proposed framework to the general multiple

hypothesis testing problem with unknown parameters associated with each

hypothesis. The proposed optimal test provides the freedom to trade off

detection and estimation accuracies. As an application of the proposed the-

ory, we solve the problem of detecting and estimating periodicities in DNA

sequences.

The remainder of the chapter is organized as follows. Section 2.2 in-

troduces the composite hypothesis test and formulates the optimal joint

detection and estimation problem. We develop the general theory in Sec-

tion 2.3 and apply it to the periodicity detection and estimation in DNA

sequences in Section 2.4.

2.2 Joint Detection and Estimation

2.2.1 Composite Hypothesis Test

Let X be an observation signal and consider the following composite binary

hypothesis testing problem:

H0 : X ∼ f0(X | θ0), with θ0 ∼ π0(θ0),

and H1 : X ∼ f1(X | θ1), with θ1 ∼ π1(θ1),
(2.1)
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where fi(X | θi) and πi(θi) are known probability density functions (pdfs)

for i ∈ {0, 1}. Under hypothesis Hi the distribution of the observation be-

longs to an ensemble of distributions fi(X | θi) specified by random param-

eter θi with the prior distribution πi(θi). We wish to develop a mechanism

that decides between H0 and H1 reliably and furthermore, when it decides

in favor of Hi also provides an accurate estimate of the related unknown

parameter θi.

Both the GLRT and a Neyman-Person test followed by a Bayesian es-

timation solve the above combined detection and estimation problem by

decomposing the joint problem into two subproblems and solving each op-

timally. For instance, in the latter case, the Neyman-Pearson optimum

test is used for detection and the optimum Bayesian estimator is used for

parameter estimation. Treating each subproblem independently does not

necessarily yield the optimum overall performance. Both approaches are

not capable of emphasizing either subproblem according to the need of the

specific application.

Here we formulate the combined problem in a more natural way by pos-

ing the combined detection and estimation tasks in a way that captures

both detection and estimation accuracies. In particular, we aim to mini-

mize an estimation-pertinent cost subject to appropriate constraints on the

tolerable levels of detection errors, i.e., miss detection and false alarm er-

ror probabilities. The main feature of this approach is that it provides the

freedom to strike any desired balance between the detection and estimation

performances.
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2.2.2 Background

One approach for designing a test when we are interested in only the detec-

tion performance but not the estimation performance is the Neyman-Pearson

method [15], which maximizes the detection probability given a constraint

on the probability of false alarm. Therefore, in this approach, the estima-

tion performance is suboptimal in favor of achieving the optimal detection

performance. The optimal Neyman-Pearson test is given in the following

lemma.

Lemma 1 (Neyman-Pearson) The test that maximizes the detection prob-

ability subject to an upper bound on the false alarm probability is

f1(X)

f0(X)

H1

R
H0

λNP ,

where

fi(X) =

∫

fi(X | θi) πi(θi) dθi , for i ∈ {0, 1} ,

and the threshold λNP is selected to satisfy the false alarm constraint with

equality.

This test does not consider the estimation performance. More specifically,

it first carries out the detection test and if it decides in favor of Hi, in

the second step it provides an estimate for θi, given that it has decided

the true hypothesis is Hi. This two-step approach is not optimal from the

joint detection and estimation point of view. In this work, we look for

an alternative test that takes into account both detection and estimation

qualities and is optimal in that sense.
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2.2.3 Definitions

In order to decide between the two hypotheses, we adopt the class of ran-

domized tests. Given the observation X, we assign the probabilities δ0(X)

and δ1(X) to accept hypotheses H0 and H1, respectively. As δ0(X) and

δ1(X) are probabilities, we require that δ0(X), δ1(X) ≥ 0 and moreover, as

we always decide between the two hypotheses, the randomized test needs to

satisfy δ0(X) + δ1(X) = 1. Note that classical deterministic tests are spe-

cial cases of randomized tests. Furthermore, we denote the true hypothesis

and the decision of the detector by T ∈ {H0,H1} and D ∈ {H0,H1}, respec-

tively. Therefore, given the randomized tests {δ0(X), δ1(X)}, the Type-I

and Type-II detection error probabilities are

P1(δ0, δ1)
△
= P(D = H1 | T = H0)

and P2(δ0, δ1)
△
= P(D = H0 | T = H1) , (2.2)

respectively. Once we decide that the observation X is drawn from hy-

pothesis Hi, we are also interested in providing an estimate θ̂i(X) for θi.

In order to capture the estimation quality, we assign the non-negative costs

C0(θ̂0(X),θ0) and C1(θ̂1(X),θ1) to the estimators θ̂0(X) for θ0 and θ̂1(X)

for θ1 respectively. Two popular cost functions corresponding to the mini-

mum mean-squared error (MMSE) and maximum a-posteriori (MAP) esti-
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mation criteria are

MMSE : C(θ̂(X),θ) = ‖θ̂(X)− θ‖2 ,

and MAP : C(θ̂(X),θ) =











0 if ‖θ̂(X)− θ‖ ≤ δ ≪ 1,

1 otherwise.

For given cost functions C0(θ̂0(X),θ0) and C1(θ̂1(X),θ1), define the fol-

lowing average posterior cost functions, given by

Ci,p(θ̂i(X) |X)
△
= Eθi

[Ci(θ̂i(X),θi) |X], i = 0, 1 , (2.3)

where the expectation is with respect to θi. Therefore, the minimum average

posterior cost is

C
∗
i,p(X)

△
= inf

U
Ci,p(U |X), (2.4)

and the minimizer of the posterior cost, which is the well-known Bayesian

estimator, is [15, pp. 142]

θ̂
∗
i (X)

△
= arg inf

θ̂i(X)
Ci,p(θ̂i(X) |X) . (2.5)

2.2.4 Problem Formulation

Given two non-negative cost functions C0(θ̂0(X),θ0) and C1(θ̂1(X),θ1), we

are interested in providing an estimate for θi only when we decide in favor of

Hi. Therefore, the estimation cost in estimating θi is meaningful only when

we accept hypothesis Hi. Hence, to characterize the performance measure,
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we consider only the average estimation cost for estimating θi under hypoth-

esis Hi when deciding in favor of Hi, which for a given randomized policy

{δ0(X), δ1(X)} and estimator θ̂i(X) is given by

Li(δ0, δ1, θ̂i)
△
= Ei[Ci(θ̂i(X),θi) | D = Hi] , (2.6)

where the expectation is with respect to X and θi. In order to capture the

estimation quality of both parameters θ0 and θ1, we propose to characterize

the overall performance measure using the maximum of these two average

estimation costs. Hence, for a given randomized policy {δ0(X), δ1(X)} and

estimators {θ̂0(X), θ̂1(X)} the performance measure to be optimized is1

L(δ0, δ1, θ̂0, θ̂1)
△
= max

i∈{0,1}
Li(δ0, δ1, θ̂i) . (2.7)

The above performance measure only accounts for the estimation perfor-

mance. In order to incorporate the detection performance we impose upper

bound constraints on the detection error probabilities as

P1(δ0, δ1)
△
=

∫

X

δ1(X)f0(X)dX ≤ α,

and P2(δ0, δ1)
△
=

∫

X

δ0(X)f1(X)dX ≤ β, for α, β ∈ (0, 1). (2.8)

Hence, the joint problem of determining the optimal detection rules {δ0(X), δ1(X)}

and estimators {θ̂0(X), θ̂1(X)} is

1In the remainder of the chapter we often replace δi(X) and θ̂i(X) by δi and θ̂i,
respectively, for notational simplicity.
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P(α, β)
△
=























min{δ0,δ1,θ̂0,θ̂1}
L(δ0, δ1, θ̂0, θ̂1),

s.t. P1(δ0, δ1) ≤ α,

P2(δ0, δ1) ≤ β,

(2.9)

where we also have the implicit constraints δ0(X)+δ1(X) = 1 and δ0(X), δ1(X) ≥

0.

2.3 Optimum Joint Detection and Estimation

In this section we obtain the optimal choices of the detection rules

{δ0(X), δ1(X)} and the estimators {θ̂0(X), θ̂1(X)} that solve the problem

P(α, β) given in (2.9). In order to proceed we provide the following re-

marks. Note that there exists an inherent tradeoff between the estimation

and detection performances as the detection (estimation) performance can

be traded in favor of achieving a better estimation (detection) performance.

First we note that the constraints P1(δ0, δ1) ≤ α and P2(δ0, δ1) ≤ β are not

necessarily always feasible simultaneously. The following remark provides

conditions for the feasibility of the pair (α, β).

Remark 1 (Feasibility) For the given constraint P1(δ0, δ1) ≤ α, the Type-

II detection error P2(δ0, δ1) is known to be minimized by the Neyman-Pearson

test. Let us define β∗(α) as the corresponding minimum of P2(δ0, δ1). Hence,

the two constraints P1(δ0, δ1) ≤ α and P2(δ0, δ1) ≤ β are feasible simultane-

ously if and only if

β ≥ β∗(α). (2.10)

Remark 2 The proposed framework of joint detection and estimation trades
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the detection quality, by tolerating a detection error probability that is higher

than that is achievable by the Neyman-Pearson test, in favor of enhancing

the estimation quality. Allowing for such tradeoff between estimation and

detection qualities offers the freedom of putting appropriate emphasis on

either the detection or the estimation part, depending on the application.

We find the solution to P(α, β) by finding the optimal estimators

{θ̂0(X), θ̂1(X)} for fixed detection rules {δ0(X), δ1(X)} and then obtaining

the optimal choices of the detection rules. In other words, we find the

solution of P(α, β) by solving

P(α, β)
△
=























min{δ0,δ1} L̃(δ0, δ1),

s.t. P1(δ0, δ1) ≤ α,

P2(δ0, δ1) ≤ β,

(2.11)

where

L̃(δ0, δ1)
△
= min

{θ̂0,θ̂1}
L(δ0, δ1, θ̂0, θ̂1) . (2.12)

2.3.1 Estimation

The optimal estimators for fixed detection rules {δ0(X), δ1(X)} are found

as the minimizers of the function L(δ0, δ1, θ̂0, θ̂1), which are characterized

by the following theorem.

Theorem 1 The solution to the optimization problem

(θ̂
∗

0, θ̂
∗

1) = arg min
{θ̂0,θ̂1}

L(δ0, δ1, θ̂0, θ̂1)
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is

θ̂
∗
i (X)

△
= arg inf

θ̂i(X)
Ci,p(θ̂i(X) |X) , (2.13)

and

L̃(δ0, δ1) = min
θ̂0,θ̂1

L(δ0, δ1, θ̂0, θ̂1) = max
i∈{0,1}

{
∫

X
δi(X) fi(X) C∗

i,p(X) dX
∫

X
δi(X)fi(X) dX

}

.

Proof: From (2.6) and (2.7) recall that

L(δ0, δ1, θ̂0, θ̂1) = max
i∈{0,1}

Li(δ0, δ1, θ̂i) . (2.14)

LetM(Ω, δ0, δ1, θ̂0, θ̂1) be the convex combination of L0(δ0, δ1, θ̂0) and

L1(δ0, δ1, θ̂1), Ω ∈ [0, 1], that is,

M(Ω, δ0, δ1, θ̂0, θ̂1)
△
=
{

ΩL0(δ0, δ1, θ̂0) + (1− Ω)L1(δ0, δ1, θ̂1)
}

. (2.15)

Then (2.14) can be rewritten as a function of L(Ω, δ0, δ1, θ̂0, θ̂1) as

L(δ0, δ1, θ̂0, θ̂1) = max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1)

= M(Ω∗, δ0, δ1, θ̂0, θ̂1), (2.16)

where Ω∗ = 1 if L0(δ0, δ1, θ̂0) ≥ L1(δ0, δ1, θ̂1), and Ω∗ = 0 otherwise.

In what follows, we will first show that for a given Ω, we have

min
θ̂0,θ̂1

M(Ω, δ0, δ1, θ̂0, θ̂1)=M(Ω, δ0, δ1, θ̂
∗
0, θ̂

∗
1) (2.17)

=ΩL0(δ0, δ1, θ̂
∗

0) + (1− Ω)L1(δ0, δ1, θ̂
∗

1),
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where θ̂
∗

0 and θ̂
∗

1 are defined in (2.13). We then show that

min
θ̂0,θ̂1

max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1) = max
0≤Ω≤1

min
θ̂0,θ̂1

M(Ω, δ0, δ1, θ̂0, θ̂1); (2.18)

and from these two results we conclude the proof.

In order to show (2.17), note that

Li(δ0, δ1, θ̂i) = Ei[Ci(θ̂i(X),θi) | D = Hi]

=
Ei[δi(X)Ci(θ̂i(X),θi)]

Pi (D = Hi)
, (2.19)

where

Pi(D = Hi) =

∫

X

δi(X) fi(X) dX . (2.20)

We have the following lower bound on Ei[δi(X)Ci(θ̂i(X),θi)] for any given

decision rule θ̂i(X), for i ∈ {0, 1}.

Ei[δi(X)Ci(θ̂i(X),θi)]=

∫

θi

∫

X

δi(X)Ci(θ̂i(X),θi)fi(X | θi)πi(θi)dXdθi

=

∫

X

δi(X)

∫

θi

(

Ci(θ̂i(X),θi)fi(X | θi)πi(θi)dθi

)

dX

=

∫

X

δi(X)fi(X)

∫

θi

(

Ci(θ̂i(X),θi)πi(θi |X)dθi

)

dX

=

∫

X

δi(X)fi(X)Eθi
[C(θ̂i(X),θi) |X]dX

=

∫

X

δi(X)fi(X)Ci,p(θ̂i(X) |X)dX

≥

∫

X

δi(X)fi(X) inf
U

Ci,p(U |X)dX

=

∫

X

δi(X)fi(X)C∗
i,p(X)dX . (2.21)
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For each term of (2.17), these lower bounds can be achieved by setting the

estimators as

θ̂
∗

i (X)
△
= arg inf

θ̂i(X)
Ci,p(θ̂i(X) |X), (2.22)

which proves (2.17).

Now we proceed to prove (2.18) as follows. On one hand, note that

max
0≤Ω≤1

min
θ̂0,θ̂1

M(Ω, δ0, δ1, θ̂0, θ̂1)= max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂
∗
0, θ̂

∗
1)

≥min
θ̂0,θ̂1

max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1). (2.23)

On the other hand, we have that for any θ̂0 and θ̂1,

max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1) ≥ max
0≤Ω≤1

min
θ̂0,θ̂1

M(Ω, δ0, δ1, θ̂0, θ̂1), (2.24)

from which it is clear that

min
θ̂0,θ̂1

max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1) ≥ max
0≤Ω≤1

min
θ̂0,θ̂1

M(Ω, δ0, δ1, θ̂0, θ̂1).(2.25)

Combining (2.25) and (2.23), (2.18) is proven.

Moreover, we have

min
θ̂0,θ̂1

max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂0, θ̂1)= max
0≤Ω≤1

M(Ω, δ0, δ1, θ̂
∗
0, θ̂

∗
1) (2.26)

= max
i∈{0,1}

{
∫

X
δi(X) fi(X) C∗

i,p(X) dX
∫

X
δi(X)fi(X) dX

}

.
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Theorem 1 reveals that the classical Bayesian estimator is still optimal even

when using a subset of the data. Moreover, it shows that regardless of the

decision rule, the Bayesian estimator is still optimal. This means that when

dividing the joint problem as a detection problem followed by an estimation

problem and using a Neyman-Pearson test to decide among the hypotheses

in the first step, the Bayesian estimator is optimal for the second step.

2.3.2 Detection

Given the estimators obtained in (2.13) we next determine the optimal de-

tection rules δ0(X) and δ1(X). By recalling (2.11) the detection rule is the

solution to

P(α, β) =























min{δ0,δ1} L̃(δ0, δ1),

s.t. P1(δ0, δ1) ≤ α,

P2(δ0, δ1) ≤ β,

(2.27)

which is obtained in the following theorem.

Theorem 2 The problem P(α, β) has a globally optimal solution and the

decisions rules δi(X) are given by

δ1(X) =























1 if
f0(X)

[

a1
(

C
∗
0,p(X)− P(α, β)

)

− a3

]

≥

f1(X)
[

a2
(

C
∗
1,p(X)− P(α, β)

)

− a4

]

,

0 otherwise ,

(2.28)

where {ai} are non-negative and are selected such that 1) they satisfy
∑4

i=1 ai =

1 and 2) the detection constraints are satisfied.
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Proof: Note that from Theorem 1 we have

L̃(δ0, δ1) = min
{θ̂0,θ̂1}

L(δ0, δ1, θ̂0, θ̂1)

= max
i∈{0,1}

{
∫

X
δi(X) fi(X) C∗

i,p(X) dX
∫

X
δi(X)fi(X) dX

}

. (2.29)

Moreover, from the definitions of P1(δ0, δ1) and P2(δ0, δ1) in (2.8) we have

P1(δ0, δ1) =

∫

X

δ1(X) f0(X) dX

and P2(δ0, δ1) =

∫

X

δ0(X) f1(X) dX . (2.30)

Each term in (2.29) is quasi-linear in δi(X), and consequently, quasi-convex[24].

Since taking the weighted maximum preserves quasi-convexity, L̃(δ0, δ1) in

(2.29) is quasi-convex, and can be solved by finding the solutions to an

equivalent family of feasibility problems [24]. In particular, note that for

any given t ∈ R+, we have

L̃(δ0, δ1) ≤ t⇔

∫

X

δi(X) fi(X)
(

C
∗
i,p(X)− t

)

dX ≤ 0, i = 0, 1. (2.31)

Then, if for a given t, the following feasibility problem is feasible

Q(α, β, t)
△
=















































Find δ0, δ1,

s.t.
∫

X
δ0(X) f0(X)

(

C
∗
0,p(X)− t

)

dX ≤ 0,
∫

X
δ1(X) f1(X)

(

C
∗
1,p(X)− t

)

dX ≤ 0,
∫

X
δ1(X) f0(X) dX ≤ α,

∫

X
δ0(X) f1(X) dX ≤ β,

(2.32)
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then the solution P(α, β) of (2.27) is such that P(α, β) ≤ t. Conversely,

if (2.32) is not feasible, we have P(α, β) > t. Given a lower bound tmin

and an upper bound tmax known to contain P(α, β), then P(α, β) can be

found through a bi-section search, solving the feasibility problem of (2.32)

in each step. Note that (2.32) is equivalent to the following auxiliary convex

optimization problem

Q̃(α, β, t)
△
=















































min{δ0,δ1} γ,

s.t.
∫

X
δ0(X) f0(X)

(

C
∗
0,p(X)− t

)

dX ≤ γ,
∫

X
δ1(X) f1(X)

(

C
∗
1,p(X)− t

)

dX ≤ γ,
∫

X
δ1(X) f0(X) dX ≤ α+ γ,

∫

X
δ0(X) f1(X) dX ≤ β + γ,

(2.33)

in the sense that Q̃(α, β, t) ≤ 0 if and only if (2.32) is feasible.

The only remaining part is to solve Q̃(α, β, t) for any given t. For this

purpose, by taking into account the convexity of (2.33), we assign the non-

negative Lagrangian multipliers a
△
= (a1, a2, a3, a4), that satisfy

∑4
i=1 ai = 1

to the constraints of (2.33) and construct the Lagrange function as

L(δ0, δ1, γ,a)
△
= (1−

4
∑

i=1

ai)γ

+ a1

∫

X

δ0(X) f0(X)
(

C
∗
0,p(X)− t

)

dX

+ a2

∫

X

δ1(X) f1(X)
(

C
∗
1,p(X)− t

)

dX

+ a3

∫

X

δ1(X) f0(X) dX − a3α

+ a4

∫

X

δ0(X) f1(X) dX − a4β.
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Therefore, the Lagrangian dual function is

g(a)
△
= min

δ0,δ1,γ
L(δ0, δ1, γ,a) = min

δ0,δ1
(A0 +A1)− a3α− a4β

where

A0
△
=

∫

X

δ0(X)
[

a1f0(X)
(

C
∗
0,p(X)− t

)

+ a4f1(X)
]

dX ,

and A1
△
=

∫

X

δ1(X)
[

a2f1(X)
(

C
∗
1,p(X)− t

)

+ a3f0(X)
]

dX .

Therefore, the detection rules {δ0(X), δ1(X)} that minimize g(a) are:

δ0(X) = 1 if











a1f0(X)
(

C
∗
0,p(X)− t

)

+ a4f1(X) ≤

a2f1(X)
(

C
∗
1,p(X)− t

)

+ a3f0(X) ,

δ1(X) = 1 if











a1f0(X)
(

C
∗
0,p(X)− t

)

+ a4f1(X) >

a2f1(X)
(

C
∗
1,p(X)− t

)

+ a3f0(X),

or in a more compact form as in (2.28).

We can find the non-negative multipliers a, that satisfy ‖a‖1 = 1 and

the constraints of (2.33) by performing a numerical search. This can be done

by discretizing the interval [0, 1]× [0, 1]× [0, 1]× [0, 1] and for each point a in

the discretized grid such that ‖a‖1 = 1, test whether the resulting decision

rules in (2.28) achieve Q̃(α, β, t) ≤ 0 in (2.33).

The complete algorithm for finding the optimal detection rule and the

associated estimators is summarized in Table 1. This algorithm produces

the detection rule (2.28) and the estimators (2.13) associated with each
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hypothesis. Then given some observation X, we can compute the test result

and the corresponding parameter estimate.

Table 1: The proposed optimal algorithm for joint detection and estimation.

1: Compute the Neyman-Pearson test with probability of false alarm α, and

set the resulting probability of miss detection to be β∗(α) and the

estimation cost to be tmax

2: if β < β∗(α), the test is not feasible

3: break

4: else

5: Initialize tmin = 0

6: Evaluate the average posterior costs in (2.3)

7: repeat

8: t0 ← (tmin + tmax)/2

9: P(α, β)← t0

10: for every ã � 0 that satisfies ‖ã‖1 = 1

11: Compute the test in (2.28)

12: Evaluate P (ã)
△

= Q̃(α, β, t) of (2.33)

13: end for

14: if minã P (ã) ≤ 0

15: tmax ← t0

16: a← argminã P (ã)

17: else

18: tmin ← t0

19: end if

20: until tmax − tmin ≤ ǫ for ǫ sufficiently small

21: P(α, β)← tmax

22: Output the test in (2.28) and estimator of (2.13)

23: end else
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2.3.3 Example: Detection and Estimation with White Gaussian

Observations and Unknown Variances

To illustrate the proposed optimal procedure for joint detection and estima-

tion, we consider a simple example of Gaussian observations with unknown

variances. Specifically, the composite binary hypothesis test problem is given

by

H0 : X ∼ N (0, σ2
0IN ),

and H1 : X ∼ N (0, σ2
1IN ),

(2.34)

where IN is the N ×N identity matrix. The parameters to be estimated are

the variances σ2
0 and σ2

1 under the two hypotheses. An application of this

model is in the context of spectrum sensing in cognitive radio systems [25].

For the unknown variances, we assume the following prior distributions

σ2
i ∼ πi(σ

2
i ) = χ−1(νi, li), i = 0, 1, (2.35)

where χ−1 is a scaled-inverse-chi-squared distribution with parameters νi

and li. We now proceed to find the closed-form expressions for the estimators

and the decision rule. For estimating the unknown parameters θi = σ2
i , we

use the MSE cost as a measure of estimation performance, and therefore,

the estimate σ̂2
i is given by the conditional mean Ei[σ

2
i | X] [15]. The
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distribution fi(σ
2
i |X) is then needed and given by

fi(σ
2
i |X) ∝ fi(X | σ

2
i )πi(σ

2
i ) (2.36)

∝

(

1

σN
i

e
−

‖X‖22
2σ2

i

)(

1

σ2
i

1+
νi
2

e
−

νili

2σ2
i

)

. (2.37)

That is, fi(σ
2
i |X) is a scaled-inverse-chi-squared distribution with param-

eters νi +N and
νili+‖X‖22

νi+N . The mean is then given by

σ̂2
i =

νili + ‖X‖
2
2

νi +N − 2
, (2.38)

where we have assumed that νi +N > 2.

When using the MSE as a measure of the performance cost, it is well-

known that the minimum average posterior cost C
∗
i,p(X) is given by the

posterior variance, that is, Vari[σ
2
i |X] [15]. Then, knowing that fi(σ

2
i |X)

is a scaled-inverse-chi-squared distribution, we have

C
∗
i,p(X) =

2
(

νili + ‖X‖
2
2

)2

(νi +N − 2)2 (νi +N − 4)
, (2.39)

assuming that νi +N > 4.

In order to compute the optimal detection rule of Theorem 2 we further
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need the distributions fi(X), which is obtain as follows.

fi(X) =

∫

fi(X | σ
2
i )πi(σ

2
i ) dσ

2
i

=
(νili/2)

νi/2

(2π)N/2Γ(νi/2)

∫

(

1

σN
i

e
−

‖X‖22
2σ2

i

)(

1

σ2
i

1+
νi
2

e
−

νili

2σ2
i

)

dσ2
i

=
(νili/2)

νi/2

(2π)N/2Γ(νi/2)

Γ((νi +N)/2)
((

νili + ‖X‖22
)

/2
)(νi+N)/2

, (2.40)

where the last step follows from the fact that the scaled-inverse-chi-squared

distribution integrates to one.

Now the steps given in Table 1 can be carried out in order to to obtain

the test outcome and the corresponding variance estimate.

In what follows, we present the Neyman-Pearson test and the GLRT for

comparison purposes.

Lemma 2 (Neyman-Pearson) The test that maximizes the detection prob-

ability subject to an upper bound on the false alarm probability is

(

ν0l0 + ‖X‖
2
2

)(ν0+N)/2

(

ν1l1 + ‖X‖22
)(ν1+N)/2

H1

R
H0

λ̃NP ,

where the threshold λ̃NP is chosen to satisfy the false alarm constraint with

equality.

This test needs to be followed by an estimation step. In particular, we

can use the MMSE estimate of (2.38).
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Theorem 3 The GLRT for the hypothesis test of (2.34) is given by

(

ν0l0 + ‖X‖
2
2

)1+
ν0+N

2

(

ν1l1 + ‖X‖22
)1+

ν1+N

2

H1

R
H0

λ̃GLRT ;

the maximum a posteriori estimate σ̃2
i of σ2

i is given by

σ̃2
i =

νili + ‖X‖
2
2

2 + νi +N
,

and the threshold λ̃GLRT is chosen to satisfy the false alarm constraint with

equality.

Proof: The GLRT is given by

π1(σ̃
2
1)f1(X | σ̃

2
1)

π0(σ̃
2
0)f0(X | σ̃

2
0)

H1

T
H0

λGLRT ,

where the estimate σ̃2
i is the MAP estimate given by

σ̃2
i = argmax

σ2
i

πi(σ
2
i )fi(X | σ

2
i )

= argmax
σ2
i

(

1

σ2
i

1+
νi+N

2

e
−

(

νili+‖X‖22
2σ2

i

)

)

=
νili + ‖X‖

2
2

2 + νi +N
.

Noticing that
νili+‖X‖22

2σ̃2
i

= 2+νi+N
2 and discarding all terms that do not

depend on ‖X‖22, the test can be rewritten as

π1(σ̃
2
1)f1(X | σ̃

2
1)

π0(σ̃2
0)f0(X | σ̃

2
0)
∝

(

ν0l0 + ‖X‖
2
2

)1+
ν0+N

2

(

ν1l1 + ‖X‖22
)1+

ν1+N

2

H1

T
H0

λ̃GLRT.
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Note that if the prior distributions of the unknown parameters are such

that ν0 = ν1, then the Neyman-Pearson test and the GLRT become the

same; therefore, both tests achieve the same detection performance. How-

ever, the estimation performances are not the same, as the GLRT employs

the MAP estimator whereas the Neyman-Pearson method uses the MMSE

estimator.

Next we compare the performance of the three methods via simulations.

The number of samples is set to be N = 64, and the parameters of the prior

distributions are set as follows: ν0 = ν1 = 10, l0 = 3.2 and l1 = 3.6. The

upper bound on the probability of false alarm for all three tests is set as α =

0.1. The resulting probability of miss detection of the Neyman-Pearson test

is β∗(α) = 0.52. As ν0 = ν1, the detection performance of the GLRT is the

same as that of the Neyman-Pearson test. Figure 2.1 shows the estimation

accuracy as a function of ∆Pmiss
△
= β − β∗(α). It is seen that as ∆Pmiss

increases, i.e., as the detection performance is allowed to deviate further

from the optimal one, the estimation performance monotonically improves.

That is, the proposed test trades off between the detection and estimation

performances. Moreover, the proposed test outperforms the GLRT in both

detection and estimation. Note that the proposed test provides the freedom

to work at any point on the curve; that is, we can choose the pair of detection

and estimation performances according to the application in hand.

The actual miss detection and false alarm probabilities are shown in

Fig. 2.2, where both the miss detection probability P2(δ0, δ1) and the false

alarm probability P2(δ0.δ1) are shown as a function of ∆Pmiss. Interestingly,
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Figure 2.1: The estimation-detection performance tradeoff by the proposed
optimal test for the composite hypothesis testing problem in (2.34).

it is seen that the upper bound β imposed on the miss detection probability

is always achieved, whereas the gap between the actual false alarm proba-

bility and its upper bound α increases with ∆Pmiss. The exception is when

∆Pmiss = 0, that is, when the proposed test becomes the Neyman-Pearson

test which is known to satisfy both constraints with equalities.
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Figure 2.2: The detection performance of the proposed optimal test for the
composite hypothesis testing problem in (2.34).
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2.3.4 Extension to Multiple Composite Hypothesis Test

In a more general scenario, we wish to decide among M different hypothe-

ses. When observing the signal X, we consider the following composite

hypothesis testing problem:

H0 : X ∼ f0(X | θ0), with θ0 ∼ π0(θ0),

H1 : X ∼ f1(X | θ1), with θ1 ∼ π1(θ1),

...

and HM−1 : X ∼ fM−1(X | θM−1), with θM−1 ∼ πM−1(θM−1).

(2.41)

In this case, we need to find the optimal decision rules {δi(X)} and estima-

tors {θ̂i(X)} for i = 0, . . . ,M − 1. We again use an objective function that

depends on the estimation performance while assuring that the detection

performance satisfies some given constraints. In particular, the objective

function is a simple extension of the one used for the binary case, i.e., the

average estimation cost of the estimator θ̂i when we decide in favor of hy-

pothesis Hi

Li(δ0, . . . , δM−1, θ̂i)
△
= Ei[Ci(θ̂i(X),θi) | D = Hi] . (2.42)

And in order to take into account the estimation performances associated

with all hypotheses, we take the maximum

L(δ0, . . . , δM−1, θ̂0, . . . , θ̂M−1)
△
= max

i∈{0,...,M−1}
Li(δ0, δ1, θ̂i) . (2.43)
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On the other hand, concerning the detection performance, we impose upper

bound constraints on the miss detection probabilities of deciding in favor of

some other hypothesis when the true hypothesis is Hi, i.e.,

Pi(δ0, . . . δM−1)
△
=

∫

X

(1− δi(X)) fi(X) dX ≤ ωi, i = 0, . . . ,M − 1.

(2.44)

The joint detection and estimation problem for determining the optimal

detection rules {δ0(X), . . . , δM−1(X)} and estimators {θ̂0(X), . . . , θ̂M−1(X)}

is now given by

P(ω0, . . . , ωM−1)
△
=























min{δ0,...,δM−1,θ̂0,...,θ̂M−1}
L(δ0, . . . , δM−1, θ̂0, . . . , θ̂M−1),

s.t. Pi(δ0, . . . , δM−1) ≤ ωi,

for i = 0, . . . ,M − 1,

(2.45)

with implicit constraints
∑M−1

i=0 δi(X) = 1 and δ0(X), . . . , δM−1(X) ≥ 0.

We proceed by finding the optimal estimators for fixed decision rules,

followed by the search for the optimal decision rules. The optimal estimators

for fixed detection rules {δi(X)} are characterized by the following theorem.

Theorem 4 The solution to the optimization problem

(θ̂
∗

0, . . . , θ̂
∗

M−1) = arg min
{θ̂0,...,θ̂M−1}

L(δ0, . . . , δM−1, θ̂0, . . . , θ̂M−1)

is

θ̂
∗
i (X)

△
= arg inf

θ̂i(X)
Ci,p(θ̂i(X) |X) , (2.46)
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and

min
θ̂0,...,θ̂M−1

L(δ0, . . . , δM−1, θ̂0, . . . , θ̂M−1)= max
i∈{0,...,M−1}

{
∫

X
δi(X) fi(X) C∗

i,p(X) dX
∫

X
δi(X)fi(X) dX

}

.

Proof: The proof follows the same reasoning behind the proof of Theorem

1.

Moreover, the optimal detection rules δ0(X), . . . , δM (X) are given in the

following Theorem.

Theorem 5 The problem P(ω0, . . . , ωM−1) has a globally optimal solution

and the decision rules δi(X) are given by

δi(X) =



































1 if fi(X)
[

a1i
(

C
∗
i,p(X)− P(ω0, . . . , ωM )

)

− a2i

]

≤

fj(X)
[

a1j
(

C
∗
j,p(X)− P(ω0, . . . , ωM )

)

− a2j

]

for j = 0, . . . ,M − 1 and j 6= i,

0 otherwise ,

(2.47)

where {a1i } and {a
2
i } for i = 0, . . . ,M − 1 are non-negative and are selected

such that 1) they satisfy
∑M−1

i=1 a1i +
∑M−1

i=1 a2i = 1 and 2) the detection

constraints are satisfied.

Proof: Note that from Theorem 4 we have

L̃(δ0, . . . , δM−1) = max
i∈{0,...,M−1}

{
∫

X
δi(X) fi(X) C∗

i,p(X) dX
∫

X
δi(X)fi(X) dX

}

, (2.48)

which needs to be minimized with constraint on the miss detection proba-
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bility of each hypothesis, that is,

Pi(δ0, . . . , δM−1) =

∫

X

(1− δi (X)) fi(X) dX for i = 0, . . . ,M − 1 .

(2.49)

Following similar arguments as those in the proof of Theorem 2, we have for

t ∈ R+

L̃(δ0, . . . , δM−1) ≤ t⇔

∫

X

δi(X)fi(X)
(

C
∗
i,p(X)− t

)

dX ≤ 0, i = 0, . . . ,M−1.

Then, if for a given t, the feasibility problem given by

Q(ω0, . . . , ωM−1, t)
△
=



































Find δ0, . . . , δM−1,

s.t.
∫

X
δi(X) fi(X)

(

C
∗
i,p(X)− t

)

dX ≤ 0,
∫

X
(1− δi (X)) fi(X) dX ≤ ωi,

for i = 0, . . . ,M − 1

(2.50)

is feasible, then the solution P(ω0, . . . , ωM−1) of (2.27) is such that

P(ω0, . . . , ωM−1) ≤ t. Conversely, if (2.50) is not feasible, we have

P(ω0, . . . , ωM−1) > t. The optimal value of P(ω0, . . . , ωM−1) can be found

by a bi-section search on t and for each t solving this feasibility problem.

The feasibility problem of (2.50) can be solved by finding the solution
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to the convex optimization problem

Q̃(ω0, . . . , ωM−1, t)
△
=



































min{δ0,...,δM−1} γ,

s.t.
∫

X
δi(X)fi(X)

(

C
∗
i,p(X)−t

)

dX ≤ γ,
∫

X
(1− δi (X)) fi(X)dX ≤ ωi + γ,

i = 0, . . . ,M − 1,

(2.51)

and checking whether Q̃(ω0, . . . , ωM−1, t) ≤ 0 or not.

In order to solve Q̃(ω0, . . . , ωM−1, t) for any given t, by taking into ac-

count the convexity of (2.51), we assign the non-negative Lagrangian mul-

tipliers a1 △
= (a10, . . . , a

1
M−1) and a2 △

= (a20, . . . , a
2
M−1), that satisfy ‖a

1‖1 +

‖a2‖1 = 1 to the constraints of (2.51) and construct the Lagrange function

as

L(δ0, . . . , δM−1, γ,a
1,a2)

△
= (1−

M−1
∑

i=1

a1i −
M−1
∑

i=1

a2i )γ

+

M−1
∑

i=0

a1i

∫

X

δi(X) fi(X)
(

C
∗
i,p(X)− t

)

dX

+
M−1
∑

i=0

a2i

∫

X

(1− δi (X)) fi(X) dX − a2iωi.

The Lagrangian dual function is then given by

g(a1,a2)
△
= min

δ0,...,δM−1,γ
L(δ0, . . . , δM−1, γ,a

1,a2)

= min
δ0,...δM−1

M−1
∑

i=0

Bi −
M−1
∑

i=0

a2i (1− ωi)
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where

Bi
△
=

∫

X

δi(X) fi(X)
[

a1i
(

C
∗
i,p(X)− t

)

− a2i

]

dX .

Therefore, the detection rules {δ0(X), . . . , δM−1(X)} that minimize g(a1,a2)

are:

δi(X) = 1 if fi(X)
[

a1i
(

C
∗
i,p(X)− t

)

− a2i

]

≤fj(X)
[

a1j
(

C
∗
j,p(X)− t

)

− a2j
]

j = 0, . . . ,M − 1 and j 6= i.

The non-negative multipliers a1 =
[

a10, . . . , a
1
M−1

]T
and

a2 =
[

a20, . . . , a
2
M−1

]T
need to be found using a numerical search, as in the

binary case but now in a higher dimensional search space.

2.3.5 Optimal Test with Discrete Observations

In this subsection we consider the special case where the observations take

values in a finite discrete set. In this case we can use matrix representations

of the different distributions, and each step of the bi-section search corre-

sponds to solving a finite-dimensional linear programming (LP) feasibility

problem.

Let X be an observation signal that takes values in a finite discrete

set with n possible different realizations. Then, we consider the equivalent

observation X with possible values in the set {1, . . . , n}. For instance, if

we have S observations of a discrete random variable that can take any
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of D values, then n = DS. We aim then to solve the composite binary

hypothesis problem in (2.1) with observationX. Let Pi(X | θi) be the known

probability mass function (pmf), πi(θi) the known pdf for the parameter θi

and pi = [p1i . . . pni]
T with pki

△
= Pi(X = k) =

∫

θi
Pi(X = k | θi)πi(θi)dθi

i ∈ {0, 1}. We take advantage of the facts that X can only take a finite

number of values and that the number of different hypotheses is also finite

by representing the randomized test with a 2 × n matrix T = [tik], whose

elements are given by

tik
△
= P (D = i | X = k).

Let ti be the i-th row of T . As we always select one of the possible hypothe-

ses, the row vectors needs to satisfy

t0, t1 � 0, and t0 + t1 = 1.

Moreover, given the randomized tests t0, t1, the Type-I and Type-II detec-

tion error probabilities are

P1(δ0, δ1) =
n
∑

k=1

t1k pk0 = tT1 p0 and P2(δ0, δ1) =
n
∑

k=1

t0k pk1 = tT0 p1.

(2.52)

Given two non-negative cost functions C0(θ̂0,θ0) and C1(θ̂1,θ1), we want

to decide between two hypotheses Hi (i = 0, 1) and provide an estimate for

θi only when we decide in favor of Hi. As before, we consider the average

estimation cost for estimating θi under Hi when deciding in favor of Hi,
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which for a given randomized policy {t0, t1} and estimator θ̂i(X) is given

by

Li(t0, t1, θ̂i)
△
= Ei[Ci(θ̂i(X),θi) | D = Hi], i = 0, 1, (2.53)

and use the maximum of these two average estimation costs as the overall

performance measure, i.e.,

Li(t0, t1, θ̂0, θ̂1)
△
= max

i={0,1}
Li(t0, t1, θ̂i). (2.54)

The combined problem for determining the optimal decision rules {t0, t1}

and estimators

{θ̂0(X), θ̂1(X)} is then

P(α, β) =























min{t0,t1,θ̂0,θ̂1}
, L(t0, t1, θ̂0, θ̂1),

s.t. P1(δ0, δ1) ≤ α,

P2(δ0, δ1) ≤ β,

(2.55)

where we also have the implicit constraints t0(X)+t1(X) = 1 and t0(X), t1(X) �

0.

The optimal composite test is characterized by the following two Theo-

rems.

Theorem 6 The solution to the optimization problem

(θ̂
∗

0, θ̂
∗

1) = arg min
{θ̂0,θ̂1}

L(t0, t1, θ̂0, θ̂1)
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is

θ̂
∗
i (X)

△
= arg inf

θ̂i(X)
Ci,p(θ̂i(X) | X). (2.56)

Proof: This proof is similar to that of Theorem 1. When finding the lower

bounds in (2.21), in the case of discrete observations we have, for i ∈ {0, 1},

Ei[P (D = i | X)Ci(θ̂i(X),θi)]

=

n
∑

k=1

∫

θi

tikCi(θ̂i(X = k),θi)Pi(X = k | θi)πi(θi)dθi

=
n
∑

k=1

tik

∫

θi

(

Ci(θ̂i(X = k),θi)Pi(X = k | θi)πi(θi)dθi

)

=
n
∑

k=1

tikPi(X = k)

∫

θi

(

Ci(θ̂i(X = k),θi)πi(θi | X = k)dθi

)

=
n
∑

k=1

tikPi(X = k)Eθi
[C(θ̂i(X = k),θi) | X = k]

=
n
∑

k=1

tikPi(X = k)Ci,p(θ̂i(X = k) | X = k)

≥
n
∑

k=1

tikPi(X = k) inf
U

Ci,p(U | X = k)

=

n
∑

k=1

tikPi(X = k)C∗
i,p(X = k)

= tTi Cipi , (2.57)

where Ci is an n× n diagonal matrix with the k-th diagonal entry equal to

C
∗
i,p(X = k). These lower bounds can be achieved by setting the estimators

as

θ̂
∗
i (X)

△
= arg inf

U
Ci,p(U | X). (2.58)
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Moreover, we obtain

L(t0, t1, θ̂
∗

0, θ̂
∗

1) = max
i∈{0,1}

{

tTi Cipi

tTi pi

}

. (2.59)

Theorem 7 The test that solves the detection problem P(α, β) is given by

the solution to the following optimization problem

min{t0,t1} γ

s.t. tT0
(

C0 − P(α, β)In

)

p0 ≤ γ

tT1
(

C1 − P(α, β)In

)

p1 ≤ γ

tT1 p0 ≤ α+ γ

tT0 p1 ≤ β + γ

t0 � 0, t1 � 0, t0 + t1 = 1,

(2.60)

where In is the n × n identity matrix and Ci is an n × n diagonal matrix

with its k-th diagonal entry as C
∗
i,p(X = k).

Proof: The proof is similar to that of Theorem 2. For a given t ∈ R+ and

noticing that L(t0, t1, θ̂
∗
0, θ̂

∗
1) ≤ t ⇐⇒ tTi (Ci − tIn)pi ≤ 0, i = 0, 1, we
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then need to solve the following feasibility problem

Q(α, β, t)
△
=































































Find t0, t1,

s.t. tT0 (C0 − tIn)p0 ≤ 0,

tT1 (C1 − tIn)p1 ≤ 0,

tT1 p0 ≤ α,

tT0 p1 ≤ β,

t0 � 0, t1 � 0, t0 + t1 = 1,

(2.61)

which is feasible if and only if the following auxiliary convex optimization

problem has a negative solution:

Q̃(α, β, t) =































































min{t0,t1} γ,

s.t. tT0 (C0 − tIn)p0 ≤ γ,

tT1 (C1 − tIn)p1 ≤ γ,

tT1 p0 ≤ α+ γ,

tT0 p1 ≤ β + γ,

t0 � 0, t1 � 0, t0 + t1 = 1.

(2.62)

That is, Q(α, β, t) is feasible if and only if Q̃(α, β, t) ≤ 0.

Notice that problem (2.62) is a linear programming (LP) problem, and

therefore, it can be solved using a standard LP solver.

The test can be carried out by following the steps in Table 1, replacing

steps 10 − 13 with the solution of the LP in (2.62). That is, the numerical

search of multipliers is replaced by solving an LP. If the number of possible

realizations n of X is such that solving the LP is numerically more demand-
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ing than the search of the multipliers, then the optimal test with discrete

observations can be found by replacing (2.13) and (2.28) in Table 1 with

(2.56) and

t1k =























1 if
pk0

[

a1
(

C
∗
0,p(X = k)− P(α, β)

)

− a3

]

≥

pk1

[

a2
(

C
∗
1,p(X = k)− P(α, β)

)

− a4

]

,

0 otherwise ,

(2.63)

respectively.

2.4 Optimal Detection and Estimation of Periodicities in

DNA Sequences

2.4.1 Background

DNA sequences present numerous types of regularities and repetitions that

need to be detected and estimated in order to discover the underlying struc-

tures and properties. For example, periodicities of various lengths and vari-

ous types have been shown to be related to the evolution of the genome and

protein structure [26, 27]. In particular, a periodicity of 21 bases is linked

with the α-helix formation protein molecules [27] and a periodicity of three

is associated with the protein coding regions of the DNA.

A DNA sequence is the concatenation of nucleotides. There are four

different nucleotides that are the basic units of DNA: Adenine (A), Cyto-

sine (C), Guanine (G) and Thymine (T), each with different biochemical

properties. Possible periodicities in these sequences are classified as homol-

ogous, eroded and latent [28]. Homologous or perfect periodicities consist
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of a segment of DNA that is repeated periodically in the sequence. On the

other hand, in case of eroded or imperfect periodicities, the repeating seg-

ment exhibits mutations in nucleotides at certain positions. In the case of

latent periodicities, the repeating segment is not fixed but only has some

specific constraints. For example, the latent periodicity (A/G)T (G/C/T )

refers to a periodicity of three nucleotides where both the nucleotide A and

nucleotide G are found in the first position of the segment most of the time

the segment is observed; the nucleotide T is most likely found in the second

position; and last position can be either G, C or T .

Methods for detecting and estimating periodicities in sequences can be

classified in two categories [29], i.e., exploratory and confirmatory. The for-

mer is designed to discover the main periodicity component in a sequence,

while the latter seeks to determine the strength of this component. More-

over, some methods map the symbolic sequence to a numeric one and then

process the numeric sequence; whereas others operate directly on the sym-

bolic sequence. An example of an exploratory approach that requires a

suitable symbolic-to-numeric mapping is the Fourier-based method. The

symbolic sequence is first converted to a discrete-time signal by mapping

each nucleotide to a number. The discrete Fourier transform (DFT) is then

applied to the signal to obtain its spectrum from which periodic components

can be identified [30]. Note that mapping nucleotides to numbers introduces

an artificial structure that is not inherent to the original DNA sequence.

In [31] and [32] a method is proposed to find periodic components in a

sequence from a pure estimation perspective of the problem within a statis-

tical model. In particular, periodicities are inferred based on the maximum-
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likelihood estimates of the statistical distribution of the repeating segment

and the period. In what follows, we adopt the statistical model in [31, 32]

and restate the problem as a joint detection and estimation one. That is,

we would like to determine if a sequence posses a periodic component, and

if so, to estimate its period. We then apply the proposed test to solve the

problem.

2.4.2 Problem Formulation

A biomolecular sequence is defined as a length-N sequence, denoted as X =

(x1 . . . xN ), where each element xi belongs to a finite alphabet A. In the case

of DNA, A
△
= {A,C,G, T}, representing the nucleotides Adenine, Cytosine,

Guanine and Thymine respectively.

Figure 2.3: A hidden Markov model for a DNA sequence with periodicity of
K nucleotides.

Each nucleotide of a DNA sequence with a periodicity of K nucleotides

is modeled as a realization of an information source with some underlying

probability mass function. The sequence is generated by cyclicly drawing

symbols from K such sources as shown in Fig. 2.3. This can be represented
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as a first-order hidden Markov model with K states: Y1, Y2, . . . YK . The

transition probability from a state to the following one is 1, i.e., Yi to Yi+1 for

i = 1, . . . ,K−1 and from the last state to the first one, i.e., YK to Y1, is one.

Each state has an emission probability described by pi = [pi(1) . . . pi(4)]
T ,

where pi(j)
△
= P (Yi = aj), aj ∈ A. These distributions can be combined to

form the position weight matrix QK = [p1 . . . pK ] which is unknown. We

are interested in estimating only the period K, but not the position weight

matrix QK . In [32], both QK and K are estimated. In our approach,

using a prior distribution for QK , we integrate out this nuisance parameter.

Therefore, we define θ1
△
= K.

On the other hand, when an observed DNA sequence does not posses pe-

riodicity, it is assumed that each nucleotide in the sequence is a realization of

a random variable that follows a background distribution q = [q(1) . . . q(4)]T ,

where q(j) , P (Y = aj), aj ∈ A. When deciding that there is no periodicity

present, we need to estimate the background distribution as it describes the

structure of the sequence. Hence, θ0 = q.

In summary, we aim to detect whether an observed DNA sequence X

has an underlying periodicity and if so, estimate the period K. On the

other hand, when we decide that the observed sequence does not have an

underlying periodicity, we estimate the background distribution q of the

nucleotides. Next we derive the optimal test for the above DNA periodicity

detection/estimation problem using the theory developed in Section 2.3.
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2.4.3 The Jointly Optimal Test

In this subsection we derive the distributions that are needed to carry out

the optimal test of (2.28). We will obtain the estimators and the associated

costs under H1 and H0 respectively.

2.4.3.1 Periodic DNA sequences

The number of complete periods that are observed in a sequence X of length

N and periodicity K is M
△
= ⌊NK ⌋, with ⌊.⌋ being the flooring operator. As

we need to know the index of each nucleotide within a period, we define

ī
△
= 1 + ((i − 1) mod K).

The likelihood of observing a sequence with periodicity K is given by

f1(X | K,QK) =

N
∏

i=1

P (Yī = xi | K,QK)

=

N
∏

i=1

p
n(xi)

ī
=

K
∏

j=1

p

∑M−1
i=0 n(xK(i−1)+j )

j ,

where n(xi) is a four-dimensional vector with a one in the j-th position if

xi = aj and zeroes elsewhere; and we denote ac △
=
∏4

j=1 a(j)
c(j) for vectors

a = [a(1) . . . a(4)]T and c = [c(1) . . . c(4)]T .

We assume that p1,p2, . . . pK are independent, each with a Dirichlet

distribution with parameters αk
△
= [αk(1) . . . αk(4)]

T , i.e.,

π1(Q
K) =

K
∏

k=1

1

B(αk)

4
∏

j=1

pk(j)
αk(j)−1 =

K
∏

k=1

1

B(αk)
p
αk−1

k ,
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where

B(αk)
△
=

∏4
j=1 Γ(αk(j))

Γ(
∑4

j=1 αi(j))
,

Γ is the gamma function and 1 = [1, . . . , 1]T . Then, a closed-form expression

for f1(X | K) can be obtained by integrating out p1,p2, . . . pK as follows:

f1(X | K) =

∫

f1(X | K,QK)π1(Q
K) dQK

=

K
∏

j=1

∫

1

B(αj)
p

∑M−1
i=0 n(xK(i−1)+j)+αj−1

j dpj

=
K
∏

j=1

B
(

∑M−1
i=0 n(xK(i−1)+j) +αj

)

B(αj)
. (2.64)

Using (2.64) and assuming a uniform prior π1(k) on K between Kl and Ku,

the marginal distribution f1(X) can be obtained as

f1(X) =
Ku
∑

k=Kl

f1(X | k)π1(k)

=
1

Ku −Kl

Ku
∑

k=Kl

k
∏

j=1

B
(

∑M−1
i=0 n(xk(i−1)+j) +αj

)

B(αj)
, (2.65)

which can be computed numerically.

The posterior of the unknown periodicity is then given by

f1(K = k |X) =
f1(X | k)π1(k)

f1(X)

=

∏k
j=1

B(
∑M−1

i=0 n(xk(i−1)+j)+αj)
B(αj)

∑Ku

k=Kl
f1(X | k)

. (2.66)
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Hence, the MMSE estimate of the period is given by

K̂ = E1(K |X) =

Ku
∑

k=Kl

kf1(K = k |X)

=

∑Ku

k=Kl
k
∏k

j=1

B(
∑M−1

i=0 n(xk(i−1)+j)+αj)
B(αj)

∑Ku

k=Kl
f1(X | k)

. (2.67)

The average posterior cost C∗
1,p(X) becomes

C
∗
1,p(X) = Var1(K |X)

=

Ku
∑

k=Kl

(

k − K̂
)2

f1(K = k |X)

=

∑Ku

k=Kl

(

k − θ̂1

)2
∏k

j=1

B(
∑M−1

i=0 n(xk(i−1)+j)+αj)
B(αj)

∑Ku

k=Kl
f1(X | k)

. (2.68)

2.4.3.2 Aperiodic DNA sequences

For sequences with no periodicity, each nucleotide is independent and iden-

tically distributed according to a background distribution q. The unknown

parameter in this case is θ0 = q.

Given q, the likelihood of the observation is

f0(X | q) =
N
∏

i=1

P (Y = xi | q) =
N
∏

i=1

qn(xi) = q
∑N−1

i=0 n(xi),

which can be seen as a special case of the periodic sequence with a period

of 1 nucleotide. Assuming a Dirichlet prior on q with known parameters
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β = [β(1) . . . β(4)]T ; i.e.,

π0(q) =
1

B(β)
qβ−1,

then

f0(X) =

∫

f0(X | q)π0(q) dq

=
B
(

∑N−1
i=0 n(xi) + β

)

B(β)
.

Furthermore, we have

f0(q |X) ∝ f0(X | q)π0(q)

=

(

N
∏

i=1

qn(xi)

)

1

B(β)
pβ−1

=
1

B(β)
q
∑N−1

i=0 n(xi)+β−1, (2.69)

that is, the posterior is also a Dirichlet distribution. Then, the MMSE

estimate of q is given by

q̂ = E0[q |X] =

∑N−1
i=0 n(xi) + β

N + 1Tβ
.
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Moreover, the cost under H0 is given by

C
∗
0,p(X)=

4
∑

j=1

Var0[q(j) |X ]

=

∥

∥

∥

∥

∥

∥

(

∑N−1
i=0 n(xi) + β

)

⊙
(

N1+ 1Tβ1−
∑N−1

i=0 n(xi)− β
)

(N + 1Tβ)
2
(N + 1Tβ + 1)

∥

∥

∥

∥

∥

∥

1

,

where ⊙ is the componentwise multiplication of vectors, that is,

[a1, . . . , a4]
T ⊙ [b1, . . . , b4]

T , [a1b1, . . . , a4b4]
T .

Clearly, a DNA sequence can only take values on a finite discrete space,

i.e., there are n = 4N possible different length-N sequences. However, for

moderate values ofN , n is such that searching for 4 multipliers is numerically

more efficient that solving the LP of (2.62). Therefore, we find the optimal

test using (2.13) and (2.28), that is, following the steps given in Table 1.

2.4.4 Simulation Results

For the simulations, we consider DNA sequences of length 100, which are

considered as short sequences. The bound on the probability of false alarm

is set to be α = 0.001. The parameters of the priors are set as follows. For

aperiodic sequences, the parameters of the prior distribution are β = 2 1.

For periodic sequences, we set Kl = 2 and Ku = 10. The parameters αk,

k = 1, . . . ,K, of the prior for the position weight matrix QK are columns

from 1 to K of the matrix
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α1:Ku =



















4.5 5.4 8.0 6.6 5.2 3.8 5.4 4.4 3.9 8.8

4.2 9.8 5.9 6.2 9.8 9.2 8.1 11.2 4.9 7.5

8.7 8.8 11.2 6.6 6.7 6.7 3.9 4.7 2.9 6.3

10.4 2.1 2.0 9.7 2.4 3.5 9.4 9.7 7.8 8.4



















. (2.70)

We first compute the probability of miss detection under the Neyman-

Pearson test, which is β∗(α) = 0.31. The resulting estimation costs for

different values of ∆Pmiss
△
= β − β∗(α) are shown in Fig. 2.4. The per-

formance of the GLRT is also shown. It is seen that the proposed test

outperforms the GLRT for a given ∆Pmiss. Moreover, the tradeoff between

the detection and estimation performances of the proposed test is clearly

shown and we have the flexibility of operating on any point of the tradeoff

curve. The detection performance is shown in Fig. 2.5, where it is seen that

the constraint on the miss detection is attained with equality whereas the

constraint on the false alarm probability is achieved with equality only for

∆Pmiss = 0.
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Figure 2.4: The estimation-detection performance tradeoff for DNA period-
icity detection and estimation.
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Figure 2.5: The detection performance for DNA periodicity detection and
estimation.
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Chapter 3

Motif Discovery in Nucleic Acid

Sequences

3.1 Introduction

Gene expression underlies most essential cellular processes and is typically

controlled by complex networks of regulatory interactions. Two of the basic

mechanisms directly involved in regulating gene expression are transcription

factor binding and site-specific recombination [33]. In both cases, the pro-

teins involved often attach to highly specific nucleic acid sequences, which

leads to the activation or repression of gene expression either through epi-

genetic interactions between transcription factors and components of RNA

polymerase machinery or via recombinase-mediated genetic and genomic

modifications of relevant DNA regions.

As individual binding sites are subject to context-specific optimizations

of protein affinities as well as neutral alterations by random mutagenesis,

nucleotide sequences of various site instances can display a significant de-
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gree of heterogeneity. Even so, each instance may be expected to preserve

certain core sequence features—such as nucleotide patterns responsible for

the specificity of transcription factor binding or relative positions of bases

where recombinase-induced DNA strand breaks can occur—making them

identifiable as a motif. A key question in understanding the genomic or-

ganization and gene-regulatory network structure of biological systems thus

comprises the discovery of conserved motifs within available sequence data.

Still, although nucleic acid motif discovery (whereby one attempts to infer

the identity and locations of conserved patterns in a given set of nucleotide

sequences) has been the subject of much research in recent years, it remains

a highly multifaceted and computationally challenging problem [34].

The principal subject of this chapter is further development of basic

methodology for motif discovery within nucleic acid sequences. Following

the discussion in Tompa et al. [34], we focus on analyzing primary sequence

data—in the absence of any auxiliary information. Notably, this does not

preclude but rather encourages the subsequent integration of our method

with other heterogeneous approaches - such as those involving comparative

sequence analysis, expression level data, chromatin immunoprecipitation re-

sults, and others - that synergistically complement each other by identifying

interactions across different scales and domains of system organization. (For

example, the cMonkey scheme successfully combines motif discovery by the

antecedent MEME algorithm [35] with novel developments in biclustering
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of expression data to generate cumulative improvements in gene regulatory

network predictions [36].)

Along with performance, one of the essential requirements for a biologically-

useful discovery algorithm is its broad applicability—both with respect to

the lack of constraints on motif features as well as the universality of sup-

ported sequence databases. For instance, while a number of techniques have

been developed for identifying a motif that appears only once in each se-

quence of a database, the same motif may and often has to be present at

multiple sites in the genome. This is particularly significant in the case of

recombinases, like those of the Din family, that require two or more separate

sites to provide counterparts for strand exchange as well as in the case of

primary regulon mediators, like cAMP-CRP, that must have multiple ge-

nomic targets in order to enable the sophisticated control patterns observed

[33]—thus demanding that the motif discovery algorithm be able to identify

several instances of the same motif in a given sequence. Furthermore, based

on the extent of experimental evidence, the method should also accommo-

date scenarios where a priori knowledge of such motif features as length

or composition is likely to either be incomplete, uncertain, or even entirely

absent. The algorithm also needs to be versatile and scalable to be of mean-

ingful practical utility. For example, since motif instances may be located

near as well as far from any gene transcriptional start site, the technique

must be capable of handling long sequences as well as short ones.

Many previously proposed solutions have been pattern-driven exhaustive

searches, with the motif discovery question stated as an (l, d)-motif problem

[37]. In this approach, the motif is assumed to be of length l and have at
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most d mismatches between the true/empirical consensus sequence and its

individual instances. Examples are WINNOWER [37], where the solution

reduces to finding large cliques in multipartite graphs; and CONSENSUS

[38], which uses a greedy technique to solve the problem. Another variant

of this methodology is a sample-driven search that trades off sensitivity for

computational efficiency by looking for patterns hidden in data subsets –

such as employed by YMF [39], an enumerative algorithm that looks for

motifs with highest z-scores; and Weeder [40], which uses extended enumer-

ation that is better adapted to longer patterns. While potentially highly

accurate, the main shortcoming of such methods is that they do not scale

well with the size of the site, effectively limiting pattern-driven approaches

to motifs no longer than 10 to 12 nucleotides [41].

An alternative is offered by profile-based methods that model motifs in

statistical terms. A motif is then described by a position weight matrix

(PWM), where each column relates to the distribution of all possible nu-

cleotides at a given position. That is, in the case of DNA-drawn sequences

and a motif of length M , the PWM is typically a 4×M matrix (often graphi-

cally represented as a logo), whose columns correspond to probability vectors

of finding A, T , C, or G at the corresponding nucleotide position. This ma-

trix is not known a priori and is usually estimated before or jointly with

the discovery of locations of individual motif instances. Examples of such

technique are MEME (Multiple EM for Motif Elicitation) [35, 42, 43], which

utilizes expectation-maximization (EM) framework to discover an unknown

number of different motifs that appear an unknown number of times; sev-

eral algorithms—including BioProspector [44], AlignACE [45], Gibbs Motif
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Sampler [46], MotifSampler [47], and SeSiMCMC [48]—that rely on Gibbs

sampling; and Liang et al.’s approach [49], where a deterministic sequential

Monte Carlo-based method is developed.

In this chapter, we present a Bayesian Algorithm for Multiple Biological

Instances of motif discovery (BAMBI), which is able to detect an unknown

motif of an unknown length with an unknown number of instances in a se-

quence database. The algorithm uses a profile-based approach—modeling a

motif via PWM, which is estimated concurrently with the discovery task—

and can work solely on the basis of nucleotide sequence data. (However,

if additional experimental evidence, results of alternative motif discovery

algorithms, or other sources of prior knowledge regarding any PWM com-

ponents are available, BAMBI is flexible-enough to be able to include this

information in its analysis.) Unlike earlier works, such as Liang et al. [49]

that has developed a deterministic sequential Monte Carlo algorithm, our

approach is able to independently estimate the putative motif size as well

as to discover its multiple instances or to establish their absence in each of

the database sequences – all within the Bayesian framework. The resulting

method, BAMBI, displays better statistical performance than MEME, Bio-

Prospector (which is augmented with BioOptimizer [50] wherever there is

uncertainty about motif length), SeSiMCMC, and Motif Sampler in three

diverse settings, including being the only algorithm that leads to a biochem-

ically meaningful result in the recombinase binding site discovery case.
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3.2 Bayesian Algorithm for Multiple Biological Instances

With the Bayesian Algorithm for Multiple Biological Instances of motif dis-

covery (BAMBI), we are seeking to discover nucleotide motifs, which are sets

of patterns conserved when compared to a collection of nonspecific genomic

segments. A database of nucleotide sequences—where each sequence may

contain one, several, or no instances of motif—along with an upper limit

on the total number of such instances in each sequence serve as problem

inputs. For example, in the case of the CRP database (discussed later in

further detail) the supplied input is a set of 105 nucleotide-long DNA seg-

ments from non-coding regions upstream of 18 Escherichia coli genes. The

desired output is the number, length, and locations of CRP-binding sites

within each sequence.

3.2.1 Overview

As noted earlier, the innate heterogeneity observed among instances of indi-

vidual binding sites—which is driven by local context optimization require-

ments, mutagenesis, fluctuations in measurement fidelity, etc.—makes the

determination of motif sequences a statistically uncertain problem. While

these variations may be ascribed to an amalgamation of random processes,

the ensuing probabilistic nature of the motif discovery problem can be cap-

tured through the use of the Hidden Markov Model (HMM) framework.

That is, given a database of nucleic acid strand segments, we consider the

information in question—namely, the number, length, and locations of in-

dividual motif instances in each sequence—to be unobservable directly (i.e.,
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“hidden”). Instead, the available data consists solely of base sequences them-

selves, wherein motif patterns of interest – which remain to be “discovered”

– may (or may not) be embedded. The approach used for the discovery pro-

cess is based on Bayesian inference – a powerful and flexible technique able

to utilize a broad range of data toward elucidating various hidden/unknown

system parameters – which, in our case, focuses on motif lengths, logos,

and instance locations. (Therein, one starts with a probabilistic model that

reflects the knowledge regarding parameter values of interest as available a

priori, if any. This ‘prior’ distribution is then updated to the ‘posterior’

one by conditioning on any additionally obtained information through the

use of Bayes’ probability formula, which results in a posteriori estimates of

parameters that are progressively more constrained with each new observa-

tion.)

Significantly, although Bayesian techniques have been previously applied

to the problem of identifying patterns in nucleic acid sequences, BAMBI

implements this approach by treating entire sequences contained in the

database (rather than single bases or smaller segments within them) as in-

dividual observations.

However, while generally more informative, the use of such larger data el-

ements comes with substantial additional computational costs, which inhibit

efficient model estimation. Here, we overcome this impediment through the

use of a sequential Monte Carlo technique. This approach generates esti-

mates of hidden variables by finding approximations of their posterior dis-

tribution given observations. Ideally, one might have liked to approximate

this posterior distribution by obtaining samples from it, but this is generally
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impossible—e.g., due to the referenced computational complexity. Instead,

samples (called “particles”) are first drawn from an alternative distribution

(called “importance distribution”) and a weight is then attached to each

sample in such a way as to compensate for any mismatch between the true

posterior and the importance distribution, which completes the method.

(Given the broad freedom in choosing the importance distribution, here we

have selected one that is suitable for a sequential method – that is, it enables

processing of each observation individually.)

3.2.2 System Model and Problem Statement

We represent the system as a hidden Markov model (HMM) and process one

sequence from the input database at a time in a sequential manner. The

hidden state corresponds to the concatenation of the number of motifs in

the current sequence and their initial locations, while the t-th sequence itself

is considered to be the observation at time t. Moreover, given the state, the

emission probability is considered to be dependent on an unknown position

weight matrix (PWM), which describes the distribution of nucleotides in

each position of the motif. A background distribution for the nucleotides

not belonging to an instance of the motif is assumed to be given (e.g. by

collecting sequence statistics of embedding DNA or by using results of other

methods as input). In what follows, a mathematical description of the model

and the problem statement are presented.

Let ST = {s1, . . . , sT } be the set of T sequences in the input database,

used to learn the common motif, with st =
[

st,1, . . . , st,L(t)
]

the t-th se-

quence of the database of length L(t). Given an alphabet χ of size |χ|, the
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distribution of nucleotides in the M -long motif is considered unknown and

it is described by a |χ| ×M PWM, θ = [θ1, . . . ,θM ], which the algorithm

has to estimate. Each θj =
[

θj,1, . . . , θj,|χ|
]

with j = 1, . . . ,M is the proba-

bility distribution of the letters in the alphabet for the jth position of the

motif. If the sequences consist of DNA nucleotides, the alphabet is given by

χ = {A,C,G, T} and |χ| = 4. In this chapter, the nucleotides not belonging

to a motif-region are assumed to be independent and identically distributed

according to a background distribution given by θ0 =
[

θ0,1, . . . , θ0,|χ|
]

. How-

ever, more complicate nucleotide models can be similarly used.

In addition, the number nt of instances of a motif in each sequence is

also taken as unknown and needs to be estimated. The distribution of the

number of instances is described by the unknown vector λ = [λ0 . . . λN ],

where λj is the proportion of sequences with j instances of the motif and N

is an upper bound on the number of instances.

At each step t we aim at estimating the state vector xt composed by the

number of motifs nt present in the t-th sequence and the nt initial positions

of each instance of the motif in the sequence. Notice that the dimension of

the vector xt is not fixed and depends on nt.

Given the sequences from first to t-th, St = {s1, . . . , st}, and the distri-

bution of nucleotides in the non-motif regions, we aim to discover the number

of motifs in each sequence and their starting points, Xt = {x1, . . . ,xt}. In

this chapter, we propose to infer Xt within a Bayesian framework by model-

ing the position weight matrix θ as Dirichlet random vectors, which provides

additional information about base variations at each position in the motif

across all of its instances within the database, and the distribution of the
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number of instances λ of the motif in each sequence as a Dirichlet vector.

The method is then further extended to solving the problem even if the

length of the motif is unknown as well.

In the next section, we derive the sequential Monte Carlo method that

will be used to solve the motif discovery problem.

3.2.3 Sequential Monte Carlo Method

Consider the general dynamic system with hidden state variable xt and

measurement variable st, where there is an initial state model, i.e., p(x0),

and ∀t ≥ 1, a state transition model, i.e., p(xt|xt−1), and a measurement

model, i.e., p(st|xt). The sequence Xt = {x1...xt} is not observed and

we want to estimate it for each time t, given that the measurements St =

{s1...st} are observed. If the distribution of the state from the initial time to

time t given the observations, i.e., p(X t|St), is known, then many different

estimators can be implemented. However, in the general case, computing

p(X t|St) has a high complexity associated with it and approximations are

used.

If samples from p(X t|St) were available, such distribution could be easily

approximated, e.g., by using a Parzen window method [51]. However, getting

samples from p(Xt|St) is usually not feasible. An estimate can still be

implemented by taking K samples Xk
t from a trial density q(X t|St). The

support of the trial (or importance) distribution has to include the support



64

of p(Xt|St). For the approximation, a weight is associated to each sample

as follows,

wk
t =

p(Xk
t |St)

q(Xk
t |St)

.

Each Xk
t (k = 1, . . . ,K) is called particle or stream and the pair

{(

Xk
t , w

k
1:t

)

, k = 1, . . . ,K
}

is said to be properly weighted with respect to

the distribution p(Xt|St). The approximation p̂(X t|St) is then given by

p̂(Xt|St) =
1

∑K
j=1w

j
t

K
∑

k=1

wk
t δ(X t −Xk

t ), (3.1)

where δ(v) is 1 when v = 0 and 0 everywhere else.

A sequential algorithm can be obtained by setting

q(Xk
t |St) = q(Xk

t−1|St−1)q(x
k
t |X

k
t−1,St),

and noticing that the weights can be computed according to

wk
t ∝ wk

t−1

p(st|X
k
t ,St−1)p(x

k
t |X

k
t−1,St−1)

q(xk
t |X

k
t−1,St)

. (3.2)

Moreover, in order to minimize the variance of the weights, i.e.,

var
{

wt|X
k
t−1,St

}

, the trial distribution can be chosen to be

q(xk
t |X

k
t−1,St) = p(xk

t |X
k
t−1,St), and the weights become

wk
t ∝ wk

t−1p(st|X
k
t−1,St−1). (3.3)
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The variance of the weights, however, increases over time which is known

as the degeneracy phenomenon [51]. One option against this is to perform

resampling to discard ineffective samples and multiply the effective ones.

When the state vector xt can take a finite set of values, the sequential

importance sampling (SIS) procedure with optimal importance distribution

of [52] can be used. However, when the measurement model depends on

an unknown vector θ, i.e., p(st|xt,X
k
t−1,St−1,θ), and the state transition

depends on a vector λ, i.e., p(xt|X
k
t−1,St−1,λ), it is possible to average out

their influence. Therefore, the SIS procedure of [52] has to be modified to

take this into account as follows.

For each time step, and for every particle, draw a sample xk
t from

p(xt|X
k
t−1,St), where

p(xt|X
k
t−1,St) ∝ p(st|xt,X

k
t−1,St−1)p(xt|X

k
t−1,St−1)

=

∫

p(st|xt,X
k
t−1,St−1,θ)p(θ|xt,X

k
t−1,St−1)dθ

∫

p(xt|X
k
t−1,St−1,λ)p(λ|X

k
t−1,St−1)dλ, (3.4)

and let Xk
t =

(

Xk
t−1,x

k
t

)

. Then update the importance weight as

wk
t ∝ wk

t−1

∑

xt

p(st|xt,X
k
t−1,St−1)p(xt|X

k
t−1,St−1). (3.5)

Finally, resample if needed.

In the next section we show how this set of expressions can be computed

in closed forms for the problem of finding instances of a motif in a set of

unaligned sequences.



66

3.2.4 Multiple Instance Motif Discovery Algorithm in a Bayesian

Framework

Given the general solution of the sequential Monte Carlo method, in this

section we particularize the solution to the specific case of an unknown

number of instances of a motif of length M present in a database. We then

extend the solution to the case where the length of the motif is not known.

Let at,i be the subsequence of M letters of the sequence st starting at

position i, and ac
t,xt

the sequence resulting from removing at,i for i = 1, . . . , n

from st. Then, given the PWM θ, the background distribution θ0 and the

state at time t, the likelihood of a sequence st when xt = [n, i1, . . . , in] is

given is

p(st|xt,Xt−1,St−1,θ) = θ
n(act,xt

)

0

M
∏

m=1

θ

∑n
j=1 n(at,ij (m))

m , (3.6)

where θn =
∏|χ|

j=1 θ
nj

j , n(a) =
[

n1, . . . , n|χ|

]

with nj for j = 1, . . . , |χ| the

number of times the jth letter appears in the sequence a, and a(m) is the

m-th letter of sequence a.

For each position of the motif, an independent Dirichlet distribution

[53] is used. This distribution has a well studied covariance structure and

admits closed form expressions for its moments. The Dirichlet distribution

has previously been used for modeling the PWM [49].

It is possible to use a sufficient statistic to update the distribution of

the parameter θ and to do it sequentially. Let p(θ|X t−1,St−1) be the prod-

uct of M independent random vectors distributed according to a Dirichlet
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distribution, where the mth vector corresponds to the mth position in the

motif and having parameters αt−1
m =

[

αt−1
m,1 . . . α

t−1
m,|χ|

]T
, then p(θ|Xt,St) is

also the product of M Dirichlet distributions where the m-th distribution

has, for l = 1, . . . , |χ|, parameters

αt
m,l = αt−1

m,l +
n
∑

j=1

nl(at,ij (m)). (3.7)

Therefore, only the parameters of the M Dirichlet distributions need to be

saved and are easily updated from time t− 1 to time t. We define T θ
t as a

sufficient statistic to characterize the distribution p(θ|X t,St), that in our

case is given by

T θ
t =

{

αt
m,l

}l=1...|χ|

m=1...M
, (3.8)

which is a simple function of T θ
t−1 as shown in (3.7).

A sufficient statistic for the distribution of the number of instances λ of

the motif in each sequence is also found. For this unknown vector, given a

Dirichlet distribution with parameter γt−1 for p(λ|Xt−1,St−1), the distribu-

tion p(λ|Xt,St) is a Dirichlet distribution with parameter γt =
[

γt0 . . . γ
t
N

]

,

with γt = γt−1 + j(xt), where j(xt) is a vector of zeros except for a 1 indi-

cating the number of instances of the motif in the t-th sequence. We then

have Tλ
t = γt as a sufficient statistic, where it is seen that T λ

t is a function

of Tλ
t−1.
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Importance Distribution p(xt|X
k
t−1,St)

This subsection develops closed form expressions for the importance dis-

tribution given in (3.4). The first integral on the right-hand side can be

computed using (3.6), noticing that

∫

p(st|xt,X
k
t−1,St−1,θ) p(θ|xt,X

k
t−1,St−1) dθ

= θ
n(act,xt

)

0

∫ M
∏

m=1

θ
∑n

r=1 n(at,ir (m))
m p(θ|xt,X

k
t−1,St−1)dθ

= θ
n(act,xt

)

0

M
∏

m=1

E
[

θ
∑n

r=1 n(at,ir (m))
m

]

, (3.9)

where the expectation is taken over a Dirichlet distributed random variable.

To compute (3.9), we need the following theorem.

Theorem 8 The general moment function of a Dirichlet distribution with

parameters α = [α1, . . . , αk] is given by

E
[

θr11 . . . θrkk
]

=
B(α+ r)

B(α)

where r = [r1 . . . rk] and B(α) =
∏k

i=1 Γ(αi)

Γ(
∑k

i=1 αi)
.

Proof:

E
[

θr11 . . . θrkk
]

=

∫

θr11 . . . θrkk
1

B(α)

k
∏

i=1

θαi−1
i dθ (3.10)

=
B(α+ r)

B(α)

(

∫

1

B(α+ r)

k
∏

i=1

θαi+ri−1
i dθ

)

,

where the term between parenthesis is the integration of a Dirichlet distri-



69

bution with parameters α+ r and therefore, the integral is 1.

If the prior for the generalized Dirichlet distributions consist of positive

integers, then the αs and βs remain positive integers, and the fact that

Γ(n) = (n − 1)!, for n positive integer, can be used to make the algorithm

efficient.

The second integral of (3.5) can be computed analogously.

∫

p(xt|X
k
t−1,St−1,λ) p(λ|X

k
t−1,St−1) dλ

= p(i1 . . . in|n) E [λn] = p(i1 . . . in|n)
γt−1
n

∑N
i=0 γ

t−1
i

, (3.11)

where p(i1 . . . in|n) is taken to be uniform.

Then, given a database of sequences, theBayesianAlgorithm forMultiple

Biological Instance motif discovery algorithm is summarized as follows.

For each sequence, and for each particle,

• construct the importance distribution by enumerating all possible sam-

ple extensions

Xk
t (n, i1, . . . , in) =

[

Xk
t−1 [n i1 . . . in]

T
]

,

and computing (3.5,3.9,3.11);

• sample xk
t from the importance distribution and set

Xk
t =

[

Xk
t−1 xk

t

]

;

• compute the weight of the particle using (3.5), where each term of the
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summation has already been computed in the first step;

Finally, update the sufficient statistics T θ
t and Tλ

t as shown in (3.7), and

resample if needed.

3.2.5 Unknown Motif Length

The approach used here follows the class-based resampling scheme presented

in [54]. In order to estimate the motif length m jointly with the number and

locations of motifs for each sequence, we consider an augmented state vector

zt =
[

xT
t , m

]T
. As the length of the motif is not expected to change from

sequence to sequence, a static dynamics is used for m. Moreover, to avoid

letting the algorithm keep only particles with only one potentially incorrect

motif length, we make sure that the method always saves particles for each

of the possible considered motif lengths.

Therefore, given an upper and lower bound for the motif length, let Λ be

the set of possible motif lengths. The resampling scheme can be summarized

as follows.

• Choose the number of particles for each class Nm according to a multi-

nomial distribution with parameters
{

P̂ (m|St)
}

m∈Λ
.

• If the number of particles Nm is smaller than the threshold Nthr, set

Nm = Nthr, and decrease the number of particles of the classes with

most particles until
∑

m∈Λ Nm = K.

• Sample Nm new particles from the set of previous particles of the class

with probabilities proportional to their weights. Assign equal weights

to this particles within a class, i.e., wk
t = P̂ (m|St)/Nm.
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3.2.6 Initializing Using Results From Another Motif Discovery

Algorithm

The Bayesian framework proposed here is easily adaptable to use the results

from another algorithm as a prior, and to refine the results of other motif

discovery algorithms. If no other algorithm is available, the prior for the

PWM is chosen to be an uninformative prior. However, if results from

another motif discovery algorithm are available, the prior of the PWM can

be easily modified to use this information. The estimated PWM by the

other algorithm can be thought of as a Generalized Dirichlet distribution

and with a sufficient statistic T θ
0 .

The same can be done with T λ
0 if there is prior knowledge of the distri-

bution of the number of instances of the motif in the sequences.

3.2.7 Reduced Complexity Motif Discovery Alternative

As the number of particles needed to achieve a good performance increases

with the dimension of the state vector, we propose to use the sequential

Monte Carlo method to decide whether there is no instance of the motif or

if there is only one instance of the motif in each sequence. This outputs an

estimate of the PWM θ. To estimate the number of instances of the motif

in each sequence, we propose to use the estimated θ as a prior for a second

stage where we use nested Neyman-Pearson (NP) hypothesis tests [15] as

follows.

For each sequence, we compute a binary hypothesis test to determine

whether the sequence has j − 1 or j instances of the motif, starting with
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j = 1. If we decide in favor of j, we increment j and retest. On the other

hand, if we decide in favor of j − 1, we then infer the locations of these

instances by maximizing the likelihood of the observed sequence. For each

binary hypothesis test, we use the NP test as it maximizes the probability of

detection given an upper bound on the probability of false alarm. It proceeds

as follows. Let Hj−1 be the hypothesis that there are j − 1 instances of the

motif in the t-th sequence and Hj the hypothesis that the sequence has

j instances of the motif. We can decide between the two hypotheses by

computing the ratio

p(st|Hj)

p(st|Hj−1)

Hj

R
Hj−1

νtj, (3.12)

where νtj is the threshold which is set to achieve a given probability of false

alarm and can be found numerically.

When we decide in favor of the hypothesis Hj−1, we estimate xt by

maximizing the likelihood given that there are j − 1 instances of the motif.

On the other hand, when we decide in favor of Hj, we increment j and

recompute the test in (3.12).

3.3 Experimental Results

We have applied BAMBI to several motif discovery problems, using both

empirical as well as synthetic data, and evaluated its performance on the

basis of the nucleotide-level correlation coefficient (nCC) — a robust mea-
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sure that captures both the sensitivity and the specificity of a method [55].

While there are a number of alternative statistics that can potentially be

used to compare performances of various bioinformatics algorithms, greatest

nCC score has been suggested by Tompa et al. after an extensive study [34]

as the reportable metric for subsequent assessment of motif discovery tools.

It is defined as:

nCC =
TP · TN − FP · FN

√

(TP + FP )(FP + TN)(TN + FN)(FN + TP )

where TP/TN are the total number of nucleotides in the input database

that are estimated to be true positives/negatives and FP/FN are the total

number of nucleotides estimated to be false positives/negatives, based on an

empirically established baseline standard.

In all instances, the performance of the presented algorithm has been

further compared against four popular nucleic acid motif discovery methods:

BioProspector, MEME, SeSiMCMC, and Motif Sampler.

In all the applications, BAMBI was initialized by setting the parameters

of the corresponding Dirichlet distribution at each position in the PWM to

be 1. This transforms the Dirichlet distribution into a uniform distribution,

as no information about the motif is assumed. Similarly, the parameters of

the Dirichlet distribution corresponding to the distribution of the number

of instances of the motif in each sequence is initialized as follows. The

parameter corresponding to the case of no instance of the motif is set to

1, and the parameter corresponding to the case of having one instance is

set to be equal to the average length of the input sequences. This allows
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the algorithm to have a good number of particles with an instance of the

motif while having some with no instance as well when processing the first

sequences. Finally, the number of particles is set to be 20 times the average

length of the input sequences.

3.3.1 Synthetic database

Synthetic data was used to test each algorithm for different motif lengths.

For every considered motif length, 10 databases were generated, each con-

taining 25 sequences of 200 nucleotides. All sequences were seeded with 0,

1, or 2 instances of the motif with probabilities 0.1, 0.3 and 0.6 respectively.

When a sequence has one or two instances of the motif, their locations are

randomly selected using a uniform distribution. Nucleotides belonging to an

instance of the motif were drawn from a distribution that has 0.7 probability

for a dominant nucleotide and 0.1 for the remaining three nucleotides. The

identity of the dominant nucleotide for each position was chosen randomly.

For the positions in the sequence not belonging to a motif, the nucleotides

are equiprobable, i.e., there is a probability of 0.25 for each nucleotide. The

total nCC is computed for each motif lengths between 14 and 20.

The results produced by the BAMBI algorithm have been compared with

those generated by MEME, BioProspector, SeSiMCMC, and Motif Sampler.

All five algorithms have been given the exact motif length in each test. When

applying Motif Sampler, the true background distribution is supplied as an

input to the algorithm. The resulting values of nucleotide-level correlation

coefficients are given as a function of motif length in Figure 3.1. It is seen

that the algorithm proposed here achieves higher performance than the other
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Figure 3.1: Performance comparison of different methods using synthetic
data with varied motif length.

four methods for all tested motif lengths.

3.3.2 Real databases

We have analyzed two types of empirical DNA sequence data and compared

the performance of BAMBI to that of MEME, BioProspector, SeSiMCMC,

and Motif Sampler. The first application is a transcription factor binding

site dataset, which consists of 18 short sequences that contain zero to two

motif instances. The second is a site-specific recombinase binding dataset,

which comprises only 10 sequences, but of considerably greater length each

(see Table 3.2) that contain two instances of the motif each. This represents

two completely different experimental scenarios where the Bayesian motif

discovery is tested and compared with other approaches.



76

For these two datasets, we set Motif Sampler to estimate the background

distributions as an order 1 Markov model from the input sequences. When

analyzing the synthetic dataset, the true background distribution was sup-

plied, but in the case of the real datasets, such distributions are unknown.

3.3.2.1 cAMP receptor protein (CRP) database.

Site-specific cAMP-CRP binding to DNA represents the prototypical model

of gene regulation by a transcription factor [33, 56]. In large part, this may

be attributed to CRP being an essential component of catabolite repression

system, with research history in E. coli dating back to Monod’s investigation

of the “glucose effect” [56]. It also constitutes an example of a regulon, which

plays a major role in directing bacterial energy metabolism [33] and whose

significance has been recently further brought to fore by bioremediation and

bioenergy applications [56, 57]. In fact, the identity of both CRP binding

sites and amino-acid residues responsible for interacting with them have been

so well-understood as to allow novel in silico-designed and in situ-engineered

protein-DNA pairs binding with sufficient specificity to enable transcription

factor activity [58]. Here, we apply BAMBI as well as MEME, BioProspector

with BioOptimizer, SeSiMCMC, and Motif Sampler algorithms to identify

the presence of CRP regulatory binding sites in 18 DNA sequences—each

105 nucleotides in length. It has been experimentally determined that there

are 23 instances of the motif of length 22 in the set [59].

For the purposes of our analysis, the length m of the motif is considered

to be unknown, requiring the use of respective procedures noted earlier. We

impose a lower and upper bound on m of 17 and 27 – respectively – and set
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Figure 3.2: Motif Length PDF estimated by BAMBI for the CRP binding
site motif.

the number of possible instances of the motifs to be between 0 and 2. (If

another algorithm supplies more than two instances of a motif in a sequence,

only the two highest scoring ones are kept to facilitate the comparison.) In

the case of Motif Sampler, the length of the motif is supplied as an input to

the method, as it cannot deal with uncertainty regarding this parameter.

Figure 3.2 shows the estimated probability mass function of the different

values of m after applying BAMBI to the entire database. As can be seen

from the results, the BAMBI algorithm has estimated the most likely motif

length to be 21bp-long, whereas the true motif length is considered to be

22bp, as noted earlier. By comparison, both MEME and BioProspector

with BioOptimizer have estimated the length of the motif to be 24bp, with

SeSiMCMC yielding 19bp.
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(a) True Motif Logo (b) BAMBI’s Motif Logo

(c) MEME’s Motif Logo (d) BioProspector’s Motif Logo

(e) SeSiMCMC’s Motif Logo (f) Motif Sampler’s Motif Logo

Figure 3.3: Logos of the CRP binding site motif. Empirical (“True”) versus
those inferred by the different algorithms.

The estimated PWM logos for different motif discovery algorithms along

with the one inferred from measured data are shown in Figure 3.3. The

CRP motif contains two highly conserved inverted repeat sub-structures:

“TGTGA” and “TCACA”, which are likewise shown to be present in all of

the logos.

The net results achieved by the BAMBI algorithm—as compared with

those of MEME as well as BioProspector with BioOptimizer, SeSiMCMC,

and Motif Sampler (with the latter having been supplied with known motif
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length)—are given in Table 3.1, where M̂ is the estimated motif length. It

can be seen that BAMBI is performing better by both the statistical signifi-

cance criterion (nCC) as well as based on the estimated motif length M̂ , for

which BAMBI gives an estimate closest to the experimentally determined

value.

Table 3.1: Performance comparison using the CRP database.

BAMBI MEME BioProspector SeSiMCMC Motif
(+BioOptimizer) Sampler

M̂ 21 24 24 19 -
nCC 0.6763 0.5358 0.5745 0.63633 0.5590

The value of M was found to be 22 empirically.

3.3.2.2 Din-family of site-specific serine recombinases database.

Site-specific recombination is a process by which well-defined sequences (“re-

combination sites”) on the same or two different DNA molecules come to-

gether and undergo strand exchange, usually catalyzed by specialized en-

zymes called recombinases (sometimes contextually referred to as “inver-

tases” or “integrases”). Based on the location/orientation of sites and

other conditions, a recombination reaction results either in the inversion

or excision/integration of the intervening DNA segment [60]. The latter

generally contains promoters, alternative coding sequences, or other ele-

ments regulating gene expression; so that a recombination event causes ini-

tiation/cessation of transcription or/and synthesis of a different message

RNA. Thus, site-specific recombination offers an organism or a virus an

ability to generate mutually exclusive genetic states through “programmed”
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DNA rearrangements. This type of gene regulatory mechanism has the ad-

vantage of being absolute—i.e., expression is impossible when the gene is

lacking a correctly oriented promoter or is physically separated into several

non-functional pieces—which may be critically important should presence

of even one copy of the wrong protein become highly disadvantageous as,

for example, might be the case for a pathogen targeted by antibodies di-

rected against that protein [33, 61]. Recombination may also have a further

advantage of facilitating rapid and optimized adaptation to such critical

environmental conditions without the need to rely on slow and frequently

deleterious process of random mutagenesis [62]. Indeed, gene regulatory

networks driven by site-specific recombination appear to be particularly en-

riched among pathogens, including uropathogenic Escherichia coli – the pre-

dominant cause of urinary tract infections – and Salmonella Typhimurium

[61, 62].

Importantly, such environmental conditions may often be rare or diffi-

cult to reproduce in the lab—e.g., when they involve intra-host pathogen

dynamics [61]—causing potentially critical genomic rearrangements to re-

main phenomenologically undetected. One alternative could be to analyze

genomic sequences directly for the presence of recombination sites through

bioinformatics means. This approach may be further enabled by the fact

that virtually all identified site-specific recombinases belong to one of just

two basic families, named serine or tyrosine after the amino acid residue

that forms the covalent protein-DNA linkage in the reaction intermediate

[60]. The serine family comprises three primary subfamilies characterized

by sequence, structural, and recombination site homology [62, 63]. Here, we
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Table 3.2: Statistics of the recombinase database.

Number of Sequences 10
Shortest Sequence (nucleotides) 546
Longest Sequence (nucleotides) 4335
Average Sequence Length (nucleotides) 2436.4
Total Data set Size (nucleotides) 24364

use motif discovery algorithms to infer the DNA recombination site (dix ) of

Din serine subfamily, which includes such notable recombinase examples as

Hin (responsible for flagellar phase variation in Salmonella), Gin (determi-

nation of phage Mu host specificity) as well as a number of other bacterial

and phage systems.

All known Din family members recognize a 26bp-long minimal recombi-

nation sites [62, 64], with the list used in this study given in Table 3.3. Spe-

cific sequence sources employed to assemble the segment database used for

site motif discovery comprised: Salmonella enterica serovar Typhimurium

D23580 (GenBank FN424405); Bacteriophage Mu (GeneBank AF083977);

Enterobacteria phage P1 (GenBank AF234172); prophage e14 of Escherichia

coli K12 (GenBank K03521); Escherichia coli plasmid p15B (GenBank

X62121); Dichelobacter nodosus VCS1001 (A198) (GenBank U02462); and

Shigella sonnei (GenBank D00660 – revised from S. boydii, but functional

in S. sonnei [65]). To generate the standardized data set, 7 sequences listed

above were further cut, making sure two instances of the motif remained in-

side each segment. As there are 20 instances of the motif, this resulted in 10

sequences being used as the input to the algorithm. General characteristics

of the so obtained database are shown in Table 3.4.
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The number of nucleotides previous to the first instance of the motif

is chosen from a uniform distribution between 0 and 50. The number of

nucleotides to keep after the second instance of the motif was chosen anal-

ogously. Note that the two instances of the motif present in each sequence

are often oriented in opposite directions, so the analysis has been extended

in a straightforward manner to account for characteristics specific to double-

stranded DNA by searching for sites located on the reverse complement as

well. This is implemented within the context of the BAMBI hidden Markov

model by replacing each double-stranded entry in the sequence database

with one that is a concatenation of the corresponding forward and reverse

strands (both in the 5′-to-3′ orientation). As BAMBI is able to discover both

the number and locations of multiple motif instances, running the algorithm

over the modified database identifies sites located on either strand.

The logos estimated by the different algorithms are presented in Fig-

ure 3.4. It can be seen that BAMBI, MEME, and BioProspector find similar

consensus sequences, while SeSiMCMC and Motif Sampler do not. A quan-

titative significance comparison of the results—given in Table 3.5—shows

that the BAMBI algorithm achieves the best statistical performance, and

that both SeSiMCMC and Motif Sampler were not able to find the motif.

Furthermore, only the BAMBI algorithm has been able to identify a func-

tionally meaningful and biochemically correct recombination site. This is be-

cause, while for a transcription factor the inferred site only needs to specify

preferred binding locations, in the recombinase case the DNA sequence itself

has a functional role in gene expression regulation and so requires accurate

identification of both the motif as well as strand breakage/exchange posi-
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tions within it. As a result, any spatial shifts in the binding motif location

away from the true sequence are likely to have a dramatic and deleterious ef-

fect on the product of site-specific recombination—e.g., by either putting an

alternative coding sequence out of frame, removing a portion of the promoter

region in the course of an inversion/excision or inhibiting strand exchange

altogether. Thus, a shifted sequence prediction—no matter how close to the

true motif in the statistical sense—cannot be deemed correct or acceptable

in the biochemical sense as it undermines either bioengineering/synthetic bi-

ological implementation or systems biological analysis of the recombination

products and their function.

In the case of the Din subfamily recombinase sites, the strand break-

age/exchange reaction occurs through a staggered cut between the two

“core” residues, which necessarily have to be symmetrically and centrally

located within the recombinase binding motif (see Table 3.3 and, for ex-

ample, [62]). As may be seen by comparing the inferred logos (Figure 3.4)

among themselves or with the empirically established consensus Din bind-

ing site (Table 3.3), only the motif discovered by BAMBI accurately iden-

tifies the spatial location of the dix sequence, while the predictions of both

MEME and BioOptimizer are shifted right by 3 bp. Given that the overall

length of the motif is 26 bp, such a difference may not appear to be par-

ticularly significant statistically (e.g., as reflected by the nCC performance

measure, Table 3.5). However, this is not the case biochemically, because

such shifts generally lead to the incorrect determination of the identity of

the two middle residues—the location of strand exchange—and so result in

a non-functional recombinase site. For instance, outside of the two cen-
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tral residues, the rest of the motif must largely be palindromic in order to

accommodate the symmetric binding of two recombinase molecules, whose

dimerization is generally required for strand exchange. However, in MEME-

and BioOptimizer-discovered binding motifs, the lateral shift relative to the

true empirically-known sequence substantially breaks this critical symme-

try. Furthermore, the 2 bp central residue pair found via both MEME and

BioOptimizer is a definitive AC (logo positions 13 and 14). However, the

absence of complementary cores in the database as well as the presence of

a “C” (instead of the strongly conserved “A”, see Table 3.3) in the second

position render such binding sites largely unable to support wild-type Din

recombination, i.e., they are essentially non-functional [62]. These problems

are notably not present in the BAMBI’s motif prediction, which is spatially

aligned with the dix sequence and assigns the most weight to either AA or

GA core pairs that are biochemically permissible.
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(a) True Motif Logo (b) BAMBI’s Motif Logo

(c) MEME’s Motif Logo (d) BioProspector’s Motif Logo

(e) SeSiMCMC’s Motif Logo (f) Motif Sampler’s Motif Logo

Figure 3.4: Logos of the Din recombinase binding site motif. Empirical
(“True”) versus those inferred by the different algorithms.
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Table 3.3: Target sites of Din-family recombinases.

dix
(consensus) TTC———AAAC– –A –GTTT———GAA

hixL TTCTTGAAAACC AA GGTTTTTGATAA
hixR TTTTCCTTTTGG AA GGTTTTTGATAA
gixL TTCCTGTAAACC GA GGTTTTGGATAA
gixR TTCCTGTAAACC GA GGTTTTGGATAA
cixL TTCTCTTAAACC AA GGTTTAGGATTG
cixR TTCTCTTAAACC AA GGTATTGGATAA
pixL TTCTCCCAAACC AA GGTTTTCGAGAG
pixR TTCTCCCAAACC AA CGTTTATGAAAA

mixMI”L’ TTCCCCCAAACC AA CGTTTTAGTCTT
mixMr”N’ TTCCCCTAAACC AA CGTTTTTATGCC
mixN”O’ TTCCCCCAAACC AA CGTTTTTATGTG
mixO”P’ TTCCCCTAAACC AA CGTTTTTATGCC
mixP”Q’ TTCCCCTAAACC AA CGTTTTTATGCC
mixQ”R’ TTCCCCCAAACC AA GGTAATCAAGAA

nix1 TTTCCCAGAAGC AA CCTTAAGTAAAA
nix2 TTTCGCAGAAGC AA CCTTACGTCAAA
nix3 AGACGAAGAAGC AA CCTTAAGTCAAA
nix4 TTTCCCAGAAGC AA CCTTAAGTCAAA
bixL TTCCTGTAAACC GA GGTATTCGATAA
bixR TTCCTGTAAACC GA GGTTTTAGATAA

Recombination sites for Din subfamily members: Hin (hixL and hixR), Gin
(gixL and gixR), Cin (cixL and cixR), Pin (pixL and pixR), Min (mixMI”L’,
mixMr”N’, mixN”O’, mixO”P’, mixP”Q’ and mixQ”R’ – labeled according
to the convention used in [66]), D. nodosus (nix1, nix2, nix3 and nix4 –
with sequences taken from the updated GenBank record rather than as
specified in Moses et al. [64]), and PinB (bixL and bixR) [62, 64, 66–68].
Din palindromic consensus binding site (dix) is as discussed in [69]. The two
core residues at the centers of the sites where strand breakage and exchange
occur are highlighted in bold.
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Table 3.4: Database of recombination sites.

GenBank Start End Recombination
Accession Number Sequence Sequence Sites

FN424405 2907699 2908805 hixL, hixR
AF083977 31913 35084 gixL, gixR
NC 005856 32206 36541 cixL, cixR
X01805 21 1929 pixL, pixR
X62121 2743 4447 mixR’M1”, mixMr”N’
X62121 4848 5465 mixN”O’, mixO”P’
X62121 5868 6414 mixP”Q’, mixQ”L’
U02462 182 4049 nix1, nix2
U02462 4489 8411 nix3, nix4
D00660 600 3788 bixL, bixR

Sequence start and end labels are given by the nucleotide number in the
corresponding GenBank record.

Table 3.5: Performance comparison using the recombinase database.

BAMBI MEME BioProspector SeSiMCMC Motif
Sampler

nCC 0.7711 0.7618 0.7618 -0.0153 -0.0182

MEME, BioProspector, SeSiMCMC and Motif Sampler did not produce a
functionally correct site.
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Chapter 4

Haplotype Inference

4.1 Introduction

Diploid organisms have two homologous copies of each chromosome, one

inherited from the father and one from the mother. The two copies are not

necessarily identical as there are loci in the genome where single nucleotides

differ between members of the same species. These sites are called single

nucleotide polymorphism (SNP). The SNPs are often located close to each

other on the DNA and are inherited together as a set, and the sequence

of nucleotides of that set in each of the two chromosome copies is called a

haplotype.

The knowledge of each haplotype for an individual brings about im-

provements in drug design, diseases detection [70] and also provides useful

information for evolutionary studies on populations [71]. However, direct

measurement of the haplotypes is expensive and time consuming, and usu-

ally only the genotype is measured, i.e., a conflation of the haplotypes. For
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each locus, the genotype contains information on the two occurring nu-

cleotides, but it does not indicate in which of the two chromosome copies a

particular nucleotide resides. Therefore, it is not possible to obtain the hap-

lotypes of a person given its genotype. On the other hand, if the genotypes

of a group of people are available, information from population genetics can

be used to infer the haplotypes of each individual.

Approaches to solving the haplotype inference problem can be divided

in two categories: rule-based methods and statistical methods. Rule-based

methods rely on the maximum parsimony criterion [72] which states that

the observed genotypes are generated by the minimum number of distinct

haplotypes. This leads to a combinatorial problem that has been shown

to be NP-hard [73, 74]. One approach to developing a fast method was

presented in [75] where the so-called Clark’s rule is applied iteratively by

adding a single haplotype in each step to explain each unexplained geno-

type. The set of estimated haplotypes in this case depends on the order in

which the genotypes are given. A generalization to Clark’s rule was pre-

sented in [76], where another heuristic called CollHaps is used to find the

haplotypes. However, Clarks rule does not yield an effective approximation

algorithm for maximum parsimony [77]. RTIP [78] is a method that finds the

maximum parsimony solution by solving an integer linear program whose

size grows exponentially with the number of heterozygous positions in geno-

types; HAPAR [79] is a similar technique that employs a branch-and-bound

method initialized with the solution of a greedy algorithm; and in [80] the

authors propose two methods based on a sequence of LP relaxations and the

search for valid cuts.
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On the other hand, there are several statistical methods for haplotype

inference, among which PHASE [81] offers the best performance. It is a

Bayesian algorithm that models the unknown haplotypes as unobserved ran-

dom quantities. Given the observed genotypes, it approximates the condi-

tional distributions by using a Gibbs sampler and the coalescence theory.

However, it ends up with an approximation that is not a valid posterior [82].

The main drawback of this method is its slow speed. HAP [83] is a faster

method that finds candidate solutions by using a perfect phylogeny proce-

dure and picks the one achieving the greatest likelihood. A Gibbs sampler

was also used to solve the haplotype inference problem in [84, 85]. In this

case, a Dirichlet distribution is used as the prior for the vector of frequen-

cies of the different haplotypes, allowing an excessive number of haplotype

to be used which produces artifacts [82]. Haplotyper is another statistical

method [86] based on the Gibbs sampler, but a prior annealing is used to

ameliorate the problems of the Dirichlet prior. As an alternative to the

Gibbs sampler, an expectation-maximization (EM) algorithm is used in [87]

which is sensitive to the initial conditions, and is limited in the number of

SNPs it can handle (on the order of 20). A partition-ligation EM method

was later introduced to overcome this computational limitations [88]. An-

other example of haplotyping based on the EM algorithm is Gerbil [89] which

identifies haplotypes and SNP blocks simultaneously. More recently, a new

method called fastPHASE was presented in [90] where a clustering approach

was used before the Gibbs sampler in order to obtain a faster algorithm than

PHASE. In general, methods based on the Gibbs sampler and the EM algo-

rithm are not robust when the parameter space shows multimodality, which



91

is the case for the haplotype inference problem [91]. In [92] the authors pro-

pose a method based on the deterministic sequential Monte Carlo approach

to overcome this lack of robustness.

In this chapter, we first propose a new mathematical framework for hap-

lotype inference based on the sparse representation of the observed geno-

types. Within this framework, we present two related haplotype inference

methods. In the first one, the maximum parsimony principle is translated to

a sparseness condition on the haplotype frequency vector. We then propose

to minimize the Tsallis entropy of this frequency vector in order to obtain

a sparse solution. This leads to a method that relies on the minimization

of a concave function which is also NP-hard. We present a method that

enumerates all the local minima of the Tsallis entropy with high probabil-

ity by solving a succession of integer linear programs. The solution is then

found among the local minimum points with the smallest Tsallis entropy.

The method contains a parameter that represents the tradeoff between ac-

curacy and execution time. We then introduce a second method that looks

for a dictionary of haplotypes to reconstruct all observed genotypes. The

maximum parsimony principle is translated, in this case, to the search for a

sparse dictionary. This leads to an approximately submodular optimization

problem that can be solved efficiently with a simple greedy algorithm. We

extend our method to handle long genotype vectors and missing data.

The remainder of the chapter is organized as follows. In Section 4.2,

we introduce the novel mathematical framework for the haplotype inference

problem. In Section 4.3, we represent the maximum parsimony principle as

a sparseness condition on the haplotype frequency vector and introduce the
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first method to perform the haplotype inference. Then, in Section 4.4, we

present the second method that looks for a sparse dictionary and leads to a

more efficient way of solving the haplotype inference problem. We provide

experimental results on synthetic and real datasets in Section 4.6.

4.2 System Model and Problem Statement

A SNP is a single nucleotide variation where only two out of the four different

nucleotides occur in a large percentage of the population. Then, only one

of two states (alleles) can be found in a specific position of the chromosome

(locus) of a SNP. The most common nucleotide in that locus is called the

wild-type and is encoded with a 0 and the other nucleotide is the mutant

and is encoded with a 1. When analyzing L SNPs, the states of the loci on

each copy of the chromosome is represented separately as a haplotype, and

therefore, diploid organisms have two haplotypes. If both haplotypes of an

individual have a 0 (1) for a specific locus, the site is called homozygous

and is encoded with a 0 (2). In this case, for this locus, we say that the

genotype presents no ambiguity as the genotype can be used to reconstruct

each haplotype unequivocally. On the other hand, when the alleles are

different, the site is heterozygous and the genotype for the locus is 1. In

this type of site, the genotype gives no information about which haplotype

contains the wild-type and which one contains the mutant. We call this

an ambiguity. Notice that this convention is slightly different from those

in most previous works, but it allows us to express the genotype gi(ℓ) of

the i-th individual at the ℓ-th locus as the sum of the corresponding two
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haplotypes h1i (ℓ) and h2i (ℓ), i.e.,

gi(ℓ) = h1i (ℓ) + h2i (ℓ), ℓ = 1, . . . , L. (4.1)

Let h
j
i =

[

hji (1) . . . h
j
i (L)

]T
be the j-th haplotype of the i-th person,

j ∈ {1, 2}, consisting of L SNP loci, where hji (ℓ) ∈ {0, 1}. Moreover, let

gi = [gi(1) . . . gi(L)]
T , with gi(ℓ) ∈ {0, 1, 2}, be the genotype data for that

same individual. Then, for each individual i = 1 . . . N , where N is the

number of individuals in the input dataset, we have

gi = h1
i + h2

i . (4.2)

We say that a haplotype z ∈ {0, 1}L is compatible with a genotype

g ∈ {0, 1, 2}L if g − z ∈ {0, 1}L. We are interested in the haplotypes

compatible with the genotypes as they are candidates to be selected as

the inferred haplotypes for a given genotype. Given a set of genotypes, we

define the haplotype dictionary matrix Z, which has the haplotypes that are

compatible with the observed genotypes as its columns. To obtain Z from

the observed genotypes, we proceed as follows. For each observed genotype

gi, we generate the set Hi of haplotypes that are compatible with gi. Then,

Z has each haplotype of the union of the sets H1, . . . ,HN in its columns.

Let M be the number of haplotypes in Z.

As gi = h1
i + h2

i , both h1
i and h2

i are compatible with gi and therefore,

they belong to Hi and are columns of the matrix Z. Let h1
i and h2

i be the

r-th and s-th columns of the L×M matrix Z respectively. Then, we have
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that genotype gi of the i-th individual can be expressed as

gi = Zxi, (4.3)

where xi ∈ {0, 1, 2}
M is a sparse vector that indicates the haplotypes gen-

erating the genotype gi from the available dictionary of M haplotypes.

More specifically, if r 6= s, then xi(j) = 0 for j = {1 . . .M}\{r, s} and

xi(r) = xi(s) = 1. Otherwise, if r = s, then xi(j) = 0 for j = {1 . . . M}\{r}

and xi(r) = 2. Notice that 1Txi = 2, where 1 = [1 . . . 1]T . Furthermore, we

define the following haplotype frequency vector f(x1, . . . ,xN ).

f(x1, . . . ,xN ) , 1

2N

N
∑

n=1

xn. (4.4)

The maximum parsimony principle states that the number of different

haplotypes that explains all the observed genotypes should be as small as

possible. Therefore, the maximum parsimony haplotype inference problem

is stated as follows. Given the set {gi, i = 1, . . . , N} of genotype vectors of N

subjects for L loci, we aim at inferring the set of haplotypes pairs {h1
i ,h

2
i , i =

1, . . . , N} that is composed of the minimum number of distinct haplotypes,

without the prior knowledge about the frequencies of the haplotypes. More

specifically, we will infer xi, which given the matrix Z, is equivalent to

inferring the haplotypes {h1
i ,h

2
i } of the i-th individual.

Our approach employs the maximum parsimony principle within the

presented mathematical framework. This principle states that the solution

should have a frequency vector with as few non-zero components as possi-
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ble. Equivalently, from the point of view of the decomposition in (4.3), the

principle requires that we need to use as few columns of Z as possible to

explain all the observed genotypes.

4.3 Sparse Haplotyping based on Tsallis Entropy Minimiza-

tion

4.3.1 Problem Formulation

Notice that the indicator vector for the genotypes that have no ambiguity can

be found by searching through the columns of matrix Z. Let gi be a geno-

type with no ambiguities, then the i-th person has two identical haplotypes,

i.e., h1
i = h2

i = gi/2. And the indicator vector xi is determined by finding

the column of matrix Z that equals to gi/2; that is, if the r-th column of

Z is gi/2, then xi(j) = 0 for j = {1 . . .M}\{r} and xi(r) = 2. Moreover, if

the i-th genotype has only one ambiguity, the corresponding haplotype pair

can be easily found by setting h1i (ℓ) = 0 and h2i (ℓ) = 1 where the genotype

presents an ambiguity, i.e., gi(ℓ) = 1, and h1i (ℓ) = h2i (ℓ) = gi(ℓ)/2 otherwise.

Then the two different haplotypes h1
i and h2

i need to be found among the

columns of Z.

Therefore, we only need to infer the haplotype pair corresponding to

genotypes with at least two ambiguities. Let I be the set of indices of

genotypes with two ambiguities or more. Each individual i ∈ I has two

different haplotypes, and therefore, xi ∈ {0, 1}
M . We propose to find the

set of indicator vectors {xi, i ∈ I} by solving the following optimization
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problem:

max
xi, i∈I

parsimony (4.5)

subject to























gi = Zxi

2 = 1Txi

xi ∈ {0, 1}
M , i ∈ I.

For future reference, we denote the constraint set

Si ,
{

xi ∈ {0, 1}
M : gi = Zxi, 2 = 1Txi

}

,

and

S =
{

{xi}i∈I : xi ∈ Si, i ∈ I
}

.

We translate the parsimony principle to a sparseness condition over the

frequency vector f(x1, . . . ,xN ) defined in (4.4). Such a condition can be ex-

pressed mathematically by means of the l0 norm, which counts the number of

non-zero elements of its argument. Therefore, minimizing ‖f(x1, . . . ,xN )‖0

leads to a maximum parsimony solution.

However, minimizing the l0 norm has an exponential complexity. A

relaxation to the objective function can be applied in order to obtain a

more tractable problem. In the compressed sensing literature, the l1 norm is

usually used as a substitute for the l0 norm. But the l1 norm of a frequency

vector is always equal to one and therefore, it cannot be used here. We

propose to use the Tsallis entropy [93] Hq with small q > 0 to induce the

sparse condition. Let F , {y = [y1 . . . yM ]T :
∑M

i=1 yi = 1, yi ≥ 0} be the
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set of frequency vectors. The Tsallis entropy of a frequency vector y ∈ F is

defined as

Hq(y) =
1

q − 1

(

1−
M
∑

i=1

yqi

)

. (4.6)

This entropy has the characteristic of being strictly concave for q > 0 and

moreover, as it is symmetric, it is Schur-concave [94], i.e., if x ≺ y1, then

Hq(x) ≥ Hq(y). As a consequence of this property, the frequency vector

that minimizes the Tsallis entropy can be found and consists of the sparsest

possible vector. To see this, let y∗ = [y∗1 . . . y
∗
M ]T ∈ F be defined as

y∗i =











1 if i = k,

0 otherwise,
(4.8)

for any k ∈ {1 . . .M}. This vector has the property that for all y ∈ F ,

y∗ � y and therefore, Hq(y
∗) ≤ Hq(y).

Hence the Tsallis entropy can be a good alternative to the l0 norm.

Moreover, it is seen from the definition of the entropy that if we make the

parameter q = 0, the entropy disregards the values of the components of

the vector y and only counts the number of nonzero components [95], i.e.,

H0(y) = −1+ ‖y‖0. Therefore, we propose to minimize Hq(y) with a small

q > 0 as a concave approximation to minimizing ‖y‖0. In Fig. 4.1 we show

1For any x = [x1, . . . , xM ]T ∈ R
M , let x[1] ≥ . . . ≥ x[M] denote the components of x in

decreasing order. Then, for x, y ∈ R
M , x is majorized by y, i.e., x ≺ y

if

{ ∑k

i=1 x[i] ≤
∑k

i=1 y[i], k = 1, . . . ,M − 1,
∑M

i=1 x[i] =
∑M

i=1 y[i].
(4.7)
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Hq(y) with y = [y1 y2 y3]
T for four different values of q. As y3 = 1−y1−y2,

we display the entropy as a function of only y1 and y2. It is seen in the

figure that the entropy is minimum when only one component of y is one

and the remaining ones are zero, corresponding to the sparsest frequency

vectors. It is also seen in the figure that as q goes to zero, the entropy goes

to ‖y‖0 − 1.

Figure 4.1: The Tsallis entropy for a frequency vector y = [y1 y2 y3]
T for

different values of q.

Therefore, minimizing the Tsallis entropy results in sparseness. Then

the sparse haplotyping method based on the Tsallis entropy minimization

is formulated as follows:

min
xi, i∈I

Hq (f(x1, . . . ,xN )) (4.9)

subject to xi ∈ Si, i ∈ I.
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4.3.2 Solution

The sparse haplotyping based on the Tsallis entropy minimization is an

integer programming problem with a concave objective function. Notice

that linear functions are a special case of concave functions, and integer

linear programming problems are known to be NP-hard [96]. Therefore,

our Tsallis entropy minimization problem is also NP-hard. Moreover, the

minimization of a concave function may have many local solutions, and

local optimality does not imply global optimality. Consequently, finding

the global minimum is a computationally difficult problem. We present

in this subsection a method to uncover the local minima in order to find

the optimal solution among these points with high probability based on a

multistart stochastic method. This method is based on an algorithm in [97]

for solving linearly constrained concave global minimization problems.

Notice that (4.9) can be converted to a linearly constrained concave

minimization problem as follows. First, S can be replaced with its convex

hull conv(S) as it is known that the global minimum point of a concave

function over a nonempty and bounded convex polytope is always found at

a vertex of the polytope [97] and the vertices of conv(S) belong to S [98].

This allows us to rewrite the combinatorial problem as the following linearly

constrained concave global minimization problem:

min
xi i∈I

Hq (f(x1, . . . ,xN )) (4.10)

subject to {xi, i ∈ I} ∈ conv(S),

where the set of feasible points is non-empty and a bounded polytope. How-
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ever, the set conv(S) is not easily characterized in a closed-form expression

but finding a solution to the optimization is possible nonetheless.

As the global minimum point of a concave function is always found at

a vertex of the convex polytope, we use a stochastic multistart technique

to list all vertices corresponding to local minima of the objective function.

Then, finding the global minimizer is just a matter of looking through the

set of local minima and identifying the one with the minimum objective

function value. The method iterates between two phases. In the first or

global phase, the search is done in a random direction to find a vertex of the

polytope. Then, the second or local phase involves finding a local minimum

starting from the solution to the global phase. These two phases iterate

until all local minima are visited with high probability.

4.3.2.1 Global Search

The global search is carried out as a means of finding an initial point for the

local phase. This is done by replacing the concave objective function by a

linear function, with a random direction u ∈ R
MN , as follows,

min
xi i∈I

uT













x1

...

xN













(4.11)

subject to {xi, i ∈ I} ∈ conv(S).

This problem is a linear program (LP), and its solution is a vertex of the

polytope of feasible solutions.
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However, we do not have a closed-form representation for conv(S). Nonethe-

less, following the similar argument as before, we can replace conv(S) with S

and solve the equivalent linear integer optimization problem. Moreover, let

u =
[

uT
1 . . .uT

N

]T
be partitioned into N vectors of dimension M , then (4.11)

is equivalent to solving the following |I | smaller optimization problems,

min
xi

uT
i xi (4.12)

subject to























gi = Zxi

2 = 1Txi

xi ∈ {0, 1}
M , i ∈ I,

which is a binary integer linear program that can be efficiently solved with a

succession of linear programs under the framework of the branch-and-bound

method [96].

Notice that this step is choosing a haplotype pair for each individual

randomly. Then, the binary integer linear program can be replace by uni-

formly choosing a haplotype pair that explains the corresponding genotype

of the i-th individual. This can be efficiently implemented by computing a

list of possible haplotypes pair only once, and then uniformly choosing from

this list. The complexity of the binary linear program is then avoided.

Let zo = [ x̂i, i ∈ I ] be the stacked solution to the |I | random selection

problems.
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4.3.2.2 Local Search

The local phase uses the point z0 found by the global phase to find a local

minimum of (4.10). This phase consists of a sequence of linear programs

where given the solution in step j − 1, the solution in step j is found by

solving the following optimization problem.

Given a vertex zj−1, find another vertex with a smaller objective function

value by solving the following linear program:

min
xi, i∈I

∇
(

Hq (f (zj−1))
)T (

[xi, i ∈ I]− zj−1

)

(4.13)

subject to {xi, i ∈ I} ∈ conv(S),

where [xi, i ∈ I] is the concatenation of the vectors xi with i ∈ I. Let

the solution to this linear program be zj. It is shown in [97] that the point

that solves (4.13) attains a lower objective function value, i.e., Hq (f (zj)) ≤

Hq (f (zj−1)). Iterate this step until no further decrement of the objective

function value is possible, i.e., Hq (f (zj−1)) = Hq (f (zj)).

Notice that

∇xi

(

Hq (f (x1, . . . ,xN ))
)

= −
1

2N

q

q − 1
f (x1, . . . ,xN )q−1 , i ∈ I, (4.14)

where given f = [f1 . . . fM ]T , we define f q−1 ,
[

f q−1
1 . . . f q−1

M

]T
. Similarly

as before, (4.13) can be decomposed into the following |I | integer optimiza-
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tion problems, each solved with a binary integer linear program:

min
xi

(

−
q

q − 1
f (zj−1)

q−1

)T

(xi − zi
j−1) (4.15)

subject to























gi = Zxi

2 = 1Txi

xi ∈ {0, 1}
M , i ∈ I,

where zj−1 =
[

zi
j−1, i ∈ I

]

.

Moreover, notice that for small q, the components of f (zj−1) that are

zero will result in a solution x̃i of (4.15) with zeroes in those same positions,

in order to obtain a finite objective value. This is due to the fact that

the components fi that approach zero, have f q−1
i → ∞ for small q < 1.

Furthermore, as we compute a list of all possible haplotype pairs for each

observed genotype, we only need to consider the haplotype pairs that are in

the list whose haplotypes do not correspond to null components of f (zj−1).

This observation leads to a significant dimensionality reduction of (4.15).

4.3.2.3 Final Solution

The global and local searches need to be iterated until all local minimum

points are visited. However, the number of such points is unknown a priori

and a Bayesian estimate of the number of local minimum points is used in-

stead [97]. In this way, with high probability, all local minima will be visited.

Specifically, given the number w of observed local minima so far, and tak-

ing into account the estimate of the number local minima, a recommended
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stopping time [97] is given by

(w2 + w)/δ + w + 2,

where δ is a parameter between zero and one. Notice that the stopping time

needs to be updated every time a new local minimum is found and therefore,

as more local minima are found, more iterations are carried out.

Let K be the final set of local minima visited. Then, the solution to the

optimization problem (4.10) is given by the vertex in K that achieves the

minimum value of the objective function, i.e.,

{x̂i, i ∈ I} = arg min
xi, i∈I

{Hq (f (x1 . . .xN )) : {xi, i ∈ I} ∈ K} .

Finally, we remark that the above approach to solving the sparse hap-

lotyping problem (4.9) has the benefit of being amenable to parallel im-

plementations. That is, starting with different random directions u, the

corresponding global and local searches can be performed in parallel. More-

over, the linear programs are decomposed into a set of |I | smaller linear

programs which can also be solved in parallel. Note also that the parameter

δ can be adjusted to tradeoff between speed and accuracy.

4.3.2.4 Summary of the Algorithm

Given the parameter 0 ≤ δ ≤ 1 that represents a trade-off between accuracy

and running time, the algorithm proceeds as follows.

• Initialize the algorithm.
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– Determine the set I of genotypes with two ambiguities or more.

Find the list Li of all possible haplotype pairs for each genotype

in I.

– Given the union of the lists Li and the direct computations of

the haplotypes associated with the genotypes not in I, place each

haplotype as a column of Z.

– For the genotypes with no ambiguities, determine xi by searching

the column gi/2 of Z.

– For the genotypes with only one ambiguity, set h1i (ℓ) = 0 and

h2i (ℓ) = 1 where gi(ℓ) = 1, and h1i (ℓ) = h2i (ℓ) = gi(ℓ)/2 otherwise.

Find the columns h1
i and h2

i of Z.

– Start with an empty set of local minima, i.e., K = ∅ and therefore,

w = 0.

• Find the local minima.

Starting with j = 0 and while j < (w2 +w)/δ + w + 2:

– Find a vertex randomly using the global search.

∗ Pick a random haplotype pair from Li ∀i ∈ I.

– Find a local minimum through the local search step.

∗ Stack the solutions to the global search x̂i,∀i ∈ I, in z0.

∗ Find the local minimum.

Starting with k = 1, repeat until Hq(zk) = Hq(zk−1).

· Solve (4.15) ∀i ∈ I.
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· Stack the solution in zk+1.

· k ← k + 1.

– Let zf be the output of the local search. If zf 6∈ K, then it is the

first time we visit this local minimum and we set K ← K ∪ {zf}

and w ← w + 1.

– j ← j + 1.

• Find the global optimum point among the local minima.

{x̂i, i ∈ I} = arg min
xi, i∈I

{Hq (f (x1 . . .xN )) : {xi, i ∈ I} ∈ K} .

4.4 Sparse Haplotyping based on Dictionary Selection

In the previous section we looked for a haplotype frequency vector that is as

sparse as possible. The non-zero positions of the frequency vector correspond

to columns in the matrix Z that are used to explain the genotypes. There-

fore, searching for the sparsest frequency vector is equivalent to looking for

the smallest set of columns of Z that explains all the observed genotypes.

Each genotype can be reconstructed by one or two columns of the matrix

Z. But the maximum parsimony principle states that we should be able

to reconstruct all genotypes using as few columns as possible, i.e., we look

for a dictionary that can represent the genotypes using the least number of

columns of Z. In this section we state this approach mathematically and

show how this is an approximately submodular optimization problem that

can be solved efficiently with a greedy algorithm.



107

4.4.1 Problem Formulation

We denote the p-th column of Z as hp and define the dictionary D as the

indices of the columns of Z that are used to explain the observed geno-

types. The maximum parsimony principle then dictates that the dictionary

D should have the smallest possible cardinality. Let Ai ⊆ D be the subset of

the dictionary used to explain the genotype of the i-th person. If there is no

ambiguity in gi, then Ai = {m} consists of only one index, corresponding

to the m-th column hm in matrix Z such that gi = hm+hm. On the other

hand, when the genotype contains ambiguity in at least one locus, then two

different haplotypes are needed to reconstruct the genotype and therefore,

Ai = {k, j} consists of two indices such that gi = hk + hj.

Define the following coordinate vector of the i-th genotype

x̃i =































2 if i 6∈ I and the genotype has no ambiguities,
[

1 1

]T

if i 6∈ I and the genotype has only one ambiguity,
[

1 1

]T

if i ∈ I.

(4.16)

Moreover, let ZAi
be the matrix formed by the columns of matrix Z indexed

by Ai. For each individual i, we then have

gi = Zxi = ZAi
x̃i. (4.17)

Notice the connection between the vectors xi and x̃i. The latter consists of

all the non-zero components of the former; while the matrix ZAi
consists of

the columns of matrix Z where xi is non-zero.
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The set {Ai : i 6∈ I} can be easily found by searching through the

columns of matrix Z as in the previous method. On the other hand, both

{Ai, i ∈ I} and D are unknown. The maximum parsimony haplotype infer-

ence problem is solved once we determine {Ai, i ∈ I} with the cardinality

of D as small as possible. Noticing that the cardinality of Ai, i.e., |Ai|, is

always less than or equal to 2, the sparse haplotyping problem based on

dictionary selection can then be summarized as follows.

Find D and {Ai : |Ai| ≤ 2,Ai ⊆ D, i = 1, . . . , N} such that the cardi-

nality of D is as small as possible and gi = ZAi
x̃i, i = 1, . . . , N .

4.4.2 Solution

The sparse haplotyping based on dictionary selection is an optimization

problem that aims at solving the dictionary selection problem jointly with

the reconstruction of the genotypes. This problem is combinatorial both in

the selection of each Ai from the set D and in the selection of D from the

available set of columns of Z. In this subsection, we show that the joint

optimization problem is approximately submodular and therefore, the hap-

lotyping problem can be carried out with a low-complexity greedy method.

We first determine the set {Ai : i 6∈ I} by searching through the columns

of matrix Z as in the previous method. Then, to find the haplotypes for

the subjects belonging to the set I, we let x̃i ∈ R
2, and define the following

variance reduction metric over the set of observations:

Li(A) = min
x̃i

‖gi −ZA x̃i‖
2, (4.18)
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where A is not yet determined. Notice that the final solution D and {Ai :

|Ai| ≤ 2,Ai ⊆ D, i ∈ I} will satisfy Li(Ai) = 0. Since a genotype should

be explained by at most two columns of the matrix Z, we can constrain the

cardinality of A to be less than or equal to 2 and look for the set of columns

of Z such that

Ai = arg min
AjD,|A|≤2

Li(A), (4.19)

where D is not yet determined. Notice that the cost function in (4.19) is

zero when D contains a pair of haplotypes that explains the i-th genotype.

Furthermore, we define

Fi(D) = Li(∅)− min
AjD,|A|≤2

Li(A), (4.20)

with Li(∅) = ‖gi‖
2 in order to have Fi(∅) = 0. And to take into account all

genotypes at once, we consider the average of all individuals as

F (D) =
1

|I|

∑

i∈I

Fi(D). (4.21)

We then define the best dictionary of cardinality n as

D∗
n = arg max

|D|≤n
F (D). (4.22)

Therefore, the dictionary with the smallest possible cardinality that explains
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all observed genotype is given by

D∗ = min
n

{

D∗
n : F (D∗

n) =
1

|I|

∑

i∈I

‖gi‖
2

}

. (4.23)

Given a cardinality n, the general setting of (4.22) was first considered in [99]

in the context of synthetic signals and natural images for representation and

inpainting problems. We extend the approach presented there in order to

find the dictionary with the smallest possible cardinality of (4.23).

It is shown in [99] that (4.22) is monotonic, i.e., F (∅) = 0 and whenever

D ⊆ D′ then F (D) ≤ F (D′), and approximately submodular with constant

ǫ, i.e., for D ⊆ D′ ⊆ V and v ∈ V \ D′ it holds that

F (D ∪ {v})− F (D) ≥ F (D′ ∪ {v})− F (D′)− ǫ,

where ǫ is related to the incoherence2 of the column vectors of Z.

The maximization of a monotonic and approximately submodular func-

tion can be approximately solved efficiently by a greedy algorithm with a

convergence guarantee. A particular case is the maximization of a submod-

ular function G, i.e., an approximately submodular function with ǫ = 0.

When applying a greedy technique that starts with the empty set and adds

elements one by one, corresponding to the ones with the maximum marginal

gains, we have the following result.

2The incoherence µ of a set of vectors of unit l2 norm {φ1, . . . ,φM} is defined as

µ = max
i6=j
| < φi,φj > |.
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Proposition 1 [100] For a non-negative, monotone submodular function

G, let D̂n be a set of size n obtained by selecting elements one at a time,

each time choosing an element that provides the largest marginal increase

in the function value. Then G(D̂n) ≥ (1 − e−1)maxD: |D|≤nG(D), where

e ≈ 2.72 is Euler’s number.

The theorem states that a greedy approach for solving the sparse dictionary

selection problem provides a (1−e−1) ≈ 63% approximation. When dealing

with an approximately submodular function, the greedy solution also has

the following property [101]:

F (D̂n) ≥ (1− e−1) max
D: |D|≤n

F (D)− nǫ

Therefore, we propose to solve the haplotype inference based on dictio-

nary selection using a simple greedy algorithm with the above convergence

property. The algorithm proceeds as follows.

Start with the empty set D0 = ∅, and at every iteration l, add the

element m to Dl−1 if the column vector hm of Z is the one achieving the

maximal marginal gain among the possible columns 1 . . .M , that are not in

Dl−1, i.e.,

m = arg max
k∈{1...M}\Dl−1

F (Dl−1 ∪ {k}),

until F (Dl) =
1
|I|

∑

i∈I ‖gi‖
2.

We finally need to specify how to solve (4.18) and (4.19) within this

greedy method. In our particular case, we know that for the i-th genotype
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to be explained with a dictionary D when i ∈ I, the vector x̃i of (4.18) must

equal [1 1]T . This simplifies (4.18) as x̃i is now fixed. We then find Ai in

(4.19) by computing the difference of each genotype with the sum of all par

of columns of ZD, and pick the pair of columns that minimize (4.19). If the

metric (4.18) is zero, it means that we can reconstruct the genotype with

those two columns.

4.4.2.1 Summary of the Algorithm

• Initialize the algorithm.

– Determine the set I of genotypes with two ambiguities or more.

– Determine Z as in the previous method.

– For the genotypes with no ambiguities determine xi by searching

the column gi/2 of Z.

– For the genotypes with only one ambiguity, set h1i (ℓ) = 0 and

h2i (ℓ) = 1 where gi(ℓ) = 1, and h1i (ℓ) = h2i (ℓ) = gi(ℓ)/2 otherwise.

Find the columns h1
i and h2

i of Z.

– Set the dictionary D∗
n−1 to contain the indices of the columns of Z

that explain the genotypes with no ambiguities and the genotypes

with only one ambiguity, where n− 1 is its cardinality.

• Iterate until all genotypes are explained, i.e., F (D∗
n) =

1
|I|

∑

i∈I ‖gi‖
2.

– Perform the greedy search.

∗ For ∀j ∈ {1, . . . ,M} \ D∗
n−1, compute F (D∗

n−1 ∪ {j}) with

x̃i = [1 1]T in (4.18).
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∗ Let j∗ = argmaxj∈{1...M}\D∗
n−1

F (D∗
n−1 ∪ {j}). Set D∗

n =

D∗
n−1 ∪ {j

∗}.

∗ Check if any genotype is explained by the addition of the new

element hj∗, i.e., if (4.18) is zero. If so, the inferred haplotype

pair for the individual with such a genotype is [hj∗, gk−h
j∗ ].

– n← n+ 1.

4.5 Extensions

4.5.1 Large Data Sets

When the number of ambiguous sites is large, the complexity of finding the

matrix Z increases dramatically. One approach for this case is to partition

the data into blocks and process one block at a time. After all blocks are

processed, a ligation process is performed to obtain the final result. We next

adapt such a partition-ligation (PL) method [86] to the sparse haplotyping

approach.

The PL method starts with the partition phase. The genotype data is

divided into Q non-overlapping and non-empty sets that cover all of the

genotypes. Each set contains genotype segments from the same SNP loci

for all individuals. Let
{

Gq11:q
1
2
,Gq21:q

2
2
. . . ,G

qQ1 :qQ2

}

be the partitioned sets

of genotype data, where the i-th subset Gqi1:q
i
2
contains the genotypes for

SNP locus qi1 to qi2 for all N individuals. We impose that the first locus

of the first set be the first locus of the complete genotype, i.e., q11 = 1.

Moreover, each set is adjacent to the previous one, i.e., qi1 = qi−1
2 + 1 for

i = {2 . . . Q}. Notice that as we need to cover all loci, the last locus for the
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last set is qQ2 = L. For each set Gqi1:q
i
2
, the haplotypes are inferred using our

algorithm, which outputs a small set of haplotypes
{

hi
1 . . .h

i
Ki

}

that can be

used to explain the set of genotypes, where Ki is the number of haplotypes

in the set.

Then, the PL proceeds to a ligation phase, where adjacent sets are

merged to obtain a new partition of the data, with
⌈

Q
2

⌉

sets, e.g., when

merging the (2i)-th set with the (2i + 1)-th set, the resulting set consists

of the genotypes for all individuals between locus q2i1 and q2i+1
2 . For each

merged set Gq2i1 :q2i+1
2

, we run the haplotype inference algorithm again, but

restricting Z to contain every possible concatenations of the K2i haplotypes

of the (2i)-th set with the K2i+1 haplotypes of the (2i + 1)-th set. The

process continues until there is only one set of genotypes and the haplotype

inference algorithm is finally applied to this set.

In order to use the PL method, we need to determine an initial partition

of the data. Therefore, we need to specify the number of partitions Q

and the length of each partition or equivalently, the initial locus of each

partition, i.e.,
{

qi1
}

i=1...Q
. A simple and low-cost way of setting the initial

loci
{

qi1
}

i=1...Q
is to fix each block to be of equal length. Then, given an

upper bound W on the length for each initial block, the number of blocks is

Q = ⌈ L
W ⌉.

Another option to initialize the PL method is to perform block partition-

ing. In this case, Q and
{

qi1
}

i=1...Q
are chosen in order to take advantage

of the block structure that the haplotypes naturally exhibit between recom-

bination hot-spots [92]. Within hot-spots, the haplotype fragments display

less diversity compared to the complete haplotype vectors. We measure the
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diversity in a block by computing its Shannon entropy. Let
{

h̃
ij
1 . . . h̃

ij

K̃ij

}

be the K̃ij haplotypes used to generate the genotypes in the block that start

at locus i and finishes at locus j, and f̃
ij

=
[

f̃ ij
1 , . . . , f̃ ij

K̃ij

]

the haplotype

frequency vector. Then, the entropy of the this block is given by

E(i, j) = −

K̃ij
∑

k=1

f̃ ij
k log f̃ ij

k . (4.24)

Moreover, we define the total entropy as the sum of the entropies for the

haplotype segments of each block. We look for the best partitioning by

finding the blocks such that the total entropy is minimized. However, the

true haplotypes are not known, but given Gi:j, they can be inferred with

either the sparse haplotyping based on Tsallis entropy minimization method

or the sparse haplotyping based on dictionary selection approach. Let C(k)

be the minimum total block entropy up to k-th SNP, and E(i, j) the entropy

of the frequencies of the haplotype pairs. Then, we need to compute C(L)

and we do so by solving the following recursive problem. Set C(0) = 0 and,

for k = 1, . . . , L, compute

C(k) = min
1≤i≤k

{C(i− 1) + E(i, k); for k − i ≤W} , (4.25)

where W is the upper bound for the length of the block. Notice that the

argument i in (4.25) gives the optimal initial point of the block ending in

locus k. Therefore, after computing C(L), the minimum total entropy for

all blocks, we need to do backtracking in order to uncover the optimal block

partitioning. For example, once C(L) is computed, we look at the i∗ in
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(4.25) that was used to find the minimum. Such i∗ defines the initial locus

of the last block. We then look at C(i∗ − 1) and the argument i that was

used to achieve the minimum, and so on until we reach the initial locus.

4.5.2 Missing Data

Errors often occur during the genotyping process, and the data at some loci

in some genotypes might not have been observed. We present modifications

to the algorithms to perform haplotype inference in the presence of missing

data. We assume that it is known a priori where the genotype information

is missing for each genotype of each individual.

Missing data can occur both in genotypes in I and in genotypes not in

I. In the latter case, there is uncertainty regarding the haplotype pair of

genotypes that originally had no ambiguity. We need to expand the set I

in order to take this into account. LetM be the set of indices of genotypes

with missing information. The indices of genotypes that present uncertainty

is then given by J =M∪ I.

We next present the modifications to both the sparse haplotyping based

on Tsallis entropy minimization and the sparse haplotyping based on dic-

tionary selection in order to handle missing data.

4.5.2.1 Sparse Haplotyping based on Tsallis Entropy Minimiza-

tion

The observed genotypes define the constraints of the minimization problem

in (4.9). Missing data then implies a smaller number of constraints. Let g̃i

be the genotype gi where all the loci with missing information have been
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removed, and Z̃
i
the matrix Z with all the rows corresponding to those

loci removed. Notice that different individuals present missing information

in different loci, making the matrix Z̃
i
dependant on the considered indi-

vidual. The solution to the sparse haplotyping based on Tsallis entropy

minimization then needs to satisfy g̃i = Z̃
i
xi, ∀i ∈ J , and the sparse

haplotyping based on Tsallis entropy minimization becomes

min
xi, i∈J

Hq (f(x1, . . . ,xN )) (4.26)

subject to























g̃i = Z̃
i
xi

2 = 1Txi

xi ∈ {0, 1, 2}
M , i ∈ J .

The solution to this problem can be found following an analogous procedure

to the one given in Section 4.3.

4.5.2.2 Sparse Haplotyping based on Dictionary Selection

This method is based on the idea of finding the least number of columns

of the matrix Z to explain all the genotypes. Moreover, removing the loci

of missing information from a genotype implies removing the corresponding

rows of matrix Z. Therefore, it is still valid to look for the minimum set of

columns that explain the genotypes. We then modify (4.18) as follows.

Li(A) = f(dim(g̃i))min
x̃i

‖g̃i − Z̃
i
A x̃i‖

2, (4.27)



118

where dim(a) gives the dimension of vector a, and f(.) : N → R. We

want to give more weight to genotypes with less missing observations as

they contain more information, so we restrict f(.) to be nondecreasing. We

found experimentally that setting f(dim(a))) = dim(a)2 achieves a good

performance. The greedy algorithm given in Section 4.4 needs to be modified

accordingly.

4.6 Experimental Results

To assess the performance of the different algorithms, we use two different

metrics. The first one is the error rate Perror which is the proportion of

individuals whose haplotypes are incorrectly inferred. This measure how-

ever does not give an idea of how different an incorrect pair of estimated

haplotypes is when compared with the true pair of haplotypes. For that, we

use a second measure of performance given by the switch error rate [76].

The switch error rate measures how dissimilar the inferred pair of haplo-

types is with respect to the true pair for each individual. This measure only

takes into account heterozygous sites, as errors can only happen in this type

of sites (the homozygous sites are fully determined by the genotypes). Let

[h1, h2] be the true haplotypes and [ĥ
1
, ĥ

2
] the inferred ones. Notice that

ĥ
1
is not necessary an estimate of h1 as it can be an estimate of h2. More-

over, notice that for every heterozygous site ℓ we have h1(ℓ)+h2(ℓ) = 1, i.e.,

h1(ℓ) is 0 and h2(ℓ) is 1 or viceversa. The same occurs with ĥ1(ℓ) and ĥ2(ℓ).

We define a switch as the flip between the 0 and the 1 in a particular locus

for the pair of haplotypes. Given a genotype with si heterozygous sites,



119

one needs at most
⌊

si
2

⌋

switches to transform the inferred haplotypes to the

true ones. Moreover, in a database of N individuals, the total number of

switches in the worst case scenario is

N
∑

i=1

⌊si
2

⌋

. (4.28)

The switch error rate is then the ratio between the actual number of switches

that are needed to go from the inferred haplotypes to the true ones and the

worst case number of switches of (4.28).

We apply the two proposed methods in this chapter to infer the haplo-

types given genotypes from three different data sets. The first one consists

of synthetic data generated using the coalescence theory. The second one

corresponds to the Angiotensin Converting Enzyme (ACE) data set that is

considered to be a data set with a number of subjects not large enough in

comparison with the number of distinct haplotypes [76]. And finally, we test

the algorithm with the Cystic Fibrosis Transmembrane-Conductance Regu-

lator (CFTR) Gene data set where some haplotypes are only used once to

generate the observed genotypes.

The performance of the two proposed methods are compared with four

state-of-the-art haplotype inference methods. In particular, we present the

results of applying PHASE [81] and its fast version fastPHASE [90], Ger-

bil [89] and CollHaps [76] to the same data sets.
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4.6.1 Synthetic Data

Haplotypes are simulated and randomly paired to form genotypes of short

sequence data (between 5 and 30 SNPs in each haplotype). An infinite-site

model [102] with θ = 4 and a recombination rate r ∈ {0, 4, 40} was used

in the coalescence-based program of R.R. Hudson. For each value of r, 100

data sets were generated for different numbers of individuals in the set (10

to 50 individuals in each data set). Figure 4.2 shows the maximum and

mean number of ambiguous sites in each genotype in the 100 data sets for

each different number of individuals. The minimum is not shown as in it

zero, that is, there is at least one genotype with no ambiguity in one of the

datasets. Moreover, the resulting max, mean and min number of different

haplotypes used in each data set is shown.
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Figure 4.2: The number of ambiguous sites and the number of haplotypes
used in each dataset.

Both proposed methods are applied to this data sets, i.e., the sparse

haplotyping based on Tsallis entropy minimization (SHTEM) with q = 0.01
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and the sparse haplotyping based on dictionary selection (SHDS). The PL

method is used when the genotypes are longer than 15 SNPs, by dividing

the genotypes into two fixed blocks of length equal to half the length of the

genotype vectors.
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Figure 4.3: Probability of error, switch rate and average running time for
the synthetic database.

Figure 4.3 shows the average of both measures of performance for differ-

ent values of recombination rate and number of individuals over each of the

100 data sets. It is seen that PHASE is the method performing the best in

almost all databases, with SHTEM having a comparable performance. Both

of these good performances are achieved at the expense of high computa-

tional complexity. On the other hand, among the set of fast methods, i.e.,

SHDS, fastPHASE, Gerbil and CollHaps, SHDS is the method outperform-

ing the others for almost all scenarios.

Both SHTEM and SHDS are implemented in Matlab. The other methods

were obtained from the authors’ websites: Gervil is implemented in Java,
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Number of Genotype Switch
Haplotypes Error Rate Error Rate

Gerbil 13 0.1818 0.0047
fastPhase 13 0.1818 0.0047
Phase 13 0.1818 0.0063

CollHaps 13 0.2727 0.0058
SHTEM 13 0.1818 0.0063
SHSD 13 0.1818 0.0035

Table 4.1: Performance of different methods over the ACE data set.

CollHaps, PHASE and fastPHASE in C++. Figure 4.3 shows the average

running time per data set of the different methods. It is seen that the

running time of SHTEM is in the order of the running time of PHASE,

while SHSD is faster and closer in average running time of CollHaps and

Gerbil.

4.6.2 Angiotensin Converting Enzyme Data Set

The angiotensin converting enzyme (ACE) plays an important role in the

control of systemic blood pressure and fluid-electrolyte balance by catalysing

the conversion of angiotensin I to peptide angiotensin II. In [103], the com-

plete DNA sequence of the gene that encodes the enzyme is presented for

11 individuals. It was found that there are 13 distinct haplotypes that are

needed to reconstruct the database. For each genotypes, a set of 52 SNPs

is considered as this is the set of non-unique polymorphic sites. The geno-

types have a maximum of 37 ambiguous sites and there is 1 genotype with

no ambiguity. The mean number of sites with ambiguity is 17.91.
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We tested both the SHTEM and SHSD methods. The genotypes are

first partitioned using the PL method with initial blocks selected according

to the recursive algorithm of (4.25). An upper bound for the length of the

block W = 8 is used.

The results of applying the different methods to this database are shown

in Table 4.1. All methods have the same genotype error rate except for

CollHaps, which has a higher error rate. This poor result of CollHaps was

expected, as is stressed in [76] the importance of using data sets with a

large number of individuals in order to achieve a good performance by this

method.

Moreover, it is seen from the table that SHSD is the haplotyping method

achieving the lowest switch error rate. This means that among the algo-

rithms achieving the same error rate, SHSD is the one finding the solution

that is closest to the real solution.

4.6.3 Cystic Fibrosis Transmembrane-Conductance Regulator Gene

Data Set

The gene that encodes the Cystic Fibrosis Transmembrane Conductance

Regulator (CFTR) is related to cystic fibrosis and congenital absence of the

vas deferens, as the protein it encodes transports chloride ions and thio-

cyanate across cell membranes. In [104], 29 distinct haplotypes containing

23 SNPs each with no missing data are given. We combined these haplo-

types randomly to get the genotypes of N individuals and compared the

performance of different methods on this data sets. For N ∈ [100, 500], the

resulting mean number of ambiguous sites per genotype is in the interval
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[9.15, 9.18]. The maximum number of sites with ambiguity is 20, regardless

of the value of N , and the minimum is 0.

This database is characterized by the fact that for small numbers of

individuals N , many of the distinct haplotypes are only used once. There-

fore, methods as PHASE that use more biological-meaningful models are

expected to perform better.

100 200 300 400 500

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Number of Individuals

P
e

 

 

Phase
fastPhase
CollHaps
SHSD

100 200 300 400 500
0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of Individuals

S
w

itc
h 

R
at

e

 

 

Phase
fastPhase
CollHaps
SHSD

Figure 4.4: Probability of error and switch rate for the CFTR database.

We do not consider the SHTEM method as its complexity makes it un-

suitable for data sets of this sizes. On the other hand, SHSD was applied

with the PL method, with initial 4 blocks of equal size. The probability

of error and the switch error rate are shown in Figure 4.4. It is seen that

PHASE, being one of the methods that use more biological side-information,

is the one achieving the lowest errors, but with a high algorithmic complex-

ity. Moreover, both SHSD and CollHaps offer comparable performances

with that of PHASE, despite being faster methods. The performance of

Gerbil is not shown as its poor performance for this dataset is out of scale.
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Moreover, it is seen that fastPHASE performs poorly in comparison to the

equally fast methods SHSD and CollHaps.

4.6.4 Missing Data

As all algorithms have the same probability of error when considering the

ACE database, we use this database to compare the performance when there

is missing data in the input genotypes. For each of the 11 individuals in the

dataset, we assume that each SNP has a probability Pmiss of being marked

as a missing SNP. Then, for each Pmiss, we generated 100 realizations of the

database and tested GERBIL, fastPHASE, PHASE, and SHSD as they are

capable of handling missing data.
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Figure 4.5: Probability of error versus probability of missing data in the
ACE database.

SHSD is again used with the PL method, by first partitioning the geno-

types according to the recursive algorithm of (4.25). An upper bound for

the length of the block W = 8 is used.

It is seen in Figure 4.5 that, although SHSD has a lower complexity than
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PHASE, it achieves a comparable probability of error and for some Pmiss, it

is the algorithm performing the best. Moreover, it is seen that this method

is robust against missing data, as the slope of growth is smaller compared

with Gerbil and fastPHASE.
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