
CloudFence: Enabling Users to Audit the Use of their Cloud-Resident Data

Vasilis Pappas Vasileios P. Kemerlis Angeliki Zavou Michalis Polychronakis

Angelos D. Keromytis

Network Security Lab

Department of Computer Science

Columbia University, New York, NY, USA

{vpappas, vpk, azavou, mikepo, angelos}@cs.columbia.edu

Abstract

One of the primary concerns of users of cloud-based ser-

vices and applications is the risk of unauthorized access

to their private information. For the common setting in

which the infrastructure provider and the online service

provider are different, end users have to trust their data

to both parties, although they interact solely with the ser-

vice provider. This paper presents CloudFence, a frame-

work that allows users to independently audit the treat-

ment of their private data by third-party online services,

through the intervention of the cloud provider that hosts

these services.

CloudFence is based on a fine-grained data flow track-

ing platform exposed by the cloud provider to both de-

velopers of cloud-based applications, as well as their

users. Besides data auditing for end users, CloudFence

allows service providers to confine the use of sensitive

data in well-defined domains using data tracking at ar-

bitrary granularity, offering additional protection against

inadvertent leaks and unauthorized access. The results

of our experimental evaluation with real-world applica-

tions, including an e-store platform and a cloud-based

backup service, demonstrate that CloudFence requires

just a few changes to existing application code, while it

can detect and prevent a wide range of security breaches,

ranging from data leakage attacks using SQL injection,

to personal data disclosure due to missing or erroneously

implemented access control checks.

1 Introduction

The multifaceted benefits of cloud computing to both ser-

vice providers and end users have led to its rapid adop-

tion for the deployment of online services and applica-

tions. As businesses and individuals increasingly rely

on the cloud, some of their private data is being han-

dled and stored on systems outside of their administra-

tive control. In this setting, data confidentiality becomes

a growing concern, especially when taking into account

the recent spate of security breaches in major online ser-

vices [39, 13, 42]. In lack of an alternative option other

than not using the service at all, most users eventually

trust the service provider for keeping their data safe.

Unfortunately, relying solely on reputable service

providers or highly popular services does not mitigate

the risk. Most feature-rich cloud-based services are quite

complex, and are usually based on the integration of a

multitude of existing components, such as web servers,

databases, and other software modules. Bugs and vulner-

abilities in third-party code, misconfigurations and incor-

rect assumptions about the interaction between different

components, or even simple causes like the careless han-

dling of access credentials, can lead to the accidental ex-

posure of critical data, or leave the system vulnerable to

data theft attacks. At the same time, cloud computing

encourages rapid application deployment, and time-to-

market pressure sometimes makes data security a sec-

ondary priority.

Despite the existence of a large body of work on data

leakage prevention, detection, and mitigation [23, 51, 49,

19], data breaches still pose an important threat. In this

work, we seek to reinforce the confidence of end users

for the safety of their data, beyond any assurances offered

by the online service. To this end, we propose to give

users the ability to audit their cloud-resident data through

a different—and potentially more trustful—entity than

the actual provider of the service. This can be achieved

by taking advantage of the multi-party trust relationships

that exist in typical cloud environments [10], in which

the service provider is different than the provider of the

infrastructure on which the service is hosted.

As a step towards this goal, in this paper we present

CloudFence, a data flow tracking (DFT) framework for

cloud-based applications. CloudFence is offered by

cloud hosting providers as a service to their tenants, as

well as to the users of the tenants’ services. Through a

simple API, service providers can easily integrate data

1

flow tracking in their services, and mark sensitive user

data that needs to be protected. End users can then mon-

itor the propagation of their data directly through the

cloud hosting provider, ensure that all sensitive data is

treated as expected, and spot any deviations. Service

providers can also take advantage of data flow tracking

for enabling an additional layer of protection against data

leaks, by preventing the propagation of marked data be-

yond a set of specified network and file system locations.

We have implemented CloudFence on top of a fine-

grained data flow tracking library based on runtime bi-

nary instrumentation. CloudFence is dynamically at-

tached to the processes that comprise a cloud applica-

tion, such as web servers and databases, including pro-

cesses that run on different physical or virtual hosts.

Cross-application and cross-host tag propagation is han-

dled transparently, without requiring any modifications

to application code.

In our current prototype, service providers are respon-

sible for specifying the sources of sensitive data and as-

sociating them with each user, as well as for defining the

allowed data flow paths and confinement points. This

means that we consider service providers as trusted, and

willing to integrate CloudFence into their applications, as

well as to cooperate with the cloud provider for providing

an added-value service to their users. However, integrat-

ing CloudFence in a more strict cloud environment, such

as Google App Engine, which exposes to developers only

well-defined APIs for building their applications, would

allow for robust data flow tracking and auditing even in

the presence of a malicious service provider.

We evaluated the effectiveness and performance of

CloudFence using three real-world applications, and two

publicly disclosed data leakage vulnerabilities in two of

these applications. CloudFence can be easily integrated

in these applications, since it requires the placement of

just a few API calls in each case, while it offers effec-

tive protection against a wide range of data theft attacks,

including SQL injection and arbitrary file read attacks.

The runtime overhead due to dynamic instrumentation

in an e-commerce application imposes an average slow-

down that ranges between 60–90%, for an intensive sce-

nario with a hundred concurrent clients. Although sig-

nificant, this overhead is amplified by the dynamic code

generation behavior of PHP, which hinders the effective

caching of instrumented code blocks, and can be amelio-

rated using PHP bytecode caching techniques. Still, even

under these worst-case conditions, CloudFence remains

a practical solution for real-world services.

2 Approach

Users of online services trust the providers of those ser-

vices to securely handle and protect their personal infor-

Figure 1: CloudFence allows users to directly audit

their cloud-resident data independently through the cloud

hosting provider.

mation. Access credentials, credit card and social secu-

rity numbers, documents, and other kinds of sensitive

data are temporarily or permanently stored in back-end

databases and file systems, out of user control. Even

when service providers are considered trusted and follow

best security practices, unauthorized access to sensitive

data remains a plausible threat, e.g., due to vulnerabili-

ties in third-party software components that are part of

the service.

For cloud-based applications, service providers in turn

place their trust in the cloud infrastructure that hosts their

online services. The traditional provider-user relation-

ship is thus transformed into a multi-party system [10],

in which end users are usually not aware at all of the ex-

istence of the cloud infrastructure provider (unless it is

the same entity that also offers the service to end users,

as for example is the case with many of the web appli-

cations offered by Google or Amazon). In this work

we refer to both infrastructure and platform “as a ser-

vice” (IaaS/PaaS) providers as cloud providers. Their in-

frastructure hosts the applications of service providers,

which are delivered as services to end users.

From the users’ perspective, there is an inherent

shared responsibility between the cloud and the service

providers regarding the security guarantees of the pro-

vided service. Despite the fact that end users do not

interact directly with the cloud provider, they implicitly

trust its infrastructure—the systems in which their data

are kept. CloudFence aims to promote and expose this

implicit trust for the benefit of all parties, by introduc-

ing a direct relationship between end users and the cloud

provider, as illustrated in Figure 1.

With data flow tracking as the basic underlying mech-

anism, the cloud provider offers end users the ability of

data auditing, allowing them to inspect the audit trail of

any sensitive data that was handled as part of a service

hosted on the cloud provider’s infrastructure. While the

2

trust relationship between users and service providers is

not altered, users get an elevated degree of confidence

by being able to independently monitor their private in-

formation as it propagates through the cloud. In fact,

users are likely to be more willing to trust a large, well

known, and highly reputable cloud provider, compared

to a lesser-known developer or company, e.g., among

the thousands that offer their applications and services

through online application distribution platforms.

At the same time, service providers themselves can

take advantage of data flow tracking to confine the use

of sensitive user data in well-defined network and file

system domains, and thus prevent inadvertent leaks or

unauthorized data access. Besides protecting user data, a

service provider can also take advantage of CloudFence

as an additional level of protection for its own digital as-

sets, such as back-end credentials, source code, or con-

figuration files.

Finally, by integrating CloudFence in its infrastruc-

ture, the cloud provider offers added value to its tenants

and their users, which can potentially lead to a larger

customer base. Given the shared responsibility between

cloud and service providers regarding the safety of user

data, both have an extra incentive to adopt CloudFence

as a means of providing an additional level of assurance

to their customers.

Threat Model. We assume that service providers are

trusted, and integrate CloudFence in their applications

to enhance the security of the provided services. This

is a typical situation for cloud-based services, since end

users always implicitly trust their data to both the service

provider and the cloud hosting provider.

Our current implementation is built on top of a user-

level data flow tracking system based on runtime bi-

nary instrumentation, which is directly integrated into the

components of the protected service through an API pro-

vided by the cloud provider. Application developers are

responsible for specifying the sources of sensitive user

input, so that all necessary data is always being marked

and tracked appropriately.

Data flow tracking at user-level means that an attacker

that gains arbitrary code execution can bypass data track-

ing and exfiltrate sensitive information without being

logged. However, our prototype offers protection against

many other classes of attacks that can lead to unautho-

rized data access, but which do not allow arbitrary code

execution. Such attacks include SQL injection, com-

mand injection, parameter tampering, directory traversal,

and other attacks that are widely seen in the wild. Note

that this is a limitation of our current prototype and not

of the CloudFence framework in general. An alternative

implementation using data flow tracking at the hypervi-

sor level [50] would allow for accurate data tracking even

in the case of a fully compromised guest OS. We discuss

this issue further in Section 6.

Besides providing protection against external attacks,

an equally important goal of CloudFence is to bring into

users’ attention any unintended data exposure that can

lead to unauthorized access. For example, sensitive in-

formation can accidentally be recorded in an error log,

or be included into a debug memory dump after an appli-

cation crash.

3 Design

Cloud computing is a paradigm with unique security

and privacy aspects. Its key characteristics [41], such

as on-demand self-service, ubiquitous network access,

and location-independent resource pooling, result into

a perimeter-less environment, which poses significant

challenges for protecting against unauthorized access to

sensitive data.

Instead of trying to fortify the software that oper-

ates on private user information [45], or striving to en-

force data and network isolation [27], CloudFence adopts

a data-centric security approach for the cloud setting,

by exploiting the implicit trust relationships that exist

in cloud computing environments. Specifically, Cloud-

Fence builds upon the observation that sensitive data is

the valuable aspect that needs to be protected. By pro-

viding auditing capabilities at an extremely fine-grained

granularity (down to the byte level) and across the whole

cloud infrastructure, CloudFence can alert users for con-

fidentiality breaches and information leaks. In the rest

of this section, we describe the challenges for integrating

data flow tracking into cloud infrastructures, and present

a design that addresses these challenges.

3.1 Data Flow Tracking as a Service

Integrating data flow tracking capabilities in a cloud en-

vironment is not a trivial task, since many issues have to

be taken into consideration. First, the on-demand consol-

idation of computing elements, which alleviates the costs

of over-provisioning via elastic scaling [10], allows ser-

vice providers to easily “glue” together functionality and

content from third-party sources, to build feature-rich ap-

plications. For instance, the term mashup is colloquially

used to refer to web application hybrids that combine

services—from potentially untrusted principals—to of-

fer “rich web experience.” 1 The benefits of such an ag-

ile development and service provisioning approach are

numerous, and therefore, it is critical not to interfere

1“Given a choice between dancing pigs and security, users will pick

dancing pigs every time.” – Edward Felten & Gary McGraw.

3

Figure 2: CloudFence architecture.

with that paradigm while enabling sensitive data track-

ing. We consider this as the transparent tracking re-

quirement. The proposed method for data flow tracking

should not require intrusive changes, such as manually

annotating source code [33] or using custom OSs [48]

and modified hypervisors [50], to facilitate incremental

deployment and expeditious adoption.

Second, the granularity at which sensitive informa-

tion is tracked throughout the cloud infrastructure, plays

a crucial role in the effectiveness of DFT. Particularly,

a service provider can trace data as small as a single

byte [30] and provide robust protection against extreme

cases of data leakage, or assume a more coarse-grained,

and hence error-prone, approach [27]. However, ex-

tremely fine-grained DFT comes at a significant perfor-

mance cost, as tracking logic becomes more intricate

(e.g., consider the case of two 32-bit numbers that have

only some of their bits marked as sensitive). We consider

this as the fine-grained tracking requirement, which sug-

gests performing DFT at the appropriate granularity for

balancing overhead and accuracy. The scale of choice

should be pertinent and without false positive outcomes,

even in situations where multi-principal data are fed into

a composite application.

Third, given the range of cloud delivery mechanisms

with different compositional characteristics (e.g., IaaS,

PaaS), it is important to ensure that dynamic collabora-

tion is taken into consideration when performing DFT.

The domain-wide tracking requirement refers to the pre-

cise monitoring of data flows that result from on-demand

synthesis, and take place during the transient interac-

tions among application components. In particular, the

DFT method should be able to accurately track sensitive

data that are delivered to application modules beyond the

process boundary. Examples include intra-host applica-

tion elements that communicate through the file system

or OS-level IPC, or consolidated application components

running on remote endpoints.

3.2 Architecture Overview

The design of CloudFence addresses the challenges pre-

sented in the previous section, while providing fine-

grained auditing capabilities for cloud-based services.

Note that for the rest of our discussion, we assume that

the service provider relies on an IaaS delivery mech-

anism, which represents an extreme case of data flow

tracking complexity. However, CloudFence is by no

means limited only to this setting, and can be seamlessly

employed in PaaS and SaaS setups.

CloudFence consists of two main components, which

we summarize below and describe in detail in the follow-

ing sections.

• DFT The data flow tracking component is the nu-

cleus of CloudFence, and an essential part of our ar-

chitecture. It performs fine-grained, byte-level data

flow tracking without requiring any modification

to applications or the underlying OS. Briefly, our

DFT component is application agnostic; it uses dy-

namic binary instrumentation (DBI) for retrofitting

the data flow tracking logic into unmodified bina-

ries dynamically, at runtime, and supports track-

ing across processes running on the same or remote

hosts. It piggybacks tags on the data exchanged

through IPC mechanisms or network I/O chan-

nels, and transparently handles (un)marshalling,

and keeps persistent tag information for marked

data written to files.

• API Stub The CloudFence API allows service

providers to tag (i.e., attach metadata information)

on sensitive user data that enters their applications.

Note that CloudFence does not require application

modifications as far as data tracking is concerned

(this is handled transparently by DFT). However, it

requires slight changes to application code for la-

beling any sensitive information.

Figure 2 illustrates the architecture of CloudFence.

The two processes in the upper part of the figure repre-

sent components of a consolidated application, while the

rest of the components are part of the cloud provider’s

infrastructure. Recall that we assume an IaaS delivery

mechanism, and this particular example both processes

run on the same (virtual) host.

The DFT component is attached to all processes of a

composite application, acting as a reference monitor [5]

that, loosely stated, tracks every byte transfer in the pro-

cess memory, as well as between the process and the

OS. The API stub is used directly by the processes to

tag sensitive data and convey to CloudFence which byte

sequences correspond to chunks of sensitive information.

Data that are tagged as sensitive (denoted by the solid

line in the figure) are tracked across all local files, host-

4

Figure 3: Main interactions among the different parties

involved in the use of CloudFence-enabled services.

wide IPC mechanisms, and selected network sockets.

Tagged bytes that pass through I/O channels and are writ-

ten to a cloud storage device, or are transmitted to a re-

mote host via the network, result into an audit message

(denoted by the dashed line). Audit information is kept

into data store located outside the vicinity of the service

provider, and more importantly, operates in an “append-

only” fashion for preventing tampering with archived au-

dit trails. The audit messages sent by the DFT com-

ponent capture leakage events that result from writing

private information into files or remote endpoints, while

messages sent by the API stub are mostly for initiating

the audit process.

Putting it all together. Figure 3 depicts the main inter-

actions among the different parties that are involved in a

CloudFence-enabled service.

Initially, users aregister with the cloud provider

(1), and acquire a universally unique audit identifier

(UUAID). Then, they use the online services offered

by various service providers (hosted on the same cloud

provider) by providing the UUAID acquired from the

previous step (2). The actual mechanism used for con-

veying the UUAID of each user to CloudFence is not ad-

dressed in this work, and is left for future consideration.

As an example, the service provider can either request

from the users to provide their UUAID during the sign up

process with the corresponding application,2 or in case a

cloud-wide identity management system is in place (e.g.,

a single sign-on system like OpenID), the application can

access the respective UUID transparently by requesting

it directly from the cloud provider after the user has suc-

cessfully authenticated. Sensitive data is tagged by the

service provider with the supplied user UUAID, and is

tracked throughout the cloud infrastructure, while audit

information is gathered and stored at the cloud provider

2Special consideration needs to be taken in that case, so as to deal

with illegitimate users that supply UUAIDs that belong to others.

(3). At any time, users can monitor the audit trails of

their data directly through the cloud provider (4).

3.3 DFT Component

Data flow tracking is a well-researched area that builds

upon Denning’s seminal work on secure information

flow [16]. In the past, it has been mainly used for de-

tecting unauthorized data usage and enforcing safe infor-

mation flows, and thus, it is known as information flow

tracking [40] and information flow control [28].

3.3.1 Method Synopsis

Fundamentally, the DFT process is characterized by

three aspects that we summarize below.

• Data sources Data sources are entry points for in-

teresting data. Specifically, they are program or

memory locations at which data of concern enter a

system. Examples include functions, system calls,

and shared memory segments. Data originating

from a data source is tagged either entirely, or par-

tially based on an application-specific policy.

• Data tracking During the execution of a program,

tagged data are tracked and their tags get propagated

in accordance to the semantics of the executed in-

structions. For instance, whenever tagged data are

copied, modified, or combined, their respective tags

are accordingly propagated to the end result.

• Data sinks Data sinks are also program or mem-

ory locations where assertions can be made regard-

ing the presence of tagged data, for inspecting or

enforcing specific data flows. For example, tagged

data may not be allowed in certain memory pages

or function arguments.

From an operational perspective, DFT has two re-

quirements. First, it requires extra memory for keeping

the data tags of a program, and second, the program it-

self needs to be extended with tag propagation logic, as

well as data tagging and checking logic at data sources

and sinks. The code that implements this functionality

can be incorporated in source code with source-to-source

code transformation [45], retrofitted dynamically into

unmodified binaries using dynamic binary instrumenta-

tion (DBI) [31, 34], integrated into virtual machine mon-

itors (VMMs) [21] and full system emulators [11, 32, 7],

or implemented in hardware [40, 43].

3.3.2 libdft: A Fast and Reusable DFT Framework

for Commodity Systems

CloudFence is based on libdft, a homegrown frame-

work [24] in the form of a shared library, for seamless

5

data flow tracking within a single process. The novel de-

sign of the library offers low performance overhead, ver-

satility, and practicality, and allows the development of

DFT-aware tools in an effortless manner, thus conform-

ing to the challenges presented earlier in Section 3.1.

At the same time, libdft performs fine-grained, dynamic

DFT without requiring any modification to applications

or the underlying OS, and transparently handles multi-

process and multithreaded programs.

The tracking process is performed dynamically by em-

ploying Intel’s Pin DBI tool [26]. Pin injects a tiny user-

level VMM inside already running processes, or in new

processes at startup, and provides an extensive API that

libdft uses for inspecting and modifying the process bi-

nary at the instruction level. Note that instrumenting at

the process level, and not at the hypervisor, has not only

performance benefits, but also alleviates any “semantic

gap” issues due to VMM introspection. In particular,

libdft uses Pin to analyze all instructions that move or

combine data for determining data dependencies. Then,

based on the discovered dependencies, it instruments the

program code by injecting the respective tag propagation

logic before the corresponding instructions. Both the

original and the additional instrumentation code are re-

translated using Pin’s just-in-time compiler, to generate

the DFT-enabled code that will actually run. However,

this process is performed only once, right before execut-

ing a previously unseen sequence of instructions, and the

instrumented code is placed into a code cache to avoid

paying the translation cost multiple times.

3.4 CloudFence API

The API of CloudFence consists of three calls with the

following C prototypes:

int /* success/failure */
add_tag(const void *buf, /* starting address */

size_t len, /* length */
const char *label) /* label (byte tag) */

int /* success/failure */
del_tag(const void *buf, /* starting address */

size_t len) /* length */

int /* success/failure */
copy_tag(const void *dst, /* destination address */

const void *src, /* source address */
size_t len) /* length */

The add tag function is used by service providers for

tagging, i.e., associating a byte label, to every byte in the

address range [&buf, &buf + len], while del tag is

used for removing previous associations and unlabel-

ing data. The copy tag function is similar to libc’s

memcpy, but instead of copying data, it propagates the tag

information maintained by libdft for the data in [&src,

&src + len] to [&dst, &dst + len]. The function-

ality is necessary for aiding the service provider in deal-

ing with cases of unintended unlabeling, also known as

whitewashing. We further discuss this issue in Section 6.

To support higher level languages, which are com-

monly used in web applications, appropriate wrappers

can easily be implemented. Specifically, for some of the

applications used in our evaluation, we developed a PHP

extension that gets two string arguments (other types can

be supported likewise) and internally calls the low-level

C functions exported by the CloudFence API.

4 Implementation

In this section, we describe the implementation details

of the components that comprise CloudFence. From a

high-level view, most of CloudFence’s functionality is

built on top of libdft, except for the CloudFence user in-

terface, which is a web application coupled with a back-

end database that users can use for auditing their data.

Specifically, we used libdft v3.14, which, as men-

tioned in Section 3.3.2, provides support for transparent

tag propagation and an API for assigning and manipulat-

ing tags on memory-resident data, as well as for hooking

system calls or library functions. The current implemen-

tation of libdft performs byte-level data flow tracking,

and stores the tag for each data byte in shadow byte—

allowing support for eight different tag values per byte

(further discussed in Section 6).

4.1 Data Tag Propagation and Persistence

Currently, libdft supports tag propagation within the

memory space of a single process, and does not handle

the case of data written to files or network sockets. How-

ever, to allow for accurate data flow tracking throughout

a whole cloud-based application, CloudFence requires

persistent data tags, as well as tag propagation across dif-

ferent processes, which may run on different (physical or

virtual) hosts (see the domain-wide tracking requirement

in Section 3.1). To this end, we have built a layer on top

of libdft to support tag propagation across BSD sockets,

Unix pipes, files, and shared memory.

4.1.1 BSD Sockets and Unix Pipes

Exchange of tag information over sockets and pipes is

handled by embedding all relevant data tags along with

the actual data that is being transferred. Maintaining the

tag propagation logic completely transparent to existing

applications, without modifying them or breaking the se-

mantics of their communication, is the most challenging

part of this effort.

In our current prototype, the exchanged tag informa-

tion consists of a copy of the relevant area of the shadow

memory that libdft maintains for the transmitted data.

6

Consequently, the size of each transmitted message dou-

bles, along with the addition of four bytes, which hold

the size of the embedded shadow memory copy. Com-

pressed forms of the tag information could also be used

to reduce the data overhead, while slightly increasing the

computational overhead.

Synchronous I/O. For synchronous I/O, the approach

we followed was to hook the write, send, and writev

system calls, using libdft’s syscall hooking API, and

transmit the tag information before the actual data of the

original system call. For send and write, the additional

tag data consist of a copy of the shadow memory area

corresponding to the original buffer, along with its four-

byte size value. In order to avoid any additional copy-

ing of the shadow memory regions in writev, we cre-

ate a shallow copy of the vector structure and just up-

date its pointers to the shadow memory parts of the orig-

inal buffers. The total length of the shadow vector along

with the vector itself are prepended again in the writev

syscall. Similarly, we hook the read, recv, and readv

system calls, and read the tag information before the ac-

tual data.

Extra care is taken in case the size of the messages sent

is different than the size of the receive buffer—which was

often the case during our evaluation. More precisely, ev-

ery message sent can be received (i) at once, (ii) split

in multiple parts, or (iii) interleaved. In the first case,

the tag data and the original data are received inside the

same receiving operation and we simply have to attach

the tag data to the original data on the receiver. For mes-

sages that are received through more that one read op-

eration, the receiver initially buffers the tag information.

Each time a message part is received, its corresponding

tag information is attached to it, until the whole message

is received. The most difficult case we should handle

is when the send buffer size does not much the receive

one. For example, the sender transmits two 500-byte

messages back to back, and the receiver reads them using

a 200-byte buffer. In this case, the third read operation re-

ceives 100 bytes of the original data and 100 bytes of the

second message’s tag information. This case is handled

by changing the length argument of the read operation to

match the end of the current message.

Non-blocking I/O. In the case of non-blocking I/O, the

above system calls may return a special error code as if

the requested operation would block (EAGAIN). Keeping

the exchange of tag information transparent requires spe-

cial handling of this type of errors. Specifically, if such

an error occurs when trying to read the embedded tag

information, control returns immediately to the applica-

tion, as if its read operation failed. If some, but not all,

of the tag data is available, the available part is buffered

and CloudFence emulates a “would block” error, as if the

read operation would block. Similarly, for write opera-

tions, we keep accounting of the relevant shadow mem-

ory data that is actually sent, and emulate EAGAIN errors

until all relevant shadow data has been completely trans-

mitted.

The strategy followed for the write operations assumes

that the application always retries to send the same data

when it fails with a “would block” error. There are two

ways to relax this assumption though. First, trade safety

for performance by checking if the file descriptor is ready

to write and block until the tag data and the message is

sent. The other option is to check if the buffer’s address

or contents are changed between the failed write opera-

tions – requires copying the buffer –, cancel any part of

the tag data already sent and retransmit the ones that cor-

respond to the new buffer. We should note here that al-

though there were cases of non-blocking I/O in our eval-

uation, this assumption always held.

Multiplexed I/O. Regarding multiplexed I/O using the

select, poll, and epoll system calls, we chose to

trade a small performance overhead in favor of a safer

hooking implementation. Before each read or write op-

eration, we block until all tag information is received or

sent, similarly to the synchronous I/O scenario. A more

robust implementation would be to check if any of the

ready-to-read file descriptors are waiting to receive a new

message, and attempt to first retrieve its tag information.

In case only part of the information is available, we can

buffer it, and remove the file descriptor from the returned

set of select or poll, as if it was not ready to be read.

However, such an implementation could break applica-

tion semantics, since the actual intention of the applica-

tion after a select or poll invocation is not known in

advance, e.g., the application could use recvmsg, or not

read any data at all.

Finally, in some cases, non-blocking I/O can be com-

bined with multiplexed I/O—a case that we encountered

during our evaluation. For instance, this situation arises

when an application performs a connect system call on

a non-blocking socket descriptor, and then passes it on

as an argument to select or poll for monitoring its

completion. In that case, connect returns a special error

code (EINPROGRESS) and then the application monitors

when the socket descriptor is ready for writing, which

implicitly means that connect completed. The out-

come of connect can be checked using the getsockopt

system call. We handle this case by marking the file

descriptors for which connect returned EINPROGRESS,

and then searching for them in the ready-to-write sets of

poll or select. The post-connect system call hook is

then called for each file descriptor found.

7

4.1.2 Files

Tag information should persist even when data is writ-

ten into files, so that these tags can be later retrieved

when the same or another process accesses the same file.

CloudFence supports persistent tagging of file data by

employing shadow files. Whenever a file is opened using

one of the open or creat system calls, we also create a

second shadow file in the same path, which has the name

of the original file appended with a special suffix. This

shadow file is mapped to memory and associated with

the original file descriptor.

Whenever a process writes to a file using the write,

writev, or pwrite system calls, the tag information of

the relevant buffer (or buffers, in case of writev) is also

written in the appropriate offset of the mapped shadow

file. Similarly, after a read operation from a file, us-

ing read, readv, or pread, the relevant tag information

from the corresponding shadow file is also represented at

the destination buffer. Finally, by monitoring all the read

and write operations on files, we maintain the size of the

shadow files in accordance with the originals.

4.1.3 Shared Memory

Another commonly used inter-process communication

mechanism that CloudFence supports, is shared memory.

Our current implementation supports shared memory re-

gions allocated using mmap, but it can be easily extended

to cover POSIX API calls (e.g., shm open) or SysV API

calls (e.g., shmget). CloudFence hooks calls to mmap,

and for each shared memory region, it creates a shadow

copy to hold libdft’s tag information.

The mmap function supports two ways to create a

shared memory region between two processes: anony-

mously, or by mapping the same file. In the first case, a

process creates an anonymous shared memory region and

then forks. The pointer to that region is then inherited by

the child processes, so we do not have to take any further

actions (i.e., the shadow copy is inherited as well). In

the second case, the two processes map the same file by

specifying the MAP SHARED flag. Again, another shared

memory region for keeping tag information is created,

but this time instead of being anonymous, it corresponds

to a special file. The path for this file is constructed in

the same way as described in the case of shadow files,

but with a different suffix.

4.2 Data Flow Domain

In CloudFence, data flow tracking is performed within

the boundaries of a well-defined data flow domain, ac-

cording to the components of the online service. Ser-

vice providers specify the set of programs and network

hosts that comprise the service, and data tags propa-

gate throughout all processes and inter-process channels.

Whenever some tagged data crosses through the defined

boundary, e.g., when a destination file or host does not

belong to the specified domain, CloudFence logs the ac-

tion in the audit database, and, depending on the config-

uration, may block it. As an example, the domain for

the bookmark synchronization application that we used

in our evaluation spans two processes: a web server and

a SQL server.

CloudFence dynamically instruments all relevant pro-

cesses by following any spawned child processes, and

by default enables tag propagation for any communica-

tion through sockets, pipes, or shared memory between

them. We should note that tag persistence in files and tag

propagation in shared memory is transparent and does

not affect processes in which CloudFence has not been

enabled, since tag information is separate from the ac-

tual data. On the other hand, tag propagation through

network sockets embeds tag information in par with the

transmitted data, and consequently both communicating

processes should be aware of that.

To automate the configuration of tag propagation be-

tween processes that exchange data through the network,

CloudFence maintains a global registry of active sock-

ets that support it. This is implemented by hooking the

connect and accept system calls of processes in the

same domain. Each time a connection is attempted, the

initiator’s address, e.g., 127.0.0.1:56443, is recorded

in a list of endpoints that support tag propagation. At

the same time, the other endpoint’s address is queried in

the list, and if it exists, this means that both endpoints

support it, and consequently tag propagation is enabled

for this connection. At the server side, upon a call to

accept, and before the call actually returns, the server’s

address is inserted in the list of sockets that support tag

propagation, if not already present. After accept re-

turns, the client’s address is queried in the list, and if

it exists, then tag propagation is enabled. Note that using

this process, service providers must only specify the pro-

cesses that comprise the cloud application, and then the

rest of the tag propagation logic is determined automati-

cally.

For the simple case in which the whole application is

deployed on a single (virtual) host, the registry is stored

in shared memory and can be accessed by all the Cloud-

Fence stubs. To support tag propagation across different

hosts, each host maintains a network-accessible registry

as part of the CloudFence stubs. When an instrumented

process connects to a remote host within the same do-

main, it first queries the destination host’s registry to de-

termine whether the server supports tag propagation, and

then proceeds accordingly.3

3Another implementation approach we explored was out-of-band

8

4.3 CloudFence User Interface

For our prototype implementation, we developed a rudi-

mentary web interface through which users can browse

through the audit logs that have been generated for the

applications hosted on the cloud provider. Each appli-

cation pushes audit messages to this service that is also

accessible by end users. In addition, the interface pro-

vides simple user and UUIAD managment. Upon reg-

istration, users receive a newly generated UUIAD. This

can be later used during the registration in any Cloud-

Fence enabled service. In summary, this implementa-

tion of the CloudFence user interface follows the simple

model described in Section 3.2, in which users manually

convey the UUAID to each cloud application.

5 Evaluation

In this section, we evaluate CloudFence in terms of ease

of deployment in existing applications, runtime perfor-

mance, and effectiveness against data leakage attacks,

using three real-world applications: an e-commerce

framework, a network backup system, and a book-

mark synchronization service. Our experimental envi-

ronment consists of three servers, each equipped with

two 2.66GHz quad core Intel Xeon X5500 CPUs and

24GB of RAM, interconnected through a Gigabit switch.

To better match a cloud infrastructure environment, two

of the servers hosting the CloudFence-enabled applica-

tions were running VMWare ESXi v4.1, and all applica-

tions were installed in virtual machines. The third server

was used to simulate clients and drive the experiments,

and was running a 64-bit version of Debian 6. Finally,

the guest OS in all virtual machines was 32-bit Debian 6.

5.1 Deploying CloudFence

5.1.1 e-store

The first scenario we consider is an online store hosted

on a cloud-based infrastructure. Typically, during a pur-

chase transaction, sensitive information like the credit

card number and the recipient’s postal and email ad-

dress are transmitted to the online store, and from there,

usually to third-party payment processors. The service

provider can incorporate CloudFence in the e-store ap-

plication to allow users to monitor their sensitive data,

as well as to restrict the use of sensitive data within the

application’s domain.

(OOB) socket data, like urgent data in TCP. Although such an im-

plementation would have been more transparent, it could not be used

as OOB data interfere with normal data in the implementation of the

select syscall in Linux. The BSD implementation of the same syscall

does not have this issue.

The developers of the e-store know in advance the en-

try points of sensitive user data to the application, as well

as which processes and hosts should be allowed to have

access to this data. For instance, after users input their

credit card information through the e-store front end, it

should only be accessed by the e-store’s processes, e.g.,

its web and database servers. The only external chan-

nel through which it can be legitimately transmitted, is

through a connection to the third-party payment proces-

sor, i.e., a well-known remote server address, which can

be included in a white-list describing what sensitive data

from the data flow domain of the application is allowed

to be sent there.

The application we chose for this scenario is Virtue-

Mart [1]. VirtueMart is an open source e-commerce

framework developed as a Joomla component, and is

typically used in PHP/MySQL environments, as both

VirtueMart and Joomla are written in PHP. We config-

ured VirtueMart to accept payments only through credit

card, and set up electronic payments through the Autho-

rize.Net payment gateway service, using a test account.

To incorporate CloudFence, we had to add just a few

lines of code in the registration and checkout phases.

More precisely, we added a new input field in the reg-

istration form for the user’s UUAID, a new column in

the user’s database table and a few lines of code to store

it in the database, along with the user’s info. As for

the checkout phase, we added a few lines of code in the

script that processes the payment information. First, the

UUAID is queried from the database, using the user ID

from the current session. Then the HTTP POST variable

that holds the credit card number is tagged by calling the

add tag API, through a PHP wrapper function. It is im-

portant to tag this variable as soon as possible, so as to

avoid the leakage of untagged copies.

Finally, the data flow domain of the application is the

web server process, the database server process and any

processes these two may spawn.

5.1.2 Backup service

The second case study is on hosting a backup service

on the cloud, using the Amanda network backup [38, 2].

Amanda is a highly configurable backup software, writ-

ten in C and Perl, which offers a wide range of authenti-

cation mechanisms, like ssh, rhosts, kerberos, etc. and a

number of different storage back-ends, such as file sys-

tem, tape devices, Amazon S3, etc. CloudFence’s audit

capability provides a way for the users to attest the cor-

rect use of their backup data. Users know when their

backup client sends data (either because it happens in a

fixed schedule, or because their client keeps a log) and

when it requests data, a recovery is performed manually.

By combining this information with the audit trails pro-

9

vided by CloudFence, a user can pick up unauthorized

accesses.

While keeping mostly the default configuration val-

ues, we set up a server and three clients. The server was

configured to store the backup data on the file system

and authentication was performed using the client’s host

name (rhosts). As in the previous case, the application’s

source code had to be changed to incorporate Cloud-

Fence. Assuming that such a system is manually config-

ured, the only change was to retrieve the user’s UUAID

from a host name to UUAID map and tag his data when-

ever a SENDBACKUP command is received. Once tagged,

data carry their label through the different components of

Amanda (taper, dumper, chunker, etc.) until stored in

the file system.

Although the configuration used above fits better to a

scenario where a small or medium business outsources

its backup service, this is not a limitation. The backup

service can also be configured for public use, like Drop-

Box. The only differences in adopting CloudFence in

that case, would be to modify the registration phase to

include the user’s UUAID and the storage of that key.

5.1.3 Bookmark Synchronization

The last use case stems from the ever higher demand for

personal data – photos, emails, bookmarks, etc.– syn-

chronization services, since many users have more than

one personal electronic devices, such as laptop, smart-

phone, tablet, etc. The scenario in this case is to host

a bookmark synchronization service on the cloud. Site-

Bar [3] is an online bookmark manager written in PHP,

which integrates with many modern browsers. When

adding a link to SiteBar, users have the option to set its

access level, public or private – the access level can be

later edited. As a developer, we want to tag only the pri-

vate links as sensitive.

The task of incorporating CloudFence in SiteBar was

very similar with the first case, as both applications are

written in PHP and use MySQL as a database back-end.

Especially for the registration phase, the changes where

almost identical. On the other hand, changing the source

code to tag the sensitive data – private links – was a little

bit more elaborate, because the sensitivity level of data

dynamically changes. Thus, we need to change the code

that adds a link and tag it if it is private. In addition,

we need to change the code that edits a link. If the ac-

cess level changes from private to public, we load the

link, remove its tag using del tag and store it again in

the database. Otherwise, we repeat the same steps, but

instead of removing the tag, we add it using add tag. It

is essential to update the copy in the database on edit, in

order for the change to be persistent.

5.2 Effectiveness

To evaluate the effectiveness of CloudFence, we tested

whether it is able to audit illegitimate tagged data ac-

cesses, performed as a result of an attack. We exploited

two publicly disclosed vulnerabilities of in the studied

applications.

The first vulnerability allows authenticated users of

SiteBar versions earlier than v3.3.8 to read arbitrary files

(CVE-2007-5694). This is the result of insufficiently

checking a user-supplied value through the dir argu-

ment, which was used as the base directory for reading

language specific files, as shown in the snippet below.

sprintf($dir.’/locale/%s/%s’,$var1,$var2);

Passing a file name ending with the URL-encoded

value for the zero byte (%00) causes the open system call

to ignore any characters after it, and thus reading the sup-

plied file.

http://SB_APP/translator.php?download

&dir=/var/lib/mysql/SCHEMA/TABLE.MYD%00

We installed SiteBar version 3.3.8 on top of PHP ver-

sion 5.2.3. Then, we repeatedly read files by exploit-

ing this bug through a web browser in a remote machine.

CloudFence was able to report all accesses to data with

persistent tags in the filesystem.

Another type of attack that usually leads to informa-

tion leakage is SQL injection. Passing special crafted

values which are used by applications to compose SQL

queries can lead to arbitrary SQL command execution.

The main cause, again, is the insufficient checking of

user input values. To demonstrate the effectiveness of

CloudFence on auditing (or even preventing) this type

of attacks, we used a real-world vulnerability found in

VirtueMart version 1.1.4 [4].

The value of the HTTP GET parameter

order status id was not properly sanitized, thus

allowing malicious users to change the SQL SELECT

query by using a URL like the one below.

http://VM_APP/index.php?option=com_virtuemart

&page=order.order_status_form

&order_status_id=-1’ UNION ALL SELECT ...

FROM jos_vm_order_payment where order_id=’5

Which results in the execution of the following query:

SELECT * FROM jos_vm_order WHERE

order_status_id=-1’ UNION ALL SELECT ...

FROM jos_vm_order_payment where order_id=’5’;

The later SQL query returns a row from the

jos vm order payment table, where the credit card

numbers are stored, instead of jos vm order.

10

R
e

q
u

e
s
ts

/s
e

c

0

1

2

3

4

5

Number of concurrent clients

0 20 40 60 80 100

Native

CloudFence

Figure 4: Requests Throughput for VirtueMart installed

on a Debian 6, using the default web server configuration

(10 pre-forked processes).

R
e

q
u

e
s
ts

/s
e

c

0

5

10

15

20

Number of concurrent clients

0 20 40 60 80 100

Native

CloudFence

Figure 5: Requests Throughput for VirtueMart installed

on a Debian 6, with the web server configured to spawn

100 pre-forked processes.

Similarly, we installed the vulnerable version 1.1.4 of

VirtueMart on top of PHP 5.3.3, and tried to steal any

stored credit card numbers by exploiting this bug. In

all cases, CloudFence identified their exfiltration, as they

were tagged as sensitive data upon entry.

5.3 Performance

The last aspect we explored is the performance overhead

imposed by CloudFence’s fine-grained data flow tracking

subsystem, which is a CPU-intensive process due to the

use of dynamic binary instrumentation. Our choices for

the experimental setup mostly focused on deriving a con-

figuration for a worst case scenario to stress-test our pro-

totype implementation. Among the three applications,

we picked VirtueMart, which is the heaviest in terms of

code base size and computational overhead. Both Virtue-

Mart and Joomla are written in PHP, which, as an inter-

preted language, is a worst case for dynamic binary in-

strumentation frameworks like Pin. The instrumentation

code generated by Pin for PHP’s dynamically generated

code cannot be effectively cached, resulting to poor run-

time performance.

VirtueMart was installed in one of the virtual ma-

chines of our testbed. The exact versions of the soft-

ware packages used were the following: VirtueMart

v1.1.8, Joomla v1.5.22, Apache v2.2.16, PHP v5.3.3,

and MySQL v5.1.49. To generate a realistic and inten-

sive workload, we used a second host connected through

a Gigabit switch that emulated typical client requests for

placing product purchases. The Gigabit network connec-

tion minimizes network latency, increasing this way the

stress that we can impose on the server when concur-

rently emulating multiple user transactions.

Instead of performing the same request over and over,

we tried to generate more realistic conditions by replay-

ing complete purchase transactions. Each transaction

consists of nine requests: retrieve the front page, login,

navigate to the product page for a specific item, add that

item in the shopping cart, verify the contents of the shop-

ping cart, checkout, enter payment info, confirm the pur-

chase, and logout. In addition, in each of these requests,

the web clients also download any external resources,

such as images, scripts, and style files, emulating the be-

havior of a real browser, without performing any client-

side caching. We should stress that VirtueMart was fully

configured as in a real production setting, including prop-

erly working integration with Authorize.Net for process-

ing credit card payments using a test account.

Using the above setup, we measured the sustained

throughput of user requests that the server could handle

when processing concurrent transactions from multiple

users. As mentioned in Section 3.3.2, Pin performs a

slow start when it initially instruments most of the startup

code of a process. Instrumented code is then cached,

so subsequent executions of the same code blocks are

much faster. To prevent Pin’s slow start from skewing

our results, we “warmed-up” the Apache and MySQL

processes by performing a single request to each Apache

process. To ensure that each of the warm-up requests is

served by a different process in the process pool, we first

simultaneously initiate one connection per process, and

after all connections have been established, we proceed

and send the actual request data.

Figure 4 shows the sustained request throughput of

the application for a varying number of concurrent web

clients, when VirtueMart is running with and without

CloudFence. The request throughput was calculated by

dividing the number of requests with the total duration

of each experiment. In all runs, each client was config-

ured to perform three end-to-end transactions, so that the

number of requests per client remains consistent across

all experiments. In this experiment, CloudFence imposes

a slowdown of 60%, which is indicative for applications

running on top of dynamic binary instrumentation frame-

works.

We should note that the server throughput in the na-

tive case is not bounded due to limited computation re-

11

sources, but rather due to the default configuration of

Apache, which uses a pool of 10 processes for serving

concurrent clients. Thus, to be more precise, CloudFence

took advantage of the available cycles and imposed an

additional overhead of 60%.

Figure 5 shows the results of the same experiment, but

in this case the process pool size of Apache has been

increase to 100 processes. In this case, the throughput in

the native case is also bounded due to CPU saturation.

In the worst case, CloudFence imposes a slowdown of

90% when the number of concurrent users lies between

80–100 users.

Based on these results, in a real deployment of this ap-

plication, enabling CloudFence would require a twoflod

to tenfold increase of the cloud infrastructure resources

devoted to the application. However, we should note that

the increased overhead of dynamic binary instrumenta-

tion due to the dynamically generated PHP code can be

effectively mitigated using PHP acceleration techniques

based on bytecode caching [37]. These techniques have

become mandatory for high-traffic web sites that use in-

terpreted languages. As part of our future work, we plan

to investigate the performance overhead of CloudFence

under high-end configurations that use bytecode caching.

6 Discussion

The DFT component of CloudFence takes into consider-

ation only cases of explicit data flow, which is in accor-

dance with previous work on the subject [31, 40]. Dytan

made some provisions for conditionally handling implicit

data flows that result from control-flow dependencies,

but concluded that while it can be useful in certain do-

mains, it frequently leads to an explosion in the amount

of tagged data and to incorrect data dependencies [12].

Despite the fact that ongoing work attempts to address

these issues [22], we opted for a design that has zero false

positives and tagging pollution. This choice, however,

can lead into unintended data whitewashing, whenever

the service provider uses a code construct that copies sen-

sitive data using branch statements—which could poten-

tially lead to false negatives.

As an example, consider this code snippet: if (in

== 1) out = 1. Although the value of in is copied to

out, any tags associated with it are not. During our eval-

uation, we manually identified a couple of such cases, in

AES encryption (used in SSL, MySQL and the Suhosin

PHP hardening extension) and Base64 encoding. These

cases were easily handled by hooking the correspond-

ing functions and copying the tag information from their

source to the target operand using the copy tag func-

tion. For example, after encryption using AES, we copy

the plaintext tags over those of the ciphertext. Cipher-

text carries them until decrypted, when we again copy

ciphertext’s tags over plaintext’s. At the end, the de-

crypted buffer has the initial tags. The same also holds

for Base64 encoding.

Currently, the underlying DFT framework that we use

in CloudFence imposes some limitations on the number

of different labels that can be associated with each byte

of sensitive data. Recall that libdft keeps a shadow byte

of tag information, and hence, there is an upper bound

on the number of different labels that can exist within the

boundary of a single process. We plan to further explore

in the future the different tradeoffs between larger tags

and performance overhead.

7 Related Work

A common approach for degrading the impact of data

leaks is to ensure that important data are always stored in

an encrypted form on the remote server [8, 44, 18]. Even

though encryption can help with the problem of secure

storage in the cloud, it does not solve the security issues

of remote data processing in cloud applications. Data

must be decrypted before being processed, and then re-

encrypted, which is a costly process. Added to the inher-

ent latency of the cloud, this can affect endpoint perfor-

mance. In addition, encryption seems to limit data use,

and in particular searching and indexing becomes prob-

lematic. Using a homomorphic encryption scheme [20],

it is possible to perform certain operations directly on the

encrypted data. However, its computation cost is for now

prohibitive for real-world applications.

Information flow tracking is another approach for pro-

tecting against information leakage. While there is a

large body of research focusing on information leakage

prevention within a process [12, 31, 34, 51] or a single

host [14, 32, 46], it was not until recently that interest

has risen for efficient cross-host taint propagation sys-

tems [25, 15, 50, 6, 17]. Most of these techniques are

more problem-specific, and therefore it would be diffi-

cult to adapt them for use in other contexts. For instance,

DBTaint [15] is targeting taint information flow track-

ing specifically for databases. System tomography [29],

which also looks into the concept of propagating taint

information remotely, builds on the QEMU emulator,

which incurs a prohibitively large runtime overhead. Fi-

nally, Neon [50] also requires modifications in the under-

lying system to perform dynamic taint tracking. It uses a

modified NFS server for handling the initial tainting, and

utilizes a network-filter for monitoring the tainted pack-

ets to and from the server.

Jif [33] is an extension of Java for information flow

control. Labels are attached to variables when they are

declared.Consumers voluntarily provide their personal

information to a web site, and decide on restrictions on

usage and recipients. Apart from the systemic limitations

12

of labeling and debugging the stronger limitations in its

use are coming from the overly burdensome complexity

of programming in Jif. Another work with similar mo-

tivation is the Resin [47] language runtime for PHP and

Python, that supports policy objects, code that can be at-

tached to objects, and propagates them along with the

data. When the data reaches the system I/O boundaries,

the attached policy object is evaluated automatically and

it either verifies or rejects the flow.

HiStar [48] is an OS that also uses labels to provide

information flow control for sensitive data. Apart from

requiring a lot of effort to be applied to current sys-

tems, it can perform information flow control on sensi-

tive data only if all processes are running on the same

machine. DStar [49] overcomes this limitation by includ-

ing a network protocol and framework that leverages OS-

level protection on individual machines running Histar,

to provide information flow control in distributed sys-

tems. DStar though, in contrast with CloudFence, can

apply policies only at the more coarse-grained level of

files and threads.

When focusing on the problem of data leakage for

cloud-based services, most works reflect continuations

of established lines of security research, such as web se-

curity and secure data outsourcing and assurance, rather

than approaches with an exclusive focus on cloud secu-

rity, with a few exceptions. Ristenpart et al. [35] investi-

gated the security issues of existing deployed cloud sys-

tems, and identified a new class of vulnerabilities that

can lead to cross-VM side-channel attacks.

Mundada et al. [27] presented Silverline, a system that

allows cloud providers to offer data and network isola-

tion for cloud-based services, with the goal to audit and

prevent data leaks resulting from misconfigurations and

side-channel attacks from co-resident cloud tenants. Al-

though the concept of Silverline is close to CloudFence,

Silverline supports information flow tracking using per-

process labeling, requiring one process per user, which is

not usually the case in most common web-applications.

In contrast, CloudFence is based on fine-grained byte-

level labeling and can handle multiple users per process.

Vanish [19] follows a different approach to informa-

tion leakage prevention. It seeks to protect the privacy

of past, archived data against accidental or malicious at-

tacks by providing users with control over the lifetime of

their private files. The idea is to ensure that all copies of

sensitive data become unreadable after a user-specified

time, without the need of any trusted third party for per-

forming the deletion. Vanish meets this challenge by in-

tegrating cryptographic techniques with distributed sys-

tems.

Brown et al. [9] tried to address the problem of

trustworthy cloud-hosted services even when the ser-

vice provider is not trusted, by involving a trusted cloud

provider attesting service application code to end-users.

Like CloudFence, this work also tries to give insights to

the end-users regarding the processing of their sensitive

data by the cloud-hosted services, but the focus in this

one is on code attestation and the main assumption is of

a service provider as a PaaS client of the cloud, whereas

CloudFence can be employed in all models of cloud ser-

vices. Santos et al. [36] also worked on the issue of a

trusted cloud computing platform (TCCP) but their ap-

proach was based on TPM attestation chains.

8 Conclusion

One of the most highly cited concerns regarding cloud-

hosted third-party services is the fear of unauthorized ex-

posure of users sensitive data. In lack of a better alterna-

tive option, the end users have to trust both the third-

party service provider’s as well as the cloud infrastruc-

ture provider’s best efforts to properly handle their sen-

sitive data as authorized.

This work takes a step further towards addressing this

issue by introducing a new direct relationship between

the users of the third-party online services and the cloud

infrastructure provider. CloudFence is a service provided

by the cloud infrastructure to both service providers and

end-users, aiming to reinforce the users’ confidence for

their cloud-resident data.

Our evaluation using real-world applications shows

that CloudFence can be integrated easily, even within ex-

isting applications, can protect against information dis-

closure attacks, and it imposes a modest performance

overhead that allows its practical use in real environ-

ments. Our implementation is open source and freely

available.

References

[1] http://virtuemart.net.

[2] http://www.amanda.org.

[3] http://sitebar.org.

[4] Virtuemart multiple sql injection vulnerabilities. http://www.
securityfocus.com/bid/37963.

[5] AMES, S.R., J., GASSER, M., AND SCHELL, R. Security Ker-
nel Design and Implementation: An Introduction. Computer 16,
7 (1983), 14 –22.

[6] ATTARIYAN, M., AND FLINN, J. Automating configuration
troubleshooting with dynamic information flow analysis. In
Proc. of OSDI (2010), pp. 1–11.

[7] BOSMAN, E., SLOWINSKA, A., AND BOS, H. A Design for
the World’s Fastest Taint Tracker. In Proc. of RAID (2011).

[8] BOWERS, K. D., JUELS, A., AND OPREA, A. HAIL: a High-
Availability and Integrity Layer for Cloud Storage. In Proc. of
CCS (2009), pp. 187–198.

[9] BROWN, A., AND CHASE, J. Trusted Platform-as-a-Service:
A Foundation for Trustworthy Cloud-Hosted Applications. In
Proc. of CCSW (2011).

13

http://virtuemart.net
http://www.amanda.org
http://sitebar.org
http://www.securityfocus.com/bid/37963
http://www.securityfocus.com/bid/37963

[10] CHEN, Y., PAXSON, V., AND KATZ, R. H. What’s New About
Cloud Computing Security? Tech. Rep. UCB/EECS-2010-5,
EECS Department, University of California, Berkeley, Jan 2010.

[11] CHOW, J., PFAFF, B., GARFINKEL, T., CHRISTOPHER, K.,
AND ROSENBLUM, M. Understanding Data Lifetime via Whole
System Simulation. In Proc. of USENIX Security Symposium
(2004), pp. 321–336.

[12] CLAUSE, J., LI, W., AND ORSO, A. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proc. of ISSTA (2007),
pp. 196–206.

[13] COMPUTERWORLD. Microsoft BPOS cloud service hit
with data breach. http://www.computerworld.com/s/
article/9202078/Microsoft_BPOS_cloud_service_
hit_with_data_breach.

[14] CRANDALL, J. R., AND CHONG, F. T. Minos: Control Data
Attack Prevention Orthogonal to Memory Model. In Proc. of
MICRO (2004), pp. 221–232.

[15] DAVIS, B., AND CHEN, H. DBTaint: Cross-Application In-
formation Flow Tracking via Databases. In Proc. of WebApps
(Berkeley, CA, USA, 2010), WebApps’10, USENIX Associa-
tion, pp. 12–12.

[16] DENNING, D. E. A Lattice Model of Secure Information Flow.
Communications of the ACM 19, 5 (1976), 236–243.

[17] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In Proc. of OSDI (2010), pp. 393–407.

[18] FELDMAN, A. J., ZELLER, W. P., FREEDMAN, M. J., AND

FELTEN, E. W. SPORC: Group Collaboration using Untrusted
Cloud Resources. In Proc. of OSDI (2010), OSDI’10, pp. 1–.

[19] GEAMBASU, R., KOHNO, T., LEVY, A. A., AND LEVY, H. M.
Vanish: Increasing data privacy with self-destructing data. In
Proc. of USENIX Security (2009), pp. 299–316.

[20] GENTRY, C. Fully homomorphic encryption using ideal lattices.
In Proc. of STOC (2009), STOC ’09, pp. 169–178.

[21] HO, A., FETTERMAN, M., CHRISTOPHER CLARK, A. W.,
AND HAND, S. Practical taint-based protection using demand
emulation. In Proc. of EuroSys (2006), pp. 29–41.

[22] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND

SONG, D. DTA++: Dynamic taint analysis with targeted
control-flow propagation. In Proc. of NDSS (February 2011).

[23] KEMERLIS, V., PAPPAS, V., PORTOKALIDIS, G., AND

KEROMYTIS, A. iLeak: A Lightweight System for Detecting
Inadvertent Information Leaks. In Proc. of EC2ND (Oct 2010),
pp. 21–28.

[24] KEMERLIS, V. P., PORTOKALIDIS, G., JEE, K., AND

KEROMYTIS, A. D. libdft: Practical Dynamic Data Flow Track-
ing for Commodity Systems. Tech. Rep. CUCS-044-11, Depart-
ment of Computer Science, Columbia University, Oct 2011.

[25] KIM, H. C., KEROMYTIS, A. D., COVINGTON, M., AND

SAHITA, R. Capturing information flow with concatenated dy-
namic taint analysis. In Availability, Reliability and Security
(2009), pp. 355–362.

[26] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proc. of PLDI (2005),
pp. 190–200.

[27] MUNDADA, Y., RAMACHANDRAN, A., AND FEAMSTER, N.
SilverLine: Data and Network Isolation for Cloud Services. In
Proc. of HotCloud (2011).

[28] MYERS, A. C. JFlow: Practical Mostly-Static Information Flow
Control. In Proc. of POPL (1999), pp. 228–241.

[29] MYSORE, S., MAZLOOM, B., AGRAWAL, B., AND SHER-
WOOD, T. Understanding and visualizing full systems with data

flow tomography. In Proc. of the 13th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS) (2008), pp. 211–221.

[30] NETHERCOTE, N., AND SEWARD, J. How to Shadow Every
Byte of Memory Used by a Program. In Proc. of VEE (2007),

pp. 65–74.

[31] NEWSOME, J., AND SONG, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Proc. of NDSS (2005).

[32] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
an Emulator for Fingerprinting Zero-Day Attacks. In Proc. of
EuroSys (2006), pp. 15–27.

[33] PREIBUSCH, S. Information flow control for static enforcement
of user-defined privacy policies. In Proc. of POLICY (2011),
pp. 157–160.

[34] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. LIFT: A Low-Overhead Practical Information Flow Track-
ing System for Detecting Security Attacks. In Proc. of MICRO
(2006), pp. 135–148.

[35] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proc. of CCS (2009), pp. 199–
212.

[36] SANTOS, N., GUMMADI, K. P., AND RODRIGUES, R. To-
wards trusted cloud computing. In Proc. of HotCloud (2009),
HotCloud’09.

[37] SHADOWS OF EPIPHANY. Lighttpd – PHP Accelera-
tion Benchmarks. http://blog.bodhizazen.net/linux/
lighttpd-php-acceleration-benchmarks/ .

[38] SILVA, J. D., AND GUOMUNDSSON, O. The amanda network
backup manager. In Proc. of LISA (1993), pp. 171–182.

[39] SOPHOS. Groupon subsidiary leaks 300k logins, fixes fail, fails
again. http://nakedsecurity.sophos.com/2011/06/
30/groupon-subsidiary-leaks-300k-logins-fixes-
fail-fails-again/.

[40] SUH, G. E., LEE, J., AND DEVADAS, S. Secure Program Ex-
ecution via Dynamic Information Flow Tracking. In Proc. of
ASPLOS (2004), pp. 85–96.

[41] TAKABI, H., JOSHI, J., AND AHN, G. Security and Privacy
Challenges in Cloud Computing Environments. IEEE Security
and Privacy 8, 6 (2010), 24–31.

[42] THE WALL STREET JOURNAL. Google Discloses Pri-
vacy Glitch. http://blogs.wsj.com/digits/2009/03/
08/1214/.

[43] TIWARI, M., WASSEL, H. M., MAZLOOM, B., MYSORE, S.,
CHONG, F. T., AND SHERWOOD, T. Complete Information
Flow Tracking from the Gates Up. In Proc. of ASPLOS (2009),
pp. 109–120.

[44] WANG, W., LI, Z., OWENS, R., AND BHARGAVA, B. Se-
cure and efficient access to outsourced data. In Proc. of CCSW
(2009), pp. 55–66.

[45] XU, W., BHATKAR, S., AND SEKAR, R. Taint-Enhanced Pol-
icy Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks. In Proc. of USENIX Security (2006), pp. 121–136.

[46] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis. In Proc. of CCS (2007),
pp. 116–127.

[47] YIP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving Application Security with Data Flow Assertions. In
Proc. of SOSP (2009), pp. 291–304.

[48] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND

MAZIÈRES, D. Making Information Flow Explicit in HiStar.
In Proc. of OSDI (2006), pp. 19–19.

[49] ZELDOVICH, N., BOYD-WICKIZER, S., AND MAZIÈRES, D.
Securing Distributed Systems with Information Flow Control.
In Proc. of NSDI (2008), pp. 293–308.

[50] ZHANG, Q., MCCULLOUGH, J., MA, J., SCHEAR, N.,
VRABLE, M., VAHDAT, A., SNOEREN, A. C., VOELKER,
G. M., AND SAVAGE, S. Neon: System Support for Derived
Data Management. In Proc. of VEE (2010), pp. 63–74.

[51] ZHU, D., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting Sensitive Data Leaks Using
Application-Level Taint Tracking. ACM Operating Systems Re-
view 45, 1 (2011), 142–154.

14

http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://blog.bodhizazen.net/linux/lighttpd-php-acceleration-benchmarks/
http://blog.bodhizazen.net/linux/lighttpd-php-acceleration-benchmarks/
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
fail-fails-again/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/

	Introduction
	Approach
	Design
	Data Flow Tracking as a Service
	Architecture Overview
	DFT Component
	Method Synopsis
	libdft: A Fast and Reusable DFT Framework for Commodity Systems

	CloudFence API

	Implementation
	Data Tag Propagation and Persistence
	BSD Sockets and Unix Pipes
	Files
	Shared Memory

	Data Flow Domain
	CloudFence User Interface

	Evaluation
	Deploying CloudFence
	e-store
	Backup service
	Bookmark Synchronization

	Effectiveness
	Performance

	Discussion
	Related Work
	Conclusion

