
SLAP’04 Preliminary Version

Compiling Esterel into
Static Discrete-Event Code

Stephen A. Edwards Vimal Kapadia and Michael Halas

Columbia University IBM

Computer Science Department Poughkeepsie

New York, USA New York, USA

sedwards@cs.columbia.edu vimal@kapadia.us michael@halas.us

Abstract

Executing concurrent specifications on sequential hardware is important for both
simulation of systems that are eventually implemented on concurrent hardware and
for those most conveniently described as a set of concurrent processes. As with most
forms of simulation, this is easy to do correctly but difficult to do efficiently. So-
lutions such as preemptive operating systems and discrete-event simulators present
significant overhead.

In this paper, we present a technique for compiling the concurrent language Es-
terel into very efficient C code. Our technique minimizes runtime overhead by
making most scheduling decisions at compile time and using a very simple linked-
list-based event queue at runtime.

While these techniques work particularly well for Esterel with its high-level con-
current semantics, the same technique could also be applied to efficiently execute
other concurrent specifications.

1 Introduction

Synchronous languages such as Esterel [5] and Lustre [6] hold promise as
formal design languages because of well-defined semantics and powerful prim-
itives. Already in substantial industrial use [2], the synchronous languages
stand poised to grow in importance and popularity.

Automatic translation of a synchronous language specification into effi-
cient executable code—the subject of this paper—finds at least two common
applications in a typical design flow. Although synchronous languages are well-
suited to formal verification, simulation is still of great importance in a typical

? Edwards and his group are supported by an NSF CAREER award, a grant from Intel
corporation, an award from the SRC, and from New York State’s NYSTAR program.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edwards, Kapadia, and Halas

design flow and as is always the case with simulation, faster is always better.
Furthermore, the final implementation may also involve single-threaded code
running on a microcontroller; automatically generating this from the specifi-
cation can be a great help in reducing implementation mistakes.

Unfortunately, the concurrent semantics of the synchronous languages make
their implementation on uniprocessors problematic since the concurrency must
somehow be simulated. The strength of any compilation technique for a syn-
chronous language lies in its approach to this problem. See Edwards [11] for
a survey of such approaches.

In this paper, we address the problem of generating efficient single-threaded
code (specifically, a C program) from the synchronous language Esterel. New
techniques for compiling Esterel are needed because of its growing popularity
and because its combination of fine-grained concurrency with inexpensive,
broadcast communication makes its compilation challenging.

Many techniques to compile Esterel have been proposed during the twenty
years the language has existed. The first Esterel compiler [5] derived a single
automaton for an entire concurrent program. This technique produces very
efficient code at the cost of exponentially larger object code, making it imprac-
tical for all but the smallest programs. For example, only the three smallest
examples in our experiments can be compiled using this technique.

The next generation of Esterel compilers [3] translated Esterel programs
into circuits, topologically sorted the gates, then generated simple code for
each gate. While this technique scales much better than the automaton com-
pilers, it does so at a great loss in speed. The fundamental problem is that
the program must execute code for every statement in every cycles, even for
statements that are not currently active.

Our technique most closely resembles the SAXO-RT compiler developed
at France Telecom [8]. Both techniques divide an Esterel program into “basic
blocks” that are then sorted topologically and executed selectively based on
run-time scheduling decisions. Our technique differs in two main ways. First,
we only schedule blocks within the current cycle, which makes it unnecessary
to ever unschedule a node (Esterel’s preemption constructs can prevent the
execution of statements that would otherwise run). Second, because of this,
instead of a scoreboard-based scheduler, we are able to use one based on linked
lists that eliminates conditional tests.

Maurer’s Event-Driven Conditional-Free paradigm [12] also inspired us,
although his implementation is geared to logic network simulation and does
not appear applicable to Esterel. Interestingly, he writes his examples using
a C-like notation that resembles the gcc computed goto extension we use, but
apparently he uses inline assembly instead of the gcc extension.

Our technique also resembles that in Edwards’ [9] EC compiler, but ours
uses a more dynamic scheduler. During a cycle, the Synopsys compiler main-
tains a set of state variables, one per running thread. At each context switch
point, the compiler generates code that performs a multi-way branch on one

2

Edwards, Kapadia, and Halas

of these variables. While this structure is easier for the compiler to analyze, it
is not able to quickly skip over as much code as the technique presented here.

Potop-Butucaru’s compiler [13,14] currently generates the fastest code for
most large examples (we beat it on certain ones). His technique has the
advantage of actually optimizing many of the state decisions in a program,
something we have not yet applied to our compiler, and uses a technique
much like the Synopsys compiler to generate code. Our results suggest that
our technique can be superior for highly-concurrent programs.

2 Esterel

Berry’s Esterel language [5] is an imperative concurrent language whose model
of time resembles that in a synchronous digital logic circuit. The execution
of the program progresses a cycle at a time and in each cycle, the program
computes its output and next state based on its input and the previous state
by doing a bounded amount of work; no intra-cycle loops are allowed.

Esterel is a concurrent language in that its programs may contain multiple
threads of control. Unlike typical multi-threaded software systems, however,
Esterel’s threads execute in lockstep: each sees the same cycle boundaries and
communicates with other threads using a disciplined broadcast mechanism.

Esterel’s threads communicate through signals, which behave like wires in
digital logic circuits. In each cycle, each signal takes a single Boolean value
(present or absent) that does not automatically persist between cycles. Inter-
thread communication is simple: within a cycle, any thread that reads the
value of a signal must wait for any other threads that set that signal’s value.

Statements in Esterel either execute within a cycle (e.g., emit makes a
given signal present in the current cycle, present tests a signal) or take one
or more cycles to complete (e.g., pause delays a cycle before continuing, await

waits for a cycle in which a particular signal is present). Strong preemption
statements check a condition in every cycle before deciding whether to allow
their bodies to execute. For example, the every statement performs a reset-like
action by restarting its body in any cycle in which its predicate is true.

3 Executing Esterel

Esterel’s semantics require any implementation to deal with three issues:
the concurrent execution of sequential threads of control within a cycle, the
scheduling constraints among these threads due to communication dependen-
cies, and how (control) state is updated between cycles.

Our compiler generates C code that executes concurrently-running threads
by dispatching small groups of instructions that can run without a context
switch. These blocks are dispatched by a scheduler that uses linked lists of
pointers to code that will be executed in the current cycle. The scheduling
constraints are analyzed completely by the compiler before the program runs

3

Edwards, Kapadia, and Halas

module Example:

input I, S;

output O, Q;

signal R, A in

every S do

await I;

weak abort

sustain R

when immediate A;

emit O

||

loop

pause; pause;

present R then

emit A

end present

end loop

||

loop

present R then

pause; emit Q

else

pause

end present

end loop

end every

end signal

end module

(a)

s1

s2

0

1

0

1

s3 s4 s5

*

0 1 2

s6

*

0 1

0 1 0 1

1

s2=0s2=1s2=1

s2

01

s3s4 s5

s3=0

0

s3=1

1I

2

s4=0

1

R

0

R

0

Q

1

0

s3=2 s3=1

P

s3=2

1

1

1 1

1

O

3

1 013

R s6

s6=0

0A

1

s6=1s6=0

P

s6=1

A A

s4=1

P

P

s5=0 s5=1

P

s1=0s1=0

S

s1

10

P

(b)

Fig. 1. An Example. (a) A simple Esterel module modeling a shared resource. (b)
The (simplified) GRC graph, consisting of a selection tree and a control-flow graph.

and affects both how the Esterel programs are divided into blocks and the
order in which the blocks may execute. Control state is held between cycles
in a collection of variables encoded with small integers.

4 The GRC Representation

We will illustrate the operation of our compiler on the small Esterel program
in Fig. 1(a). It models a shared resource using three groups of concurrently-
running statements. The first group (await I through emit O) takes a request
from the environment on signal I and passes it to the second group of state-
ments (loop through end loop) on signal R. The second group responds to
requests on R with the signal A in alternate cycles. The third group simply
makes Q a delayed version of R.

This simple example illustrates many challenging aspects of compiling Es-
terel. For example, the first thread communicates with and responds to the

4

Edwards, Kapadia, and Halas

second thread in the same cycle, i.e., the presence of R is instantaneously
broadcast to the second thread, which, if the present statement is running,
observes R and immediately emits A in response. In the same cycle, emitting A
causes the weak abort statement to terminate and send control to emit O.

As is often the case, the inter-thread communication in this example means
that it is impossible to execute the statements in the first thread without
interruption: those in the second thread may have to execute partway through.
Ensuring the code in the two threads executes in the correct, interleaved order
at runtime is the main compilation challenge.

Our compiler translates Esterel into a variant of Potop-Butucaru’s [14]
graph code (GRC). Shown in Fig. 1(b), GRC consists of a selection tree
that represents the state structure of the program and an acyclic concur-
rent control-flow graph that represents the behavior of the program in each
cycle. A straightforward syntax-directed translation produces this GRC from
the program’s abstract syntax tree. The control-flow portion of GRC is equiv-
alent to the concurrent control-flow graph described in Edwards [10].

4.1 The Selection Tree

The selection tree (left of Fig. 1(b)) is the simpler half of the GRC representa-
tion. The tree consists of three types of nodes: leaves (circles) that represent
atomic states, e.g., pause statements; exclusive nodes (double diamonds) that
represent choice, i.e., if an exclusive node is active, exactly one of its subtrees
is active; and fork nodes (triangles) that represent concurrency, i.e., if a fork
node is active, all of its subtrees are active.

Although the selection tree is used during the optimization phase of our
compiler, for the purposes of code generation it is just a complicated way to
enumerate the variables needed to hold the control state of an Esterel program
between cycles. Specifically, each exclusive node represents an integer-valued
variable that stores which of its children may be active in the next cycle. In
Fig. 1(b), these are labeled s1 through s6. We encode these variables in the
obvious way: 0 represents the first child, 1 represents the second, and so forth.

4.2 The Control-Flow Graph

The control-flow graph (right of Fig. 1(b)) is a much richer object and the main
focus of the code-generation procedure. It is a traditional flowchart consist-
ing of actions (rectangles and pointed rectangles, indicating signal emission)
and decisions (diamonds) augmented with fork (triangles), join (inverted tri-
angles), and terminate (octagons) nodes.

The control-flow graph is executed once from entry to exit for each cycle
of the Esterel program. The nodes in the graph test and set the state vari-
ables represented by the exclusive nodes in the selection tree and test and set
Boolean variables that represent the presence/absence of signals.

5

Edwards, Kapadia, and Halas

The fork, join, and terminate nodes are responsible for Esterel’s concur-
rency and exception constructs. When control reaches a fork node, it is passed
to all of the node’s successors. Such separate threads of control then wait at
the corresponding join node until all the incoming threads have arrived.

Esterel’s structure induces properly nested forks and joins. Specifically,
each fork has exactly one matching join, control does not pass among threads
before the join, and control always reaches the join of an inner fork before
reaching a join of an outer fork. In Fig. 1(b), each join node has two corre-
sponding forks, and the topmost two forks are owned by the lowest join.

Together, join nodes—the inverted triangles in Fig. 1(b)—and their pre-
decessors, terminate nodes 2 —the octagons—implement two aspects of Es-
terel’s semantics: the “wait for all threads to terminate” behavior of concur-
rent statements and the “winner-take-all” behavior of simultaneously-thrown
exceptions. Each terminate node is labeled with a small nonnegative inte-
ger completion code that represents a thread terminating (code 0), pausing
(code 1), and throwing an exception (codes 2 and higher). Once every thread
in a group started by a fork has reached the corresponding join, control passes
from the join along its outgoing arc labeled with the highest completion code
of all the threads. That the highest code takes precedence means that a
group of threads terminates only when all of them have terminated (the max-
imum is zero) and that the highest-numbered exception—the outermost en-
closing one—takes precedence when it is thrown simultaneously with a lower-
numbered one. Berry [4] first described this clever encoding.

4.3 An Example

Consider the behavior of the program in Fig. 1(a) represented by the control-
flow graph on the right of Fig. 1(b). The topmost node tests state variable s1,
which is initially set to 1 to indicate the program has not yet started. The test
of S immediately below the nodes that assign 0 to s1 implements the every S

statement by restarting the two threads when S is present (indicated by the
label P on the arc from the test of S). The test of s2 just below S encodes
whether the body of the every has started and should be allowed to proceed.

The fork just below the rightmost s2=1 action resumes the three con-
current statements by sending control to the tests of state variables s3, s4,
and s5. Variable s3 indicates whether the first thread is at the await I (=2),
sustaining R while checking for A (=1), or has terminated (=0). Variable s6
could actually be removed. It is a side effect arising from how our compiler
translates the weak abort statement into two concurrent statements, one of
which tests A. The variable s6 indicates whether the statement that tests A
has terminated, something that can never happen.

2 Instead of terminate and join nodes, Potop-Butucaru’s GRC uses a single type of node,
sync, with distinct input ports for each completion code. Our representation is semantically
equivalent and easier to represent.

6

Edwards, Kapadia, and Halas

When s3 is 1 or s3 is 2 and I is present, these two threads emit R and
test A. If A is present, control passes through the terminate 3 node to the
inner join. Because this is the highest exit level (the other thread, which
emits R, always terminates at level 1), this causes control to pass from the
join along the arc labeled 3 to the node for emit O and to the action s3=0,
which effectively terminates this thread.

The second thread, topped by the test of s4, either checks R and emits A
in response, or simply sets s4 to 0 so it will be checked in the next cycle.

The third thread, which starts at the test of s5, initially emits Q if s5 is 1,
then sets s5 to 1 if R is present.

Although the behavior of the state assignments, tests, and completion
codes is fairly complicated, it is easy to translate into imperative code. Unfor-
tunately, concurrency complicates things: because two of the threads cannot
be executed atomically since the presence of signals R and A must be ex-
changed during their execution within a cycle. Generating sequential code
that implements this concurrency is our main contribution.

5 Sequential Code Generation

Our code generation technique relies on the following observations: while ar-
bitrary clusters of nodes in the control-flow graph cannot be executed without
interruption, many large clusters often can be; these clusters can be chosen
so that each is invoked by at most one of its incoming control arcs; because
of concurrency, a cluster’s successors may have to run after some intervening
clusters have run; and groups of clusters without any mutual data or control
dependency can be invoked in any order (i.e., clusters are partially ordered).

Our key contribution comes from this last observation: because the clusters
within a level can be invoked in any order, we can use a very inexpensive
singly-linked list to track which clusters must be executed in each level. By
contrast, most discrete-event simulators [1] are forced to use a more costly
data structure such as a priority queue for scheduling.

The overhead in our scheme approaches a constant amount per cluster
executed. By contrast, the overhead of the SAXO-RT compiler [8] is propor-
tional to the total number of clusters in the program, regardless of how many
actually execute in each cycle, and the overhead in the netlist compilers is
even higher: proportional to the number of statements in the program.

Our compiler divides a concurrent control-flow graph into clusters of nodes
that can execute atomically and orders these clusters into levels that can be
executed in any order. The generated code contains a linked list for each level
that stores which clusters need to be executed in the current cycle. The code
for each cluster usually includes code for scheduling a cluster in a later level:
a simple insertion into a singly-linked list.

Fig. 2(a) shows the effect of running our clustering algorithm on the
control-flow graph of Fig. 1(b). The algorithm identified eight clusters, but

7

Edwards, Kapadia, and Halas

0

1

2

3

5

6

7

4

Levels:
0
1 2 3
4
5
6
7

s1

s1=0

1

s1=0

0

s2=0

S

s2=1

P s2

s3=2

R

s4=1

1

s2=1

1 0

s3

s5

s4

s3=1

1 I

2

s3=0

0

R

s6

s3=2s3=1

P

A

1R

1

Q

1

0

s5=0s5=1

P

1s6=0

0

A

1

0

0

s4=0

1

A

P

1 s6=0

P

s6=1

31

1

O

3

0

1

P

s6=1

(a)

#define sched1a next1 = head1, head1 = &&C1a
#define sched1b next1 = head1, head1 = &&C1b
#define sched2 next2 = head1, head1 = &&C2
#define sched3a next3 = head1, head1 = &&C3a
#define sched3b next3 = head1, head1 = &&C3b
#define sched4 next4 = head2, head2 = &&C4
#define sched5a next5 = head3, head3 = &&C5a
#define sched5b next5 = head3, head3 = &&C5b
#define sched5c next5 = head3, head3 = &&C5c
#define sched6a next6 = head4, head4 = &&C6a
#define sched6b next6 = head4, head4 = &&C6b
#define sched6c next6 = head4, head4 = &&C6c
#define sched7a next7 = head5, head5 = &&C7a
#define sched7b next7 = head5, head5 = &&C7b

int cycle() {
void *next1;
void *next2;
void *next3;
/* other next pointers */

void *head1 = &&END_LEVEL_1;
void *head2 = &&END_LEVEL_2;
/* other level pointers */

if (s1) { s1 = 0; goto N26; }
else {
s1 = 0;
if (S) {

s2 = 1; code0 = -1;
sched7a; sched1b; sched3b;
s3 = 2; sched6b;

} else {
if (s2) {
s2 = 1;
code0 = -1;
sched7a; sched1a; sched3a;
switch (s3) {
case 0: sched6c; break;
case 1:

s3 = 1; code1 = -1;
sched6a; sched2; goto N38;

case 2:
if (I) {

s3 = 1; code1 = -1;
sched6a; sched5a;

N38: R = 1; code1 &= -(1 << 1);
} else { s3 = 2; sched6b; }
break;

} } else {
N26: s2 = 0; sched7b;
} } }
goto *head1;

C1a: if (s5) Q = 1;
C1b: if (R) s5 = 1;

else s5 = 0;
code0 &= -(1 << 1);
goto *next1;

C2: if (s6) sched4;
else s6 = 0;
goto *next2;

C3a: if (s4) s4 = 0;
else {
if (R) A = 1;

C3b: s4 = 1;
}
code0 &= -(1 << 1);
goto *next3;

END_LEVEL1: goto *head2;

(b)

Fig. 2. (a) The control-flow graph from Fig. 1(b) divided into blocks. Control
arcs reaching join nodes have been replaced with (dashed) data dependencies to
guarantee each block has at most one active incoming control arc. (b) The code
our compiler generates for the first two levels: clusters 0, 1, 2, and 3 (reformatted
to fit space).

8

Edwards, Kapadia, and Halas

this is no ideal: a better algorithm would have combined clusters 4 and 5,
but it is not surprising that our simple-minded algorithm misses the optimum
since the optimum scheduling problem is NP-complete (see Edwards [10]).

After eight clusters were identified, our levelizing algorithm, which uses a
simple relaxation technique, grouped them into the six levels listed at the top
of Fig. 2(a). It observed that clusters 1, 2, and 3 have no interdependencies,
can be executed in any order, and placed them together in the second level.
The other clusters are all interdependent and must be executed in the order
identified by the levelizing algorithm.

Our main contribution is our semi-dynamic scheduler based on a sequence
of linked lists. The generated code maintains a linked list of entry points for
each level. In Fig. 2(b), the head1 variable points to the head of the linked list
for the first level (the complete code has more such variables) and the next1

through next3 variables point to the successors of clusters 1 through 3.

The code in Fig. 2(b) takes advantage of gcc’s computed goto extension
to C. This makes it possible to take the address of a label, store it in a
void pointer (e.g., head1 = &&C1a) and later branch to it (e.g., goto *head1)
provided this does not cross a function boundary. While not strictly necessary
(in fact, we include a compiler flag that changes the generated code to use
switch statements embedded in loops instead of gotos), using this extension
substantially reduces scheduling overhead since a typical switch statement
requires at least two bounds checks plus either a jump table lookup or a
cascade of conditionals.

Fig. 3 illustrates the behavior of these linked lists. Fig. 3(a) shows the
condition at the beginning of every cycle: every level’s list is empty—the head

pointer for each level points to its END LEVEL block. If no blocks where
scheduled, the program would execute the code for cluster 0 only.

Fig. 3(b) shows the pointers after executing sched3a, sched1b, and sched4

(note: this particular combination cannot occur in practice). Invoking the
sched3a macro (see Fig. 2(b)) inserts cluster 3 into the first level’s linked list
by setting next3 to the old value of head1—END LEVEL1—and setting head1
to point to C3a. Invoking sched1b is similar: it sets next1 to the new value of
head1—C3a—and sets head1 to C1b. Finally, invoking sched4 inserts cluster 4
into the linked list for the second level by setting next4 to the old value of
head2—END LEVEL2—and setting head2 to C4. This series of scheduling
steps produces the arrangement of pointers shown in Fig. 3(b).

Because clusters in the same level may be executed in any order, clusters
in the same level can be scheduled cheaply by inserting them at the beginning
of the linked list. The sched macros do exactly this. Note that the level of
each cluster is hardwired since this information is known at compile time.

A powerful invariant that arises from the structure of the control-flow
graph is the guarantee that each cluster can be scheduled at most once during
any cycle. This makes it unnecessary for the generated code to check that it
never inserts a cluster in a particular level’s list more than once.

9

Edwards, Kapadia, and Halas

Level 0 /* Cluster 0 */
...
goto *head1;

Level 1 C1a:
C1b:
...
goto *next1;

C2:
...
goto *next2;

C3a:
C3b:
...
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:
...
goto *next4;

END LEVEL2:
goto *head3;

(a)

Level 0 /* Cluster 0 */
...
goto *head1;

Level 1 C1a:
C1b:
...
goto *next1;

C2:
...
goto *next2;

C3a:
C3b:
...
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:
...
goto *next4;

END LEVEL2:
goto *head3;

(b)

Fig. 3. Cluster code and the linked list pointers. (a) At the beginning of a cycle.
(b) After executing sched3a, sched1b, and sched4.

As is often the case, both cluster 1 and 3 have multiple entry points. This
is easy to support because the structure of the graph guarantees that at most
one entry point for each cluster will be be scheduled each cycle.

We use the dominator-based code structuring algorithm described in Ed-
wards [10] to generate structured code for each cluster. Some gotos are nec-
essary to avoid duplicating code. Fig. 2(b) has two: N26 and N38.

6 The Clustering Algorithm

Fig. 4 shows our clustering algorithm. It is heuristic and certainly could
be improved, but is correct and produces reasonable results.

One important modification is made to the control-flow graph before our
clustering algorithm runs: all control arcs leading to join nodes are removed
and replaced with data dependency arcs, and a control arc is added from each

10

Edwards, Kapadia, and Halas

1: add the topmost control-flow graph node to F , the frontier set
2: while F is not empty do

3: randomly select and remove f from F

4: create a new, empty pending set P

5: add f to P

6: set Ci to the empty cluster
7: while P is not empty do

8: randomly select and remove p from P

9: if p is not clustered and all of p’s predecessors are then

10: add p to Ci (i.e., cluster p)
11: if p is not a fork node then

12: add all of p’s control successors to P

13: else

14: add the first of p’s control successors to P

15: add all of p’s successors to F

16: remove p from F

17: if Ci is not empty then

18: i = i + 1 (move to the next cluster)

Fig. 4. The clustering algorithm. This takes a control-flow graph with information
about control and data predecessors and successors and produces a set of clusters
{Ci}, each of which is a set of nodes that can be executed without interruption.

fork to its corresponding join. This guarantees that no node ever has more
than one active incoming control arc (before this change, each join had one
active incoming arc for every thread it was synchronizing). Fig. 2(a) partially
reflects this restructuring: the additional arcs off the forks have been omitted
to simplify an already complex diagram. This transformation also simplifies
the clustering algorithm, which would otherwise have to handle joins specially.

The algorithm manipulates two sets of CFG nodes. The frontier set F

holds the set of nodes that might start a new cluster, i.e., those nodes with
at least one clustered predecessor. F is initialized in line 1 with the first node
that can run—the entry node for the control-flow graph—and is updated in
line 15 when the node p is clustered. The pending set P , used by the inner
loop in lines 7–16, contains nodes that could be added to the existing cluster.
P is initialized in line 5 and updated in lines 12–14.

The algorithm consists of two nested loops. The outermost (lines 2–18)
selects a node f at random from the frontier F (line 3) and tries to start a
cluster around it by adding it to the pending set P (line 5). The innermost
(lines 7–16) selects a node p at random from the pending set P (line 8) and
tries to add it to the current cluster Ci.

The test of p’s predecessors in line 9 is key. It ensures that when a node p is
added to the current cluster, all its predecessors have already been clustered.
This ensures that in the final program, all of p’s predecessors will be executed
before p. If this test succeeds, p is added to the cluster under construction in
line 10.

11

Edwards, Kapadia, and Halas

0

0.5

1

1.5

2

atds Chorus mca200 tcint Wristwatch

CEC
grc2c

SAXO
EC
V3

Fig. 5. Experimental results. The height of each line indicates the number of
seconds taken to execute 1 000 000 reactions on a 1.7 GHz Pentium 4 (shorter is
better). The two lines for CEC are for computed-goto and switch-based code. The
two lines for the SAXO compiler for a “fast” and normal version of the code. grc2c
is due to Potop-Butucaru [14], SAXO is due to Closse et al. [8], EC is the Synopsys
compiler due to Edwards [10], and V3 is the automata-based compiler [5].

All of p’s control successors are added to the pending set in line 12 if p is
not a fork node, and only the first if p is a fork (line 14). This test partially
breaks clusters at fork nodes, ensuring that all the nodes within a cluster
are connected with sequential control flow, i.e., they do not run concurrently.
Always choosing the first successor under a fork is arbitrary and may not be the
best. In general, the optimum choice of which thread to execute depends on
the entire structure of the threads. But even the simple-minded rule of always
executing the first thread under a fork, as opposed to simply scheduling it,
greatly reduces the number of clusters and significantly improves performance.

7 Experimental Results

Fig. 5 shows our experimental results. Due to the paucity of large public-
domain Esterel programs, we have only tested the speed of our compiler on
five medium-sized examples. Table 1 reproduces these results numerically and
Table 2 provides some statistics for the examples.

Our results are mixed: Potop-Butucaru’s grc2c beats us on four of the
five examples, but we are substantially faster on the largest example, Chorus.
Furthermore, we are faster than the SAXO compiler on the three largest ex-
amples (Chorus, mca200, and Wristwatch). This is expected: our technique
should become faster than the SAXO compiler on larger examples since our
(similar) technique has less overhead for unexecuted parts of the program.

The number of clusters and levels in Table 2 suggests why our technique
is better on some programs and worse on others. A key contribution of our
technique is the use of one linked list per level for scheduling. The more
clusters there are per level (measured, e.g., by the C/L average in Table 2),

12

Edwards, Kapadia, and Halas

Example CEC (switch) grc2c SAXO (fast) EC V3 V5
atds 0.11 0.13 0.03 0.11 0.08 0.10 66.0
Chorus 0.94 1.52 1.54 1.42 1.29 1.76 51.0
mca200 1.66 2.75 1.47 2.62 2.35 1.79 29.0
tcint 0.28 0.34 0.14 0.34 0.25 0.18 0.25 1.3
Wristwatch 0.78 0.93 0.61 0.89 0.87 0.86 0.62 2.1

Table 1
Numerical version of Fig. 5: time, in seconds, to run 1 000 000 iterations of the
generated code. The (switch) column shows times for CEC generating switch

statements instead of computed gotos. The (fast) column is for the fast version of
the SAXO compiler. V3 represents automata-based code, which can only be

generated for two of the examples. The V5 column lists times for code generated
by the netlist-based V5 compiler.

Example Description Size Clusters Levels C/L Threads
atds Video generator 622 156 16 9.8 138
Chorus Task scheduler [15] 3893 662 22 30.1 563
mca200 Shock absorber [7] 5354 148 15 9.9 135
tcint Bus controller 357 101 19 5.3 85
Wristwatch Berry’s example 360 87 13 6.7 87

Table 2
Statistics for the examples. Size is the number of Esterel source lines after run

statement expansion and pretty-printing. Clusters is the number of clusters found
by the algorithm in Fig. 4. Levels is the number of levels the clusters were

compressed into. C/L is the ratio of clusters to levels. Threads is the number of
concurrent threads as reported by the EC compiler [10].

the more our technique differentiates itself from the SAXO compiler. The
results bear this out: Chorus, which has the largest number of clusters per
level on average exhibits the largest improvement over the other techniques.

We also ran the netlist-based V5 compiler on these examples and found
that the runtimes are uniformly much worse than any of the other compilers.
The results for the Wristwatch show the least variance because it calls the
most user-defined functions, something none of these compilers attempt to
optimize.

These timing results were obtained by applying a random sequence of
inputs to the code generated by each compiler and measuring the time it
took to execute 1 000 000 reactions. We note that the ratio of our measured
times differ noticeably from those reported by Potop-Butucaru [14]. This can
be attributed to a variety of factors including a different processor (Potop-
Butucaru used a P3, our results are on a P4) and perhaps different stimulus.

13

Edwards, Kapadia, and Halas

8 Conclusions

In this paper, we presented an improved way to generate code for Esterel that
uses linked lists to track which blocks of code are to be executed. This results
in improved running times over an existing compiler (SAXO-RT [8]) that uses
a similar technique based on bit-mapped flags and in the largest example we
tried, a substantial improvement over the previously fastest-known compiler
(Potop-Butucaru’s grc2c [14]).

While our technique is not an improvement of the same magnitude as the
move from netlist-style compilers, it is competitive, generates readable code,
and appears to work especially well on large concurrent programs.

Source and object code for the compiler described in this paper is freely
available as part of the Columbia Esterel Compiler distribution available from
http://www.cs.columbia.edu/~sedwards/cec/ .

References

[1] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System
Simulation. Prentice Hall, Upper Saddle River, New Jersey, third edition, 2000.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1):64–83, Jan. 2003.

[3] G. Berry. Esterel on hardware. Philosophical Transactions of the Royal Society
of London. Series A, 339:87–103, Apr. 1992. Issue 1652, Mechanized Reasoning
and Hardware Design.

[4] G. Berry. Preemption in concurrent systems. In Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer
Science, volume 761 of Lecture Notes in Computer Science, pages 72–93,
Bombay, India, Dec. 1993. Springer-Verlag.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming,
19(2):87–152, Nov. 1992.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative
language for programming synchronous systems. In ACM Symposium on
Principles of Programming Languages (POPL), Munich, Jan. 1987. Association
for Computing Machinery.

[7] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, K. Suzuki,
and A. Sangiovanni-Vincentelli. A case study in computer-aided co-design of
embedded controllers. Design Automation for Embedded Systems, 1(1):51–67,
Jan. 1996.

[8] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil. SAXO-RT: Interpreting
Esterel semantic on a sequential execution structure. In Proceedings of

14

http://www.cs.columbia.edu/~sedwards/cec/

Edwards, Kapadia, and Halas

Synchronous Languages, Applications, and Programming (SLAP), volume 65.5
of Electronic Notes in Theoretical Computer Science, Grenoble, France, Apr.
2002. Elsevier Science.

[9] S. A. Edwards. Compiling Esterel into sequential code. In Proceedings of the
37th Design Automation Conference, pages 322–327, Los Angeles, California,
June 2000. Association for Computing Machinery.

[10] S. A. Edwards. An Esterel compiler for large control-dominated systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(2):169–183, Feb. 2002.

[11] S. A. Edwards. Compiling concurrent languages for sequential processors. ACM
Transactions on Design Automation of Electronic Systems, 8(2):141–187, Apr.
2003.

[12] P. M. Maurer. Event driven simulation without loops or conditionals. In
Proceedings of the IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pages 23–26, San Jose, California, Nov. 2000.

[13] D. Potop-Butucaru. Optimizing for Faster Simulation of Esterel Programs.
PhD thesis, INRIA, Sophia-Antipolis, France, Aug. 2002.

[14] D. Potop-Butucaru. Optimizations for faster execution of Esterel programs. In
Proceedings of Memocode, pages 227–236, Mont St. Michel, France, June 2003.

[15] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and J. Pulou. Efficient
compilation of Esterel for real-time embedded systems. In Proceedings of
the International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pages 2–8, San Jose, California, Nov. 2000.

15

	Introduction
	Esterel
	Executing Esterel
	The GRC Representation
	The Selection Tree
	The Control-Flow Graph
	An Example

	Sequential Code Generation
	The Clustering Algorithm
	Experimental Results
	Conclusions
	References

