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Abstract

Deterministic asynchronous concurrent formalisms are
valuable because determinism greatly simplifies the design
and validation of such systems and most concurrent for-
malisms are nondeterministic.

This paper connects two of the more successful determin-
istic asynchronous formalisms: Kahn’s dataflow networks
and Josephs’s deterministic receptive processes. The main
result: a divergence-free deterministic receptive process is
a Kahn process in that it can be modeled by a continuous
function from input to output sequences, thus verifying it is
compositionally deterministic.

This result provides a bridge between two communities,
enabling results from the asynchronous digital hardware
community to be used in the context of dataflow compu-
tation and vice versa.

1 Introduction

One of the problems with concurrency is that there is so
much of it. Many different models of concurrency have been
developed across disciplines as diverse as asynchronous
 circuits and distributed multiprocessors. This has lead
researchers in different disciplines to re-invent hard-won
properties and insights.

To help avoid more of this, this paper relates two suc-
cessful models of concurrent processes that have the very
desirable property of determinism: Kahn’s processes [10],
the model underlying most dataflow computation, and
Josephs’s receptive processes [6], a popular model for asyn-
chronous  circuits that is closely related to Hoare’s
Communicating Sequential Processes [4]. We specifically
consider Josephs’s deterministic receptive processes [7],
whose behaviors are constrained to make them determin-
istic under composition. Kahn’s processes also have this
property but the constraint is expressed more easily.

Why demand determinism? Certainly, nondeterministic
models provide both implementation flexibility and the
power to model nondeterministic systems. Simpler verifi-
cation is the main argument: determinism leads to repro-
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ducible simulation behavior and simpler models for formal
methods. We believe it is no accident that the two most pop-
ular computational models in hardware and software today
(i.e., synchronous digital logic and single-threaded impera-
tive programs) are both deterministic. And while it is pos-
sible to simulate a nondeterministic system and systemat-
ically explore all its behaviors (the simulator of Janin et
al. [5], for example, takes snapshots when a nondetermin-
istic choice is made and allows the user to restart the sim-
ulation from these points with a different choice), this adds
an enormous burden to the already difficult validation task.

At some level, the two concurrency models discussed
here are similar: both observe a stream of input events from
the environment and produce output events in response.
Both are deterministic: a process is compelled to produce
the same outputs in response to the same inputs. When com-
posed in parallel, groups of processes remain deterministic.

Details of the models differ greatly. Events travel through
unbounded buffers between Kahn processes. Each process
may be connected to many buffers, and each buffer has ex-
actly one driver and one receiver. By contrast, a receptive
process sees a single, unbuffered stream of input events and
produces a single output stream. Since the input stream may
come from multiple processes, event order may vary, yet the
determinism constraints ensure that the process cannot re-
spond differently under different input arrival orders.

The biggest difference is that receptive processes char-
acterize the input patterns that are assumed never to be ob-
served. Mainly to simplify the mathematics, Josephs models
these conditions as “divergences:” by allowing the process
to do anything (produce a sequence of outputs and allow
any inputs) past that point. This behavior is inherently non-
deterministic and has no analog in Kahn’s networks, whose
processes behave like politicians: unwanted inputs are sim-
ply ignored and remain in the input buffer.

The next section presents a motivating example that sug-
gests the main result of the paper—a proof that determinis-
tic receptive processes can be modeled as Kahn processes.
The subsequent sections formally define the two process
models and present a proof of their equivalence. The paper
concludes with a review of related work and a discussion of
the implications of the main result.
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Figure 1: An asynchronous protocol converter.
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Figure 2: A Petri net describing the protocol converter.

2 An Example

In this section, we discuss the simple process in Figure 1 to
illustrate the two concurrent models and the intuition behind
the proof of their equivalence in Sections 6 and 7.

The process in Figure 1 is an asynchronous buffer that
converts a passive input port (a “push” port) to a passive
output port (a “pull” port). Each event models a voltage
change on a wire, so the buffer actually looks for pairs of
events. The left-side ports repeatedly wait for a rising event
on either i0 or i1 (signifying 0 and 1 respectively), acknowl-
edge it with a rising event on a, wait for a falling event on
the same input channel (i0 or i1), and finally acknowledge it
with a falling event on a.

Simultaneously, the ports on the right wait for an event
on r, generate an event on either o0 or o1 depending on the
value received on the left ports, wait for another event on r,
and finally generate a matching event on either o0 or o1. One
possible sequence of events for this process is

i0 r o0 a i0 r o0 a i1 r o1 a i1 r o1 a i0 r o0 a i0 r o0 a.

The Petri net in Figure 2 characterizes this process. The
places and transitions on the left manage the input port and
those on the right manage the output port. The semantics of
this capture the notion, for example, that r and i0 or i1 may
occur independently at the beginning and that once an i0 is
received, both a and o0 are triggered when r arrives.

A Petri net provides an operational way to character-
ize the behavior of an asynchronous process. By contrast,
Josephs characterizes his processes with an infinite set of
valid event sequences. Technically, Josephs processes are
triples (I,O, F). For this example, the input alphabet I =
{i0, i1, r}, the output alphabet O = {o0, o1, a}, and the set
of failures1 F are all sequences that end with the process
blocked waiting for more input plus all those that have an il-
legal input at a certain point and an arbitrary string of inputs
and outputs after. Josephs intends these latter sequences,
called divergences, to model undesired input events, implic-
itly assuming they would never occur in practice.

This process has an infinite number of failures:
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ε (the empty sequence)
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It turns out that this process is both receptive and de-
terministic by Josephs’s definitions (see Section 4), which
means composing it in parallel with other deterministic re-
ceptive processes preserves its deterministic character. The
proof of this is subtle [7] and detailed, but this paper implies
a simpler proof, which follows from modeling this process
using Kahn’s formalism [10], suffices.

We find these relationships among the number of events
in each failure:

o0 = max(r, i0),
o1 = max(r, i1), and
a = max(r, i0 + i1).

Obviously, this model is more abstract than either the
Petri net or Josephs’s failures, but if the environment be-
haves as these other models specify, these three equations
are enough to constrain the outputs.

These three equations also characterize the behavior of a
Kahn process that takes three input streams, one stream for
each type of input event, and produces three output streams,
one for each output event. In Kahn’s formalism, the order
in which inputs arrive and outputs are produced on sepa-
rate channels is irrelevant: a process is simply a function

1Failures are sequences that bring the process to a point where it will
fail to produce more output without additional input.



that maps input streams to output streams. A Kahn process
must behave like a continuous function: applying an infi-
nite sequence to the process must produce the same result
as the limit of applying finite prefixes of the same sequence.
Providing such a continuous process with more inputs can
only produce the same or more output (it is monotonic), and
its behavior on infinite inputs may not be somehow unex-
pected. The addition and maximum operators in the above
equations give a continuous function when extended in the
obvious way to infinite sequences.

It is no accident that this deterministic receptive process
can also be modeled as a Kahn process (i.e., as a continuous
mapping from input streams to output streams). In the re-
mainder of this paper, we present both models formally and
prove in Section 7 that this can always be done, i.e., that any
deterministic receptive process is also a Kahn process.

3 Finite and Infinite Sequences

Throughout this paper, we will be dealing with both finite
and infinite sequences of symbols. If A is an alphabet, we
write A∗ (the Kleene closure) for the set of all finite-length
sequences of symbols from the alphabet and Aω for the set
of all finite- and infinite-length sequences.

In this setting, the distinction between unbounded-length
sequences (A∗) and truly infinite sequences (Aω) turns out
to be a purely technical point that, unfortunately, requires
a fair amount of machinery to prove the unsurprising result
that receptive processes are well-behaved in the limit.

4 Josephs’s Receptive Processes

Josephs’s receptive processes [6] are a variant of Hoare’s
communicating sequential processes [4] that differ mainly
in their treatment of unwelcome inputs. A particular behav-
ior of a process in Josephs’s model is a sequence of events:
there are no ports, no buffers, and only a slight distinction
between input and output events.

Josephs’s formalism differs from Hoare’s in how it im-
poses constraints on the environment (equivalently, how it
deals with unwelcome inputs). By definition, a receptive
process allows any input to arrive at any time, but after an
unwelcome input arrives, Josephs models the process as be-
coming completely nondeterministic and is specifically al-
lowed to babble endlessly, i.e., produce an endless stream
of outputs without accepting any further input.

Formally, a receptive process is a triple (I,O, F), where
I∩O = ∅ are the input and output alphabets, O , ∅, and F ⊆
(I ∪ O)∗ is the set of failures, i.e., sequences that represent
behaviors of the system where it is waiting for additional
input or has diverged because of an unwanted input.

To be a receptive process, failures must satisfy

s ∈ F↑ ⇒ st ∈ F↑ (1)
F↑ ⊆ F (2)
ε ∈ F̂ (3)

st ∈ F̂ ⇒ s ∈ F̂ (4)
s ∈ F̂ ∧ t ∈ I∗ ⇒ st ∈ F̂ (5)

where ↑ and ˆ are the divergence and trace operators

F↑ = {s | {t ∈ O∗ | st ∈ F} is infinite} (6)
F̂ = {s | ∃t ∈ O∗ . st ∈ F}. (7)

A divergence is a sequence after which the process can bab-
ble endlessly until the next failure; a trace is a sequence after
which at least one output sequence leads to a failure.

These subtle definitions have intuitive consequences:

Lemma 1 (Josephs) Any sequence may follow a diver-
gence, i.e., s ∈ F↑ iff ∀t . st ∈ F, and at least one may
follow a trace, i.e., s ∈ F̂ iff ∃t . st ∈ F.

Corollary 1 All failures are traces, i.e., F ⊆ F̂.

(1) requires that once a process has diverged, it will re-
main so. Furthermore,

Lemma 2 (Josephs) Only unwelcome inputs can cause a
divergence, i.e., st ∈ F↑ ∧ t ∈ O∗ ⇒ s ∈ F↑

(2) requires all divergent sequences to themselves be fail-
ures, effectively meaning that a divergence may start doing
anything immediately.

(3), which requires the empty sequence to be a trace,
effectively says the process must start, so the first failure
comes after a possibly empty sequence of outputs.

(4) requires the set of traces to be prefixed-closed, which
just means that if a trace is allowed, every step necessary to
get there is, too.

Finally, (5) makes processes receptive: adding any envi-
ronmental inputs to the end of a trace always leads to an-
other trace, although possibly a divergent one.

Lemma 3 Given a trace s ∈ F followed by an input burst
t ∈ I∗, there exists some output burst u ∈ O∗ that will then
bring the system to another failure state.

Proof Since s ∈ F, from Corollary 1 s ∈ F̂ and from (5), it
follows that st ∈ F̂ and hence from (7), ∃u ∈ O∗ such that
stu ∈ F. �

The set of quiescent traces F are those failure traces that
are not divergent, i.e., F = F \ F↑.

Lemma 4 A quiescent trace cannot diverge after an output,
i.e., o ∈ O ∧ s ∈ F ⇒ so < F↑.

Proof By definition s ∈ F and s < F↑. From Lemma 2, it
follows that so < F↑. �
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Figure 3: Failures, traces, and divergences expressed with
regular expressions for a buffer modeled as a receptive pro-
cess. The buffer has a single input i and a single output o,
alternates between input and output events in normal oper-
ation, and diverges after an input glitch (two consecutive i
events). The relationships among sets shown here hold for
all receptive processes.

Figure 3 shows the failures, traces, and divergences of a
receptive process for a simple buffer. Input event i causes
output event o, and the next i is meant to come after o. Each
event models a transition on a wire. Divergences are well-
behaved until two input events occur in a row (i.e., a glitch
shorter than the buffer’s reaction time), then any sequence of
inputs and outputs is allowed. Failures are exactly the diver-
gences plus cases where the system is waiting for the next
input. Finally, the traces characterizes all possible behaviors
of the process: well-behaved then waiting for input, waiting
for output, or having two consecutive inputs appear and then
diverging. The one behavior prohibited in the trace set is the
appearance of two consecutive outputs before two consecu-
tive inputs have ever appeared. The relationships among the
sets in Figure 3 holds for any receptive process.

4.1 Deterministic Receptive Processes

Receptive processes, as defined above, may be nondeter-
ministic (Figure 4 shows an example). To address this,
Josephs [7] gives four additional constraints that render re-
ceptive processes deterministic:

(∀v,w . x = vw⇒ svi < F↑) ∧
i ∈ I ∧ sxiu ∈ F ⇒ sixu ∈ F (8)

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧
so ∈ F̂ ∧ st ∈ F \ F↑ ⇒ false (9)

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧
so ∈ F̂ ∧ st ∈ F̂ ⇒ sto ∈ F̂ (10)

o ∈ O ∧ t ∈ (I ∪ (O \ {o}))∗ ∧
so ∈ F̂ ∧ stou ∈ F \ F↑ ⇒ sotu ∈ F (11)

(8) says a process can accept an input earlier without
changing its behavior provided the input is legal (does not
lead to divergence) at every intervening point.

(9) says that once an output can be emitted, it cannot
be suppressed. Technically, if o can be emitted at a certain

(i(o|p))∗i

(i(o|p))∗

(i(o|p))∗ii(i|o|p)∗ divergences F↑
failures F

traces F̂

Figure 4: Sets for a nondeterministic receptive process: a
buffer that produces either o or p in response to an i.

point, it cannot also be the case that another trace that does
not include o can follow and lead to a non-divergent failure
(i.e., one in which no more outputs will be emitted without
additional inputs).

(10) is broader but weaker: if either an output o or a trace
that excludes o may occur, o may still occur after t. Since
the process is receptive, a similar property holds for inputs.

Finally, (11) says that if a process can emit o now or
safely wait and emit it later (i.e., engage in a trace t that
does not include o), emitting it now does not affect what
can happen later.

In effect, these four constraints render input arrival
and output production orders nearly irrelevant (not quite,
though: outputs can not appear before the inputs that pro-
duce them). This insight will be crucial in later proofs,
which start by discarding input and output event orders.

5 Kahn’s Systems

Kahn’s networks [10] consist of asynchronously-running
concurrent processes that communicate exclusively through
point-to-point unbounded first-in, first-out buffers. This is
very different than Josephs, whose communication is nearly
implicit (i.e., an event generated by one process is seen im-
mediately by another). Kahn describes each process using
an Algol-like single-threaded imperative programming lan-
guage augmented with two constructs: nonblocking write to
a particular channel, and a blocking read operation that will
wait for an event to arrive on a channel if one is not already
in the buffer for this channel.

Restricting reads to be blocking renders the behavior of
each process to be a (continuous) function from input se-
quences to output sequences. By defining the behavior of an
entire system as being the least fixed point of these contin-
uous functions, it follows from a theorem usually attributed
to Knaster and Tarski [11] that the least fixed point is unique
and thus the system has exactly one behavior, i.e., is deter-
ministic.

The functional nature of Kahn’s processes is also very
different than Josephs’s, whose failure sets are more like
relations, although we will show that the restriction of de-
terminism implies they behave functionally.



Formally, Kahn starts with a set of events D, whose
elements represent messages that can be passed through
buffers, and represents the sequence of events flowing
through a buffer as members of Dω, the set of all finite and
infinite sequences of events from D.

To relate different behaviors, Kahn uses the usual partial
order on elements of Dω, i.e., for x, y ∈ Dω, x v y when x is
a prefix of, or equal to, y. Equivalently, x v y if y extends x
with additional events.

A Kahn process is modeled as a function from a tuple of
input sequences to a tuple of output sequences. Any process
described in an imperative language with blocking reads
and nonblocking writes defines such a continuous function:
given (complete) input sequences, consider executing a pro-
cess on them. The program runs until it hits a read operation,
which because it blocks is guaranteed to always return the
next event on its input channel. Moreover, further execution
of the program can only append events to output channels,
making the behavior monotonic. Finally, because there is no
way for a process to wait forever before emitting any output,
the function is continuous.

Although Kahn expresses processes in an imperative lan-
guage, Kahn’s proof of determinism only requires that each
process behaves like a continuous function. In the proof pre-
sented here, we, too, only show that Josephs’s determin-
istic receptive processes can be represented with contin-
uous functions, and hence are deterministic using Kahn’s
argument. In fact, the single-threaded imperative programs
Kahn suggests cannot represent many continuous functions
on streams. A simple counterexample is the “two wires”
process, which simply copies two input streams to two out-
put streams. This cannot be represented with a single pro-
cess in Kahn’s language because it can only wait on a single
input at a time, yet it is a continuous function.

6 Modeling Deterministic RPs with Kahn

This section and the next present the main contribution of
this paper: a formal connection between Josephs’s deter-
ministic receptive processes and Kahn’s processes. Specif-
ically, a deterministic receptive process that never diverges
(rejects an input) behaves like a Kahn process.

The proof proceeds in three steps. First, we define a way
to model a receptive process (i.e., input/output alphabets
and a set of failures) as a Kahn-like process where each in-
put and output event travels through its own unique input
or output port. Next, we show that the failure set of a deter-
ministic receptive process implies a monotonic and hence
functional relationship from finite input sequences to out-
put sequences (i.e., given a particular input sequence, there
is exactly one corresponding output sequence). Finally, in
the next section, we show that this function is continuous
when extended to infinite sequences, completing the proof
that the model is a Kahn process.

The way we model deterministic receptive processes as
Kahn processes is key. As mentioned earlier, Josephs’s re-
strictions on deterministic processes demand that the pro-
cess not be sensitive to input arrival order and produce arbi-
trary output orders. To achieve this, we model a determinis-
tic receptive process as a Kahn-like process in which each
input and output event gets a unique port. This discards or-
der and effectively reduces information about each event to
a single natural number: the count of the number of times it
has arrived or been emitted.

Formally, we use the projection operator ↓ to transform
a sequence of events into separate streams. It is defined for
a sequence s and set A of events as follows: for the empty
sequence, ε ↓ A = ε, and

as ↓ A =
{ a(s ↓ A) if a ∈ A, and

s ↓ A otherwise.

We also use the obvious singleton and set-valued exten-
sions: for a single event a ∈ A, s ↓ a = s ↓ {a}, and for a set
S of sequences of events, we define S ↓ A = {s ↓ A : s ∈ S }.

Let I and O be two functions that map sequences to
vectors of inputs and outputs using the projection opera-
tor as follows. For a receptive process P = (I,O, F) where
I = {i1, . . . , ip} and O = {o1, . . . , oq}, if f ∈ F,

I( f ) = ( f ↓ i1, f ↓ i2, . . . , f ↓ ip) ∈ i∗1 × ... × i∗p and
O( f ) = ( f ↓ o1, f ↓ o2, . . . , f ↓ oq) ∈ o∗1 × ... × o∗q.

(12)

For example, if f = i1i2o1o2i1o2o1i2i1o1o2 then I( f ) =
(i1i1i1, i2i2) and O( f ) = (o1o1o1, o2o2o2).

To show that a deterministic receptive process is a Kahn
process, we first prove a lemma that shows the relationships
in (12) behaves monotonically. As a corollary, it must also
be a function. The proof, by contradiction, relies mostly
on (8), which can here be interpreted as meaning more in-
puts can never produce fewer outputs.

Define the v operator on finite sequences as follows: s v t
if t = su for some possibly empty string u, i.e., if s is a
prefix of t. This relation produces a partial order because it
is reflexive (x v x), transitive (x v y ∧ y v z ⇒ x v z),
and antisymmetric (x v y ∧ y v x ⇒ x = y). We extend
it to vectors of sequences in the usual way: (s1, . . . , sn) v
(t1, . . . , tn) if s1 v t1, . . . , sn v tn.

Lemma 5 The input/output relationship of a deterministic
receptive process P = (I,O, F) with no divergence is mono-
tonic, i.e., for f1, f2 ∈ F, if I( f1) v I( f2) then O( f1) v
O( f2).

Proof by contradiction. Assume f1, f2 ∈ F such that
I( f1) v I( f2), but assume O( f1) @ O( f2). Since the ele-
ments of O( f1) and O( f2) are each sequences of a single
output event, this assumption means that some output o ap-
pears fewer times in f2 than it does in f1.



Since P has no divergences, repeated application of (8)
on f1 and f2 means there exist failures f ′1 and f ′2 such that
all the inputs events of f1 occur before any outputs in f ′1 and
f ′2 begins with the same sequence of input events.

Repeated application of (11) on f ′2 allows us to construct
a trace f ′′2 that shares a common prefix with f ′1 . However,
we will fail to construct an f ′′2 that has (all of) f ′1 as a prefix
since by assumption at least one output event appears less
often in f1 and hence in f ′1 since applying (8) does not affect
the number of output events, than it does in f2 and hence in
f ′2 and f ′′2 since (8) and (11) do not affect the number of
output events.

The existence of f ′′2 , however, violates (9) since the se-
quence so begins f ′1 and f ′′2 is of the form st, where t is a
sequence that does not contain o (there were fewer o events
in f2). The assumption that O( f1) @ O( f2) must therefore be
false. �

Corollary 2 For a deterministic receptive process P =

(I,O, F) with no divergences (F↑ = ∅), the input/output re-
lationship is a function, i.e., for f1, f2 ∈ F, I( f1) = I( f2)
implies O( f1) = O( f2).

7 Extending Receptive Processes to Infinite Sequences

That processes behave monotonically is the most impor-
tant property in making Kahn networks deterministic, but
Kahn’s proof requires the processes to be defined on both
finite and and infinite sequences of inputs and to behave
continuously. We showed in the last section that using the
definitions of I and O in (12) gives a monotonic function,
but it is not defined on infinite sequences. We shall extend
this function to infinite sequences and show the resulting
function is continuous.

We need some additional machinery. First, we extend v
in the obvious way to infinite sequences. This makes v a
complete partial order: any chain C (a totally ordered set:
c1 v c2 or c2 @ c1 for all c1, c2 ∈ C) has a (unique) least
upper bound tC.

A function is continuous (“well-behaved in the limit”)
if the limit of its chains is the limit of the function on the
chains, i.e., f is continuous iff for any chain C,

f (tC) = t{ f (c) : c ∈ C}. (13)

Our solution to extending receptive processes to infinite
sequences is somehow obvious but non-trivial to prove: we
define the input/output behavior of a process as being ex-
actly the limit as defined by (13). Let F ′ ⊆ F be a set of
failures. If C = {I( f ′) : f ′ ∈ F′} is a chain (i.e., c1 v c2 or
c2 v c1 for all c1, c2 ∈ C), then C′ = {O( f ′) : f ′ ∈ F′} is
also a chain by Lemma 5. We denote F the set of such sets
of failures (F ⊂ P(F)), and for each F ′ ∈ F , we define

Ī(F′) = t{I( f ′) : f ′ ∈ F′} and
Ō(F′) = t{O( f ′) : f ′ ∈ F′}.

(14)

This defines an input/output relation for all finite input
sequences—choose a singleton for F ′—and all infinite
input sequences. For any (possibly infinite) input se-
quence s ∈ iω1 × . . . × iωp , there exists F ∈ F such that
s = tI(F). This follows from the process being receptive.
For instance, for the input sequence (i1i1i1, i∞2 , i3i3),
consider a set of failures with input sequences
{(i1i1i1, i2, i3i3), (i1i1i1, i2i2, i3i3), (i1i1i1, i2i2i2, i3i3), . . .}.

To show the relations in (14) define a continuous function
from infinite input sequences to infinite output sequences,
we first observe that if a finite input sequence is a prefix of
the limit of a chain of (potentially infinite) input sequences
then it is a prefix of one element of this chain. Intuitively,
this means there is only one way to approach a limit.

Lemma 6 If X ⊂ iω1 × . . . × iωp is a chain, y ∈ i∗1 × . . . × i∗p,
and y v tX then there exists x ∈ X such that y v x.

Proof For a given input ik, we have (y ↓ ik) v t(X ↓ ik). If
t(X ↓ ik) is a finite string s then s ∈ (X ↓ ik). Hence, there
exists xk ∈ X such that (xk ↓ ik) = s = t(X ↓ ik), so that
(y ↓ ik) v (xk ↓ ik). Otherwise, (X ↓ ik) contains arbitrarily
long and/or infinite sequences, thus there also exists xk ∈ X
such that (y ↓ ik) v (xk ↓ ik).

By applying this construction to all inputs, we obtain a
set {x1, . . . , xp} ⊂ X totally ordered and finite. Let x be its
maximum. For every input ik, (y ↓ ik) v (xk ↓ ik) v (x ↓ ik).
As a result, y v x. �

The next lemma and corollary show that the relations in
(14) actually represent a monotonic function.

Lemma 7 The limiting input/output relation of a determin-
istic receptive process P = (I,O, F) with no divergence is
monotonic, i.e., for F1, F2 ∈ F , if Ī(F1) v Ī(F2) then
Ō(F1) v Ō(F2).

Proof If f1 ∈ F1 thenI( f1) v Ī(F2). By Lemma 6, there ex-
ists f2 ∈ F2 such that I( f1) v I( f2). By Lemma 5, O( f1) v
O( f2). Thus O( f1) v Ō(F2). Finally, Ō(F1) v Ō(F2). �

Corollary 3 The limiting input/output relation of a deter-
ministic process P = (I,O, F) with no divergence is a func-
tion, i.e., for F1, F2 ∈ F , if Ī(F1) = Ī(F2) then Ō(F1) =
Ō(F2).

Finally we are in a position to prove our main result: that
interpreting a divergence-free deterministic receptive pro-
cess using the constructions in (12) and (14) gives a con-
tinuous function and can therefore be interpreted as a Kahn
process.

Theorem 1 The limiting input/output function of a deter-
ministic receptive process P = (I,O, F) with no divergence
is continuous, i.e., for F1 ⊂ F and F2 ⊂ F such that
{Ī(F1) : F1 ∈ F1} and {Ī(F2) : F2 ∈ F2} are totally or-
dered, if t{Ī(F1) : F1 ∈ F1} = t{Ī(F2) : F2 ∈ F2} then
t{Ō(F1) : F1 ∈ F1} = t{Ō(F2) : F2 ∈ F2}.



Proof t{Ī(F1) : F1 ∈ F1} ∈ iω1 × . . . × iωp , thus there exists
F′ ∈ F such that t{Ī(F1) : F1 ∈ F1} = I(F′).

If f ′ ∈ F′ then I( f ′) v t{Ī(F2) : F2 ∈ F2}. By
Lemma 6, there exists F2 ∈ F2 such that I( f ′) v Ī(F2).
By Lemma 6 again, there exists f2 ∈ F2 such that I( f ′) v
I( f2). By Lemma 5, O( f ′) v O( f2) v Ō(F2) v t{Ō(F2) :
F2 ∈ F2}, so that Ō(F′) v t{Ō(F2) : F2 ∈ F2}.

If F1 ∈ F1 then Ī(F1) v Ī(F′). By Lemma 7, Ō(F1) v
Ō(F′). Hence, t{Ō(F1) : F1 ∈ F1} v Ō(F′).

To conclude, t{Ō(F1) : F1 ∈ F1} v t{Ō(F2) : F2 ∈ F2}.
By symmetry, t{Ō(F1) : F1 ∈ F1} = t{Ō(F2) : F2 ∈ F2}. �

In summary, a divergence-free deterministic receptive
process behaves like a Kahn process in which each type of
input and output event is conveyed through its own separate
buffer, an abstraction used to model a receptive process’s
ability to accept and generate events in any order without
producing a fundamental change in behavior. Furthermore,
the behavior of the process is “sampled” only at the fail-
ures: exactly when the receptive process has emitted all the
outputs it is obligated to.

It it worth noting that Josephs’s model of divergence does
not have a direct analog in Kahn processes since it pro-
duces, by definition, a sequence of nondeterministic inputs
and outputs. While this is largely a artifact of choosing a
particular way to represent the arrival of an unwelcome in-
put (Hoare uses a different approach that adds additional
complexity to the mathematics), the issue of unwelcome in-
puts is handled very differently in the two models.

Kahn’s processes in some sense simply ignore unwel-
come inputs. If an undesired input is sent on a channel,
the receiving process can simply choose never to read from
that channel. In dataflow networks, this is somehow natu-
ral since the notion of violating a protocol is usually not
an issue because the communication behavior of, say, a sig-
nal processing application is usually so simple that protocol
failures are not usually a concern.

Josephs and others in the asynchronous  community,
by contrast, are often concerned exclusively with protocols
and not with data communication per se because of the low
level of abstraction necessary at the level of asynchronous
digital logic. In fact, Josephs’s failures are a mathematically
elegant way of expressing both the input/output behavior of
a process and the expectations it places on its environment.
Kahn focused purely on input/output behavior.

8 Related Work

Udding [17] was one of the first to formalize the notion
of delay-insensitivity for asynchronous circuits. Working in
Van de Snepscheut’s trace theory [22], Udding defined a set
of constraints on traces much like those due to Josephs [7].
Although Udding did not provide a proof of compositional-
ity like that of Josephs, the two formalisms are very sim-
ilar. Josephs and Udding later collaborated on a delay-

insensitive algebra for expressing trace sets [9]. Separately,
Mallon and Udding [14] developed a tool for converting
processes expressed in such an algebra to finite automata.

Concurrently, van Berkel et al. [20, 18, 19, 21] developed
the notion of handshake circuits, an asynchronous design
style that uses a library of processes that behave roughly like
Josephs’s deterministic receptive processes. With the excep-
tion of nondeterministic components such as arbiters, sys-
tems composed of handshake components are deterministic
by construction. This work led to the Balsa/Tangram asyn-
chronous circuit synthesis system [1] in commercial use at
Philips. Josephs, Nowick, and van Berkel [8] provide a sur-
vey of this and other asynchronous design styles.

Janin, Bardsley, and Edwards [5] show how to simulate
asynchronous circuits in Balsa. Their simulation runs until
it encounters a nondeterministic choice, such as at an ar-
biter. It then takes a snapshot of the system state, makes a
particular choice, and continues. Later, a user can restart the
simulation from one of these choice points and proceed with
a different choice. While restarting is a fairly unique ability
for a simulator, it illustrates the challenges of simulating a
nondeterministic formalism.

Others, including Peeters and van Berkel [16] and
O’Leary and Brown [15] use the handshake circuit idea in
a synchronous setting, illustrating its power as a model of
computation beyond asynchronous implementations.

Dechering et al. [2] apply ideas from delay insensitivity
theory to a particular model of embedded systems, but do
little more than relate the two.

Kahn’s 1974 paper [10] became the theoretical underpin-
ning of most dataflow computing models. Relying heav-
ily on Kahn’s inherent determinism, Lee’s Synchronous
Dataflow [12] is a restricted class of Kahn networks whose
behavior can be completely predicted at compile-time ideal
for signal processing. Lee and Parks [13] present additional
models based on Kahn’s systems.

9 Conclusions

The main result of this paper is that Josephs’s determinis-
tic receptive processes behave like Kahn processes (specif-
ically, divergence-free receptive processes: those that never
consider any input patterns to be erroneous). The immedi-
ate result is that Kahn’s simple proof of compositional de-
terminism also applies to deterministic receptive processes,
mirroring Josephs’s more complex proof [7].

The equivalence of the two modeling styles—the trace-
based style of receptive processes and the partial order and
continuous function style of Kahn—is the broader result,
enabling a variety of cross-pollination possibilities. Excel-
lent work has been done on both of these models, but un-
til now, few techniques have been transferred. Now, for ex-
ample, the handshake circuit style developed in the asyn-
chronous logic community [20] could be applied in a Kahn



setting. Similarly, it might be possible to apply techniques
and restrictions developed for dataflow networks [13] in the
asynchronous logic world.

The original motivation for this paper was a desire to im-
pose a deterministic model of computation on the author’s
 language for hardware/software codesign [3], which
currently consists of synchronous hardware interacting with
single-threaded software. Each model by itself is determin-
istic, but their composition is not. The results here suggest
that imposing either a Kahn or Josephs-like model on the
language to guarantee determinism would be equivalent,
and that ideas from both the asynchronous digital hardware
world and the dataflow software world could be success-
fully combined.
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