
An Information Retrieval Approach for

Automatically Constructing Software Libraries

Yoelle s. Maarek

IBM Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

yoelle@ibm.com

DaniellvI. Berry

Technion, Israel Institute of Technology

Computer Science Department

Haifa, 32000, Israel

d berrY@techsel. bi tnet

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

kaiser@cs.columbia.edu

September 1990

CUCS-049-90

©1990 Yoelle S. Maarek, Daniel M. Berry and Gail E. Kaiser.

1

An Infonnation Retrieval Approach for Autornatically
Construct.ing Software Libraries

Yoelle s. l\Iaarek
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

yoelle@ibm.com

Daniel M. Berry
Technion, Israel Institute of Technology

Computer Science Department
Haifa, 32000, Israel

dberry@techsel.bitnet

Ga.il E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

kaiser@cs.columbia.edu

Abstract

Although software reuse presents clear advantages for programmer productivit.y and code reliability,
it is not practiced enough. One of the reasons for the only moderate success of reuse is the lack
of software libr'lries that facilitate the actual locating and understanding of reusable components.
This paper dpscrihes II technology for automatically I\Ssembling large softwar~ libraries that promote
softwarp rpuse by helping the user locate the components closest to hfO'r/his neeels

Softwarp libraries are aut.omatically assemblfO'd from a set. of Ilnorganizpd component.s by using
informat.ion rptripval techniques. The constrllction of the library is done in !.wo steps. First, attribut.es
;up alJtornal.ically pxtracted from nat.urlll language docllmpntat.ion by IIsing a npIV inJexing scheme
ba~fO'd an t.he nntinns of lexical affinities anci quantity of inforrnllt.ion. Then, a hierarchy for browsing
is alJtomat.iclllly generaterl using a clustering techniq1le that draws only nn the informlltion provided
by the attribulps. Thanks to the frfO'p-!.pxt inrlexing se-heme, tools following this approach can accept

free-style nat'Jral language 'luprips.
This tpChllOlogy h1\.S bfO'en impll"ment .. d in the GURU ~ystpm, whirh h<l5 bpen applied 1.0 construct

an organized library of Alx utilities. An exppriment. was rondllrtpd in orrlpr to pvalullte the n·t.rievll\
effectivl"nfO'ss of GURU 1\.5 compl\red to INFOExPLORER a hypprt.pxt lihrary syslplll for Alx 3 on the IBM
RISe System/6000 series. We followpr\ Ihe usual evaluation prOf"pr\lJr!' us .. .! in informat.ion rptrifO'vl\l,
hased upon recall and precision ml"a5IJrPS, and d"t.erminpd t 1111 I. nllr syst.f'Tll pr>rforms l!i% better on a
random test set, while being milch le~s pxpensive to build than INFOEXl'LORF.R.

Index Terms: autnmatic indexing, c1uAtf>ring, information rplripval. Ipxicl\l amnil.ips, 'oft.wl\re li­
braries, softwar .. fPllS!'.

1 Introduction

Software reuse is widely believed to be a promising means for improving software productivity and relia­
bilit.y [14J, and therefore is an issue of growing interest in software engineering. Unfortunately. not enough
adrquate libraries of reusable software components are available. By adequate. we mean that the library:

• provides a sufficient number of components, over a spectrum of domains. that can be reused as is
(hlack.hox reuse) or easily adapted (while-box reuse). and

• is organized such that existing code closest. to the users' needs is easy to locate. In particular. the
library should provide mechanisms to help the Teuser look for "functionally close" components that
meet some given requirements.

This paper is concerned with the second adequacy issue. and more generally with library systems that
provide means for representing. storing and retrieving reusable components.

The first. stage in building a library consists of indexing the objects to be stored in it .. that is, producing
a set of characterizing attributes. or jignature, for each of these objects. The signature for each object
represents the reusable object. Therefore. the q1lality of indexing is crucial to the quality of the library.
Functionalit.y is an important aspect of software components. Thus, it is necessary to include conceptual ~
information about functionality in the indices. Unfortunately. conceptual information is difficllIl to obtain.
Few programmers provide conceptual indices for their code. Moreover, even if provided, they can hardly
be expressed 11 nder a common formalism since pieces of code typically originate from multiple sources. One
sohl tion is to manually index software components a pOjteriori according to a. given classifying scheme.
bu t this task is both arbitrary and tedious.

As an alternative, we propose to automatically identify indices by analyzing the natural-language
docllmentation. in the form of manual pages or comments. usually associated with the code. Natural­
language docnmentation is clearly a rich source of conceptual information. However. this information is
cf)ntained only implicit.ly, in an nnstructured wa.y, and is not usable as sllch. Tn oreler to extract usable
information from free-style docu mentation. we propose to use information retrieval techniques. Once the
indices have been prod11Ced. components can be automatically classified, stored and retrieved according
to their signatnres.

The cla~sifying stage in the construction of a library consists of gathering objects into classes such
that the members of the same class share some set of properties. The basic motivation for classifying is
1,0 facilitate browsing among similar components in order to ident.ify the best candidates for reuse. So
that. during retrieval, a set of potentially adaptable component.s can be p<tsily located. Browsing is more
important for software libraries than for other kind of libraries. since I.here rarely exists a component
perfectly matching a user's query. Moreover, local browsing allows the IIser to discover unanticipated
opportllnities for reuse.

We have designed and implemented a too\, GURU. that embodies the above approach. GURU auto­
matically assembles conceptually strnctured software libraries from a set of unindexed and unorganized
software components. In the first stage. GURU extracts the indices from the natural language documenta­
tion associated with the softwa.re components to be stored, by using a. new indexing scheme. This indexing
scheme is based on lexical afJinitiej and on their statistical distribution. It identifies a set of a.ttributes
for each docnment to represent a functional description of the Msociated software unit. In the second
stage, GURU assembles the indexed objects into a. browsing hierarchy by using a hierarchical c/ujtering
technique that draws information exclusively from the indices identified in the previous stage. Thus, GURU

2

SlIpports both classical linear retrieval. in which candidates are ranh·d at:cording to a numerical measlIre
that evaluates how well they answer the query. and cluster-based retrieval in which the browse hierarchy
directs the search for the best candidate.

Section 2 briefly compares the art.ificial intelligence and information retrieval approaches to construction
of software libraries and explains why we follow an IR approach. Section :1 describes the indexing method.
Section 4 presents the classification approach and the clustering techniq1le IIsed for assembling the library.
Section 5 deals with the retrieval stage. Section 6 gives results using OIJr G tJRtJ implementation anrl a formal
evaluation based on nsnal methodology for evaluating information retrieval systems. Finally. Section 7
summarizes the ma.in contributions of this work. Related work is discussed as relevant throughout. the
paper.

2 AI vs IR approach

Previous efTorts for building rellse systems can be roughly classified into two groups according to the
approach adopted. the information retrieval (IR) approach or the artificial intelligence (AI) approach.

The IR approach consists of drawing information only from the structure of some documents that
provide information on the software components. No semantic knowledge is used and no interpretation ~

of the document is given: the reuse tool attempts to characterize the document rather than understand
it. There are currently very few software library systems that follow an IR approach, or use existing
IR techniques. Among them, the RSL system, [6] for instance, automatically scans source code files and
extracts comments explicitly labeled for rense with attributes such a.'! keyword. author, date created, etc.
The keyword attribute provides a list of free-text single-term indices very much like those used in IR
tools. The REUSE system [3] provides a menu-driven front end to an in formation retrieval system, thus
all kind of software objects (inclnding user menns and system thesauri) Me stored as textual docnments.
Thus. the two previolls system!! 1Ise some ki~d of IR related technic-pIe. however the only system, to our
knowledge. that applies a pure m approach is the system proposerl by Frakes and Nejmeh [15]. They
nse the CATALOG information ret.rieval system for storing and retrieving C software components. Each
component is charact ... rized by a set of single-term indices that are alltomatically extracted from the
nat1!ral-lang'lage headers of C programs. Therefore, the constrnction of the C components repository is
done a1!t,omatically. and rloes not re(]uire any pre-encoded knowled/2:e a.'! in RSL for instance.

Tn contrast. in the AI approach. the rellse tool aims at llnrlerst,anding the (]1!eries and the functionality
of components before providing an answer. AI-based systems are often smarter t.han JR systems. Some
of them are context sensitive and can generate answers adapted to lhe lI!'er"s expertise. As a tradeoff,
t.hey re(]uire some domain analysis and a great deal of pre-encoded s(>rnalll,ic informat.ion. which is 1Js1!ally
provided manually. They are ba..'1ed upon a knowledge ba.'1e t.hat stnri"S semantic information about the
domain and about the language itself in ca.'!/' of a natural-lang1lage inll"rfa(·p. ThE' main problem of applying
this approach in the context of software libraries is that many domains cannot be ea.'!ily circnmscribed and
the domain analysis is very difficult [10]. This makes the construction of snch systems very tedi01ls and
expensive. Examples of AI or knowledge-based re1!se tools are nnmerolls. e.g .. [30], [39], [2], [11], [3i].

The AI approach can be lIseful in some applications. However. we prefer the IR approach for reasons
of

• cost: the library system is built entirely automatically,

• transportability: the library system can be rebuilt for any domain since it does require manually

3

provided domain knowledge,

• scalability: the repository can be easily updated when new components are inserted, either by re­
compiling the indices or by applying incremental techniques, the indexing task is entirely mechanical.

We t.herefore propose to apply a pure IR approach, in the same direction of research as Frakes and
Nejmeh, by automatically buHding free-text indices that characterize software components. We also pro­
pose to use an indexing scheme richer than the single-term indexing used in the IR-based tools described
in this section so as to achieve a better retrieval effectiveness. The following section explains our source
of information and how the indexing is performed.

3 The Indexing Stage

The major advantage of automatic indexing over manual indexing, besides t.he obvious cost considerations,
is that it allows a llnified scheme. insuring that indices will be compatible with each other. The idea is
to extract attributes from an existing SOllrce of information. i.€.. the code and the natllral-language
documentation. Some work has been done towards extraction of primitivf> flJnctional information from the
code [261, [34J, however, the richer SOllfCe of flll1ctional information is the natural-language docllmentation, ~
assuming any is available.

An examination of numerous samples of code allowed us to reach the conclusion that some useful
information can be extracted from programs written in a high-level language using good programming
style, whereas little conceptual information can be found in typical real-world code chosen at random
[24]. Unfortunately, even when dealing with well-written code, there is a very low probability that the
programming styles of the varions pieces of code will be consistent. Even a single programmer may
use totally ·different identifiers for expressing the same concept from one day to another. Since software
components come from multiple sonrces in the context of large software libraries, extracting attributes
rrom code would necessitate 11..'1 many indexing schemes as there are code sonrces. Another limitation
comes from the fact that there are many more possibilities for identifiers than for natural-language words
since they do not follow any morphological or syntactic rules.

In other words, when there is no way to guarantee good, and let rtlone consistent and compatible,
programming styles. extracting attributes from raw code does not. give significant results. Therefore, we
prefer concentrating on the other possible source of information, i.e .. the natural-language documentation
either inserted into the code, i.e .• the comments, or associated with the code, e.g .. manual pages.

Comments are intended to help programmers understand the corle rtnd thus may provide functional
information. They deal with specific parts of the code into which thpy are insl"Tt.ed, and I,hey may give
information on various parts at variolls levels of abstraction. Extract.ing fllnct.ional information from
comments entails two activities .

• defining an indexing scheme that allows extracting at.tribntes frnm natural lang11age phrases or
sentences, and

• relating comments to the portion of code they concern.

The second activity is very complex in free-style code. Indeed, in rree-style programming. programmers
can insert comments wherever. a.nd in any format and any length, they wish. Although comments usually
describe the containing routine or the one just below, in general it is impossible to automatically determine

4

what part of the code is covered. A solution would be to consider that all the comments inserted in a specific
piece of code constitute a global natural-language description of the considered code. Unfort.unat.ely, this is
not the case. Comments rank from low-level implementation details to high-levd description. For inst.ance,
in the rm. c source file in Berkeley UNIX. one can find comments as varion!> as:

/. current pointer to end of path */. or
/. rm - for ReMoving files. directories t trees .• /

The fi rst conveys no usefnl fu nctional information while the second hi ts the mark exactly. In gpneral. there
are many more low level. and Ilseless for our purpose. comments than high level ones. and there is no way
to automatically distinguish between them. Therefore, so long as no style is enforced. it is very difficult
to extract useful information from comments.

Let us note, however, that any piece of natural language, from comments inserted in the code to
design specifications. which is specifically related to software code and whose level of abstraction is known
can bring useful information. Thlls. we are currently working on extracting functional information from
comment.s in t.he framework of RPDE [17], a structured software development environment. in which
comments are linked to the portion of code they describe. In the following. though, we try t.o remain as
general as possible. and we do not assume that any commenting style is enforced. Therefore, althongh our
indexing scheme is applicable to any piece of natural-language that brings some functional information,

"­we will exemplify it through the analysis of manual pages clearly related to reusable components, such as
UNIX-like manual pages.

In the rest of this paper. the Arx documentation is taken as our corpns since it fulfills the requirement
of being structured into manllal pages. Moreover the AIX docnmentation can be seen as a regular real­
world documentation database since it is of average quality as far as commenting style is concerned. Many
even consider the AIX documentation of poor quality when compared to Berkeley UNIX documentation
due to typos. inconsistent style. poor vocabulary, etc.

3.1 A Richer Indexing Unit: the Lexical Affinity

There has been much work in IR dealing with natural-language text. a large variety of techniques have
been devi~ed for indexing. classifying and retrieving documents [31J. One of the main concerns in IR is the
au tomat.ic indpxing of documents, which cOMists of producing for each docnment. a set of indices that form
a .• ignaf'1rr of t.he document. A signature is a short-form description of a docllment, easier to manipulate
than the entire document. which plays the role of a surrogate at the retrieval ~tage.

Several issues need to be addressed when indexing a docl)ment with respf'ct to t.he natnre and the form
of the produced indices. More precisely. the indexing vocabulary can be eithN controlled or uncontrolled.
In the controlled voca.bulary approach only a restricted set of indices are aut.horized (~.9., in t-1EDLARS

[32]). whereas in the uncontrolled vocablIlary, or free text. approach. there is no constraint on t.he nature
of the indices. It has been shown that both approaches are comparable in terms of performance, (141,
[321. however we prefer the uncontrolled vocabulary approach in the context of software reuse. for the
same reasons of cost. portability and scalability. Indeed. defining an adecl'late controlled vocabulary is
a manual. «omain-dependent task and. therefore. suffers from the same drawhacks as the encoding of a
knowledge- base.

Another important issue in automatic indexing deals with the natllre of the indices. The most usual
form is single-term index. in which single words without contextnal information are selected as indices.
Unfortunately. single term indices are often too specific or too broad and can induce ambiguities. Therefore.

5

it. has been proposed to take term phrases as indexing units rather than single terms so as to refine the
meaning of constituent words. However. the use of word co-occurrences has not brought good results a..'l
expressed by Salton [31J (p 296):

" a phrase-formation process controlled only by word CO-OCCllrrences and the dOCl1ment
freqnencies of certain words is not likely to generate a large number of high-quality phrases."

As an answer to this problem. a possible solution has been to add syntactic crit".ria in order to provide
further control in phrase formation, such as part-of-speech using specially formatted dictionaries [21J, or
more refined analysis including semantics [36J. But,

"The available options in phrase generation appear limited, and the introdl1ct.iolt of costly and
refined methodologies may bring only marginal improvements." [31J (p 298)

We are more optimistic, and believe that indexing units richer than single terms can be llsed and bring
significant improvement at low cost. The atomic unit we propose to use in order to demonstrate this is
derived from the notion of IFxical Ilf/inity. In linguistics, a syntagmatic lexical affinity (LA). also termed
le:rical rrlalion, between two units of langllage stands for a correlation of t.heir common appearance in the
utterances of the language [8J. The observation of LAs in large textnal corpora has been shown to convey ...
information on both syntactic and semantic levels, and provides ~IIS with a powerflll way of taking context
into accol1nt [35J.

We propose to lise the notion of LA for indexing purposes, and restrict the above definition by observing
LAs within a finite document rather than within the whole language so as to retrieve conceptual affinities
that characterize the document 1, rather than purely I!xicalones. Moreover. we only consider LAs involving
op~n-claH wordj as meaning-bearing, whereas LAs involving cloud-cia,!." words2 are not.

Ideally, LAs are extracted from a text by parsing it since two words slHl.fe a lexical affinity if they are
involved in a modifier-modified relation. Unfortllnately, automatic syntact.i(: parsing of free-style text is
still not very efficient [33J. Instead. we make TIse of simple Co-OCC1J rrence. It has been shown by Mart.in et al.
that 98% of lexical relations relate words that are separated by at most five words within a single sentence
[28J. Therefore. most of t.he LAs involving a word tv can be extracted by examining the neighborhood of
each OCCllfren(:e of U1 within a span of five words (-5 words and +5 words arol1nd w).

The extraction techniq1Je consists of sliding a window over the t.ext and ~t.oring pairs of words involving
the head of the window (if it is an open-cla..'1s word) and any of t.he otlter 0IH'n-.-Ja.'1s elements of the window.
The window is slid word by word from the first worrl of the s"nt,enc". t.o the 1a.'1t. the size of the window
rlecrelt.'1i ng at t.he end of the sentence so a.'! not t.o cross <;I"n t. .. nce hOll ndarif's'. si nee Il?xiC"al affi nities cannot
r{'late words belonging to different sentences. The window size heing smaller than a constant .. the extraction
of LAs is linear in the nllmber of words in t.he document. An al~f)rithlll for the stirling window techniqlle
is presented in Figure 1. Maarek and Smadja have lIsed a similar !.e('hni!]IIP ill [27J, which wa.'1 also based
on Mart.in's res1Jlts [28J. but more adapted to the analysis of large corpora.

In sl1mmary, the first stage in indexing a manllal page consists of ext.rading all the pot.ential LAs by
using the sliding window technique, and storing them under t.heir canonical form. in which ea(:h word
is represented by its inflectional root (or lemma). An example of the potential LAs extracted from the

I rathl'£ than the whole language.
1 In general, opf'n.c1as5 word. include noun5, verb., adjective. and adverb5, while c1oo .. d-cla.5s word5 are pronoun., prepo­

.ition., conjunctions and interjection •.
3The i.olation of ,entenCl'5 i5 thO' only par5ing performed,

6

For each sentence S in the document d
For each word 10 in S from the beginning to the end of "

w '- lemma(w)
(where lemma(w) represents the inflectional root of w)

EndFor
For each lemma w in S from the beginning to the end of S

If w is an open-class word then
Let w!, .. " tvn be the n words immediately following w in S
(where n = 5 except when the end of the sentence is reached earlier)
For i = 1 to n

If Wi is an open-class word t.hen
Get f. frequency count of {w, Wi}
(J = 0 when the LA has not been encountered before)
Store {W, Wi} with a frequency count of f + 1

EndIf
EndFor

EndIf
EnrlFor

EndFor

Figure 1: Sliding window technique

manual page of mv in A IX and ranked by frequency of occurrence are presented in Table 1. For the sake
of t.he comparison. a list of the single words extracted from the same manual page is shown in the first
column. also ranked by frequency of appearance ..

Among the extracted lexical relations, some correspond to abstractions of the considered document.
and some do not. Since we are interesterl in indexing textual rlocllments. in the first stage. we isolate
acf.ual affinit.ies by Iising frequency criteria. It has been demonst.rated that the frequency of OCCllrrence of
a t.l'rm within a docnnlcnt is related to the importance of the word in a text [23J. This is also trne for the
common appea.rance of pairs of words and even more for lexical affi nities.

3.2 From LAs to Indices

When analyzing a document. many potential lexical affinitie~ arf' t.h'IS irlentifiprl. Some ()f t.hese lexical
affinities are conceptua.lly important and some are not. As S"*'\I in Tahle 1, frf'Cjllcncy of appearance is a
p;ood indicator of relevance. However, some noise exists, mainly d liP t.n words appearing ton often in a
given context. In order to reduce the influence of such words, it is nf>rCsslI.ry in t.he second st.age to select
from among the lexical affinities identified only the most representativ(' ones. i.I'., those containing the
most information.

We have defined a mea-'lure evaluating the re$oi"ing power of an LA. It is ba.'led IIpon the quantity of
information of each of the words involved in the LA, as well as IIpon the frequency of a.ppearance of this
LA within the considered document. The qlJantity oj information of a. word within a. corpus is defined as:

INFO(W) = -10g2(P{w}) (1)

where P{ w} IS the observed proba.bility of occurrence w in the corplls [4J. [32J. Therefore, the more

7

open-class words freq LAs freq
file 30 file move 9
directory 14 be file 8
mv 11 directory file 7
files 8 file system 5
new 7 file overwrite 5
name 7 file mv 5
move 7 file name 4
newname 6 name path 3
IS 6 do file 3
system 5 directory move 3
one 5 differen t file 3
..

Tahle 1: Keywords and lexical affinities classified by frec]1lency in the mv manual page

frequent a word is in a domain. the less information it carries. From this definition. we infer the definition
of the quantity of informat.ion of an LA (101,102) as: ~

(2)

To simplify the compl) tat.ion of this factor, in the rest of this work, we consider words within the textual
universe as independent variables4

• Thus, we use the following formula for computing the quantity of
information of an LA.

(3)

Then, we define the resolving power of an LA in a given docl)ment as follows. Let (1/1\. W2, 1) be a tuple
retriever! while analyzing a document d. where (10\, W2) is an LA appearing J times in rI. The re$o/lIi71g
powr.r> of this LA in d is defined as:

(4)

The higher the resolving power of a lexical affinity is. the more characteristic of the document it is.
The resolving power allows llS to evalnate the importance of a lexical affinity within a text by taking into
account both its frequency of appearance in the text and the quantit.y of in formation of the words involved.
Thlls. even thol)gh the lexical affinity (be file) appears very oftf.'n in an A IX manllal pagf.'. it has only
a small rl'solving power. simply because t.he quantity of information of hot.h thl' words "file" and "be" in
the AIX docnmentation is low.

In order to be able to compll.re the relative performances, in t.erms of rf.'solving power. of different
documents, we transform the raw p score into a standardized score. The standardized score. or z-score,
is defined M {', = (p - (i)/u where p and u are the average and standard dpviation of the ('-values. This
transformation does not alter the distribution and allows us to evalnate t.he relat.ive status of the score in
the p distribution. In t.he rest of this paper, the p-values we give as examples will t.hereforc represent the
z-score rather than the raw s.:'ore.

C Thi. M'llmption r~pre.~nt. only an approximation .ince word. in Engli.h ar~ cI .. finitdy not indep~nd .. nt. but are dis.
tribul .. d according 10 th~ rule. of the language.

~Thi. notion i. rdat~d to th"t of mlllllal inlormation (4).

8

Ta.ble 2 compares t.he list of LAs for the mv manual page ranked by freqnency and by resolving power.
Tn it. the LA (file motle) l1as a greater.resolving power than any of the following LAs. Moreover. some
noisy LAs such as (do file) or (be file) (in italic fonts in the table) have disappeared because both words
involved in the LAs are highly frequent in the corpus and thns have a low I'lIHl.ntity of information.

LAs freq LAs p
file move 9 file move 8.38
he file 8 file mv 4.36
directory file 7 directory file 4.03
file system 5 file overwri te 3.87
file overw ri te 5 directory move 1.98
file mv 5 file system 1.95
file name 4 mv rename 1.71
name path 3 move mv 1.58
do file 3 different file lAO
directory move 3 name path 1.33

Table 2: Comparison of frequency and p-valne for the LAs in mv

For each document. we select as indices those LAs with the highest resolving power. More precisely, we
are interested in the LAs that represent peaks in the distribution of p-valnes . Therefore, we keep as indices
only the LAs whose f' value is one standard deviation above the mean, i.e., snch that p ~ P + (T, where
p represents the mea.n a.nd (J the standard deviation of the distribntion of p values within one document.
The choice of snch a threshold6 is reflected in Tables 2, 3 and 4, where only LAs with a z-score greater
than 1 are presented.

The set of LAs of a document selected by ranking p-values and taking those one standard deviation
above the mean forms t.he signatnre of the document. The major cont'riblltion of this technique consisted
in adapting the notion of lexical affinity for indexing pnrposes. Wi' gave some intuitiv" indications on
how an LA-based ind"xing scheme is richer than a single-word scheme. We will demonstrate later that it
CnSllreS a better retri"val effectiveness.

The next section explains how software components can be storer! and clas!'lified using the signatllres
produced at the indexing stage.

4 The Classifying Stage

Normally. when a. user wa.nts to use a. software library. slhe first has to acrf'S!'I a library that might contain
the desired component. then has to provide a formal description of the researched component according
to the vocabulary understood by the library system. Unfortunately. in most cases, this ideal scenario does
not work out. The main reason is that in real life applications, the component perfectly matching the
user's reqniremi'nts does not exist in the library. or it is not indexed as the llser had guessed it would be.

In such cases, a traditional database ma.nagement system fa.ils to help the user. Indeed, to be retrieved
from the database. a component must exactly match the query7. Such strict matching is inappropriate

8Thi, c1M.ical thre.hold ~"ar"ntee. to keep only" .mall percent,,~e o(th mple eleml'nl5 in mo.t di.tribution •.
7 A notable I'xc .. ption i. ARES (18], a rel"tional d"tablU~ th"t &llow. Al'xible interprl't"tion o(querie •. In ARES the

9

LAs p,
copy file 6.49
directory file 2.4 7
file source 2.15
infile subdirectory 1.98
contain subdirectory 1.30
copy cp 1.30
copy regular 1.02

Table 3: LAs ranked by p-values for cp

LAs p

directory make 5.08
create mkdir 2.74
directory mkdir 2.55
directory permission 1.48
directory write 1.03

Table 4: LAs ranked by p-vallles for mkdir

in a software library system since the user often cannot know the exact characteristics of the desirable
component and. even when slhe does, there is rarely a perfect match.

Software libraries should not only permit retrieving candidate components that perfectly or partially
match the query, bu t also permit browsing among components that share some £n nctionality. It is therefore
desirable to strllcture the library for making the search, retrieval and browsing mechanisms as fast. and
convenient as possible. in order 1.0 make the access to the library attractive.

We propose here to perform the search and retrieval operations llsing a conventional inverted index
file strnctlHe. and to rIllster the library in order to facilitate the browsing operation. Section 4.1 explains
how the index rp.pository is built using an inverted file structure, and Section 4.2 presents the clustering
technique 11 sed to build the browse hierarchy. Section 5 explains how they an~ nsed to perform the search
and browsing opera.tions.

4.1 Building the index repository

The goal is to allow a fast and easy identification of candidate rompon('nt.s at. the retrie\'al stage. Thns.
we derive from the signature repository built at the indexing stage anot.her repository for st.oring, for each
word, the LAs involving that word, and pointers to the docnments in which it appears. Let I\S denote:
• W the universe of words
• V the universe of documents.

Index LAs are defined as tuples (10, w', p) where w is smaller than w' in the lexicographic order and p
is the resolving power of this LA in a. considered docllment. The reason for ordering wand 10' is to avoid

.imilarily b~lween el~menl5 can be evalualed via a lookup in a lable Ihal hiY 10 be provided beforehand. ARES is nol
di~cu,sE'd hE're since ils purpose i~ nol 10 e1iY.ify so£twar~. Furth .. r, it h~ the drawback of r .. quiring a great dE'al of pre­
encoded knowledge.

10

duplicate LAs by forcing every LA into a canonical form.

The index stored in t.he reposit~ry is represent.ed as a mapping defined as follows:

wEW-"'\(w)={(x,l',d)EW x [l,oo[x'D leither(w,x.l')or(37,w.l')isanLAofd} (5)

The mapping ..\ is stored as a t.rie data structnre. The mapping <7 between documents to their signatnres
is also stored using a trie data structure:

<7(d) = {(w. w'. p) E W2 x [1. oo[I (lV. w'. p)} is an LA of d} (6)

In implementing these mappings, tries are usually faster than hashing schemes, although they consume
more memory. In this case, fast access is a basic requirement for making the retrieval stage attractive.
These two mappings are the ba.sic operations we use to retrieve and mnk candidates as explained in
Section 5.

4.2 Building the browse hierarchy

As explained previollsly. browsing is crucial in software library systems. The most common way to make
browsing operations possible is to group items judged to be similar by using clustering operations [31] .
. J ardine and van Rijsbergen [19] pointed out that "associations between docn ments convey in formation
about the relevance of docllments to requests". They demonstrated that cluster-based retrieval strategies
Me as effective as linear strategies and much more efficient. Thus, many clustering met.hods have been
used for information retrieval [\9]. [7], [16]. The most popular clustering methods are the hierarchical ag­
glomerat.ive clnstpring (HAC) methods because their search and construction techniques are more efficient
than for most non-hierarchical met.hods [19].

The following sections define some terminology in cluster analysis, describe the algorithms we used
to build the browse hierarchy. and present some samples of the browsing hierarchy obtained for the AIX
library.

4.2.1 Some t.erminology in clust.er analysis

Classification by cluster analysis has been of long-standing interest in statistics as well as various other
fields. It can be traced back to the work of Adanson in 1757 [I], who used nnmerical clustering for classifying
hotanic species. Statisticians and taxonomists have widely developed the fielri sine ... then. Cluster analysis
now offers a. wide range of techniques for identifying 11nderlying slrlldllrf's in Ia.rge set!; of objects and
revealing links between objects or c1a..'1sPS of ohject.s. One pa.rt,ir:lda.r applirat.ion of da..'1sification is the
building of libraries.

There is no strict definition of cluster. bllt it is generally agrep,j that. a c1l1ster is a group of objects
whose members are more similar to ea.ch other than to the membt:'rs of any other group. Typically. the
goal of cluster analysis is to determine a set of clusters, or a clllslering, snrh that inter-cluster similarity
is low and intra-cluster similarity is high. The similarity between objects is evaluated via a numerical
measure called a dinil1liillrity inder defined as follows.

Definit.ion 1 Lei 0. h~ II ut of objl!ct~. A dis~imi1arity index 6 Oller n2 i., II flmction frnm o.xo. to R+
thllt _,lIti.,ji,., Ihl! following propl!rtie~,

(i) Va E n, 6(0,0) = 0, (7)

11

(ii) 'tI(o. 0') E 0 2,5(0,0') = 6(0'.0). (8)

Note that It di.~tance i~ a di.Bimilarity index bllt that It dinimilarify inde.T dOf.~ nnt nece~~aril!f .Hlli.'fy the
triflngle ineqllality and therefore i.~ not a di"tance.

The dissimilarity index between objects is used as the basic cri t.erion to det.ermine clusters. Clustering
techniques allow identifying not only clusters but also relationships among them. The strncture of the
set of clusters as well as t.heir internal structure vary with the clustering technique. Clustering methods
are usually classified8 according to the structure of the set of clusters produced. e.g. hierarchical, fiat.
overlapping. etc .. as well as the technique used, e.g .. divisive, agglomerative. increment.al. etc. As explained
previously, hierarchical agglomerative techniques are very convenient for bnilding browse hierarchies. The
basic principle that these techniques follow is presented below.

Hierarchical nnmerical clustering aims at b1lilding hierarchies. over a set of objects. in which each
internal node corresponds to a cluster of objects and each leaf represents an individual object., or more
precisely a singleton cluster. Most hierarchical clustering methods are based upon the same general
method. called the Hierarchical Agglomerative Cillstering (HAC) met.hod [12]. which consists of iteratively
gat.hering objects into clusters. nntil only one c\llster remains.

The HAC general method iteratively bllilds a sequence of partitions or 1",,[cl!l~tering.~ of 0, that is,
~

a sequence of rlisjoint clusters covering the original set of objects. n. The level clusterings form coarser
and coarser partitions by an iterative process, beginning with the level clustering formed by the set of
singletons in the power set p(O), i.e., {{od. {02} •.... {Oil}}' and ending lip with the coarsest partition of
O. i.e .. {O}. The final output of this clustering process is a particular form of hierarchy called a dendogram.
The HAC general method can be expressed as follows:

• Start with the subset of p(O) formed by singleton elements .

• Repeat the following steps iteratively until there is only one cluster.

- Ident.ify the two clllster~ that are the most similar .

. - Merge them together into a single cluster.

The HAC method reqllires a measure of similarity not only over the set of objects. but also over the
set of clusters. The dissimilarity index between clusters is usually derived from a user-given dissimilarity
index. 6, between objects. The way of defining ~ has a direct inflllence on I.he final form of the hierarchy
obt.ained. Once a dissimilarity index 6 between objects is providecl, HAC tn('tlt(lclS differ only by the choice
of this meMllre. The most commonly used HAC methods are I.he singlp link <l.ncl complete link methods
[22). Many other methods sllch a.<I the centroid method. Warcl's melhocl, .-1.1'" d"fine still other dis~imilarity
indices but most of them reqnire the dissimilarity index over n 1.0 he a distance, that is, t.o satisfy the
t.riangle ine'lllality. The reader should consult [13) [12] for an extensive slirvey of the HAC methods. The
t.ime complexity of the HAC algorithm is at most 0(n 2 Iogn) where n is I.he nllmber of ohject~ involved.
For some pll.rti<'ular definitions of ~, it can be reduced to O(n').

• \Vith th .. r .. c .. nt introduction o(conc .. ptua\ c1t1.terin~ [29), another di.linction h;H h n introduced according to the
d .. finition of the cluoter! obtAin .. d, in .. "tenoion (i.-., by enumeration o(it. membe"l (or re~tll&r (or ntlmerical) clustering
And in inten.ion (i by m .. mb .. r.hip rul"s) a.s II as in ""I .. n,ion (or conceptl.,,1 du.t .. rin,;

12

4.2.2 Adapt.ing a clm~t.ering t.echniqlle for building a browse hierarchy

As explained above, we propose to use a HAC technique to generate a browse hierarchy. In this perspective.
we (1) need to define a mea.'1l1re of sinlilarity between the objects considered. e.g., the documents. and (2)
explain how t.o make a browse hierarchy ont of the dendogram generated by the HAC technique. Let us
address these two points.

In information retrievaL numerous measures of sirrularity between documents. also t.ermed measures of
association or coefficients of association, have been defined. The simplest, of all is defined as:

I XnY I (9)

where X and Yare the signatures of two documents. This measure represent.s the number of common
index units. Varions other measlIres [38] have been defined such ft.'!:

2!XnFl D" ffi . IXI+P'! Ice s coe clent

1;8;:: Jaccard 's coefficient

1!~~r~!1 Salton's Cosine coefficient

(10)

(11)

(12)

They can all be considered as normalized versions of (9) since they are functions of the cardinality of ..
X, Y. X n Y, or X U Y.

In OTJr cont.ext. we have more information than just the presence or absence of index nnits in the
signature, and therefore we propose to take into account the p-values of LAs in the evaluation of the
measure of association between documents. For any signature X = {Cwo lU', p)}.]leX) is the projection set
of X over W 2 • Then. the simplest measure is I p(X) n p(Y) I. In order to take into account the resolving
power of LAs as well, we define our measure 6 for two signatures X and Y. such that X 1: Y, as

6(X.Y) = (px(w, w') + pdw. w')) (13)
(IV.IL'· lE p(X lnp(}')

where p.dw, w') is the p value of the LA (w,w') in the signatnre X. anrl similarly for Y. Note that 6 is
a measure of similarity rather than a measure of dissimilarity. Its invers., is a measure of dissimilarity as
long as /i(X. X) is set to a sufficiently large arbitrary value so that its inverse can be considered essentially
nulL

Given silch a measure of similarity between signatures. we r1efine a rneft.'lllTe of similarity between
<llIsters according to the single link or complet.e link techniques for inst.anr(' anti then lise t.he hierMchical
agglomerative clnstering algorithm in order to bllild a browse hierarrhy of snft.ware components. Let liS

note that we also made some experiments in earlier versions of Gllnll usin~ an increm"nt.al conceptual
c1l1stering technique [25J for constructing the browse hierarchy. Ilowc\'f'r, despite interesting resllits, the
cost of building a.nd maintaining the hierarchy was prohibit.ivt> (('xpon"nl,ial time like for most conceptual
clustering t.echniques) when compared to regldar clnstl'fing t.echniques ane! dirl not appear t.o be better in
terms of retrieval effectiveness.

All the HAC techniques build a binary hiera.rchy. Not all levels of I.he hiNarchy are equally significant;
t.herefore, the 115ual approach is to select manllally the most significant level clusterings. this task being
IIsually performed by a data analyst. The following proposes II. method for all tomatically identifying the
most IIseflll level clusterings, and thus producing a not-necessarily binary hierarchy.

This method of selection is based on the following principle. Each level clustering in the dendogram
corresponds to the merging of two clusters in the previous level clustering and therefore to a particular

13

-
- I I -

~ -
-
-
-

- -- -,..-c.......,
- '-

-
-

- -- -
r- I--

ill nn -
-

I I I I I I I I I I

Dendogram Select.ion of the steepest slopes Final

Figure 2: Principle of selection of level clusterings

value of the similaril.y measure. If we label the dendogram yjith these values y" I'" I YI I n being the
nllmber of objects, from the bottom to the top of the hierarchy, it can easily be shown that the Yi'S are
(non-strictly) monotonic (increasing for dissimilarity measures and decreasing for similarity measures) for
the single and complete lin k clustering methods. We propose to select those levels that correspond to the
ga.p in the distribution of Yi'S by (I) plotting the segment connecting the pairs Yi+l, Yi from i = n - 1
to j = I. and (2) keeping the levels that correspond to the steepest slopes. This represents the intllitive
method that a <lata analyst would apply. Figure 2 gives an intuitive prespntation of the method l,ia l\n
example whereas Fignre 3 gives the formal algorithm. The time complexity of the latter is linear in the
nnmber of objects.

4.3 Some examples

Portions of the browse hierarchy built from the AIX documentation are shown in Figures 4 and 5. In
Figure 4. some interesting clusters are isolated. Thus, in the fignre we have a clnster gathering commands
related to the manipulation of regular expressions, and a cluster gathering "ditors. These two clusters are
also part of the same super-cluster, mainly because these editors permit to manipulate regnlar expressions.
Then. there are two olltliers that could not be included in a clust.pr: make key and termdef. Then a small
c\nster groups ps and kill, which both are strongly related il..'1 they give informat.ion ab(lnt. processes or
handle them. Finally, there are two big clusters, one for yellow pages commands and anot.her for sees
r01)tines. The clustering is not always of s1)ch good quality as can be seen in Figure 5. either because of the
nature of the documentation or because of the principle of clustering itsdf. For instance, t.he commands
xeale and de. which both are calculators. belong to a same c1llster, bllt be ha.'1 been forgotten in this
d1\ster. This is due to the fact that the ma.nual page of be does not refer to t.he concept of calculator at all,
but defines be as an interpreter for an arithmetic language. The rea.l problem with c\lIstering is illustrated

with the third cluster in this figure, which gathers ba.tch, at. erontab, date and istat. This cluster has
b~en formed because all these commands are related to the notion of date or time; unfortunately. this is
not the main functionality of all of these commands and therefore this cluster is somehow misleading. Let

14

Let Yn' ...• Yl be the merging values of the similarity measnre from the bottom to the top.
For i = n - I to i = I· .

t::.y, = Yi+l - Yi
(evalnate the slope of the connecting segment)

EndFor
Compu te /)'y the mean of the Yi '5

Compute u the standard deviation of the Yi'S around /),Y

Let t(k) = /)'y + ku
(where t(k) corresponds to a threshold defined by k ~ 0)
For j = n - 1 to i = 1

If /),Yi > t(k)
Select. level clnstering i

EndIf
EndFor

Figure 3: Selection of level ciusterings

lIS note. however, I.hat the lower level cluster including a.t and batch is a good one.
,

The hierarchy thns generated h used as an aid to browse when nothing relevant has been retrieved
via linear retrieval, or in order to increase recaU since there is no way t.o be snre that all the relevant
components have been retrieved at the linear retrieval stage. It can also be Ilsed a.<! the basic repository to
be searched during retrieval, but we prefer to use the traditional linear ret.rieval technique instead because
it. is clearly more trnstable considering the problems described above.

By nat11re this indexing technique suffers from noise since it is based on only stat.istical observations.
Noisy indicps involve generally misspelled or unmeaningful strings of chara.t.prs t.hat are mixed with natllral
language (for rlescribing instrnctions for instance), or "side-concepts" SIKh as the time, day and month in
the I"x1l.mple .itpd above. This noise cannot be avoided when de1l.ling with free-style text.

Fortnnately. these- noisy LAs do not cause re-al trouble at the linear retrieval stage since there is a very
low probability that the user wonld use unmeaningful character strings in hN/his queries. So noisy LAs
are part of the signaturl's of components but rarely lead to the selection of the considered component.
On the othe-r hand. noisy LAs might induce the formation of poor qualit.y dllstt'TS. but generally only
higher levels of the hierarchy are affected since "side concepts" are not given much weight whf'n evaluating
similarity. Section 5.3 explains how this browsing hierarchy is used at rdrieval stage.

5 The Retrieval Stage

The previous sections explain how libraries of rellsable components are a.!!sembled. We also need to be
able to retrieve t.he components that match the requirements when at lea.'lt one exists. or to assist in the
selection of the closest components via a browsing facility.

The usual scenario when retrieving a component is the following:

• Query speciflcnt.ion: The user expresses a qllery according to the au thorized vocabulary.

15

gr<?p.1
aw k.1
lex.1
ed.1

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
sed.1
ediU

I ex .1
vi<?w.1

I vi.l
I vedit.l

makekey.l
termdeLI ~~--
ps.1
kill. I

r - - -- - - 1
L
__________________ _

ypset.l
ypbind.1
yppush.l
ypinit.l
ypwhich.l
ypxfr.l
m<tkeclbm.l
ypm<tl,ch.1
)'pcat.l
yppoll.l
ypserv.1

s<tCt.1
cdc.1
v<t\.l
rmcle!.l
delta.1
prs .1
(""mb.1
1\ n!1;et.1

Fip:lIre 4: Portion of AIX hierarchy (sinp:le link. k=O.!))

16

,...-_____________________ rliremp.1

~ ---G rnvdir.1

L - - - - - - - - - - 1'-__________________ _

.---------tL

- - - - - - - - - --~'----------

I

l
I

mkdir.1
rrndi r.t
)(eaic.l
r\ c.\
bakh.l
aU
crontab.l
rlate.l
istat.l
profiler.l
acet.pre.l
fwtmp.l
Recteon.!
1\llr1itbin.l
RlIdit.l
1\1\di lapp.)
1\lIditpr.l
"-llditselect. ,
PI n aect.i
,,-ceLl
ilcctcom.!
,,-cct.crns.l

Fignre !l: Portion of A IX hi,opuchy (~in~l,.. link. k=O.!i)

17

• Linellr ret.rieval: A search locates the candidate compon€'nt~ and t.he candidal.es are mnked ac­
cording to their degree of mftt.ch with t.he query .

• Browl'ing Cluster-ba.sed retrieval is init.iated when no ftr!equate CCl11lpOnents have b",en fOllnrl by the
linear retrie\·al.

The following explains how these thr€'e stages Me supporter! in alIT approach.

5.1 Query specification

Using uncontrolled-vocablllary indexing as we do presents clear advanfag"s at f,he query specification stage.
Indeed. a minimum of constraint. is Pllt on the user as slhe expr€'sses h"r/his query. The llser does not
have to learn a specific index language or undi"rst.and the organizat.ion I')f t.he library. S/he can express
her/his query in nat.ural Iftngllftge and then t.he indexing compon€'nt. is ftpplied in order 10 f,ntnslftte the
query in to at,tribu les nnderstanrtftbl" by the sysli"m. Exactly the sallie I.", ... h niqne is Iised for extracting LAs
from nat.nral-Iangnage q11eries as from naturftl-lftng1lage documentat.ion. This provides a very convenient
and user-friendly int.erface between the IIser and the library syst.em. be.-allse the nser is not constrained
by any rigid formalism.

The 'llleries can be expresser! in free-style nftturallangllage. How",v"r. t.h€' user mnst be aware of the
fact that qlleries are not r",ally inl.erpreted. bnt. rather con sid €'Ted a." a desnipt.ion of the fllnctionalit.y of the
desired component. For instance. the nser could express queri€'s of the form "How can I do snch and sl1ch"
since only the "such and such" wOIJld be considered for indexing. I,he rest, heing either closed-class words
or words with low ql1antity of information. Formulating a flnery t.hat necessitates some understftnding.
such a.'l a qllery inclnding negations like "but not,". wOllIn only I",ad to wrong int.erpretation. Let liS note
that it wonld be possible at this point to allow some simple interpretation of the 'lueries. by allowing for
instance the 11511al boolt:>an con n",cl.ors ("and". "or". "bn t not"). This won Id dearly boost the performance
of the lihrary system, However, sillce onr point here is to show how far \\'e ran go wit.hollt understanding
eit.h€'r t.he qlleri€'s or th", docllm",nt.~. we do not. discu~s these possible el1hal1c",ments.

5.2 Linear retrieval

Tn Clrder t.o r€'tri",ve th", hest candidates for a given 'l'JPry. we apply the IIS11ftl In. met.hod. which consi~ts of
cnnsid('ring the flllery as a document and rel.rieving the componr>nt.s in th" r"pository whose signatnre are
t.he most similar to the signat1lf'" of the (}lINy. A possihle llI"aS IIT" of silllilaril.y is I.he 5 m",asnre defined
in (13. Secl.ion 4.2.2. The most similar component.s arl;' I.hen r""nrlwd t.o t.he IISI"f. ranken in order of
der reasinl1; similarity with t.he 'l'Jt"ry. The linear ret.rieval teclini'l'lf' is IH,"Wlll."rl in Fignre n.

In case of low rec8.ll. that is. if the user is not. sat.isfied wil.h the ret.ri,,\·,·d ... al1'lidat.es. a mor€' f'lzzy search
ran be performed that also considers part.ial matching LAs. In I.hft!. case nly LAs t.hat partially match
a 'luery LA. i.f .. have on(' word in common, are considered. This significrlnt.ly increases t.h€' recall bllt as
a !.radeoW drastically decrea.~es the preci~ion. It ~hollld th"r€'for€' he liS".] only when the I1ser considers
that nothing rele\'ant 11M b€,en rl'trieved with the initial (plery. An exal11ple of linl'lI.r retri€'val is given in
Fignre 7.

In Figl1re i, t.he ranr!idates are ranked in order of rllOcrea.'ling similarit.y wit.h t.he ql1ery ("How can I
locate r€'glliar expressions in a file"). Therefore. t.he t.op candidatt>s I1sl1<tlly answer the qlJ€'ry the best.
In the example shown in Figurl;' i. all t.he candidates r€'trieved dl'al 1lI0re or less st.rongly with regular

18

Get. natural-language query from user
Index query and produce its signature Q = {(w.w', ('))
For each CJuery LA. (tv, w', (') E Q

C(w.w') {cl3p, such that (w',p,e) E A(W)}
(i.e .. identify all the components that have t.his LA in t.heir signature)

EndFor
C U{G(lL',w')}Cw,w',P)EQ
For each (' in C

Evaluate the similarit.y between the signatnre S" of c and Q as 8(Q, Sr)
(where 6 is the similarity measure defined in (1~))

Rank component~ in order of decreasing similarity.

Figllfe 6: Linear retrieval techni(plf"

Prot"Pssing Qllery:
HOIII rlln lloclltp II reglliar e:rprF.~.~in71 111 II filp
Lemmatizing sentence ...
Searching ...
regf"x.3 220.2l
rf"gf"xp.3 220.21
awk.l 77.32
grf"p.l 77.~2

find.l ~~.88

ogrep.l 28.77
regcmp.3 2K 77
dosti rst.3 22.38
dosnext.322.38

Figure 7: Example of linear retrieval

19

Processing qu~ry:
Est.a.blish a new pa.~sword.
L~mmatizing sentence ...
Searching ...
passwd.l 32.05

Linear retrieval

passwd.l

yppasswd.l

Clllst.er-ba.~~d retrieval

Figure 8: Browsing in the hierarchy

expressions. Even the I.wo Ia..,t candidates. dosfirst and dosnext, do not. answer the qllery, but are very
slight.ly related since t.hey allow locating DOS files that match a pal.t.ern.

5.3 Browsing, cluster-based retrieval

The retrieval stage in c1a.q.~icallibrary management syst.ems is often Ii mitpd 1.0 locating a sel. of components
exacl.ly m:ttching t,he IIser's query or, when such components do nol. exist.. related components. Library
systems do not. 11511n.1I), provide :tny furtht:'r a.'!sistance, whereas Illn.ny IR syst.ems do.

In Ollr approach, t.he llst:'r may communicate interactively with th~ system in order to direct the
browsing when s/he is not satisfied with the first retrieval yielrlpd. Thp Iin~n.r search retrieves the most
r",lated canrlirlates. ann t.hen the browsing process begins.

Typirally. !.he llspr starts from one of the candidates r"'trievpr] hy thp lin"n.r search and explores the
hit:'rarchy boHom-up. ronsider t.he browse hierarchy givI"n in Figurp 4 and slIppose I.hat a 11~er gives a
'lIlPry a.~king :tbollt \\·<1.Y5 "to idenl.ify a process". If the first candid:t!.p rPlri.>ved 11.1. t.h" ret.rieval search is
kill. Then. the IISN can <1.ccess the brow.'!e hienHchy. and explore I.he dll.'lt.ers inclllding kill in order to
d"t.ermine which compon~nts are ~trongly related. In onr ",xamplf'. s/h" will find ps a.~ the most related
romponf'nt. which is dt:'ariy a better candi<late for this given 'l"Ny th<1.n t.h" onp retrieved by the linear
Sf'arr::h. An(.t.hpr ,oxamplt:' is illustrated in Figllre 8. Thp two rf'levant c1tndi<lat.(,5 in AIX for the query
"t:'~tahli~h "- n~w pa..'lsworrl" a.re passlld and yppasslld. HowP\·er. th ... linpar ret.rie\·al retrie\'P~ only pasBlld
simply bpcan~e the qllery had no intersection with the signal.llr(' of yppasslld. At. this point.. the IIser
~()lllrl reformlliate the qllery, but s/he might. nol. be awarp that s/h p lliv; miss,.,\ sntne rple\·1tnl. candidat.es.
Using the browse hierarchy is therefore more convenient. in orrlpr I,n ,.hf'(·k if S('lIl1P Iln,.xp,.cV'r1 candidates
ha.ve been missed. In the example, both pasBlld and yppasBlld n.rf' st,rongly r,.];tt.,.,I: t.heir signa.t.llres share
the LA (change p(u.ulIdt, and therefore belong to the same low-I"\'el r\llst.pr in t.he browsing hierarchy.
Arowsing in the hierarchy from passild allows the IIser 10 retrie"", t.hp Qth ... r rplp\'<l.nt can<lidale. These two
pxa.mples show how a browse hierarchy can help improve the finding of possihle ,-anrlidates that could be
missed via lin .. a.r retrieva.1.

At any point, the IIser can consult the signa.tnre of a componpnt. in or<l ... r t.o have more information
aholll. its fllnct.ionali I.y. Fast access to signat 11 res is achieved yin. I.h,., sign atll r.,. rf'posi tory. The Ilser can
also provide. lI.t. a.ny stage, fllrther information in order to get a. finer rF'l.rieval. Ry browsing, s/he get.s

9Not~ thai "p wd .. h~r~ i, prop~r nllme and i. difTt'renl from Ih~ nO'ln "I"'''word'' m"nlion~d in th .. q'J~ry.

21)

Illor~ informat.ion ilbout component.s and leilrns how to pro\'ide r!iscrirnil1il.l.il1l1: qlleries.

6 Empirical Results

The approach describ€'d in the previous section~ hils been embodier! in a tool. GURU, which hns been fully
implemented, partly in VSPa.'Kal and pilrtly in C. nnder AIX. The system has r!"ached il sati~factory first
stage, and the implemented version yields quality results.

\Ve have tested onr system on the entire A IX documentation available to us, which describes approx­
imately 1. 1 00 A IX components. When hnilding the index repository, we I.h"refore processed the entire
documentation that forms a corpus of more than 800,000 words. and we identified 18,000 LAs for the
1.100 signatures.

Tn ord"r to evaluat~ GURU'S performance. we us"d the following criteria.

• USf!r effort. This consists of all the effort that must be expender! hy I,he I(ser in order 1.0 use the
library Sy!lt.em. It is impossible to formally measur~ user effort .. However. I.hanks to the uncontrolled
vocabulary approach that we applied, we believe that the effort. thaI. 1111ISt. be invest.ed for Ilsing ~

GURU is minimal. Qneries can be formliiated in natuml language, anrl th~refore thr lls~r is not
required to learn any index language and formalism.

• Maint.enance effort. This consists of all the effort that is n .. eessary to ke~p the system working
and lip 1.0 date. This ~ffort, includes, in particular, indexing new components and adding them
to the library. The maintenance stage is highly facilitated in GURU. The indexing is performed
automatically and the in!!ertion of new components can be done incrt'In"nt.ally. Kaplan and Maarek,
in [201. have proposed s('veral algorithms for incrementally IIprl1l.tinll: a r"pository of LA-ba.sed indices
whpn in!!erting, delpting or modifying components.

• Efficif'nc:y. This r ... fer!! to t.he avprage int .. rval bet,we('n t.h .. , tilTH' i1. qll('ry is issued anr! the time
an answpr is given. Efficiency becol1l1's an issue only if il ret.ri"\·11.1 t.akps so long that, users start to
romplain. O'lr experipnce with the sy!!tem shows that effici ... ncy i!! not. an issue, as t.he response
time is rpa,c;onabl ... Profiling the execlltion of th .. (plery pr0gram shower! t.hat th .. time to perform
the 'luer)' W1l.S d0minated by the time to map the reposit,ory file int.o t.h .. adriress span' of t,he 'll1ery
program. The lookllp operat,ions and t.hl' printing of thf' LA-fil(' 1111.1111' pairs consnmed almost no
time in .:ornpMison. Test <"]neries involving from 5 to If) LAs p1l.e], t.ook 1I.pproximatcly 2.5 second!!
on an RT, and 0.15 seconds on an lAM RISe System/1100n. Thp hdt.l'r pf'rformancf' of the latter is
p1l..rtly rine to its more efficient implempnt.1I..tion of file mapping.

• net.riev~l effectivene~!I. This is dearly t.hp most important pf'rf()rmal1(,p rrit.erion. It refers to t.he
system's ability to provide information !!ervi.-.. s a.'l needer! hy I.hf' IIsl'r.

The next !lection focuses on "valua.ting the retrieval effectivpn('s,q of Cl1nu.

21

6.1 Measuring Retrieval Effectiveness

6.1.1 Recall and Prpcision

The most. widely used measllres for evaluat.ing retrieval effectivenpss <tr'.' rr(,lIl1 and prrri.~inn [:32J. Recall is
defi ned as the proport.ion of re!"uan t material, i. r .. it. mf'asnres how wdl t.he considered system retrieves all
t.he relevant components. Precision is defined as the proportion of retri",ved mat.erial that. is relevant. i.e ..
it mea.<jllfes how wel1 the system retrieves only t.he relevant compon('nts. I\ecal1 can also be interpreted
a.q the pr0bability that a relevant component will be retrievf'rl. etnel precision as t.he probahility that a
retriever! component wil1 be relevant [5J.

Recall and precision can be defined more formally as follows. L",t, C he the whole collection of compo­
nents forming the library. For each qlJery. C can be partitioned into two disjoint sets. R. the sel, of relevant
mat.erial and R the set of irrelevant material. Given the qlJery, the system retrieves a set. of components
c t.hat. can also be partitioned into relevant and irrelevant mat.erial, rpspect,ive\y, r anrl T. Recall and
precision are defined as:

recall

precIsIon

r

R
r

c

(14)

(Hi)

Recall and precision measurements require the ability to distinguish between relevant and irrelevant
material. For relatively small collections such as the A IX collect.ion, it. is possible to manually determine
the set of relevant material for a given qllery.

6.1.2 Experirmmt.!'\ and Comparison

Thi~ spction dpscribes the E'xperimpnts that allow"rI lIS to eva\llat,p t.h" rt'f.rip\'al effectiveness of GURU. As
a ha.~is for (;Qmparisoll, we have considerpd INFoExF'LORER, which is an TR~I ruse System/fiOOO CD-Rom
Hypf'rt.pxt. Tnf0rI1l<tl,inn Rn.se Lihrary. TNFOF,XPLORgR is a recent, hypprtpxt. system that. givps access to the
docllmen t'! lion for A IX anrl f(}r associated prngrams. TNFOExPLOIl F:1l pr()vides 1I0t on Iy hypertext Ii n ks
bet.wpen pie-ces of the ,\ IX rlocllmt;>nt,ation, bllt. also search and rpt.ri,,\''!l f".rilitit;>s bas€'rl on state-of-the-art.
In ter:hnirjlles. Qlleri"s ('an be expressed a.'! single word search nr 1Il1l1t.iple word compollnd search wit.h
no control of vorahnlary. The compollnd ,,('arch, which is t.h" most. plahnr<l.t,erl, <l.l1ows the lIscr to express
a fJllery a.<j a word pattern formed of single worrls relat.ed hy tIH"" possihl" rnnnl'rt.ors. "<l.nd'·, ·'or". and
·'blltnor'. MorNwer, the Ilser can restrict t.he search. Slh p can ~i\"> ,·nnsl,r<l.inls sp"cifying if t.he pattern
w0Tds mllst appell.r within the same artid" or within thp sam" petrRgr~ph, t.h" proximit,y of t.hese words
within a paragraph, a.nd the search fields and t.h" st;>arch ("at.('~nri"s.

\Vhen gi\'en such a query. INFOExPI.ormH retllrns a list 0f (""nrlidal.f's lit at, exact.ly fit. thf' qllf'ry,
ranked according to the freqllency of the pattern in the considl'rl'rj rlo("llmpnt.. No signal,llfe is built
for the docflm"nts ... xamined: all words appearing in the text ar(' rnnsid"red dllring search. Therefore.
INFoEXf'LC'fH':R can be- expected to have a a milch higher recall hilt lower prl'cision than GURU. We
d('l not need to also compll.re efficiency, i.~ .. retrieval speed. GlIAl) is, indept:'ndt:'ntly of implementation.
milch fa..,ter t,han INFOExPLOIlER since it does not explore the ent.ire text.llal rlataba.'le bllt. a mIlch smaller
repository formed by the signat.ures.

INFOExPLORER is thus a quite sophisticateo IR tool that reprl'sents a good referencl' for comparison
purposes since it is specifically for AIX. Also, INFOExPLORER encodes a great. deal of mannally-provided

22

information ahou t the st.rllctllre of I. he docu meni.fl.tion. Thf' ~yst,em h fl.S t,o kllow aboll t. paragraphs, I.i tles,
etc., and I.hll~ has been much more ('xpensive to hllild than GIJRU. Providing this st.rllct.lIral information
1.0 OIIT syst.em wOlJld grf'atly enhance its performance, bllt Ollr point I"'r,, is to show that ",\'en wit.hout
s11ch information, our system can perform nicely t.hanks to its indexing srh{'me.

GURU ancl TNFOEXPLOI1ER were compared for retrieval effect.iveness. In order 1.0 claim this t.est 1.0 be
valid, w{' \TIlIst fulfill t.he 1\811al test. procednre reCJnirements [32J. These rf''ll1irement.s are for

1. lhe q1\eries to be used for test purposes mnst be user search requests act.IHl.l1y submit.ted and processed
by hol.h systems:

2. the tpsl, collect.ion must consist. of docnments originally incl'ldpd in t.h", library. chos",n in 911Ch a way
that any advance kn0wledge concerning the retrievability of any giv(,1l component. by pither syst.em
is effectively ignor{'cl; and

3. the nllmber of components cnnsid",red 1.0 he retrieved by t.he t.wn sysl.ems m1\st. be sllbject 1.0 the

sam" CII toff.

To fulfill t.he first reCJnirement., we have conducted a snrw'y among th", graduate stlldents in the De­
part.ment of Comp'lt.cr Science at. Columbia Univ{'rgity in NO\'cmbpr 1 !)8~. This slIrvey provided liS with a
collect.ion of typical q'lerips on UNiX-like systems, as formlllal.ed by lINl'C IIs('rs ranging from naive nsers to
expert programm{'rs. A typical qlJ('ry was expressed as a natnral~langllage srntence with an average of 3.7
open cIa'! .. words per (}'Iery. describing a desired fl1nctionality. This kind ()f flllery could directly be fed to
GURU but not t.0 INFOEXPLOFIER. since the latter's compound search facility accepts only boolean qneries.
Th",refore, f",eding thf' qlleries t.o TNFOExPLOHER required some snpplf'll1l"nt.ary effort, first choosing t.he
right connecl.ors b<:'t.ween op<:'n-class words <:,xtracted from the ql1eries, and possibly dropping some words
wh",n the recall wac; too low. Tn OIIT interaction with the compollnd "I"arch facility, we had to refine and
retry I.h", q'lery formldation several t.imes. We kept only the besl. reslIll. for comparison pllrposes, since
we want.ed tl') rompare the tools' indexing seh'el1l!'s rather than th"ir 'lll('rying facilit.ies. GUI1U's qnerying
fa.cility r ... rI'Iirec; less lIsl"r effort. than TNFOExPLOIlER's, but the laUer's rOldd he great.ly improved if it did
nnt r('qnirl" perf",<:t rnatrh",s betw<:'en the hoolean qllery and lh", candid a I..,.s , lIsing a similarity measure
hel.ween randitiatp ancl111ery, for instance. The average nllmber of open-rlass worcls IIS{,O for fluI"sti()ning
TNFOExPLOREI1 was ~,

As far a'l the spcond r<:'CJuirf'ment is concerned. the coll{'ct.ion ('nnsiderf'd f0r test. has been t.he entire
A IX lihrary. We consldteci with several AIX experts at IBM in ordpr 1.0 d('I.f'rmine for each qll",ry the set of
I'xisting rf"\I'\'ant components in the AIX library 'In as to h{' ahle I.n p"alna!.f' I.hl' r{'call and pre,ision. As ollr
I.est collection was comp0sed of ab011t I iOO cornp0nents, w{' sl'I('r!.pd ~o ()III'ril'q from arnon!/: n.ll the CJ1Jl"ries
provider! by nllT survey, This rat.io corrpsponci!l t.n till" Sl'l.lJl" 1lIIIl1hl'r-,~f-'l'Il'ril'q pr·r Illlrnb"'r-nf-clocnm{'nts
ratio a.q thl" one that ha.'! been IIs{'d in standard test sets Sllrh ;t,q ~1Er' (·n\lf"rl.i n l1 0f m",iicn.1 ahsl.racts,
:lO qll/'ri/'s for 1033 docnments) or (.'15(10 (information sci{'n,(' ahslmrts, :l!'i q'l('ries for 1,1(in information

it bstracts).

As far a..~ t.he third reCJl1irem{'nt is concerllPd, since hoth !'lyst.{,ln'l nllI h·d t.hp retrieved cl'l.ndidat.e!'1, we

w<:'r{' ahl{' to compare rl',a1l and precision at the 'lame ranks.

The r0mparison was performecl by measlI rinll;. for both systems, pr('risjnn at sev"ral ievpls of re'all.
We fo1lowerl the 11<;llal procedur" n~J, [32J, which consists of

23

1. plotf.ing precision-rec1l.11 Cllrves for e1l.ch te~t qnery with e1l.ch plol, corresponding t.o 11. given cutoff
value,

2. extntpolating these cnrves ~o as to obtain precision values for r",call v<tliles t.hat were nol. effectively
achieverl. ;,.nd fin1l.lIy.

3. deriving from the Cllrves compllted in stage (2) the average pff'cision \"ailles at fixed rec1t11 intervals.
so as to obtain a single average precision recall cllrve for the i'lystem cOllsidered.

We have bllilt such cIJrves for both GURT) and INFOExPLORER and plott.ed them on the same axes (See
Figure 9). The best performance is reached by the system whose curve is dosest. to the area where both
precision and recall are maximized. the Ilpper right corner of the graph. As ment.ioned, becan'll" of the
indexing scheme of both systems. we cOllld expect that INFOExPLORER wOldd achieve a lower precision
bllt higher recall than CUllT). It turned out that the maximum recall, all ranks inclllded. achieved by
both systems W'IS approximat.ely t.he same, around 88% on the average. bllt. from t.he graph presented in
Figllre 9. it is dear that. GlIRU had 15%. on the average. better precision than JNFOExPLORER. In other
words. GIJRU achieves a higher precision withol)t losing in recall. This is 1110re than satisfact.ory.

These reslIlts clearly prove that we have achieved high precision withollt. losing recall. The recall rate
is signifkantly increased whf'n we make II'll" of the GURU browsing facilit.y. For inst.ance, in several cases
some rdaten componl?'nts were not, retrieved during linear retrieval, hnt ,.,nly nnring browsin!1;, '-

The reslI]t.s of this evaluation shonld not be seen as the final definiti\'e r('sllll.s, bill, only as an indicator
of whal can be expecl.N\ from a flllly operational GURU system. lJowevI'r. ev"n introspective experiments
slIch as those described in t.his sect,ion are slIffici"nl. to confirm the advant.;"ges of an LA-based indexing
scheme. Our LA-ha.ql'n indexing scheme makes the indexing langnagl' I'xh;"llslive as well a.q specific and
t.hlls ensures good ret.rieval p('rf0rmance. The experimental results confirl11t.'d the expectations an can be
considered as ('11 eon ragements t.O PI) rSlle research in the direction pn rSlled in this paper.

7 Conclusion

We have pr('spnted a l11t>thod for automatically constrncting softwflre libraries from a collection of docu­
ml'nted bllt Ilnindt>xed software components. We discussed the advantages of nsing natural-language doc­
umentation 1\..5 opposen to sonrce code. ass1lming any documentat.ion is availahle. a.q a sonrce of functional
information. We then described a new fr.,e-text indexing schem(', for allt.ol11ati<:-ally producing document
signatnr.,s. ba.qed IIpon a rich.,r IIlIit than single terms, the lexical affinity. All associated software com­
pon ... nts cOIJ\d then be classified, storer!. c,.,mpar",d and retrievpn, \·in. lil1P;"r "'r r1nstpr-ba.~en terhniqnes,
accorr!ing to these indices.

These mpl.hods and schemes are p.mbor!i('d in a new tool which ha.c; hl'pn illlplpl111'nt('n ann pvaltlat('d
for retrie\'al eff('ctiveness. The evaluation compared GURU wit.h 1.\11' INFoF,xrr,OREll hypNl,ext library,
huilt specifically to help find software components in the Alx syst.em. Thp aVNage r('call-prpcision cluves
of hoth tools werp compllted. The results ()f t.his t.,st indicatl' t.hat. Gllrlll's p..,rforlllance wa.q bet.ter t.han
INFOExPLOIlER. This rl'slJit is vl'ry enco'Haging since INFoExrLollEIl \\';"5 mllrh more expensive to build
and specifically lailor ... rl 1.0 t.h .. A IX library.

The major contribution of this work consist,~ of bringing c1a.qsical and lIew information rrt.rieval tech­
niqlles to hear in ~oflwarl' rl'llse. This involv('d:

• Dl'signing a new indexinp; scheme based on high informatioll c"'ntl'nt. I .. xical affinities.

24

I Recall I GURU precision I INFO precision I Improvement

0.1 0.8f) 0.7 15%
0.3 0.84 0.68 15%
0.5 0.76 0.56 20%
0.7 0.58 0.4 18%
0.9 0.52 0.39 13%

Precision

1.0

0.:)
GUlli!

INFOExPLOR8R

0.5 1.0 Rentll

25

• Adapting classical numerical c:lnsto"r analysis t.echniqlll"s for asso"mhling software r()mponents into
browse hierarchies .

• Designing retrieval mechanisms specifically adapted to the LA-ha.<;ed indf>xing scheme so as to provide
a ("omplete storage and retrieval framework.

Finally, the evaluation we have performed seems to indicate that, Salton's st,atement abont the limitation

of the "ph rase generation" approach in indexing (See Section 3.1) is overly pessimistic and that sip;nificant
improvements over single terms techniques can be achieved at rdatively low cost.

Acknowledglnents

Y. ~1aarek performer! part of this work while at. the Technion. Departl11('nt of Compnter Science, Haifa,
Israel, partly supported by a Gutwirth Fellowship. G. Kaiser is slIppor t,ed by National Science Fonndation
grants CDA-8920080. CC'R-8858029 and CCR-8802741. by grants from "T.~T, BNR, Citicorp. DEC. 181\1.
Siemf>ns. 81Jn and Xe-rox. by the Center for Advanced Technology and by t.he C",nt",r for Telecommunica­
tions Hesear,h.
We wOldd like to t.hank i\fark Kennedy who helped a lot in t.he design ,\,11(1 implementation of GUflU's \.
retrieval component.

References

III M. Adanson. lfi.~loirr Nlllur~1I1! dll Sinegll/. C(lquillagn. AllfC la rrill/inn Ilhrlgef d"1n 1I0yage jllil en
a PIl!/~, ppndllnt 10 annepj 17.{.Q.50,51 Ji2 et .5.'J. Bauche, P1lfis. France, .1757.

[2] B.P. Allen and s.n. Le",. A knowledge-based environment for th", r\('\'''']oprnt:'nt of software parts
composit.ion sy~teJm. In P,·occf'dillg .• of th,. I[th lCSE, pagl's 104-112. Pittsbnrgh. PA. I\fay }989.

[~I S. P. A rnold and S. L. StepowilY. The rense system: Ciltalogi ng and rdrieval of rellsable software.
In W. Tracz, edil,or, .)oj/WIlI·" Rnut!: Emerging Techno/"9!I, pages 1:l~-141. Compnter Society Press,
19~7.

[,1] n. Ash. llljormllti(ln The(lry. Inler~cience Pllblishers (.John Wiley .~. Sons). New York. 1965.

I::;] D.C. Blilir and M.E. Maron. An evaillation of retrieval elfecti\'elll'ss for a fldl-I.ext dO(,llment retrieval

sys!'t:'m. C(lmmunicnlionJ oj th~ ACM. 28(:-\):289-299, ~"l.r('h 19~!l.

[fi] B.A. BlIrton, R. Wienk Arilgon, S.A. Rilil .. y, I<.D. Koelher. anti L.A. t\fayes. The rPllsable software
library. Tn W. Tracz, editor, Sojtu'arF Re'lu: Emerging Tl'rhn%g!l. pilgeS 129-137. Computer Society
Press, 1987.

[71 F. Can and E.A. Ozkarahan. A clustering scheme. Tn r,'()(rrdill.'l.~ "j SIr./R'fI.? pages 11!l-121.
Beth .. sda, ~ID, .hne 1983. ACM Press.

[8] F. de Sil.ussure. (,'"ur .• de l,ill.IJ'li.,tiqlu Generale, Q"airi;mf' Edi/ion. Lihrairie Payot. Paris, Fril.nce,
1949.

[91 S. Deerwester. S.T. Dumais, G.W. Furnas. T.K. Landaller. anrl R. lIilrshman. Indexing by latent
semantic analysis . .Journal nj the Aml'rirlln Socidy j(lr lnj"nntl/ioll Sri~IICI', 41(0}:391-407. 1990.

26

(I 0] P. [)evltnhll. fle'I)Re ()f software knowledge: A progress report. In Thi"r! A"nllal Work.~hl)p: Method.,
and Tool.~ for Reu.~e. Syracuse. NY .. June 1990.

[11] P. Devanhll, P.G. S€'Ifridge. R.W. Ballard, and R . .1. Brachman. A knowlp<ige.baserl softwa.re informa-
tion sy~t.em. In Prorredings of lJGAJ'8.Q. pages 110-115. Det.roit, t\H, Augnst. 1989.

[121 E. Diday, .J. Lemaire. and F. Testu. Elements d'Analyse des Donn/n. Dnllod, Paris. Fritnce, 1982.

[13J R. Everitt. Glu<~ter Analyjis. Halsted Press (.John Wiley & Sons), New York, 1980.

[14] W.B. Frakes and P.B. Gandel. Classification, storage and retrieval of rel1sable components. In N.J.
Belkin and C.J. van Hijsbergen, editors. Proceedings oj SIGIR '89. pages 251-254. Cambridge, [o.IA,
.Tllne 1989. AC~1 Press.

[15J W.B. Frakes and B.A. Nejmeh. Soft.ware reuse through information retrieval. In Procudingj of the
!lOth Annlwl HIGSS, pages 530-535, Kona, HI. .January 1987.

[16J A. Griffit.hs, L.A. Hobinson, and P. Willett. Hierarchical agglomer'l.live c1nstering methods for al1to­
m'l.f.ic document da..<;silication . ./o!lrnal nJ Documentation, 40(3):175-205, Sept.ember 1984.

[17J W. Harrison. A program development environment for programming hy r,,1i nement and reuse. In
Procf(dillg,~ of the 19th HIGSS, pages 459-469. Kona. HI. 1986. CS Press.

[18J T. lchikawa and ~1. Hirakawa. Ares: A relational databa..<;e with t.he ('apabilit.y of performing flexible
interpret.ittion of qneries. IEEE Tran~aclion.~ of Snftware Engineerill,q. 12(5):fi21-634, l\1a.y 1986.

[19J N. Jardine and C . .J. van Rijsbergen. The use of hierarchic cl1J~t€'ring in information retrieval. !nJor­
rna/ion Slornge lI"d Rdriel'al, 7(5):217-240, December 1971.

[20] S.M. Kaplan and Y.S. Maarek. Incremental· maintenance of sema.ntic links in dynamica.lly changing
hypertext syst"ms. !nt,racting with Gomputer<~, December 1990. In pres.~.

[21] P.II. Klingbiel. t\litchine·aided indexing of technical literat.ure. ["fonnatiflll Storage lind RctrieIJal.
9:79-84,1973.

[22J G.N. Lance and W.T. Williams. A general theory of classificatory sorting strategies. ComplJler
./0 IJ rn III. 9:373-380, 1967.

[23J M. Luhn. The automatic creation of literatllre abstracts. lRM ./ournlll (If Re.<l'arch and D,,,eloprnent.
2(2):159-1fi5, April 1958.

124J Y.S. Mauek. Using Sirlu/ural Information for Mllnaging I'n'y !,al'g' Soft!l'arr S!I<'i(rn.~. PhD thesis.
Technion. Israel Institute of Technology, Haifa, Israel. Janlla.ry 1989.

[25J Y.S. Maarek. An incremenlitl concept.nal clustering algorithm with inp'lt.-ord"ring biM ('orrection. Tn
M.e. Golumbic, editor, Alil/anr,.., in Artificial IntdligEnrr, NfJ/llral !,a"gllag/! and Knlll/.ledge Base
Sy"tl'I1l<~. Springer Verlag. 1990.

[2fi] Y.S. MMrpk and G.K Kaiser. On the nsf' f)f conc"ptllal c\1lsl"ring for r1n..'lsifying reusable ada code.
In Ada [,,.//,.r.~, U,~illg Ada: A eM "IGAda International Cn Iljr rr 11 rr, pages 208-215, Rost.on. MA,
December 1987. ACr-.f Press.

127J V.S. Maarek and F.A. Smadja. Full t"xt indexing based on lexical r"lal,ions. an application: Software
libraries. In N.J. Belkin and CoOL van Rijsbergen, editors, l"'ocwfillg,~ nf S[GIR '89. pitges 198-206,
Cambridge. MA, June 1989. AeM Press.

27

[28] \V.J.R Martin. B.P.F. AI, and p .. Le. vrtn Sterkenburg. On the prncesRing of 11. text corpus: From
textllal data to lexicographic information. In R.R.K. Hartmann, f'c1it()r. [,p.ricngraphi!l: Princip{e.~ and
Practice. London. 1983. Applied Langl1a.ge Stlldies Series. ACivkmic Press.

[29] R. Michalski and R. Stepp. Antomated con~tructions of classifications: Conceptual clusterinp; verSllS
nnmerical taxonomy. IEEE Transactions on Pattern Analysis and Machinp. Inlf{{igenc~. 5(4):396-409,
July 1983.

[30] R. Prieto Diaz and P. Freeman. Classifying software for reusability. IEEE SoJtware, 4(1):6-16, January
1987.

[31J G. Salton. Alltomatic text processing. the traluJnrmation. ana{ysi.~ and retrierral oj inJormation h.lI
computer. Addison-Wesley. Rell.ding, MA, 1989.

[32] G. Salton and M.J. McGill. Introduction to Modern InJormation Rf.friellal. C()mpnter Series. McGraw­
Hill, New York. 1983.

[33J G. Salton and M. Smith. On the application of syntactic methodologies in automat.ic text analysis.
In Proceeding" oj SIGIR '89. pages 137-150, Crtmbridge. MA .. June 1989. AC1\f Press.

[34] R. W. Schwanke. R.Z. A ltncher, and 1\1.A. Platoff. Discovering, vis1lalizing and controllling software
structure. In Proceedings oj the FiJth Inlentational Wor.bhop 011 SoJt!I'fI1'r Sl'tcification~ and Design,
pages 147-150, Pittsb1lfgh, PA, f\·fay 1989.

[35] F.A. Smadja. Lexical co-occurrence: The missing link . .Jo!tl'lJal oj thr As.~ociation Jor Literary and
Ling!tis/ie Comp'tting. OxJord Uniflers;t!! PreH, 4(3), 1989.

[36] K. Sparck .Jones and .J.r. Tai t. AlI tomatic search variant generat.ion . .Journal oj Documentali" n,
40(1):50-66, f\1arch 1984.

[37J W.F. Tichy, R.L. Adams, and L. Holter. NLH/E: A nfttural-Iangllage help ~ystE'm. In Prnceedings oj
the 11th leSE. pages 364-374, Pittsburgh, PA, r..fay 1989.

[38] C .. J. v'tn Rijsbergen. InJnrmalioll Retrie!,al. But.terwort.hs, second f'dit,ion. 1079.

[:19J l\.f. Wood and 1. Sommerville. An information retrieval syst,pm for software components. SIGrR
Font 111, 22(3,4):11-2!1, Spring/Summer 1988.

28

An Information Retrieval Approach for

Automatically Constructing Software Libraries

Yoelle s. Maarek

IBIvI Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

yoelle@ibm.com

Daniel M. Berry

Technion, Israel Institute of Technology

Computer Science Department

Haua, 32000, Israel

d berrY@techsel. bi tnet

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

kaiser@cs.columbia.edu

September 1990

CU CS-049-90

@1990 YoeIle S. Maarek, Daniel M. Berry and Gail E. Kaiser.

1

An lnformation Retrieval Approach for Automatically
Construct.ing Software Libraries

YOEHle S. Maarek
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

yoelle@ibm.com

Daniel M. Berry
Technion, Israel Institute of Technc

Computer Science Department
Haifa, 32000, Israel

dberry@techsel.bitnet

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

kaiser@cs.columbia.edu

Abstract

Although software reuse presents clear advantages for programmer productivity and code reliabilit;
it is not practiced enough. One of the reasons for the only moderate success of reuse is the lac
of software libr:uies that facilitate the actual locating and understanding of reusable component!
This pap .. r d .. ~cribes a technology for automatically Msembling Illrge ~oftware libraries that promot
software rense by helping the Iiser locate the components closest to h .. r/his needs.

Softwar .. libraries are automatically Msembled from a set of Ilnorganiz!'o components by usin
information r .. trieval techniques. The constrllction of the library is clone in two steps. First, attributE'
U" a'itomatically p.xtracted from natural language documentation by "sing a new indexing scherr
bl\..~"cl on the notions of lexical affinities and quantity of information. Th"n, a hi"rarchy for browsin
i~ alltomatically generatecl u~ing Ii ci'Jstering techniq'Je that draws only nn the information provide
by the attributf's. Thanks to the fre,,·I.f'xt indexing scheme, tools following thi~ approach can accer
free.style natllral language '1ueri!".

Thi~ technology h<\.S been implf'mented in the GURU systl'm, whirh h~s h"l'n applied to constrll'
an organized library of A/x IItilities. An expf'riment W<\.S cond"df'd in nrrl .. r 1.0 evaluate the r!'triev:
effectiv .. ness of GURU !I.S compared to INFO EXPLORER a hypert .. xt lihrary syst .. m for A/x :l on t.he \B~
Rise System/6000 series. We followed the usual evahlation pro"rrlllrr II~ .. d in information rrtrieva
b;t.~ecl 'Ipon recall and precision meMllres, and d"t~rminecl that. Ollr 5y,l.rl11 p .. rforms l~% het.t"r on
random test set, while being mnch less f'xpen~ive to build than INFoF:XI'/,ORF.R.

Index Term!!: a.utomatic indexing, CilJ5tering, informa.tion retri .. val, I"xit-al affinities, ~oftware I
brari!':!, 50ftwace CE'USf'.

1 Introduction

Softwar~ r~llse is widely believed to be a promising means for improving .~oftware productivity and r~lia­
bilit.y [14], and t.herefore is an issue of growing interest in software engineering. Unfortnnately, not enough
tldeqlJate libraries of reusable software components are available. By adequate. we mean that the library:

• provides a suffici~nt number of components, over a spectrum of domains, that can be reused as is
(hltlck·6oz rellse) or easily adapted (white-hox reuse), and

• is organized such that existing code closest to the users' needs is easy to locate. In particular, the
library should provide mechanisms to help the reuser look for "functionally close" components that
meet some given requirements.

This paper is concerned with the second adequacy issue, and more generally with library systems that
provide means for representing, storing and retrieving reusable components.

The first stage in building a library consists of indtxing the objects to be stored in it., that is, producing
a set of characterizing attribntes, or 3ignature, for each of these objects. The signature for each object
represents the rensable object. Therefore, the quality of indexing is crucial to the quality of the library. ,
Functionalit.y is an important aspect of software components. Thus, it is necessary to include conceptual
information about fnnctionality in the indices. Unfortunately, conceptual information is difficult to obtain.
Few programmers provide concept.ual indices for their code. Moreover, even if provided, they can hardly
be expressed nnder a common formalism since pieces of code typically originate from multiple sources. One
solution is to manually index software components a p03teriori according to a given classifying scheme,
bu t this task is both arbi trary and tedious.

As an alternative, we propose to automatically identify indices by analyzing the natural-Iang1lage
docnmentation. in the form of manual pages or comments, usually associated with the code. Natural­
lang'lasse documentation is clearly a rich source of conceptual information. However, this information is
cf)ntained only implicitly, in an Ilnstructured way, and is not usable as SItch. In order to extract usable
informil.tion from free-st.yle documentation, we propose to use information retrieval techniques. Once the
indices hav~ been produced, components can be automatically classified. stored and retrieved according
to their ."ignatures.

The classifying stage in the construction of a library consists of gathering objects into classes such
I.hat the members of the same class share some set of properties. The basic motivation for classifying is
t.o fil.cilitate browsing among similar components in order to ident.ify the best candidates for reuse. So
that, d1\ring retrieval, a set of potentially adaptable components can he easily located. Browsing is mor~
important for software libraries than for other kind of libraries, since t.h('re rarely exists a component
perfectly matching a. user's query. Moreover, local browsing allow~ the user to discover unanticipated
opportuni ties for reuse.

We have designed and implemented a. tool, GURU, that embodies the above approach. GURU aut.o­
matically assembles conceptually structured software libraries from a set of Iinindexed and unorganized
software components. In the first stage, GURU extracts the indices from the natural language documenta­
tion associated with the software components to be stored, by using a new indexing scheme. This indexing
scheme is based on lexical affinities a.nd on their sta.tistical distriblltion. It identifies a set of attributes
for each document to represent a. functional description of the associated software unit. In the second
stage, GURU assembles the indexed objects into a. browsing hierarchy by using a hierarchical clustering
technique that draws information exclusively from the indices identified in the previous stage. Thus, GURU

2

Sllpports both dassicallinear retrieval. in which candidates a.re ranked according to a numerical measure
that evalua.tes how well they answer the query, and cluster-based retrieval in which the browse hierarchy
directs t.he search for the best candidate.

Section 2 briefly <:ompares the artificial intelligence and information retrieval approaches to constrllction
of software libraries and explains why we follow an IR approach. Section 3 describes the indexing method.
Section 4 presents the classification approach and the clustering technique u~ed for assembling the library.
Section 5 deals with the retrieval stage. Section 6 gives results Ilsing ollr GURU implementation and a formal
evaluation based on Ilsllal methodology for evaluating information retrieval systems. Finally, Section 7
';11 mmarizes t.he main contribu tions of this work. Related work is disclIssed as relevant througholl t the
paper.

2 AI vs IR approach

Previous efforts for building rellse systems can be roughly classified into two groups according to the
approach adopted. the information retrieval (IR) approach or the artificial intelligence (AI) approach.

The IR approach consists of drawing information only from the strllctllre of some documents that
provide information on t.he software components. No semantic knowledge is used and no interpretation ~

of the document is given: the reuse tool attempts to characterb~e the docnment rather than understand
it. There are currently very few software library systems that follow an IR approach. or use existing
IR techniques. Among them, the RSL system. [6] for instance, automatically scans source code files and
extracts comments explicitly labeled for reuse wi th attributes such as keyword, au thor, date created, etc.
The keyword attribute provides a list of free-text single-term indices very much like those used in IR
tools. The REUSE system [3] provides a menu-driven front end to an information retrieval system, thus
all kind of software objects (inclllding user menns and system thesanri) are stored as textual documents.
Th'ls. the two previous systems use some kind of IR related technic-pIe. however the only system. to our
knowledge, that applies a p"re IR approach' is the system propose'; by Frakes and Nejmeh [15]. They
lIse the CATALOG information retrieval system for storing and retrieving C software components. Each
component is charadp.rized by a 'let of single-term indices that are 1I.1lt.omatically extracted from the
natural-langllage headers of C programs. Therefore, the construction of the C components repository is
done an tomatically, and does not require any pre-encoded knowl",dge as in RSL for instance.

In contr'l-~t, in the AI approach. the re'lse tool aims at lIndersl.anding the l'\'leries and the functionality
of components before providing an answer. AI-based systems are often ~marter t.han IR systems. Some
of I.hem are context sensitive a.nd can gener1l.te answers adapted to th", IISN'S ",xpertise. As a tr1l.deoff,
they reqnire some domain analysis and a great deal of pre-encodpd sI"mant.i(" information, which is nSl\ally
provided mannally. They are ba..,ed upon 11. knowledge ba..,~ that st.ore'! sPl11antic inform1l.tion 1I.hOIlt the
domain and abollt the lang'lage itself in ca..'!!" of a natural.lang1lage inlprfar.e. The m1l.in problem of applying
this approach in the context of software libraries is that many domain'! cann"t b~ easily circnmscribed and
the domain analysis is very difficult [10]. This makes the constrllction of slIch systems very tedious and
expensive. Examples of AI or knowledge-based reuse tools are nl1meron~, ~.g .. [30], [39], [2], [II], [37].

The AI 1I.pproach ca.n be I1seful in some applications. However. we prefer the IR approach for reasons
of

• cost: the library system is built entirely au tomatically,

• transportability: the library system can be rebuilt for any domain since it does require manually

3

provided domain knowledge,

• scalability: the repository can be easily updated when new components are inserted, either by re­
compiling the indices or by applying incremental techniques, the indexing task is entirely mechanical.

We therefore propose to apply a pure IR approach, in the same direction of research as Frakes and
Nejmeh, by automatically b'Iilding free-text indices that characterize software components. We also pro­
pose to lIse an indexing scheme richer than the single-term indexing used in the IR-based tools described
in this section so as to achieve a better retrieval effectiveness. The following section explains OIl! sOllrce
of information and how the indexing is performed.

3 The Indexing Stage

The major advantage of a.utomatic indexing over manual indexing, besides t.he obvious cost considerations,
is that it allows a Ilnified scheme, insuring that indices will be compatible with each other. The idea is
to extract attriblltes from an existing source of information, i.e., the code and the natural-language
doclimenta.tion. Some work has been done towards extraction of primitive fllndional informa.tion from the
code [261. [341. however, the richer sonrce of functional information is the natural-Iangua.ge documentation,
assuming any is available.

An examinat.ion of nllmerous samples of code allowed us to reach the conclnsion that some l1seful
information Can be extracted from programs written in a high-level langllage using good programming
style. whereas little conceptual information can be found in typical real-world code chosen at random
[24J. Unfortllnat.ely, even when dealing with well-written code, there is a very low probability that the
programming styles of the variolls pieces of code will be consistent. Even a. single programmer may
use totally different identifiers for expressing the same concept from one day to another. Since software
component.s come from multiple sources in the context of large software libraries. extracting a&tributes
from code would necessitate as many indexing schemes as there are code sonrces. Another limitation
comes from t.he fact that there are many more possibilities for identifiers than for natural-language words
since they do not follow any morphological or syntactic rules.

In other words. when there is no way to guarantee good, and let alone consistent and compatible,
programming styles. extracting attributes from raw code does not give significant results. Therefore, we
prefer concentrating on the other possible source of information. i.e., the natnral-Ianguage documentation
either inserted into the code, i.e., the comments, or associa.ted with the t:ock ~.g .• manual pages.

Comments are intended to help programmers understand the t:ode and thlls may provide functional
information. They de&! with specific parts of the code into which thpy ar". in~erted, and they may give
information on variou!! parts at variolls levels of abstraction. Extracti nil: fll nctional in formation from
comments entails two activities,

• defining an indexing scheme that allows extracting attribllte~ from natllral langllage phrases or
sentences, and

• relating comments to the portion of code they concern.

The second activity is very complex in free-style code. Indeed, in free-style programming, programmers
can insert comments wherever, and in any format and a.ny length, they wish. Althollgh comments usually
describe the containing routine or the one just below, in general it is impossible to automatically determine

4

what part of the code is covered. A solution wOllld be to consider that all the comments inserted in aspecifi.c
piece of code constitute a global natural-Iangllage description of the con~ider!!d code. Unfortllnately, this is
not. the case. Comments rank from low-level implementation details to high-level description. For in~tance,
in the rm. c source file in Berkeley UNIX. one can find comments as varions a.q:

I. curr~nt pointer to end ot path .1. or
I. rm - tor ReMoving files, directories t trees. *1

The first conveys no Tlseful functional information while the second hits the mark exactly. In general, there
are many more low level, and Ilseless for our purpose, comments than high level ones. and there is no way
to automatically distinguish between them. Therefore, so long as no style is enforced, it is very difficult
to extract useful information from comments.

Let us not.e, however, t.hat any piece of natural language, from comments inserted in the code to
design specifica.tions, which is specifically related to software code and whose level of abstraction is known
can bring useful information. Thus, we are currently working on extracting fllnctional information from
comments in the framework of RPDE [17], a structured software development environment, in which
comments are linked to the portion of code they describe. In the following, though, we try to remain as
general as possible. and we do not assume that any commenting style is enforced. Therefore, although Ollr
indexing scheme is applicable to any piece of natural-language that brings some functional information,

~
we will p.xemplify it through the analysis of manllal pages clearly related to reusable components, such as
UNIX-like manllal pages.

In the rest of this paper, the Alx documentation is taken as onr corpllS since it fulfills the requirement
of being structured into manllal pages. Moreover the AIX docllmentation can be seen as a regular real­
world documenta.tion database since it is of average quality as far as commenting style is concerned. Many
even consider the AIX documentation of poor quality when compared to Berkeley UNIX documentation
due to typos,inconsislent style, poor vocablliary, etc.

3.1 A Richer Indexing Unit: the Lexical Affinity

Th~re has been milch work in IR dealing with natural-language text, a large variety of techniques have
been devised for indexing, classifying and retrieving documents [31]. One of the main concerns in IR is the
all tomatic indexing of docn ments, which consists of producing for each docll ment a set of indices that form
a .• ignatllrt: of the docllment. A signature is a short-form description of a docnment, ea-'!ier to manipulate
than the entire document, which plays the role of a surrogate at the retrieval stage.

Several isslles need to be addressed when indexing a docllment with rf>sp"cl to the natllre and the form
of the produced indices. More precisely, the indexing vocab1\lary can be cith"r controlled or nncontrolled.
In the controlled voca.bulary approach only 8. restricted set of indices are a1lthorized (~.g .. in MEDLARS

[:32]), whereas in the uncontrolled vocabulary, or free text, approach. there i3 no con3traint on the nature
of the indices. It has been shown that both approaches are comparable in terms of performance, [14].
[32], however we prefer the !lncontrolled vocabulary approach in the context of software reuse, for the
~ame reasons of C03t. portability and scalability. Indeed, defining an adef'l!late controlled vocabulary is
a manual, domain-dependent task and. therefore, suffers from the 3ame drawbacks as the encoding of a
knowledge- base.

Another important issue in automatic indexing deals with the nature of the indices. The most usual
form is single-term index. in which single words without contextual information are selected as indices.
Unfortunately, single term indices are often too specific or too broad and can i nd nce ambiguities. Therefore,

5

it has been proposed to take term phrases a..'1 indexing units rather than !iingle terms so as to refine the
meaning of const.ituent words. HO\l(ever. the use of word co-occurrences has not brought good results·as
express~d by Salton [31] (p 296):

a phrase-formation process controlled only by word co-occllrrences and the docllment
freqllencies of certain words is not likely to generate a large nllmber of high-quality phrases."

As an answer to this problem. a possible solu tion has been to add syntactic criteria in order to provide
further control in phrase formation, such as part-of-speech llsing specially formatted dictionaries [2lJ, or
more refined analysis incblding semantics [361. But,

"The available options in phrase generation appear limited, and the introdllction of costly and
refined methodologies may bring only margina.l improvements." [3!J (p 298)

We are more optimistic, and believe that indexing Tmits richer than single terms can be tlsed and bring
significant improvement at low cost. The atomic unit we propose 1.0 1\se in order to demonstrate this is
derived from the notion of lexical f1ffinity. In linguistics. a syntagmatic lexical affinity (LA), also termed
lexical relation. between two units of language stands for a correlation of their common appearance in the
utterances of the language [8J. The observation of LAs in large textual corpora has been shown to convey ..-.
information on both syntactic and semantic levels, and provides .us with a powerf111 way of taking context
into acconnt [35J.

We propose to use the notion of LA for indexing purposes, and restrict the above definition by observing
LAs within a. finite document rather than within the whole language so as to retrieve conceptual affinities
that characterize the document I, rather than purely lexical ones. Moreover, we only consider LAs involving
"pm-clau word3 as meaning-bearing, whereas LAs involving clo3l!d-cla33 .words2 are not.

Ideally, LAs 'l.re extracted from a text by parsing it since two words share a lexical affinity if .they are
involved in a modifier-modified relation. Unfortunately, automatic syntactic parsing of free-style text is
!!till not very efficient [33J. Instead, we make lIse of simple co-occurrence. It has been shown by Martin et al.
that 98% of lexical relation!! relate words that are separated by at most five words within a single sentence
[281. Therefore, most of the LAs involving a word w can be extracted by examining the neighborhood of
each occurrence of w within a span of five words (-5 words and +5 words arollnd w).

The extraction techniql\e consists of sliding a window over the text 'l.nd st.oring pairs of words involving
tht.' hl!ad of the window (if it is an open-class word) and <l.ny of the other open-da.'Is elements of the window.
Th'! window is slid word by word from the first word of the sent.en("t.' to th", I 11..'1 t. the ~i7.e of the window
decreasi ng at the end of the sentence so a..'I not to cross ~"'ntpn('e hOlllltiarips'. si n("p I('xical am n i tie~ can not
relate words helonging to different sentences. The window sizE' heing ~mall"r I.han <I. ronstant, the extraction
of LAs is linear in the nllmber of words in the document. An alp;0ril.hm fl')f I.he sliding window techniq'le
is presented in Figure 1. Maarek and Smadja have IIsed a similar t.E'rhnicI'IP in [271, which wa.~ also based
on Martin's restllts [28J, but more adapted to the analysis of large corpora.

Tn sllmmary, the first stage in indexing a manllal page consists of extracting all the potential LAs by
using the sliding window technique, and storing them under their canonical form, in which each word
IS represented by its inftectional root (or lemma). An example of the potential LAs extracted from the

I ra.th .. r tha.n the whole language.
1 In general, op"n.cla.,. ... ord, includ .. noun., v .. rbs, adjective. &nd adv .. rb., while clo ... d-cl,u. word. are pronoun •• prepo­

,ition., conjunction. a.nd interj .. ction •.
3The i.olation or ... nlenc". i. Ih .. only pa.r.ing performed.

6

For each sentence S in the document d
For each word tv in S from the beginning to the end of S

1U '- lemma(w)
(where lemma(w) represents the inflectional root of w)

EndFor
For each lemma w in S from the beginning to the end of S

If w is an open-class word then
Let WI,"" w" be the n words immediately following w in S
(where n = 5 except when the end of the sentence is reached earlier)
For i = 1 to n

If Wi is an open-class word then
Get f. frequency count of {W. Wi}

(J = 0 when the LA has not been encountered before)
Store {w, w;} with a frequency count of f + 1

EndIf
EndFor

EndIf
EndFor

EndFor

Figure 1: Sliding window technique

mannal page of mv in Arx and ranked by frequency of occurrence are presented in Table 1. For the sake
of the comparison. a list of the single words extracted from the same manual page is shown in the first
column, also ranked by frequency of appearance:

Among the extracted lexical relations, some correspond to abstracl.ions of the considered document.
and some do not.. Since we are interested in indexing textual docnments. in the first stage, we isolate
actual affinities by Ilsing frequency criteria. It has been demonstrated that the frequency of occnrrence of
a tp.rm within a doclJment is related to the importance of the word in a text [231. This is also trne for the
common appearance of pairs of words and even more for lexical affinities.

3.2 From LAs to Indices

When analyzing a document, many potential lexical affinities are 1.11115 itif'ntifi"d. Some of t.hese lexical
itffi ni ties itre conceptually i mportan t and some are not. As ~f''''n in Tahle I. frf''lllency of itppearance is a
good indicator of releva.nce. However, some noise exists. mainly rill" tn wnrrls ,,-ppt'aring ton often in a
given context. In order to reduce the inftuence of such words, it is nece~sary in the second stage to select
from among the lexical affinities identified only the most representative on(,5, i.~., those containing the
most information.

We have defined a mea..'1ure eva.lua.ting the re$o/Iling pow~r of an LA. It is ba..'1ed lIpon the quantity of
information of each of the words involved in the LA. as well as upon the fre'lllency of appearance of this
LA within the considered document. The quantity of information of a word within a corpus is defined as:

INFO(W) = -log2(P{w}) (1)

where P{w} IS the observed probability of occurrence w in the corpns [41, [321. Therefore. the more

7

open-class words freq LAs freq
file 30 file move 9
directory 14 be file 8
mv 11 directory file 7
files 8 file system 5
new 7 file overwri te 5
name 7 file mv 5
move 7 file name 4
newname 6 name path 3
IS 6 do file 3
system 5 directory move :3
one 5 different file 3
... " ...

Tahle 1: Keywords and lexical affinities classified by frequency in the mv manual page

frequent a word is in a domain, the less information it carries. From this definition, we infer the definition
of the quantity of information of an LA (WI, W2) as:

(2)

To simplify the comp'ltation of this factor, in the rest of this work, we consider words within the textual
'lniverse as independent variables i

. Thus, we use the following formula for computing the quantity of
informat.ion of an LA.

(3)

Then, we deli ne the resol vi ng power of an LA in a given docllmen t as follows. Let (WI, W2, J) be a tu pie
retrieved while analyzing a document d, where (WI, W2) is an LA appe1Hing f times in d. The resolving
P(II/J'-~ of thi::l LA in d is defined as:

(4)

The higher the resolving power of a lexical affinity is. the more characteristic of the document it is.
The resolving power allows us to evaluate the importance of a lexical affinity within a text by taking into
i\CCOllnt both its frequency of appearance in the text and the qll1l.n tity of in formation of the words involved.
Thus, even though the lexical affinity (be file) appears very often in an A IX manllal page, it has only
a ::Imall resolving power, simply becallse the fluantity of information of hot.h th" words "file" and "be" in
the AIX documentation is low.

Tn order to be able to compare the relative performances, in terms of resolving power, of different
documents, we transform the raw p score into a standa.rdized score. The !Itandardized score, or z-score,
is defined as {I, = (p - Ii)/q where Ii and q are the average a.nd standard deviation of the p-values. This
transformation does not alter the distribution and allows us to evaluate the relative statll::l of the score in
the p distribution. In the rest of this papl'.'r, the p-values we give a..~ examples will therefore represent the
z-score rather than the raw score.

4 Thi lImp!ion repre.en!. only a.n a.pproximation .ince words in Engli.h a.re d .. finitely not independent, but are dis­
tribut .. d a.ccording to the TlJle, of the language.

~Thi5 notion is related to that of mutl.al information [4J ..

8

Table 2 compares t.he list of LAs for the mv manual page ranked by frefJllency and by resolving power.
In it, the LA (file mOlle) has a greater. resolving power than any of I.he following LAs. Moreover, some
noisy LAs snch as (do filt!) or (he file) (in italic fonts in the table) have disappeared becanse hoth words
involved in t.he LAs are highly frequent in the corpus and thlls have a low fJuantity of information.

LAs freq LAs p
file move 9 file move 8.38
he file 8 file mv 4.36
directory file 7 directory file 4.03
file system 5 file overwri te 3.87
file overwrite 5 directory move 1.98
file mv 5 file system 1.95
file name 4 mv rename 1. 71
name path 3 move mv 1.58
do file 3 different file lAO
directory move 3 name path 1.33

Table 2: Comparison of frequency and p-value for the LAs in mv

For each tlocument, we select as indices those LAs with the highest resolving power. More precisely, we
are interested in the LAs that represent peaks in the distribution of p-vabtes . Therefore, we keep as indices
only the LAs whose p value is one standard deviation above the mean, i.e., Sitch that p ~ Ii + (1, where
Ii represents the mean and (1 the standard deviation of the distribution of p vailles within one document.
The choice of sllch a threshold6 is reflected in Tables 2, 3 and 4. where only LAs with a z-score greater
than 1 are present.ed.

The .~et of LAs of a document selected by ranking p-values anr:l taking t.hose one standard deviation
above the mean forms the signatllre of the document. The major con~riblltion of this technique consisted
in adapting the notion of lexical affinity for indexing purposes. We g1\ve some intuitive indications on
how an LA-ba.'1ed indexing scheme is richer than a single-word scheme. We will demonstrate later that it
enSIIres i\. better retrieval effectiveness.

The next section explains how software components can be stored and clil..'1sified using the signatlIres
produced at the indexing stage.

4 The Classifying Stage

Normally, when a. user wants to use a software library, s/he first hil..'1 to 1\'-C'P:<l:<l a library that might contain
the desired component, then has to provide a formal description of the researched component according
to the vocabulary understood by the library system. Unfortunately, in mo'!t cases, this ideal scenario does
not work ou t. The main reason is that in real Life applications, the component perfectly matching the
user's reqllirements does not exist in the library, or it is not indexed as the Ilser had guessed it would be.

In such cases, a traditional database management system fails to help the user. Indeed, to be retrieved
from the database, a component must exactly match the query7. Such strict matching is inappropriate

4Thi. clM.ic&l thre,hold gu&r&ntee. to keep only & .m&J\ percent&ge of the .ample element. in mo.t distribution •.
7 A notable exception i. ARES [181, & relational datab.ue that a110 ... Rexible interpretation of qlleries. In ARES the

9

LAs P.
copy file 6.49
directory file 2.47
file source 2.15
infile subdirectory 1.98
contain subdirectory 1.30
copy cp 1.30
copy regular 1.02

Table 3: LAs ranked by p-val'les for cp

LAs p

directory make 5.08
create mkdir 2.74
directory mkdir 2.55
directory permission 1.48
directory write 1.03

Table 4: LAs ranked by p-values for mkdir

in a software library system since the user often cannot know the exact chil.racteristics of the desirable
component and, even when s/he does, there is rarely a perfect match.

Software libraries sho,I1d not only permit retrieving candidate components that perfectly or partially
match the q'lery, bu t also permit browsing among components that share some fll nctionality. It is therefore
desirable to st.rllctllre the library for making the search, retrieval il.nd browsing mechanisms as fast and
convenient a..'l possible. in order to make the access to the library il.t.tr;u:tive.

We propose here to perform the search and retrieval operations IIsing a convent.ional inverted index
file strnctllre, a.nd to duster the library in order to facilitate the browsing operation. Section 4.1 explains
how the inrlex repo!litory is built using an inverted file strllctllre, and Section 4.2 presents the c1l1stering
techni'1l1e IIsed to build the browse hierarchy. Section 5 explaiM how they il.re 'Ised to perform the search
il.nd browsing operil.tion!l.

4.1 Building the index repository

The goal is to allow a fast and eMY identification of candidate ('omp(')nl"nts il.t the retrieval 'It.il.ge. Th'ls,
we derive from the signature repository built at the indexing stage a.nothN repository for !ltoring, for each
word, the LAs involving that word, and pointers to the document!l in which it il.ppears. Let liS denote:
• W the lIniverse of words
• 1) the universe of documents.

Index LAs are defined as tuples (w, w',p) where w is smaller than w' in the lexicographic order and p
is the resolving power of this LA in a considered document. The reason for ordering wand lU' is to avoid

.imila.rity b~lw~"n ~I"m .. nl. c.,n b" "va.illa.t"d via a. lookup in a. tabl~ that h to b~ provid"d b .. for"hand. ARES i. not
di~cu .. "r1 h"", .ince it. p"rpo." i. not to c1 ify .oftwa.re. Further, it h ... the drawback of reqOJirin~ a. ~r"at dea.l o(pre·
encoded knowl .. dge.

10

dllpjicate LAs by forcing every LA into a canonical form.

The index st.ored in the repository is represent.ed as a mapping defined ;t.q follow.q:

wEW-'\(w)={(x,p,d)EW x [l,oo[x1) leither(w,x.p)or(x.1U,p)isanLAofd} (5)

The mapping ,\ is stored as a trie data structure. The mapping f1' between document.s to their signatures
is also .qtored IIsing a trie data strl1cture:

dE V <T(d) = {(w, w', p) E W2 x [1. oo(I (w, w', pH is an LA of d} (6)

In implementing these mappings, tries are usually faster than hashing schemes, although they conSllme
more memory. In this case. fast access is a basic requirement for making the retrieval stage attractive.
Th"!se two mappings are the basic operations we use to retrieve and ran k candidates as explained in
Section 5.

4.2 Building the browse hierarchy

As explained previo11sly. browsing is crucial in software library systems. The most common way to make
browsing operations possible is to group items judged to be similar by llsing clustering operations [311 .
.Jardine and van Rijsbergen {l9] poi nted out that "associations between docu ments convey information
about the relevance of docllments to requests". They demonstrated that cliister-based retrieval strategies
are as effective as linear strategies and much more efficient. Thus, many clllstering methods have been
used for information retrieval [19]. [7]. [161. The most popular clustering methods are the hierarchical ag­
glomerat.ive clllst,~ring (HAC) met.hods because their search and constrllction techniques are more efficient
t.han for mo.qt non-hier1\rchical methods [191.

The following sections defin"! some terminology in cluster analysis. describe the algorithms we used
t,o build the browse hierMchy. and present some samples of the browsing hierarchy obtained for the AIX

library.

4.2.1 Some t.erminology in cluster analysis

Classification by clllster analysis has been of long-standing interest in statistics as well as v1\rious other
fi.,l<1s. It can be traced back to the work of Adanson in 1757 [1]. wh0 11sed nllmeric1I.l clnstering for classifying
botanic species. Statisticians and taxonomists have widely developed the fi ... l<1 si nee then. CllIster analysis
now offers a wide range of t~hniques for identifying l1nderlying str'lctllrl'S in bug"! sets of objects and
rpvealing links between objects or classl"s of objects. One part.ir:,Il1l.T applic1I.tion of cla..qsifir:ation is the
bllilding of libraries.

There is no strict definition of cluster, but it is generally agreed that a cI'lster is 11. grollp of objects
w hose members are more similar to each other than to the membprs of any other group. Typically. the
goal of cluster l\nalysis is to determine a. set of clusters, or a clll~tering. sllch that inter-clllster similarity
is low and intra-cluster similarity is high. The similarity between obj"!cts is E'vallla.ted via a numerica.l
me~ure called a. dissimililrity ind~:r defined as follows.

Definition 1 Lei n h~ II HI of ohjut.,. A dissimilarity index 6 ou~r n2 i., /I f'Jnction from nxn to R+
thai 3ati.,jies th~ following properlie3,

(i) 'tIo E n, 6(0,0) = 0, (7)

11

(ii) \f(o.o') E n2
, 6(0,0') = 5(0',0). (8)

Note th"t a distance i., a diHimilarity indl!x hilt that a diHimilarily index do~s not nUfHariiy satisfy the
triflngll! in/!'1'lality and therefor!! is not" di.1tance.

The dissimilarity index between objects is used as the basic criterion to determine dusters. Clustering
techniques allow identifying not only clusters but also relationships among them. The strllctllre of the
set of clusters as well as t.heir internal structure vary with the clustering t.ech nique. Clustering methods
are usnally classified8 according to the strncture of the set of clnsters produced. e.g, hierarchical. flat.
overlapping. etc., as well as the technique llsed, e.g .. divisive, agglomerative. incremental, etc. As explained
previollsly. hierarchical agglomerative techniques are very convenient for bllilding browse hierarchies. The
basic principle that these techniques follow is presented below.

Hierarchical nllmerical clustering aims at building hierarchies. over a set of objects. in which each
internal node corresponds to a c\1lster of objects and each leaf represents an individual object. or more
precisely a singleton cluster. Most hierarchical clustering methods are ba.'led lipan the same general
method, called the Hierarchical Agglomerative Clustering (HAC) method [121, which consists of iteratively
gathering objects into clusters. until only one cluster remains.

The HAC general method iteratively bl1ilds a sequence of partitions or levI'! c1usterings of n, that is.
a secplence of disjoint clusters covering the original set of objects. n. The levP.! clusterings form coarser ~
and coarser partitions by an iterative process, beginning with ~he level clllstering formed by the set of
singletons in the power set p(n), i.e., {{Ol}. {02}, ...• {a .. H, and ending up with the coarsest partition of
n, i.e .• {n}. The final outpu t of this clustering process is a particular form of hierarchy called a dendogram.
The HAC general method can be expressed as follows:

• Stllrt with the subset of pen) formed by si'ngleton elements .

• Repellt the following steps iteratively until there is only one duster.

- Irlentify the two clusters that are the most similar.

- Merge them together into a single duster.

The HAC method reqllires a. measure of similarity not only over the set of objects, but also over the
set of cltlsters. The dissimilarity index between clusters is usually deriveri from a llser-given dissimilarity
index. 6. between objects. The wa.y of defining ~ has a dir~ct infll1ence on I.h .. final form of the hierarchy
obtained. Once a dissimilarity index 6 between objects is provideri, IIAC ml'l.hnrls diff",r only by the choice
of this mea.'lllre. The most commonly used HAC methods are the singl", link a.nri complet.~ link methods
[22J. Many other methods such as the centroid method. Warri's mf'th"ri, et~ .• d .. fine still other rlissimilarity
indices btlt most oC them reqllire the dissimilarity index over n to he a disl.ance, that is. to satisfy the
triangle ineqlla.lity. The reader should conslllt [13J [121 for an ext.ensive c;lIrvey nf the HAC methods. The
time complexity of the HAC algorithm is at most O(n"logn) where n is t.he nllmber of ohject.s involved.
For some partictdar definitions of ~, it can be reduced to O(n2

).

• With lh~ r~c .. nt inlroduclion of conc~plu&l c1ust~rin~ [29), a.noth~r distinction hi\., h n introdlJc~cl accordin,., 10 Ih~
d .. finition o(Ihe clt"ter. obt;\ined. in e.t~n.ion (i.e., by enumeration o(it. membeu) (or re~I.lar (or numeric.,I) clu.tering
a.nd in intension (,.~., by memb .. "hip rule,).u .. .-l1 .u in extension Cor conceptual eI, •• I .. rin,;.

12

4.2.2 Adapting a cIlIst.ering technique for building a browse hierarchy

A.'i explained above. we propose to use a HAC technique to generate a browse hierarchy. In t.his perspective,
we (1) need t.o define a mea..'ilJre of similarity between the objects considered, ~.!J .. t.he docllments, and (2)
explain how t.o make a browse hierarchy out of the dendogram generated by the HAC techniqlle. Let liS
address these two points.

In informil.tion retrieval, numerous measures of similarity between documents, also termed measllres of
association or coefficients of association, have been defined. The simplest of all is defined as:

1 XnY 1 (9)

where X and Yare the signatures of two documents. This measure represents the number of common
index units. Variolls other measllres [381 have been defined snch as:

1~~~;.11 Dice's coefficient

1~8r.1 Jaccard's coefficient

1!{,~rJ, Salton's Cosine coefficient

(10)

(11)

(12)

They can all be considered as normalized versions of (9) since they are fnnctions of the cardinality of ~
X. Y, X nY, or Xu Y.

In Ollr context, we have more information than just the presence or absence of index nnits in the
signature, and therefore we propose to take into account the p-vall1es of LAs in the evaluation of the
measnre of association between documents. For any signature X = {(w, w', p)}, p(X) is the projection set
of X over W2. Then. the simplest measure is 1 p(X) n p(Y) I. In order to take into account the resolving
power of LAs as well, we define our measure 6 for two signatures X and Y, snch that X 'f: y, as

6(X, Y) = (px(w, w') + PY(lII, w'» (13)
(lII,w'lEp(X)"p(Y)

where fI.d w. w') is the fI value of the LA (w, w') in the signatllre X, anrl similarly for ~'. Note that 6 is
a meMlIre of similarity rather than a measure of dissimila.rity. Its inverse is a measure of dissimilarity as
long as 6(X, X) is set to a sufficien tly large arbitrary value so that its inverse can be considered essentially
nlill.

Given sl1ch a measllre of similarity between signatures, we rlefine a measl1re of similarity between
cillsters according to the single link or complete link techniq1]es for instanr~ anrl then lise the hierarchical
i\.gglomerative clllstering algorithm in order to bl1ild a browse hierarchy I')f software components. Let 115

note that we also ma.de some experiments in earlier versions of Gl}nll lIsing an incremental conceptual
cll1!1tering technique 1251 for constrl1cting the browse hierarchy. lIow('vp r. despite interesting res1ilts, the
cost of bnilding and ma.intaining the hierarchy was prohibitive (exponpntial time like for mo~t conceptual
cillstering techniques) when compared to regular clustering technirJlle!l anti rlirl not appear to be better in
terms of retrieval effectiveness.

All the HAC technifl'les build a binary hierarchy. Not all levels of I.h'! hi('rarchy a.re equally significant:
therefore. the IIsua.1 approl\.Ch is to select manually the most significant level clu~l.erings. this ta..~k being
IIsually performed by a. data analyst. The following proposes a. method for all tomatically identifying the
most usefnl level clusterings. and thus producing a not-necessarily binary hierarchy.

This method of selection is based on the following principle. Ea.ch level clustering in the dendogram
corresponds to the merging of two clnsters in the previolls level clustering and therefore to a particular

13

-
- I I -
- 1 -
-
-

- -- I- - - - - - - - - - -
- '-

,..- !-

-
-

- -- I- -
r--I--- nn - r5~ -

I I I I I I I I I I

Dendogram Selection of the steepest slopes Final

Figure 2: Principle of selection of level clusterings

value of the similarit.y measure. If we label the dendogram with these values Y ... , •.. , Yl, n being the
number of objects. from the bottom to the top of the hierarchy, it can easily be shown that the Yi'S are
(non-strictly) monotonic (increMing for dissimilarity measures and decreasing for similarity measures) for
the single and complete link clustering methods. We propose to select those levels that correspond to the
gap in the distribution of Yi'S by (1) plotting the segment connecting the pairs Yi+l, Yi from i = n - 1
t.o i = 1, and (2) keeping the levels that correspond to the steepest 1l10pes. This represents the intnitive
method tha.t a data analyst wOlJ!d apply. Figure 2 gives an intuitive pres .. nt.ation of the method 1Jia an
example where(l..~ Figllre 3 gives the formal algorithm. The time com.plexit.y of the latter is linear in the
number of objects.

4.3 Some examples

Portions of the browse hierarchy built from the AIX documentation are !lhown in Figures 4 and 5. In
Figure 4, some interesting clusters are isolated. Thus, in the fignre we h1l.ve a clllster gathering commands
related to the manipnlation of regular expressions, and a clllster gathering eoi tor.!. These two clusters are
also part of the same super-cluster, mainly because these editors permit to maniPlllate regular expressions.
Then, there are two outliers that could not be included in a cluster: malteltey 1l.no termdef. Then a small
c1l1ster gronps ps and kill, which both are strongly related (1..'1 they give inrormation about processes or
handle them. Finally, there are two big clusters, one for yellow pages commands and another for sees
routines. The clustering is not always of snch good quality as can be seen in Figure 5, either because of the
nature of the documentation or because of the principle of clustering itself. For instance, the commands
xcalc and dc, which both are calculators, belong to a same cluster. b1\l. bc ha.'l been forgotten in this
c11Ister. This is due to the fact that the manIla! page of bc does not refer to I.he concept of calculator at all,
but defines be as a.n interpreter for a.n arithmetic langua.ge. The real problem with clustering is illustra.ted
with the third cluster in this figure. which gathers batch, at, crontab, date and istat. This cluster has
been formed because all these comma.nds are rela.ted to the notion of da.te or time; unfortunately. this is
not the main functionality of all of these commands and therefore this clllster is somehow misleading. Let

14

Let Y" .. · .. Yl be the merging values of t.he similarity measnre from the bot.tom to the top.
For i = n - 1 to i = 1 .

D.Yi = Yi+1 - Yi
(~valllate t.he slope of the connecting segment)

EndFor
Compute D.y the mean of the Yi'S

Compute 17 the standard deviation of the Yi'S around D.y
Let l(k) = uy + kcr
(wh~re t(k) corresponds to a. threshold defined by k ~ 0)
For i = n - 1 to i = 1

If D.Yi > t(k)
Select level clustering i

EndIf
EndFor

Figure 3: Selection of level clusterings

liS note, however, t.hat the lower level duster including a.t and ba.tch is a good one . .
The hierarchy thlls generated is llsed as an aid to browse v.,:hen nothing relevant has been retrieved

via linear retrieval. or in order to increase recall since there is no way to be Slue that all the relevant
components have been retrieved at the linear retrieval stage. It can also be Ilsed as t.he basic repository to
be searched during retrieval, but we prefer to use the traditional linear retrieval technique instead because
it is clearly more trustable considering the problems described above.

By natllre this indexing technique suffers from noise since it is based on only statistical observations.
Noisy indices involv-e generally misspelled or unmeaningflll strings of charaders t.hat are mixed with natural
langnage (for tiescribing instrllctions for instance), or "side-concepts" snch ,\'.'1 t.he time. day and month in
the exa.mpl", rited a.bove. This noise cannot be avoided when dealing with free-style text.

Fortnnately. these noillY LAs do not cause real trouble at the linear retrieval stage since there is a very
low probability that the IIser wOllld use nnmeaningful character strings in her/his qneries. So noisy LAs
are part of the signatures of components but rarely lead to the selection of the considered component.
On the other hand. noisy LAs might induce the formation of poor qualit.y clllsters, bnt generally only
higher levels of the hierarchy a.re affected since "side concepts" are not given mnch weight when evaluating
'li milari ty. Section 5.3 explains how this browsing hierarchy is I1lled at rl't riev<'I.1 Iltage.

5 The Retrieval Stage

The previous sections explain how libraries of reusable components are a.'lsembled. We also need to be
able to retrieve t.he components that ma.tch the reqllirements when at lea.'!t. one exists, or to assist in the
selection of the closest components via a browsing facility.

The usual scenario when retrieving a component is the following:

• Query specification: The user expresses a. qllery according to the authorized vocabulary.

15

grl!p.l
awk.l
l~x.l

ed.l
L _

!I~d.l
E'di t.l

I ~x.l

view.l
r vi.l
I v~dit.l

makekey.l
termdeLl ~

L ~ ---
ps.1
kill.l

r - - - - - - ~L_ __________________ _

ypset.l
ypbind.l
yppush.l
ypinit.l
ypwhich.l
ypxfr.l
m1l.kedbm.l
ypm1l.tch.l
)'pcat.l
yppoll.l
ypserv.1
!llI.ct.l
cdc.l
v1l.1.1
rmrlel.l
del tll..l
pr!l.l
ct:>mb.l
IIn!1;et.l

Figllre 4: Portion of AIX hiera.rchy (!linl!;le link. k=O.S)

16

L _

. mvdir.l
L

: ___ wr--------------------- dircmp.l

mkdir.l
rmdir.l

--1~ __________________________ __

.--------Ic

xC<l.lc.l
rid
b<l.tch.1
at .. 1

r--L---------- CTontab.l
___________ ~r-----t------~--- ~<l.te.l '--_____________________ lst<l.t.l

profiler.1
'--___ acctprc.l

1..-_____________ fwtmp.l

acdeon.l
n.llditbin.l

I n.l\dit.l ,------1. _________ n.wlitapp.l

~-----4---------------- a1lriitpr.l

I
I

n.l\dit~el",ct..l

Plnaect.l
acct.l
i\Ccteom.1
acdcms.l

Fignre:;: Portion of)\IX hier'trchy (<;in~l" link. k=I1}5)

Ii

• Linear ret.rieval: A sean:h loca.tes the candidat.e component.s '!.nr! I.h~ r<l.nclirfat.es are f<l.nkerl ac­
cording to t.heir degree of mat.ch with t.he qllery .

• Brow!'Iing Chlster-based ret.rieval is init.iated when no aderlllal.e c0mponents have been fonnrt by t.he
linear rel.rieval.

The following explains how t.hese three st.ages are snpported in OIIr approach.

5.1 Query specification

Using uncont.rolled-vocabnlary indexing as we do presents clear ad van t.ag ... s at I.he query specifica.tion stage.
Indeed, a minimllm of constraint is pllt on the user as s/he expresses her/hill qnery. The nser does not
have to learn a specific index lang'lage or nnderstand the organizat.ion or I.he library. S/he can express
her/his query in nat.ural lang'lage and t.hen t.he indexing component. is applied in order t.o t.ranslate t.he
qllery into at.tribnl.es nnderstandable by t.he system. Exactly the same t.echniql1e is nsed [or ext.racting LAs
from nat.nral-langll<l.ge 'lneries as from natural-Iang'lage docllmenl.at.ion. This provides a very convenient
and nser-rriendly interface between the Ilser and t.he library system. b"cal1se t.he user is not. constrained
by any rigid formalism.

The qlleries can be expressed in free-style natnrallangnage. Howo:'vpr, t.he lIser mllst be aware of the ~
fact that qneries are not. r",ally in I.erpreted, bn t. rather considered a..~ a descripl.ion of the fll nctionali t.y of the
desired component. For instance, the Iiser cOltld express qneries of t.h~ form "How can I do sllch and such"
since only the "such and snch" wOllld be considered for indexing, I.he re~t. heing either do~ed-dass words
or word~ with low qllantity of informat.ion. Formulating a query t.hat ne('e~~it.ates some underst.anding,
such as a qnery indllding negations like "but not,", wonld only lead t.o wrong interpretation. Let liS not.e
I.hat it wOllld he possihle at this point. to allow some 5imple interpret.ation or the '1ueries, by allowing for
instanc~ t.he 1Is 1lal boolean connectors ("and", "or", "bllt not"). This wOIJ!d clearly boost the performance
of the lihrary syst.em. However, since onr poi.nt her~ is to show hQW rar \\'f? ran go wit.hout understanding
eit.her th(' (jllerii>s or I.he documents, we do not discnss t.hese posllibk Pllh<l.nCP111ent.s.

5.2 Linear retrieval

Tn order 1.0 retriev~ the best cantiidat.es for <I. given query. we apply t.ho:' 11511<1.1 m. mel.hod, which consists of
c('\nllid~ring t.he qllPry as a document and ret.rieving t.he compnnf'nt,1I in Ih(' r"posit.ory whose signature are
t.he most similar to the signatllre of the (plery. I\. pOIl~ible nJeasllrt> "f simiJ;uit.y is t.he 5 mea.snre defined
in (1:3, Section 4.2.2. The most similar component.s are thpll r"t.llrIlPr! t,() t.he Iiser, rankrrl in order of
do:'r:reasing similarity with t.he <1uery. The linear retrieval to:'chnifJ'I" is pr"~/"IIt."rI in Figure n.

In ca.'1e of low r~a.ll, that is, if t.he user is not. sat.isfied wit.h the rp!.ri"v.·,j candidat.es, a mOTo:' fnzzy search
can be performed that also considers partial matching LAs. In t.hat C<l..~p ()nly Ll\.s t.hat partially match
a qllery LA, i.~., have one word in common, are considered. This sil!;nifir<l.nt.ly increases the r",call but as
<I. t.racleolf drastically decrea.'!es the precision. It shonld therefore he III1NI only when the user considers
that nothing rdevant ha.'! been retrieved with the initial <1llery. An examplp t)f linear ret.rieval is given in
FiglJre 7.

In Fignre i. t.he candidates are ranked in order of decreasing similarit.y with t.he query ("How can I
loca.te reglllar expressions in a file"). Therefore, t.he t.op candidates IIslIally aMWer the qllery the best.
[n the example shown in Figure 7, all the candidates retrieved dt"al Illoro:' or less strongly with regular

18

._------------------------_ ... - - -

Get nat1lral-lanJSuaJSe query from user
Index qllery and produce its signat1ue Q = {Cwo w'.p)}
For each query LA. (w. tu'. p) E Q

C(W. w') ~ {c 13p, sllch that (tu',p,c) E -X(w)}
(i.e., identify aU the components that have t.his LA in t.heir signature)

EndFor
C - U{C(w. w')}c .. ,.,u'.p)EQ

For each c in C
Evaillate th", similarit.y between the siJSnatllre S~ of c and Q a.~ 6(Q, Sc)

(wher~ 6 is the similarity measure defined in (13))
Rank components in order of decreasing similarit.y.

Figllre 6: Linear ret.rieval techniq1le

Pro ... ~ssing qllery:
How r.lln llQCllt~ 11 reg,liar eTpr~.,.,inn ill 11 filr

Lemmatizing sentence ...
Searching ...
regex.3 220.21
r .. gexp.3 220.21
awk.l 71.32
grep.l 77.32
find.l 33.88
ogrep.l 28.77
regcmp.3 28.77
dosfirst.3 22.38
dosnext.322.38

Figure 7: Example of linear rlC'trieva\

19

Processing query:
Establish a new password.
Lemmatizing sentence ...
Searching ...
passwd.l 32.05

Linear retrieval

passwd.l

yppasswd.l

Cilister- b'l.~erl retrievn.1

Fig1\re 8: Browsing in the hierarchy

expressions. Even the t.wo last candidates, dosfirst and dosnext, do not. ilnswer t.he qnery. bllt Me very
slight.ly relateri since they allow locating DOS files that match a pat.t.ern.

5.3 Browsing, cluster-based retrieval

The ret.rieval stage in c1a.'lsical library management systems is often limitPrj tr:1 locating a set of component.s
exact.ly matching t.he llser's query or, when such components do not. exist" related components. Library
systems do not llsllally provide 1I.ny further assistance. whereas many IR syst.ems do.

In O'lr 1I.ppr01l.Ch, the Iiser may communicate interactively wit.h the system in order to direct the
browsing when slhe is not satisfied with the first retrieval yielderl. Thp linear search retrieves the most
rdated candidates, anti then the browsing process begins.

Typi('ally, t.he Ils!"r starts from one of the candidates retriev!"ri hy tilt" Ii n"ar search and explores the
hierarchy bottom-lip. C'onsider the browse hierarchy given in Figllr", <1 1I.nd snppose that 11. IJser gives a
1'lery 'l.'1king abollt ways "to identify a process". If the first candidn.tp r",trieved at the retrieval search is
kill. Then, thO! Iiser ca.n access the browse hierarchy, and explore the r-\Ilsters inclllding kill in order to
determine which components are strongly related. In our exampl('. slhp will find ps as the most related
cf)mponf'nt. which is d!"ariy a better candidate for this given 11lery t.han t.he one retrieved by the linea.r
s('arr.h. Anot.hpr pxample is illustrated in Figure 8. The two relevant ranrlid1l.tes in AIX for the qtlery
"estahlish n. new pMsword" 1I.re passlld and yppasslld. However, thp lint'ar rl't.rie\'al ret.rievps only paBslld
simply becall:'l(, the qtlery had no intersection wit.h t.he signatllre or yppasslld. At. thi~ point .. t.he lI!ler
('f)ltiri rerormlll1l.te the q'lery, but s/he might not be aW'l.re that ~/h(' hn.I' mis!'ll'ri s"me rdev1I.nt. cantiidat.ps.
U~ing the browse hierarchy is therefore more convenient in order I,n ('h"rk ir ~"I11P Iinexpp('tpr! candidates
have been missed. In the example, both pasBlld and yppasswd arp st.rnngly rl'l",tp(l: their ~ignatllres share
the LA (change pIU.flL1dj9, and therefore belong to the same low-I"'\'('I d,,~t.pr in the brow~ing hierarchy.
Browsing in the hierarchy from pasBlld a.lIows the tlser to retrieve I.he other wl",va.nt candidate. These two
examplps show how a browse hierarchy can help improve the finding f)r pf)!l!lihlE' ('andidate!l that cotdd be
mi!lsed via linpar retrieval.

At any point. the Ilser c1l.n ('onsllit the signature of a componpnl in orrlN t.o have more information
abotlt it!l fllnctionality. Fast access to signattlres is achieved via t.hl' !lignatllre r~pository. The Iiser can
also provide. ",t 1I.ny stage, further information in order to get a finN rpl.rievaJ. By brow!ling, !l/he gets

9 Note thAt .. p"' d .. here i. proper nAme and i. different from the nOlln .. ['A ord .. m .. ntionecl in the q'Jery.

20

more information il.bolIt component!! il.nd l~arn!l how to provide rli!!rriminil.t.inl!; qlleries.

6 Empirical Results

The approil.ch describ ... d in t.he previolls sect.ions has been embodied in iI. t.ool. GURU. which has been [lIlly
implemented. partly in VSPascal and partly in C, under AIX. The syst.em has r,=,ached a satisfact.ory first.
stil.ge, and the implemented version yields quality results.

We have test.ed onr syst.em on the entire AIX documentation available to 115, which describes approx­
imately 1,100 AIX components. When bllilding the index repository. we therefore processed the entire
document.ation that forms a corpns of more than 800,000 words, a.nd we identified 18,000 LAs for the
1,100 signatures.

In order to evaluat,e GURU's performance. we llsed the following nit.eria.

• User effort. This consist!! of all the effort that mnst be expended by I.he rISer in order t.o use the
libra.ry system. It is impossible to formally measure user effort. However, tha.nks to the nncontrolled
vocablilary approach tha.t we applied, we believe that the effort I.ha.t mnst be invested for using

~
GUR.U is minimal. QlIeries c<tn be {ormldated in natllT<t1 Ian J1;1l age, <tnd therefore the user is not
reqrlired to learn any index language and formalism.

• Maint.enance effort. This consists of all the effort that is neceSSi\.ry to keep the system working
and IIp to date. This effort. inc\ud"!s, in part.icular, indexing new components and adding them
to t.he library. The ma.int.enance stage is highly facilitated in GUR.U. The indexing is performed
alltomatkallyand t.he insertion of new components can be done in'~rement<l.lIy. Kaplan and Maar-ek.
in [20j, have proposed s"!veral algorithms for incrementally uprlating a rppository of LA-based indices
when ins~rt.ing, rleleting or modifying component.s.

• Efficiency. This refers to the aVl;'rag~ interval between th". t.illl" a qllery is is~ued and I,he time
an an~wer is gi\'en. Efficiency becomes an issue only if a rel.ri-:-va.l t.akes ~o long t.h1l.t Ilsers start to
("ompl1l.in. O'lr ~xperience with the system shows that effiden("y is not. an issue, as t.he re!!ponse
time is r"a.~("1nable. Profiling the execlJtion of the qllery pmgram showerl I.hat t.he t.ime t.o perform
th"! (plery W'l.S dominated by the time to map the repository file int.o the 1\drlress space of the query
progra.m. Th", 10ok11p operll.t.ions lI.nd the printing of the Lt\-fill;' n1l.me pairs consumed almost no
t.ime in complI.rison. Test qll,=,ries involving from 5 to 15 LAs '='1l.ch t.ook lI.pproximat.ely 2.5 second!'1
on 1l.n RT, and 0.15 seconds on an IBM RISe Sy~tem/f)nnn. Th .. hd.I.f'r performll.nce of t.he latter is

part.ly rille to its more efficient implement.1l.tion of file mappin/Z:.

• Ret.riev~1 effectiveness. This is rlell.rly t.hp most important pf'rfnrl1l1l.IH·p rriterion. II. refers to the
system's a.bility to provide information .~ervices a.~ neerled by I.hp lISf'r.

The next section focuses on evahHI.ting the retrievll.l effect.ivpness of Gpnt).

21

6.1 Measuring Retrieval Effectiveness

6.1.1 Rec<lll and Precision

The most widely Ilsed mea.'1llres for evaluat.ing retrieval effectiveness Me ,Fcnll il.nd prui3inn [32/. Recall is
defined ~ the proportion of relevant material, i.p.., it measnres how well I.h" r:on!'lidered system retrieves all

t.he relevant components. Precision is defined as the proportion of retriever! mil.l.eriil.1 that is relevant, i.e ..
it mea.'lllres how well the sY!'ltem retrieves I)nly the relevant components. fl"cil.1l can al!'lo be int.erpreted
as the probabilit.y that il. relevant component will be retrieved, and pr"cision 'l..'1 the pmbahility thil.t a
retrieved component will be relevant [5/.

Recall and precision can be defined more formally as follows. Let. C be I.he whole collection of compo­
nents for~ing the library. ·For each q'lery, C can be partitioned into two disjoint !'lets. R, the ~et of relevant
m'l.terial il.nd R the set of irrelevant material. Given the query, the sy~tem r",trieves a set of components
c I.hat C1\n also be partitioned int.o relevant and irrelevant materi1\I, r'?specl.ively, rand T. Recall and
precision are defined as:

recall

precision

r

R
r

c

(14)

(15) ~

Recall and preCISIon measurements require the ability to distinglIish between relevant and irrelevant
material. For relatively small collections such as the A IX collection. it is possible to manually determine
the set of relevant material for a gi ven q'Jery.

6.1.2 Experiments and Comparison

This sect.ion d"'scribes the experiments that allowed liS to eVil.]1Ia.I." I.he r('!.ripval effectiveness of GURU. As
'l. ba.'1is for comparison. we have considered INFoEXPLORgR, which is il.n TRr>.I n.rsc System/6000 CD-flom
Hypertpxt Tnfl')rma.lil')n Ril.Se Library. TNFOEXPLORgR is a recent hypertpxt system that givps access to the
doc1\ m"nta.tion for A IX 1\nd fl')r il.Ssociated programs. INFOExPI,onRn pr(wid('s not only hypertext links
between pieces of the ,\ IX documentation, but also search a.nd ret.riev1\1 fa.rilil.if."S based on state-of-the-art
III techniqlIes. Q'leries can be expressed a.s single word search f)r ITIllltiplp. word compound sea.rch with
nf) con trol of VO('1\bIlIMY. The compon nd s~arch, which is the mo~t pl1\hor1\l.erl. allows the user to express
a query as :\ word p:\ttern formed of single words related by thr"" pf)~sihlp (,nnnl?r:tors, "and", "or", and
"butnot'·. Morp.over, the 'Iser can restrict the search. S/h~ c:\n p;i,'" (·nfl~t.rninls ~p",cifying if the pil.ttern
wNds mllst appear within the same article or within thp S1\mp p1\r;t~rnph. I.h .. prr:>ximity of these words
within a paragraph, and the search fields 1\nd the seMcn c<\.tegf)rips.

When given sllch a query, (NFOExPLORER retllrns a list of rnndirlnl,'s I.h:\t exa.ctly fit the qllery,
ra.nked according to the frequency of the pattern in the consider"rI dorllment. No signat'He is bllilt
for the doc1\ments examined: 11.11 words 1\ppearing in the text are ('onsidprerl dllring sell.rch. Therefore.
INFoEXF'L<'''nr.:R can be expected to have a a much higher recall bl\ t lower precision than GURU. We
do not need to II.lso compare effic:iency, i.'!., retrieval speed. GI)RU is. independently of implement1\tion.
much faster th<\.n [NFOExPLORER since it does not explore the entire text.,,\1 datab1l..'le b1\t a. milch sm<\.ller
repository formed by the signatllres.

TNFOExPLORER is thus a quite sophisticated IR tool that represents a good referencl? for comparison
pnrposes since it is specifically for AIX. Also, INFoExPLoRER encorles a great deal of manllally-provided

22

in rorm1lt.ion ab,)U t the sl.rllctl1 re of t. he document.ation. The sy~t.em hi\., t.r) know ;tboll t. paragr1lphs, ti ties,
~t.r:: .. and thlls has been milch more expensive t.o blJild than GUR.U. Providing t.his strllctllral information
to Ollr syst.em wOllld grea.t.ly enhance its performance, but Ollr point. hpre is t.o .,how thil.t pven without
sTich information. Ollr sYlltem cil.n perform nicely thil.nks to its indexing scheme.

GURU and INFoExPLonER were compared for retrieval effect.iveness. fn orrler t.o claim this test to be
vil.lid, we mllst fl1lfill I.he IIsual test. proced II re reqTlirements [321. These re'lll iremen t.s are for

1. the qllerie . ., to be IIsed for test purposes mllst be user search rert"ests act. II il.lly sllbmitted and processed
by both systems:

2. the test collection mnst consist of documents originally incIt\(leri in t.he libril.ry. chosen in STich a way
that any 1ldvance knowledge concerning the retrievability of 1lny 9;iven component by pither system
is effecti vely ignored; ",nd

3. the nllmber "f components considered to be retrieved by t.he t.wn systems mllst be slIbject to the
same r.1I to If.

To flllfill t.he first reqllirement, we have condllcted a survE'y among the grcvillil.te stlldenl.ll in the De­
partment of Compllter Science at Columbia University in NovembE'r i~88. This '1l1rvey provided liS with a ,
collect.ion of typicil.1 q'leri"s on UNIX-like systems, as formnlatpd hy l'NIX 1I<;I'rs ranging from nil.ive users to
~xpert programmers. II. typicil.1 qnery W1l.S expressed as a natTlr1lf..lil.ngTIil.ge sI'nt.ence with an average of 3.7
open class words per qllery, describing a desired functionality. This kind of (,plery cOltld directly be fed to
GURU blJ t not to INFoExPLOR En si nce the lat ter's componnd search facili t.y arc'!pts only boolean queries.
Therefor'!. f'!'!rling the 'l'Jeries to INFOExPLOHER required some slIpplprnent,ary effort, first choosing the
right r.onner.t.ors between open-class words extracted from the qlJeries, il.nd possibly dropping some words
wh~n the rer.all wa.'1 too low. In OIJr interaction with the compollnd s~'l.rch facilit.y. we had 1.0 refine and
retry t.he qllery formldation several times. We kept only the best. r~slJlt for c(lmparison pllrposes, since
w~ wanted to t;omp",re I.he t.ools' indexing schemes rather than their C'jllPryinp; f1l.ciiities. Gunu's qllerying
fa.cility rertlJirps le~s nser effort. t.han TNFOExPLORER's, bnt the 1a.I.t,pr's r01t1d hI' gre1l.tly improved if it did
nnt. reqllire p~rfer.:t ma.tche~ hetween the boolea.n qllery and the cil.lldid1l.t.es, 'Ising a simila.rit.y measllre
het.weE'1I c1I.ndidil.tp and 'luery, for instance. The average number of open- r l1l.Ss wnrds Iised for questioning

INFoExPLoR.rm W1\3 :3.

As fa.r 1I.S the spt;ond reCJuirement is concerned. the collection considered for test has been the entire
A IX Ii hrary. We ('onslll tE'd wi th several II. IX experts at IBM in ordpr to dptermi ne for each CJnery the set of
I'xisting relt"v1I.nt ("omponents in the AIX libr",ry so i\.'1 to hI:' able tn I' vii.I IJ a.tl' thp rE'cil.1l a.nd precision. As Ollr
tpst collection Wi\.., composed of abollt 1100 components, we sde('t~d :30 ("(IINips from among all the queries
provitied by O'tr survey. This ra.tio corresponds to the '1i1.me numh pr-.,f-'l'J P ril''1 ppr nllmb~r-()f-doc1\ments
r1l.tio ""'I the one that h(\.'1 been II 'led in stand1l.rd test ~ets Sl1rh i\.'1 ~1P.r> ("ollpr ti0n of mpdicil.1 a.hstracts.
:10 rtlleries for 1033 docllments) or CISI 10 (information sciE'n('e ahs I. r<1.r 1<;, :1!) q'JI'riP'l for I 1 (in informat.ion

abstra.cts).

As far i\.'1 t.he thirrl rertuirement is concerned. since both systems ra.nkprl t.hp retrieved ("andidates, we

were able to compare recall il.nd prE'cision at the same ranks.

The comp1l.rison W1\3 pE'rformeri by meMlIring, for both system~, prprJ~I0n at. sever1l.1 levels of re("all.

We followed the u~ll",1 pror:ednre [:381, [:321. which consists of

23

1. pk,tting precision-recitll CllrVes for each t.est 'l'lery with each plo~ ""rrpsponciing to a given clltoff
vahle,

2. ext.rapolating these Cllrves so as to obtain precision values for re("a.ll Vitl'1E'S t.hitt were not. effectively
ar:hieved. '!.nd finally,

3. deriving from the ("!rves compllted in stage (2) the average pre("ision v:\!lles '!.t fixed reo:all intervals.
so as to obtain a single average predsion recall cnrve for t.he system considered.

We have b'lilt sllch curves for both GUR.U and INFOEXPLORER. and plott.ed them on the same axes (See
FiglJre g). The best performance is reached by the system whose cllrv", is dosest to the area where bot.h
precision and recall are maximized, the l\pper right corner of the graph. As ment.ioned, beca.use of the
indexing .~cheme of both systems, we cOllld expect that INFOExPLciRER wOltld achieve a lower precision
bllt higher recall than GURU. It turned O'it that the maximum rficall, all ranks included. achieved by
bot.h systems \I·'!.S approximately t.he same, around 88% on the avera.ge, bllt, from the graph presented in
Figllre g, it is clear that. GURU had 15%, on the average, better pre~ision t.han INFoExPLORER. In other
words. G IJR.U achieves a higher precision witholl t losing in recall. T~is is more than sittisfact.ory.

These res1dt.s clearly prove t.hat we have achieved ltigh precision withollt. losing recall. The reca.ll rate
is ~ignifkantly increased whp.n we make lise of the GURU browsing fitcility. For inst.ance, in ~everal ca.ses
some related ("omponents were not. retrieved during linear retriev1\l, pllt only rlllring browsing. ~

The r",slllt.~ of this eVil.luation should not be seen as the final definiti\'", r';>'llllts, but only as an indicator
of whitt can be expect.ed from a flllly operational GURU system. Hot~vpr. even introspective experiments
such as those de~crib~d in t.his section itre slIincient to confirm the ladvantages of an LA-based indexing
scheme. Our LA-based ind.;>xing scheme makes the indexing langu~ge exha.lIstive as well as specific and
thns ensures good retrieval performance. The experimental resnlts confirmE'd the expectations an can be
r:onsidered itS enconragements to plIrSUe research in the direction pub'l""rl in this paper.

7 Conclusion

We have pr",,~ .. nted a method for a.utomatically constructing softwa~e libraries from a collect.ion of docu­

men ted bn t '1 ni ndexed software components. We discussed the ad vartag.;>s of I\sing natnral-Ianguage doc­
llmentat.ion 1\9 opposed to source code. assuming a.ny documentation'is availahle, a.., a source of functional
inform1l.tion. We then described a new free-text indexing scheme. fdr ant.omatkally prod1lcing document
!lign<'l.tllr~s. based llpon 11. richer unit than single term." the lexica.l ~mnit.y. All Msociated software com­
p0nents cOldd I.hen be classified, storerl, c0mpued and rel.riew·rI. I·ia. linpltr "r rin!'ltpr-bMeri t""C"hniqnes,

:\("C"r>rding to these indices.

These methods a.nd schemes are embodied in 11. new tool whirh h:\.~ ""pn implement",rI and evahl1\ted
for retriev<'I.1 effectiveness. The eva.lua.tion compued GURU with I.hl' fNF'oF:xrr,ORF:R hyp .. rt.ext library,
hllilt specifically to help find software components in the Alx system. Thp 1\verag~ recall-predsion cnrves
of hoth tools were computed. The results ()f this t~st indicate that OHnrr's perform1\nce wa.'! better than
[NFOF.:XPLORF:R. This resnlt is very encoar1\ging since INFoEXF'LORF:R W:\.'1 murh more expensive to bnild

a.nd specifica.lly tailored to the A IX library.

The major contriblltion of this work consists of bringing c1assical1l.nrl new information retrieva.l tech­
niques to bp.ar in ~oftwltre rense. This involved:

• Designing a new indexing scheme based on high information ("ontent lexical affinities.

21

I Recall I GURU precision I INFO precision I Improvement

0.1 f).85 0.7 15%
0.3 0.84 0.68 15%
0.5 0.76 0.56 20%
0.7 0.58 0.4 18%
0.9 0.52 0.39 13%

Precision

l.0

n.5 GURU

[NFOExPLORER

n.5 I.n R.ecall

Fignre 9: P recision-recil.lI cu rves (means acro'!" 'l'lerit''1)

25

• Adapt.inl1; dassical nlJm'!ri"'al dl1~t"'r analy~i~ techniql1'!~ for 't!;~"'",hlin~ ~oftw'tr~ "'''mp''nent~ into
"r"w~e hi'!rarchies .

• D~~il1;ning retrieval m",cha.nisms specifically adapt.ed to the LA.ha.~eri inrl"xing scheme ~o 'is to provid'!
a. ~I)mplet'! slora'Se 'l.nri ret.rieval fram'!work.

Finally, the ,!valuation we hav'! performed seems to indicate that. Salt.on·~ M.atemen t. a.bollt t.he limit.ation
of the "phrase generation" approach in indexing (See Section 3.1) is overly pl"ssimistic and that significant
improvem'!nts over single terms t.echniques can b'! achieved at relatively lnw cost..

Acknowledgments

Y. ~harek performe<:l. part of this work while at the Technion. Department of Computer Science. Haifa..
Israel. partly sllpported by a G'ltwirt.h Fellowship. G. Kaiser is sl1pport.erl by National Science Fonndation
grants CDA·892fl080. CCR·8858029 and CCR·8802741. by grants from AT.~T. BNR. Citicorp. DEC. IBM.
Siemens. S1\ n and Xerox. by the C'!nter for Ad vanced Technology and by t.h", ('",nt.er for Telecommllnica.·
tions Resea.rch.
We wOltld lik", to tha.nk Mark Kennedy who helped a lot in th'! d"'<;ign 1\nri implementation of GURU's ~
ret.rieval component..

References

liJ M. Adan~on. [{i3toi,.~ Nfltu,.d/~ du Sin;'gili. Coquillagtj. AI'~c III rdllli"n Ilbr;gi~ d"1n "(lyllg~ jllit m
a pfl'J3. p~ndllnt 1~3 anni~j 17 •. 9.50.51.52 et 5.J. Bauche. Paris. Franc", • .1757.

[2J B.P. Allen anri S.D. L .. p. A knowlerig'!.based environment for the d"\'",lopment of software parts
composit.ion syst'!ms. Tn Pr"a~ding., "f th~ Illh [CSE. pages HH-112. Pitt.sbl\rgh. PA, May 1989.

[:1J S.P. Arnold ",nd S.L. Stepow1\.Y. The reuse system: C'l.talo~ing 1\.nd r".trieval of rellsable software.
In W. Tracz ... di tor. S"fflUtlr~ R~rue: Emerging T~chnol(lgy. pagoe~ I :18- HI. Com pll ter Society Press,
1987.

[·1J R. Ash. [nf"rrnlltion Th~(lry. Interscience Pl1blishers (,John Wilpy .~ S0ns). New York. 1965.

[!lJ D.C. Blair and M.E. Maron. An evaluation of retrieval elTecti\·pn('~s fM a fllll·text doc 11ment retrieval
systpm. Communicationj of the ACM. 28(:3):289-299. M1\.rch 1!'l~!l.

[nJ B.A. Bruton, R. Wienk Aragon, S.A. Aail".y. K.D. KMlher. 'l.nri L.A. M:tyf'~. The r"1\sable software
library. In W. TrllCZ. editor. S"jtUlar~ Re'I.,~: Emer!}ing Tuh""I"!J!I. pag"'! 12g-137. Cr)lnp'lter Society
Pre!';s. 1987.

[7J F. Can and E.A. Ozkarahan. A chlstering scheme. Tn r,."rmli"g., "j S[(;[R'/t1. pages 115-121.
Bethpsd1\., ~fD. J'1ne 1983. ACM PrlO'ss.

[~l F. de S!l.u!lsuroe. C()ur$ de f,ing"i3tiq'u G;'nirale. Q1jatri~me Editi,,". Lihrairie Payot, Paris. France.
1949.

[9] S. Det"rwester, S.T. Dumais. G.W. Furnas, T.K. Landal1er. 'l.nri R. II'l.r'lhman. Indexing by Ia.tent
semantic A.nalysis. Jo"rnal"j the Am~rican Soci~t'J f()r ["j(),.",nti"" Sri,"", .1l(fi):391 .. 407, 1990.

26

[lOJ P. Dev nbll. Re-use of software knowledge: A progres~ report.. Tn Third rlnn7lal Worbhop: ,\.fethods
lInd Tnnls for Rwu, Syracuse, NY .. 1tIne 1990.

[11) P. D"!vanbll, P.G. Selfridge. B.W. Ballard, and R.J. Brachman. A knowledge-based software informa-
tion !lystem. In Prnceedings of IJCAJ'S9, pages 110-115, Detroit. Mr. AlIgllst 1989.

[121 E. Diday, .1. Lemaire, and F. Testn. Eliments d'Analyu des D"nnb.,. Dllnod, Paris. France. 1982.

[13] B. Everitt. Cluster Analysis. Halsted Press (John Wiley & Sons). New York, 1980.

[14J W.B. Frakes and P.B. Gande!. Classification, storage and retrieval of rellsable components. In N.J.
Bdkin and C.J. van Rijsbergen, editors, Proceedings of STGTR '89. pages 251-254, Cambridge, MA,
.Jllne 1989. AC~1 Press.

[15J W.B. Frakes and B.A. Nejmeh. Software reuse through information retrieval. In Proc~edings of the
20th Annual HTCSS, pages 530-535, Kona, HI. January 1987.

[16J A. Griffiths, L.A. Robinson, and P. Willett. Hiera.rchical agglomerat.ive c1l1stering methods for allto­
matic document classification. Journal "f Documentation. 40(3):175-205. Septemb"!r 1984.

[17] W. Harrison. A program development environment for programming by refinement and reuse. In
Procudings 0/ the 19th HTCSS, pages 459-469. Kona. HI. 1986. CS Press.

[l8) T. Ichikawa and M. Hirakawa. Ares: A relational databa.'!e with the capabilit.y of performing flexible
interpretation of q'leries. IEEE Transactions of Snftwar~ En!Jinurillg, 12(5):ti24-634, ~1ay 1986.

[19J N .. Jardine and C.J. van Rij!'!bergen. The use of hierarchic clnstering in information retrieval. Tnfor­
malinn Slorflge lIud Retriel'fll, 7(5):217-240, December 1971.

[20] S.M. Kaplan and Y.S. Maarek. Incremental. maintenance of semantic links in dynamically changing
hypertext systpms. Tntf.ractin!J with Computers, December 1990. In pres~.

[2Ij P.H. Klingbiel. Machine-aided indexing of technical literature. Infnrmlll;n" Storage find RetrielJal,
9:79-84. 197:3.

[22J G.N. Lance and W.T. Williams. A general theory of classificatory sorting strategies. Cnmputf.r
JOlsrnlll, 9::373-:380. 1967.

[231 M. Lllhn. The alltomatic creation of literatllre abstracts. IBM '/"'Irnal of Reuareh and Df.vdopment.
2(2):159-1()5, April 1958.

[21] Y.S. Maarek. Using Structural Tnformalion for Mflnaging \'rr!1 [a7'!J1' Snfllllfire System .•. PhD thesis,
Technion, Israel Institute of Technology, Haifa. Israel. Jannary 1989.

[25J Y.S. Maarek. An incremental conceptnal clustering algorithm with inpnl-orriering bias c0rrection. In
M.C. Golumbic, editor, Advance.! in Artificial In I ellig m CI'. Nflt'lral {'nn!J"lIge and Knnwledge Base
Sy.lIem .•. Springer Verlag, 1990.

[2tiJ Y.S. Maarek and G.E. Kaiser. On the Ilse of conceptual clustering for c1a..'1sifying reusable ada code.
In Ada [,dter .• , Using Ada: ACM STGAda Internationlll Cn"/rrmrl'. pi\l1;e~ 208-215, Roston, MA,
December 1987. ACM Press.

[27J Y.S. Maarek and F.A. Smadja. Full text indexing based on lexical relations. an application: Software
libraries. In N.J. Belkin and C .. J. van Rijsbergen, editors. Pracudi71g., n/ SIGIR '89, pages 198-206,
Cambridge. MA. June 1989. ACM Press.

27

[28] W . .J.R Martin. B.P.F. AI. and P .. I.G. van SterkenblHg. On I.he proc,,"s!ling of a. I.ext corpllS: From
textlla.l data to lexicographic information. In R.R.K. Hartmann, editor. L,ricflgraphiy: Principle" and
Practice. London, 1983. Applied Langllage Studies Series. ACil.demic Prl"ss.

[29] R. Michalski and R. St.epp. Alltomated constructions of cla.~sifications: Conceptual clustering verslls
numerical taxonomy. IEEE Tran"action" nn Pattern Analysi" and Machine Intelligence, 5(4):396-409 •
.J uly 1983.

[30] R. Prieto Diaz and P. Freeman. Classifying software for reusability. IEEE Software, 4(1 }:6-16 . .January
1987.

[31] G. Salton. Alltomatic text proCfHing. thl'! tranJlormation. analy"i" and retrieval of in/flrmalion hy
compllter. Addison-Wesley, Heading, MA, 1989.

[32] G. Salton and Mool. McGill. Introduction 10 Modern Information He/riefiaL Computer Series. McGraw­
Hill. New York. 1983.

[33] G. Salton and M. Smith. On t.he application of syntactic methodologies in automatic text analysis.
In Procuding., of SIGIR '89, pages 137-150. Cambridge. MA. June 1989. ACM Press.

[34] R. W. Schwanke. R.Z. Altllcher. and M.A. Platoff. Discovering. visllalizing and controIlIing software
structure. In Proceedings of the Fifth International Worbhop on Sn//wart' Specification .• and Design. ~
pages 147-150. Pittsbllrgh. PA, May 1989.

[35] F.A. Smadja. Lexical CO-OCCllw~nce: The missing link. JOlo'nnl nf th,. A,'-'ociation for Literary and
Linguistic Campllting. Orford Univerjity PreH, 4(3), 1989.

[36] K. Sparck .Jones and .J.I. Tai t. All tomatic search variant generat.ion. Journal of Documentation.
40(1):50-66. March 1984.

[37] W.F. Tichy, R.L. Adams, and L. Holter. NLH/E: A natnral-Iangllage h~lp !lystem. In Procudingj of
thi! 11,h ICSE. pages 364-.'3H, Pittsburgh. PA, May 1989.

[38] CoOl. van Rijsbergen. Iliformation RetrieliaL BuUerworths. second I"riition, 11)79.

[:39] M. Wood and 1. Sommerville. An information retrieval sy!ltp.m for software components. SIGIR
Forrlm, 22(3.4}:11-25. Spring/Summer 1988.

28

