An Information Retrieval Approach for

Automatically Constructing Software Libraries

Yoélle S. Maarek
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

yoelle@ibm.com

Daniel M. Berry
Technion, Israel Institute of Technology

Computer Science Department
Haifa, 32000, Israel
dberry@techsel.bitnet

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027

kaiser@cs.columbia.edu

September 1990
CUCS-049-90

©1990 Yoélle S. Maarek, Daniel M. Berry and Gail E. Kaiser.

1



An Information Retrieval Approach for Automatically
Constructing Software Libraries

Yoélle S. Maarek Daniel M. Berry
IBM Thomas J. Watson Research Center Technion, Israel Institute of Technology
P.O. Box 704 Computer Science Department
Yorktown Heights, NY 10598 Haifa, 32000, Israel
yoelle@ibm.com dberry@techsel.bitnet

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027
kaiser@cs.columbia.edu

Abstract

Although software reuse presents clear advantages for programmer productivity and code reliability,
it is not practiced enough. One of the reasons for the only moderate success of reuse is the lack
of software libraries that facilitate the actual locating and understanding of reusable components.
This paper describes a technology for automatically assembling large software libraries that promote
software reuse by helping the user locate the components closest to her/his needs.

Software libraries are automatically assembled from a set of unorganized components by using
information retrieval techniques. The constriction of the library is done in twa steps. First, attributes
are antomatically extracted from natucal language documentation by using a new indexing scheme
based on the notinns of lexical affinities and quantity of information. Then, a hierarchy for browsing
is automatically generated using a clustering technique that draws only nn the information provided
by the attributes. Thanks to the free-text indexing scheme, toonls following this approach can accept
free-style natural language queries.

This technology has been implemented in the GURU system, which has been applied to construct
an organized library of AIx utilities. An experiment was conducted in arder to evaluate the retrieval
effectiveness of GURU as compared to INFOFXPLORER a hypertext library system for Aix 3 on the IBM
RISC System/6000 series. We followed the usual evaluation procedure used in information retrieval,
based upon recall and precision measures, and determined that onr system performs 15% better on a
random test set, while being much less expensive to build than INFOEXPLORER.

Index Terms: automatic indexing, clustering, information retrieval, lexical affinities, software li-
braries, soltware reuse.

"



1 Introduction

Software reuse is widely believed to be a promising means for improving software productivity and relia-
bility [14], and therefore is an issue of growing interest in software engineering. Unfortunately, not enough
adequate libraries of reusable software components are available. By adequate, we mean that the library:

o provides a sufficient number of components, over a spectrum of domains. that can be reused as is
(hlack-bozr reuse) or easily adapted (white-bor reuse), and

e is organized such that existing code closest to the users’ needs is easy to locate. In particular. the
library should provide mechanisms to help the reuser look for “functionally close” components that
meet some given requirements.

This paper is concerned with the second adequacy issue, and more generally with library systems that
provide means for representing, storing and retrieving rensable components.

The first stage in building a library consists of indezing the objects to be stored in it. that is, producing
a set of characterizing attributes, or signature, for each of these objects. The signature for each object
represents the reusable object. Therefore, the qnality of indexing is crucial to the quality of the library.
Functionality is an important aspect of software components. Thus, it is necessary to include conceptual
information about functionality in the indices. Unfortunately, conceptunal information is difficult to obtain.
Few programmers provide conceptual indices for their code. Moreover, even if provided, they can hardly
be expressed under a common formalism since pieces of code typically originate from multiple sources. One
solution is to manually index software components a postertori according to a given classifying scheme,
but this task is both arbitrary and tedious.

As an alternative, we propose to automatically identify indices by analyzing the natural-language
documentation, in the form of manual pages or comments, usually associated with the code. Natural-
language docnmentation is clearly a rich source of conceptual inflormation. However, this information is
contained only implicitly, in an nnstructured way, and is not nsable as such. In order to extract usable
information from free-style documentation, we propose to use information retrieval techniques. Once the
indices have been produced. components can be automatically classified, stored and retrieved according
to their signatures.

The classifying stage in the construction of a library consists of gathering objects into classes such
that the members of the same class share some set of properties. The basic motivation for classifying is
to facilitate browsing among similar components in order to identify the best candidates for reuse. So
that, during retrieval, a set of potentially adaptable components can be easily located. Browsing is more
important for software libraries than for other kind of libraries, since there rarely exists a component
perfectly matching a user's query. Moreover, local browsing allows the nser to discover unanticipated
opportunities for reuse,

We have designed and implemented a tool, GURU, that embodies the above approach. GURU auto-
matically assembles conceptually structured software libraries from a set of unindexed and unorganized
software components. In the first stage, GURU extracts the indices from the natural language documenta-
tion associated with the software components to be stored, by using a new indexing scheme. This indexing
scheme i3 based on lerical affinities and on their statistical distribution. It identifies a set of attributes
for each document to represent a functional description of the associated software unit. In the second
stage, GURU assembles the indexed objects into a browsing hierarchy by using a hierarchical clustering
technique that draws information exclusively from the indices identified in the previous stage. Thus, GURU




supports both classical linear retrieval, in which candidates are ranked according to a numerical measnure
that evalnates how well they answer the query, and cluster-based retrieval in which the browse hierarchy
directs the search for the best candidate.

Section 2 briefly compares the artificial intelligence and information retrieval approaches to construction
of software libraries and explains why we follow an IR approach. Section 3 describes the indexing method.
Section 4 presents the classification approach and the clustering technique used for assembling the library.
Section 5 deals with the retrieval stage. Section 6 givesresults using our GURU implementation and a formal
evaluation based on nsual methodology for evaluating information retrieval systems. Finally. Section 7
summarizes the main contributions of this work. Related work is discussed as relevant throughout the

paper.

2 Al vs IR approach

Previous efforts for building rense systems can be roughly classified into two groups according to the
approach adopted, the information retrieval (IR) approach or the artificial intelligence (AI) approach.

The IR approach consists of drawing information only from the structure of some documents that
provide information on the software components. No semantic knowledge is used and no interpretation
of the document is given: the reuse tool attempts to characterize the document rather than understand
it. There are currently very few software library systems that follow an IR approach, or use existing
IR techniques. Among them, the RSL system, [6] for instance, automatically scans source code files and
extracts comments explicitly labeled for reuse with attributes such as keyword, author, date created, etc.
The keyword attribute provides a list of free-text single-term indices very much like those used in IR
tools. The REUSE system [3] provides a menu-driven front end to an information retrieval system, thus
all kind of software objects (inclnding user menus and system thesauri) are stored as textnal documents.
Thnus, the Lwo previous systems use some kind of IR related technique, however the only system, to our
knowledge, that applies a pure IR approach is the system proposed by Frakes and Nejmeh [15]. They
nse the CATALOG information retrieval system for storing and retrieving C software components. Each
component is characterized by a set of single-term indices that are automatically extracted from the
natural-langnage headers of C programs. Therefore, the construction of the C components repository is
done antomatically, and does not require any pre-encoded knowledge as in RsL for instance.

In contrast. in the Al approach, the rense tool aims at nunderstanding the queries and the functionality
of components before providing an answer. Al-based systems are often smarter than IR systems. Some
of them are context sensitive and can generate answers adapted to the nser’s expertise. As a tradeoff,
they require some domain analysis and a great deal of pre-encoded semantic information. which is nsnally
provided mannally. They are based npon a knowledge base that stores semantic information about the
domain and about the language itself in case of a natural-langnage interface. The main problem of applying
this approach in the context of software libraries is that many domains cannot be easily circnmscribed and
the domain analysis is very difficult [10]. This makes the construction of such systems very tedious and
expensive. Examples of Al or knowledge-based rense tools are numerons, e.g.. [30], [39], (2], [11]. [37].

The AI approach can be useful in some applications. However. we prefer the IR approach for reasons
of
¢ cost: the library system is built entirely automatically,

o transportability: the library system can be rebuilt for any domain since it does require manually




provided domain knowledge,

¢ scalability: the repository can be.easily updated when new components are inserted, either by re-
compiling the indices or by applying incremental techniques, the indexing task is entirely mechanical.

We therefore propose to apply a pure IR approach, in the same direction of research as Frakes and
Nejmeh, by automatically building free-text indices that characterize software components. We also pro-
pose to use an indexing scheme richer than the single-term indexing used in the IR-based tools described
in this section so as to achieve a better retrieval effectiveness. The following section explains our source
of information and how the indexing is performed.

3 The Indexing Stage

The major advantage of automatic indexing over manual indexing, besides the obvious cost considerations,
is that it allows a unified scheme, insuring that indices will be compatible with each other. The idea is
to extract attribntes {from an existing source of information, i.e., the code and the natural-langnage
documentation. Some work has been done towards extraction of primitive functional information from the
code {26], [34], however, the richer sonrce of functional information is the natural-language documentation,
assuming any is available.

An examination of numerous samples of code allowed us to reach the conclusion that some useful
. information can be extracted from programs written in a high-level language using good programming
style, whereas little conceptunal information can be found in typical real-world code chosen at random
[24]. Unfortunately, even when dealing with well-written code, there is a very low probability that the
programming styles of the varions pieces of code will be consistent. Fven a single programmer may
use totally -different identifiers for expressing the same concept from one day to another. Since software
components come from multiple sonrces in the context of large software libraries, extracting attributes
from code would necessitate as many indexing schemes as there aré code sonrces. Another limitation
comes from the fact that there are many more possibilities for identifiers than for natural-language words
since they do not follow any morphological or syntactic rules.

In other words, when there is no way to guarantee good, and let alone consistent and compatible,
programming styles, extracting attributes from raw code does not give significant resnlts. Therefore, we
prefer concentrating on the other possible source of information, i.e., the natnral-language documentation
either inserted into the code, i.e., the comments, or associated with the code, e.g., manual pages.

Comments are intended to help programmers nnderstand the code and thns may provide functional
information. They deal with specific parts of the code into which they are inserted, and they may give
information on varions parts at various levels of abstraction. Fxtracting functional information from
comments entails two activities,

¢ defining an indexing scheme that allows extracting attributes from natural langnage phrases or
sentences. and

¢ relating comments to the portion of code they concern.
The second activity is very complex in {ree-style code. Indeed, in free-style programming, programmers

can insert comments wherever, and in any format and any length, they wish. Althongh comments usually
describe the containing routine or the one just below, in general it is impossible to automatically determine




what part of the code is covered. A solution would be to consider that all the comments inserted in a specific
piece of code constitute a global natural-language description of the considered code. Unfortunately, thisis
not the case. Comments rank from low-level implementation details to high-level description. For instance,
in the rm.c source file in Berkeley UNIX, one can find comments as varions as:

/* current pointer to end of path */, or
/* rm - for ReMoving files, directories & trees. =*/

The first conveys no nseful functional information while the second hits the mark exactly. In general, there
are many more low level. and nseless for our purpose. comments than high level ones. ard there is no way
to automatically distinguish between them. Therefore, so long as no style is enforced, it is very difficult
to extract usefu] information from comments.

Let us note, however, that any piece of natural language, from comments inserted in the code to
design specifications, which is specifically related to software code and whose level of abstraction is known
can bring nseful information. Thus, we are currently working on extracting functional information from
comments in the framework of RPDE (17], a structured software development environment. in which
comments are linked to the portion of code they describe. In the following, though, we try to remain as
general as possible. and we do not assume that any commenting style is enforced. Therefore, although our
indexing scheme is applicable to any piece of natural-language that brings some functional information,
we will exemplify it through the analysis of manual pages clearly related to rensable components, such as
UNIx-like mannal pages. :

In the rest of this paper, the AiX documentation is taken as onr corpus since it fulfills the requirement
of being structured into manual pages. Moreover the A1x docnmentation can be seen as a regular real-
world documentation database since it is of average quality as far as commenting style is concerned. Many
even consider the AIX docnimentation of poor quality when compared to Berkeley UNIX documentation
due to typos. inconsistent style, poor vocabulary, etc.

3.1 A Richer Indexing Unit: the Lexical Affinity

There has been mnch work in IR dealing with natural-langnage text, a large variety of techniques have
been devised for indexing, classifying and retrieving documents [31]. One of the main concerns in IR is the
antomatic indexing of docnments, which consists of producing for each document, a set of indices that form
a signature of Lthe document. A signature is a short-form description of a docnment, easier to manipulate
than the entire document. which plays the role of a surrogate at the retrieval stage.

Several issnes need to be addressed when indexing a docnment with respect to the natnre and the form
of the produced indices. More precisely, the indexing vocabnlary can be either controlled or uncontrolled.
In the controlled vocabulary approach only a restricted set of indices are anthorized {e.g., in MEDLARS
[32]), whereas in the uncontrolled vocabulary, or free text, approach, there is no constraint on the nature
of the indices. It has been shown that both approaches are comparable in terms of performance, [14],
[32], however we prefer the uncontrolled vocabulary approach in the context of software reuse. for the
same reasons of cost, portability and scalability. Indeed. defining an adequate controlled vocabulary is
a manual, domain-dependent task and. therefore, suffers from the same drawbacks as the encoding of a
knowledge-base.

Another important issue in automatic indexing deals with the nature of the indices. The most usnal
form is single-term index. in which single words without contextual information are selected as indices.
Unfortunately, single term indices are often too specific or too broad and can induce ambiguities. Therefore,




it has been proposed to take term phrases as indexing units rather than single terms so as to refine the
meaning of constituent words. However, the use of word co-occurrences has not brought good results: as
expressed by Salton [31] (p 296):

“

a phrase-formation process controlled only by word co-ocenrrences and the docnment
{requencies of certain words is not likely to generate a large number of high-quality phrases.”

As an answer to this problem, a possible solution has been to add syntactic criteria in order to provide
further control in phrase formation, such as part-of-speech nsing specially formatted dictionaries {21]. or
more refined analysis inclnding semanties [36]. But,

“The available options in phrase generation appear limited, and the introdnction of costly and
refined methodologies may bring only marginal improvements.” [31] (p 298)

We are more optimistic, and believe that indexing units richer than single terms can be used and bring
significant improvement at low cost. The atomic unit we propose to use in order to demonstrate this is
derived from the notion of lerical affinity. In linguistics, a syntagmatic lexical affinity (LA), also termed
lexical relation, between two units of langnage stands for a correlation of their common appearance in the
utterances of the language [8]. The observation of LAs in large textnal corpora has been shown to convey
information on both syntactic and semantic levels, and provides us with a powerfnl way of taking context
into account [35)].

We propose to nse the notion of LA for indexing purposes, and restrict the above definition by observing
LAs within a finite document rather than within the whole language so as to retrieve conceptual affinities
that characterize the document!, rather than purely lzzical ones. Moreover, we only consider LAs involving
open-class words as meaning-bearing, whereas LAs involving closed-class words? are not.

Ideally, LAs are extracted from a text by parsing it since two words share a lexical affinity if they are
involved in a modifier-modified relation. Unfortunately, automatic syntactic parsing of free-style text is
still not very efficient [33]. Instead, we make nse of simple co-occurrence. It has been shown by Martin et al.
that 98% of lexical relations relate words that are separated by at most five words within a single sentence
[28]. Therefore, most of the LAs involving a word w can be extracted by examining the neighborhood of
each occurrence of w within a span of five words (-5 words and +5 words aronnd w).

The extraction technigne consists of sliding a window over the text and storing pairs of words involving
the head of the window (if it is an open-class word) and any of the other open-class elements of the window.
The window is slid word by word from the first word of the sentence ta the last, the size of the window
decreasing at the end of the sentence so as not to cross sentence houndarirs?, since lexical affinities cannot
relate words belonging to different sentences. The window size being smaller than a constant. the extraction
of LAs is linear in the nnmber of words in the document. An algorithm for the sliding window technigne
is presented in Fignre 1. Maarek and Smadja have used a similar technique in [27], which was also based
on Martin's results {28], but more adapted to the analysis of large corpora.

In snmmary, the first stage in indexing a mannal page consists of extracting all the potential LAs by
using the sliding window technique, and storing them under their canonical form, in which each word
is represented by its inflectional root (or lemma). An example of the potential LAs extracted from the

'rather than the whole language.

2In general, open-class words include nouns, verbs, adjectives and adverbs, while closed-class words are pronouns, prepo-
sitions, conjunctions and interjections.

3The isolation of sentences is the only parsing performed.




For each sentence § in the document 4
For each word w in § from the beginning to the end of S
w — lemma(w)
(where lemma(w) represents the inflectional root of w)
EndFor
For each lemma w in § from the beginning to the end of §
If wis an open-class word then
Let wy,..., w, be the n words immediately following w in S
(where n = 5 except when the end of the sentence is reached earlier)
For i=1ton
If w; is an open-class word then
Get f. frequency count of {w, w;}
(f = 0 when the LA has not been encountered before)
Store {w, w;} with a frequency count of f + 1
EndIf
EndFor
EndIf
EndFor
EndFor

Figure 1: Sliding window technique

manual page of mv in AIX and ranked by frequency of occurrence are presented in Table 1. For the sake
of the comparison. a list of the single words extracted from the same manual page is shown in the first
column, also ranked by frequency of appearance.

Among the extracted lexical relations, some correspond to abstractions of the considered document,
and some do not. Since we are interested in indexing textual documents, in the first stage. we isolate
actual affinities by nsing frequency criteria. [t has been demonstrated that the frequency of occurrence of
a term within a docnment is related to the importance of the word in a text [23]. This is also true for the
common appearance of pairs of words and even more for lexical affinities.

3.2 From LAs to Indices

When analyzing a document. many potential lexical affinities are thus identified. Some of these lexical
aflinities are conceptually important and some are not. As seen in Tahble |, {requency of appearance is a
good indicator of relevance. However, some noise exists, mainly due tn wards appearing too often in a
given context. In order to reduce the influence of such words, it is necessary in the second stage to select
from among the lexical affinities identified only the most representative ones. i.r., those containing the
most information.

We have defined a measure evaluating the resolving power of an LA. Tt is based npon the quantity of
information of each of the words involved in the LA, as well as upon the frequency of appearance of this
LA within the considered document. The guantity of information of a word within a corpus is defined as:

INFO(w) = - logy(P{w}) (1)

where P{w} is the observed probability of occurrence w in the corpus [4]. [32]. Therefore, the more




open-class words | freq || LAs freq
file 30 file move 9
directory 14 be file 8
mv 11 directory file 7
files 8 file system 5
new 7 file overwrite 5
name 7 file mv 5
move 7 file name 4
newname 6 name path 3
is 6 do file 3
system 5 directory move | 3
one 5 different file 3

Table 1: Keywords and lexical affinities classified by frequency in the mv mannal page

frequent a word is in a domain, the less information it carries. From this definition, we infer the definition
of the quantity of information of an LA (w;, wp) as:

INFO((wy, wo)) = - logy(P{w1, wa}) (2)

To simplify the computation of this factor, in the rest of this work, we consider words within the textual
universe as independent variables'. Thus, we use the following formula for computing the quantity of
information of an LA.

INFO((wy. wa)) = — logy(P{wn} x P{uwz}) (3)

Then, we define the resolving power of an LA in a given document as follows. Let (u.w,, f) be a tuple

retrieved while analyzing a document d, where (wy,w;) is an LA appearing f times in d. The resolving
power® of this LA in d is defined as:

p((wr w2, f)) = f x INFO((w;, 7)) (4)

The higher the resolving power of a lexical affinity is. the more characteristic of the document it is.
The resolving power allows ns to evaluate the importance of a lexical affinity within a text by taking into
account both its frequency of appearance in the text and the quantity of information of the words involved.
Thus, even thongh the lexical affinity (be file) appears very often in an AIX mannal page. it has only
a small resolving power, simply because the quantity of information of hoth the words “file” and “be” in
the AIX docnmentation is low.

In order to be able to compare the relative performances, in terms of resolving power, of different
documents, we transform the raw p score into a standardized score. The standardized score, or z-score,
is defined as p, = (p — p)/o where p and o are the average and standard deviation of the p-values. This
transformation does not alter the distribution and allows us to evalnate the relative status of the score in
the p distribution. In the rest of this paper, the p-values we give as examples will therefore represent the
z-score rather than the raw score,

“This assumption represents only an approximation since words in English are definitely not independent, but are dis.
tributed according to the rules of the language.
3This notion is related to that of mutual information [4].



Table 2 compares the list of LAs for the mv manual page ranked hy frequency and by resolving power.
Tn it, the LA (file move) has a greater.resolving power than any of the following LAs. Moreover. some
noisy LAs such as (do file) or (be file) (in italic fonts in the table) have disappeared because both words
involved in the LAs are highly frequent in the corpus and thus have a low quantity of information.

LAs freq LAs I

file move 9 file move R.38
be file 8 file mv 4.36
directory file 7 directory file 4.03
file system 5 file overwrite 3.87
file overwrite 5 directory move | 1.98
file mv 5 file system 1.95
file name 4 mv rename 1.71
name path 3 move mv 1.58
do file 3 different file 1.40
directory move | 3 name path 1.33

Table 2: Comparison of frequency and p-value for the LAs in mv

For each document, we select as indices those LAs with the highest resolving power. More precisely, we
are interested in the LAs that represent peaksin the distribution of p-values . Therefore, we keep as indices
. only the LAs whose p value is one standard deviation above the mean, t.e., such that p > p + o, where
7 represents the mean and ¢ the standard deviation of the distribution of p valies within one document.
The choice of such a threshold® is reflected in Tables 2, 3 and 4, where only LAs with a z-score greater
than 1 are presented.

The set of LAs of a document selected by ranking p-values and taking those one standard deviation
above the mean forms the signature of the document. The major contribution of this technique consisted
in adapting the notion of lexical affinity for indexing purposes. We gave some intuitive indications on
how an LA-based indexing scheme is richer than a single-word scheme. We will demonstrate later that it
ensures a better retrieval effectiveness.

The next section explains how software components can be stored and classified using the signatures
produced at the indexing stage.

4 The Classifying Stage

Normally. when a user wants to use a software library, s/he first has to access a library that might contain
the desired component, then has to provide a formal description of the researched component according
to the vocabulary understood by the library system. Unfortunately, in most cases, this ideal scenario does
not work ont. The main reason is that in real life applications, the component perfectly matching the
user’s requirements does not exist in the library, or it is not indexed as the user had guessed it would be.

In such cases, a traditional database management system fails to help the user. Indeed, to be retrieved
from the database., a component must exactly match the query’. Such strict matching is inappropriate

% This classical threshold guarantees to keep only a small percentage of the sample elements in most distributions.
TA notable exception is ARES [18], a relational database that allows flexible interpretation of queries. In ARES the




LAs p:

copy file 6.49
directory file 2.47
file source 2.15

infile subdirectory 1.98
contain subdirectory | 1.30
copy Cp 1.30
copy regular 1.02

Table 3: LAs ranked by p-valunes for cp

LAs o

directory make 5.08
create mkdir 2.74
directory mkdir 2.55
directory permission | 1.48
directory write 1.03

Table 4: LAs ranked by p-values for mkdir

in a software library system since the user often cannot know the exact characteristics of the desirable
component and, even when s/he does, there is rarely a perfect match.

Software libraries should not only permit retrieving candidate components that perfectly or partially
match the query, but also permit browsing among components that share some {nnctionality. It is therefore
desirable to structure the library for making the search, retrieval and browsing mechanisms as fast and
convenient as possible, in order to make the access to the library attractive.

We propose here to perform the search and retrieval operations nsing a conventional inverted index
file structure. and to cluster the library in order to facilitate the browsing operation. Section 4.1 explains
how the index repository is built nusing an inverted file structure, and Section 4.2 presents the clustering
techniqne nsed to build the browse hierarchy. Section 5 explains how they are nsed to perform the search
and browsing operations.

4.1 Building the index repository

The goal is to allow a fast and easy identification of candidate components at the retrieval stage. Thus,
we derive {rom the signature repository built at the indexing stage another repository for storing, for each
word, the LAs involving that word, and pointers to the documents in which it appears. Let us denote:

¢ W the universe of words

¢ D the universe of documents.

Index LAs are defined as tuples (w, w’, p) where w is smaller than w' in the lexicographic order and p
is the resolving power of this LA in a considered docament. The reason for ordering w and w' is to avoid

similarity between elements can be evaluated via a lookup in a table that has to be provided beforehand. ARES is not
discussed here since its purpose is not to classify software. Further, it has the drawback of requiring a great deal of pre-
encoded knowledge.

10



duplicate LAs by forcing every LA into a canonical form.

The index stored in the repository is represented as a mapping defined as follows:
weW = Mw)={(z.p,d) € W x [1,c0| x D |either (w,z.p) or (x,w.p)is an LA of d} (5)

The mapping ) is stored as a trie data structnre. The mapping o between documents to their signatures
is also stored using a trie data structure:

deD — o(d)={(w w'. p)eW? x[l.co[|(w.w' p)}is an LA of d} (6)

In implementing these mappings, tries are usually faster than hashing schemes, although they consume
more memory. In this case, {ast access is a basic requirement for making the retrieval stage attractive.
These two mappings are the basic operations we use to retrieve and rank candidates as explained in
Section 5.

4.2 Building the browse hierarchy

As explained previously, browsing is crucial in software library systems. The most common way to make
browsing operations possible is to group items judged to be similar by using clustering operations [31].
Jardine and van Rijsbergen [19] pointed out that “associations between documents convey information
about the relevance of documents to requests”. They demonstrated that cluster-based retrieval strategies
are as effective as linear strategies and much more efficient. Thus, many clustering methods have been
used for information retrieval [19], {7]. [16]. The most popnlar clustering methods are the hierarchical ag-
glomerative clustering (HAC) methods because their search and construction techniques are more efficient
than for most non-hierarchical methods [19].

The following sections define some terminology in cluster analysis, describe the algorithms we used
to build the browse hierarchy, and present some samples of the browsing hierarchy obtained for the AX
library.

4.2.1 Some terminology in cluster analysis

Classification by clnster analysis has been of long-standing interest in statistics as well as varions other
fields. Tt can be traced back to the work of Adanson in 1757 (1], who used numerical clustering for classifying
botanic species. Statisticians and taxonomists have widely developed the field since then. Cluster analysis
now offers a wide range of techniques for identifying underlying structures in large sets of objects and
revealing links between objects or classes of objects. One particular application of classification is the
building of libraries.

There is no strict definition of cluster, but it is generally agreed that a cluster is a gronp of objects
whose members are more similar to each other than to the members of any other group. Typically. the
goal of cluster analysis is to determine a set of clusters, or a clustering, such that inter-cluster similarity
is low and intra-cluster similarity is high. The similarity between objects is evaluated via a numerical
measure called a dissimilarity inder defined as follows.

Definition 1 Let ) be a set of objects. A dissimilarity index 6 over Q2 is a function from OxQ to Ry
that satisfies the following properlies,

(1) Yo € {2, §(0.0) = 0. (7)

11



(1) Y(0.0') € 02, §(0,0') = 8('. 0). (R)

Note that a distance is a dissimilarity index but that a dissimilarily indexr does not necessarily satisfy the
triangle inequalily and therefore ts not a distance.

The dissimilarity index between objects is used as the basic criterion to determine clusters. Clustering
techniques allow identifying not only clusters but also relationships among them. The structure of the
set of clusters as well as their internal structure vary with the clustering technique. Clustering methods
are usually classified® according to the structure of the set of clusters produced. e.g, hierarchical, flat.
overlapping. etc.. as well as the technique used, e.g.. divisive, agglomerative, incremental, etc. As explained
previously, hierarchical agglomerative techniques are very convenient for building browse hierarchies. The
basic principle that these techniqnes follow is presented below.

Hierarchical numerical clustering aims at building hierarchies. over a set of objects. in which each
internal node corresponds to a cluster of objects and each leaf represents an individual object, or more
precisely a singleton cluster. Most hierarchical clustering methods are based upon the same general
method. called the Hierarchical Agglomerative Clustering (HAC) method [12]. which consists of iteratively
gathering objects into clusters, until orly one cluster remains.

The HAC general method iteratively builds a sequence of partitions or level clusterings of {1, that is,
a sequence of disjoint clusters covering the original set of objects. {}. The level clusterings form coarser
and coarser partitions by an iterative process, beginning with the level clustering formed by the set of
singletons in the power set p(f2), i.e., {{o1}, {02},.... {oa}}. and ending up with the coarsest partition of
Q. ie., {2} The final output of this clustering process is a particular form of hierarchy called a dendogram.
The HAC genecral method can be expressed as follows:

¢ Start with the subset of p(Q) formed by singleton elements.
¢ Repeat the following steps iteratively until there is only one cluster.

- Identify the two clusters that are the most similar.

- Merge them together into a single cluster.

The HAC method reqnires a measure of similarity not only over the set of objects, but also over the
set of clusters. The dissimilarity index between clusters is usually derived from a user-given dissimilarity
index, &, between objects. The way of defining A has a direct influence on the final form of the hierarchy
obtained. Once a dissimilarity index & between objectsis provided. HAC imnethods differ only by the choice
of this measure. The most commonly used HAC methods are the single link and complete link methods
[22]. Many other methods such as the centroid method, Ward's method, etr., define still other dissimilarity
indices but most of them require the dissimilarity index over {1 to he a distance, that is, to satisfly the
triangle ineqnality. The reader should consult [13] [12] for an extensive survey of the HAC methods. The
time complexity of the HAC algorithm is at most O(n?logn) where n is the number of objects involved.
For some particular definitions of A, it can be redunced to O(n?).

*With the recent introduction of conceptual clustering [29], another distinction has heen introduced according to the
definition of the clusters obtained, in extension (i.~., by enumeration of its members) for regular (or numerical) clustering
and in intension (t.¢., by membership rules) as well as in extension for conceptnal clustering.

12




4,2.2 Adapting a clustering technique for building a browse hierarchy

As explained above, we propose to use a HAC technique to generate a browse hierarchy. In this perspective.
we (1) need to define 2 measure of similarity between the objects considered. e.g., the documents. and (2)
explain how to make a browse hierarchy ont of the dendogram generated by the HAC technique. Let us
address these two points.

In informatior retrieval, numerous measures of similarity between docnments, also termed measures of
association or coefficients of association, have been defined. The simplest of all is defined as:

xny| (9)

where X and YV are the signatures of two docnments. This measure represents the number of common
index units. Varions other measures [38] have been defined such as:

%%?TH Dice’s coefficient (10)
l——llf;zzl Jaccard ‘s coefficient (11)
IJ’EXI_:I}YIT Salton's Cosine coefficient (12)

They can all be considered as normalized versions of (9) since they are functions of the cardinality of
X, Y. XnY, or YUY.

In onr context. we have more information than just the presence or absence of index units in the
signature, and therefore we propose to take into account the p-values of LAs in the evalnation of the
measure of association between documents. For any signature X = {(w.w', p)}, p(X)is the projection set
of X over W2, Then, the simplest measure is | p(X)N p(Y) ]. In order to take into account the resolving
power of LAs as well, we define our measure § for two signatures X and YV, such that X # Y, as

5(X.Y) = Y. (ex(wow') + py (. w') (13)

(w,w'}ep(X)Np(Y)

where py(w,w') is the p value of the LA (w, w') in the signature X. and similarly for Y. Note that 4 is
a measure of similarity rather than a measure of dissimilarity. Its inverse is a measure of dissimilarity as

long as 6(.X. X'} is set to a sufficiently large arbitrary value so that its inverse can bhe considered essentially
null.

Given such a measure of similarity between signatures, we define a measure of similarity between
clnsters according to the single link or complete link techniques for instance and then use the hierarchical
agglomerative clustering algorithm in order to build a browse hierarchy of snftware components. Let ns
note that we also made some experiments in earlier versions of GURU using an incremental conceptual
clustering technique [25] for constructing the browse hierarchy. IHowever, despite interesting results, the
cost of building and maintaining the hierarchy was prohibitive (exponential time like for most conceptnal
clustering techniques) when compared to regular clustering techniques and did not appear to be better in
terms of retrieval effectiveness.

All the HAC techniques build a binary hierarchy. Not all levels of the hierarchy are equally significant;
therefore, the usual approach is to select mannally the most significant level clusterings, this task being
usually performed by a data analyst. The following proposes a method for automatically identifying the
most useful level clusterings, and thus producing a not-necessarily binary hierarchy.

This method of selection is based on the following principle. Each level clustering in the dendogram
corresponds to the merging of two clusters in the previous level clustering and therefore to a particular

13



110

Dendogram Selection of the steepest slopes Final

o | I I D N I N O I A o

Figure 2: Principle of selection of level clusterings

value of the similarity measure. If we label the dendogram with these valnes Yny---+ Y1, 7 being the
number of objects, from the bottom to the top of the hierarchy, it can easily be shown that the y;'s are
" (non-strictly) monotonic (increasing for dissimilarity measures and decreasing for similarity measures) for
the single and complete link clustering methods. We propose to select those levels that correspond to the
gap in the distribution of y;'s by (1) plotting the segment connecting the pairs yi4y. ¥ fromi = n -1
to 1 = 1. and (2) keeping the levels that correspond to the steepest slopes. This represents the intnitive
method that a data analyst would apply. Figure 2 gives an intuitive presentation of the method via an
example whereas Fignre 3 gives the formal algorithm. The time complexity of the latter is linear in the
number of objects.

4.3 Some examples

Portions of the browse hierarchy built from the AIX documentation are shown in Figures 4 and 5. In
Figure 4, some interesting clusters are isolated. Thus, in the figure we have a cluster gathering commands
related to the manipnlation of regular expressions, and a cluster gathering editors. These two clusters are
also part of the same super-cluster, mainly because these editors permit to manipulate regular expressions.
Then, there are two outliers that could not be included in a cluster: makekey and termdef. Then a small
cluster groups ps and kill, which both are strongly related as they give informalion about processes or
handle them. Finally, there are two big clusters, one for yellow pages commands and another for SCCS
routines. The clustering is not always of such good quality as can be seen in Figure 5. either because of the
nature of the documentation or because of the principle of clustering itself. For instance, the commands
xcalc and dc. which both are calcnlators. belong to a same cluster, but bc has been forgotten in this
cluster. This is due to the fact that the manual page of be does not refer to the concept of calculator at all,
but defines bc as an interpreter for an arithmetic language. The real problem with clustering is illustrated
with the third cluster in this figure, which gathers batch, at. crontab, date and istat. This cluster has
been formed because all these commands are related to the notion of date or time; unfortnunately, this is
not the main functionality of all of these commands and therefore this cluster is somehow misleading. Let



Let y,,.... 5 be the merging values of the similarity measure from the bottom to the top.
Fori=n-1toi=1 .

Ay, = yiy1 — %

(evaluate the slope of the connecting segment)
EndFor
Compute Ay the mean of the y;'s
Compute o the standard deviation of the y;'s around Ay
Let t(k) = Ay + ko
(where t(k) corresponds to a threshold defined by k& > 0)
Fori=n-1toi=1

If Ay, > t(k)

Select level clnstering i

EndIf

EndFor

Figure 3: Selection of level clusterings

us note. however, that the lower level cluster including at and batch is a good one.

The hierarchy thus generated is used as an aid to browse when nothing relevant has been retrieved
via linear retrieval, or in order to increase recall since there is no way to be sure that all the relevant
components have been retrieved at the linear retrieval stage. It can also be nsed as the basic repository to
be searched during retrieval, but we prefer to use the traditional linear retrieval technique instead because
it is clearly more trustable considering the problems described above.

By nature this indexing technique suffers from noise since it is based on only statistical observations.
Noisy indices involve generally misspelled or unmeaningful strings of characters that are mixed with natural
language (for Aescribing instructions for instance), or “side-concepts”™ such as the time, day and month in
the example cited above. This noise cannot be avoided when dealing with free-style text.

Fortunately, these noisy LLAs do not cause real trouble at the linear retrieval stage since there is a very
low probability that the user would use unmeaningf{ul character strings in her/his qneries. So noisy LAs
are part of the signatures of components but rarely lead to the selection of the considered component.
On the other hand, noisy I.As might induce the formation of poor qnality cinsters, but generally only
higher levels of the hierarchy are affected since “side concepts” are not given mnch weight when evaluating
similarity. Section 5.3 explains how this browsing hierarchy is nsed at retrieval stage.

5 The Retrieval Stage

The previous sections explain how libraries of reusable components are assembled. We also need to be
able to retrieve the components that match the requirements when at least one exists, or to assist in the
selection of the closest components via a browsing facility.

The usual scenario when retrieving a component is the following:

¢ Query specification: The user expresses a query according to the anthorized vocabulary.

15



T AT

grep.1
awk.1
lex.1
ed.1

__________________ sed.1

[ edit. |

ex.1
_ view.l
vi.l
L vedit.]
makekey.1

termdef.1

ps.1

1 ' Kill.1

ypset.l

ypbind.1
yppush.1

vpwhich.1

= ypxir.l
makedbm. |
ypmatch.1
ypcat.l
yppoll.1

ypserv.l
sact.l
cde.l
val.l
rmdel.1

1
—1

L ypinit.1
—

delta.t
prs.1
comb. |

nnget. |

Figure 4: Portion of A1X hierarchy (single link, k=0.5)

16




L

[

diremp.1
mvdir.1
mkdir.1
rmmdir. 1
xcalc.1
de.1
batch.1
at.l
crontahb.1
date.!
istat.l
profiler.1
acchpre.l
fwtmp.l
acctcon.l
anditbin.l
andit.1
anditapp.l
anditpr.1
andilselect.|
ranacct. |
acct.1
accteom.l
acctems.l

.....

Fignre 5: Portion of A1X hierarchy (single link, k=0.5)




¢ Linear retrieval: A search locates the candidate components arned the candidates are ranked ac-
cording to their degree of match with the query.

¢ Browsing Cluster-based retrieval is initiated when no adequate components have been fonnd by the
linear retrieval.

The following explains how these three stages are supported in our approach.

5.1 Query specification

Using uncontrolled-vocabulary indexing as we do presents clear advantages at the query specification stage.
Indeed, a minimnm of constraint is pnt on the user as s/he expresses her/his query. The nser does not
have to learn a specific index langnage or nunderstand the organization of the library. S/he can express
her/his query in natural langnage and then the indexing component is applied in order teo translate the
query into attribntes understandable by the system. Exactly the same technique is used for extracting LAs
from natural-langnage queries as from natural-langnage documentation. This provides a very convenient
and user-friendly interface between the user and the library system, because the user is not constrained
by any rigid formalism.

The queries can be expressed in free-style natural language. However, the user must be aware of the
fact that queries are not really interpreted, but rather considered as a description of the functionality of the
desired component. For instance, the nser conld express queries of the form “How can [ do snch and such”
since only the “such and such” would be considered for indexing. Lhe rest heing either closed-class words
or words with low quantity of information. Formulating a query that necessitates some understanding.
such as a query inclnding negations like “but not”. wonld only lead to wrong interpretation. Let ns note
that it wonld be possible at this point to allow some simple interpretation of the queries. by allowing for
instance the usual boolean connectors (“and™, “or”, “but not”). This wonld clearly boost the performance
of the library system. However, since our point here is to show how far we can go withont understanding

either the queries or the documents. we do not discuss these possible enhancements.

5.2 Linear retrieval

In order to retrieve the best candidates for a given query, we apply the nsual IR method. which consists of
considering the query as a document and retrieving the componenis in the repository whose signature are
the most similar to the signatnre of the query. A possible measnure of similarity is the § measure defined
in (13, Section 4.2.2. The most similar components are then retnrned to the user, ranked in order of
decreasing similarity with the query. The linear retrieval technique is presented in Fignre 6.

In case of low recall, that is, if the user is not satisfied with the retrirved candidates, a more fuzzy search
can be performed that also considers partial matching LAs. In that case anly LAs that partially match
a query LA, i.,.. have one word in common, are considered. This significantly increases the recall but as
a tradeoff drastically decreases the precision. It should therefore he nsed only when the user considers
that nothing relevant has been retrieved with the initial query. An example of linear retrieval is given in
Figure 7.

In Fignre 7. the candidates are ranked in order of decreasing similarity with the query (“How can I
locate regular expressions in a file”). Therefore, the top candidates nsually answer the query the best.
In the example shown in Figure 7, all the candidates retrieved deal more or less strongly with regular

18




Get natural-language query from user
Index query and produce its signature @ = {(w. ', p)}
For each query LA, (w,w'.p) € Q
C(w.w') — {c] 3p, such that (w’, p,c) € Mw)}
(i.e.. identify all the components that have this LA in their signature)
EndFor
C - U{C(w- wl)}(m.m‘.p)EQ
For each ¢ in
Evaluate the similarity hbetween the signature S, of ¢ and @Q as §(Q, S.)
(where 6 is the similarity measure defined in (13))
Rank components in order of decreasing similarity.

Figure 6: Linear retrieval technique

Processing query:

How can [ locale a regular expression in a file
Lemmatizing sentence...
Searching...

regex.3  220.21
regexp.3 220.21

awk.1 77.32

grep.l 77.32

find.1 33.88

ogrep.l 28.77
regemp.} 2R.77
dosfirst.3 22.38
dosnext.322.38

Figure 7: Example of linear retrieval

19




Processing query: asswd. 1

Establish a new password. passia.

Lemmz‘ttizing sentence... | ,ré—_l{;ﬁ'éé'f)?\g;\r”f

Searching... S N

passwd.l 32.05 yppasswd.l
Linear retrieval Cluster-based retrieval

Figure 8: Browsing in the hierarchy

expressions, Even the two last candidates. dosfirst and dosnext, do not answer the query, but are very
slightly related since they allow locating DOS files that match a pattern.

5.3 Browsing, cluster-based retrieval

The retrieval stage in classical library management systems is often limited to locating a set of components
exactly matehing the nser’s query or, when such components do not exist, related components. Library
systems do not nsually provide any further assistance, whereas many IR systems do.

In our approach, the nser may communicate interactively with the system in order to direct the
browsing when s/he is not satisfied with the first retrieval yielded. The linear search retrieves the most
related candidates, and then the browsing process begins.

Typically, the user starts from one of the candidates retrieved hy the linear search and explores the
hierarchy bottom-up. Consider the browse hierarchy given in Figure 4 and snppose that a user gives a
query asking about ways “to identify a process”. If the first candidate retrieved at the retrieval search is
kill. Then, the user can access the browse hierarchy, and explore the clusters including kill in order to
determine which components are strongly related. In onr example, s/he will find ps as the most related
component, which is clearly a better candidate for this given query than the one retrieved by the linear
search. Another mxample is illustrated in Figure & The two relevant candidates in Aix for the qnery
“establish a new password” are passwd and yppasswd. However, the linear retrieval retrieves only passwd
simply becanse the qnery had no intersection with the signatnre of yppassvd. At this point, the user
could reformulate the query, but s/he might not be aware that s/he lias missed sawme relevant candidates.
Using the browse hierarchy is therefore more convenient in order to cherk if some nnexpected candidates
have been missed. In the example, both passud and yppasswd are strongly related: their signatures share
the LA (change passwd)®, and therefore belong to the same low-level cluster in the browsing hierarchy.
Browsing in the hierarchy from passwd allows the user to retrieve the other relevant candidate. These two
examples show how a browse hierarchy can help improve the finding of possible candidates that could be
missed via linear retrieval.

At any point, the user can consult the signature of a component in order to have more information
abont its functionality. Fast access to signatures is achieved via the signature repository. The nser can
also provide, at any stage, fnrther information in order to get a finer retrieval. By browsing, s/he gets

¥ Note that “passwd” here is proper name and is different from the noun “password” mentioned in the query.

29



more information about components and learns how to provide discriminating cueries,

6 Empirical Results

The approach described in the previous sections has been embodied in a tool. GURU, which has been {ully
implemented, partly in VSPascal and partly in C. nnder A1X. The system las reached a satisfactory first
stage, and the implemented version yields quality results.

We have tested onr system on the entire AiX docnmentation available to us, which describes approx-
imately 1,100 Aix components. When building the index repository, we Lherefore processed the entire
documentation that forms a corpus of more than 800,000 words, and we identified 18,000 [LAs for the
1.100 signatures.

In order to evalnate GURU's performance. we used the following criteria.

¢ User effort. This consists of all the effort that must be expended by the nser in order to use the
library system. It is impossible to formally measure user effort. However, thanks to the nncontrolled
vocabulary approach that we applied, we believe that the effort that mnust be invesied for using
GURU is minimal. Queries can be formulated in natural language, and therefore the user is not
reqnired to learn any index language and {ormalism. :

¢ Maintenance effort. This consists of all the effort that is necessary to keep the system working
and up to date. This effort includes, in particular, indexing new components and adding them
to the library. The maintenance stage is highly facilitated in GURU. The indexing is performed
antomatically and the insertion of new components can be done incrementally. Kaplan and Maarek,
in [20], have proposed several algorithms for incrementally updating a repository of [.A-based indices
when inserting, deleting or modifying components.

¢ Efficiency. This refers to the average interval between the time a query is issued and the time
an answer is given. Efficiency becomes an issue only if a retrieval takes so long that nsers start to
complain. Onr experience with the system shows that efliciency is not an issue, as the response
time is reasonable. Profiling the execntion of the query program showed that the time to perform
the query was dominated by the time to map the repository file into the address space of the query
program. The looknp eperations and the printing of the LA-filo name pairs consumed almost no
time n comparison. Test queries involving from 5 to t5 [LAs each took approximately 2.5 seconds
on an RT, and 0.15 seconds on an [BM RISC System/6000, The hetter performance of the latter is
partly due to its more efficient implementation of file mapping.

s Retrieval effectiveness. This is clearly the most important performance rriterion. [t refers to the
system’s ability to provide information services as needed by the user.

The next section focuses on evalnating the retrieval effectiveness of (GiiriL

21



6.1 Measuring Retrieval Effectiveness
6.1.1 Recall and Precision

The most widely used measnures for evaluating retrieval effectiveness are recall and precision [32]. Recall is
defined as the proportion of relerant material, i.e.. it measnres how well the considered system retrieves all
the relevant components. Precision is defined as the proportion of retrieved material that is relevant. r.e.,
it measnres how well the system retrieves only the relevant components. Recall can also be interpreted
as the probability that a relevant component will be retrieved, and precision as the probability that a
retrieved component will be relevant [5].

Recall and precision can be defined more formally as follows. [.et (" he the whole collection of compo-
nents forming the library. For each query, C can be partitioned into two disjoint sets. R. the set of relevant
material and R the set of irrelevant material. Given the query, the system retrieves a set of components
¢ that can also be partitioned into relevant and irrelevant material, respectively, r and 7. Recall and

precision are defined as:
(14)
(15)

recall =

precision =

Ol‘im|~(

Recall and precision measurements require the ability to distingnish between relevant and irrelevant
material. For relatively small collections such as the A1X collection, it is possible to manually determine
the set of relevant material for a given query.

6.1.2 Experiments and Comparison

This section describes the experiments that allowed us to evaluate the retrieval effectiveness of GURU. As
a basis lor comparison, we have considered INFOEXPLORER, which is an TBM RISC System /6000 CD-Rom
Hypertext Information Base Library. INFOF.XPLORER is a recent hypertext system that gives access to the
documentation for AIX and for associated programs. INFOEXPLORER provides not only hypertext links
between pieces of the AIX documentation, but also search and retrieval facilities based on state-of-the-art
IR techniques. Queries can be expressed as single word search nr mnltiple word componnd search with
no contrel of vorabulary. The componnd search, which is the most elabharated, allows the user to express
a query as a word pattern formed of single words related by threr passible cannectors, “and”, “or”. and
“butnot™. Moreover, the nser can restrict the search. S/he can give constraints specifying if the pattern
words must appear within the same article or within the same paragraph, the proximity of these words
within a paragraph, and the search fields and the search categorirs.

When given such a query. INFOEXPLORER. returns a list of candidates that exactly fit the query,
ranked according to the frequency of the pattern in the considered docnment. No signature is bmnilt
for the docaments examined: all words appearing in the text are considered during search. Therefore,
INFOFXPLONRR can be expected to have a a much higher recall bat lower precision than GURU. We
do not need to also compare efficiency, i.2., retrieval speed. GURII is, independently of implementation,
much faster than INFOEXPLORER since it does not explore the entire textual database but a much smaller
repository formed by the signatures.

INFOEXPLORER is thus a quite sophisticated IR tool that represents a good reference for comparison
purposes since it is specifically for AIX. Also, INFOEXPLORER encodes a great deal of mannally-provided

22



information about the structure of the documeniation. The system has Lo know about paragraphs. litles,
etc., and thus has been much more expensive to build than GURU. Providing this structnral information
to onr system wounld greatly enhance its performance, but our point here is to show that even without
such information, onr system can perform nicely thanks to its indexing scheme.

Gunu and INFOEXPLORER were compared for retrieval effectiveness. In order to claim this test to be
valid, we must fulfill the nsunal test procedure requirements [32]. These requirements are for

1. the queries to be used for test purposes must be user search requests actually submitted and processed
by both systems:

2. the test collectinn must consist of decuments originally inclnded in the library. chosen in such a way
that any advance knowledge concerning the retrievability of any given component by either system
is effectively ignored; and

3. the number of components considered to be retrieved by the Lwo systems must be subject to the
same cntoff.

To fulfill the first requirement, we have condncted a survey among the gradnate students in the De-
partment of Computer Science at Columbia University in November 1988, "T'his survey provided us with a
collection of typical queries on UNIX-like systems, as formnlated hy U'NIX nsers ranging from naive users to
expert programmers. A typical query was expressed as a naturaltlangnage sentence with an average of 3.7
open class words per query, describing a desired functionality. This kind of query conld directly be fed to
GURU but not to INFOEXPLORER since the latter's compound search facility accepts only boelean queries.
Therefore, feeding the queries to INFOEXPLORER required some supplementary effort, first choosing the
right connectors between open-class words extracted from the queries, and possibly dropping some words
when the recall was too low. In our interaction with the componnd search facility, we had to refine and
retry the qnery formnlation several times. We kept only the best result for comparison purposes, since
we wanted tn compare the tools’ indexing schemes rather than their querying facilities. GURU'S querying
facility requires less nser effort than INFOEXPLORER's, bnt the latter's conld be greatly improved if it did
not require perfect matches bhetween the boolean query and the candidates, nsing a similarity measure
between candidate and query, for instance. The average number of open-class words nused for questioning
INFORXPLORER was 3.

As far as the second requirement is concerned, the collection considered for test has been the entire
A X library. We consulted with several A1x experts at IBM in order to determine for each query the set of
existing relevant components in the A1X library so as to be able ta evaluate the recall and precision. As our
test collection was composed of abont 1100 components, we selected 30 queries from among all the queries
provided by our survey. This ratio corresponds to the same number-of-queries per number-of-documents
ratio as the one that has been nsed in standard test sets such as MED (rollection of medical abstracts,
30 queries for 1033 documents) or C1s1'? (information science abstracts, 35 queries for 1460 information
abstracts).

As far as the third requirement is concerned, since both systemns ranked the retrieved candidates, we
were able to compare recall and precision at the same ranks.

The comparison was performed by measuring. for both systems. precision at several levels of recall.
We followed the usnal procedure [38], [32], which consists of

'9These Lest sets have heen nsed for evalnating several IR systems such as L.S1 (9]

23



1. plotting precision-recall curves for each test query with each plot corresponding to a given culoff
value,

2. extrapolating these curves so as to obtain precision values for recall values that were nol effectively
achieved, and finally,

3. deriving {rom the curves computed in stage (2) the average precision values at fixed recall intervals.
so as to obtain a single average precision recall carve {or the system considered.

We have bnilt such curves for both GURU and INFOEXPLORER and plotted them on the same axes (See
Figure 9). The best performance is reached by the system swhose curve is closest to the area where both
precision and recall are maximized. the upper right corner of the graph. As mentioned, becanse of the
indexing scheme of both systems. we could expect that INFOEXPLORER wonld achieve a lower precision
but higher recall than Guru. It turned ont that the maximum recall, all ranks included, achieved by
both systems was approximately the same, around 88% on the average, but, from the graph presented in
Figure 9. it is clear that GURU had 15%. on the average, better precision than INFOEXPLORER. In other
words. GURU achieves a higher precision without losing in recall. This is more than satisfactory.

These results clearly prove that we have achieved high precision without losing recall. The recall rate
is significantly increased when we make use of the GURU browsing facility. For instance, in several cases
some related components were not retrieved during linear retrieval, but anly during browsing.

The results of this evaluation shonld not be seen as the firal definitive results, but only as an indicator
of what can be expected from a [ully operational GURU system. ilowever, even introspective experiments
. such as those described in this section are sufficient to confirm the advantages of an L A-based indexing
scheme. Our LA-based indexing scheme makes the indexing language exhanstive as well as specific and
thns ensures good retrieval performance. The experimental results confirmed the expectations an can be
considered as enconragements to pursue research in the direction pursued in this paper.

7 Conclusion

We have presented a method for antomatically constructing software libraries {from a collection of docu-
mented hnt nnindexed software components. We discussed the advantages of using natural-language doc-
umentation as opposed to source code, assnming any documentation is available, as a sonrce of functional
information. We then described a new free-text indexing scheme, for automatically prodncing document
signatures, hbased npon a richer unit than single terms, the lexical affinity. All associated software com-
ponents conld then be classified. stored. compared and retrieved, via linear or cluster-based techniques,
according to these indices.

These methods and schemes are embodied in a new tool which has heen implemented and evaluated
for retrieval effectiveness. The evaluation compared GURU with the INFOFXPLORER hypertext library,
built specifically to help find software components in the AIX system. The average recall-precision curves
of both tools were computed. The results of this test indicate that Gunir's performance was better than
INFOEEXPLORER. This result is very encounraging since INFOEXPLORER was much more expensive to build
and specifically tailored to the AIX library.

The major contribution of this work consists of bringing classical and new information retrieval tech-
niques to bear in software reuse. This involved:

¢ Designing a new indexing scheme based on high information content lexical affinities.

24



| Recall | GURU precision | INFO precision | Improvement |

0.1 0.85 0.7 15%
0.3 0.84 0.68 15%
0.5 0.76 0.56 20%
0.7 0.58 0.4 18%
0.9 0.52 0.39 13%
Precision
1.0
=
05 Gupu
A INFOEXPLORER
.
4
i
T T T T T T
0.5 1.0 Recall

Fignre 9: Precision-recall entves (means across queries)




o Adapting classical numerical cluster analysis techniques for assembhling software components into
browse hierarchies.

¢ Designing retrieval mechanisms specifically adapted to the LA-based indexing scheme so as to provide
a complete storage and retrieval framework.

Finally, the evaluation we have performed seems to indicate that Salton’s statement about the limitation
of the “phrase generation” approach in indexing (See Section 3.1) is overly pessimistic and that significant
improvements over single terms techniques can be achieved at relatively low cost.

Acknowledgments

Y. Maarek performed part of this work while at the Technion, Department of Computer Science, Haifa,
Israel, partly supported by a Gutwirth Fellowship. G. Kaiser is supported by National Science Foundation
grants CDA-8920080. CC'R-8858129 and C'CR-8802741, by grants {from AT&T, BNR, Citicorp, DEC. IBM.
Siemens, Sun and Xerox. by the Center for Advanced Technology and by the Center for Telecommunica-
tions Research.

We would like to thank Mark Kennedy who helped a lot in the design and implementation of GURU's
retrieval component.

References

f1] M. Adanson. Histoire Naturelle du Sénégal. Coquillages. Avee la relation abrégée d'un voyage fait en
ce pays, pendant les années 1749,.50,51,52 et 53. Bauche, Paris. France, 1757.

[2] B.P. Allen and S.D. Lee. A knowledge-based environment for the development of software parts
composition systems. In Proceedings of the {[** [CSE, pages 104-112, Pittshurgh, PA. May 1989.

[3] S.P. Arnold and S.I.. Stepoway. The reuse system: Cataloging and retrieval of reusable software.
In W. Tracz. editor, Software Reuse: Emerging Technology, pages 138-141. Compnter Society Press,
1987,

[1] R. Ash. Information Theory. Interscience Publishers (John Wiley & Sons). New York. 1965.

[5] D.C. Blair and M.E. Maron. An evalunation of retrieval effectiveness for a full-text docnment retrieval
system. Communications of the ACM, 28(3):289-299, March 1985.

[f] B.A. Burton, R. Wienk Aragon, S.A. Bailey, K.D. Koelher, and [..A. Mayes. The rensable software
library. In W. Tracz, editor, Software Reuse: Emerging Technolngy, pages 129-137. Computer Society
Press, 1987.

[7] F. Can and E.A. Ozkarahan. A clustering scheme. In Procerdings of SIGIR'RY. pages 115-121.
Bethesda, MD, June 1983. ACM Press.

{8] F. de Saussure. Cours de Linguistigue Générale, Quatriéme Edition. Librairie Payot, Paris, France,
1949.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landaner, and R. llarshman. [ndexing by latent
semantic analysis. Journal of the American Society for Information Seience, 41(6):391-407, 1990.

26



[10] P. Devanbn. Re-use of software knowledge: A progress report. In Third Annual Workshop: Methods

(11]

[12)
(13]
(14]

(15]

(16]

[17]

(18]

(19]

(20]

(21]

22]

(23]

[24]

(25]

(26]

[2

-

]

and Tools for Rense. Syracuse. NY. June 1990.

P. Devanbu, P.G. Selfridge. B.W. Ballard, and R.J. Brachman. A knowledge-based software informa-
tion system. In Proceedings of IJCAI'89, pages 110-115. Detroit, MI, Augnst 1989,

E. Diday, J. Lemaire. and F. Testu. Eléments d'Analyse des Données. Dunod, Paris. France, 1982.
B. Everitt. Cluster Analysis. Halsted Press (John Wiley & Sons), New York, 1980.

W.B. Frakes and P.B. Gandel. Classification, storage and retrieval of rensable components. In N.J.
Belkin and C.J. van Rijsbergen, editors. Proceedings of SIGIR '89. pages 251-254. Cambridge, MA,
June 1989. ACM Press.

W.B. Frakes and B.A. Nejmeh. Software reuse through information retrieval. In Proccedings of the
20th Annual HICSS, pages 530-535, Kona. HI. Jannary 1987.

A. Griffiths. I..A. Robinson, and P. Willett. Hierarchical agglomerative clustering methods for anto-
matic document classification. Journal of Documentalion, 40(3):175-205, September 1984.

W. Harrison. A program development environment for programming by refinement and reuse. In
Proceedings of the 19th HICSS, pages 459-469, Kona. HI. 1986. ('S Press.

T. Ichikawa and M. Hirakawa. Ares: A relational database with the capability of performing flexible
interpretation of queries. IEEE Transactions of Software Engineering, 12(5):624-634, May 1986.

N. Jardine and C.J. van Rijsbergen. The use of hierarchic clustering in information retrieval. nfor-
malion Storage and Retrieval, 7(5):217-240, December 1971.

S.M. Kaplan and Y.S. Maarek. Incremental maintenance of semantic links in dynamically changing
hypertext systems, Interacting with Computers, December 1990, In press.

P.H. Klingbiel. Machine-aided indexing of technical literature. Information Storage and Retrieval
9:79-84, 1973.

G.N. Lance and W.T. Williams. A general theory of classificatory sorting strategies. Computer
Journal 9:373-380, 1967.

M. Luhn. The automatic creation of literature abstracts. IBM Journal of Research and Development,
2(2):159-165, April 1958.

Y.S. Maarek. Using Structural Information for Managing Very Large Saftware Systems. PhD thesis,
Technion. Tsrael Institute of Technology, Haifa, Israel. Jannary 1989,

Y.S. Maarek. An incremental conceptual clustering algorithm with input-ordering bias correction. In
M.C. Golumbic, editor, Advances in Artificial Intelligener, Natural Language and Knowledge Base
Systems. Springer Verlag, 1990,

Y.S. Maarek and G.F. Kaiser. On the use of conceptual clustering for classifying rensable ada code.
In Ada Letters, Using Ada: ACM SIGAda International Conference, pages 208-215, Boston, MA,
December 1987. ACM Press.

Y.S. Maarek and F.A. Smadja. Full text indexing based on lexical relations. an application: Software
libraries. In N.J. Belkin and C.J. van Rijsbergen, editors, Proceedings nf SIGIR '89, pages 198-206,
Cambridge, MA, June 1989. ACM Press.



[28]

[29]

(30]

31]

[32]

[33

[34]

(35]

(36]

[37]

38]
[39]

W.J.R Martin. B.P.F. Al, and P.J.G. van Sterkenburg. On the processing of a text corpus: From
textnal data to lexicographic information. In R.R.K. Hartmann, editor. Lezicagraphiy: Principles and
Practice, London, 1983. Applied Langnage Studies Series, Academic Press,

R. Michalski and R. Stepp. Antomated constructions of classifications: Clenceptual clustering versus
numerical taxonomy. JEEE Transactions an Patiern Analysis and Machine Intelligence, 5{(4):396-409,
July 1983,

R. Prieto Diaz and P. Freeman. Classifying software for rensability. /EEE Saftware, 4(1):6-16, Jannary
1987.

G. Salton. Automatic text processing, the transformation, analysis and retrienal of information by
computer. Addison-Wesley. Reading, MA, 1989,

G. Salton and M.J. McGill. Introduction to Modern Information Retrienal Computer Series. McGraw-
Hill, New York. 1983.

G. Salton and M. Smith. On the application of syntactic methodologies in antomatic text analysis.
In Proceedings of SIGIR '89. pages 137-150, Cambridge. MA, June 1989, ACM Press.

R.W. Schwanke. R.Z. Altncher, and M.A. Platoff. Discovering, visnalizing and controllling software
structure. In Proceedings of the Fifth International Workshop on Software Specifications and Design,
pages 147-150, Pittsburgh, PA, May 1989.

F.A. Smadja. Lexical co-occurrence: The missing link. Journal of the Association for Literary and
Linguistic Computing. Ozferd University Press, 4(3), 1989.

K. Sparck Jones and J.I. Tait. Antomatic search variant generation. Journal of Documentation,
40(1):50-66, March 1984.

W.F. Tichy. R.L. Adams, and L. Holter. NLH/E: A natural-langnage help system. In Proceedings of
the 11" ICSE. pages 364-374, Pittsburgh, PA, May 1989.

C.J. van Rijsbergen. Information Retrieval Butterworths, second edition, 1979.

M. Wood and I. Sommerville. An information retrieval system [or software components. SIGIR
Fornm, 22(3,4):11-25, Spring/Summer 1988.

28



An Information Retrieval Approach for

Automatically Constructing Software Libraries

Yoélle S. Maarek
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

yoelle@ibm.com

Daniel M. Berry
Technion, Israel Institute of Technology
Computer Science Department
Haifa, 32000, Israel
dberry@techsel.bitnet

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

kaiser@cs.columbia.edu

September 1990
CUCS-049-90

(©1990 Yoelle S. Maarek, Daniel M. Berry and Gail E. Kaiser.

1

¢



An Information Retrieval Approach for Automatically
Constructing Software Libraries

Yoélle S. Maarek Daniel M. Berry
IBM Thomas J. Watson Research Center Technion, Israel Institute of Technc
P.O. Box 704 Computer Science Department
Yorktown Heights, NY 10598 Haifa, 32000, Israel
yoelle@ibm.com dberry@techsel.bitnet

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027
kaiser@cs.columbia.edu

Absiract

Although soltware reuse presents clear advantages for programmer productivity and code reliabilit;
it is not practiced enough. One of the reasons for the only moderate success of reuse is the lac
of software libraries that facilitate the actual locating and understanding of reusable components
This paper describes a technology for automatically assembling large software libraries that promot
software reuse by helping the user locate the components closest to her/his needs. :

Software libraries are automatically assembled from a set of unorganized components by usin
information retrieval techniques. The construction of the library is done in two steps. First, attribute
are antomatically extracted f{rom natural language documentation by using a new indexing schem
based on the notions of lexical affinities and quantity of information. Then, a hierarchy for browsin
is automatically generated using a clustering technique that draws only nn the information provide
by the attributes. Thanks to the [ree-text indexing scheme, tools {ollowing this approach can accer
free-style natural language queries.

This technology has been implemented in the Guru system, which has been applied to construc
an organized library of A1x utilities. An experiment was conducted in arder to evaluate the retriev:
effectiveness of GURU as compared to INFOEXPLORER a hypertext library system for A1x 3 on the B}
RISC System /6000 series. We followed the nsual evaluation procedure used in information retrieva
based npon recall and precision measures, and determined that our system performs 15% better on
random test set, while being much less rxpensive to build than INFOEXPLORFR.

Index Terms: automatic indexing, clustering, information retrieval, lexical affinities, software 1
braries, soltware reuse.

$



1 Introduction

Software reuse is widely believed to be a promising means for improving software productivity and relia-
bility [14], and therefore is an issue of growing interest in software engineering. Unfortnnately, not enough
adeguale libraries of reusable software components are available. By adeqnate, we mean that the library:

e provides a sufficient number of components, over a spectrum of domains, that can be reused as is
(black-boz rense) or easily adapted (white-bor reuse), and

¢ is organized such that existing code closest to the users’ needs is easy to locate. In particular, the
library should provide mechanisms to help the reuser look for “functionally close” components that
meet some given requirements.

This paper is concerned with the second adequacy issue, and more generally with library systems that
provide means for representing, storing and retrieving reusable components.

The first stage in building a library consists of fndezing the objects to be stored in it, that is, producing
a set of characterizing attributes, or signature, for each of these objects. The signature for each object
represents the reusable object. Therefore, the quality of indexing is crucial to the quality of the library.
Functionality is an important aspect of software components. Thus, it is necessary to include conceptual
information about functionality in the indices. Unfortunately, conceptnal information is difficnlt to obtain.
Few programmers provide conceptual indices for their code. Moreover, even if provided, they can hardly
be expressed nnder a common formalism since pieces of code typically originate from multiple sonrces. One
solution is to manually index software components a posteriori according to a given classifying scheme,
but this task is both arbitrary and tedious.

As an alternative, we propose to automatically identify indices by analyzing the natural-language
documentation. in the form of manual pages or comments, nsually associated with the code. Natural-
langnage documentation is clearly a rich source of conceptual information. However, this information is
contained only implicitly, in an nnstructured way, and is not nsable as such. In order to extract usable
information from free-style documentation, we propose to use information retrieval techniques. Once the
indices have been produced, components can be automatically classified, stored and retrieved according
to their signatures.

The classifying stage in the construction of a library consists ol gathering objects into classes such
that the members of the same class share some set of properties. The basic motivation for classifying is
to [acilitate browsing among similar components in order to identify the best candidates for rense. So
that, during retrieval, a set of potentially adaptable components can be easily located. Browsing is more
important for software libraries than for other kind of libraries, since there rarely exists a component
perfectly matching a user's query. Moreover, local browsing allows the user to discover nnanticipated
opportunities for reuse.

We have designed and implemented a tool, GURU, that embodies the above approach. GURU auto-
matically assembles conceptually structured software libraries from a set of nnindexed and unorganized
software components. In the first stage, GURU extracts the indices from the natural language documenta-
tion associated with the software components to be stored, by using a new indexing scheme. This indexing
scheme is based on lerical affinities and on their statistical distribution. Tt identifies a set of attributes
for each document to represent a functional description of the associated software unit. In the second
stage, GURU assembles the indexed objects into a browsing hierarchy by using a hierarchical clustering
technique that draws information exclusively from the indices identified in the previous stage. Thus, GURU

¢



supports both classical linear retrieval. in which candidates are ranked according to a numerical measure
that evalnates how well they answer the query, and cluster-based retrieval in which the browse hierarchy
directs the search for the best candidate.

Section 2 briefly compares the artificial intelligence and information retrieval approaches to construction
of software libraries and explains why we follow an IR approach. Section 3 describes the indexing method.
Section 4 presents the classification approach and the clustering technique used for assembling the library.
Section 5 deals with the retrieval stage. Section 6 givesresults nsing onr GURU implementation and a formal
evaluation based on nsual methodology for evaluating information retrieval systems. Finally, Section 7
summarizes the main contributions of this work. Related work is discnssed as relevant throughout the

paper.

2 Al vs IR approach

Previous efforts for building reuse systems can be roughly classified into two groups according to the
approach adopted. the information retrieval (IR) approach or the artificial intelligence (Al) approach.

The IR approach consists ol drawing information only from the structure of some documents that
provide information on the software components. No semantic knowledge is used and no interpretation
of the document is given: the reuse tool attempts to characterize the document rather thar understand
it. There are currently very few software library systems that follow an IR approach. or use existing
IR techniques. Among them, the RsL system, (6] for instance, automatically scans source code files and
extracts comments explicitly labeled for reuse with atiributes such as keyword, author, date created, etc.
The keyword attribute provides a list of free-text single-term indices very much like those used in IR
tools. The REUSE system (3] provides a menu-driven front end to an information retrieval system, thus
all kind of soltware objects (inclnding user menus and system thesauri) are stored as textual docnments.
Thns, the two previous systems use some kind of IR related technique, however the only system, to our
knowledge, that applies a pure [R approach is the system proposed by Frakes and Nejmeh (15]. They
nse the CATALOG information retrieval system for storing and retrieving C software components. Each
component is characterized by a set of single-term indices that are antomatically extracted from the
natural-langnage headers of C programs. Therefore, the construction of the C components repository is
done antomatically, and does not require any pre-encoded knowledge as in RSL for instance.

In contrast, in the Al approach, the rense tool aims at nnderstanding the queries and the functionality
of components before providing an answer. Al-based systems are often smarter than IR systems. Some
of them are context sensitive and can generate answers adapted to the nser's expertise. As a tradeoff,
they reqnire some domain analysis and a great deal of pre-encoded semantic information, which is nanally
provided mannally. They are based upon a knowledge base that stores semantic information abont the
domain and abont the langnage itself in case of a natural-langnage interface. The main problem of applying
this approach in the context of software libraries is that many domains cannot be easily circumscribed and
the domain analysis is very difficult [10]. This makes the construction of snch systems very tedious and
expensive. Examples of Al or knowledge-based rense tools are numerous, e.g., (30], [39], (2]. [11], [37].

The AI approach can be nseful in some applications. However, we prefer the IR approach for reasons

of

e cost: the library system is built entirely automatically,

e transportability: the library system can be rebuilt for any domain since it does require manually

P



provided domain knowledge,

¢ scalability: the repository can be 'ea.sily updated when new components are inserted, either by re-
compiling the indices or by applying incremental techniques, the indexing task is entirely mechanical.

We therefore propose to apply a pure IR approach, in the same direction of research as Frakes and
Nejmeh, by automatically bnilding free-text indices that characterize software components. We also pro-
pose to use an indexing scheme richer than the single-term indexing used in the IR-based tools described
in this section so as to achieve a better retrieval effectiveness. The following section explains our source
of information and how the indexing is performed.

3 The Indexing Stage

The major advantage of automatic indexing over mannal indexing, besides the obvious cost considerations,
is that it allows a nnified scheme, insuring that indices will be compatible with each other. The idea is
to extract attributes from an existing source of information, i.e., the code and the natural-language
documentation. Some work has been done towards extraction of primitive functional information from the
code [26], [34], however, the richer sonrce of functional information is the natural-language documentation,
assuming any is available.

.

An examination of nimerons samples of code allowed us to reach the conclusion that some nseful
. information can be extracted from programs written in a high-level language using good programming
style, whereas little conceptual information can be found in typical real-world code chosen at random
[24). Unfortunately, even when dealing with well-written code, there is a very low probability that the
programming styles of the varions pieces of code will be consistent. Even a.single programmer may
use totally different identifiers for expressing the same concept from one day to another. Since software
components come from multiple sources in the context of large software libraries, extracting attributes
from code would necessitate as many indexing schemes as there are code sonrces. Another limitation
comes from the fact that there are many more possibilities for identifiers than for natural-language words
since they do not follow any morphological or syntactic rules.

In other words, when there is no way to guarantee good, and let alone consistent and compatible,
programming styles, extracting attributes from raw ccde does not give significant results. Therefore, we
prefler concentrating on the other possible source of information, i.e., the natnral-language documentation
either inserted into the code, i.e., the comments, or associated with the code, r.g., manual pages.

Comments are intended to help programmers understand the code and thns may provide fnnctional
information. They deal with specific parts of the code into which they are inserted, and they may give
information on various parts at various levels of abstraction. Fxtracting Minctional information from
comments entails two activities,

o defining an indexing scheme that allows extracting attributes from natural langnage phrases or

sentences, and
¢ relating comments to the portion of code they concern.
The second activity is very complex in {ree-style code. Indeed, in free-style programming, programmers

can insert comments wherever, and in any format and any length, they wish. Although comments usnally
describe the containing routine or the one just below, in general it is impossible to antomatically determine

Pl



what part of the code is covered. A solution wonld be to consider that all the commentsinserted in a specific
piece of code constitnte a global natural-language description of the considersd code. Unfortunately, this is
not the case. Comments rank from low-level implementation details to high-level description. Forinstance,
in the rm.c source file in Berkeley UNIX, one can find comments as varions as:

/+ current pointer to end of path %/, or
/* rm - for ReMoving files, directories & trees. =/

The first conveys no nseful functional information while the second hits the mark exactly. In general, there
are many more low level, and useless for our purpose, comments than high level ones. and there is no way
to automatically distinguish between them. Therefore, 3o long as no style is enforced, it is very difficult
to extract useful information from comments.

Let us note, however, that any piece of natural language, from comments inserted in the code to
design specifications, which is specifically related to software code and whose level of abstraction is known
can bring nseful information. Thus, we are currently working on extracting functional information from
comments in the framework of RPDE [17], a structured software development environment. in which
comments are linked to the portion of code they describe. In the following, though, we try to remain as
general as possible, and we do not assume that any commenting style is enforced. Therefore, although our
indexing scheme is applicable to any piece of natural-language that brings some functional information,
we will exemplify it through the analysis of manual pages clearly related to rensable components, such as

Unix-like manual pages. :

In the rest of this paper, the AIX documentation is taken as our corpus since it fulfills the requirement
of being structured into manual pages. Moreover the AiXx documentation can be seen as a regular real-
world documentation database since it is of average quality as far as commenting style is concerned. Many
even consider the AIX documentation of poor quality when compared to Berkeley UNIX documentation
due to typos, inconsistent style, poor vocabulary, etc.

3.1 A Richer Indexing Unit: the Lexical Affinity

There has been much work in IR dealing with natural-language text, a large variety of techniques have
been devised for indexing, classifying and retrieving documents [31]. Ore of the main concerns in IR is the
antomatic indexing of documents, which consists of producing for each docnment a set of indices that form
a signature of the document. A signature is a short-form description of a docnment, easier to manipulate
than the entire document, which plays the role of a surrogate at the retrieval stage.

Several issnes need to be addressed when indexing a docnment with respect to the natnre and the form
of the produced indices. More precisely, the indexing vocabulary can be either controlled or uncontrolled.
In the controlled vocabulary approach only a restricted set of indices are anthorized (e.g.. in MEDLARS
[32]), whereas in the uncontrolled vocabulary, or free text, approach, there is no constraint on the nature
of the indices. It has been shown that both approaches are comparable in terms of performance, [14],
[32], however we prefer the nncontrolled vocabulary approach in the context of software reuse, for the
same reasons of cost, portability and scalability. Indeed, defining an adequate controlled vocabulary is
a mannal, domain-dependent task and, therefore, suffers from the same drawbacks as the encoding of a
knowledge-base.

Another important issue in automatic indexing deals with the natnre of the indices. The most usunal
form is single-term index. in which single words without contextnal information are selected as indices.
Unfortunately, single term indices are often too specific or too broad and can induce ambiguities. Therefore,



it has been proposed to take term phrases as indexing units rather than single terms so as to refine the
meaning of constituent words. However. the use of word co-occurrences has not brought good results-as

expressed by Salton [31] (p 296):

“... a phrase-formation process controlled only by word co-occnrrences and the document
frequencies of certain words is not likely to generate a large number of high-quality phrases.”

As an answer to this problem, a possible solution has been to add syntactic criteria in order to provide
further control in phrase formation, such as part-of-speech using specially formatted dictionaries [21], or
more refined analysis including semantics [36]. But,

“The available options in phrase generation appear limited, and the introduction of costly and
refined methodologies may bring only marginal improvements.” [31] (p 298)

We are more optimistic, and believe that indexing units richer than single terms can be nsed and bring
significant improvement at low cost. The atomic unit we propose to use in order to demonstrate this is
derived from the notion of lezical affinity. In linguistics. a syntagmatic lexical affinity (LA), also termed
lezical relation. between two units of language stands for a correlation of their common appearance in the
utterances of the langnage [8]. The observation of LAs in large textual corpora has been shown to convey
information on both syntactic and semantic levels, and provides .us with a powerful way of taking context
into acconnt [33}. '

We propose to use the notion of LA for indexing purposes, and restrict the above definition by observing
LAs within a finite document rather than within the whole language so as to retrieve conceptual affinities
that characterize the document!, rather than purely lezical ones. Moreover, we only consider LAs involving
npen-class words as meaning-bearing, whereas LAs involving closed-class words? are not.

Ideally, LAs are extracted from a text by parsing it since two words share a lexical affinity if they are
involved in a modifier-modified relation. Unfortunately, antomatic syntactic parsing of {ree-style text is
still not very efficient [33]. Instead, we make use of simple co-occurrence. It has been shown by Martin et al.
that 98% of lexical relations relate words that are separated by at most five words within a single sentence
[28]. Therefore, most of the LAs involving a word w can be extracted by examining the neighborhood of
each occnrrence of w within a span of five words (-5 words and +5 words aronnd w).

The extraction technique consists of sliding a window over the text and storing pairs of words involving
the head of the window (if it is an open-class word) and any of the other open-class elements of the window.
The window is slid word by word from the first word of the sentence to the last, the size of the window
decreasing at the end of the sentence 3o as not to cross sentence houndaries®. since lexical affinities cannot
relate words belonging to different sentences. The window size being smaller than a constant, the extraction
of LAs is linear in the number of words in the document. An algarithm for the sliding window technique
is presented in Figure 1. Maarek and Smadja have nsed a similar technique in [27], which was also based
on Martin’'s results [28], but more adapted to the analysis of large corpora.

In summary, the first stage in indexing a mannal page consists of extracting all the potential LAs by
nsing the sliding window technique, and storing them under their canonical form, in which each word
is represented by its inflectional root (or lemma). An example of the potential LAs extracted from the

Trather than the whole language.
?n general, open-class words include nouns, verbs, adjectives and adverbs, while closed-class words are pronouns, prepo-

silions, conjunctions and interjections.
3The isolation of sentences is the only parsing performed.

$



For each sentence S in the document 4
For each word w in § from the beginning to the end of S
w — lemma(w)
(where lemma(w) represents the inflectional root of w)
EndFor
For each lemma w in § from the beginning to the end of §
If wis an open-ciass word then

Let wy,..., w, be the n words immediately following w in §
(where n = 5 except when the end of the sentence is reached earlier)
For i=1ton

If w; is an open-class word then
Get f, frequency count of {w, w;}
(f = 0 when the LA has not been encountered before)
Store {w, w;} with a frequency count of f + |

EndIf

EndFor
EndIf
EndFor
EndFor

Figure 1: Sliding window technique

mannal page of mv in A1X and ranked by {requency of occurrence are presented in Table 1. For the sake
of the comparison, a list of the single words extracted from the same manual page is shown in the first
column, also ranked by frequency of appearance.

Among the extracted lexical relations, some correspond to abstractions of the considered document,
and some do not. Since we are interested in indexing textual docnments, in the first stage, we isolate
actual affinities by nsing frequency criteria. It has been demonstrated that the frequency of occurrence of
a term within a document is related to the importance of the word in a text [23}. This is also true for the
common appearance of pairs of words and even more for lexical affinities.

3.2 From LAs to Indices

When analyzing a docament, many potential lexical affinities are thns identified. Some of these lexical
affinities are conceptually important and some are not. As seen in Table I, {requency of appearance is a
good indicator of relevance. However, some noise exists, mainly dne tn words appearing too often in a
given context. In order to reduce the influence of such words, it is necessary in the second stage to select
from among the lexical affinities identified only the most representative ones, i.r., those containing the
most information.

We have defined a measure evaluating the resolving power of an LA. It is based upon the quantity of
information of each of the words involved in the LA, as well as npon the lrequency of appearance of this
LA within the considered document. The quantity of information of a word within a corpus is defined as:

INFO(w) = - log,(P{w}) (1)

where P{w} is the observed probability of occurtence w in the corpus [4], {32]. Therefore, the more

Pl



open-class words | freq (| LAs freq
file 30 file move 9
directory 14 be file 8
mv 11 directory file 7
files 8 file system 5
new 7 file overwrite 5
name 7 file mv 5
move 7 file name 4
newname 6 name path 3
is 6 do file 3
system 5 directory move | 3
one 5 different file 3

Table 1: Keywords and lexical affinities classified by frequency in the mv manual page

frequent a word i3 in a domain, the less information it carries. From this definition, we infer the definition
of the quantity of information of an LA (w,, wy) as:

INFO((wy, w2)) = — logy(P{wi, wa}) (2)

To simplify the computation of this factor, in the rest of this work, we consider words within the textual
universe as independent variables®. Thus, we use the following formula for computing the quantity of

information of an LA.
INFO((w1, wa)) = = logy(P{w1} x P{w,}) (3)

Then, we define the resolving power of an LA in a given document as follows. Let (w;, ws, f) be a tuple
retrieved while analyzing a document d, where (wy, w7} is an LA appearing f times in d. The resalving

power> of this LA in d is defined as:

p((wl’ w2, f)) = f x INFO((wlv le)) (4)

The higher the resolving power of a lexical affinity is. the more characteristic of the document it is.
The resolving power allows us to evaluate the importance of a lexical affinity within a text by taking into
acconnt both its frequency of appearance in the text and the qnantity of information of the words involved.
Thus, even though the lexical affinity (be file) appears very often in an AIX mannal page, it has only
a small resolving power, simply because the quantity of information of both thr words “file” and “be” in

the AIX documentation is low.

In order to be able to compare the relative performances, in terms of resolving power, of different
documents, we transform the raw p score into a standardized score. The standardized score, or z-score,
is defined as p, = (p — p)/o where 7 and o are the average and standard deviation of the p-values. This
transformation does not alter the distribution and allows us to evaluate the relative status of the score in
the p distribution. In the rest of this paper, the p-values we give as examples will therefore represent the

z-score rather than the raw score.

$This assumption represents only an approximation since words in English are definitely not independent, but are dis-

tributed according to the rules of the language.
3This notion is related to that of mutnal information {4].

P L



Table 2 compares the list of LAs for the mv manual page ranked by frequency and by resolving power.
In it, the LA (file mone) has a greater.resolving power than any of the following LAs. Moreover, some
noisy LAs such as (do file) or (e file) (in italic fonts in the table) have disappeared becanse both words
involved in the LAs are highly frequent in the corpns and thns have a low quantity of information.

LAs freq LAs P

file move 9 file move 8.38
be file 8 file mv 4.36
directory file 7 directory file 4.03
file system 5 file overwrite 3.87
file overwrite 5 directory move | 1.98
file mv 5 file system 1.95
file name 4 mv rename 1.71
name path 3 move mv 1.58
do file 3 different file 1.40
directory move | 3 name path 1.33

Table 2: Comparison of frequency and p-value for the LAs in mv

For each document, we select as indices those LAs with the highest resolving power. More precisely, we
are interested in the LAs that represent peaksin the distribution of p-values . Therefore, we keep as indices
. only the LAs whose p value is one standard deviation above the mean, t.c., such that p > 7+ o, where
p represents the mean and o the standard deviation of the distribution of p values within one document.
The choice of such a threshold® is reflected in Tables 2, 3 and 4, where only LAs with a z-score greater

than 1 are presented.

The set of LAs of a document selected by ranking p-values and taking those one standard deviation
above the mean forms the signatnre of the docnment. The major contribution of this technique consisted
in adapting the notion of lexical affinity for indexing pnrposes. We gave some intuitive indications on
how an LA-based indexing scheme is richer than a single-word scheme. We will demonstrate later that it
ensures a better retrieval effectiveness,

The next section explaing how software components can be stored and classified using the signatures
produced at the indexing stage.

4 The Classifying Stage

Normally, when a user wants to use a software library, s/he first has to access a library that might contain
the desired component, then has to provide a formal description of the researched component according
to the vocabulary understood by the library system. Unfortunately, in most cases, this ideal scenario does
not work out. The main reason is that in real life applications, the component perfectly matching the
user's reqnirements does not exist in the library, or it is not indexed as the nser had guessed it would be.

In such cases, a traditional database management system fails to help the user. Indeed, to be retrieved
from the database, a component must exactly match the query’. Such strict matching is inappropriate

S This classical threshold guarantees to keep only a small percentage of the sample elements in most distributions.
TA notable exception is ARES [18], a relational database that allows flexible interpretation of queries. In ARES the



LAs Pz

copy file 6.49
directory file 2.47
file source 2.15

infile subdirectory 1.98
contain subdirectory | 1.30
copy cp 1.30
copy regular 1.02

Table 3: LAs ranked by p-values for cp

LAs 2

directory make 5.08
create mkdir 2.74
directory mkdir 2.55
directory permission | 1.48
directory write 1.03

Table 4: LAs ranked by p-valnes for mkdir

in a software library system since the user often cannot know the exact characteristics of the desirable
component and, even when s/he does, there is rarely a perfect match.

Software libraries shonld not only permit retrieving candidate components that perfectly or partially
match the query, but also permit browsing among components that share some functionality. It is therefore
desirable to structure the library for making the search, retrieval and browsing mechanisms as fast and
convenient as possible. in order to make the access to the library attractive.

We propose here to perform the search and retrieval operations nsing a conventional inverted index
file structure, and to cluster the library in order to facilitate the browsing operation. Section 4.1 explains
how the index repository is bnilt using an inverted file structure, and Section 4.2 presents the clustering
technique nsed to build the browse hierarchy. Section 5 explains how they are used to perform the search

and browsing operations.

4.1 Building the index repository

The goal is to allow a fast and easy identification of candidate components at the retrieval stage. Thus,
we derive from the signature repository built at the indexing stage another repository for storing, for each
word, the LAs involving that word, and pointers to the documents in which it appears. Let ns denote:

o W the universe of words

¢ D the universe of documents.

Index LAs are defined as tuples (w, w', p) where w is smaller than w’ in the lexicographic order and p
is the resolving power of this LA in a considered document. The reason for ordering w and w' is to avoid

similarity between elements can be evaluated via a lookup in a table that has to be provided beforehand. ARES is not
discussed here since its purpose is not to classify software. Further, it has the drawback of requiring a great deal of pre-

encoded knowledge.

10

é



dnplicate LAs by forcing every LA into a canonical form.

The index stored in the repository is represented as a mapping defined as follows:
weW — MNuw)={(z,p.d) € W x [l,00[ x D |either (w,z.p) or (x,w. p) is an LA of d} (5)

The mapping A is stored as a trie data structnre. The mapping 7 between docnments to their signatures
is also stored nsing a trie data structure:

1€D — o(d)={(w,w' p) € W x [L.oo[| (w,w', p)} is an LA of d} (6)

[n implementing these mappings, tries are usually faster than hashing schemes, although they consume
more memory. In this case, fast access is a basic requirement for making the retrieval stage attractive.
These two mappings are the basic operations we nuse to retrieve and rank candidates as explained in

Section 5.

4.2 Building the browse hierarchy

As explained previously, browsing is crucial in software library systems. The most common way to make
browsing operations possible is to group items judged to be similar by nsing clustering operations [31].
Jardine and van Rijsbergen [19] pointed out that “associations between documents convey information
about the relevance of documents to requests”. They demonstrated that cluster-based retrieval strategies
are as effective as linear strategies and much more efficient. Thus, many clustering methods have been
used for information retrieval [19], (7], [16]. The most popular clustering methods are the hierarchical ag-
glomerative clustering (HAC) methods because their search and construction techniques are more efficient
than for most non-hierarchical methods [19].

The following sections define some terminology in cluster analysis, describe the algorithms we used
to build the browse hierarchy, and present some samples of the browsing hierarchy obtained for the AIx

library.

4.2.1 Some terminology in cluster analysis

Classification by cluster analysis has been of long-standing interest in statistics as well as various other
fields. [t can be traced back to the work of Adanson in 1757 [1], who nsed numerical clustering for classifying
botanic species. Statisticians and taxonomists have widely developed the field since then. Cluster analysis
now offers a wide range of techniques [or identifying nnderlying strnctures in large sets of objects and
revealing links between objects or classes of objects. One particular application of classification is the

bnilding of libraries.

There is no strict definition of cluster, but it is generally agreed that a cluster is a group of objects
whose members are more similar to each other than to the members of any other group. Typically, the
goal of cluster analysis is to determine a set of clusters, or a clustering, such that inter-cluster similarity
is low and intra-cluster similarity is high. The similarity between objects is evaluated via a numerical
measure called a dissimilarity inder defined as follows.

Definition 1 Let Q be a set of objects. A dissimilarity index § over Q2 is a function from QxQ to R4
that satisfies the following properiies,

(1) Vo€ Q §(o,0)=0, (7)

11

#



(if)  Y(o,0') € Q% 5(0,0') = 8(c’,0). (8)

Note that a distance is a dissimilarity index but that o dissimilarity inder does not necessarily satisfy the
triangle inequalily and therefore is not a distance.

The dissimilarity index between objects is used as the basic criterion to determine clusters. Clustering
techniques allow identifying not only clusters but also relationships among them. The structure of the
set of clusters as well as their internal structure vary with the clustering technique. Clustering methods
are usnally classified® according to the strncture of the set of clusters produced, e.g, hierarchical. flat,
overlapping, etc., as well as the techrique nsed, e.g.. divisive, agglomerative, incremental, etc. As explained
previonsly, hierarchical agglomerative techniques are very convenient for building browse hierarchies. The
basic principle that these techniques follow is presented below.

Hierarchical numerical clustering aims at building hierarchies. over a set of objects. in which each
internal node corresponds to a cluster of objects and each leaf represents an individual object, or more
precisely a singleton cluster. Most hierarchical clustering methods are based upon the same general
method, called the Hierarchical Agglomerative Clustering (HAC) method [12], which consists of iteratively
gathering objects into clusters, until only one cluster remains.

The HAC general method iteratively bnilds a sequence of partitions or level clusterings of Q, that is.
a sequence of disjoint clusters covering the original set of objects, 1. The level clusterings form coarser
and coarser partitions by an iterative process, beginning with the level clustering formed by the set of
singletons in the power set p(f2), f.e., {{01}, {02},....{0a}}, and ending up with the coarsest partition of
Q, i.e., {Q2}. The final output of this clustering process is a particular form of hierarchy called a dendogram.
The HAC general method can be expressed as follows:

o Start with the subset of p(?) formed by singleton elements.
¢ Repeat the following steps iteratively until there is only one cluster.

— Identify the two clusters that are the most similar.

~ Merge them together into a single cluster.

The HAC method requires a measure of similarity not only over the set of objects, but also over the
set of clusters. The dissimilarity index between clusters is usually derived from a user-given dissimilarity
index. &, between objects. The way of defining A has a direct influence on the final form of the hierarchy
obtained. Once a dissimilarity index § between objects is provided, HAC methads differ only by the choice
of this measure. The most commonly used HAC methods are the single link and complete link methods
[22]. Many other methods such as the centroid method, Ward's method, atc., define still other dissimilarity
indices but most of them require the dissimilarity index over 2 to he a distance, that is, to satis{ly the
triangle inequality. The reader should consnlt [13] [12] for an extensive survey of the HAC methods. The
time complexity of the HAC algorithm is at most O(n?logn) where n is the number of objects involved.
For some particular definitions of A, it can be rednced to O(n?).

SWith the recent introduction of conceptual clustering [29], another distinction has been introduced according to the
definition of the clusters obtained, in extension (i.e., by enumeration of its members) for regular (or numerical) clustering
and in intension (1.e., by membership rules) as well as in extension for conceptual clustering.

12



4.2.2  Adapting a clustering technique for building a browse hierarchy

As explained above, we propose to nse a HAC technique to generate a browse hierarchy. In this perspective,
we (1) need to define a measure of similarity between the objects considered, ¢.g.. the docnments, and (2)
explain how to make a browse hierarchy ont of the dendogram generated by the HAC techniqne. Let ns
address these two points.

[n information retrieval, numerous measures of similarity between documents. also termed measiures of
association or coefficients of association, have been defined. The simplest of all is defined as:

| XnY | (9)

where .X' and Y are the signatures of two documents. This measure represents the number of common
index units. Varions other measnres [38] have been defined such as:

I%l(% Dice's coefficient (10)

%8—:’-{' Jaccard 's coefficient (11)

Xny

|X|x|YJ| Salton’'s Cosine coefficient (12)

They can all be considered as normalized versions of (9) since they are functions of the cardinality of

X. Y. XNnY, or YUY.

In our context, we have more information than just the presence or absence of index units in the
signature, and therefore we propose to take into account the p-values of LAs in the evalnation of the
measure of association between documents. For any signature .X = {(w, w’, p)}, p(.X)is the projection set
of X over W2, Then. the simplest measure is | p(X) N p(Y) |. In order to take into account the resolving
power of LAs as well, we define our measure § for two signatures .X and Y, such that X £ Y, as

5(X,Y) = > (px(w. w') + py (1w, w')) (13)
(w.w)ERp(X)Np(Y)

where py(w, w') is the p value of the LA (w, w') in the signature X, and similarly for Y. Note that § is
a measure of similarity rather than a measure of dissimilarity. Its inverse is a measure of dissimilarity as
long as 6(.X, .X) is set to a sufficiently large arbitrary value so that its inverse can be considered essentially

null.

Given such a measure of similarity between signatures, we define a measnre of similarity between
clnsters according to the single link or complete link techrignes for instance and then nse the hierarchical
agglomerative clustering algorithm in order to build a browse hierarchy of snftware components. Let ns
note that we also made some experiments in earlier versions of GURUI using an incremental conceptual
cinstering technique [25] for constructing the browse hierarchy. However, despite interesting results, the
cost of building and maintaining the hierarchy was prohibitive (exponential time like {or most conceptual
clnstering techniques) when compared to regular clustering techniques and did not appear to be better in
terms of retrieval effectiveness.

All the HAC techniques build a binary hierarchy. Not all levels of the hicrarchy are equally significant:
therefore. the usual approach is to select manually the most significant level clusterings, this task being
usually performed by a data analyst. The following proposes a method [or antomatically identifying the
most useful level clusterings, and thus producing a not-necessarily binary hierarchy.

This method of selection is based on the {ollowing principle. Each level clustering in the dendogram
corresponds to the merging of two clusters in the previous level clustering and therefore to a particular

13

#



Al

Dendogram Selection of the steepest slopes Final

" T T T T T T T T 1T 17T >

Figure 2: Principle of selection of level clusterings

value of the similarity measure. If we label the dendogram with these values y,,....y1, n being the
number of objects. from the bottom to the top of the hierarchy, it can easily be shown that the y;'s are
" (non-strictly) monotonic (increasing for dissimilarity measures and decreasing for similarity measures) for
the single and complete link clnstering methods. We propose to select those levels that correspond to the
gap in the distribution of y;'s by (1) plotting the segment connecting the pairs ¥4,y fromi = n ~ 1
to i = 1, and (2) keeping the levels that correspond to the steepest slopes. This represents the intuitive
method that a data analyst wonld apply. Figure 2 gives an intuitive presentation of the method #ia an
example whereas Figure 3 gives the formal algorithm. The time complexity of the latter is linear in the
number of objects.

4.3 Some examples

Portions of the browse hierarchy built from the AIX documentation are shown in Figures 4 and 5. In
Figure 4, some interesting clusters are isolated. Thus, in the fignre we have a cluster gathering commands
related to the manipnlation of regular expressions, and a cluster gathering editors. These two clusters are
also part of the same super-cluster, mainly becanse these editors permit to manipnlate regular expressions.
Then, there are two outliers that could not be inclnded in a cluster: makekey and termdef. Then a small
cluster groups ps and kill, which both are strongly related as they give information about processes or
handle them. Finally, there are two big clusters, one for yellow pages commands and another for SCCS
routines. The clustering is not always of such good quality as can be seen in Figure 5, either because of the
nature of the documentation or because of the principle of clustering itself. For instance, the commands
xcalc and dc, which both are calcnlators, belong to a same cluster, hut bc has been forgotten in this
cluster. This is due to the fact that the manual page of bc does not refer to the concept of calculator at all,
but defines bc as an interpreter for an arithmetic language. The real problem with clustering is illustrated
with the third cluster in this fignre, which gathers batch, at. crontab, date and istat. This cluster has
been formed because all these commands are related to the notion of date or time; unfortunately, this is
not the main functionality of all of these commands and therefore this cluster is somehow misleading. Let

14

#



Let yn.....y1 be the merging values of the similarity measure from the bottom to the top.
Fori=n-ltoi=1 '

Ayi = yivr — ¥

(evaluate the slope of the connecting segment)
EndFor
Compute Ay the mean of the ¥i's
Compute o the standard deviation of the y;'s around Ay
Let (k) = Ay + ko
(where ¢(k) corresponds to a threshold defined by k > 0)
Fori=n-1toi=1

If Ay > t(k)

Select level clustering i

EndIf

EndFor

Figure 3: Selection of level clusterings

ns note, however, that the lower level cluster including at and batch is a good one.

The hierarchy thus generated is nsed as an aid to browse when nothing relevant has been retrieved
via linear retrieval, or in order to increase recall since there is no way to be sure that all the relevant
components have been retrieved at the linear retrieval stage. It can also be nsed as the basic repository to
be searched during retrieval, but we prefer to use the traditional linear retrieval technique instead because
it is clearly more trustable considering the problems described above.

By nature this indexing technique suffers from noise since it is based on only statistical observations.
Noisy indices involve generally misspelled or unmeaningful strings of characters that are mixed with natural
langnage ([for describing instructions f{or instance), or “side-concepts” snch as the time, day and month in
the example cited above. This noise cannot be avoided when dealing with free-style text.

Fortunately, these noisy LAs do not cause real tronble at the linear retrieval stage since there is a very
low probability that the user would use nnmeaningful character strings in her/his queries. So noisy LAs
are part of the signatures of components but rarely lead to the selection of the considered component.
On the other hand, noisy LAs might induce the formation of poor quality clusters, but generally only
higher levels of the hierarchy are affected since “side concepts” are not given mnch weight when evaluating
similarity. Section 5.3 explains how this browsing hierarchy is nsed at retrieval stage.

5 The Retrieval Stage

The previous sections explain how libraries of reusable components are assembled. We also need to be
able to retrieve the components that match the requirements when at least one exists, or to assist in the
selection of the closest components via a browsing facility.

The usual scenario when retrieving a component is the following:

¢ Query specification: The user expresses a query according to the anthorized vocabulary.

15

*



=T

e A

—{
—

e am e

L - - -

grep.l
awk.1l
lex.1

ed.l

sed.1
edit. |
ex.l
view.1
vi.l
vedit.1
makekey.1
termdef.1
ps.l

kill. 1
vpset.l
ypbind.l
yppush.1
ypinit.1
ypwhich.1

= ypxir.l

makedbm. |
vpmatch.!
ypcat.l

yppoll.l
ypserv.l

sact.l
cde.l
val.l
rmdel. 1
delta.l
prs.1
comb.1
nunget.l

Figure 4: Portion of A1X hierarchy (single link. k=0.5)

16

"



\ diremp.1
' mvdir.1

X b [ mkdir.1

rmdir.1l
xcale. 1
R 1 de.1
batch.1
at.l
crontab.1

-[ 1 : date.l

[

istat.l
profiler.1
—— acctprc.l
fwtmp.1
acctcon.!
anditbin.l
——{ At
anditapp.1
anditpr.l
anditselect.1
mnacct. ]l
acct.l
acctcom.l
acctems. 1

Figure 5: Portion of AI1X hierarchy (single link, k=N.5)

17



o Linear retrieval: A search locates the candidate components and Lhe candidates are ranked ac-
cording to their degree of match with the query.

¢ Browsing Cluster-based retrieval is initiated when no adequate components have been fonnd by the
linear retrieval.

The following =xplains how these three stages are supported in our approach.

5.1 Query specification

Using uncontrolled-vocabnlary indexing as we do presents clear advantages at the query specification stage.
Indeed, a minimnm of constraint is piut on the nser as s/he expresses her/his query. The nser does not
have to learn a specific index langnage or nnderstand the organization of the library. S/he can express
her/his query in natural langnage and then the indexing component is applied in order to translate the
qnery into attributes nnderstandable by the system. Exactly the same technique is nsed for extracting LAs
{rom natnral-langnage qneries as from natural-langnage docnmentation. This provides a very convenient
and user-friendly interface between the user ard the library system. because the user is not constrained
by any rigid formalism.

The queries can be expressed in free-style natural language. However, the nser must be aware of the
fact that queries are not really interpreted, but rather considered as a description of the fnnctionality of the
desired component. For instance, the nser conld express queries of the form “How can [ do such and such”
since only the “snch and such” would be considered for indexing, the rest heing either closed-class words
ot words with low guantity of information. Formulating a query that necessitates some understanding,
such as a query incinding negations like “but not”, would only lead to wrong interpretation. Let us note
that it wonld he pessible at this point to allow some simple interpretation of the queries, by allowing for
instance the ngnal boolean connectors (“and™, “or”, “but not”). This wonld clearly boost the performance
of the library system. However, since our point here i3 to show how far we can go without understanding
either the queries or the documents, we do not discuss these possible enhancements.

5.2 Linear retrieval

In order to retrieve the best candidates for a given query. we apply the usnal IR method, which consists of
considering the query as a docninent and retrieving the components in the repository whose signature are
the most similar to the signatire of the query. A possible measure of similarity is the § measnre defined
in (13, Section 4.2.2. The most similar components are then returned tn the user, ranked in order of
decreasing similarity with the query. The linear retrieval technique is presented in Fignre 6.

In case of low recall, that is, if the nser is not satisfied with the retrieved candidates, a more 122y search
can be performed that also considers partial matching LAs. [n that case anly [LAs that partially match
a query LA, i.r., have one word in common, are considered. This significantly increases the recall but as
a tradeofl drastically decreases the precision. It should therefore he nsed only when the nser considers
that nothing relevant has been retrieved with the initial query. An example of linear retrieval is given in

Figure 7.

In Fignre 7, the candidates are ranked in order of decreasing similarity with the query (*How can I
locate regnlar expressions in a file”). Therefore, the top candidates nsually answer the query the best.
[n the example shown in Figure 7, all the candidates retrieved deal more or less strongly with regular

18

re



Get natural-langnage query from user
Index query and produce its signature @ = {(w. w'. p)}
For each query LA, (w.w'.p) € Q
C(w, w') — {c| 3p, snch that (w',p,c) € Mw)}
(i.c., identify all the components that have this I.A in their signature)
EndFor
C— U{C(!U. w,)}(w.m’.p)GQ
For each cin C
Evalnate the similarity between the signature S. of ¢ and @Q as §(Q, S.)
(where 6 is the similarity measure defined in (13))
Rank components in order of decreasing similarity.

Figure 6: Linear retrieval technique

Processing query:

How can I locate a regular erpression in a file
Lemmatizing sentence...

Searching...

regex.3 220.21

regexp.3 220.21

awk.1l 77.32
grep.1 77.32
find.1 33.88

ogrep.l 28.77
regcmp.3 2R.77
dosfirst.] 22.38
dosrext.3 22.38

Figure 7: Example of linear retrieval

19




Processing query: :

Establish a new password. : passwd.1

Lemmatizing sentence... | [Change passwd]

Searching... (R olBs P3N

passwd.l 32.05 yppasswd.l
Linear retrieval Cluster-based retrieval

Figure 8: Browsing in the hierarchy

expressions. Even the two last candidates, dosfirst and dosnext, do not answer the query. bnt are very
slightly related since they allow locating DOS files that match a pattern.

5.3 Browsing, cluster-based retrieval

The retrieval stage in classical library management systems is often limited to locating a set of components
exactly matching the user's query or, when such components do not exist, related components. Library
systems do not usunally provide any further assistance, whereas many [R systems do.

In our approach, the nser may communicate interactively with the system in order to direct the
hrowsing when s/he is not satisfied with the first retrieval yielded. The linear search retrieves the most
related candidates, and then the browsing process begins.

Typirally, the user starts from one of the candidates retrieved hy the linrar search and explores the
hierarchy bottom-up. Consider the browse hierarchy given in Figure 4 and snppose that a user gives a
query asking about ways “to identify a process”. If the first candidate retrieved at the retrieval search is
kill. Then, the nser can access the browse hierarchy, and explore the clusters inclnding kill in order to
determine which components are strongly related. In onr example, s/he will find ps as the most related
component, which is clearly a better candidate for this given query than the one retrieved by the linear
search. Another example is illustrated in Figure 8 The two relevant candidates in AiX for the qnery
“establish A new password” are passwd and yppasswd. However, the linear retrieval retrieves only passwd
simply becaunse the query had no intersection with the signature of yppassud. At this point, the user
conld reformulate the query, but s/he might not be aware that s/he has missrd some relevant candidates.
Using the browse hierarchy is therefore more convenient. in order tn rherk if snme nnexpected candidates
have been missed. In the example, both passud and yppasswud are strongly related: their signatures share
the LA (change passwd)®, and therefore belong to the same low-lavel cluster in the browsing hierarchy.
Browsing in the hierarchy from passwd allows the user to retrieve the other relevant candidate. These two
examples show how a browse hierarchy can help improve the finding of possible candidates that counld be
missed via linear retrieval,

At any point, the nser can consnlt the signature of a compenent in order to have more information
abont its functionality. Fast access to signatures is achieved via the signature repository. The nser can
also provide, at any stage, further information in order to get a finer retrieval. By browsing, s/he gets

9Note that “passwd” here is proper name and is different from the noun “password”™ mentioned in the query.

20



more information about components and learns how to provide discriminating eueries.

6 Empirical Results

The approach described in the previous sections has been embodied in a tool, GURU, which has been fully
implemented. partly in VSPascal and partly in C, nnder AIX. The system has reached a satisfactory first
stage, and the implemented version yields quality results.

We have tested our system on the entire AIX documentation available to ns, which describes approx-
imately 1,100 A1x components. When bnailding the index repository. we therefore processed the entire
documentation that forms a corpus of more than 800,000 words, and we identified 18,000 LAs for the
1,100 signatures.

In order to evaluate GURU's performance, we nsed the following criteria.

¢ User effort. This consists of all the effort that mnst be expended by the user in order to nse the
library system. It is impossible to formally measure user effort. owever, thanks to the nncontrolled
vocabulary approach that we applied, we believe that the effort that mnst be invested for using
GurvU is minimal. Queries can be formulated in natural langnage, and therefore the user is not
required to learn any index language and formalism.

¢ Maintenance effort. This consists of all the effort that is necessary to keep the system working
and np to date. This effort includes, in particular, indexing new components and adding them
to the library. The maintenance stage is highly facilitated in Gurtu. The indexing is performed
antomatically and the insertion of new components can be done incrementally. Kaplan and Maar=k,
in [20], have proposed several algorithms for incrementally npdating a repository of LA-based indices
when inserting, deleting or modifying components.

e Efficiency. This refers to the average interval hetween the Lime a query is issued and Lhe time
an answer is given. Efficiency becomes an issue only if a retrieval takes so long that nsers start to
complain. Our experience with the system shows that efficiency is not an issue, as the response
time is reasonable. Profiling the execntion of the query program showed that the time to perform
the query was dominated by the time to map the repository file into the addresa space of the query
program. The looknp operations and the printing of the LA-file name pairs consnmed almost no
time in comparison. Test queries involving from § to 15 LAs each took approximately 2.5 seconds
on an RT, and 0.15 seconds on an IBM RISC System/6000. The hetter performance of the latter is
partly due to its more efficient implementation of file mapping.

o Retrieval effectiveness. This is rlearly the most important performance criterion. [t refers to the
system's ability to provide information services as needed by the userr.

The next section focuses on evalnating the retrieval effectiveness of Grinu,

21



6.1 Measuring Retrieval Effectiveness
6.1.1 Recall and Precision

The most widely used measures for evaluating retrieval effectiveness are recall and precision [32]. Recall is
defined as the proportion of relevant material, i.e., it measnres how well the considered system retrieves all
the relevant components. Precision is defined as the proportion of retrieved material that is relevant, i.e..
it measures how well the system retrieves only the relevant components. Recall can also be interpreted
as the probability that a relevant component will be retrieved, and precision as the probability that a
retrieved component will be relevant [3].

Recall and precision can be defined more formally as follows. Let (7 be the whole collection of compo-
nents forming the library. -For each query, C can be partitioned into two disjoint sets, R, the set of relevant
material and R the set of irrelevant material. Given the query, the system retrieves a set of components
c that can also be partitioned into relevant and irrelevant material, respectively, r and 7. Recall and

precision are defined as:

(14)
(15)

recall =

RTE

precision =

Recall and precision measurements require the ability to distingnish between relevant and irrelevant
material. For relatively small collections such as the Aix collection, it is possible to manually determine
the set of relevant material for a given query.

6.1.2 Experiments and Comparison

This section describes the experiments that allowed ns to evalnate the retrieval effectiveness of GURU. As
a basis for comparison. we have considered INFOEXPLORER, which is an IBM RISC System/6000 CD-Rom
Hypertext Information Base Library. INFOF,XPLORER is a recent hypertext system that gives access to the
documentation for AIX and for associated programs. INFOEXPLORER provides not only hypertext links
between pieces of the A1X docnmentation, but also search and retrieval facilities based on state-of-the-art
IR techniques. Queries can be expressed as single word search or multiple word compound search with
no control of vocabulary. The componnd search, which is the most elaborated, allows the user to express
a query as a word pattern formed of single words related by three pnssible connectors, “and”, “or”, and
“butnot”. Moreover, the nser can restrict the search. S/he can give cnnstraints specifying il the pattern
words must appear within the same article or within the same paragraph, the proximity of these words
within a paragraph, and the search fields and the search categnries.

When given such a query, INFOEXPLORER returns a list of candidales that exactly fit the query,
ranked according to the frequency of the pattern in the considered document. No signatnre is built
for the docnments examined: all words appearing in the text are considered during search. Therefore,
INFOEXPLORER can be expected to have a a much higher recall but lower precision than GuRU. We
do not need to also compare efficiency, i.e., retrieval speed. GURU i3, independently of implementation,
much faster than INFOEXPLORER since it does not explore the entire textual database but a much smaller

repository formed by the signatures.

INFOEXPLORER is thus a quite sophisticated IR tool that represents a good reference for comparison
purposes since it is specifically for AIX. Also, INFOEXPLORER encodes a great deal of mannally-provided

22



information about the structnre of the documentation. The system has to know about, paragraphs, titles,
ete.. and thus has been mnch more expensive to build than GURU. Providing this structural information
to onr system would greatly enhance its performance, but our point here is to show that even without
such information, our system can perform nicely thanks to its indexing scheme.

GurU and INFOEXPLORER were compared for retrieval effectiveness. In order to claim this test to be
valid, we must fulfill the nsual test procednre requirements [32]. These reqnirements are for

1. the queries to be used for test purposes must be user search requests actually submitted and processed
by both systems;

2. the test collection mnst consist of documents originally included in the library, chosen in such a way
that any advance knowledge concerning the retrievability of any given component by either system
is effectively ignored; and

3. the number of components considered to be retrieved by the twen systems mnust be subject to the
same cutoff.

To fulfill the first requirement, we have condncted a survey among the graduate students in the De-
partment of Computer Science at Columbia University in November 1988. This survey provided ns with a
collection of typical queries on UNIX-like systems, as formnlated by UINIX nusers ranging from naive users to
expert programmers. A typical query was expressed as a naturallangnage sentence with an average of 3.7
open class words per query, describing a desired functionality. This kind of query could directly be fed to
GURU but not tn INFOEXPLORER since the latter’s componnd search facility arcepts only boolean queries.
Therefore, (eeding the queries to INFOEXPLORER reqnired some snpplementary effort, first choosing the
right connectors between open-class words extracted from the queries, and possibly dropping some words
when the recall was too low. In our interaction with the compound search facility, we had to refine and
retry the query formulation several times. We kept only the best result for comparison purposes, since
we wanted to compare the tools’ indexing schemes rather than their querying facilities. GURU's querying
facility reqnires less nser effort than INFOEXPLORER's, bnt the latter's cauld be greatly improved if it did
nnt require perfect matches hetween the boolean query and the candidates, using a similarity measure
between candidate and query, for instance. The average number of open-rlass words nsed for questioning

INFOEXPLORER was 3.

As far as the second requirement is concerned. the collection considered for test has been the entire
AIX library. We consnlted with several AIX experts at IBM in order to determine for each query the set of
rxisting relevant components in the AIX library so as to be able to evaluate the recall and precision. Asonr
test collection was composed of about 1100 components, we selected 30 queries from among all the qneries
provided by onr survey. This ratio corresponds to the same number-of-queries per number-of-docnments
ratio as the one that has been nsed in standard test sets such as MRED {collertion of medical ahstracts.
30 queries for 1033 documents) or Cisi'? (information science ahstracts, 35 queries for 1460 information

abstracts).

As far as the third requirement is concerned, since hoth systens ranked the retrieved candidates, we

were able to compare recall and precision at the same ranks.

The comparison was performed by measuring, for both systems. prerision at several levels of recall.
We followed the usual procedure [38], [32], which consists of

19Thexe test sets have heen nsed for evaluating several IR systems such as LS [9].

23

»



L. plotting precision-recall curves for each test query with each plot ~nrresponding to a given cutoff

valie,

2. extrapolating these cnrves so as to obtain precision values for recall valnes that were not effectively
achieved. and finally,

3. deriving [rom the enrves computed in stage (2) the average precision values at fixed recall intervals,
30 as to obtain a single average precision recall cnurve for the system considered.

We have built such curves for both GURU and INFOEXPLORER and plotted them on the same axes (See
Fignre 9). The best performance is reached by the system whose ciurve is closest to the area where both
precision and recall are maximized, the npper right corner of the graph. As mentioned, becanse of the
indexing scheme of both systems, we conld expect that INFOEXPLORER would achieve a lower precision
but higher recall than GURU. It turned out that the maximum recall, all ranks included, achieved by
both systems was approximately the same, around 88% on the average, but, from the graph presented in
Fignre 9, it is clear that GURU had 15%, on the average, better pregision than INFOEXPLORER. In other
words, GURU achieves a higher precision withont losing in recall. This is more than satisfactory.

These resnlts clearly prove that we have achieved high precision withont losing recall. The recall rate
is significantly increased when we make use of the GURU browsing facility. For instance, in several cases
some related components were not retrieved during linear retrieval, hnt only dnring browsing.

The results of this evaluation should not be seen as the final definitive resnits, but only as an indicator
of what can be expected from a fully operational GURU system. Ho*ewr. even introspective experiments
. such as those described in this section are sufficient to confirm the jadvantages of an LA-based indexing

scheme. Qur LA-based indexing scheme makes the indexing language exhaustive as well as specific and
thns ensures good retrieval performance. The experimental results confirmed the expectations an can be
considered as enconragements to pursue research in the direction pursued in this paper.

7 Conclusion

We have presented a method for automatically constructing software libraries from a collection of docu-
mented but nnindexed software components. We discussed the adva?tagm of nsing natural-language doc-
nmentation as opposed to source code, assnming any documentatlon is available, as a source of functional
information. We then described a new [ree-text indexing scheme, for antomatically producing document
signatnres, based npon a richer unit than single terms, the lexical ifﬁmty. All associated software com-
ponents conld then be classified, stored, compared and retrieved, via linear nr cluster-based techniques,

according to these indices.

These methods and schemes are embodied in a new tool which has heen implemented and avalnated
for retrieval effectiveness. The evaluation compared GURU with the INFOFXPLORER hypertext library,
huilt specifically to help find soltware components in the AIX system. The average recall-precision cnrves
of both tools were computed. The results of this test indicate that Guntr's performance was bekter than
INFORXPLORER. This resnlt is very encoanraging since INFOEXFLORER was much more expensive to bunild

and specifically tailored to the AIx library.

The major contribution of this work consists of bringing classical and new information retrieval tech-
niqnes to hear in software reuse. This involved:

¢ Designing a new indexing scheme based on high information content lexical affinities.

24



| Recall | GURU precision | INFO precision | Improvement |
0.1 n.85 0.7 15%
0.3 0.84 0.68 15%
0.5 0.76 0.56 20%
n.7 0.58 0.4 18%
0.9 0.52 0.39 13%
Precision
1.0 4
05 Guru
. [INFOEXPLORER
T T T T | E— T T 1
n.5 1.n Recall

Fignre 9: Precision-recall curves {means across queries)




o Adapting classical numeriral cluster analysis techniques for assembling software romponents into
browse hierarchies.

o Designing retrieval mechanisms specifically adapted to the LA-based indexing scheme 35 as to provide
a complete storage and retrieval framework.

Finally, the evaluation we have performed seems to indicate that Salton’s statement abont the limitation
of the “phrase generation™ approach in indexing (See Section 3.1) is overly pessimistic and that significant
improvements over single terms techniques can be achieved at relatively low cost.

Acknowledgments

Y. Maarek performed part of this work while at the Technion, Department of Computer Science, Haifa,
Israel, partly supported by a Gntwirth Fellowship. G. Kaiser is supported by National Science Fonndation
grants CDA-8920080, CCR-8858029 and CCR-8802741, by grants from AT%T, BNR. Citicorp. DEC, IBM.
Siemens, Sun and Xerox, by the Center for Advanced Technology and by the Center for Telecommunica-

tions Research.
We wounld like to thank Mark Kennedy who helped a lot in the design and implementation of GURU's

retrieval component,

References
(1] M. Adanson. [fistoire Naturelle du Sénégal. Coguillages. Avec la relatinn abrégée dnn voyage fait en
cr pays, pendant les années 17{9,50,51.52 2t 53. Bauche, Paris, France, 1757.

[2] B.P. Allen and S.D. Lee. A knowledge-based environment for the development of software parts
compaosition systems. In Procerdings of the [1'" [CSE, pages 104-112, Pittsburgh. PA, May 1989.

[3] S.P. Arnold and S.I.. Stepoway. The reuse system: Cataloging and retrieval of rensable software.
In W. Tracz, ditor, Snfiware Rense: Emerging Technology, pages 138-141. Computer Society Press,
1987,

(1] R. Ash. Infarmmation Theary. Interscience Publishers (John Wiley & Sons), New York, 1965.

(5] D.C. Blair and M.E. Maron. An evaluation of retrieval efectiveness for a full-text docnment retrieval
system. Communications of the ACM, 28(3):289-299, March 1985,

[f] B.A. Burton, R. Wienk Aragon, S.A. Bailey, K.D. Koelher, and I..A. Mayes. The rensable software
libeary. In W. Tracz, editor, Software Rense: Emerging Teehnalogy, pages 129-137. Computer Society
Press, 1987.

[7] F. Can and E.A. Ozkarahan. A clustering scheme. In Pracredings of SIGIR'&3, pages 115-121,
Bethesda, MD, June 1983. ACM Press.

(] F. de Saussure. Cours de Linguistigne Générale, Quatri¢me Edition. Librairie Payot, Paris, France,
1949.

[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landaner, and R. Harshman. [ndexing by latent
semantic analysis. Journal af the American Society for Informatian Seience, 41(£):391--407, 1990.

26




(10] P. Devanbn. Re-nse of software knowledge: A progress report. In Third Annual Workshop: Methods
and Tonls for Reuse, Syracuse, NY. June 1990.

[t1] P. Devanbu, P.G. Selfridge. B.W. Ballard, and R.J. Brachman. A knowledge-based software informa-
tion system. In Proceedings of [JCAI'89, pages 110-115, Detroit, MT, Angnst 1989.

[12] E. Diday, J. Lemaire, and F. Testu. Eléments d'Analyse des Données. Dunod, Paris, France, 1982.
[13] B. Everitt. Cluster Analysis. Halsted Press (John Wiley & Sons). New York, 1980.

(14] W.B. Frakes and P.B. Gandel. Classification, storage and retrieval of rensable components. In N.J.
Belkin and C.J. van Rijsbergen, editors, Proceedings of SIGIR’89. pages 251-254, Cambridge, MA,

June 1989. ACM Press.

(15] W.B. Frakes and B.A. Nejmeh. Software reuse through information retrieval. In Proceedings of the
20th Annual HICSS, pages 530-535, Kona, HI, January 1987.

[16] A. Griffiths, L.A. Robinson, and P. Willett. Hierarchical agglomerative clustering methods for anto-
matic document classification. Journal of Documentation, 40(3):175-205, September 1984.

(17] W. Harrison. A program development environment for programming by refinement and reuse. In
Proceedings of the 19th HICSS, pages 459-469, Kona, HI, 1986. CS Press.

(18] T. Ichikawa and M. Hirakawa. Ares: A relational database with the capability of performing flexible
interpretation of queries. /JEEE Transactions of Software Engineering, 12(5):624-634, May 1986.

{19] N. Jardine and C.J. van Rijsbergen. The use of hierarchic clnstering in information retrieval. Infor-
mation Slorage and Retrieval, 7(5):217-240, December 1971.

[20] S.M. Kaplan and Y.S. Maarek. [ncremental maintenance of semantic links in dynamically changing
hypertext systems. Interacting with Computers, December 1990. In press.

[21] P.H. Klingbiel. Machine-aided indexing of technical literature. Infarmation Storage and Retrieval,
9:79-84, 1973.

(22] G.N. Lance and W.T. Williams. A general theory of classificatory sorting strategies. Computer
Journai, 9:373-380, 1967,

[23] M. Luhn. The antomatic creation of literature abstracts. /[BM Journal of Research and Development,
2(2):159-165, April 1958.

[24] Y.S. Maarek. Using Structural Information for Managing Very Large Software Systems. PhD thesis,
Technion, Israel Institute of Technology, Haifa, Israel, Jannary 1989.

[25] Y.S. Maarek. An incremental conceptual clustering algorithm with inpnt-ordering bias correction. In
M.C. Golumbic, editor, Advances in Artificial Intelligence, Natural Langnage and Knnwledge Base

Systems. Springer Verlag, 1990.

[26] Y.S. Maarek and G.E. Kaiser. On the nse of conceptual clustering for classifying rensable ada code.
In Ada Letters, Using Ada: ACM SIGAda International Canference, pages 208-215, Boston, MA,
December 1987. ACM Press.

[27] Y.S. Maarek and F.A. Smadja. Full text indexing based on lexical relations. an application: Software
libraries. In N.J. Belkin and C.J. van Rijsbergen, editors, Proceedings nf SIGIR 89, pages 198-206,
Cambridge, MA, June 1989. ACM Press.

27



[28]

[29)

[30]
(31]
[32]
(33]

134

(35|
(36]
[37)

(38]
(39]

W.J.R Martin. B.P.F. Al, and P.J.G. van Sterkenbnrg. On the processing of a text corpus: From
textnal data to lexicographic information. In R.R.K. Hartmann, editor, Lericngraphiy: Principles and
Practice, London, 1983. Applied Language Studies Series. Academic Press.

R. Michalski and R. Stepp. Antomated constructions of classifications: Conceptnal clustering versnus
numerical taxonomy. [EEE Transactions on Patiern Analysis and Machine Intelligence. 5(4):396-409,

July 1983.

R. Prieto Diaz and P. Freeman. Classifying software for reusability. JEEE Software, 4(1):6-16, Jannary
1987.

G. Salton. Automatic tert processing, the transformation, analysis and retrieval of information by
computer. Addison-Wesley, Reading, MA, 1989,

G. Salton and M.J. McGill. Introduction to Modern Information Retrienal Computer Series. McGraw-
Hill, New York. 1983.

G. Salton and M. Smith. On the application of syntactic methodologies in antomatic text analysis.
In Proceedings of SIGIR ‘89, pages 137-150. Cambridge, MA. June 1989. ACM Press.

R.W. Schwanke. R.Z. Altncher, and M.A. Platoff. Discovering, visualizing and controllling software
structure. In Proceedings of the Fifth International Workshop on Snftware Specifications and Design,
pages 147-150, Pittsbnrgh, PA, May 1989.

F.A. Smadja. Lexical co-occnrrence: The missing link. Jor'u'rml of the Association for Literary and
Linguistic Compnting. Ozford University Press, 4(3), 1989.

K. Sparck Jones and J.I. Tait. Antomatic search variant generation. Journal of Documentation,
40(1):50-66, March 1984.

W.F. Tichy, R.L. Adams, and L. Holter. NLH/E: A natural-langnage help system. In Proceedings of
the 11'* ICSE, pages 364-374, Pittsburgh, PA, May 1989.

C.J. van Rijsbergen. Information Retrieval Butterworths, second edition, 1979.

M. Wood and I. Sommerville. An information retrieval system lor soltware components. SIGIR
Forum, 22(3.4):11-25, Spring/Summer 1988.

28



