
Consistency and Automation in
Multi-User Rule-Based Development Environments

Naser S. Barghouti and Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY 10027

naser@cs.columbia.edu, (212) 854-8182

kaiser@cs.columbia.edu, (212) 854-3856

Technical Report CUCS-047-90

31 October 1990

Abstract

We investigate the scaling up of a class of single-user software development environments, which we call
rule-based development environments (RBDEs), to support multiple developers cooperating together on a
project. RBDEs model the software development process in terms of rules that encapsulate activities, and
execute forward and backward chaining on the rules to provide assistance in carrying out the development
process. There is a spectrum of assistance models, ranging from pure automation to strict consistency
preservation. We describe three problems whose solutions are dependent on the choice of assistance
model: (1) multiple views; (2) evolution; and (3) concurrency control. We discuss how the two extremes
of the spectrum restrict the possible approaches to multiple views and evolution. In order to explore
different aspects of the concurrency control problem across multiple points on the spectrum of RBDEs,
we develop a maximalist assistance model and propose an approach to synchronization of cooperating
developers within the context of this model.

Copyright © 1990 N. S. Barghouti and G. E. Kaiser

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

1. Introduction
Software development environments aim to assist developers of software projects in carrying out the

development process. A particular class of environments, which we call rule-based development

environments (RBDEs), model the software development process in terms of rules [1, 2, 3]. RBDEs

encapsulate development activities as rules and provide assistance to developers by applying forward

and/or backward chaining on the rules to automatically perform software development activities and/or

inform the developers when particular activities should or should not be done.

RBDEs are built on top of object management systems that abstract project components as objects and

store them in a project objectbase. Most existing RBDEs are single-user; the few that support multiple

users do so by isolating the users, restricting cooperation [4, 5, 6]. Our goal is to scale up RBDEs to

allow cooperation among multiple users concurrently accessing the shared objectbase. By ‘‘coopera-

tion’’, we mean the users concurrently access and modify the same objects or related objects while their

work is in progress, in order to share knowledge and change these objects in a coordinated fashion to

achieve a common goal such as integrating a subsystem.

We have identified three major problems that arise in scaling up RBDEs. The first is the concurrency

control problem, which is concerned with the synchronization of concurrent accesses to the project ob-

jectbase by either human users or rules executing on their behalf, collectively termed agents. This

problem is complicated by the need for collaboration among the agents in some situations, when con-

certed effort is required, and thus conventional concurrency control schemes are not appropriate. The

second problem is concerned with multiple views, when different users have different views of the project

objectbase and different rule sets. The third is the evolution problem, which is concerned with intro-

ducing changes to either the data model or the process model. The solutions to these three problems are

dependent on the kind of assistance provided by the RBDE.

There are many different assistance models that can be implemented by an RBDE. For example, if an

RBDE aims to automate some of the chores that developers would have otherwise had to do manually, it

would try to automatically invoke activities on its own, determined according to the status of the project

objectbase and the users’ activities. If the RBDE implements a model that aims to maintain strict consis-

tency during the development process, it would prevent user activities that would corrupt the status of the

project objectbase. We explain how the choice of consistency versus automation in the RBDE’s assis-

tance model restricts the possible approaches to the problems of multiple views and evolution.

In between the two extremes, there are a variety of assistance models that combine automation with

consistency preservation. Rather than consider the concurrency control problem for specific points on the

assistance spectrum, we construct a hypothetical maximalist assistance model that integrates automation

with consistency, and propose a solution in the context of this model. Our solution is based on

synchronization among concurrent tasks, where a task is the complete set of rules automatically executed

during the backward and forward chaining resulting from an initial rule triggered by a user.

2

We have previously introduced the notion of tasks and devised a protocol for detection of potential

concurrency conflicts between tasks, for a class of automation assistance models similar to our own

RBDE, MARVEL, based on the treatment of rules as multimethods associated with an object-oriented data

model [7, 8]. We introduced a particular automation assistance model based on rules in our earlier

publications on the single-user MARVEL environment [9, 10]. We have also constructed other approaches

to concurrency control for cooperation among developers [11, 12], but these did not consider the

problems of rules or rule chains (tasks).

In this paper, we briefly describe the general idea of rule-based development environments, and present

two assistance models, one a pure consistency model and the other a pure automation model. We then

show how the choice of assistance model impacts multiple views and evolution in an RBDE. In section

4, we present our maximalist assistance model, and then in section 5 we explain tasks and the correspond-

ing concurrency control protocol. We conclude by summarizing the effects of the choice of assistance

model on the problems of scaling up RBDEs.

2. Rule-Based Development Environments
Each software project assumes a specific organization for its components, a specific set of software

development tools, and a specific development process. The organization of the project components can

be abstracted into a hierarchy of complex objects, each with a set of attributes whose values encode

information about the status of the component. Some software development tools do not directly manipu-

late the objects’ attributes but operate on files that are mapped to these attributes, while others execute on

their own temporary copies of objects. The changes that a tool causes in the files or the private copies

must be mapped to changes in the values of the objects’ attributes in the project objectbase.

The development process of a project is specified in terms of two kinds of rules, which we call activation

rules and inference rules. Activation rules control the invocation of tools on objects by specifying the

conditions under which it is appropriate to invoke the tools and the effects of the tools’ invocation on the

values of the objects’ attributes. In contrast, the condition of an inference rule is a logical expression that

specifies current values for objects’ attributes and the single effect of the rule derives new values for

attributes of the same or other objects; tools are not associated with inference rules. Both kinds of rules

are parameterized to apply to one or more classes of objects, and are thus similarto multi-methods in

object-oriented programming. Two activation rules and one inference rule are shown in figure 2. When

not relevant, we ignore the distinction between these two classes and just say ‘‘rules’’.

In order to assist in the development of a software project, an RBDE is provided with a specification of

the project’s data model, in terms of object classes (the project type set), and its process model, in terms

of development rules (the project rule set). The classes in the project type set must include definitions for

all attributes mentioned in the conditions and effects of the project rule set. For example, if the condition

3

reserve: reserve a file type object. In the C/Marvel example, you
can use this rule on FILE, CFILE, HFILE and DOCFILE,
because of the inheritance mechanism.

reserve[?f:FILE]:

:
(?f.reservation_status = Available)

{ RCS reserve ?f }

(and (?f.reservation_status = Checked_out)
(?f.owner = CurrentUser));

(?f.reservation_status = Available);

deposit: deposit an object. This rule works on the same objects
as the reserve rule.

deposit[?f:FILE]:

:
(and (?f.owner = CurrentUser)

(?f.reservation_status = Checked_out))

{ RCS deposit ?f }

(?f.reservation_status = Available);
(?f.reservation_status = Checked_out);

arch_proj: archive all the libraries in this project. This rule is
as inference rule (one with an empty activity) that
causes arch_lib to be executed (via chaining) for all
the libraries in the PROJECT.

arch_proj[?proj:PROJECT]:

(forall LIB ?l suchthat (member [?proj.libraries ?l]))
:
(?l.archive_status = Archived)

{ }

(?proj.archive_status = Archived);
(?proj.archive_status = Error);

Figure 2-1: Example Rules Based on MARVEL Notation

of a rule r that applies to instances of class C checks if the value of an attribute a is greater than the

integer 5, then r assumes that the definition of C contains an attribute called a of type integer. The
1classes for the first two rules of figure 2 are shown in figure 2. The rule set must be self-consistent in the

sense that there are no conflicting assumptions about the classes. A conflict occurs when two rules

assume different types for the same attributes of the same class: there cannot be another rule r′ that also

applies to C but assumes that a is a string.

A project administrator writes these specifications and loads them into the RBDE, which tailors its ob-

1The definitions include attributes not used in the rules shown, and an example of inheritance, which is not addressed in this
paper.

4

Class PROGRAM ::
status : (Built,NotBuilt,Error) = NotBuilt;
debug_status : (OK,NeedsDebugging) = OK;
cfiles : set_of CFILE;

end

Class FILE ::
owner : user;
timestamp : time;
reservation_status : (Checked_out,Available,Error) = Available;
contents : text;

end

Class CFILE, superclass FILE ::
compile_status : (Compiled,NotCompiled,Error) = Error;
analyze_status : (Analyzed,NotAnalyzed,Error) = Error;

end

Figure 2-2: Example Classes Based on MARVEL Notation

jectbase to the data model and its behavior to carry out the process model. The tailored RBDE presents

the end users (i.e., the software developers) with commands corresponding to the set of loaded rules.

Thus, the environments for different projects might have different user commands as well as different

objectbase structures.

When a user requests the execution of a command on a specific object, the RBDE sends a message to the

object, causing the selection of a rule that matches the command. The rule’s condition for firing depends

on the state of the object, which is an assignment of a set of values to the object’s attributes. The state of

the objectbase is defined by an expression written in the first order predicate logic, which describes both

the states of objects in the objectbase and the existence or non-existence of objects. For example, the user

might request the edit command on an object, which might match a rule whose condition specifies that

the object has to have been ‘‘checked out’’ (i.e., its attributes must reflect that it is in the ‘‘checked out’’

state), the specific editor to invoke, and the effects of invoking the editor on the state of the object.

The RBDE’s decision to fire a rule depends on the assistance model implemented by the RBDE. More

specifically, the assistance model determines: (1) whether or not an unsatisfied condition of a rule war-

rants rejecting the user’s command that triggered the rule, even though it might be logically possible to

automatically satisfy the condition; (2) whether or not an unfulfilled implication of the effect of a rule

warrants rejecting the command, when it is not logically possible to automatically fulfill the implication;

and (3) whether or not the actions performed during a chaining cycle are definite (i.e., irreversible) or

tentative (i.e., can be undone).

There is a spectrum of assistance models that may be implemented by an RBDE. The two extremes are a

strict consistency preserving model and a pure automation model. The first model understands the rules

to specify what is allowable and what is not in regards to development activities. The RBDE permits the

activities requested by its users only if these activities do not violate any of the rules provided by the

5

project administrator. In contrast, the pure automation model interprets the rules to specify which ac-

tivities can be automatically invoked as a result of initiating or completing an activity requested by a user.

The RBDE automatically carries out as many activities as it can, but this does not affect the validity of

activities requested directly by users.

2.1. A Consistency Preserving Model

The consistency preserving assistance model is implemented in systems like Darwin [2], whose rules are

considered laws that cannot be violated. Every rule has a condition and a set of one or more effects. The

rule cannot be invoked unless its condition is satisfied. If the condition is not satisfied, the RBDE applies

backward chaining to invoke rules, whose effects might verify that the condition is satisfied. Verifying

that a condition is satisfied means that the RBDE attempts to fire rules that derive new objectbase states

(which can be thought of as equivalent to facts in Darwin) from ones already known by the RBDE so that

the condition is shown to be satisfied. Thus, during a backward chaining cycle in a consistency model,

only inference rules that do not invoke activities are considered.

Although Darwin supports only backward chaining, a generalization that supports both backward and

forward chaining is possible: Once the condition of the rule is satisfied and its activity invoked, the effect

of executing the activity would not be made permanent unless all the implications of this effect can be

carried out. These implications correspond to rules whose conditions become satisfied because of the

assertion of the effect of the original rule, and in turn all of the implications of these rules, collectively the

implication set. If any of the implied rules cannot be fired, the effects of the original rule and all the rules

in the implication set have to be undone. Thus a chain of rule executions in this model transforms that
2project objectbase from one consistent state to another.

Definition 1: The objectbase is said to be in a consistent state if the system is quiescent (i.e.,
no rules are currently in progress) and there are no rules whose condition is satisfied.

The intuition behind this definition is that if there is a rule whose condition is satisfied, then that rule must

be fired and the system would not be in a quiescent state. If the system is in a quiescent state, then it must

be because there are no rules whose conditions are satisfied. This definition ensures that all implications

of the effects of an activity requested by the user are fully satisfied; if this is not possible, then the user’s

requested is rejected.

2Another possible consistency model supports neither backward nor forward chaining, but this is a trivial case from the point
of view of the three problems addressed in this paper.

6

2.2. An Automation Model

A pure automation model differs from the consistency model presented above in two main respects: (1)

carrying out the implications of a rule is not considered mandatory; and (2) if a condition of a rule is not

satisfied, backward chaining is applied to try to make it satisfied (as opposed to verifying that it is already

satisfied).

The set of rules specify which activities can be automatically invoked as a result of initiating or complet-

ing a command requested by a user. The implications of this command do not have to be successfully

carried out for the command to be completed. The RBDE simply attempts to fire all the rules whose

condition contains a predicate that became satisfied as a result of the assertion of the effect of the user’s

command. The inability to fire any of these rules (because a condition might contain other predicates that

are still unsatisfied even after the assertion) does not invalidate what has been performed so far by the

original rule or other implications. Thus, the changes that each rule introduces are definite, rather than

tentative as in the consistency model.

Unlike in the consistency model, there are no restrictions on the kind of rules that can be invoked in a

backward chaining cycle that is initiated in an attempt to satisfy the condition of the rule corresponding to

a user’s command. It might be the case that one of the rules in a backward chaining cycle might invoke

an external tool with more than one effect, to specify the multiple possible results of the tool’s execution.

In this case, which one of the rule’s effects to assert cannot be determined before the execution of the tool

is completed, and thus it may or may not satisfy the condition of the original rule. In either case,

however, the changes that the tool introduced (to the file system, printer and mail spooler, user I/O, etc.)

cannot be undone. Although invocation of such tools might be unacceptable in a consistency model, this

is not an problem in an automation model.

Consider the edit command described earlier. If a user requests to edit an object but the object is not

‘‘checked out’’ yet, instead of rejecting the user’s command as in a consistency model, the RBDE would

try to automatically fire a rule whose effect will change the state of the object to be ‘‘checked out’’

(perhaps by invoking a tool to check it out). If firing that rule actually results in changing the state of the

object to a ‘‘checked out’’ state (the rule might have more than one effect and thus it is not guaranteed

that the desired one will be asserted), the activity of the edit rule will be invoked. Once the editing

session is completed and an effect has been asserted, the RBDE will try to fire all the rules whose

condition became satisfied. Unlike in the consistency model, if any one of these (or all of them) cannot

be fired, the changes that the edit activity introduced to the object (i.e., the checking out as well as the

edits to the object) will not be undone.

7

3. Interaction Between Assistance Models and RBDE Functionality
Many existing RBDEs support assistance models that combine aspects of automation and consistency

preservation. Some RBDEs, such as CLF’s rule system [13], distinguish between consistency rules and

automation rules, while another possibility is distinguishing between consistency predicates and automa-

tion predicates in the condition and effects of the same rule. The choice of assistance model impacts the

functionality of the RBDE, in particular, supporting multiple views, evolution of the process and data

models, and synchronization of multiple users.

In any assistance model, potential chaining cycles in the project rule set form a graph consisting of nodes

and two kinds of edges, forward edges and backward edges. Each node represents a rule, a forward edge

between nodes r1 and r2 means that a predicate in an effect of r1 may cause a predicate in the condition

of r2 to be satisfied. Similarly, a backward edge between r1 and r2 means that a predicate in the

condition of rule r1 might be satisfied by a predicate in one of the effects of r2. The distinction among

assistance models can be characterized in terms of the interpretation placed on the edges in the graph. For

example, a consistency model would interpret a forward edge as a consistency implication whereas an

automation model would interpret the same forward edge as a potential opportunity for automation.

3.1. Multiple Views

A view in an RBDE consists of a subset of the project rule set and a corresponding subset of the project

type set. At any time, an RBDE must have a view loaded in order to function. Different views might be

loaded by the same user during different phases of the development process; different users might also

load different views to fulfill different roles. In a single-user RBDE, only one view will be loaded at a

time; in a multi-user RBDE, different users might have different views loaded by the same RBDE simul-

taneously. There are two correctness criteria for views: (1) how well the type subset matches the assump-

tions of the rule subset; and (2) how complete is the subset of rules in the view.

The conditions and effects of each rule loaded by an RBDE manipulate (read and update) the attributes of

objects in the project database, which are instances of the loaded classes. Thus, each rule assumes that

the RBDE has also loaded a corresponding set of classes that include at least the attributes that the rule

manipulates. If the set of classes loaded by an RBDE does not meet the assumptions of all the rules that

are loaded, then there is a discrepancy between the loaded process model and the loaded data model. This

discrepancy can result if the data model contains incomplete or incorrect classes, or if different rules

make conflicting assumptions.

In a strict consistency preserving model, such discrepancy cannot be allowed because it would mean that

the condition of rule r would never be satisfiable since it would not be able to check the value of an

attribute that either does not exist or is of a different type. But since all rules in a consistency model are

considered consistency rules, the discrepancy entails that any rule that implies r would also not be ex-

ecutable.

8

If the RBDE supports a pure automation model, a discrepancy would mean that some of the rules either

would never fire (if the discrepancy invalidates the condition) or would have invalid effects. Although

the former can be tolerated, since in an automation model the inability to fire a rule does not impact any

other rule, the latter results in a situation where the activity of a rule has completed but the RBDE cannot

assert the appropriate effect because the attributes that the predicates of the effect manipulate either do not

exist or are of the wrong type. This situation is not well-defined in the RBDE model regardless of the

assistance model, and thus cannot be allowed.

Thus, regardless of the assistance model implemented in an RBDE, it can only load a view that meets at

least the first of the criteria listed above (that the rule set and the type set match). This is not affected by

whether one or more views are loaded simultaneously as long as the rule sets of all of these views are

subsets of the project rule set and the type sets are subsets of the project type set. The second criteria, on

the other hand, is greatly affected by the assistance model because it is the assistance model that defines

what the edges in the graph for the whole project rule set actually mean.

In an automation model, a forward edge between r1 and r2 means that when the activity of r1 ter-

minates, and if the appropriate effect is asserted, the RBDE should try to fire r2. The inability to fire r2

for any reason, including the non-existence of r2 in a view, does not invalidate the success of r1. Thus,

a view containing r1 but not r2 is considered legal in an automation model.

In a consistency model, however, a forward edge is interpreted as a consistency implication, meaning that

if r1 is fired, the changes that its activity introduces in the database can not be made permanent unless

r2 is fired and completes successfully (and so do r2’s own implications). Thus, if a view contains r1

but not r2, the edge representing the consistency implication would be missing from the rule graph of the

view. Say that changes introduced by r1’s activity could become permanent (assuming all other implica-

tions are met) even though r2 (which is not loaded) cannot be fired. If r2 were then loaded after this

point, its condition might be satisfied (because of the effect of r1), but the system would be quiescent,

violating the definition of consistency given earlier.

Definition 2: A rule set in a view is said to be legal iff for each node in the rule graph, the
forward edges and the backward edges are identical to the edges for the same node in the graph
of the complete project rule set.

This definition is satisfied if the graph of the view’s rule set is one or more disjoint connected com-

ponents (i.e., no forward or backward edges enter or leave the subgraph) of the project rule graph. The

highlighted subgraph in figure 3-1 represents a legal set of rules for a view to have.

9

Figure 3-1: Connected Component Representing Legal Rule Subset

3.2. Evolution of the Process and Data Models
3When the process model or the data model is changed, while the RBDE is off-line (not in active use), the

initial correctness criteria we required (that the data model matches the process model and the process

model is complete) must be reevaluated to make sure they still hold. In addition, the RBDE must

guarantee that the change does not invalidate any of the active views. This must be enforced regardless of

the assistance model. There are other aspects of evolution, however, that depend on the assistance.

In a strict consistency preserving model, the status of objects in the objectbase at any point is a con-

sequence of carrying out the consistency implications of each rule (in terms of invoking other rules). Say

that the process model of a specific project includes two rules, r1 and r2, which manipulate instances of

two classes, MOD and PROC. MOD has several attributes, among them status, which is supposed to

reflect the compilation status of instances of MOD; PROC has a similar attribute, updated. Assume that

all instances of PROC are contained in instances of MOD. Rule r1, which applies to instances of PROC,

specifies that if the tool T is invoked on an instance of PROC then the updated attribute of the instance

must be assigned the value ‘‘True’’ after the tool invocation completes. r2 specifies that for all instances

of MOD, if any of the instances of PROC they contain has its updated attribute set to ‘‘True’’, then the

status attribute of the instance of MOD must be assigned the value ‘‘NotUpToDate’’. Thus, at any

point, the RBDE guarantees that if any PROC has its updated attribute set to ‘‘True’’, then the contain-

ing MOD is ‘‘NotUpToDate’’. This is considered a consistency implication according to the loaded set of

rules.

Now assume that the rule r2 is changed to specify that instead of assigning status to ‘‘NotUp-

ToDate’’, it instead assigns the value ‘‘NeedsCompilation’’. Under a strict consistency mode, all in-

stances of MOD that contain an instance of PROC whose updated attribute is set to ‘‘True’’ are now

3On-line changes are much more complicated, and must be handled by special mechanisms spanning the concurrency control
and evolution support. We do not discuss this possibility in this paper.

10

inconsistent, since they violate this new consistency implication. The RBDE must try to change accord-

ingly the value of the status attribute of all of these instances. But if it fails to do so, say because there

is another rule that disallows this change in some way, the original change to r2 must not be allowed.

This example shows that there is a need for the notion of a legal evolution step in a consistency preserv-

ing model. An evolution step is a single change either to the definition of a single class, or to the con-

dition, the activity, and/or the effects of a single rule.

Definition 3: In a consistency model, an evolution step is said to be legal if all objects in the
objectbase can be transformed to meet the new consistency implications specified by the
modified rule set.

Verifying that every object in the objectbase meets the new requirements is impractical in general (or at

least highly undesirable since it is bound to be very costly). A more realistic approach might be to come

up with a restriction on the kinds of changes allowed. Intuitively, if the consistency implications

specified by the modified rules are weaker than the old one, then all objects in the objectbase will

definitely meet this criteria. In the example above, if the only change done to the rule set was to relax

rule r2 (i.e., make it apply to a narrower set of objects) or completely remove it, then the instances of

MOD would not violate any consistency requirements. Thus, a more practical definition is:

Definition 4: In a consistency model, an evolution step is said to be legal if the consistency
implications specified by the rule set after the evolution step is completed are either weaker
than the implications before the evolution step is carried out, or are independent of them.

The problem then reduces to finding acceptable definitions of ‘‘weaker’’ and ‘‘independent’’ consistency

implications. As described earlier, consistency implications are represented by forward edges in the rule

graph. The set of consistency implications specified by a rule set can be represented by the rule graph

after removing all the backward edges from the graph, to produce a consistency graph. For each set of

consistency implications I, the corresponding graph is denoted by G(I).

Definition 5: A set of consistency implications I′ is said to be weaker than another set I if G(I’)
is a subgraph of G(I).

Definition 6: A set of consistency implications I′ is said to be independent of another set I if
G(I’) and G(I) are disjoint.

In a pure automation models, in contrast to the consistency model, there are no restrictions at all on

modifying, adding and/or removing rules at any time, provided that the RBDE is effectively off-line (i.e.,

is quiescent and there are no users other than the one changing the process model). There is no notion of

consistency in the objectbase that could become corrupted. The change in the rules simply causes a

change in the optional automation behavior of the RBDE.

11

RBDEs that support a combination of consistency and automation may or may not have a clean separation

between consistency rules and automation rules. If not, the evolution facilities is necessarily specific to

the RBDE. If there is a clean separation, however, the notion of a registered objectbase provides an

appropriate mechanism for preserving consistency. A registered objectbase consists of the set of consis-

tency rules and the classes that these rules assume; these rules and classes are always loaded in the

RBDE. The discussion above concerning a consistency preserving model applies only to the registered

objectbase in the sense that compatible changes to the set of consistency rules or the set of classes

contained in the registered objectbase are allowed. Thus the automation rules can change arbitrarily, but

changes to consistency rules must be controlled. When an automation rule bridges a pair of otherwise

disjoint connected components in the consistency rule graph, there is still no problem, since the executing

the automation rule is by definition optional.

3.3. Multi-Agent RBDEs

We assumed above that there is only one thread of execution (agent) in the RBDE, i.e., the RBDE

executes one action at a time, where the action might be the evaluation of a rule’s condition, or the

invocation of an activity followed by the assertion of the logical expression representing its effect on the

objectbase (or an evolution step as described above). Under this single-agent model, the user requests a

command and waits until it, and all chains resulting from it, have been completed. This is clearly waste-

ful from the point of the view of the user, who remains idle for the entire duration of the execution of a

chain of rules. It is a very simple and clean model, however, from the point of view of the transition of

objects from one state to another.

To reduce the amount of time a user has to wait, the RBDE could execute a user’s command (and all its

implications) in the background, and allow the user to request another command while this background

processing is in progress. If that is allowed, then the RBDE must manage several threads of execution

concurrently, one for each chain of rules resulting from a user’s command. One of the complications that

would result is the possibility that rules on different threads might cause conflicting transitions of the

objectbase from one state to another, where one thread assumes that the objectbase is in a particular state

(since that is the state it left it in last), while a parallel thread might have changed it to a different state.

The exact nature of possible conflicts between concurrent agents depends on whether the RBDE supports

a consistency model, an automation model or a combined model.

The problem of conflicting transitions by multiple concurrent agents of course also occurs in multi-user

RBDEs that allow more than one user to concurrently access the project database. We discuss the concur-

rency control problem for multi-agents, applicable to both single-user and multi-user RBDEs, after

presenting our Maximalist model.

12

4. A Maximalist Assistance Model
We will consider the concurrency control problem for multi-user RBDEs in the context of a maximalist

assistance model. Our maximalist model combines consistency and automation in the sense that: (1) if the

condition of a rule is not satisfied, the RBDE tries to make it satisfied by backward chaining; and (2) after

the activity of any rule has terminated, the RBDE must carry out the implications of the activity’s effect

after it has been asserted. Backward chaining is complicated by the fact that it might fail (because of the

uncertainty of which effect will be asserted). In this case, all the implications of the rules that were

executed during the backward chaining cycle must be reversed. Thus, the RBDE must have a way of

logging these effects.

The combination can be at the level of rules or at the level of predicates. Our maximalist model supports

two kinds of predicates in the conditions and effects of rules: consistency predicates and automation

predicates. If the condition and all the effects of a rule contain only automation predicates, the rule is an

automation rule; if all the predicates are consistency predicates, the rule is a consistency rule. Otherwise

it is a combined rule.

The rule graph for the maximalist model contains three kinds of edges: automation forward edges,

consistency forward edges, and backward edges. An automation forward edge from rule r1 to rule r2

exists if one of the effects of r1 contains an automation predicate that implies a predicate (of either kind)

in the condition of r2. Similarly, there is a consistency forward edge between rule r1 and rule r2 if

there is a consistency predicate in r1 that implies a predicate in the condition of r2. There exists a

backward edge from r2 to r1 if an automation predicate in the condition of r2 is implied by a predicate

in one of the effects of r1.

The consistency forward edges emanating from a node define the implications of the rule represented by

the node. More formally, each rule r has a set of implications I(r), which consists of all the rules that are

connected to r by a forward consistency edge. In the maximalist model, the set of loaded rules is com-

plete if for every rule that is loaded, all the rules on its implication set are also loaded. It must also be the

case that the data model contain all the classes and attributes accessed by these rules.

To illustrate the maximalist assistance model, consider the set of rules shown in figure 4-1: the predicates

in square brackets are consistency predicates and those in parentheses are automation predicates. The

objectbase is in the state shown in figure 4-1. The graph representing the chaining network derived for

the set of rules is shown in figure 4-2. The edges define the forward and backward chains that are

possible when each rule is initiated.

Assume that the user selects a command that triggers rule r1 on object a. The precondition of the rule is

not satisfied because the attribute z of object a does not have the right value. Since it is the automation

predicate of the condition that is not satisfied, the RBDE will trace the backward edges of r1 to try to

13

Figure 4-1: Rule Set and Objectbase State

Figure 4-2: Rule Graph

make the predicate true. Since there is only one backward edge, it is pursued and the RBDE tries to fire

rule r2, whose condition is satisfied at that point and thus its activity is executed. When r2’s activity

terminates, one of the effects of r2 is asserted. Let us suppose that second effect is the one chosen (the

choice, as described earlier, depends on the results of the activity). This effect has two predicates, a

consistency predicate and an automation predicate.

Asserting the consistency predicate of the second effect of r2 leads to firing r3, according to the rule

graph, and asserting the automation predicate satisfies the original predicate in the condition of r1 that

initiated the backward chain. But before concluding that the backward chain succeeded in satisfying the

14

condition of r1, enabling the firing of r1, the consistency implications of r2’s effect (i.e., firing r3)

must be satisfied first. But since the condition of r3 is not and cannot be satisfied in the current state of

the objectbase, the RBDE concludes that r2’s firing was invalid and thus has to be retracted. This

implies reversing the state of the objectbase to the state it was in before r2 was fired, thus causing r1’s

condition to remain unsatisfied. Since there is no other backward edge that the RBDE can trace to satisfy

r1’s condition, it concludes that the rule cannot be fired. The user’s request is thus rejected.

One interesting complication is the side effects of r2’s activity. Although the rule was retracted, there is

no way to undo the side effects of the rule’s activity, such as the changes it introduced to the file system,

because the RBDE has no way of monitoring the execution of the tool that the activity invokes if that tool

is an external tool (e.g., a compiler resident on the operating system). The situation is further complicated

by the fact that the tool might have done an irreversible activity, such as sending mail to the manager of

the project or interacting with the user in the case of an interactive tool. This problem cannot be solved

by restricting backward chaining to inference rules, as was done in section 2.1, because the forward

chaining implied by the rules fired during backward chaining might include activation rules. There is no

general solution to the problem of tools with irreversible side effects.

5. Concurrency Control
The last problem we address in this paper is that of synchronizing concurrent accesses by multiple agents

to the project objectbase so that the synchronization requirements of the project under development,

whatever those may be, are not violated. The synchronization requirements are project-specific in the

sense that each project allows specific situations of cooperation between agents, depending on the

software process employed, which are achieved through the interleaving of the concurrent execution

threads of these agents. Note that the synchronization requirements prescribed by project administrators,

which determine allowable interleavings among execution threads, must be compatible with any

consistency requirements of the project (in the case of a consistency-preserving assistance model).

We have developed a multi-level framework to deal with the concurrency and cooperation problems in

multi-agent RBDEs. This framework addresses the problems at three different levels: (1) interleaving of

commands requested by different users; (2) interleaving of concurrent execution threads (rule chains) that

are initiated by each user command; (3) interleaving of the execution of the three parts of rules. The

flexibility of the concurrency control protocols decreases from level 1 to level 3. We first describe the

primitives representing the three levels, and then present the concurrency control policies applied to levels

2 and 3. The concurrency control protocol at the top level may be based on any of a number of schemes

described in the literature for cooperative transactions [14], and we do not discuss this here.

15

5.1. Concurrency Control Primitives

The basic building block of our framework is the rule. A rule consists of three parts, each of which is an

atomic operation. But since these parts represent a logical unit, they have to be executed as a unit; the

validity of the rule’s activity and effect depends on the satisfaction of the condition. If the objectbase is

changed be some other rule in such a way so as to make the condition false while the activity is in

progress, the results of the activity, and thus the assertion of an effect, will be invalid. Thus, the RBDE

must guarantee that the effect of an activity is not asserted if the condition has become unsatisfied while

the activity was in progress. Notice that we do not consider the backward chaining that might result from

an unsatisfied condition to be part of the evaluation of the condition, nor the forward chaining that might

result from an asserted effect to be part of the assertion, from the point of view of atomicity.

Since chaining is caused by changes to the state of objects in the objectbase, there is an implicit assump-

tion that during a chain that resulted from a particular state of the objectbase, the state of the objectbase

must not be changed to another state that negates the original state. Thus, the whole chain must be

encapsulated in a unit in order for the RBDE to be able to reason about how the changes that were

introduced by concurrent agents affect the validity of the chain. We encapsulate each rule chain in a unit,

which we call a task. Like a transaction in traditional database management [15], a task has a read set and

a write set. Like nested transactions [16], tasks are made up of subtasks; leaf nodes of the nested trans-

action are individual rules that do not cause any more chaining. The read set of a task is composed of all

the objects that are read during the evaluation of the conditions of all the rules fired in the task.

The third and last primitive that is needed is a unit to describe a single synchronization requirement. Such

a unit is necessary because each project has its specific synchronization requirements that must be

specified and provided to the RBDE rather than being built-in. We use the concept of control rules to

define synchronization requirements. Each control rule has a condition that describes a conflict situation,

and a repair that prescribes how to resolve the specific conflict. Both the condition and repair are

specified in terms of objects, rules and tasks. Figure 5-1 shows an example of a control rule.

(ControlRule test_conflict
IF (and (in-progress RULE ?r1 USER ?u1 TASK ?t1)

(start RULE ?r2 USER ?u2 TASK ?t2)
(not-equal ?t1 ?t2)
(not-equal ?u1 ?u2)
(conflict ?r1 ?r2))

THEN
(abort ?r2)

COMMENT: ‘‘ If a conflict has been detected between two rules in two
different tasks that are initiated by two different
users, then abort the more recent rule.’’)

Figure 5-1: Example of a Control Rule

We have developed a two-level concurrency control protocol that synchronizes concurrent tasks by apply-

16

ing control rules. The bottom level of the protocol, called the rule scheduler, operates on rules and

guarantees serializability of concurrent rules. The top level, the task controller, synchronizes concurrent

tasks. This layer is itself decomposed into two components: (1) a layer that detects potential conflicts

using a relatively low-overhead serializability-based algorithm; and (2) a layer that resolves these poten-

tial conflicts using a more expensive knowledge-based algorithm.

5.2. The Rule Scheduler

The simplest way to guarantee the atomicity of a rule execution is to treat the rule as an atomic trans-

action and to apply a conventional serializability-based concurrency control protocol to guarantee the

atomicity of concurrent rules. The details of the protocol depend on the specification of the effects of

rules. In the RBDE model presented in section 2, the effect of a rule specifies which attributes of which

objects to change in order to reflect the changes introduced by a tool. If these objects are known when the

rule is fired (i.e., after binding the parameters of the rule to objects) and before the activity is initiated,

then the set of objects that are written by the rule can be derived when the rule is fired.

In the more general case, however, the full set of objects that are read is known only after the evaluation

of the rule’s condition is completed, and the write set is known only after the invocation of the rule’s

activity is completed, at which point it is known which objects among those read were actually changed

by the activity. In either case, either a variation of the traditional two-phase locking protocol, or a

variation of optimistic concurrency control that supports merging rather than rollback of user activities

(such as done in Sun’s NSE [17]) can be used. We give the details of only the locking protocol here.

When a rule is fired, the rule tries to acquire a read lock for every object in its read set before evaluating

its condition. If it cannot do so, the rule execution is rejected and the rule terminates unsuccessfully.

Otherwise, the evaluation is carried out, and if the condition is not satisfied, the rule execution terminates

unsuccessfully. In the case where all the read locks can be acquired and the condition is satisfied, the

activity is invoked. By definition, the objects accessed by either the activity or the rule’s effects must be

in the set of objects that are either read while evaluating the condition, or bound when the parameters of

the rule are evaluated.

If an activity operates on external files or local copies of objects, there is not a need to lock any object it

accesses; after the execution of the activity is completed, however, the rule must then acquire a write lock

on every object mapped to the copies or files written by the activity. If it is not possible to obtain all the

necessary write locks, any locks held are released and the rule execution terminates unsuccessfully. If the

activity completes successfully, all the read locks are released, the appropriate effect is asserted by replac-

ing objects in the objectbase by any copies written by the activity and changing the values of the other

objects accessed in the effect, and only then are the write locks released.

Although this protocol guarantees atomicity of a rule, it can lead to wasted efforts in the case when a

17

write lock cannot be acquired after the activity working on copies of objects has completed and the RBDE

attempts to assert the effect on the objectbase itself, leading to the discarding of all the work that an

activity performed on local copies. This can be avoided by acquiring a write lock on all objects in the

read set of the rule (which is known before the activity is invoked). If these locks can be acquired, then

the rule is guaranteed to complete successfully because the objects that are written by the activity and the

effects are a subset of the locked set of objects. This scheme might be too restrictive, however, in cases

where the write set is a small subset of the read set, such as during a search, but in the absence of

knowledge about the write set before the invocation of the activity, we cannot do any better than one of

these two schemes.

Note that if the activity manipulates the objectbase directly, then write locks must be obtained on all its

arguments before it begins in any case, so the second scheme is followed. However, the assumption that

rules must be executed atomically is not appropriate for rules that invoke external tools because the

execution of these tools might last for a long time (e.g., an interactive tool). In this case, one of the

techniques used for long transactions, as mentioned above for cooperation among users, might be more

appropriate for the rule scheduler.

5.3. The Task Controller

The task controller is decomposed into a conflict detection layer and a conflict resolution layer. We have

previously explained the details of the first layer of the task controller and sketched the second layer, for

an automation assistance [8]. In this section, we explain how the maximalist model impacts the second

layer of the task controller.

We have developed a nested incremental locking (NIL) protocol for detecting conflicts between concur-

rent tasks in an automation model. The protocol models each task as a nested transaction, whose read set

is incrementally formed from the read sets of all the rules that are fired within the task. Similarly, the

write set is formed from the write set of component rules. NIL treats the top-level task as a normal

atomic transaction for the purpose of detecting conflicts only (and not for resolving these conflicts). It

thus detects any potential conflict that occurs whenever two tasks attempt to acquire two locks on the

same object and at least one of the locks is a write lock.

Internally, however, subtasks are executed concurrently and their actions are synchronized by an internal

mechanism. A subtask can fail and be restarted or replaced by another subtask without causing the whole

nested task to fail or restart. This is useful in an automation model because the RBDE might decide to

fire a rule, only to find out that its condition cannot be satisfied; in this case, the rule has to be abandoned

and other rules explored. Automation assistance should not be invalidated because of such failures.

The NIL protocol applies also to the maximalist model. The conflict resolution mechanism that we

developed for an automation model, however, must be changed in order to support the maximalist model.

18

In our previous work, we based the conflict resolution mechanism on control rules, and did not place any

restrictions on what the repair of a control rules can prescribe because only automation was affected. In

the maximalist model, however, there are consistency implications introduced by the consistency predi-

cates of rules, and these implications cannot be violated. Thus, the repairs of control rules must be carried

out in accordance with these implications.

To illustrate what we mean, consider the example described in section 4. Say that a user requests a

command that leads to the backward chaining cycle, t1, described in section 4. At the same time,

another task, t2, initiated by another user is in progress. Suppose that the control rule shown in figure

5-1 is triggered because the conflict detection layer detected a potential conflict between the rule r3 in

task t1 and another rule in task t2. Suppose that r3 was executed more recently than the rule it

conflicts with. In this case, the repair rule specifies that rule r3 should be aborted.

In an automation model, the conflict resolution mechanism would have to abort r3 only. In the max-

imalist model, however, r3 and r2 must both be aborted by undoing the changes that both rules intro-

duced, because firing r3 resulted from a consistency implication of r2 and if this implication cannot be

carried out, r2 must be rolled back. If r3 had been fired due to chaining through an automation predi-

cate in one of r2’s effects, then r2 would not have to be aborted.

In order to rollback a rule, the conflict resolution mechanism must keep track of all the changes made by

every rule within a task. This can be done by logging or other conventional mechanisms, but it is

important to remember that many results of external tools simply cannot be rolled back.

6. Conclusions
In this paper, we investigated the spectrum of assistance models that might be implemented in a rule-

based development environment and how the chosen assistance model affects the problem of scaling up

of the RBDE. The spectrum ranged from strict consistency preservation to pure automation, and included

many possible combinations in between, considering how predicates of rule conditions and effects were

interpreted and whether backward and/or forward chaining are supported.

We focused on three problems:

• The multiple views that might be employed by the same user over the lifecycle of a project
and by different users who carry out different roles on the project;

• The evolution of both the data model and the process model in terms of both the interactions
between the data and process models and their interactions with the prior state of the ob-
jectbase before an evolution step; and

• The concurrency control mechanisms suitable for detecting and resolving synchronization
conflicts among rules and rule chains, where the specific concurrency control policies
employed may be specific to the rule-based process model employed by the project.

19

We described how the feasible approaches to solving the multiple views and evolution problems are

restricted by the assistance model chosen, and then presented a maximalist model combining consistency

and automation in order to construct our solution to the concurrency control problem. Our concurrency

control mechanism consists of a standard protocol for detecting potential conflicts among rule chains, or

tasks, and then employs control rules to determine how to resolve the conflict, including ignoring it, a

semantic repair, or rolling back one of the tasks, according to the requirements of the software process.

Acknowledgments
We would like to thank Michael Sokolsky, who collaborated with us on designing and implementing the

single-user MARVEL, Israel Ben-Shaul, who is working on the multi-user object management system for

MARVEL, and George Heineman, who is working with us on developing an RBDE model that combines

consistency preservation and automation. The single-user MARVEL version 2.6 is available for licensing

to educational institutions and industrial sponsors; contact Israel Ben-Shaul, israel@cs.columbia.edu,

212-854-2930 for information.

20

References

[1] CLF Manual
University of Southern California, Information Sciences Institute, Marina del Rey CA, 1988.

[2] N. H. Minsky and D. Rozenshtein.
A Software Development Environment for Law-Governed Systems.
In ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-

ment Environments. ACM Press, New York NY, 1988.
Published as a special issue of SIGPLAN Notices, 24(2):65-75.

[3] K. E. Huff and V. R. Lesser.
A Plan-based Intelligent Assistant that Supports the Software Development Process.
In ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-

ment Environments. ACM Press, New York NY, 1988.
Published as a special issue of SIGPLAN Notices, 24(2):97-106.

[4] D. Wile and D. Allard.
Worlds: An Organizing Structure for Object-Bases.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments. ACM Press, New York NY, 1988.
Published as a special issue of SIGPLAN Notices, 24(2):16-26.

[5] K. Benali et al.
Presentation of the ALF Project.
In 9th International Conference on System Development Environments and Factories. Berlin,

May, 1989.

[6] W. Deiters and V. Gruhn.
Managing Software Processes in the Envireonment MELMAC.
In ACM SIGSOFT 4th Symposium on Software Development Environments, pages . ACM Press,

Irvine CA, December, 1990.
To Appear.

[7] N. S. Barghouti and G. E. Kaiser.
Multi-Agent Rule-Based Development Environments.
In 5th Annual RADC Knowledge-Based Software Assistant (KBSA) Conference. Syracuse NY,

September, 1990.
To Appear.

[8] N. S. Barghouti and G. E. Kaiser.
An Object-Oriented Framework for Modeling Cooperation in Multi-Agent Rule-Based Develop-

ment Environments.
IEEE Expert , December, 1990.

[9] G. E. Kaiser, P. H. Feiler and S. S. Popovich.
Intelligent Assistance for Software Development and Maintenance.
IEEE Software 5(3):40-49, May, 1988.

[10] G. E. Kaiser, N. S. Barghouti and M. H. Sokolsky.
Preliminary Experience with Process Modeling in the Marvel Software Development Environment

Kernel.
In 23rd Annual Hawaii International Conference on System Sciences, pages 131-140. Kona HI,

January, 1990.

21

[11] C. Pu, G. Kaiser and N. Hutchinson.
Split Transactions for Open-Ended Activities.
In Proceedings of the 14th International Conference on Very Large Databases, pages 26-37.

Morgan Kaufmann, San Mateo CA, August, 1988.

[12] G. E. Kaiser.
A Flexible Transaction Model for Software Engineering.
In Proceedings of the 6th International Conference on Data Engineering. IEEE Computer

Society Press, Los Angeles CA, February, 1990.

[13] D. Cohen.
Compiling Complex database transition triggers.
In 1989 ACM SIGMOD International Conference on the Management of Data. ACM Press, New

York, NY, 1989.
Published as a special issue of SIGMOD Record, 18(2):225-234.

[14] N. S. Barghouti and G. E. Kaiser.
Concurrency Control in Advanced Database Applications.
Technical Report CUCS-425-89, Columbia University Department of Computer Science, New

York, NY, March, 1989.

[15] K. Eswaran, J. Gray, R. Lorie and I. Traiger.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-632, November, 1976.

[16] Moss, J. E. B.
Nested Transactions: An Approach to Reliable Distributed Computing.
MIT Press, Cambridge MA, 1985.

[17] E. W.Adams, M.Honda, and T. C. Miller.
Object Management in a CASE Environment.
In 11th Int’l Conf. Software Eng., pages 154-163. Computer Society Press, Washington DC, May,

1989.

