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Abstract

Measuring the performance of applications running over live wide area internets (WAINs)
is important and difficult. Directly observed performance and availability can help application
developers and network managers. To compensate for the difficulty of controlling important
variables such as message path and network load, we developed the Layered Refinement
(LR) measurement methodology. LR tools use generic user-level software to collect data
simultaneously at important software layers. LR data reduction techniques reveal interesting
phenomena on network routing, latency, and availability, in addition to application response-
time and RPC performance over the Internet. We illustrate the application of LR with a
series of measurements and some of the phenomena observed.
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1 Introduction

Despite the tremendous growth of wide area internets (WAINs) and the number of users they
connect, we find little, if any, published data on actually measured end-to-end performance of
WAIN application software. Measured data is important to network managers, distributed
application developers, and network modelers because traditional techniques such as analyt-
ical modeling, simulation, and testbeds do not capture the complexity of a large WAIN. Our
experience in measuring distributed applications running over the Internet since 1987 shows
some of the difficulties and the methodology we developed to deal with them.

The foremost difficulty in measuring the performance of distributed applications running
over WAINSs is the difficulty in controlling the environment. Another serious problem is the
constant evolution of WAINs. For example, Columbia switched from a direct ARPANET con-
nection (56 Kbaud) to an NSFNet connection (through NYSERNet, T1 lines at 1.5 Mbit/sec)
in 1988. In addition, the operating systems (OS), the applications, and router/gateway soft-
ware have had several new releases during the period of our investigation. A third problem
happens during run-time: in a packet-switched network such as the Internet each packet can
be routed differently, causing potentially large variances in measured data. Messages travel
through many intermediate gateways, routers, and shared media, each with its own queueing
delays. Consequently, the raw data (for example, the points in Figure 6 of Section 3) shows
an apparent randomness.

We developed the Layered Refinement methodology (LR) to measure distributed applica-
tion performance characteristics such as response-time, effective bandwidth and availability
on a live Internet (in contrast to controlled laboratory experiments). LR consists of three
parts: (1) divide the application into layers and design measurements for each layer; (2) collect
data simultaneously on all the important layers; (3) iterate as many times as necessary the
process of analyzing and refining the measured data to improve precision. With LR we have
successfully measured and analyzed the performance of two distributed applications running
over the Internet. Although the numbers we obtained are fundamentally different from labo-
ratory experiments, they can be reproduced with high confidence. Finally, our methodology
uses only simple software measurement tools, making it very practical and widely applicable.
The main contribution described in this paper is the formulation and demonstration of the
LR methodology.

This paper reports on the results of our measurements, data collection tools, and data
analysis methodology, all of which may be useful for both developers and users of distributed
applications over WAINs. We describe the experiments in Section 2. The LR methodology
is summarized in Section 3. Sections 4 and 5 contain the analyses of data on WAIN and
application performance, respectively. Related works, such as kinds of packets and their size,
are summarized in Section 6. Section 7 concludes the paper.

2 Layered Experiments

Our goal in developing the LR methodology is to measure many distributed applications,
without having to completely redesign the data acquisition and data reduction toolkit. The
technical details of the experiments are omitted since their purpose is to illustrate the phe-
nomena observed by the LR methodology. Analysis of Camelot transactions will be described
in another paper [13].
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Figure 1: The Application Model

2.1 Layered Model

Our model of an application software package running over WAIN is shown in Figure 1.
The network connects the two ends of the application, which may or may not be symmetric.
We call the network box the horizontal dimension of our model, since messages flow through
the network within the communications protocol system software. At the end nodes, we call
the multiple layers of software the vertical dimension of our model, since the messages flow
up and down from applications into the system software and back.

We are interested in measuring the end-to-end performance of application software, through
both the vertical and horizontal dimensions of the model. The measured numbers can give us
a better understanding of WAIN applications, and to help us find their bottlenecks in need of
optimization. This multi-layer model divides the application and the OS into smaller chunks
for detailed performance analysis.

The first observation about the model is that we should make each layer in the vertical and
horizontal dimensions significantly thick for the measurements. In other words, the amount
of time a message spends in each layer should be of approximately the same magnitude.
Otherwise, we subdivide the dominant layer (in cost) appropriately. This requirement is
system measurement common sense. It is not specific to WAIN measurements. However,
we note that relatively thick layers make WAIN measurements more tolerant of the coarse
granularity data produced by generic software tools.

The second observation is that each layer in the model should present an external interface
to the user. This means that we should be able to write a program to access the facilities of
each layer, independent of the layer above. Although this requirement is not made explicit in
LAN measurements (Section 6.2), those researchers had full access to the source code of their
systems. In other words, they instrumented their system software for measurement purposes.
LR does not require modifications to each layer of system software, just that each layer be
independently accessible to users.



2.2 Client/Server Experiment

Our experimental environment, the Internet, is a WAIN with more than 100,000 nodes span-
ning the world [11]. The Internet is organized hierarchically, with high-speed backbones in
the center and slower links towards the outer fringes of the graph. The backbone in the
United States is the NSFNet. A number of regional networks connect into NSFNet, usually
through NSF supercomputer centers. For example, Columbia’s connection to the Internet is
a T1 link into NYSERNet, with gateway to NSFNet at the Cornell Supercomputer Center.

Our first data set was obtained by measuring, from Columbia, the round-trip time of the
Webster’s Ninth New Collegiate Dictionary Server running at the University of Washington.
The hardware on both ends was a NeXT machine running the Mach operating system [1].
This data, from now on called the Webster sample, was obtained during a seven-day period
in September of 1990 and is used primarily to show the different routes packets have traveled.

On the Washington side, the Webster Server receives a word in the request, looks up the
word in the dictionary and returns the first N characters of the result, where N is a function
of the request message size. We truncate the reply to N characters to control the number
and size of packets transmitted. On the Columbia side, the dictionary client doubles as the
measurement tool. The client makes a series of requests for lookups from a list of words. Each
request is timed and spaced by a one-second delay. After the client finishes the iterations
it records a short performance summary. In the Webster sample, each batch contains 11
iterations and runs every half an hour.

2.3 Distributed Transaction Experiment

Our experiments started in 1987 as an effort to measure the performance of the Camelot
distributed transaction facility [18] over the Internet. Camelot distributed transactions con-
sist of several RPCs and processing at both ends. A standard statistics-gathering program,
called the Camelot Performance Analyzer (CPA), is used to obtain round-trip times between
Columbia and CMU. The CPA digests and records the raw data.

Camelot measurements have been made between several machines at Columbia (two Mi-
crovaxes) and CMU (primarily a Microvax and an IBM/RT), all running Mach. There are
several similarities as well as differences between the Camelot experiments and Webster exper-
iments. Both applications run on Mach OS, using its RPC. Webster has only one round trip
while Camelot may have several when multiple servers are involved in a two-phase commit
protocol.

In this paper, we use the results from a series of measurements made from November 1990
to January 1991, called the Camelot sample. The Camelot sample has in each batch 21 CPA
points, plus 11 RPC and ping iterations every half an hour. We ran batches of both read
transactions and write transactions.

3 Layered Refinement Methodology

The methodology described in this section has been developed through several years of expe-
rience. The challenge we would like to meet is to design an extensible methodology, capable
of adapting to network bandwidth upgrade of two order-of-magnitude, new applications and
network protocols.



3.1 Motivation

In measuring system performance, the best numbers are obtained from hardware-assisted
measurement tools that do not introduce any distortion into the measured numbers. However,
such tools are impractical over WAIN due to the expenses and the difficulties of installing
them on the intermediate routers.

The next best alternative would be software-assisted measurements taken directly by each
layer of software involved. Network administrative domains such as NYSERNet and NSFNet
that implement the Simple Network Management Protocol [3] collect some information for
each domain, but it is local, not generally available, and when available not publishable.
The alternative is for each layer of the system to add some identification and timestamps to
messages as they travel through the system. Three important problems make this approach
impractical. First, such services are often simply not implemented in existing operating
systems and network protocols. One example is the TP Record Route option, which would
record the node-ids through which the message travels. But unfortunately the Record Route
option is not implemented in most routers. Even if it were available, the diameter of the
Internet (about 20 currently) and the typical distance (the Camelot and Webster samples
have from 12 to 15 hops) have already outstripped the planned capacity of Record Route
(only 9 or 10 address slots).

The other two problems are the measurement cost and clock granularity. Taking times-
tamps to produce the time interval is expensive (usually requiring a kernel call) in most
existing operating systems. The cost problem is compounded by the additional message size.
A small message may become large due to the number of layers it traverses horizontally in
the network and vertically within a node. The third problem is the coarse granularity of
clocks in most workstations. For example, we have experimentally found a clock precision
of 10 milliseconds on a Microvax II running Mach, which makes direct measurements of our
applications infeasible (we are interested in operations on the order of 1 millisecond or less).

Given that we have little hope of using specialized hardware or software to make measure-
ments over a live network such as the Internet, we had to develop a measurement methodology
using only generic software tools. These tools have to be very simple, since they cannot modify
the underlying network system in any way. To filter out the noise present in an uncontrolled
WAIN, we collect a large amount of data and use non-trivial data reduction techniques, which
serve the same function as laboratory controls that isolate the phenomena of interest.

3.2 Data Reduction at Each Layer

Warm-up effect: Both the Camelot? and Webster samples take 11 points in each batch.
Figure 2 shows the mean response-time of each point by their position in the batch for the
Camelot sample. The figure shows a systematic bias for the first point of each batch to take
longer time. This is known as the “warm-up” effect, due to start-up costs such as program
initialization, virtual memory loading, cache filling, and host name to IP address translation.
Thus we drop the first point of each batch in some of data analysis to eliminate the systematic
bias introduced by warm-up.

Distribution: To show the difficulties of modeling the measured data, we plot the fre-
quency distribution of observed round-trip times. Figure 3 shows a relatively simple curve.

The sole exception is CPA for which 21 points were taken in each batch.
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Figure 2: Round-Trip Time (mean and std. dev.) by Position

The X-axis is round-trip time measured by ping and the Y-axis shows the number of oc-
casions a given time was observed. The asymmetric unimodal curve in Figure 3 is typical
of low-level protocols (see another WAIN measurement study [8]). However, complex appli-
cations such as Camelot transactions are different. Figure 4 shows a bimodal distribution
of Camelot write transactions measured at the same time as the ping numbers in Figure 3.
The bimodal distribution (with first mode at about 500 ms and second at about 1500 ms) is
consistent in the Camelot experiments. (The spike at 1910 in Figure 4 simply accumulates
all the data points higher than 1910.)

Both figures show data points concentrated near the left side around their mode, with a
right-side tail towards long response-times. The points around mode are considered “normal”,
presumed to have followed the usual path. A response-time significantly longer than the mode
can be due to many different phenomena in the network, such as lost packets, retransmission,
and delays in some router. To improve the signal/noise ratio of our data, we filter out the
“abnormal” points.

Outliers: Table 1 illustrates our filtering of outlier points. The raw data used is from the
Camelot write sample, shown also in Figure 6. Column 1 describes the kind of data analyzed
in that row. Column 2 shows the total number of batches (each containing 10 or 11 points)
accumulated. Then we have the mean, mode, and median of the distribution of accumulated
mean values from the batches. Column 6 shows the value of a batch at the 95% cut-off point,
and column 7 the value of upper fence, defined as 1.5 times the inter-quartile range (distance
between 25% and 75%) greater than the 75% cut-off point. Upper fence (page 43 in [20]) is
a commonly accepted definition of outliers.

Table 1 shows that mode is consistently smaller than median, which is smaller than mean.
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Figure 4: Distribution of Data Points Accumulated (CPA)



Data Tvpe Number of Mean Mode Median 95% of Upper
‘ ype Batches of Means of Means of Means points Fence
Raw Data 1735 171 ms 150 ms 162 ms 249 ms 254 ms
Drop First 1735 165 ms 140 ms 155 ms 239 ms 241 ms
95% of Raw 1732 153 ms 140 ms 146 ms 205 ms 213 ms
Upper Fence 1724 143 ms 130 ms 139 ms 183 ms 183 ms
of Raw Data

Camelot sample, ping layer, comparison of different filtering threasholds.

Table 1: Refining ping Data

Data RPC — Ping CPA - RPC
Filtering mean mode | median | correlation mean mode median | correlation
Raw Data 136 ms | 40 ms 47ms 0.461 435 ms | 270 ms | 316 ms 0.369
Drop First 143 ms | 40 ms 50 ms 0.474 383 ms | 270 ms | 289 ms 0.413
95% percentile | 46 ms 40 ms 45 ms 0.525 293 ms | 290 ms | 286 ms 0.485
upper fence 49 ms 40 ms 47 ms 0.601 283 ms | 270 ms | 278 ms 0.487
Camelot sample, ping, RPC, and CPA layers, filtered and correlated.

Table 2: Spearman Correlation of Multi-Layered Data

It also shows a considerable reduction in the value of mean after filtering the outliers (rows
3 and 4).

3.3 Simultaneous Multi-Layer Data Collection

Given the number of uncontrollable variables in the Internet, independent measurements of
layers would give us little information about their relationship with each other. Therefore
we measure all the layers concurrently. The idea is that whatever affects one layer would
affect the other layers as well. Although we cannot establish causality between the numbers
measured from different layers, we can correlate them. Using correlation we can separate the
participation of low level software by subtracting the round-trip times of one layer from the
layer above. For example, subtracting the ping cost from the RPC cost we can learn the
pure RPC cost. This analysis is fundamental to the understanding of each software layer,
especially of the higher layers, including the application. On top of ping we have RPC,
measured with a tool called mirror-RPC, which simply echoes its input. On top of RPC we
have the applications.

Since LR collect the data from different layers at the same time, we would expect a
strong correlation between them. Indeed this is the case, and Table 2 illustrates this point
by filtering the outliers in several ways. Since the distributions are not symmetric, we do
not use the usual Pearson correlation, which assumes normal distribution. Instead, we use
the Spearman correlation (page 507 in [12]) of two adjacent layers. Table 2 shows that we



Data Type ping Mirror RPC CPA write

mode median iter-q. mode median mter-q. mode median inter-q.
range range range

Camelot 150 ms 162 ms 44 ms 200 ms 208 ms 59 ms 490 ms 534 ms 149 ms
Sample

Jontrol -

| . 120 ms 132 ms 33 ms 140 ms 145 ms 29 ms 440 ms 471 ms 91 ms
Experiment

Prcsu-med +30 ms +30 ms +11 ms +60 ms +63 ms +30 ms +50 ms +63 ms +58 ms
Interference

Camelot sample and Interference experiment, three layers, raw data.

Table 3: Self-Interference in Camelot Sample

have increasing correlation as the filtering techniques become more refined. Since we know
the data sets are correlated by construction, this is a strong indication that outliers are due
to isolated problems within the layer or in the network. Although the correlation increases
monotonically with greater filtering, we can see some oscillation in the median and mode
of the distributions. The mode change is due to the initial multi-modal distribution of the
application (CPA). The filtering changes the median because each batch may be affected
differently by the elimination of points, thus changing its mean.

3.4 Estimating Interference

Although simultaneous data acquisition allows us to correlate data, it also introduces po-
tential interference between the several layers being measured at the same time. If packet
processing were not the bottleneck in the system, then the interference would be small. How-
ever, in workstations the CPU overhead in network protocol processing is significant, as well
as the application overhead. Therefore we designed experiments to quantify the amount of
interference.

For the Camelot sample, we used separate experiments that sequentially run each layer,
eliminating the competition between the layers. To check the correlation between the layers,
we run a lower layer before and after a higher layer. The control experiment, therefore,
consists of traceroute, ping, RPC, CPA, RPC, ping, and traceroute. Since the two runs
of lower levels in each batch were always consistent, we only show one set of numbers for
them in Figure 3. We see considerable interference for this case, since the difference between
the Camelot sample and the control experiment is significant: 25% for ping, 40% for RPC,
and 12% for CPA. The interference may be overstated, as the control experiment was run a
few weeks after the Camelot sample. A careful design of future experiments will minimize
the interference for resource-demanding applications.

3.5 LAN Control Experiments

To validate the LR methodology, we ran the same experiments over a LAN as control. The
LAN experiments were done between two NeXT machines on the same Ethernet. However,
they were not on an isolated network and were used as workstations. Therefore we have
observed large variances in the means. Since we use the LAN experiments as control, we
have used the minima as an approximation to laboratory measurements. Table 4 summarizes



I Mean of std.dev. Remain.
Data Type O ..
- Minima, of Minima Data
ping 4.0 ms 0.2 ms 100%
mirror-RPC 19 ms 1.8 ms 100%
Webster 67 ms 31 ms 100%

LAN control experiment (replicating Webster sample)

Table 4: Summary of LAN Data (Minima)

LAN data obtained in four days in September 1990. We have applied the usual filters but no
points were eliminated.

4 WAIN Performance

4.1 Internet Packet Routing

IP packets on the Internet travel from router to router until they reach their destination.
The exact route is determined dynamically. If the packet route between the Measurement
Tool and Application changes often, this will be a source of variance in round-trip time. In
the experiments before October 1990, such as the Webster sample, routing seems stable for
minutes or hours at a time. In the experiments after October 1990, such as the Camelot
experiments, dynamic rerouting happens frequently, since different trials in the same batch
(from a few seconds to a minute) may yield different routes.

Van Jacobson’s traceroute program is the generic software tool we use to discover the
current Internet routing. IP packets contain a time-to-live (TTL) field. At each router,
IP decrements a packet’s TTL by one, the packet is returned to the sender when its TTL
reaches zero. Traceroute starts with TTL= 1 to find the nearest neighbor, and increments
TTL gradually until the packets reach the destination. To check the correlation between the
traceroute results and measurements of higher levels, we ran it before and after the main
measurements. Only 1.5% of the Webster sample data showed different routes between the
beginning and the end of measurements. Even for those rare cases, the routes were similar
enough (switching between Rochester and Albany) that the rerouting would not have affected
the timings.

Figure 5 shows the main routes observed by traceroute in the Webster sample (plus
two additional days). The thickness of each edge represents the percentage of time a route is
taken. The thickest line is between Cornell University and NSFNet’s Seattle gateway through
University of Illinois at Urbana-Champaign, representing about 92% of packets. The length
of the edges represents a typical packet travel time between the gateways. For example, it
takes about 20ms from Columbia to either Rochester or Albany, and about 50ms from Cornell
to Illinois. The only exception is the link between Michigan and Seattle, which goes through
Salt Lake City and California; it takes more than 100ms and is drawn as a jagged line, out
of scale.

We do not

show the individual local routers since the travel time between them is very short. However,

Each of the nodes in Figure 5 includes several local routers or gateways.
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Figure 5: Most Used Routes Columbia Washington

in the figure we include a router on the Columbia end that was removed by NYSERNet
personnel during our data collection period. Unfortunately this occurred at the end of the
data collection, so we do not have enough data for a direct comparison between the travel time
before and after the change. This is an example of permanent route changes that may occur
in the Internet, introducing systematic bias into the measurement data. Another imminent
change is the upgrade of the NSFNet backbone to 45 Mbits per second T3 lines.

Some of route changes are transient and there are several reasons a message may take a
different route. First, IP congestion control may redirect packets around one or more busy
routers. Second, routers may temporarily malfunction or crash, causing short or long delays
until the routing tables are updated. One router bug exposed during the Webster sample
created routing loops that lasted for a few seconds. Third, routers may be shut down for
administrative purposes. For example, during the Camelot sample, a runaway machine forced
the isolation of NYSERNet from the NSFNet backbone for significant periods of time [14].

Table 5 starts with Webster sample data filtered with a 1-second threshold (this is higher
than the upper fence) as the universe set. To separate the routes, we use the traceroute
data to determine when the messages travel via the same route. (Figure 5 shows another
way of compiling that data.) The experiments sharing the same route are grouped together.
The route through Albany, Cornell, and Tllinois is the most popular with 56.5% of messages,
followed by Rochester, Cornell and Illinois with 13.8% and the shortened (by one local router)
route through Albany, Cornell, and Illinois. All the percentages are relative to the universe
set. In 95% of the cases, separating the routes shows from 25% to 30% reduction in the
magnitude of standard deviation.

10



Raw Data 286 ms 765 ms 112 %

Thres. 1 sec 199 ms 45 ms 100%
Albany /Cornell/Illinois 186 ms 31 ms 79.3%
Rochester/Cornell/Tllinois 222 ms 80 ms 4.7%
new Rochester/Cornell /Illinois 227 ms 32 ms 5.0%
new Albany/Cornell/Illinois 200 ms 31 ms 5.3%

Webster sample, ping layer, mean of batches, comparison of filtering thresholds.

Table 5: Separated Routes Decrease Standard Deviation

4.2 Protocol Response-Time and Bandwidth

Using tools such as ping and RPC mirror we can measure the response-time of message
passing over a WAIN. By sending messages repeatedly we obtain the effective bandwidth of
the communication channel. We have already reported on the response-time of the IP layer
in Table 1 of Section 3.2. Although we have measured the network effective bandwidth in
the past we have not measured the effective bandwidth for either the Webster sample or the
Camelot sample. In 1989, during the switchover from ARPANET to NSFNet, the effective
bandwidth of Mach RPC facility between Columbia and CMU was about 11KB per second
for 8KB messages (we were unable to send messages longer than 8KB).

4.3 Periodicity Analysis

Another potential source of variance is the different demands on the network at different
times of the day. For example, Cheriton [5] has found networks busy just before lunch and in
the mid-afternoon. The daily and weekly components correspond to our intuitive model of
typical machine load, which oscillates according to people’s working patterns. Much of our
data show clear daily and weekly periods of busy activity, either in the network or the end
machines or both.

Figure 6 shows the Camelot sample data accumulated on a weekly basis. The periodicity
analysis starts with an accumulation of the points at the same time in the same day of the
week (averaged into the same bucket). Then we use the FFT package of Mathematica to
find the cycles in the data. The curve superimposed on the “raw” data in Figure 6 is drawn
taking the 15 first FFT components. The curve reveals up to two cycles per day (Saturday and
Tuesday), but most of the other days show only one peak at about 5pm Eastern Standard
Time. Although the weekly period is better seen on a curve containing only 2 first FFT
components, Figure 6 shows the contours of the smaller weekly component, with Wednesday,
Thursday, and Friday having higher load than Saturday and Sunday. Probably the fast
response time on Tuesdays is a statistical fluctuation.

4.4 Internet Link Availability

11
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Figure 6: Daily Periodicity in a Week

Experiment :3?::2;:;3?131 failed | total i&;il;.lre
traceroute 315 15 330 4.6%
ping 303 27 330 8.2%
mirror-RPC 292 38 330 12%
Webster 294 36 330 11%
Webster sample, all layers, raw data.

Table 6: Observed Failure Rates

12



One important statistic in any network experiment is the total number of failed exper-
iments, which did not return data. Table 6 shows the failure rates of all four layers in
the Webster sample. One can see that traceroute and ping had similar low failure rates,
while mirror-RPC and Webster had similar high failure rates. This is not surprising, since
traceroute and ping use the same low level IP protocol while mirror-RPC and Webster use
the high-level RPC facility, thus sharing the same failure modes.

When traceroute fails, the Columbia—Washington path is completely blocked. In ad-
dition to the 4.6% of the time this happens, ping fails for another 3.6% of the time. Webster
fails an additional 3% of the time, due to failures between TP and RPC layers, including one
case of an invalid RPC port. We have not found the explanation for the two cases where

mirror-RPC failed but Webster did not.

5 Application Analysis

5.1 Operating System Overhead

For mirror-RPC and RPC-based applications we have the problems discussed in Section 4.4
plus the timeout and retry nature handled automatically by the operating system’s remote
procedure call mechanism. While the number of retries due to lost or delayed packets carrying
the RPC’s is unknown, it can be estimated from the known number of packets for each RPC.
In any case we would be interested in both the average behavior (as seen by the users) and
the understanding of the underlying software layers. Data points that include the lengthy
recovery are important for the user perception but not for systems analysis.

Although TP represents the smallest communications overhead in the Internet, most ap-
plication programmers prefer higher level primitives. In Mach, the OS running on our mea-
surement machines, the most popular communications facility is the Remote Procedure Call
(RPC). There are more layers in the OS between RPC and IP, but we will simplify the ex-
periment by concentrating on the lowest necessary layer (IP) and the highest OS primitive
used by programmers (RPC). The idea is that IP results measure the network travel time,
while the difference between RPC and IP captures the OS overhead.

There is a significant amount of work done by the OS kernel and run-time library for each
RPC call. The additional cost (compared to IP) includes both CPU overhead and messages.

e IP is part of the kernel, but RPC is not. There is some kernel entrance/exit cost for

RPC.

e RPC needs to marshal and unmarshal invocation arguments, possibly copying the mes-
sage body.

e RPC requires more messages than ping. A Mach 2.5 RPC takes at least 2 packets
(one each way) and more if a large message is divided into standard size packets.
Each message has a TCP ack packet that is usually piggybacked to existing traffic. In
addition, the first messages has an initial overhead of 2 packets.

Mach does not supply the equivalent of ping for the RPC layer. We wrote our own
measurement tool, consisting of a client/server pair. The client communicates with the
server through RPC and records the round-trip time, very much the same way as ping,
but at the RPC level. This tool is called mirror-RPC, since the server simply reflects the

13



Data T Mean of std.dev. Remain.
ata Type
Means of Means Data
Raw 380 ms 666 ms 110%
Drop First 370 ms 617 ms 100%
Thres. 1 sec 233 ms 46 ms 98.0%
Albany /Cornell/Illinois 222 ms 37 ms 91.5%

Webster sample, RPC layer, mean of batches, filtered three ways.

Table 7: Refining mirror-RPC Data

Data Type Mean of std.dev. Remain.

‘ i Means of Means Data
mirror-RPC—ping 35.7 ms 46 ms 100%
Albany /Cornell /Illinois 35.5 ms 37 ms 2%
Data ‘Tvpe Mean of std.dev. Remain.

ype Minima of Minima | Data
mirror-RPC—ping 17.3 ms 22 ms 100%
Albany/Cornell/Tllinois 18.6 ms 10 ms 2%

Webster sample, RPC and ping layers, means of batches, filtered two ways.

Table 8: Mirror-RPC minus ping

incoming message back to the client. Similar to the ping measurements, the mirror-RPC data
collection happens every half an hour, coinciding with the ping experiments. For uniformity
we take 11 samples (RPC round-trips) for each sampling period. The data treatment is the
same.

To show the effectiveness of our data refinement method, we include a summary of data
refinement from the two other layers. Table 7 summarizes the refinement of data for the
middle layer, called mirror-RPC. We emphasize the clear similarity in improvements of Ta-
bles 1 and 7, even though they measure different layers of network software and several times
difference in absolute numbers measured.

5.2 Layered Data Analysis

One of the important results of the LR methodology is the ability to derive performance
information about each layer of the software being measured. The first step is to subtract
the measured ping number from the mirror-RPC number, point by point. The idea is that
since those number were obtained at the same time, they are correlated (see Section 3.3).
As we can see from the top half of Table 8, subtracting the means of each experiment has
a large standard deviation. The second half of Table 8 shows the subtraction done between
the minima of each experiment instead of mean.

The main reason we prefer minima for inter-layer subtraction is the analogy with labo-
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Webster sample, ping layer, raw data, filtered at 1000 ms threshold.

Figure 7: Comparison of Minima, Means, and Maxima

ratory experiments (such as [15]). In a laboratory, all the external interference is eliminated
to yield consistently reproducible results. This process yields the minima as the final result.
In our measurements, we cannot eliminate the external interference, but the minima approx-
imates the situation since they show the least perturbation. Therefore, when analyzing the
layers of system software we prefer the minima to means. To illustrate the significance of
minima data, Figure 7 compares the minima, means, and maxima from the Webster sample.

The difference attributable to the RPC overhead thus calculated is about 18 milliseconds
with a narrow confidence interval (row 3 and 4 of Table 8). This number comes quite close to
laboratory measurements of Mach RPC. Duchamp [7] has reported a total Mach RPC round-
trip time of 22 milliseconds between two IBM RT/125s connected through a token-ring LAN.
Since the network, basic software releases, and machines are different, the measurements are
not directly comparable. Section 3.5 explains the LAN control experiments that provide a
more appropriate comparison.

Similar to subtracting ping numbers from mirror-RPC numbers, we can subtract the
RPC cost from Webster cost. Table 9 shows it takes 40 milliseconds elapsed time for the
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Data T Mean of std.dev. Remain.
ata Type
Means of Means Data
Webster—RPC 58 ms 62 ms 100%
Albany/Cornell/Tllinois 56 ms 50 ms 2%
Mean of std.dev. Remain.
Data Ty
ata type Minima of Minima Data
Webster—RPC 41 ms 18 ms 100%
Albany /Cornell/Illinois 40 ms 14 ms 2%
Webster sample, RPC and application layers, means of minima in each batch, filtered two ways.

Table 9: Webster Minus mirror-RPC

Network Type Webster—RPC RPC—ping ping Total
WAIN - breakdown 40 ms 19 ms 157 ms 216 ms
LAN breakdown 48 ms 15 ms 4 ms 67 ms

Webster sample, all three layers, minima of batches.

Table 10: Adding Up Layers (all Minima)

Webster dictionary to look up a word. The actual layer-by-layer analysis is in Table 10.
One interesting observation from Table 10 is the difference in layer contributions between
LAN and WAIN experiments. Self-interference is the most probably cause of this discrepancy,

which is a topic of active research.

6 Related Work

6.1 Iterated Refinement Methodologies

Seo et al. [17] have measured the end-to-end performance of TCP/IP over the Atlantic Packet
Satellite Network (SATNET). Like the LR methodology proposed here, the measurement
methodology in the SATNET study is an interactive one. It is also concerned with end-to-
end performance over the network. However, the SATNET study is limited to the TCP/IP
layer, since they have a simpler environment.

Work by Mills [11] and Schwartz [16] have both studied applications across WAINs that
are related in methodology to Layered Refinement. Although the focus of these works was
not to measure the performance of applications, the methodology they employ is similar to
LR in that both iterated the steps of the scientific method: build a model of the system,
formulate hypotheses to capture sources of error, filter and interpret data, and refine the
model accordingly.

The LR approach differs from the above works for we are interested in measuring the
response time of layered software applications over a WAIN. For this purpose the LR method-
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ology uses simultaneous multi-layer data collection to obtain information on each layer. Our
methodology is more general than their work, since LR can be applied to any layered software
application running over a WAIN.

A number of other studies (such as [2], [9] and [10]) look at patterns of traffic and reliability
of nodes connected to WAINs. However, unlike LR, these studies do not attempt to measure
the response time of applications running across WAINs since they are studying the network
as a conduit for packets.

6.2 LAN Protocol Measurements

A study of the Firefly RPC [15] is similar in objective to LR since it measures the end-to-end
performance over a LAN. However, unlike LR, this work measures only RPC in a controlled
environment. The goal of LR is to simultaneously measure layers such as application, RPC
and network to build an overall profile of end-to-end performance. In order to produce
consistent and reproducible results, the Firefly RPC study sheds the load from the nodes
in the experiments and also uses an isolated LAN. When experimenting over live WAINs,
this is impossible. Consequently, a methodology such as LR is essential in order to make
experimental results over WAINs consistent and reproducible.

Studies such as [19] and [5] measure the performance of transport services over LANs.
However, these studies are concerned with the performance of the transport protocols in spe-
cific network environments. Layered Refinements is more concerned with end-to-end through-
put as measured at the user-level. There has also been work done in studying the performance
of TCP/IP in both LAN and WAIN environments [6, 4].

7 Conclusion

The problem of accurately measuring the performance of applications in a WAIN is important
and difficult. First and foremost, it is impossible to control many important variables which
directly affect performance, such as network load and packet path. This introduces large
variances in measurements. Similarly, we have no control over the network configuration.
This prevents us from using specialized hardware or software tools to measure the network.
To aggravate the problem further, the underlying network topology, hardware, and software
are constantly changing. Besides the hardware change examples we have mentioned in the
paper, operating system and applications software are often updated. All of these problems
make any systematic measurements of applications over WAINs difficult, as illustrated by
the raw data in Figures 6 and 7.

We have developed the LR methodology during our three-year experience in measuring
distributed WAIN applications. LR consists of two steps iterated several times. The first step
is the simultaneous measurements of all layers of the application over an extended period of
time. The second step is a careful analysis and filtering of data to identify the noise introduced
into the measurements by “warm-up” and routing changes. The second step (data filtering)
significantly improves the precision of data. For example, we have reduced the standard
deviation of Webster sample by a factor of 10 through outlier elimination. The first step
(simultaneous measurements) allows us to correlate the observations on different layers, so
we can subtract the cost of lower layers from the higher layers. By combining the two steps we
can obtain a better picture of the application at each layer such as IP, RPC, and applications.
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Our methodology is simple and practical. It relies on user-level measurement tools and
and does not use any special “hooks” or require privileged authorization in the underlying
hardware or software. The measured packets are not required to carry additional information
which would likely skew results. The result is an improvement in the quality of data which
allows us to side-step large variances and thus analyze the true end-to-end performance of a
variety of applications.

An interesting aspect of this work is its scientific flavor. Unlike the usual process of
computer system building in a laboratory, we observe the behavior of a “natural” system,
which we cannot control. To arrive at our results, we have to iterate through the traditional
steps of establishing hypotheses, constructing a model, and accumulating enough data to
confirm or refute the hypotheses. From this perspective, our methodology is very promising
but far from complete. Currently we are working on more rigorous data analysis methods
and design of better control experiments.
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