
Experiences Teaching an FPGA-based
Embedded Systems Class

Stephen A. Edwards
Department of Computer Science

Columbia University
New York, NY 10027

Email: sedwards@cs.columbia.edu

Abstract— I describe a two-year-old embedded systems design
course I teach at Columbia University. In it, the students
learn low-level C programming and VHDL coding to design
and implement a project of their own choosing. The students
implement their projects using Xilinx FPGAs and tools running
on Linux workstations.

The main challenges the students face are understanding and
complying with complex and often poorly-documented interfaces
and protocols, personal time management, and teamwork. While
all real-world challenges, this class is often the first time the
students encounter them, which makes the class quite challenging,
but very practical.

In this paper, I describe the structure of the class, the
configuration of our teaching laboratory, some of the more
successful projects, and give suggestions to instructors wishing
to implement the class elsewhere.

I. INTRODUCTION

Embedded system design is a challenging problem that
represents the future of digital system design. Moore’s law and
the relentless downward-spiraling cost of integrated circuits
has made it possible to price very powerful computing artifacts
at consumer levels, as the ubiquity of devices such as DVD
players, digital cameras, and cell phones attest.

We in academia must follow this trend. As recently as fifteen
years ago, wire-wrapping TTL parts was a sufficient intro-
duction to state-of-the-art system design techniques; today’s
systems are orders of magnitude more complex. Teaching
students to handle this complexity is the central challenge.

In this paper, I describe an FPGA-based embedded systems
course I developed and teach at Columbia University. Follow-
ing the suggestion of Frank Vahid, whose book [1] I used for
the first year, I created this course to replace a microprocessor
system design course that until 2003, had students assemble
systems using Z80-based trainers with breadboards1.

I wanted the students to learn hardware/software codesign,
specifically the design of microprocessor systems and their
peripherals. Students taking the course have experience with
Java and C, know basic digital design, and have taken com-
puter organization, which should have familiarized them with
assembly language, but few have any experience integrating
these skills.

Edwards is supported by an NSF CAREER award, an award from the SRC,
and by New York State’s NYSTAR program.

1To emphasize their antiquity, these trainers were labeled “Copyright 1985.”

(a) (b)
Fig. 1. The two boards used in different incarnations of the class. (a) The
XESS XSB–300E board, centered around a Xilinx Spartan IIE (XC2S300E).
(b) The Digilent Spartan 3 Starter Kit board, centered around a Xilinx Spartan
III (XC3S400).

The class focuses on the design of a fairly complex hard-
ware/software system, which the students implement on an
FPGA board. This is consistent with the role of the course as
a “capstone lab” in the Columbia Electrical Engineering and
Computer Engineering programs. As I describe below, the first
half of the class consists of cookbook-style lab assignments
that teach the students the design tools. The second half of the
class is devoted to the project.

As of September 2005, I have taught the class three
times: twice at Columbia, and once at National Chaio Tung
University (NCTU) in Hsinchu, Taiwan. At Columbia, the
majority of students are fourth-year undergraduates completing
an Electrical Engineering or Computer Engineering degree.
The Taiwan group consisted of sixteen students, most of whom
were Master’s-level, and many of whom had worked or were
working full-time in the electronics industry.

II. HARDWARE

Just as embedded hardware/software systems can take many
forms, there are many possible vehicles for teaching a practical
embedded systems class. At one point, I considered having the
students only build simulations, a practical approach used in
computer architecture courses, but I wanted the students to
experience real hardware.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161440075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2004 2005
Count in decimal on 7-segment LEDs C Count in decimal on 7-segment LEDs C
Display “Hello world” using framebuffer C Terminal emulator using supplied video controller C
TV typewriter C Reverse-engineer some VHDL drawings
Count in hex on 7-segment LEDs VHDL Sum the contents of a memory VHDL
Make framebuffer display characters VHDL Complex multiplier as OPB peripheral VHDL
TV typewriter using character display C & VHDL SRAM controller for OPB (omitted at NCTU) C & VHDL

Fig. 2. The six lab assignments.

One standard approach is to use a microprocessor devel-
opment board. Frank Vahid has taken this approach with
his course at University of California, Riverside [1], using
the 8051. While this is a practical option, it tends to lead
to software-centric thinking that does not consider hard-
ware/software trade-offs.

Modern field-programmable gate arrays (FPGAs) offer
many advantages for instruction, including flexibility, fast
reprogrammability, and the capacity to implement large, fast
digital designs. The two leading FPGA companies—Xilinx
and Altera—offer comparable technology. Xilinx, however,
appears to have the superior university program, so I decided
to use Xilinx FPGAs for this course.

Many FPGA development boards are available, but most
are designed for industrial use (and budgets) and can cost as
much as US $5000 per board—beyond our price range.

At Columbia, my TA and I selected a board built by
XESS Corporation: the XSB–300E (Figure 1a), which sells for
about $900. Centered around a Xilinx Spartan IIE FPGA—the
XC2S300E—with a raw capacity of roughly 300k gates, the
board also has a wide variety of peripheral chips, including
video input and output; Ethernet; USB 2.0; a serial port;
SRAM, DRAM, and flash memory; and an audio CODEC. The
peripherals were particularly attractive; using these peripherals
would be a focus of the projects.

In Taiwan, we used a newer, smaller board made by
Digilent (the Spartan 3 starter kit board, Figure 1b). This was
satisfactory, especially given its $120 price, but greatly limited
the range of projects as its peripherals are limited to an 8-color
VGA port, a PS/2 keyboard interface, and an RS-232 port. This
particular board comes in a few different configurations. The
most common has an XC3S200 part, but this is too small to
accommodate the Microblaze soft processor core, which every
project has used. Instead, we paid a bit more and got boards
with the larger XC3S400 part.

III. TEXTBOOKS

I have not found a satisfactory text for the class. In the
first year, I used Vahid and Givargis [1], partially because
Vahid had originally suggested the idea of the class to me and
because the text embodies the philosophy of functions being
implementable in either hardware or software. But the students
and I found the book disappointing. It deliberately shies away
from talking about any particular languages or platforms, mak-
ing it useless as reference manual. The background material

and ideas it contains are good, but the students do not find it
terribly relevant to the project construction task.

Many texts are software-centric. Wolf [2], for example, dis-
cusses things such as the ARM instruction set and operating-
system-level concepts such as processes. Simon [3] is even
more focused on software, although a bit more practical than
Wolf. Heath [4] is similar. Brown [5] has a more industrial
focus and includes a large avionics example.

Many books are specific to a particular processor. Although
practical, I find such an approach focuses too much on the
idiosyncrasies of a particular instruction set. Books in this
vein include Morton [6], which focuses on the Motorola
68HC11 series of microcontrollers. Lewis [7] targets the x86
architecture and ordinary PCs, which makes acquiring suitable
hardware easy: most departments have a collection of old
PCs that make suitable embedded targets. Barr [8] chooses an
80188-based board, although focuses mostly on C and C++.
Pont’s book [9] should have been titled Embedded C on the
8051. Peatman [10], by contrast, makes it clear that he focuses
on the PIC18F452 processor. Incidentally, is is the only book
I know of that comes with a (bare) PC board.

There is another family of texts that are more concept-
oriented and targeted at graduate students. These are even more
abstract that Vahid and Givargis and would probably frustrate
my students. Examples include Gajski et al. [11], Jantsch [12],
Marwedel [13], and the volume edited by Jerraya et al [14].

Noergaard’s sprawling volume [15] tries to discuss just
about everything, ranging from the difference between
enhancement- and depletion-mode MOSFETs to HTTP meth-
ods. While a very interesting reference, it is too long to
consider in its entirety in a single semester.

IV. LAB ASSIGNMENTS

As I mentioned above, I divide the class into two: during
the first half, the students follow cookbook lab assignments
meant to teach them how to use the design tools. During the
second half, they design and implement projects of their own
devising.

Figure 2 lists the six labs I have given over the last two
years and the main language they need to use in each. The
goal of these labs was to get the students familiar with using
the tools through a sort of tutorial style. I provided detailed
explanations of what to do as well as collections of files as a
starting point. The results were mixed.

In the spring of 2004, I made the mistake of trying to
balance software and hardware labs, making half of them

Char.
RAM
2.5K

Font
RAM
1.5K

Controller

Shift Register

Dout
Din

Addr

VSYNC
HSYNC

Video

BLANK
Load/Shift

Fig. 3. A block diagram of a text-mode video controller. I describe the
design of this peripheral in great detail to introduce the students to the design
process.

software-dominated; the rest hardware. While this does reflect
the class focus I had in mind, it was not well-matched to the
students’ backgrounds, which were heavily software-centric. I
found myself teaching experienced programmers who were
able to complete the first three labs with almost no effort
at all. But digital design with VHDL stumped them: they
did not have any real experience designing digital circuits,
despite having taken a beginning digital design class. They
were also flummoxed by the odd syntax of VHDL. Many of
them resorted to trying to write VHDL as if it were C.

In the spring of 2005, I made the labs more hardware-
centric. Again, the first two gave the students experience in
low-level C programming and some experience with the tools,
but the rest of the labs were mostly about design with VHDL.

Most students, when introduced to synthesizable VHDL,
treat is as a programming language, but it is more a textual
form of coding schematics and state machines. VHDL “state-
ments” such as if-then-else and assignments are deceptive:
they only provide a way of decomposing a function and do not
behave like the imperative versions the students are familiar
with. To try to help them avoid this error, I tried to emphasize
a particular design methodology.

Two concepts distinguish hardware from software: structure
and timing. While software has structure in the form of
functions and classes, the structure in hardware is at a block-
diagram level, reflecting its concurrent nature. Similarly, the
software programming style is to ignore performance concerns
until absolutely necessary and only concentrate on functional-
ity, a technique that does not work in hardware. As a result, I
teach the students a three-step hardware design process: draw
a block diagram, such as the one for the text-mode video
controller in Figure 3, draw a timing diagram (e.g., Figure 4),
and then code it in VHDL. To get them started, the third lab
in 2005 had them do this in reverse: we provided them with
a clearly written VHDL description and asked them to draw
the block diagram and a timing diagram for it.

The biggest challenge the students faced while doing the
projects in 2004 was dealing with existing protocols such as

Clk
���

CharAddr ���i−1 i i+1

LoadChar ������� ��	�	�� ��� ��	�	�� �������������������
CharData ���i−1 i i+1

FontLoad ��������������� ��	�	�� ��� ��	�	�� �����������
PixelData ���i−1 i i+1

Load/Shift ����������������������� ��	�	�� ��� ��	�	�� ���
Bit ���3 2 1 0 7 6 5 4 3 2 1 0 7

Fig. 4. A detailed timing diagram for the text-mode video controller. I teach
the students such timing diagrams are crucial for designing functioning digital
hardware.

the bus protocol spoken by the Microblaze soft processor (i.e.,
the OPB protocol) or the protocol spoken by the audio codec.
To try to address this, the three hardware labs in 2005 were
protocol-centric. The first was fairly easy: building a controller
that would sum the contents of a small on-chip memory.
Students had to understand the (very simple) interface to
the memory, design a simple data path with controlling state
machine, and understand how to use the VHDL simulator.

The second hardware lab involved interfacing with the OPB.
I had students design and implement a simple memory-mapped
peripheral that performed complex multiplication. We supplied
the students with a combinational (one-cycle) 8 × 8 multiplier
and asked them to construct a simple data path and controller
that used the multiplier four times to compute the product of
two complex numbers.

The final hardware lab was the most complicated, although
still far from what the students would have to do while
implementing their projects: an interface for an off-chip static
RAM part. This is a typical problem: interfacing one protocol
with another—in this case, the protocol of the OPB and the
protocol of the static RAM. To keep things simple, I had them
only map half of each 32-bit processor word to match the 16-
bit width of the SRAM chip. This would allow them to store
data in the memory, but not execute code from it since the
processor needs all 32 bits.

These labs definitely worked better in the second year,
but there remains room for improvement. While all groups
managed to complete the labs successfully, many seemed to
forget the lessons they taught when doing the project. I often
found myself answering questions with “we did that in lab
four,” which was disappointing. Furthermore, it remains the
case that the students need more practice at hardware design
and debugging the mess they have created.

At Columbia, the course spans a normal fourteen-week
semester; in Taiwan, it was condensed to a single month in
which the class met daily. To accommodate the tight schedule,
I omitted the sixth lab assignment and scaled down the scope
of the projects.

V. THE PROJECT

In my experience, students prefer working on projects of
their own devising rather than what I could supply. As an
example, when I taught the compilers class at Columbia for
the first time, I had the students implement the Tiger language
from Appel’s Modern Compilers book, and the students hated
it. The next year, I had the students design and implement
a language of their own devising—a much more difficult
procedure, but the students clearly enjoyed it far more.

For the projects, I break the class up into groups of between
two and six students. A size of three seems optimal—any
smaller and the project becomes too simple, any larger and the
group starts to lose its cohesion and ability to communicate.

Overall, about 80% of groups have completed the project,
meaning they have something working at the end that closely
resembles what they set out to do. The remaining 20% have
difficulties with group dynamics (e.g., the members hate each
other), technical difficulties (one group spent their time trying
to communicate with the USB controller, to no avail), or are
just incompetent. The good students at Columbia are excellent;
the bad students are awful.

I ask the project groups for four deliverables: a two-
paragraph project proposal, a project design document, a
demonstration on “75% day,” and the final demonstration
and report. Such deadlines are absolutely necessary to keep
the students moving as otherwise they would work on other
classes’ shorter deadlines. Even so, four deadlines seems like
it may not be enough; I plan to add a “50% day” next year.

I expect a resonable project to incorporate both software
(C) and custom hardware (VHDL) and interface with at least
one of the on-board (but off-chip) peripherals on the XESS
board. Interfacing with one of the peripherals is relatively
straightforward, but using two or more is difficult because of
the odd shared bus structure of the XSB–300E board, which
connects all of the peripherals to a common set of pins on
the FPGA. Thus, to communicate with multiple peripherals,
the students must build a controller that behaves differently
depending on the peripheral being accessed (each has very
different timing requirements), yet does so through a common
set of pins. Without question, this is one of the most awkward
aspects of the XSB–300E board.

Students usually start by proposing overly ambitious
projects (at least in the US—the Taiwanese students were
much more realistic, but this may have been because many
were professionals). My teaching assistants and I have had to
curtail countless proposals that incorporate MPEG encoding,
a complete TCP/IP implementation, or other systems that are
orders of magnitude more difficult than beginning students
could realistically implement in half a term.

Below, I describe the majority of the successful projects
students have completed over the last two years. Broadly, they
fall into four classes: video, audio, networking, and “other.”
The majority of projects focus on one of these areas, but some
of the more ambitious and successful projects incorporate, say,
both video and networking.

A. Video Projects

I am a fan of video-centric projects, having built some as an
undergraduate. They have certain advantages: they are visually
satisfying when they work; they can often be debugged by
inspecting the displayed image; they have substantial, but
not insurmountable, real-time requirements; and VGA-style
video signals are a simple protocol whose central idea (a
raster image) is fundamental. To support video development,
each workstation in our lab has two flat-panel displays: one
connected to a Linux workstation; the other connected to the
XSB–300E board and its video DAC.

Video games Simple video games make for excellent
projects. Students have implemented games inspired by Pac-
man, Scorched Earth, and a 3D maze game. For the Pac-man-
like maze game, students designed and implemented a custom
video generator capable of drawing sprites over a character
display, much like the original Namco arcade game. The
game logic, implemented in C, was primitive, but I was more
concerned with their implementation of the custom hardware
and the hardware/software interface.

Scorched Earth is an artillery game in which players take
turns lobbing shells at their opponents’ tanks over a 2D
terrain. The students implemented custom graphics hardware
that superimposed sprites for the tanks and shells over a
terrain generator (each column has a height that corresponds
to the line at which the sky ends and the ground begins) and
a character generator for displaying the current score, gun
inclination, and so forth. Again, the game logic was simple but
successful. This project was the star of 2005; most students
wanted to play it.

One group implemented a 3D maze game. I had them create
a custom video controller that contained two numbers for each
X coordinate: one that corresponded to the line at which the
sky begins and the wall starts; the other that holds the line at
which the wall ends and the floor begins. The students used
a primitive raycasting technique to determine these numbers:
from the player’s position, they sent out a ray that goes until
it hits a wall. The distance the ray travels indicates the size
of the wall at that column (more precisely, it is the reciprocal
of the distance). The students found it challenging to do this
calculation using fixed-point arithmetic (the Microblaze does
not have a hardware floating-point unit), but were ultimately
able to achieve nearly a 20 fps frame rate.

Since we used the simpler Digilent Spartan 3 Starter Kit
Board (Figure 1b) at NCTU in Taiwan, the range of projects
the students could build was greatly restricted. I suggested
they build simple video games and most groups did.

Chess Rather than spend time on the algorithm for
playing chess, this group built a two-player chess game that
could display the chessboard, let a player select a piece to
move, show where it could be moved, and move it. They
even implemented such complicated rules as pawn promotion
and castling. As with most of the NCTU projects, this group
adapted the video display code I provided (based on Figures 3
and 4) to display the board and pieces.

The four other NCTU video game projects were Tetris,
Sokoban, a scrolling maze game loosely patterned on the
Namco game Rally-X, and a two-player snake game. Each
group modified the text-mode video controller code I had
provided, adding color and changing the size of the characters.

Video Effects Processor Modern FPGAs have enough pro-
cessing power to perform limited real-time image processing.
One group put this to use by building a framebuffer with
the ability to distort its output. Rather than simply reading
the contents of memory in sequence for adjacent pixels, they
added the ability to change the starting point and memory
stride for each line. Such a set-up was able to transform, say, a
rectangular picture into a triangular one, and be able to modify
this distortion on-the-fly. The group had originally intended to
perform this distortion on real-time video (the XSB–300E has
a Philips video decoder chip), but ran out of time and only
displayed the static contents of memory.

Digital Picture Frame This project, which was unsuccess-
ful in 2005, decodes JPEG images and displays them on the
screen. The easiest way is to perform most of the computation
in software and only use hardware for the framebuffer. The
XSB board includes a Compact Flash interface (a parallel bus
protocol), so in theory it would be possible to read and display
files from a digital camera, but no group has been successful
at being able to read from a CF card.

One group attempted to port the independent JPEG library
onto the Microblaze in the process of performing this project,
but ran into serious size and complexity problems. In the
future, I will advise any group that undertakes this project to
write their JPEG decoding code from scratch and not worry
about making it support all JPEG variants. There is also an
obvious opportunity for hardware acceleration (i.e., the inner
loop of the DCT).

Another group, this one in Taiwan, also attempted the digital
picture frame project, this time with greater success. First, they
implemented a frame buffer that used external SRAM (there
is only 32K of on-chip block RAM on the XC3S400 used on
the Digilent board) and had to grapple with the usual problem
of simultaneous access from both the video system and the
processor. They took the simplest route and added a mode bit
that would blank the display and enable to processor to access
it. Next, they took a small JPEG library written by Pierre
Guerrier2 and made it compile on the Microblaze. Finally, they
added a mechanism for copying data from the RS232 port into
memory in preparation for decompressing and displaying it.
Unfortunately, little of this worked completely at the end of
the class. The JPEG library, for example, just barely fit in the
16K of on-chip memory they were using.

Video Input Projects These are quite a bit more challeng-
ing than video generation projects. First of all, the video DAC
is a much simpler chip than the Philips SAA7114H video
decoder, which has a 140-page manual. Second, it is much
easier to generate a signal than to understand one, especially
when it comes from the real-world.

2Their source was http://www.es.ele.tue.nl/˜mininoc/c prog/djpeg orig/

One group implemented a stereo depth extractor using the
video decoding capabilities of the XSB–300E board. They
pointed a video camera at a mirror nearly parallel to the
centerline of the camera to generate a split image from two
slightly different vantage points. They then looked for the two
brightest spots on the image and used the difference in their
location to compute the 3D location of the spot. To test this,
they placed the camera in a black cardboard box and shined a
laser pointer at a movable target. Although clearly not at the
cutting edge of computer vision, the group was able to get
interesting results.

Robot with Vision Perhaps the most unique project to
date, this incorporated the XSB–300E board as the controller
for a mobile robot built using Lego Mindstorms. In the end
able to follow a black line drawn on a white piece of paper,
the most unique aspect of this project was the successful use
of video as vision. The group mounted a small video camera
to the Mindstorms robot and fed the input to the XSB–300E
board. The board decoded the video, posterize it to one bit
per pixel, divided the image into nine rectangular regions, and
used the relative number of black pixels in each region to
decide whether to turn left, right, or to go straight.

Software running on the Microblaze analyzed the heavily
decimated video input signal and transmitted simple com-
mands through a serial port to an IR tower and the robot itself,
whose controller was running a very simple program that took
simple direction commands.

B. Audio Projects

Like video projects, audio projects engage the senses and
therefore share some of the thrills of success and easy debug-
ging of video projects. Compared to video, however, audio is
nearly three orders of magnitude slower and one-dimensional,
making it much easier to manipulate and presenting many
more opportunities for elaborate signal processing.

The audio CODEC on the XSB–300E (an AKM AK4565:
50 kHz, 20 bits/sample, stereo) has a synchronous serial inter-
face with a fairly simple protocol, although its configuration
protocol, which goes through a separate synchronous serial
interface that is, unfortunately, connected to the low-order data
bits on the XSB–300E peripheral bus, was difficult for most
of the students.

MIDI Synthesizer One of the most successful projects
of 2004, a MIDI synthesizer leads to a nice combination of
hardware and software. While it would be possible to perform
the sound synthesis in software, its real-time requirements
are sufficiently demanding and its computational complexity
makes it simple enough to do in hardware. This group im-
plemented both the standard FM synthesis algorithm and the
Karplus-Strong plucked instrument algorithm. Both sounded
remarkably good.

MIDI is an asynchronous serial protocol like RS-232, but
at an unusual bit rate and generally transmitted through a
current-loop designed to be terminated with an optoisolator to
avoid noise. The group built a simple MIDI-to-RS-232 level

converter and used the soft UART core supplied by Xilinx to
receive the protocol.

The MIDI protocol consists mostly of note-on and note-off
messages. While fairly simple, managing polyphony with a
finite number of oscillators is much easier to do in software,
which the group did. Thus, the MIDI protocol was decoded
in software and the synthesis was done in hardware.

Sound Effects Synthesizers FPGAs now have more than
enough processing power to perform fairly complex audio-
band signal processing. At least two groups have taken advan-
tage of this by implementing various sound effect generators.
One, for example, was designed to implement various effects,
such as phasing and distortion, that worked well with input
from an electric guitar. The algorithms for such filters are fairly
straightforward; the groups implemented them in hardware and
placed their parameters under software control.

Audio Spectrum Analyzer I was a little surprised by the
speed of the FPGA for this project: one group implemented
a real-time 1024-point FFT running at audio speeds. The
majority of the algorithm was in software; they only used
hardware to accelerate complex multiplication. Coupled with
a nifty graphic equalizer-like display, this was an impressive
project.

Pitch Detection Detecting the fundamental pitch of an
audio signal, such as a voice, is a fairly interesting prob-
lem with applications to singer training. Two groups have
attempted projects along these lines, with varying results. One
group did the obvious and performed an FFT on audio input
samples, but found that the linear bin arrangement of the FFT
made for rather imprecise measurement at low frequencies.
Another group attempted to implement an algorithm based on
autocorrelation and got so far as to built a prototype in Matlab,
but did not complete the project because of group dynamics.

C. Networking Projects
The XSB–300E contains an NE2000-compatible Ethernet

chip, and a number of projects have used it for network
communication. By sheer numbers, students seem to prefer
audio and video projects, but the successful network projects
have been quite impressive.

Internet Camera This project, which combined video
and networking components, spoke the most protocols of any
project to date. The students used the Philips video decoder
chip to sample real-time video, decimate its resolution and
frame rate, packetize it, and send it as UDP packets over
Ethernet. On the receiving end—a standard Apple laptop—a
simple Java program of their own devising received the packets
and displayed them. I joked that the project amounted to a very
expensive wire, but it was actually one of the most technically
challenging projects that exemplified good engineering: it
made something quite complicated look effortless.

Internet Audio In 2005, two groups built projects that
communicated audio over the Internet. One built an Internet
radio broadcaster that took audio in through the CODEC,
packetized it, and sent it out via RTP. They connected an
iPod and an Ethernet cable to the board and were able to

listen to the iPod through the speakers on the Linux-based
workstation running a standard mplayer program. Like the
Internet camera project, this one went to pains to speak
many standard protocols and ultimately made something very
complicated look simple.

A similar project took on an even more complex protocol:
SIP. Designed for Internet telephony, SIP is a standard protocol
for establishing Voice-over-IP telephone calls. I was amazed
when this group was able to hook up the board to the
campus Ethernet network and make a friend’s VoIP phone ring.
The final result was a little disappointing—the audio quality
was poor, which I attributed to some sloppy programming
somewhere—but overall the project was a success.

D. Unique Projects
All the projects I described above used the XSB–300E board

and its FPGA at the center. By design, in this class I have not
focused on the electrical and physical challenges of embedded
system design, but a number of groups decided to tackle these
problems, too. The result has been a largely successful group
of unique projects.

Automotive Projects Columbia participates in the Soci-
ety of Automotive Engineers’ Formula SAE competition, in
which student groups design, fabricate, and race small cars
built around motorcycle engines. While largely targeted at
mechanical and automotive engineers, two groups in my class
have done projects related to this effort.

The first, in 2004, built a vehicle telemetry system that
gathered data from various sensors on the car (e.g., tachometer,
oil pressure) and sent it through a wireless link. The group
purchased the wireless transmitters and receivers, but built
a small processor system on the car centered around a PIC
microcontroller. This was a particularly challenging project
for this class because it involved a number of analog signal
conditioning circuits. While ultimately mostly successful, the
group did have the problem of relying on the car itself—which
was often unable to start—to demonstrate their project.

The 2005 group built a digital dashboard and controller for
an automatic shifter. They worked with a pair of mechanical
engineers who designed the mount and levers for a large
(25A) solenoid that moved the mechanical gear shift lever
(the gears on this motorcycle engine could be selected by
moving a lever—designed to be operated by foot—up and
down). The group also built a dashboard with LEDs displaying
engine RPMs, the current gear, and a suggestion about whether
to shift up or down. As is typical of beginning electrical
engineering students, their fabrication skills were lacking,
resulting in a tangled mess of wires and cold solder joints,
exactly the sort of problems using an exclusively FPGA-based
approach avoids. Alas, this group, too, was stymied by the
engine not starting when they tried to demonstrate it to me,
although it had been working earlier.

Scrabble Timer When the class started, an inventor hap-
pened to approach me about building a prototype of a timer,
much like a chess timer, for the game of Scrabble—he had
aims of selling the design to a large board game manufacturer.

Question 2004 2005
Amount Learned (out of five) 3.72 4.04
Appropriateness of Workload 3.33 3.64
Overall Quality 3.74 3.89

Selected comments from 2005:
“Tough class but learned a great deal. Recommended.”
“I’d like to see a lecture that goes into more detail about the way
that the various files definitions and programs are used to create
the hardware. We end up learning it in pieces but a more detailed
overview would be useful since the tools are a key component of
understanding this class.”

“The lectures didn’t seem to serve as much help for the assignments
and project.”

Fig. 5. Course evaluation results for the Columbia classes. Numbers are
averages, with 0=poor and 5=excellent.

I figured it would make a good project for the embedded
systems class and it did. A group worked closely with the
inventor, who had a clear idea of the behavior he wanted
(he came to me with a multi-page document describing how
it should work) but did not have the skills to implement
it. This arrangement worked perfectly—the students got the
opportunity to work for a client and in return were given very
precise requirements and a helpful client.

Like the automotive groups, this group built a system
centered around a PIC microcontroller. Its interfaces were
simple: a collection of buttons numerous enough to require
multiplexing and 4 line × 40 character LCD display module.
While a very simple design, the quality of the software and
attention to detail (the group put their project in an attractive
box and spend a lot of time thinking carefully about the
arrangement of buttons) made this project a stand-out.

All three of the groups that used PIC microcontrollers got
little instruction from me. I do not discuss microcontroller
programming in class, but the students were able to glean the
information they needed from tutorials and web references.
The students who have worked on such independent projects,
not surprisingly, have been among the best in the class.

VI. EVALUATION

As with all Columbia classes, students were asked to fill out
a standard course evaluation form. The results are summarized
in Figure 5. While the results are positive overall, and the
ratings improved uniformly in the second year, the main
negative complaints were that the course required a lot of
work (which is certainly true) and that my lectures were not
that relevant to the labs and project. Specifically, they wanted
much more instruction on how to use the CAD tools, which
are very complicated. I had attempted to address this issue
through detailed lab writeups, which described the operation
of the tools in detail, but some students obviously prefer to be
shown something.

VII. CONCLUSIONS

The embedded systems class I have described remains a
work-in-progress, but has been fairly successful. The word-of-
mouth among students has been excellent, to the point where
it has clearly siphoned off students from other, competing
classes. An informal poll suggests students prefer the mix of
hardware and software and the ability to choose their projects.

I have put all the class materials on the web, includ-
ing all slides, handouts, lab assignments, lab template files,
and students’ project files and reports. All can be found at
http://www.cs.columbia.edu/˜sedwards/classes.html.

I have not been able to address to my satisfaction the
balance between practical knowledge and fundamental un-
derstanding. There is a plethora of practical knowledge the
students need to be able to execute their projects, ranging from
VHDL coding styles to how to get the Xilinx tools to work,
but I feel the class is overly demanding of knowledge of such
trivia. Frustratingly, the students actively complain that I spend
too little time lecturing about such details. While this is very
realistic and class is meant to be a capstone class in which
students bring together the knowledge they have gained during
their careers as undergraduates, it still frustrates me that I feel
they are learning trivia that will be out-of-date in a year.

The more fundamental ideas I see in practical embedded
system design—the balance between top-down and bottom-
up design necessary to build high-performance systems, the
ability to debug, the ability to seek and find the information
you need, and the ability to understand and reverse-engineer
poorly-written documentation—are subtle, difficult to convey,
and not the sort of thing you can easily ask on a test. My
hope is that these more subtle ideas will enter in the students’
thinking during the process of implementing these complex
projects, because it is unlikely they will learn them from a
lecture or a book.

REFERENCES

[1] F. Vahid and T. G. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction. New York: John Wiley & Sons, 2001.

[2] W. Wolf, Computers as Components: Principles of Embedded Computer
Systems Design. San Francisco, California: Morgan Kaufmann, 2000.

[3] D. E. Simon, An Embedded Software Primer. Reading, Massachusetts:
Addison-Wesley, 1999.

[4] S. Heath, Embedded Systems Design. Oxford: Newnes, 1997.
[5] J. F. Brown, Embedded Systems Programming in C and Assembly. New

York, New York: Van Nostrand Reinhold, 1994.
[6] T. D. Morton, Embedded Microcontrollers. Prentice Hall, 2001.
[7] D. W. Lewis, Fundamentals of Embedded Software. Prentice Hall,

2002.
[8] M. Barr, Programming Embedded Systems in C and C++. Sebastopol,

California: O’Reilly & Associates, Inc., 1999.
[9] M. J. Pont, Embedded C. Addison-Wesley, 2002.

[10] J. B. Peatman, Embedded Design with the PIC18F452 Microcontroller.
Prentice Hall, 2003.

[11] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and
Design of Embedded Systems. Prentice Hall, 1994.

[12] A. Jantsch, Modeling Embedded Systems and SOC’s. Morgan Kauf-
mann, 2004.

[13] P. Marwedel, Embedded System Design. Kluwer, 2003.
[14] A. A. Jerraya, S. Yoo, D. Verkest, and N. Wehn, Eds., Embedded

Software for SoC. Kluwer, 2003.
[15] T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide

for Engineers and Programmers. Newnes (Elsevier), 2005.

