
PARAMETRIZATION OF NEWTON’S ITERATION FOR
COMPUTATIONS WITH STRUCTURED MATRICES AND

APPLICATIONS

Victor Pan

Department of Computer Science
Columbia University

New York, NY 10027

Department of Mathematics and Computer Science
Lehman College

CUNY, Bronx, NY 10468

and

Department of Computer Science, SUNYA
Albany, NY 12222

(Supported by NSF Grant CCR-8805782 and by
PSC-CUNY Awards #661340, #668541 and #669290)

CUCS-032-90

Summary: We apply a new parametrized version of Newton’s iteration in order to compute (over

any field F of constants) the solution or a least-squares solution to a linear system Bx = v with an n×n

Toeplitz or Toeplitz-like matrix B, as well as the determinant of B and the coefficients of its characteris-

tic polynomial, det (λI − B), dramatically improving the processor efficiency of the known fast parallel

algorithms. Our algorithms, together with some previously known and some recent results of p904

p814 p188 p822 p425 as well as with our new techniques for computing polynomial gcds and lcms,

imply respective improvement of the known estimates for parallel arithmetic complexity of several fun-

damental computations with polynomials and with both structured and general matrices.

������������������
parm.comp.jb12/5/90

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


- 2 -

1. Introduction.

Toeplitz matrices are defined as matrices with entries invariant in their shifts in the diagonal direc-

tion, and the more general class of Toeplitz-like matrices (including, say, the products and the inverses

of Toeplitz matrices, as well as the resultant and subresultant matrices for a pair of polynomials) is

defined by using some natural extension of this property, in terms of their displacement ranks (see

definition 3.1 below).

Toeplitz and Toeplitz-like matrices are ubiquitous in signal processing and in scientific and

engineering computing (see a vast bibliography in p430 p681 p437 p431 p432 p537 and have close

correlation to many fundamental computations with polynomials, rational functions and power series

(such as computing polynomial gcd, Padé approximation and extended Euclidean scheme for two poly-

nomials), as well as with the resultant and subresultant matrices, which are Toeplitz-like matrices (see,

for instance, p897 p019 p155 p904 Furthermore, computations with structured matrices of several other

highly important classes (such as Hankel, Vandermonde, generalized Hilbert matrices and alike) can be

immediately reduced to computations with Toeplitz-like matrices p822

Now we come to the main point: computations with Toeplitz and Toeplitz-like matrices (and con-

sequently numerous related computations) have low complexity. In particular, a nonsingular linear sys-

tem with an n×n Toeplitz or Toeplitz-like coefficient matrix can be solved very fast, in O(n log2n) arith-

metic operations p019 p154 p616 rather than in M(n) = O(nω), required for a general nonsingular linear

system of n equations, provided that M(n) = O(nω) arithmetic operations suffice for an n×n matrix mul-

tiplication. In theory, 2 ≤ ω < 2.376 p500 but in the algorithms applied in practice, ω is at best about

2.8 so far (see p036 p883 p103

Our main result is a dramatic improvement of the known parallel algorithms for Toeplitz and

Toeplitz-like computations, immediately translated into similar improvements of computations with

other structured matrices, polynomials, power series, and, perhaps somewhat surprisingly, even general

matrices. This progress is mainly due to our novel technique, which we call

parametrization of Newton’s algorithm for matrix inversion (algorithm 2.1), but some other techniques

and the ideas that we used may be of independent interest too, for instance, our reductions of computing

the gcd and lcm of two polynomials to simple computations with Toeplitz matrices, the reduction to a

Smith-like normal form of λ-matrices (matrix polynomials), which we apply in order to decrease the

length of their displacement generators (in the proof of the proposition A.6), and the use (in the appen-

dix A) of displacement operators φ+ and φ− (instead of the customary φ+ and φ−) in order to work out

our approach over finite fields. The entire appendix A may be of interest as a concise survey of the

main properties of such displacement operators and of related matrix computations.

Let us next specify our results and compare them with the known results, assuming the customary

PRAM arithmetic model of parallel computing p612 p632 where every processor performs at most one



- 3 -

arithmetic operation in every step. We will follow Brent’s scheduling principle p632 that allows to save

processors by slowing down the computations, so that OA(t,  p) will denote the simultaneous upper

bounds O(ts) on the parallel arithmetic time and ⎡ p/s ⎤ on the number of processors involved, where

any s≥1 can be assumed.

The known best parallel algorithms for nonsingular Toeplitz linear systems over any field F of

constants support the parallel complexity bounds either OA(n, log2n) p616 p154 where the time com-

plexity bound n is too high, or OA(log2n, nω+1), with ω defined above p007 p826 where the processor

bound is too high. The latter bounds can be improved to OA(log2n, nω+0.5−δ), for a positive

δ = δ(ω), ω + 0.5 − δ < 2.851, if F allows division by n! p117 p032 and to OA(log2n, n2), if the input

Toeplitz matrix is filled with integers or rationals p634 p585 p880 The algorithms of the latter papers

support the sequential complexity bound OA(n2log2n, 1), which is already close to the computational

cost O(n2) of Durbin-Levinson’s algorithm, widely used in practice for solving nonsingular Toeplitz

systems; moreover, the algorithm of p880 also computes, for the cost OA(log2n, n2), the least-squares

solution to a singular and even to a rank deficient Toeplitz linear system, and for this problem, the algo-

rithm supports the record sequential time bound.

Substantial weakness of these algorithms of p634 p585 and p880 however, is due to the involve-

ment of the auxiliary numerical approximations, which excludes any chance for applying the modular

reduction techniques, accompanied with p-adic lifting and/or Chinese remainder computations, a cus-

tomary means of bounding the precision of algebraic computations, so that the latter algorithms are

prone to the numerical stability problems, known to be severe p430 for the Toeplitz and related compu-

tations, such as, say, the evaluation of the polynomial greatest common divisors (gcds). As usual, the

numerical stability problems severely inhibit the practical application of the algorithms and imply their

high Boolean cost, which motivates a further work on devising algorithms with a similarly low parallel

cost but with no numerical approximation stage, so that they can be applied over any field of constants.

Since the complexity of Toeplitz-like computations has been long and intensively studied and has

well-known applications to some fundamental computations with polynomials and general matrices

p155 p814 p425 (both areas enjoying great attention of the researchers), our new progress, reported

below, should seem surprising.

Indeed, our novel and completely algebraic approach works over any field of constants and

improves all the previous parallel complexity bounds, even the estimates of p880 over integer matrices.

Specifically, we reached the bounds OA(log2n, n pF(n)qF(n)/ log n), over any field F, where

pF(n) = 
⎧
⎨
⎩     n log log n otherwise,

n if F supports FFT at 2 h >n points                                                                       (1.1)
 (1.2)

qF(n) = 
⎧
⎨
⎩       n otherwise.

1 if F allows division by n!                                                                                    (1.3)
 (1.4)



- 4 -

These bounds support the evaluation of the determinant and the characteristic polynomial of a

Toeplitz or Toeplitz-like matrix and the solution or a least-squares solution to a Toeplitz or Toeplitz-like

linear system; they can be extended to computations with dense structured matrices of other classes (see

above or p822 and can be applied to various further computational areas.

In particular, combining our results with the recent results of p188 p904 or, alternatively, with our

simple but novel application of Padé approximations to computing the gcds and the lcms of two polyno-

mials (section 5 below) dramatically improves the previous record estimate of OA(log2n, nω+1) (of p814

for computing (over any field of constants F) the gcd of two polynomials of degrees at most n, to the

bounds OA(log2n, n pF(n)/ log n) if F is infinite, OA(log2n, n2 pF(n)/ log n) if F is finite, and also leads

to a similar dramatic improvement of the known parallel complexity bounds for other fundamental alge-

braic computations, such as computing all the entries of the extended Euclidean scheme for two polyno-

mials, Padé approximation and the Berlekamp-Massey minimum span of a linear recurrence. Finally,

by combining our results with the reductions due to p814 p425 p913 we arrive at new record estimates

for the Las-Vegas type probabilistic parallel complexity of computing (over a field F) the solution

x = A−1v to a linear system, with an n×n general coefficient matrix A, as well as of computing det A

and A−1, that is, at the estimates OA(log2n, nω) if F is the field of real or complex numbers (which is

within the logarithmic factor from the optimum bounds on the parallel complexity of this problem),

OA(log3n, n2 pF(n)/ log n) otherwise. To be fair, the previous record bounds OA(log2n, nω+1) of p007

p826 over any field, and OA(log2n, nω+0.5−δ) of p032 over the fields allowing divisions by n!, were

deterministic.)

We will organize our presentation as follows: In the next section and in section 3, we will present

our algorithms for computations with Toeplitz and Toeplitz-like matrices, respectively, over the fields

allowing division by n!. In section 4, we will show an extension to any field. In section 5, we will

comment on some further applications to computations with polynomials and general matrices. In the

appendix A, we will review the relevant (old and new) techniques and results for computations with

Toeplitz-like matrices. In the Appendix B, we will recall an expression for a least-squares solution to a

linear system.

Acknowledgements: I wish to thank E. Kaltofen for preprints and also Joan Bentley, Pat Keller and

Denise Rosenthal for their assistance with typing this paper.

2. Toeplitz Matrix Computations

Let us first consider computations over a field F of constants that allows division by 2,3,...,n, that

is, by (n!), and let us compute (over F) the characteristic polynomial, the inverse B−1 and, if F is

infinite, also the Moore-Penrose generalized inverse B+ of a given n×n matrix B, by using Csanky’s

algorithm p168 and its extension to computing B+ (see p880 or appendix B below). The computation is

reduced to computing the coefficients c0, ...,cn−1 of the characteristic polynomial of A,



- 5 -

c(λ) = det (λI−B) = λn + 
i=0
Σ
n−1

 ci  λi , c0  = (−1)n det B, and this may in turn be reduced p120 see also

p880 appendix A), for the cost OA(log2n, pF(n)/ log n), to computing the traces of the matrix powers

B, B2,...,Bn−1.

We now propose a novelty, that is, we will compute the powers of B by means of Newton’s algo-

rithm for inverting the auxiliary matrix A = I−λB, for the auxiliary parameter λ.

Algorithm 2.1, Parametrization of Newton’s Iteration.

Input: natural n and k and an n×n matrix B.

Output: powers I,B,B2,...,Bk of B, given by the k+1 coefficients of the matrix polynomial

Xd mod λk+1, defined below.

Initialize: X0:=I, A:=I − λB, d:= ⎡log2 (k+1)⎤ .

Stage i, i=0,1,...,d−1:

Xi+1:=Xi(2I − AXi). (2.1)

The correctness of this simple algorithm over any ring of constants follows from the matrix equa-

tions, I − AX0 = λB, I − AXi = (I−AXi−1)2  = (I−AX0)2i

 = (λB)2i

, for all i, so that

Xi = A−1 mod λ2i

,  for all i, (2.2)

and since A−1 = (I−λB)−1 = 
j=0
Σ
∞

 (λB)j, it follows that

Xi = 
j=0
Σ

2i −1
 (λB)j mod λ2i

,  for all i. (2.3)

[In fact, (2.1) implies that the degree of Xi in λ is at most 2i−1, so that Xi = 
j=0
Σ

2i−1
 (λB) j.]

For a general input matrix B, algorithm 2.1 is less effective than, say, algorithm of p016 p.128, for

the same problem, but this comparison is dramatically reversed if B is a Toeplitz matrix.

We will rely on the following well-known result:

Fact 2.1.

An n×n Toeplitz matrix T = [tij]

[whose entries tij  = ti − j are invariant in their shift (displacement) in the down-right (diagonal) direc-

tion] has at most 2n − 1 distinct entries and can be multiplied by a vector over a field F for the cost

OA(log n,  pF(n)) [see (1.1)-(1.2)] of multiplication over F of two polynomials of degrees at most

2n − 2

and n − 1.



- 6 -

The inverse T−1 of an n×n nonsingular Toeplitz matrix may have the order of n2 distinct entries,

but it is usually suffices to store at most 2n − 1 of them that form two columns of T−1, the first, x, and

the last, y (see proposition 2.1 below).

Definition 2.1. J = [δg, n − g], Z = [δi + 1, j ] are the n×n matrices of reversion and lower shift, respec-

tively, δu,w is Kronecker’s symbol, δu,u  = 1, δu,w = 0 if u≠w, so that

J v = [vn,  ... , v1]T,  Zv = [0,v1,  ... , vn − 1]T,

for a vector v = [v1,  ... , vn]T. L(v) is the lower triangular Toeplitz matrix with the first column v.

Proposition 2.1 (see p910 p433 p911 and p912 for proofs and extensions). Let X = T−1 be the

inverse of a Toeplitz matrix, x be the first column and y be the last column of X, x0≠0 be the first

component of x. Then, over any field of constants,

X = 
x0

1��� (L(x)LT(J y) − L(Zy)LT(ZT Jx)). (2.4)

Now, let us revisit algorithm 2.1 where B and, consequently, A = I − λB are Toeplitz matrices,

and therefore, due to (2.2), so are Xi
−1 mod λ2i

,  i = 0,1,... . Due to proposition 2.1, it suffices to com-

pute two columns of Xi (the first, xi , and the last, yi), for each i, so that the right side of (2.4), with

x = xi and y = yi , will equal Xi mod λ2i

. [Since Xi = I mod λ, the northwestern entry, (1,1), of Xi

equals 1 mod λ, and thus has a reciprocal, so that proposition 2.1 can be applied to X = Xi, for all i.]

We shall bound the degrees of all the polynomials in λ involved in the evaluation of Xi+1 according to

(2.1) (and therefore, the complexity of operating with such polynomials), by reducing them

modulo λs ,  s = 2i+1.

We may apply (2.4) to X = Xi mod λ2i

, but generally not to X = Xi mod λ2i+1

, whose inverse may

not be a Toeplitz matrix, but already (2.4), for X = Xi mod λ2i

, suffices for our purpose, because we

only need to use Xi mod λ2i

in order to arrive at Xi+1 mod λ2i+1

, by means of (2.1) [since

I − AXi+1 = (I − AXi)
2], and thus we will always replace Xi in (2.1) by the right side expression of its

representations according to (2.4) (for X = Xi).

Dealing with Toeplitz matrix polynomials modulo λs (that is, with Toeplitz matrices filled with

polynomials modulo λs), we shall change the cost bounds of fact 2.1 into the bounds of p869

cA(F) = OA(log n,  spF(n)), (2.5)

on the cost of multiplication of two bivariate polynomials of degrees at most 2s and 2n in their two

variables, respectively.

Due to proposition 2.1, each step (2.1) essentially reduces to 2 multiplications of each of the

matrices A and Xi by vectors, that is, to 10 multiplications of n×n Toeplitz matrices by vectors, whose

entries are polynomials modulo λs , s = 2i+1, and therefore, each step (2.1) has the complexity bounds

OA(log n,  spF(n)).



- 7 -

We slow down the computation to save processors and arrive at the estimates

OA((log2n) (s / n), n pF(n)/ log n), for s > n / log n, then sum the time bounds over all

i, i=1,...,d,  d = ⎡log2(n+1)⎤ , and thus, estimate the overall cost of algorithm 2.1 (with k = n) as

OA(log2n, n pF(n)/ log n) provided that the output is represented by two columns (the first and the last)

of Xd mod λn+1.

We then need to compute the trace of A−1 mod λn+1 = Xd mod λn+1 = 
i=0
Σ
n

 (λB)i. Applying propo-

sition 2.1, we reduce this problem essentially to two stages, each consisting in computing n inner pro-

ducts, of the k-th row of a (lower triangular) Toeplitz matrix polynomial modulo λn+1 by the k-th

column of an (upper triangular) Toeplitz matrix polynomial modulo λn+1, for k=1,...,n. Due to the Toe-

plitz structure of the input matrices, each of these two stages is reduced to n concurrent polynomial mul-

tiplications modulo λn+1 and to computing the sum and the n−1 partial sums of the resulting polynomi-

als.

The complexity of these computations is surely within the overall bounds

OA(log2n, n pF(n)/ log n) (we use the parallel prefix computation algorithm for the summation, see

p612 p632 as also is the complexity of the already cited transition from trace(A−1 mod λn+1) (which

gives us the traces of B, B2,...,Bn) to the coefficients of c(λ) = det(λI−A), as well as the cost of com-

puting x = B−1v and /or x = B+v, given such coefficients, a vector v and the two columns (the first and

the last) of A−1 mod λn+1. [Indeed, we have already commented on the transition from the traces to the

coefficients; for computing B−1v or B+v, we first apply proposition 2.1 to compute A−1v, which gives

us the vectors Bkv, for k=1,...,n, and then recover B+v as their linear combination
k
Σ gkBkv, with the

scalars gk defined by c(λ), (compare the appendix B below). For a nonsingular matrix B, we obtain

B−1v = B+v.]

We thus arrive at the following result:

Proposition 2.2.

Given a positive integer n, a field F

allowing division by n!, an n×n Toeplitz matrix B, and an n-dimensional vector v , it is possible

to compute over F, for the cost OA(log2n, n pF(n)/ log n):

a) the coefficients c0,...,cn−1 of the characteristic polynomial of B,
i=0
Σ
n

 ci  λi  = det (λI−B),

which also gives us det B = (−1)n c0; if F

is infinite, then rank B = n−min(i:ci≠0) = trace (B+B);

b) the solution x = B−1v to the linear system Bx = v if B is nonsingular;

c) the least-squares solution x = B+v to Bx = v if F is infinite.



- 8 -

Remark 2.1. Due to proposition 2.1 and fact 2.1, we may extend the estimates of proposition 2.2 to

computing the inverse B−1 of any n×n nonsingular Toeplitz matrix B, provided that the (1,1) entry of

B−1 has a reciprocal. The latter assumption about the reciprocal can be removed by using proposition

A.7 below, instead of proposition 2.1 above.

3. Extension to Other Classes of Dense Structured Matrices.

Let us extend the estimates of proposition 2.2 to the important case where B is a dense and struc-

tured but non Toeplitz matrix, whose study can be found in p426 p165 p806 and p897

Definition 3.1 p426 p165 A pair of n×r matrices G and H is a

generator of length r for an n×n matrix A = GHT. The rank of A equals the minimum length of gen-

erators for A. For a linear operator φ defined on the space of n×n matrices, a generator and the rank of

φ(A) are called an φ - generator and the φ - rank of A.

Following and extending p426 p165 we will first define four displacement operators, naturally

associated with Toeplitz matrices:

φ+(A) = A − ZAZT, (3.1)

φ−(A) = A − ZTAZ, (3.2)

φ+(A) = AZ − ZA, (3.3)

φ−(A) = AZT − ZTA, (3.4)

and then will define the displacement ranks and displacement generators of matrices as their φ-ranks

and φ-generators, for φ = φ+ ,  φ = φ− ,  φ = φ+ and φ = φ− or, equivalently, as the ranks and the genera-

tors of φ+(A), φ−(A), φ+(A) and φ−(A).

The displacement ranks are at most 2 for all Toeplitz matrices and for their inverses (if there exist

the inverses), at most m + n for all m×n block matrices with Toeplitz blocks, in particular, at most

m + n = 3 for the resultant and subresultant matrices, and at most 4 for the product of two Toeplitz

matrices (see Appendix A below, p897 p426 p432 p165 and p537 on some basic properties and applica-

tions of the displacement ranks and generators). The matrices having smaller displacement ranks are

sometimes called Toeplitz-like matrices .

Hereafter, we will use the displacement ranks and generators for n×n matrices and matrix polyno-

mials in λ modulo λs , over a field F, for s<2n. We will next prove the following extension of proposi-

tion 2.2:

Proposition 3.1.

Given an n×n matrix B with its displacement generator of length r, over an infinite field of con-

stants F, the complexity estimates of proposition 2.2 can be extended to



- 9 -

cA = OA(r log2 n,  r n p F(n)/ log n)

[compare (1.1)-(1.4)].

The basis for the latter extensions, as well as for many other effective algorithms for computations

with various classes of dense structured matrices, is their representation by means of their φ-generators

of smaller length, for an associated operator φ, so that all the operations with matrices are replaced by

the operations with their φ-generators.

In the appendix A we will list and prove some basis results for such computations (see proposi-

tions A.1-A.7).

Now, let us apply these results instead of proposition 2.1, and otherwise let us follow the line of

the proof of proposition 2.2 in order to prove proposition 3.1. To be certain, let us be given a matrix B

with its φ+-generator of length r,1 ≤ r (similarly, for φ+ ,  φ− or φ−-generators), and let us apply algorithm

2.1, for k=n. Then we deduce from (2.1)-(2.3) and proposition A.4 below that rank φ− (Xi mod λ2i

) ≤ r.

We surely have an φ−-generator of length 1 for X0 = I; we will apply induction on i, assuming for each

i ≥ 0 that we are given an φ−-generator of length at most r for Xi modulo λ2i

, and will compute, for the

cost OA(rlog n, r n pF(x)), an φ−-generator of length at most r, for Xi + 1 modulo λ2i+1

.

Specifically, we first apply proposition A.5, for s=2i+1, and compute an φ−-generator of length at

most R = 3r + c(φ−) = 3r +2, for Xi+1 mod λs . The cost of this stage is OA(log n,  r2s pF(n)), or after a

slowdown, OA(r log n,  rs pF(n)). Then for the cost satisfying the same bounds, we compute an φ−-

generator of length r for Xi+1 mod λ2i+1

, by using proposition A.6. Thus, the cost of the transition from

Xi mod λ2i

to Xi+1 mod λ2i+1

(where the matrices are represented by their φ−-generators of length r) is

OA(r log n,  rs pF(n)), so that the overall cost (for all i) is bounded by OA(r log2n, rs pF(n)/ log n), as

we need. (Here again, we use appropriate slowdown, to save processors.) The transition to computing

the coefficients of c(λ) = det (λI − B) and the vector B+v is now performed as in the proof of proposi-

tion 2.2, but with using proposition A.1 instead of proposition 2.1. �

Remark 3.1. Proposition 2.2 is a special case of proposition 3.1, where r ≤ 2. Our algorithm support-

ing proposition 2.2, however, is a little simpler (with by a constant factor decrease of the cost bounds)

than our algorithm supporting proposition 3.1.

Remark 3.2. Based on proposition A.1 below, the complexity bounds of proposition 3.1 can be

extended to the evaluation of an φ−-generator of length r, for the inverse of a nonsingular n×n matrix B

given with its φ+-generator of length r, provided that we are also given a pair of n×r matrices S and RT

such that C = Rφ−(B−1)S is an r×r nonsingular matrix, since in this case,

φ−(B−1) = GHT, G = φ−(B−1)S, HT = C−1R φ−(B−1) (compare p154 For an appropriate random choice

of R and S, the nonsingularity of the matrix C can be ensured with high a probability even over the

finite fields (see p425 Similar observations can be made given another displacement generator of B,

rather than φ+ .



- 10 -

Remark 3.3. The results for computing the determinant and the inverse of Toeplitz-like matrices and

for solving linear systems defined by such matrices can be extended to the case of all Vandermonde-

like, Hankel-like, and Hilbert-like matrices by means of the techniques of p822

4. Extension to Any Field of Constants.

In this section, we will combine our algorithms of the previous sections with the algorithm of

p826 in order to extend our results to computations over any field, where the division by n! is not gen-

erally allowed. Similar extension can be based on the algorithm of p007 rather than of p826 and in both

cases, the extension requires to use by n times more processors to support the same time bound

O(log2n), but as a by-product, the characteristic polynomials of all the k×k leading principal subma-

trices Bk of B are also computed (for the same cost), k=1,...,n.

The algorithm of p826 relies on the following equations for the reverse characteristic polynomials

of Bk:

yk(λ) = det (Ik  − λ Bk) = 
i=0
Σ
k

 ci,k  λk−1 = 1/
j=1
Π
k

((Ij  − λBj
−1))j, j  mod λk+1, (4.1)

k=1,...,n, where Ij denotes the j×j identity matrix and Wi, j denotes the entry (i,j) of a matrix W.

Our extension of algorithm 2.1 to the case of any field F follows.

Algorithm 4.1.

Input: an n×n matrix B.

Output: the coefficients ci,k,  i = 0,1,...,k − 1, of the characteristic polynomials of Bk, the k×k

leading principal submatrices of B, for k = 1,2,...,n,

ck(λ) = det (λIk  − Bk) = 
i=0
Σ
k

 ci, k  λi ,  ck, k  = 1, c0, k  = (−1)k det Bk, (4.2)

where Ik is the k×k identity matrix.

Computations:

1) n times call algorithm 2.1, for B = Bj, to compute the polynomials

bj(λ) = ((I − λBj)
−1)j, j  mod λn+1,

for j = 1,2,...,n;

2) apply the parallel prefix algorithm p612 p632 to compute modulo λk+1 the products

pk(λ) = 
j=1
Π
k

 bj(λ) mod λk+1,  k = 1,...,n;



- 11 -

each of the ⎡log2n⎤ steps of this algorithm amounts to ⎡
log2n

n������ ⎤ polynomial multiplications

modulo λs , for s≤n+1;

3) for every k,k = 1,...,n, apply g(k) = ⎡log2(k+1)⎤ steps of Newton’s iteration for the equation

yk(λ)
1����� − pk(λ) = 0:

y0, k (λ) = 1, yi+1, k (λ) = yi, k (λ) (2 − pk(λ)yi, k (λ)) mod λ2i+1

,  i = 0,...,g(k) − 1, (4.3)

in order to compute and output the coefficients of the reverse characteristic polynomial

yg(k), k (λ) = (1/ pk(λ)) mod λk+1 = det (Ik  − λBk).

The correctness of algorithm 2.2 immediately follows from the equations (4.1), from the observa-

tion that

pk(λ) = 1 mod λ,  for all k, (4.4)

and from the equations (4.3), which imply that

1 − yi, k+1(λ)pk(λ) = (1 − yi, k  (λ)pk(λ))2,

and therefore, due to (4.4), that

1 − yi,k(λ)pk(λ) = 0 mod λ2i

,  i = 0,1,...                                              �

Algorithm 4.1 enables us to extend our results of sections 2 and 3 to computations over any field

of constants, but the overall complexity bounds increase to OA(rlog2n, r n2pF(n)/ log n) (for any n×n

input matrix B given with its displacement generator of length r), since we need to involve the subma-

trices Bk, for k = 1,2,...,n,

5. Some Further Extensions.

Let us extend our comments given in the introduction on further applications of our results (see

more in p897 The techniques of p904 and p188 reduce the evaluation of the polynomial gcds and all

other entries of the extended Euclidean scheme for two polynomials of degrees at most n over any field

F to some computations with Toeplitz and Hankel matrices, in particular, to their inversion and the

evaluation of their ranks and/or determinants. By using our algorithm at the latter stages, we arrive at

the new record complexity estimates for these computations, reaching, for the gcd, the bounds of the

introduction, and for the Euclidean scheme, over infinite fields F, the bounds OA(log3n, n pF(n)/ log2n)

[compare (1.1)-(1.2)].

These bounds, with n replaced by m+n, can be extended to computing the (m,n) Padé approxima-

tion of any analytic function; this computation can alternatively be reduced to solving a consistent Toe-

plitz system Bx = v of n linear equations with n unknowns and to multiplying an m×n Toeplitz matrix



- 12 -

by a vector p019 Moreover, due to parts d) and e) of theorem 2 of p019 (reproduced in p019 from p437

even if this system is singular, we may compute the rank r of its n×n coefficient matrix B and then con-

clude that the r×r northwestern (that is, leading principal) submatrix of B is nonsingular. Thus, the

overall complexity of computing the (m,n) Padé approximation is bounded by

OA(log2n + log m,  pF(m) + n pF(n)/ log n), over an infinite field F. Over the finite fields, we apply

Chistov’s algorithm and obtain r = max {k:  det B k = O}, so the overall cost of the solution is

OA(log2n + log m,  pF(m) + n2 pF(n)/ log n).

Let us next show an application of our algorithms for Toeplitz computations to computing

m(x) = lcm(p(x), q(x)), the least common multiple (lcm) of two polynomials p(x) and q(x). This also

gives us d(x) = gcd(p(x), q(x)), the greatest common divisor (gcd) of these polynomials, since

d(x) = p(x) q(x) / m(x). Conversely, m(x) = p(x) q(x) / d(x).

Computing m(x), we assume (with no loss of generality) that p(0) = q(0) = 1. Let

m = deg (p(x) q(x)),  n = deg (p(x) + q(x)), N = m + n + 1, and apply the following algorithm:

Algorithm 5.1, computing polynomial lcms.

1. Compute the first N Taylor’s coefficients of the analytic function

a(x) = 
⎧
⎪
⎩ p(x)

1���� + 
q(x)

1����⎫
⎪
⎭

−1

 = 
j=0
Σ
+∞

 ajx
j, that is, compute the coefficients of the polynomial

(1/ p(x) + 1/ q(x))−1 mod xN = 
j=0
Σ

N−1
 ajx

j.

2. Compute the rank r of an n×n Toeplitz matrix with the first row [am, am+1, ...,am+n−1] and

with the first column [am, am−1, ...,am−n+1]T, where as = 0 for s < 0. (For such a matrix, its

r×r leading principal submatrix is nonsingular.)

3. Compute the (m−r,n−r) Padé approximation [u(x), v(x)] to the function a(x) and output

u(x) = lcm (p(x),  q(x)).

The correctness of this algorithm immediately follows from the parts d) and e) of theorem 2 of

p019 (reproduced from p437

The complexity of this algorithm is upper bounded by the complexity of computing the rank and

the (m−r, n−r) Padé approximation. Thus we arrive at an alternate derivation of the results of p904 for

computing the gcd and the lcm of two polynomials.

Algorithm 5.1 can be modified in order to output u(x) = gcd(p(x), q(x)) if we set

m = deg p(x),  n = deg q(x),  a(x) = p(x)/ q(x).

Computing the minimum span for a (2n)-term linear recurrence sequence can be reduced to com-

puting the (n−1,n) [or alternatively, the (n,n)] Padé approximation, whose complexity estimates are thus

extended to computing the minimum span. As this was earlier observed in p814 based on p425 such



- 13 -

estimates were the only remaining stage for proving the record complexity bounds OA(log2n, nω),

ω < 2.376, for randomized parallel computations with general n×n matrices over infinite fields (that is,

for computing the determinant of a matrix and solving a linear system of equations). Specifically, the

two latter problems are first reduced in p425 to computing the minimum polynomial of B (or of RBS,

for random matrices R and S of appropriate sizes), and then to two stages [repeated O(1) times]:

a) compute the Krylov sequence of vectors wi  = Biv [or (RBST)iv] and then the (2n)-term

sequence of scalars uT Biv [or uT(RBST)iv], i=1,...,  2n−1, for two random vectors u and

v [an algorithm of p042 (compare p016 p. 128) performs this stage for the cost

OA(log2n, nω)];

b) find the minimum span of the latter sequence of scalars (and here we show the desired

improvement).

Computing the inverse is then reduced to computing the determinant, for the same parallel cost,

within a constant factor (see p913

Over the finite fields F, the same algorithms for general matrices have the cost bounds

OA(log2n, n2 pF(n)/ log n) dominated by the cost bounds for Padé approximation.

Appendix A. Some Properties of Displacement Generators.

All the results of this appendix hold over any field of constants, and the input matrices and vectors

have entries being polynomials in λ modulo λs , s = 2i for i of (2.1)-(2.3). The reader may compare our

exposition with previous ones, such as p426 p152 p165 The first proposition and corollary immediately

follow from definition 3.1.

Proposition A.1 p426 p165

A pair (G,H) of n×r matrices G = [g1,g2,  ... , gr] and H = [h1,h2,  ... , hr]

is a generator of length r for an n×n

matrix B − ZBZT if and only if

B = 
i = 1
Σ
r

 L(gi) L
T(hi)

and for the matrix B − ZTBZ if and only if

B = 
i = 1
Σ
r

 LT(gi)L(hi).

Corollary A.1 (see p154 Lemma 5). For any pair of vectors g and h

of the same dimension,

L(g)LT(h) = L(a) + LT(b) − LT(ZJg)L(ZJh),

LT(g)L(h) = LT(c) + L(d) − L(ZJg)LT(ZJh)



- 14 -

where J and Z are the matrices of Definition 2.1, aTJ is the last row and Jb is the last column of

L(g)LT(h), cT is the first row and d is the first column of LT(g)L(h).

Due to corollary A.1, we may immediately define an φ+ (respectively, an φ−)-generator of length

r + 2 for a matrix, given its φ− (respectively, its φ+)-generator of length r. Let us next show some sim-

ple correlations among the representations (3.1)-(3.4).

Proposition A.2.

Let i1 = [1,0,...,0]T,  in = [0,...,0,1]T. Then

φ+(A)ZT = φ+(A) − Ai1i1
T,

ZTφ+(A) = inin
TA − φ−(A),

φ−(A)Z = φ−(A) − A inin
T,

Z φ−(A) = i1i1
TA − φ+(A),

φ+(A)Z = φ+(A) + ZAinin
T,

ZTφ+(A) = inin
TAZT − φ−(A),

φ−(A)ZT = φ−(A) + ZTA i1i1
T,

Zφ−(A) = i1i1
TAZ − φ+(A).

Proof. Observe that

ZTZ = I − in in
T, ZZT = I − i1 i1

T, (A.1)

pre- and postmultiply each of the matrix equations (3.3) by ZT, (3.4) by Z, substitute (3.1), (3.2) and

(A.1) and arrive at the first four equations of proposition A.2. Then postmultiply (3.1) by Z, (3.2) by

ZT, premultiply (3.1) by ZT, (3.2) by Z, substitute (3.3), (3.4) and (A.1) and deduce the last four equa-

tions of proposition A.2. �

The eight equations of proposition A.2 enable us to compute the φ+- and φ−-generators of length at

most r+1 for the matrix A given its φ+- or its φ−-generator of length r and to compute the φ+- and φ−-

generators of length at most r+1 for A given its φ+- or its φ−-generator of length r.

We will modify the original proofs of the two following results, so as to deduce them over any

field of constants.

Proposition A.3.

Given a displacement operator φ

and a pair of φ- generators of lengths a and b, for a pair of n×n matrices A

and B, we may immediately obtain an φ- generator of length at most a + b for A + αB (for any

fixed scalar α); furthermore, we may also compute [over a field F, for the cost of OA(log n, ab pF(n))]

φ- generators of lengths at most a + b + 1 for AB (see p165 p822



- 15 -

The latter length bound decreases by 1, to a+b, if φ = φ+ or φ = φ− .

Proof. We only need to prove the part about computing AB, and we will only consider the cases

φ = φ+ and φ = φ+ , since the cases φ = φ− and φ = φ− are treated similarly.

First let φ = φ+ and observe that

φ+(AB) = ABZ − ZAB = A (BZ − ZB) + (AZ − ZA)B = 

Aφ+(B) + φ+(A) B = AGB
+ (HB

+ )T + GA
+ (HA

+ )TB = GAB
+ (HAB

+ )T

provided that φ+(C) = GC
+ (HC

+ )T, for C = A and for C = B, GAB
+  = [AGB

+ ,  GA
+ ], HAB

+  = [HB
+ ,  BT HA

+ ].

To compute AGB
+ and BTHA

+ remaining within the required complexity bounds, we just rely on the

representation of the matrices A and B according to proposition A.1. This way we settle the case where

φ = φ+ .

Next let φ = φ+ , recall (A.1), denote u = ZAin,  vT = in
TBZT and deduce that

φ+(AB) = AB − ZAIBZT = AB − (ZAZT) (ZBZT) + 

ZAinin
TBZT = (A − ZAZT) B + ZAZT(B − ZBZT) + uvT = 

φ+(A) B + ZAZ+φ+(B) + uvT,

and this settles the case of φ = φ+ . �

Proposition A.4 p426

If A is a nonsingular matrix, then

rank φ+(A−1) = rank φ+(A),

rank φ−(A−1) = rank φ−(A),

rank φ+(A−1) = rank φ−(A).

Proof. The first two equations are immediately obtained from the equations (3.3) and (3.4), respec-

tively, by pre- and postmultiplying both (3.3) and (3.4) by A−1.

To arrive at the last equation of proposition A.4, A−1 deduce that

rank φ−(A) = rank (A − ZTAZ) = (premultiply by A−1) rank (I − A−1ZTAZ).

At this point, observe that rank (I − BZ) = rank (I − ZB) = 1 + rank (In−1 − Bn,1), for any n×n

matrix B and its (n−1)×(n−1) submatrix Bn,1 obtained by deleting the last row and the first column of B.

[Here, In−1 denotes the (n−1)×(n−1) identity matrix.] In particular, for B = A−1ZTA, we obtain that

rank φ−(A) = rank (I − A−1ZTAZ) = rank (I − ZA−1ZTA) = postmultiply by A−1

rank (A−1 − ZA−1ZT) = rank φ+(A−1). �



- 16 -

Note that proposition A.4 expresses through each other the displacement ranks, but not the dis-

placement generators, of A and A−1.

Proposition A.5.

For the cost OA(log n,  r2s pF(n)),

an φ-generator of length at most 3r + c(φ),

for Xi+1 mod λs ,  s=2i+1, can be computed over any field F given an φ- generator of length r, for

Xi mod λ2i

, and φ*- generator of length at most r for A,

provided that (2.1) holds and that one of the four cases takes place:

a) φ = φ* = φ+ ,  c(φ) = 0,

b) φ = φ* = φ− ,  c(φ) = 0,

c) φ = φ+ ,  φ* = φ− ,  c(φ) = 2,

d) φ = φ− ,  φ* = φ+ ,  c(φ) = 2.

Proof. Proposition A.5, with c(φ) increased to 1 in the cases a) and b) and to 5 in the cases c) and d)

can be immediately deduced by combining propositions A.1-A.3, corollary A.1 and fact 2.1. (This

would still suffice for the proof of all our main results of this paper.) We will, however, also give a

direct proof for the smaller c(φ) in the cases a) and c) [the cases b) and d) can be treated similarly].

Case a). Observe that

φ+(Xi+1) = φ+(Xi(2I − AXi)) = 

Xi(2I − AXi) Z − ZXi(2I − AXi) = 

2(Xi Z − ZXi) − (XiAXi Z − ZXiAXi) = 

2(Xi Z − ZXi) − XiA(Xi Z − ZXi) − (XiAZ − ZXiA)Xi = 

2φ+(Xi) − XiA φ+(Xi) − Xi(AZ − ZA) Xi − (XiZ − ZXi) AXi = 

(I − XiA) φ+(Xi) + φ+(Xi) (I − AXi) − Xiφ+(A) Xi. (A.2)

Since we are given φ+-generators of lengths at most r for Xi and A, that is,

φ+(Xi) = G+(i) (H+(i))T, (A.3)

φ+(A) = G+(H+)T, (A.4)

it remains to substitute (A.3) and (A.4) into (A.2), to deduce that

φ+(Xi+1) = (I − XiA) G+(i) (H+(i))T + G+(i) (H+(i))T (I − AXi) + XiG
+ (H+)TXi = G+(i+1) (H+(i+1))T,

and to evaluate modulo λn+1 the n×(3r) matrices,

G+(i+1) = [(I − XiA) G+(i), G+(i), XiG
+],



- 17 -

H+(i+1) = [H+(i), (I − AXi)
T H+(i), Xi

THi
+].

To perform the latter step within the cost bound OA(log n,  r2s pF(n)), it suffices to decompose A and Xi

according to proposition A.1 and to reduce each multiplication modulo λn+1 of A, AT, Xi or XT by an

n×r matrix to O(r2) multiplications, each of an n×n Toeplitz matrix by a vector, for the cost bounded by

(2.5). This settles the case a).

Case c). Observe that

φ+(Xi+1) = φ+(Xi(2I − AXi)) = 

Xi(2I − AXi) − ZXi (2I − AXi) Z
T = 

2(Xi − ZXiZ
T) − (XiAXi − ZXiAXiZ

T) = 

2φ+ (Xi) − (Xi − ZXiZ
T)AXi − 

ZXi(Z
TAXi − AXiZ

T) = φ+(Xi) (2I − AXi) − 

−ZXi[(Z
TA − AZT) Xi + A(ZTXi − XiZ

T)] = 

φ+(Xi) (2I − AXi) + ZXi(φ−(A) Xi + A φ−(Xi)) = 

φ+(Xi) (2I − AXi) + ZXi(φ−(A)ZTXi − ZTAi1i1
T − 

AZTφ+(Xi) + AininXiZ
T)

[compare proposition A.1] and arrive at the desired generator for φ+(Xi+1) by representing the matrices

A and Xi according to proposition A.1, by using generators of lengths at most r for the matrices φ−(A)

and φ+(Xi) and by bounding, by means of (2.5), the cost of multiplication modulo λs of the matrices A

and Xi by the vectors and by n×r matrices. This settles the case c). �

The following result is needed in section 3:

Proposition A.6.

Given a displacement operator φ, four integers n, s,  r and R, such that 1≤r<R≤n, s≥1, an n×n

matrix polynomial W = W(λ) mod λs

having φ- rank r over a field F and a pair of R×n matrices GR and HR,

forming an φ- generator of length R for W mod λs , so that φ(W) = GRHR
T mod λs ,

it is possible to compute, for the cost OA(Rlog s,  nR pF(s)), an φ- generator Gr, Hr of length r,

for W mod λs ,

such that GrHr
T = W mod λs .

Proof. First apply the Gauss elimination process with pivoting in order to factorize GR mod λs . In

each elimination stage k, k=1,...,R, check if all the entries of column k vanish, and if so, remove this

column and append the null column vector at the last, n-th position in the matrix. Otherwise, among all

the diagonal and subdiagonal entries of the column k, choose one, (i,k), having nonzero term of the



- 18 -

lowest degree and move this entry to the pivot position (k,k), by interchanging rows i and k. Let

G(k) = [gi,j
(k)  (λ)] denote the matrix polynomial entering the k-th elimination stage after such a row inter-

change. Let us denote

gi, j
(k)  (λ) = 

u=u(i, j, k)
Σ
s−1

 gi, j, u
(k) λu,  g i, j, u(i, j, k)

(k)  ≠ 0, u(i,  j, k) ≥ 0,

so that u(k,k,k) = 
k ≤ i ≤ n
min  u(i, k,k).

Now, to perform the k-th elimination stage, first compute, for the cost OA(log s,  s log log s), over

the fields F that support FFT, and OA(log s,  s2log log s), over other fields, the polynomial

hk,k
(k) (λ) = (λu(k,k,k)/ gk,k

(k) (λ)) mod λs , which is the reciprocal modulo λs of the polynomial

gk,k
(k) (λ)/ λu(k,k,k). [This polynomial has the λ-free term gk,k,u(k,k,k)

(k)  ≠ 0.]

To support (and actually, to improve) the cost bounds OA(log s,  s log log s), provided that the

field F supports discrete Fourier transform at O(s) points for the cost OA(log s,  s), we just apply the

algorithms of p889 p928

Over any F, we may perform DFT at k = O(s) points for the cost bounded by OA(log s,  s) in an

extension F
�

of F, such that every operation in F~ involved in DFT is reduced either to

addition/subtraction of two polynomials in x modulo a polynomial of degree k = O(s) or to their multi-

plication by some power xi,  i ≤ k [both operations have cost OA(1, s)], thus implying the overall cost

bound OA(log s,  s2log log s) (see p869 (This bound can be further improved, but here it suffices for us

as it is.) Then compute, for the cost OA(log s,  npF(s)), the n−k polynomials

hi,k
(k)(λ) = gi,k

(k)(λ) hk,k
(k) (λ) mod λs , for all i from k+1 to n. Then, for all i > k, multiply modulo λs the k-

th row of G(k) by hi,k
(k)(λ) and subtract the resulting row from the i-th row of G(k). By recursively apply-

ing this process, for k=1,...,R, for the overall cost OA(R log s,  nRpF(s)), we factorize the matrix poly-

nomial GR as follows:

GR = P*L*U* mod λs

where U* is an R×R upper triangular matrix polynomial, P* is an n×n permutation matrix, and L* is an

n×R unit lower triangular matrix polynomial, that is, all its diagonal entries equal to 1 and all its super-

diagonal entries vanish.

We now similarly represent HR as HR = P~ L~ U~ mod λs , so that

φ(W) = GRHR
T mod λs  = P*L*U*U~

T
L~

T
P~

T
 mod λs (A.3)

where L~ is an n×R unit lower triangular matrix polynomial, U~ is an R×R upper triangular matrix poly-

nomial, and P~ is an n×n permutation matrix.

We next compute the R×R matrix polynomial U*U~
T

and reduce it to Smith’s normal form,

U*U~
T

 = P̂M̂ D MTPT where M̂ and MT are unit triangular matrix polynomials, P̂ and P are permutation



- 19 -

matrices, and D is a diagonal matrix polynomial. Due to the uniqueness property of Smith’s normal

forms of U*U~
T

and of φ(W), we have that rank D = rank(U*U~
T

 mod λs) = rank (φ (W) mod λs) = r,

and since D is a diagonal matrix polynomial, it ought to have exactly r nonzero entries. Deleting the

zero rows and columns of D, together with the corresponding columns of the matrix polynomials

P*L*P̂M̂ and (MTPTL~
T

P~
T

)T, we turn these matrix polynomials, as well as D, into the matrix polynomi-

als G and H~, of size n×r, and D~ of size r×r, respectively, so that

φ(W) = G D~ H~
T

 mod λs ,

which defines the desired φ-generator G, H = H~ D~ of length r, for W mod λs . It remains to observe that

the cost of the computation of G and H is dominated by the cost of computing the factorization (A.3).

�

Finally, we will recall the following extension of proposition 2.1, due to p605 (see also p911 p912

and which we cited in remark 2.1.

Proposition A.7.

Let A = [aij] be an n×n

nonsingular Toeplitz matrix, aij  = ai−j,  i, j=0,...,n−1; a = [b, a1−n,a2−n, ...,a−1]T, for a fixed scalar b;

y = [y0, ...,yn−1]T = A−1a; x = A−1[1,0,...,0]T; u = [−1,yn−1, ...,y1]T; v = ZJx. Then

A−1 = L(y) LT(v) − L(x) LT(u).

Appendix B.

Let us extend the well-known expression B−1 = −
i=1
Σ
n

 (ci / c0) Bi−1,  cn  = 1, for the inverse of a non-

singular matrix, to the case of the Moore-Penrose generalized inverse B+ . It suffices to consider the

symmetric (or Hermitian) case since B+ = (BTB)+B+ and
⎧
⎪
⎩B      O

O      B T

 
⎫
⎪
⎭

+

 = 
⎧
⎪
⎩(BT)+      O

O            B +

 
⎫
⎪
⎭
.

Proposition B.1 p880

Let c(λ) = det (λI − B) = 
i=n−r
Σ
n

 ciλi ,  cn−r  ≠ 0,

for an n×n Hermitian matrix B. Then

cn−r  B+ B = −
i=n−r+1

Σ
n

 ciB
i−n+r , (B.1)

cn−rB
+ = −cn−r+1 B+ B − 

i=n−r+1
Σ
n−1

 ci+1 Bi−n+r (B.2)

= 
i=n−r+1

Σ
n−1

 ((cn−r+1/ cn−r) ci  − ci+1) Bi−n+r  + (cn−r+1/ cn−r)B
r.



- 20 -

Multiplying the equations (B.1) and (B.2) by a vector v , we arrive at similar expressions for B+v.



- 21 -

$LIST$


