Flexible Pointer Analysis Using Assign-Fetch Graphs

Marcio Buss Daniel Brand
Columbia University IBM T.J. Watson
New York, NY Yorktown Heights, NY

marcio@cs.columbia.edu danbrand@us.ibm.com

ABSTRACT

We propose a new abstraction for pointer analysis that septe
reads and writes to memory instead of traditional pointseta-
tions. Compared to points-to graphs, our Assign-Fetch 6(apG)
leads to concise procedure summaries that can be used iraliny c
ing context. Also, its flexibility supports new analysishe@ues
with different trade-offs between speed and precision.

For efficiency, we build a summary for each procedure that as-
sumes distinct pointers from the environment are not aliasel re-
store soundness when the summary is used in a context vateali

We present two pointer analysis techniques based on our AFG.
The first takes the flow-insensitive view adopted by many austh
the second considers statement ordering. In addition t@lrabre
precise, we find that this “flow-aware” analysis runs fastére
conclude with experimental results showing it is practical

Categories and Subject Descriptors

F.3.1 Logics and Meanings of Program§ Specifying and Veri-
fying and Reasoning about Programs—Program Analysis

General Terms
Algorithms, Languages, Performance

Keywords

Static analysis, pointer analysis, summary-based asalysi

1. INTRODUCTION

Pointer analysis [1, 5, 6, 7, 8, 10, 11] is necessary for mast |
guage processing tools, including optimizing compilerd tools
for bug finding, program understanding, and refactoring.chSu
analysis consists of computimapints-toinformation—given two
program locationsp andq, we sayp points-toq if p can contain
the address df. Pointer analysis statically estimates such possible
set of locations a pointer can point to during program’s ateaq.

Pointer analysis is of greatest concern for a language si¢h a
that exposes pointers to the programmer, but it is also hiefpf
tools for a language such as Java that hides pointers behjadto
references. We consider C, but our techniques could be edlapt

Instead of th@oints-to graph6, 7, 10] commonly used in pointer
analysis, we propose a new representation for a functicetsb
ior: the assign-fetch graph (AFG). A strength of our AFG iattit

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’08March 16-20, 2008, Fortaleza, CaaBrazil

Copyright 2008 ACM 978-1-59593-753-7/08/00035.00.

Vugranam Sreedhar

vugranam@us.ibm.com

Stephen A. Edwards
Columbia University
New York, NY
sedwards@cs.columbia.edu

IBM T.J. Watson
Hawthorne, NY

support many different algorithms, including the well-kuroflow-
insensitive technique and the faster, more precise flowaap-
proach that we present for the first time in this paper.

Unlike a points-to graph, whose nodes represent pointér var
ables and whose edges represent points-to relations, thes rio
our AFG represent locations and values and edges represaty r
and writes to memory. Pointer analysis amounts to matcloirggr
dereferences (“fetch edges”) to pointer assignmentsi(fassiges”).
The AFG allows varying levels of precision by allowing diéat
matchings; a more selective matching may require more ressu
Our analysis isummary-basef, 11]: it computes a representa-
tion for each procedure that summarizes its effects on pint

After introducing our technique with an example, we deserib
the AFG (Section 2) and how it is used for pointer analysic{Se
tion 3). We implemented two kinds: classical flow-insensi{iSec-
tion 3.2), which we use as a baseline, and our faster and ngere a
curate flow-aware technique (Section 3.3). Section 4 disguthe
interprocedural nature of the analysis. We conclude wittulte
from running our technique on large programs (Section 5).

1.1 An Example

Our AFG is designed to let us compute what values a program
might read from memory while it is executing. Except for I/@da
constants, the program itself must have written any valaé ith
read, so pointer analysis can be thought of as an attempfierun
stand which writes could be seen by each read. One appragimat
is that each write to a location can be seen by every read of tha
location, but this is usually an overapproximation: a read a&rite
may occur in different branches of a conditional, or a writghn
occur in sequence after a read. With the AFG, it is easy tocppr
imate these relationships differently, producing différ@ointer
analysis algorithms. In this paper we explore two: our basegl
classical flow-insensitive analysis, and a new flawareanalysis.

Our AFG abstracts a procedure’s reads and writes instead of
points-to relations, which has many advantages: the AFi&igler
to construct, our summaries work in all possible callingteats
(in particular, when arguments are aliased), and the AF{Bt&tes
trading off analysis precision for efficiency.

Figure 1 shows the AFG in action. Figure 1(b) depicts the AFG
for the C code in Figure 1(a). The AFG’s nodes represent galue
and addresses and its edges represent read and write opgrati
The first statement in Figure 1(2dz=8&x, stores the address of
the global variable at the address im. We represent with the
location nodez, the dereference of with the fetch edgd-, the
address read from with the fetch node p, the address af with
the location node&, and the write ta z with the assign edgA,.

In our figures, we shade each fetch node as a reminder that we do
not know its value when we construct the graph. The basicigues
for pointer analysis then becomegiven a fetch, which assigns
should it matcR” The AFG abstraction allows us to answer this
question differently depending on speed/precision tiattie-

foo()
{

&x: /1 F1L A2 abstract

*7 =
z=8&; /I A3 into O, (W)
if (...) { an
z =8&w, /] A4 assign-fetch © @
} else { graph As) &)
*z = &; /1 F5 A6 N flow-aware @)
} @ (b) analysis
}
Figure 1. An illustration of our pointer-analysis technique. A proce- ©
dure (a) is first abstracted as an assign-fetch graph (b), wise nodes
represent addresses and values and whose edges representmog/ @
operations. An assign-fetch graph can be analyzed in at leaswo
ways: with a flow-insensitive analysis (c), where potentiahliases are D,
calculated ignoring statement order to produce a summary (3 and ()

our new flow-aware technique, which considers statement egation
order (e) to produce a more accurate summary (f). Contrast tiese summaries with (g) Andersen’s and (h) Steensgaard’s.

- Figure 2: The simple
case: x is assigned in 2. ASSIGN-FETCH GRAPHS

Ar and fetched inF; an Our assign-fetch graphs represent data and operationsrin a p

alias edge indicate that cedure in a way that makes it easy to compute the relatiogship
y hcan be an alias fory. among them. It is a directed graph whose nodes represergsvalu
- Self-loops represent triv- and locations and whose edges represent fetches and aesignm

ial aliasing of locations. to this data. To compute points-to information for a functiove
mechanically build an AFG, add alias edges to “resolve” it a
remove information hidden from a caller, producing a sunymar

Before building AFGs, we decompose a program into loop-free
procedures. We transform loops to tail-recursive procedails,
so a procedure’s statements can be ordered in a useful way. We
handle mutually recursive procedures by iterating thealysis to
convergence. Details are given in Section 4.5.

Our AFGs abstract many things. We ignore pointer arithmetic
by considering all elements of an array to be one locationmgee
fields of structures so an expression suclpasnext is treated
like * p, and model heap locations using a naming scheme like Choi
et al. [5]. We model return values with a special locatien

Figure 3 shows AFG fragments for the four statements tylyical
considered in pointer analysis. For&y, we represent the Ivalue
x and the rvaluey as location nodes and connect them with an
assign edge indicating points to the memory location fgr. Note
that this does not read or change the contentg.oBy contrast,
sincex=y readsy, we add the fetch node, to represent its value,
add a fetch edge indicating a readygfand add an assign edge to
indicate they are written tv. We treat other statemenets similarly.

In alias analysis, executing statemert&r creates the alias re-
lation (* p,r), meaningx p is an alias forr . Computing points-to
sets using the AFG amounts to determining the locations Fachv
a fetch node could be an alias. We represent such relations by
adding directedhlias edgedo the AFG. In Figure 2, the dashed
edge (, y) represents the alias relatidgnx,y). Each (non-trivial)
alias edge starts at a fetch node and terminates at a locatdm

The central goal of pointer analysis is to determine a snealbs
aliases that includes every possible one (i.e., remaingoWvhile
we could proclaim that every fetch node aliases every lonaguch
a gross overapproximation would not be very helpful. In tegtn

O E section, we discuss various ways to compute this set mocispte
(02)
0 3. DETERMINING ALIASES
X = y:

Determining aliases between fetch nodes and location nisdes
the main step in pointer analysis on AFGs. In this sectiondise
Figure 3: The usual statements considered in pointer analys cuss procedures with varying levels of precision, and showthe
represented in AFG notation AFG lends itself to such variants, one of its key strengths.

&y; /1 Al
x; Il F2

Answering this question is the goal of tlesolution phasgwhich
addsalias edge$rom fetch nodes to location nodes to indicate what
values could be fetched. Each fetch of the same variableiocep
dure generates a distinct fetch node, allowing the AFG toessmt
variables that take on different values at different times.

Figure 2 shows the simplest alias case: we add a (dashes) alia
edge fromn to y to indicate fetchingc (F,) after assigning it the
address of (A;) returns the address gf The self-loops indicate,
e.g., the address afis itself. We omit them in all other figures.

Adding aliases from fetch to location nodes producessalved
AFG. Using different levels of precision can generate défe re-
solved AFGs, such as Figures 1(c) and 1(e). The former is a flow
insensitive view of the program, where a fetch from a logatio
matches any assignment to the same location; the latter ira m
precise result obtained by considering statement orderagmu-
tually exclusive operations, which leads to a smaller nundfe
fetch/assign matchings. E.qg., because they appear iresefmanches
of a conditional z=&y andz=&ware mutually exclusive, so fetch
Fs cannot see assighy and there is no alias edge framg to win
Figure 1(e). Also, the first fetch afin the code F1) can only “see”
the (unknown) initial value a coming from the environment (rep-
resented by;). Thus,n; to z; is the only alias edge.

Figure 1 also shows points-to graphs from two well-knowiiec
niques. Figure 1(g) is the result from Andersen [1], whickdsiv-
alent to Figure 1(d), but we also include the initial valuel@a, .
Figure 1(h) is the result of Steensgaard [10], who mergeesod
to which the same pointer points to, such{asw} and{x,y}. It
generates smaller but less accurate graphs.

ofiolol

x = &y: X =y: x = *y:

3.1 Alias Analysis

Letx,y,... denotdocationnodesny,ny,... denotefetchnodes;
anda, 3,... denote arbitrary nodes. We wrigd(a) to indicate the
set of nodes thatr can be an alias for. In Figure al(n) = {y},
al(y) = {y} andal(x) = {x}.

An alias edge from a node to a nodex indicatesx € al(a);
an alias edge’s target is always a location. We assume \esiabe
distinct, so a location node only aliases itselfix) = {x}.

A fetch noden can be an alias for many locations; computing
them is the main purpose of any analysis. Because a fetch can
only return a value that the program wrote to memory, anysaifa

TAI Figure 4: Motivation for flow-
| Ak aware analysis. (a) An assign-
1, ment before a fetch can af-
LA fect the fetch; (b) one after a
1e fetch cannot. Conditionals (c,
d) further constrain which as-
rAn signments are visible to a fetch.
1E, Our flow-aware analysis ap-
proximates the execution order
(e) (d) with the total order (e).

4 AJ
1R

(@)

(b)

From experiments, which we describe in Section 5, we find flow-

a fetch node must be the target of an assign edge (we model theaware analysis runs faster than flow-insensitive analysispao-

initialization of global variables with assign edges).

We write affect§oa, o) to indicate the assign edge, could
write a value that fetch edger could read. This relation can be
many-to-many: one assignment could be seen by many fetwhes,
a fetch might see many assignments. Unfortunatfgctsis not
effectively computable, so any pointer analysis must agiprate
it. A sound analysis demands an overapproximation: it shbel
true whenaffectsis true, but not necessarily vice-versa.

When an assignment affects a fetch, the fetch can returhiagyt
written by the assignment, so aliases for the fetch mustidechll
aliases of the assignment’s “right-hand side.” Put forgnall

F
OF . ad—nN

al(B) Cal(n)

A
Y— ffect
Oop:y—B affect$oa, oF) [ALIAS]

where yiﬁ indicates an assign edge froyto 3 and o Fon
indicates a fetch edge fromto n. The solution to pointer analysis
is the minimal set of alias edges that satisfies this rule.

3.2 Flow-Insensitive Analysis on the AFG

A simple approximation of thaffectsrelation gives Andersen-
style flow-insensitive analysis, which will use as a baselor eval-
uating our new flow-aware analysis (described in the next@gc
Define the predicataliasesas

aliasega,y) < a=yVal(a)nal(y) #0.

This says nodes andy are aliases for the same thing if they are
identical or if they are aliases for some common locatiorenod

This relationship is a flow-insensitive (over-) approxifoatof
the exactaffect§oa, O), SO [ALIAS] can be approximated by

. F
OF . ad—n

al(B) Cal(n)

X .
y— |
oy 8 aliasega, y) [FI-ALIAS]

Because this rule is recursive (the premise refers talihsesre-
lation, which depends aal), finding the minimal resolved AFG re-
quires computing a fixed point. Our implementation uses thal
worklist algorithm that iterates to convergence.

These rules ignore statement order. Consider Figure 1{Gghw
shows the resolved AFG for Figure 1(b) under the4LIAS] rule.
Every assign to a location is seen by all fetches from thattion,
so in Figure 1(b), both; andns will resolve to bothv andw. In the
implementation, we also create the (unknown) initial vaiodez;
since globak is dereferenced within the function (we lazily initial-
ize environment variables). Nodasg andns also resolve ta@;.

3.3 Flow-Aware Analysis on the AFG

Here, we describe our second key contribution: flow-awasad-an
ysis, which considers statement ordering when computiiages.

duces more precise results, making it all-around supeReduc-
ing the number of matchings between fetches and assigns tead
faster convergence with fewer alias edges.

The basic idea in flow-aware analysis is to number all the as-
signments and fetches in a procedure (i.e., assign thenalaotet
der) and only consider assignments whose labels are lassttht
of a matching fetch. This is a quick-to-compute consereatip-
proximation (the true relationship is a complex partialesrdue to
conditionals and data) that is more precise thantha[iAs] rule,
which completely ignores statement order. The AFG abstrads
key for the flow-aware analysis.

The control-graph fragments in Figure 4 illustrate the wasti
tion for this approximation. Figure 4(a) is the simplestecaghe
assignment; runs before the fetcl;, soAj can affectF, i.e.,
affectgA;, F) holds. However, a fetch that runs before an assign-
ment, such as in Figure 4(b), cannot be affected by the assign
A flow-insensitive analysis treats these two cases iddhtjoaur
flow-aware analysis does not build an alias edge in the secasel

Conditionals add complexity. In Figure 4(c), fetehshould re-
solve to assig since the latter occurs strictly before the former,
but affectgAy, F) is false because the two operations are mutually
exclusive. FinallyaffectgAm, F) andaffect§Am, F) are both false
becausé\y, runs after; andF.

The situation in Figure 4(d) is slightly different. Altholg; oc-
curs afterAm, Am cannot affecE because they are mutually exclu-
sive: the expressioncontrols both conditionals. Howevey, does
affectl becausé\ comes befordy along a feasible pattAffects
is always an approximation since path-feasibility is undiile.

Figure 4(e) shows one possible total order for the contoulfl
graph of Figure 4(d): we numbered statements in the truechran
of each conditional before its false branch.

Figure 1 illustrates the precision advantage of a flow-awagd-
ysis using conditionals. Figure 1(f) is the summary of Feglite),
which is more precise than Figure 1(d).

Let affectg(oga,0F) be true when the assignmemit occurs be-
fore the fetchor in the total order. This approximation can produce
spurious results. For example, in the linearization of Fegd(d)
in Figure 4(e),affectg(Ay, F) and affectg(Am,) are true, yet
affectgAy, F) andaffect4Am, F), the exact relations in Figure 4(d),
are false. Thusaffectg allows a fetch edge to resolve to extra as-
sighments, but it is a sound solution with substantially rioved
precision over flow-insensitive analysis.

To implement flow-aware analysis, we simply augment eack edg
o in the AFG with an indexank(o) from a topological sort of the
statements in the procedure. We write these labels as fotisszn
F’s andA’s. The [aLIAS] rule for flow-aware analysis is

. ;
Or :a0—n aliasesa,y)

al(B) al(n)

Op': yiﬁ affectg(oa, or)

[FA-ALIAS]

f(p.q) ® @

{ A (=) ()
poe O g/@
) O @

A
(b) (©
Figure 5: (a) A procedure, (b) its AFG, and (c) summary.

4. INTERPROCEDURAL ANALYSIS

Below, we describe how we perform interprocedural analysis
with our AFG. We describe how we summarize procedures, han-
dle function parameters, and use summaries at proceduisiteal
Although our summaries assume their parameters do nof til&s

(@)

(b) (© (d)
Figure 6: (a) A procedureg, which callsf from Figure 5 (b) Its
initial AFG (c) After resolving (d) Its summary

We perform the same process for each global variable: ite nod
in the callee is merged with its node in the caller. This isuars
in Figure 6 sincey does not touch globals ory.

Node merging works even when an actual parameter is an ex-
pression. The calf (z, z) would represent its actual arguments
as two fetch edges fromto nodes, sayy; andny, which would be

can be used in settings where parameters are aliases anth rema merged with the value nodes for the formdi#1 andf #2. Com-

sound, a key advantage of our approach.

4.1 Computing Summaries

To prepare a procedure’s AFG to be used at a call site, after co
puting aliases using flow-insensitive or -aware analysesswmnma-
rize the AFG for each procedure by deleting anything thatllaerca
could not see, such as temporary memory fetchemdns in Fig-
ure 1(c). Before we delete such nodes, we transfer theictsfte
nodes that will remain. Figure 1(d) shows this. In genefani
assignment is made to a fetch nageandn can be an alias for a
location node, the assignment is equivalent to onentoE.g., in
Figure 1(c),n; is assigned the address»ofind can be an alias for
71, v, andw, so we add assign edges fram v, andwto x. Simi-
larly, we add edges fromy, v, andwtoy. Finally, we removen;
andns and “demote”z; to a fetch node to indicate the dereference
of z. This produces the flow-insensitive summary in Figure 1(d).

4.2 Modeling Parameters

We treat procedure parameters almost like global variablésle
we assume each comes from the environment, a caller always in
tializes formal parameters so we add explicit initial vahagles for
them; we only add an initial value for each global variablat tis
fetched by the procedure. Since formal parameters are Vacal
ables, i.e., stacked and discarded when a procedure retuenge-
move their location nodes during the summarization process

Figure 5 illustrates how we handle parameters. We add mtati
nodes for formal parametepsandq and initial value nodeg1 and
#2 that represent their initial caller-passed values. Figi(bg also
includes nodes and edges for the two statements.

Since formal parameters are initialized byi™#odes, the AFG
representation for p=&x in Figure 5(b) does not include a fetch
edge fomp; * p directly yields its initial value, #1.

In summarizing this (alias-free) procedure, we remove tites
for the formal parameterp and g and rename the initial value
nodes to include the procedure’s name. Also, fetch édge Fig-
ure 5(b) generates an initial value for node #2, which in Fédi(c)
is labeledn. Figure 5(c) is the final summary.

4.3 Modeling Procedure Calls

When building the initial AFG for a procedure, a call to a func
tion is replaced by the callee’s summary. Instantiationrarsary
involves merging any global variables shared by both andech
ing formal parameters to actual parameters. Figure 6 rttess
calling procedurd from Figure 5. The address of global variable
Z is passed to botp andq, so when we copy the summary of
from Figure 5(c), we mark the nodes for the initial valuep athd
q, f #1 andf #2, to be merged witlz.

puting aliases on the AFG would find the two parameters aliase

Once each callee’'s summary has been instantiated, we cemput
the caller's summary. In Figure 6(c), we added an initialueal
node for globalz and used flow-insensitive analysis to add alias
edges from frorm to x andz;. Figure 6(d) is the summary. We
removed fetch node; its aliases now manifest themselves as the
assign edges from. A caller of g knows thatz is dereferenced
somewhere down the line by looking@s summary.

This example illustrates how a summary is agnostic about pa-
rameter aliasing and can be used in any context. The summary i
Figure 5(c) treated parametgrsandq as distinct, but we merged
them at the call site fof in g and found that running makesy
point tox. Existing solutions either use information from the en-
vironment while building a summary, or build multiple surmea
for each function, one for each possible environment.

4.4 Interprocedural Flow-Aware Ordering

Performing flow-aware analysis across procedure callsinesju
us to label statements on both sides of a call site. To getitltis,
we increase the indices of a callee by the maximum index tiat o
curs in the caller before the call site, then increase thieésdn the
caller that appear after the call. Figure 7 illustrates.this

In Figure 7(b) x’s value is read bg=x in bar () then modified
by f () atthe call sitd (&) . When statementg=&w executes,
the original value ok, &v, is set to point tow. By ignoring or-
der information, an interprocedural flow-insensitive gsa would
pessimistically includea andb as values that could be read by
g=x. Our flow-aware analysis avoids these. Figures 7(c) and 7(d)
show the resolved and summary AFGs for functionVe sort the
edges in a function summary and number them starting from 1,
being careful to preserve the order among statements. &i§fe)
shows how the summary féris instantiated at the call sife &x) .
Statements before the call are labedgg R, andAg.

To place a callee’s statements in the total order, we addigfe h
est index before the call to every statement in the callegtsnsary
when we instantiate it. In Figure 7(e), this index is 3, so aleel
themAy, 4 andAy 5 to indicateA; andA, will becomeA, andAs.

Figure 7(f) shows the result after flow-aware alias analysate
the fetch ofx in g=x (F,) resolves tdA, the only assignment oc-
curring before that fetch. Figure 7(g) is the points-to setscom-
pute with our flow-aware analysis, which is more precise tinen
flow-insensitive result in Figure 7(h).

4.5 Loops and Recursive Procedures

We convert loops into tail-recursive procedures and itezbt
analyze (such) recursive procedures until we reach a fioéu:p
The first time a recursive procedure is analyzed, we do no¢ hav

bar ()
{_(int) b
o g
=&
}
(a)

callee

Figure 7: Propagating flow-aware ordering across procedure
calls. (a) Functionf () is called by (b)bar (). The AFG for
f () (c)is summarized (d), inserted in the AFG forbar () (e),
the indices in the summary are updated and flow-aware anal-
ysis is performed (f). The flow-aware points-to set (g) is ma&
precise than the flow-insensitive (h).

a summary for it, so we only consider the other statementlen t
procedure. This gives a better summary for the procedurahwh
we then instantiate at recursive call sites and summariamag

It may appear this procedure may not terminate, but this is no

the case. It turns out the number of edges and arcs that can b
added is bounded. The number of heap nodes is bounded becaus&c
of the heap naming scheme we adopt. The number of fetch esiges i
bounded because the final summary allows at most one feteh edg

out of any node, and there is a limit on the length of any chéin o
fetch edges. Finally, we prohibit duplicate assign edgegeiher,
these constraints bound the summary and guarantee congerge
If duplicate assignments between a pair of nodes is allosezh as
in Figure 8(e), the comparison between two summaries mugt on

consider whethexi>y exists and not the number of such edges.
Details can be found in the first author’s thesis [3].

Figure 8 illustrates summarizingfar loop. We transform the
function in Figure 8(a) into the tail-recursive procedureHig-
ure 8(b). We nested the definition bbop insidebar to empha-
size that it has accessbar 's local variables.

Figure 8(c) is a simplified control-flow graph for this coden O
the left is the structure of the loop; on the right is a lineed ver-

int *p, X;
voi d bar() {
int *xz, vy;

()
int *p, X;
voi d bar() {
int *xz, vy;

voi d Loop() {

Figure 8: Handling loops and recursive functions.

indices are shifted as in Section 4.4). This time, fetch efige
matches assignmertz, andz will point to y as a result; edges
F4 andAz belong to different iterations of the original loop.

Figure 8(f) is the summary of Figure 8(e) and also the fixed-
point—the final summary for the function. Some edges have two
numerical labels because they are the result of mergingipteult
edges. For examplé\g represents the merge A§ andAsg.

Figure 8(g) shows the graph foar after we inserted the sum-
mary forLoop. The fetch ofp resolves tqp=&x since the assig-
ent occurs before the fetch (i.e., we check that the syiisndex
the fetch is greater than the superscript on the assigrase one
exists, or the subscript otherwise). Finally, Figure 8(mgs the
summary fobar , which notes that the global variatpes fetched.

5. EXPERIMENTAL RESULTS

We implemented our pointer analysis framework in a statad-an
ysis (bug-finding) tool called BEAM [2] developed at IBM. Our
experiments show our AFG-based pointer analysis techrigne
be applied on real-world programs; our flow-aware analySec{
tion 3.3) has both better performance and accuracy than a flow
insensitive analysis; and our AFG-based analysis gersecatesid-
erably smaller points-to sets than existing techniques.

Table 1 lists our benchmarks. Paraffins is an implementation
the Salishan Paraffins problem, compress and gzip are file com
pression programs, ispell is a spelling checker, pcre ibrary

sion of theLoop procedure that assumes flow-aware analysis or- for regular expression pattern matching, make is a buildl tne

ders thehenbranch of thef before theelse

Figure 8(d) is the first summary dbop—the assignmeri=&y
is hidden fromz. We now have a summary @op, so we insert
it at its call site. This gives Figure 8(e). Edges with sulpsrl, 2,
and 3 correspond to the loop body statements within the ifomct
Instantiating the earlier summary adds edggsAs, and Ag (the

son is a parser generator, tar is a file archive utility, andabes

an electronic mail client. “Source functions” count progesb in

the original code; “internal functions” count procedurdtiare-
placing loops with tail-recursive functions. “SCCs” costitongly-
connected components in the program’s call graph. Somehbenc
marks contain large SCCs: make has a cluster of 52 mutually-

Table 1: Experimental Results

Benchmark Statistics Flow-insensitive Analysis Flow-awa Analysis Avg. Points-to Set Sizes
Lines Functions SCCs Time Nodes/Summary Speedup “Precisid AFG Steensgaard
Source Internal Avg. Max. Overall Slowest Avg. Peak Anderse
paraffins 15k 13 36 36 ®2s 61 19 — — 1% 20% 111 — —
compress 2 30 66 66 o3 34 9 3% 5% 1 50 ®24 122 21
gzip 83 126 331 330 ¥2 39 18 8 13 7 40 D6 296 2517
ispell 101 117 337 337 13 4 101 60 127 34 122 .92 225 1645
pcre 154 63 300 299 21 B 19 243 360 10 45 21 — —
make 221 309 853 799 114 16 279 109 65 23 446 .16 7470 41404
bison 254 700 1297 1296 44 B 356 159 503 19 337 .88 172 2051
tar 327 651 1145 1124 27 12 178 59 145 5 75 58 1741 537
balsa 110 2659 4682 4648 31 a 51 23 78 12 80 ®@2 — —

recursive functions on which the analysis must convergehaa 6. CONCLUSIONS

a cluster of 19 functions, and balsa has one with 14. We presented a new approach to pointer analysis based on the
The analysis time is for BEAM running on a 2.2 GHz Pentium 4 instead of points-to relations, the AFG enables conterbatic
machine with 4 GB of memory running Linux. The “nodes/sumyhar - procedure summaries and several pointer analysis variatiince
columns list the average and maximum number of nodes in eachan assign-fetch graph abstracts code along with the pessisllts

procedure’s summary graph. Analysis times includes caling of code, it is very natural for inter-procedural analysis.

the points-to sets as initial, resolved, and summary AF@d,ta We described two AFG pointer analysis techniques, a standar

propagate summaries until convergence, but does not iadhel fiow-insensitive analysis that ignores statement ordeairdya novel

time for BEAM to read source files, parse, and buildthe IR. .~ flow-aware technique that approximates the control flow imca p
Analysis times are short enough to make our technique peicti cedure to reduce the number of spurious alias relationships

but vary widely. For example, although make is only twiceas| Experimental results on real-world C programs showed that o

as ispell, it takes more time to analyze make because itgi@gh flow-aware analysis is both faster (3%—243%) and more pecis

has large SCCs (i.e., groups of mutually recursive funejion than flow-insensitive analysis. We measured precision biit

The nodes/summary columns suggest procedure summaries argt the number of edges in the procedure summaries. Sincatmth
small on average and grow polynomially with program size-emu sound, fewer edges mean a more precise summary.

slower than the exponential worst case. Wilson and Lam [bi] o In the future, we will develop more precise analyses by negjni
served similar behavior on partial transfer functions. __ the approximation of thaffectsrelation of Section 3. For instance,
We name heap locations following Choi et al. [5]: a location’ 3 path-sensitive approximation can be made by includingaheli-
name is the list of callers at its allocation site. We limitmealength tions under which fetches and assignments occur. We arertlyrr
and allow colliding names to merge. Details are elsewhdje [3 adding field-sensitivity to the analysis by inserting onerentype
The “flow-aware analysis” columns compare our flow-awaré-ana of edge in the AFG, dield-dereferencedge, which will handle
ysis to flow-insensitive. It shows flow-aware analysis ishomiore arbitrary casting possible in C.

efficient and more precise than our implementation of flogemsitive
analysis. The “Overall” column lists the overall decreasetn 7. REFERENCES

time for our flow-aware analvsis compared to our impleméaat [1] L. O. Andersen. Program analysis and specializationttier C pro-
Y P p gramming language. PhD thesis, DIKU, U. Copenhagen, 1994.

of flow-insensitive analysis. Our flow-aware analysis carober [2] D. Brand. A software falsifier. Intl. Symposium on Software Relia-

2x faster. The “Slowest” column lists how much faster flow-asvar bility Engineering pages 174185, October 2000.

analysis is at analyzing the procedure that took the most tim [3] M.Buss. Summary-based pointer analysis framework fodutar bug
The “precision” columns compare the size of the summarytigap finding. PhD thesis, Columbia University (to appear), 2008.

from flow-aware analysis with those from flow-insensitivakysis. [4] R. Chatterjee, B. Ryder, and W. Landi. Relevant contef¢rence. In

If Ris the ratio of assign edges to the total number of nodes in the Principles of Prog. Languagepages 133-146, 1999.

final summary graph for a procedur, is this ratio after flow- [5] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitirgerproce-

insensitive analysis, ani@® is this ratio after flow-aware analysis, dural computation of pointer-induced aliases and sidesifénPrin-

ciples of Prog. Languagepages 232-245, 1993.
[6] M. Das. Unification-based pointer analysis with direogl assign-
ments. InProg. Language Design and Imppages 35-46, 2000.

then the increase in precision@s= (R —R)/Ra. The peak preci-
sion is the highest sudB over all procedures; the average precision

is the average increase over all proceduf€s:+---+Qn)/n. [7] M. Emami, R. Ghiya, and L. Hendren. Context-sensitiveeiproce-
The “Avg. points-to set sizes” columns show our AFG abstrac- dural points-to analysis in the presence of function pont Prog.

tion generates smaller points-to sets than those of Andersgteens- Language Design and Imppages 242-256, 1994.

gaard [6, 9]. We compute points-to set sizes by observingaha [8] W. Landi and B. Ryder. A safe approximate algorithm faeiproce-

sign edges in the AFG for a function correspond to the set-of lo dural pointer aliasing. IProg. Language Design and Implementation

pages 235-248, 1992.

cations pointed-to by the source node of the assign edgereThe
P y 9 9 [9] M. Shapiro and S. Horwitz. Fast and accurate flow-ind@@spoints-

are s.eve.ral summary AFGs in a given benghmark—on_e for each o analysis. IrPrinciples of Prog. Languagesages 1-14, 1997.

function in the program. To calculate the points-to setssineTa- [10] B. Steensgaard. Points-to analysis in almost lin@aetiinPrinciples

ble 1, we compute an average among all AFGs. The table shows of Prog. Languagegpages 32-41, 1996.

the numbers for the flow-insensitive analysis on the AFG. [11] R. Wilson and M. Lam. Efficient context-sensitive p@nanalysis for
C programs. IrProg. Language Design and Imppages 1-12, 1995.

