A Note on Bivariate
Box Splines on a k-direction Mesh
David Lee
CUCS-155-84
D. Lee
Department of Computer ScienceColumbia University
New York, New York 10027January 1984

This research was initiated while working at IBM Research Laboratories, Yorktown Heights, New York, Summer 1983 and was supported in part by the National Science Foundation: under Grant DCR-82-14322.

Abstract.

We determine the dimension of the polynomial subspace of the linear space spanned by the translates over lattice points of a bivariate box spline on a k-direction mesh.

Keywords: Box spline, k-direction mesh.

1. Introduction.

Box splines were introduced by de Boor and De Vore, [1], and systematically studied by de Boor and Hollig in $[2,3]$ and by Dahmen and Micchelli in $[4,5,7]$.

For box splines on a k-direction mesh in an s-dimensional space, one is interested in the dimension of the polynomial subspace of the linear space spanned by the translates of a box spline over lattice points in Z^{s}, since this dimension is closely related to the rate of approximation using box splines. This problem has been solved for the case s $=2$ and $k=4$. For the proof see [4]. For the general case, the result has been announced in a recent paper [6]. The authors suggest to prove it by employing an induction. In this paper, we provide a proof of this result for the case of bivariate box splines (i.e., s = 2) and arbitrary k. Our proof does not use induction.

A k-direction mesh is a set of vectors

$$
\begin{equation*}
x=\{\underbrace{v^{1}, \ldots, v^{1}}_{m_{1}}, \ldots, \underbrace{v^{k}, \ldots, v^{k}}_{m_{k}}\} \tag{1.1}
\end{equation*}
$$

where $v^{i}=\left(\alpha_{i}, \beta_{i}\right) \in z^{2}, z$ is the set of integers, and $\beta_{i} 20$, $a_{i} \beta_{j} \neq a_{j} \beta_{i}$ for $i \neq j, m_{i} \geq 1, i, j=1, \ldots, k, k \geq 2$. Let

$$
\begin{equation*}
n=\sum_{i=1}^{k} m_{i} \quad \text { and } \quad d=\min _{i}\left(n-m_{i}\right\}-1 \tag{1.2}
\end{equation*}
$$

Then there exists a unique function $B(\cdot \mid X)$ in R^{2}, called a box spline on a k-direction mesh, such that
(1.3)

$$
\begin{gathered}
\int_{R} 2 f(x, y) B\left((x, y)(x) d x d y=\int_{0}^{1} \cdots \int_{0}^{1} f\left(t_{1} v^{l}+\ldots+t_{n} v^{k}\right) x\right. \\
d t_{1} \ldots d t_{n}
\end{gathered}
$$

for all $f \in C\left(R^{2}\right)$. The box spline $B(\cdot \mid X)$ is a piecewise polynomial in $C^{d-1}\left(R^{2}\right)$ where d is given in (1.2), and has compact support $[2,3]$.

Let $S(X)$ be the linear span of translates of the box spline over lattice points in 2^{2}, ie.,

$$
\begin{equation*}
S(X)=\operatorname{span}\left(\left\{B(\cdot-(\alpha, \beta) \mid X):(\alpha, \beta) \in z^{2}\right\}\right) \tag{1.4}
\end{equation*}
$$

We are particularly interested in the subspace $S_{\pi}(X)$ of polynomials in $S(X)$ Let

$$
Q_{\ell}(x, y)=\prod_{i \neq \ell}\left(\alpha_{i} x+\beta_{i} y\right)^{m_{i}}
$$

and let
(1.5) $\quad Q_{\ell}(D)=\prod_{i \neq \ell}\left(\alpha_{i} \frac{\partial}{\partial x}+\beta_{i} \frac{\partial}{\partial y}\right)^{m_{i}}$.

It was proved $[3,6,7]$ that $S_{\pi}(X)$ is of finite dimension and that

$$
\begin{equation*}
S_{\pi}(x)=D(x) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
1)(X)=\left\{f: Q_{\ell}(D) \quad f=0, \quad \ell=1, \ldots, k\right\} \tag{1.7}
\end{equation*}
$$

It was proved [3]
Theorem 1.1: If $\operatorname{det}\left(v^{i}, v^{j}\right)=1$ for each pair of vectors in X which spans R^{2}, then

$$
\begin{equation*}
\operatorname{dim} S_{\pi}(X)=\operatorname{dim} D(X)=A(X), \tag{1.8}
\end{equation*}
$$

where $A(X)$ is the area of the support of $B(\cdot \mid X)$.

A simple example is the case of a 3 -direction mesh, where $x=\{\underbrace{e^{1}, \ldots, e^{1}}_{m_{1}}, \underbrace{e^{1}+e^{2}, \ldots, e^{1}+e^{2}}_{m_{2}}, \underbrace{e^{2}, \ldots, e^{2}}_{m_{3}}\}, e^{1}=(1.0)$,
$e^{2}=(0,1)$. We have

$$
\operatorname{dim}_{\pi} s(X)=\operatorname{dim} D(X)=A(X)=\sum_{1 \leq i<j \leq 3} m_{i} m_{j}
$$

In general, the condition in Theorem 1.1 does not hold, as in the case of a 4-direction mesh, where

since $\operatorname{det}\left(e^{1}+e^{2}, e^{2}-e^{1}\right)=2$. We address this problem in section 2.
2. Box splines on a k-direction mesh.

For a k-direction mesh as given in (1.1), we give the dimension of $S_{\pi}(X)$ in Theorem 2.1.

We need the following

Lemma 2.1: Let $\left(\alpha_{i}, \beta_{i}\right) \in z^{2}$ with $\alpha_{i} \beta_{j} \neq a_{j} \beta_{i}, i, j=1, \ldots, k$, and let $G_{j}(\lambda)=\Pi_{i \neq j}\left(\alpha_{i}+\beta_{i} \lambda\right)^{m_{i}}$, where $m_{i} \geq 1$. Then for all distinct $\lambda_{0}, \ldots, \lambda_{n-1}$, the following matrix is mondegenerate:
(2.1)

where $n=\Sigma_{i=1}^{k} m_{i}$.

Proof: The matrix M_{n} is nondegenerate for any choice of distinct $\lambda_{j}, j=0, \ldots, n-1$, if and only if for any vector a, $M_{n} a=0$ implies $a=0$. Let
$a^{T}=\left(a_{1,0}, a_{1,1}, \ldots, a_{1, m_{1}-1}, \ldots, a_{k, 0}, a_{k, 1}, \ldots, a_{k, m_{k}-1}\right)$,
and let $P_{\ell}(x)=a_{\ell, 0}+a_{\ell, 1} x+\cdots+a_{\ell, m_{\ell}-1} x^{m_{\ell}-1}, \ell=1, \ldots, k$. Then

$$
\text { Then } \sum_{\ell=1}^{k} P_{\ell}(x) G_{\ell}(x) \text { vanishes at all the } n \text { distinct } \lambda_{j}
$$ since $M_{n} a=0$. On the other hand, $\sum_{\ell=1}^{k} P_{\ell}(x) G_{\ell}(x)$ is a polynomial of degree less than n, hence must be identically zero. But then since all summand except for the ℓ-th one have the factor $\left(\alpha_{\ell}+\beta_{\ell} x\right)^{m_{\ell}}$, the $\ell-$ th summand must also have it and, since G_{ℓ} does not have $i t, P_{\ell}$ must have it, and that is possible only when $P_{\ell}=0$. This shows that $a=0$, as required. \square

Remark 2.1: We choose distinct $\lambda_{0}, \ldots, \lambda_{n-1}$ with $\lambda_{i} \neq 1,0,1$, $\alpha_{j}+\beta_{j} \lambda_{i} \neq 0, j=1, \ldots, k, i=0, \ldots, n-1$, such that M_{n} in (2.1) is non-degenerate, and we denote this matrix with fixed λ_{i} as M_{n}^{\star}.

We are ready to prove

Theorem 2.1: Let X be a k-direction mesh. Then

$$
\begin{equation*}
\operatorname{dim} S_{\pi}(x)=\Sigma_{i \leq i<j \Delta k} m_{i} m_{j} \tag{2.2}
\end{equation*}
$$

Proof: In the proof we denote the differential operator $Q_{\ell}(D)$ by $Q_{\ell}, \ell=1, \ldots, k$. since $S_{\pi}(X)=g(X)$, we need only to derive the
dimension of the space $\delta(X)$. Let Π_{j} be the linear space of all homogeneous polynomials of degree j. Observe that $\bar{\pi}_{i} \cap \pi_{j}=\{0\}$ for $i \neq j$ and that $\left\{\left(x+\lambda_{0 j} y\right)^{j},\left(x+\lambda_{1 j} y\right)^{j}, \ldots\right.$, $\left(x+\lambda_{j} y^{y}\right)^{j}$ is a basis of Π_{j} for arbitrary distinct $\lambda_{i j}, i=0, \ldots, j$, with $\lambda_{i j} \neq-1,0,1$.
Since $\mathcal{D}(\mathrm{X})$ is a finite dimensional linear space of polynomials, $\mathcal{D}(\mathrm{X})$ is a subspace of $\Pi_{0} \oplus \cdots \oplus \pi_{\mathrm{N}}$ for sufficiently large N. Let $s_{j}=D(X) \cap \pi_{j}$. Then $s_{i} \cap s_{j}=\{0\}$ for $i \neq j$, and therefore $s_{0} \oplus \cdots \oplus s_{N}$ is well defined. We prove that

$$
\begin{equation*}
D(x)=s_{0} \oplus \cdots \oplus s_{N} \tag{2.3}
\end{equation*}
$$

Indeed, $s_{0} \oplus \cdots \oplus S_{N} \subseteq D(X)$ by the definition of S_{j}. To show that $D(X) \subseteq S_{0} \oplus \cdots \oplus S_{N}$, take arbitrary $f \in D(X)$, and $f=\sum_{j=0}^{N} f_{j}$, where $f_{j} \in \Pi_{j}$. Due to (1.7), $Q_{\chi} E=\sum_{j=0}^{N} Q_{\chi} F_{j}=0$, $\ell=1, \ldots, k$. By (1.5), we know that for $i<j$ and $Q_{\ell} f_{j} \neq 0$, $\operatorname{deg}\left(Q_{\ell} f_{i}\right)<\operatorname{deg}\left(Q_{\ell} f_{j}\right) . \operatorname{Thus} Q_{\ell} f_{j}=0, \ell=1, \ldots, k, j=0, \ldots, N$, i.e., $f_{j} \in S_{j}, j=0, \ldots, N$. This means that $\mathcal{D}(X) \subseteq S_{0} \oplus \cdots \oplus S_{N}$, which completes the proof of (2.3).

To derive $\operatorname{dim} D$ we compute $\operatorname{dim} S_{j}, j=0, \ldots, N$, since $\operatorname{dim} D(X)=\sum_{j=0}^{N} \operatorname{dim} S_{j}$, due to (2.3). Let $f \in S_{j}$. Then

$$
\begin{equation*}
f(x, y)=\sum_{i=0}^{j} a_{i j}\left(x+\lambda_{i j} y\right)^{j} \tag{2.4}
\end{equation*}
$$

ana

$$
\begin{equation*}
Q_{\ell} f=0, \ell=1, \ldots, k \tag{2.5}
\end{equation*}
$$

Let $q_{\ell}=\operatorname{deg} Q_{\ell}=n-m_{\ell}$, where $n=\sum_{\ell=1}^{k} m_{\ell}$. Since
(2.6)

$$
\begin{aligned}
& \left(\alpha \frac{\partial}{\partial x}+\beta \frac{\partial}{\partial y}\right)^{m}(x+\lambda y)^{j} \\
& \quad= \begin{cases}0, & \text { if } m>j, \\
j(j-1) \cdots(j-m+1)(\alpha+B \lambda)^{m}(x+\lambda y)^{j-m}, & \text { if } m \leq j,\end{cases}
\end{aligned}
$$

from (2.4) we have
(2.7) $\quad Q_{\ell} f= \begin{cases}0, & \text { if } q_{\ell}>j, \\ \sum_{i=0}^{j} a_{i j} j(j-1) \cdots\left(j-q_{\ell}+1\right) Q_{\ell}\left(1, \lambda_{i j}\right)\left(x+\lambda_{i j} y\right) \\ \text { if } q_{\ell}, \\ \text { if } q_{\ell} \leq j .\end{cases}$

Since $S_{\pi}(X)$ is the polynomial subspace of the linear space spanned by the translates of a box spline for which there are only n directions, polynomials in $S_{\pi}(X)$ have degree less than n. Thus we only need to derive $\operatorname{dim} s_{j}$, for $j=0,1, \ldots, n-1$.

From (2.7) we have
(2.8) $\left\{\begin{array}{lr}Q_{\ell} f=0, & \text { if } q_{\ell} \geq j+1, \\ Q_{\ell} f=\sum_{i=0}^{j} a_{i j} j(j-1) \cdots\left(j-q_{\ell}+1\right) Q_{\ell}\left(1, \lambda_{i j}\right)\left(x+\lambda_{i j} y\right) \quad j-q_{\ell},\end{array}\right.$

$$
\text { if } q_{\ell} \leq j
$$

From (2.5) and (2.8), we have a system of equation in $a_{i j}$:
and the coefficient matrix M_{j} of (2.9) consists of blocks $B_{\ell, j}$:

Since $j \leq n-1, j-q_{\ell}=j-\left(n-m_{\ell}\right)=m_{\ell}-(n-j) \leq m_{\ell}-1$, M_{j} is a submatrix of M_{n}^{*} in Remark 2.1 , and is contained in $\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right)+$ rows. Notice that $j+1 \geq \sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right){ }^{\prime}$, for $j \leq n-1$, since we get equality when $j+1=n$. Since M_{n}^{\star} is non-degenerate, we can find $j+1$ columns, such that the $\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right)+$ by $(j+1)$ submatrix of M_{n}^{\star}, corresponding to k
M_{j}, is of rank $\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right){ }_{+}$. Use the $j+1 \quad \lambda_{i}^{\prime}$ s in M_{n}^{\star},
corresponding to the $j+1$ chosen columns as $\lambda_{0 j}, \ldots, \lambda_{j}$
in (2.4) and (2.9), and M_{j} is obviously of rank $\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right)+$. Since the number of $a_{i j}{ }^{\prime} s, j+1$, is no less than $\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right)+$, the number of equations in (2.9), and the coefficient matrix of (2.9), M_{j}, is non-degenerate, the solution space of (2.9) is of dimension $(j+1)-\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right)+$ which is the dimension of S_{j}. So

$$
\begin{aligned}
& \sum_{j=0}^{n-1} \operatorname{dim} s_{j}=\sum_{j=0}^{n-1}\left[(j+1)-\sum_{\ell=1}^{k}\left(j+1-q_{\ell}\right){ }_{+}\right] \\
& \quad=\sum_{j=1}^{n} j-\sum_{\ell=1}^{k} \sum_{j=1}^{m_{\ell}} j=\sum_{1 \leq i<j \leq k}^{\sum} m_{i} m_{j},
\end{aligned}
$$

since

$$
\sum_{j=0}^{n-1}\left(j+1-q_{\ell}\right)+=1+\cdots+n-q_{\ell} \text { and } n-q_{\ell}=m_{\ell}
$$

Acknowledgements.

I am grateful to Professors C. de Boor, J.F. Traub and G.W. Wasilkowski for their advice and valuable comments. My special thanks are to Professor Jia Rong-qing who has significantly shortened the proof of Lemma 2.1.

Dr. C. Micchelli introduced me to this problem for the case of a four-direction mesh.

References.
[1] C. de Boor, R. De Vore, Approximation by smooth multivariate splines, Trans. AMS 276 (1983) 775-788.
[2] C. de Boor, K. Hollig, Bivariate box splines and smooth pp. functions on a three direction mesh, J. Comp. and Applied Math., 9 (1983), pp. 13-28.
[3] C. de Boor, K. Hollig, B-splines from parallelepipeds, J. D'Anal. Math. 42 (1982/83) 99-115.
[4] W. Dahmen, C.A. Micchelli, On the optimal approximation rates for criss-cross finite element spaces, J. Comp. and Applied Math., 10 (1984) 255-273.
[5] W. Dahmen, C.A. Micchelli, Recent progress in multivariate splines, Approximation Theory IV, Edited by C.K. Chui, L.L. Schumaker, J.D. Ward, Academic Press, 1983.
[6] W. Dahmen, C.A. Micchelli, Some results on box splines; Bull. (New series) of the American Math. Society, Vol. 11; No. 1, July 1984.
[7] W. Dahmen, C.A. Micchelli, Translates of multivariate splines, Linear Algebra and its Applications, 52/53, 217234 (1983).

