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A.bstract. 

We determine the dimension of the polynomial subspace 

of the linear space spanned by the translates over lattice 

points of a bivariate box spline on a k-direction mesh. 

Ke~rds: Box spline, k-direction r.esh. 



1. Introduction. 

Box splines were introduced by de Boor and De Vore, 

[1], and systematically studied by de Boor and Hollig in 

[2,3] and by Dahmen and Micchelli in [4,5,7]. 

For box splines on a k-direction mesh in an s-dimensional 

space, one is interested in the dimension of the polynomial 

subspace of the linear space spanned by the translates of 

a box spline over lattice points in zS, since this dimension 

is closely related to the rate of approximation using box 

splines. This problem has been solved for the case s = 2 

and k = 4. For the proof see [4]. For the general case, 

the result has been announced in a recent paper [6]. The 

authors suggest to prove it by employing an induction. 

In this paper, we provide a proof of this result 

for the case of bivariate box splines (i.e., s = 2) and 

arbitrary k. Our proof does not use induction. 

A k-direction mesh is a set of vectors 

(1.1 ) 11k k X = {v , ••• ,v , ... ,v , ... ,v }, 
... ---' ~ 

1 

i 2 
where v = (a.,e.> € Z , Z is the set of integers, and e. 2 0, 

1. 1. 1. 

a.e. ~ a.e. for i ~ j, m. 2 1, i,j = 1, ... ,k, k L 2. Let 
1. J J 1. 1. 

(1. 2) 
k 

n = t. 1 m. 
1.= 1. 

and d = min(n - m.} - 1. 
. 1. 
1. 

2 
Then there exists a unique function B(. IX) in R , called a 

box spline on a k-direction mesh, such that 



(1. 3) J 2 f(x,Y)B(x,y~X)dxdy 
R 

2 
for all f € C (R ). The box spline B (. IX) is a piecewise 

polynomial in Cd - l (R 2) where d is given in (1.2), and has 

compact support [2,3]. 

Let S(X) be the linear span of translates of the box 

spline over lattice points in z2, i.e., 

(1. 4) S(X) = span({B('-(a,B) IX): (a,B) E z2}). 

We are particularly interested in the subspace Srr(X) of 

polynomials in S(X). Let 

m. 
0.20 (x,y) = IT (cx.x + B.y) ~ 

i;&9. ~ ~ 

and let 

(1. 5) 02, (0) 
... "' m. 

= IT ( a + B ~) ~ 
i;&.2o cx i ax i ay 

It was proved [3,6,7] that 5 (X) 
iT 

is of finite dimension 

and that· 

(1. 6) 5 (X) = t)(X) , rr 

where 

(1. 7) j)(X) = {f: O£ (0) f=O, .20=1, ••• ,k}. 

2 
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It was proved [3] 

Theorem 1.1: If det(vi,v j ) = 1 for each pair of vectors 

in X 2 which spans R , then 

(1. 8) dim S'IT(X) = dim ~(X) = A(X), 

where A(X) is the area of the support of B(·lx). 0 

A simple example is the case of a 3-direction mesh, 

where 1 112 122 2 1 
X = {~,~ +e :.::. ,e :;., '~}, e = (1.0), 

m1 m2 m3 

e 2 = (0,1). We have 

dim 5 (X) = dim ~(X) = A(X) = E1 '<' 3 m.m .. 
'IT ~1 J~ 1 J 

In general, the condition in Theorem 1.1 does not hold, 

as in the case of a 4-direction mesh, where 

1 112 122 221 2 1 X = {e , ... ,e ,e +e , ... ,e +e ,e , ... e ,e -e , ... ,e -e }, 
...... .I \... .-I \.. J '-- ./ .... ...".. .... v== 

section 2. 

2. Box splines on a k-direction mesh. 

For a k-direction mesh as given in (1.1), we give the 

dimension of 5 'IT (X) in Theorem 2.1. 
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We need the following 

2 
Lemma 2.1: Let (a. ,B.) € Z with a.B. 'F a.B., i,j = 1, ... ,k, 

~ ~ ~ J J ~ m. 
and let G. (A) = II.""" (a.+B.A) ~, where m. 2 1. Then for 

J ~rJ ~ ~ ~ 

all distinct AO'" ',An-l' the following matrix is nonde-

generate: 

/ 
Gl (A O) . . . . Gl{An_l ) 

AOGl (AO) . . . . . . An_1Gl (A n_ l ) 

J 

m ':'1 m -1' 1 1 AO Gl (A O) .. .. .. - .. An-l Gl (An_I) 

(2. 1) M = n 

'\(AO) . . Gk O'n-l) 

AO~ (1.. 0 ) An -1 ~ ( A n- 1 ) 

k where n = t. 1 
~= 

m .• 
~ 

proof: The matrix Mn is nondegenerate for any choice of 

distinct 

M a = 0 n 

A., j=O, •.. ,n-l, if and only if for any vector a, 
J 

implies a = O. Let 

(a1 , 0' a 1 , l' ..• , a 1 , m1-l' ... , a k , 0' ak , l' ... , ak , ~ -1) , 



and let 
m -1 

i + an m _Ix , i=l, ... ,k. 
I., i 

k 
Then E Pi(x) Gi(x) 

i=l 
vanishes at all the n distinct 

since M a = O. n 

k 
On the other hand, E Pi(x) Gi(x) 

i=l 
is a 

A . , 
J 

polynomial of degree less than n, hence must be identically 

zero. But then since all summands except for the i-th one 
m

i have the factor (a i +8 i x) , the i-th summand must also have it 

and, since Gi does not have it, Pi must have it, and that is 

possible only when Pi = O. This shows that a = a, as required. a 

Remark 2.1: We choose distinct AO"" ,An-l with A· ~ 1 0 1 i ", 

a. + B.A. ~ 0, j = 1, ... ,k, i = 0, ... ,n-1, such that M in 
J J ~ n 

(2.1) is non-degenerate, and we denote this matrix with fixed 

A. as M*. 
~ n 

We are ready to prove 

Theorem 2.1: Let X be a k-direction mesh. Then 

(2. 2) dim S (X) = I:1 '<'/1, m,m .. 
TT ~~ J~" ~ J 

proof: In the proof we denote the differential operator 

Qi(D) by Qi' i=l, •.. ,k. Since Sn(X) = ~(X), we need only 

to derive the 

o 

CJ 



dimension of the space ~(X). Let IT j be the linear space 

of all homogeneous polynomials of degree j. Observe that 

1i () IT j = {a} for i i= j and that {(X+AOjY) j, (x+A 1j Y) j, ... , 

(X+Ao oy)j} is a basis of IT]o for arbitrary distinct 
]] 

Ai j' i = 0, .•• , j , wi th Ai j i= -1 , ° , 1 . 

6 

Since ~(X} is a finite dimensional linear space of polynomials, 

D(X) is a subspace of ITO e ... ~ ITN for sufficiently large 

N. Let Sj = ~(X) n IT j . Then Si ~ Sj = {a} for ii=j, and 

therefore So e··· e SN is well defined. We prove that 

( 2 • 3) J) (X) = So @ ••• 61 SN· 

Indeed, So e ... 9 SN ~ l)(X) by the definition of Sj. To 

show that .l)(X) ~ So e ... e SN' take arbitrary f E D(X), and 

N N 

j=o 
fo, where fo E ~o. 

J J J 
Due to (1.7), Q£f = [ Q~fJo = 0, 

j=O 
f = L 

i = l, ... ,k. By (1.5), we know that for i < j and Qifj i= 0, 

deg (Q ~ f i) < deg (Q ~ f j)' Thus Q if j = 0, 2. = 1, ... , k, j = 0, ... , N , 

i. e. , fo E So, j = O, ••• ,N. 
J ] 

This means that ~(X) S SO@·· .~SN' 

which completes the proof of (2.3). 

To derive dim ~ we compute dim So, j = O, ... ,N, since 
J 

N 
dim ~(X) = L dim SJo, due to (2.3). 

j=O 
Let f E So. Then 

J 

( 2. 4 ) 

anJ. 

( 2 • 5 ) 

f(x,y) = 
j 
L 

i=O 

j a 0 0 (x+;\. 0 0 y) , 
1J 1J 

Qif = 0, 2. = 1, ... ,k. 



( 2 • 6) 

Let q2, = deg Q2, = n - m~, where 

(a 2 +s 2 )m (x + Ay)j ax ay 

0, 

= 

k 
n = [ m2,' 

2,=1 

7 

Since 

if m > j, 

j (j-1) ... (j-m+1) (a+6).)m(x+).y) j-m, if m < j, 

from (2.4) we have 

0, if q2, > j, 

( 2. 7) Q2,f = 

j 
[ a .. 

i=O ~J 

Since Srr(X) is the polynomial subspace of the linear space 

spanned by the translates of a box spline for which there are 

only n directions, polynomials in Srr(X) have degree less than 

n. Thus we only need to derive dim Sj' for j=0,1, •.. ,n-1. 

From (2.7) we have 

Qlf = 0, if q2, > j+l, 

( 2. 8) 
j 

Qlf = [ a .. 
i=O ~J 



From (2.5) and (2.8), we have a system of equation in a .. : 
.lJ 

( 2 • 9) 
j 

r 
I.. a iJ· Q~ (1, Aij) AiJ' = 

i=O 
0, r= 0 , ••• , j -q 2. ; q~ < j, 

and the coefficient matrix M. of (2.9) consists of blocks 
J 

B n .: .. ,J 

Q~ (1, AOj ) Qn(l,;x. .. ) 
.. JJ 

B2"j = :\OjQ~(l,;x.Oj) •....... :\. ·Qn(l,:\ .. ) 
JJ l, JJ 

8 

M. is a submatrix of M* in Remark 2.1, and is contained 
J n 

k 
in E (j+1-q) rows. 

~=l 2. + 
Notice that 

j ~ n-1, since we get equality when 

k 
j+1 ~ r (j+1-q~)+, for 

~=l 

j + 1 = n. Since M* n 

is non-degenerate, we can find j+1 columns, such that the 

k 
;:: (j+1-q ) 

'<'=1 2. + 

M. , is of rank 
J 

by (j+1) submatrix of M* n 

k 
r (j + l-q 2.) + • 

~=1 
Use the j+l 

corresponding to 

A. IS 
.1 

in M* n 

corresponding to the j+1 chosen columns as Ao·'···'A.·· . J J J 



in (2.4) and (2.9), and Mj is obviously of rank 

k 
t (j + 1-q 2. ) + • 

2..=1 

k 

Since the number of a. . ' s , j + 1, is no 1 e s s 
~J 

than t (j+l-q2.)+' the number of equations in (2.9), and 
2.=1 

9 

the coefficient matrix of (2.9), Mj ,is non-degenerate, the 

solution space of (2.9) is of dimension 

k 
(j+1) - t (j+1-q2.)+' which is the dimension of 5 .. So 

2.=1 J 

since 

n-1 n-1 
t dim S. = i: 

j=O J j=O 

n k 
= t j - t 

j=l 2.= 1 

n-1 
.r (j+l-q2.)+ = 1 
)=-0 

k 
(j+1) - t ( j + 1-q 2. ) +] 

2.=1 

m2. 
t j = t m.m. , 

j=l l~i<j~k ~ J 

+ ••• + n-q 
2.. 

and n-q 
2. o 
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