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Abstract 

Information based compLexity is a unified treat­
ment of problems where only partial or approximate 
information is availabLe. In this approach one states 
how well a problem should be solved and indicates the 
type of information available. The theory then tells 
one optimal information and optimal algorithm and yields 
bounds on the problem complexity. In this paper we 
survey some recent results addressing one of the pro­
blems studied in information based complexity. The pro­
blem deals with nonadaptive and adaptive information 
both for the worst case and average case settings. 

1. Introduction 

The purpose of this paper is to survey recent work 
in information based complexity on the effectiveness of 
adaptive versus nonadaptive information. 

To explain what we mean by adaptive and nonadaptive 
information we use a simplified version of the predic­
tion problem. Suppose that for a function f from 
a given class F one seeks an approximation x to 
f(t*). The approximation x - x(f) is constructed de­
pending on some partial information about f which is 
available at the present time. Typically the informa­
tion consists of n function values. N(f) - [f(t 1) •••• 

f(t n}]. with some restrictions on sample points t i • 

say ti < t*. Due to the finiteness of the information. 

N(f) does not identify f(t*} uniquely and. in general. 
there exists infinitely many functions from the given 
class F which share the same information and have 
different values f(t*}. This means that the informa­
tion N(E) causes an intrinsic uncertainty which cannot 
be reduced no matter how one approximates f(t*}. Of 
course. we are interested in information with the in­
trinsic uncertainty as small as possible. That is. we 
are interested in an optimal choice of sampling points 
to reduce uncertainty. There are two different ways of 
selecting the sampling points t 1.t2 

••••• t
n

• The first 

one is by selecting them a priori. In this case. info­

mation N_Nnon is called nonadaptive. The second way 
is by selecting them adaptively. i.e •• the choice of 
the point t2 depends on the value f(t 1}, t) depends 

a 
on f(t 1}. f(t 2}. and so on. In this case N-N is 

called adaptive. Since the structure of adaptive info­
mation is far richer than the structure of nonadaptive 
information. one might hope that for adaptively chosen 
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sample points the uncertainty is ~uch smaller than for 
nonadaptively chosen ones. Is this really the case? 
Or equivalently. 

Is adaption more powerful than nonadaption? 

Before answering this question we want to stress 
that this problem is not merely of theoretical interest. 
Adaptive information has several undesirable properties: 

it has more complicated structure than nonadaptive 
information. 
it is ill-suited for parallel or distributed com­
putation whereas nonadaption can be computed very 
efficiently in parallel, 
the idea of precomputation can not be used when 
dealin~ with adaptive intormation. 
because of lts complicated Structure, i~ is far 
harder to find optimal adaptive info~tion. 

Due to these undesirable properties of adaptive info­
mation one should use adaptive information only if it 
causes significantly smaller uncertainty than nonadap­
tive information. 

There is a number of papers addressing this ques­
tion for specific problems. We believe. Kiefer in 1957 
[5] was the first one to show that adaption does not 
help for approximation of the integral of a function 
f from a certain class F. In 1971. Bakhovalov [1] 
proved that adaption does not help for the approxima­
tion of linear functionals-aBsuming that the given 
class F is balanced and convex. (Balanced means that 
f E F implies -f E F.) This result was generalized 
by Gal and Hicchelli [2] and Traub and Wozniakowski 
[12] in 1980 for the approximation of linear operators 
also assuming that F is balanced and convex. Further 
generalizations can be found in [10]. 

There is a number of papers addressing the problem 
of adaptive information for the approximation of non­
linear operators. see [3. 8. 9. 15]. For some nonlinear 
problems adaption helps. for some it doesn't. For in­
stance, in 1982 Sikorski [7] proved that adaption is 
exponentially better than nonadaption for the zero­
finding problem for the class F of scalar regular 
functions with different signs at the endpoints. 

In all papers cited above the uncertainty was 
measured by the worst performance. i.e •• by the error 
caused by the hardest element f. It is also known. 
see [11. 16. 17]. that adaption does not help on the 
average for the approximation of linear operators in a 
Hilbert space. Here the uncertainty is measured by the 
average error with respect to some probability measure. 
The same result holds when the information has stochas­
tic error. see [4]. 

Based on these results we may conclude that non­
adaptive information is as powerful as adaptive info­
mation for the approximation of linear operators de­
fined on balanced and convex classes:- On the other 
hand, if one approximaee;-a-nonlinear operator or a 
linear operator defined on an unbalanced and/or non­
convex class F. then adaption may help significantly. 

We summarize the contents of this paper. In 
Section 2 we precisely define what we mean by a problem 
and by information. We discuss measuring uncertainty 
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by the worst and average performances of algorithms. 
In Section ) we formally define the concept of nonadap­
tive and adaptive information. In Sections 4 and 5 we 
survey some results which state when adaption does not 
help in the worst and average case settings respective­
ly. We also give a new example of a linear operator 
considered on an unbalanced and nonconvex set for which 
adaption is exponentially better than nonadaption. In 
Section 6-We briefly discuss the lack of power of adap­
tive information in the asymptotic setting. 

2. Radius of Information 

We define "problem" and "information". The pre­
diction problem mentioned in the Introduction is an ex­
ample of such a problem. We define a fundamental quan­
tity. the radius of information. which measures the in­
trinsic uncertainty in solving a problem. due to the 
available information. 

For given normd linear spaces Fl and F2 let 

S : F 1 -:> F 2 

be an operator (in general nonlinear). We call S a 
solution operator. We wish to construct an element x, 
x : x(f) E F

2
• which approximates S(f) as close as 

possible. In information based complexity we assume 
that the element f is unknown. Instead we assume 
that the knowledge about f is provided by ~(f) where 
N. called information. is an operator 

N : F 1 -:> F). 

for some space F
3

• In most cases N is many-to-one. 

We call such information partial. Thus the knowledge 
of N(f) does not identify f uniquely. Knowing N(f) 
we construct an approximation x ~ x(f) to S(f) by 
an algorithm ,~. 

x - <p (N (f) ) • 

Here by an (idealized) algorithm that uses N we mean 
any mapping 

~: N(F l ) S F) -:> F2 • 

Since in general N(f) does not identify S(f) 
uniquely. ~(N(f» has to approximate sell for all 
elements I which share the same information as f. 
N(l) 2 N(f). This means that partial information N 
causes intrinsic uncertainty. Here we discuss measur­
ing the uncertainty in two different settings: worst 
case and average case settings. 

We begin with the 

~ Worst Case Setting 

Assume we want to approximate S(f) for f from 
a given subclass F of the space Fl' Typically. F 

is defined by restricting f. For example F - {f E F 1: 

II f(r)lI< 1} where Fl is a space of regular functions. 

In the worst case model the error of an algorithm is 
determined by its worst performance. That is. the 
error of ¢ is defined by 

e"'(¢.N) - supj\S(f) - 4>(N(f»l\. 
fEF 

3y the (worst case) radius of information N we mean 

rW(N) _ inf eW(~.N). 
~ 

The radius of information measures the intrinsic un­
certainty caused by information N. and no algorithm 
that uses N can have a smaller error than the radius 

rW(N). Hence. if one wants to find an algorithm ~ 
which approximates S(f) within a given accuracy E. 
i.e •• 

IIS(f) -1j)(N(f»n < E. "If E F. 

this can be done if and only if rW(N) < E. 

We want to add that the radius of information can be 
defined independently of the notion of algorith~. It 
only depends on the solution operator S, the class F 
and information N. The fact that the radius of N is 
a sharp lower bound on the error of any algorithm _, 
is a conclusion. See [12. 1)). 

One might say that the error of an algorithm 
in the worst case setting is defined too pessimisti­
cally. The algorithm may perform quite well for "most" 
elements f. If ,~ performs badly for one element 

f* then its error in the worst case model is deter-

* mined by its bad behavior for f and does not reflect 
the good behavior of Ij) for most elements f. l'here­
fore it is natural to define the error of Ij) by its 
"average" performance. This leads us to the 

(ii) Average Case Setting 

Assume that we are given a probability measure 
II on the class F. The error of an algorithm is de­
termined by its average performance. 

eavgC!P.N) : iIS(f) - $CN(f»IIZU(df)' . 
F 

In the average case model the uncertainty caused 
by information N is measured by the average radius 
of N defined by 

ravg(N) _ inf eavg(¢.N). 
.~ 

Hence. the average radius of information N is 
the sharp lower bound on the average error of any al­
gorithm !p. We can approximate SCf) within E on 

the average if and only if ravgCN) < E. 

). Adaptive and Nonadaptive Informacion 

In this section we define the concepts of non­
adaptive and adaptive information. Let Li : Fl -:> ~, 

i - 1.2, ••• , be a linear functional. We say ~ is 
nonadaptive informaCion of cardinality n if 

N(f) '" [L1(f). .... Ln (f»). 'Vf € Fl' 

The information N is called nonadaptive since the 
linear functionals L

1
• L

2 
••••• Ln are given simul-

taneously. In parallel computation. one can evaluate 
N(f) by evaluating Li(f) on different processors. 

For the prediction problem. Li(f) - f(x i ) for some 

Xi' Then nonadaption means that the points x 1 ,xZ••••• 

x are determined a priori. 
n 

We now turn to adaptive information. The essence 
of adaption is that the functionals Li are noc chosen 
a priori. and the ith functional depenas on the pre­
viously computed information. More precisely, X is 
called adaptive information of cardinality n if 

N(f) - [Ll(f).L2(f,yl)'· ... Ln(f.Y1.· .. ·yn-l»)' 

'VfEF1 • 

where Yl - Yl(f) - L1(f). Yi - YiCf) - Li (f·yl····· 

Yi-1)' We assume that Li(·.yl.···.Yi-l) ~re linear 

functionals for every y - [Y1 ••••• yn) e 1. For the 

prediction problem we have Li(f.yl'···.yi-l) -

f(x
i
(yl' •••• yi-l». i.e •• the point at which f is 

evaluated depends on the previously computed values of 
f. 

Observe that nonadaptive information N is a 

linear operacor from Fl inco In, whereas adaptive 
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information 
operator. 

is in general a nonlinear 

4. When Does Adaption Not Help 
for the Worst Case Setting? 

In the Introduction we give a brief his­
tory of the work on adaptive information for 
the approximation of linear operators. We 
now state a theorem which was proven by Gal 
and Micchelli [2] and Traub and Wofniakowski 
[ 12 J • 

Theorem 4.1 

Let S be linear and let F be bal­
anced and convex. Then for every adaptive 
information N there exists nonadaptive in-

formation Snon of the same cardinality as 
N. for which 

rW(Nnon) ~ 2rw(N). 

This theorem states that for linear op­
erators considered on balanced and convex 
sets. nonadaptive information is (within a 
constant two) as powerful as adaptive infor­
mation. We want to add that for many cases 

we have a stronger result. rW(Nnon) < rW(N). 
This holds. for instance, when F is a ball 
with respect to some semi-innerproduct or 
when the norm in F2 is induced by some in-

nerproduct. The assumptions that F is bal­
anced and convex are crucial. We now show an 
example of approximating a linear operator S 
on F which is neither balanced nor convex, 
for which adaption is exponentially more 
powerful as nonadaption. Since this example 
is new we provide a sketch of the proof. 

Example 4.1 
Let F be the set of functions which 

takes only two values {O, 1] and which have 
exactly one discontinuity point. More pre­
cisely, 

F - If: [0,1] -> 1: }XrE(O.lJ, f(x)~O 

for XE[O.x f ) and f(x)-l for XE(xf.l]}. 

Let F1 be any linear normed space contain-

ing 

fine 

F as a subset. Let 

the solution operator 

F2 - L2 [O,l]. De-

S: F 1 -> F 2 by 

Sf = f. Note that the solution operator S 
is linear whereas the class F is neither 
balanced nor convex. Therefore the assump­
tions of Theorem 4.1 are not satisfied. 

Take arbitrary nonadaptive information 
N. N(f) - [f(x 1 ) ..... f(x n )] with 0 - Xo ~ 
xl < x 2 < ••• < xn ~ xn+l - 1. For given 

Y - (yl ..... y n] E N(F), let i - i(y)t[O.n] 

be the maximal index such that Yi - O. 

Knowing y - N(f) we conclude that f(x)-O 
for x ~ xi and f(x)-l for x > x i + 1 • 

Therefore the set V(N.y) of all functions 
from F which share the same information y 
has the following form 

V(N.y) - {fiF: the discontinuity point 

of 

Note that 

f belongs to (Xi,xi+ll]· 

implies Uf1-f2"-
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x.' 
l. 

and that this 

bound is sharp. 
of informatin N 

This yields that the radius 
is given by 

1 1 j----r-' rW(S) - 2 max Ix i + 1-x. ~? -;t 
0< i<n l. - n 

This means 
mation N, 

that for every nonadaptive 
S(f) • [f(x

l
) •..• ,f(x

n
)], 

> 1:. J 1 ' 
- 2 n+ 1 • 

infor-

The equality is achieved for nonadaptive in-
non 1 n 

formation Nn (f) - [f(n+1)' .•.• f(n+1)]. 

rW(Snon) = 1 r-T""' 
n 2 ~ n+ 1 • 

This shows that equidistant points xi=i/(n+l) 

are optimal for nonadaptive evaluations of f. 
We show that using adaptive information one 

can significantly aecrease the uncertainty. 

Suppose xl· i and we compute rei) for 

f E F. If then we conclude that 

f (x) ,. for x e 1 
If f(2) = 0 then 

.' 1 
we conclude that f(x) - 0 for x E (0'2]' 

In either case we know the function f ex-

actly on a subinterval of length 1 
2' Then we 

choose the next point x
2 

of evaluation of 

f as 
which 

Note 

means 

the midpoint of the subinterval 
f is unknown, i.e., 

(! 
if f(x

l
) . O. 

x 2 -
if f(x l ) = 1. 

that x 2 depends on Yl = f(x
1
)· 

that we use adapt ion. Knowing 

on 

This 

f(x 1 ) 

and f ( x 2 ) wee 0 n c 1 u d e the be h a vi 0 r 0 f f on 

the whole interval [0.1] except a subinter-
1 

val of length 4' The next point x3 of 

evaluation will be chosen as a midpoint of 
a 

this subinterval. Let Nn(f) - [f(x 1). 

f(x 2 (Yl»' •••• f(x n (yl ••••• yn_1»] be the 

adaptive information described as above. That 
1 

is Xl - 2' Xz - x 2 (Yl) is given by the for-

mula above and so on. The adaptive informa­

tion N
a 

is called bisection information 
n 

since the point 

interval of f. 

Xi bisects the uncertainty 

Note that knowing yaNa(f). 
n 

the uncertainty interval 

length 2- n • Hence 

of f is of the 

r \l (N a ) _ 1:..r:;::; 
n 2 

In fact. one can prove that any adaptive in­
formation consisting of n function evalua­
tions at adaptively chosen points has the 

radius no less than rW(N a ). This means that 
n 



the bisection information points are optimal 
for adaptive evaluations of f. 

Compare now the radii rW(N non ) and 
n 

rW(N
a
). We see that adaption reduces uncer­n 

tainty exponentially better than nonadaption. 
we conclude this section by adding that 

for some nonlinear problems. i.e •• for non­
linear solution operators S. adapt ion does 
not help. see (3. 8. 9. 15]. For some other 
nonlinear problem. adaption does help. see 
(7. 12]. 

S. When Does Adaption Not Help 
for the Average Case Setting? 

In this section we report some results 
addressing the problem of adaptive informa­
tion on the average. For simplicity we 
assume that the class F is equal to the 
whole space Fl' and the spaces Fl and F2 

are separable Hilbert spaces. Let Il be a 
Gaussian measure on Fl with mean element 

zero and covariance operator Sil' This means 
that 

f ei(f.x) \l(df) a 

F 

-~(S x.x) 
e \l • 

VxEF
1

• is r-T 
see (6]. Assume also that S is a contin­
uous linear operator. Then from [17] we have 

Theorem 5.1 

For every adaptive information N there 

exists nonadaptive information N
non 

of the 
same cardinality as N. for which 

ravg(Nnon) ~ ravg(N). 

We want to stress that Theorem 5.1 holds 
for more general probability measures and for 
any separable Banach space Fl' If F is a 

finite dimensional space, Theorem 5.1 was 
proven in [11]. Theorem 5.1 remains valid 
assuming that N(f) is computed with sto­
chastic error. see [4]. Adaption also does 
not help for a more general definition of the 
average error. see [16]. 

We conclude this section by continuing 
Example 4.1. We show that adaption also 
helps on the average. 

Example 5.1' 
Let F and S be as in Example 4.1. 

Let \l be defined on F by 

\leA) - ~({x' [0.1]: x is the discon-

tinuity point of some f from A}), 

where l stands for the Lebesgue measure on 
[0,1] • 

For an arbitrary nonadaptive information 
N. N(f) - [f(xl) ..... f(x n )] with 0 - Xo ~ 

Xl < ••• < xn ~ xn+l - 1, N takes only n+l 

o 1 
different values: y [1 ••••• 1], y - [0.1. 

••• ,1]. yn _ [0 ••••• 0]. Since the sets 

V(N.yi) aredisjoiIltand 
n 

F - U V(N.yi). we have 
i-O 
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r avg (S)2 = inE .r II f -; (N ( f» ilZ:J ( d f) 
~ F 
n 
r- inf I i 

. , 
:1 f -~ ( Y 1) :1- .... ( d f) 

i=O <P V(N.y ) 

n fi+1{f , 
'" inf g-(x)dx 

i=O gf: F 2 x. Xi 1 

X i+ 1 2 
+ f (l-g(x» dx}du 

u 

1 n 2 1 
- 6 r (x i + 1 -x i ) > 6(n+l) 

i=O 

This means that for arbitrary nonadaptive 
formation N of cardinality n. 

As 

for 

a I 1 
r vg(N) ~ J 6(0+1) 

in Example 4.1 the equality is achieved 
non 1 n 

N n (f) = [f(n+T) .... ,f(n+l)]. 

ravg (N non ) = )-=-",:-,1,---:-:-
n 6(n+l) 

in-

This shows that equidistant points are opti­
mal for nonadaptive evaluations of f on the 
average. Similarily, one can find the aver­
age radius of the bisection informa~~on. 

ravg(Sa) • J 1 '. 
n 6'2n 

This shows that adapt ion is much more power­
ful than nonadaption also on the average. 

6. Asvmptotic Setting 

One might think that the lack of power 
of adaption for linear problems is due to 
the fact that the cardinality of information 
is fixed for all elements f. One might hope 
that when information operators of increasing 
cardinality are used for fixed f. adaption 
became more powerful. This problem is anal­
yzed in an asymptotic case setting. It turns 
out that for the approximation of linear op­
erators adapt ion also does not help in this 
setting. See [14, 18]. 
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