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Abstract. 

The bisection method provides an affirmative answer 

for scalar functions. We show that the answer is negative 

for bivariate functions. This means, in particular, 

that an arbitrary continuation method cannot approximate 

a zero of every smooth bivariate function with non-zero 

topological degree. 

: 
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1. Introduction. 

Assume that f is a scalar continuous function 

defined on an interval [a,b] in ~ such that f(a)·f(b) < 0. 

This inequality is equivalent to the assumption that f 

has non-zero topological degree since deg(f,[a,b] ,0) 

= (sgn(f(b» - sgn{f(a»)/2. It is known that for arbitrary 

positive £ we can find an £-approximation x*, 

jx* - :t{f) \ ~ e, to a zero:t(f) of such a function f, 

and that the bisection method is optimal, see [5]. If 

the degree of f is zero then, in general, there exists 

no algorithm using linear information on f to find x*, 

see [6]. Thus the degree decides whether we can or cannot 

solve the problem for the scalar case. 

The situation drastically changes when we add just one 

more dimension. We show that in general it is impossible 

to find an e:-approximation to a zero of a bivariate smooth 

function with non-zero topological degree. 

More precisely, we assume that f is defined on a 

unit triangle T in ~2 and that T is completely labeled 

under f. The information on f consists of n values of 

arbitrary linear functionals which are computed adaptively 

and an algorithm constructing x* is an arbitrary mapping 



based on these evaluations. We show that for arbitrary 

nand € < diam(T)/2 there exists no algorithm to find x* 

for some f. 

OUr result indicates, in particular, that arbitrary 

continuation and/or simplicial continuation method cannot 

approximate zeros of every function f to within 

2 

e < diam(T)/2, with any, a priori fixed number of function 

and/or derivative evaluations. We conclude that additional 

restrictions on f must be imposed to obtain positive 

results. 
: 

We remark that the unit triangle was chosen as the 

domairr of f only for technical reasons and that the result 

holds for arbitrary compact domain D with t < diam(D)/2. 

We briefly summarize the contents of the paper. In 

Section 2 we give the basic definitions and formulate the 

problem. In Section 3 we prove two auxiliary lemmas and 

in Section 4 we prove the main theorem. 

. . 

; 
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2. Formulation of the problem. 

Let T = (x € 
2 

i. : xi 2 0,i=1,2, xl + x
2 
~ l} be the unit 

. 2 00 
triangle In Rand G = C (R) be the class of infinitely 

differentiable functions on T. Let 

(2. 1) F = (f € G: deg(f,T,S) ~ 0, e = (0,0), there 

exists exactly one z € T: f(z) = e and 

e € Conv f (T) } , 

where deg(f,T,9) is the topological degree of f relative 

to T at e and COnvf(T) is the triangle with vertices 

f(9), f(l,O). f(O, 1). 

We say that T is completely labeled under f (or 

f-Sperner triangle), see [1,2.3.7], iff; € ConVf(T). 

We include the assumption 9 € Conv~(T), since it 
.... 

makes our result stronger and it is a typical assumption 

in the theory of simplicial continuation methods. 

Define the solution operator S: F - T by 

(2.2) 

Our problem is to find an approximation to S(£). To 

solve this problem we use adaptive information operators 

which are defined as follows (see [8]). Let f € G and 

(2.3) 
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where 

y. = L. (f~Yl"" ,Yo 1) 
~ ~ ~-

and 

(2.4) L i , f ( .) d-f L i ( . ~ y l' . . . , Y i _ 1): G .. I 

is a linear functional, i = 1,2, ... ,n. Kn~ing N (f) we 
n 

approximate 5(f) by an algorithm ~ which is an arbitrary 

transformation 

0: N (F) ~ T. 
n 

The error of the algorithm ~ is defined by 

(2. 5) e(~) = sup 11 5 (f) - ~(Nn(f))1I2' 
f€F 

Let ~(N ) be the class of all algorithms using information 
n 

operator N. It is kn~n, [8], that 
n 

(2.6) = r(N ) 
n 

where r(N ), called the radius of information is given by 
n 

(2.7) r(N ) 
n 

= sup rad(U(f)) 
f€F 

where rad(U(f)) is the radius of the smallest ball con-

taining the set U(f) of zeros of functions from F which 

share the same information with f, 

: 



(2.8) U (f) = [z € T: Z = S(f),f € F~ N (f) = N (f)}. 
n n 

We prove that for an arbitrarily large number of eval-

uations n and any information of the form (2.3) there 

exist two functions f and g in F having the same 

information. Nn(f) = Nn(g), such that 'lS(f)-S(g)I!2 is 

arbitrarily close to diam(T). This combined with (2.8) 

and (2.7) yields that the radius of N is at least 
n 

diam(T)/2. By choosing a trivial algorithm ~(N (f» 
n 

5 

1 1 = (2'2) we get r(Nn ) = diam(T)/2. Thus (2.6) yields that 

there exist no algorithm for approximating zeros of f 

in F with error less than diam(T)/2. We formulate this 

in 

Theorem 2.1: For every n and every information N the 
n 

radius r(N ) is equal to the half diameter of T, i. e. , 
n 

\In, "IN r (N ) diam(T)/2 
i'2 

€ "!n = = '-I-

n n 2 ' 

where,,! is the class of all information of the form (2.3). • 
n 
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3. Auxiliary lemmas. 

We split the proof of Theorem 2.1 into two lemmas. 

The first lemma will be proved for an arbitrary number of 

dimensions. Let m be a compact region in 2n, and let 

G = Goo~) be the class of functions f: ~ ~ 2n which are 

infinitely differentiable. 
k 

Let C(Ci=l Bi ) denote the set 

(f € G: supp(f) ~ 
k 
I 
'..J 

i=l 
B. }, 

1. 

n 
where B. are open balls in 2. Finally let L.: G ~ 2, 

1. 1. 

i = l ... k be linearly independent linear functionals. 

Lemma 3.1: For arbitrarily small positive t, and every 

family of balls Bi r m ~ ~, i = 1, ... , (k-l) such that 

k-l 
Ll, ... ,L are linearly independent on C(L· 1 B.), 

k-l 1.= 1. 

there exists an open ball Bk r ~ ~ ~ with diam(Bk ) = €, 

)< 
such that L

l
, ... ,L

k 
are linearly independent on C(Li=lB i ) .• 

Proof: Suppose the lemma does not hold. Then for every 

B
k

, Bk n m F ~, with diam(Bk ) = €, the linear functionals 

Ll""'~ are linearly dependent on C(L~=l Bi ). Since by 

assumption, L
l

, ... ,L
k

_
l 

are linearly independent on 

k-l 
C (L . 1 B.) we mus t have 

1.= 1. 



k-l 
(3.1) t a. (B

k
) L. 

i=l 1. 1. 
on 

k 
C ( L 

i=l 
B. ) • 

1. 
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First let us assume ai(Bk ) = a i for all Bk (i.e. let 

the constants of the summation be independent of the choice 

Then let Bi"" ,B~, q < 00, be anopen e-covering of 

B~ C In is a ball with diam(B~) = c and 
J J 

This covering exists since ~ is compact. 

Then by the partition of unity theorem [see 9 p. 60], any 

00 q 
f € C (:m) can be decomposed such that f (x) = ~. 1 f. (x) J 

J= J 

and supp(f.) c B~. 
J J 

00 
Therefore for all f € C (~), we have, 

by linearity of Lk and by (3.1) 

k-l q 
Z Z Cl.L. (f.) = 

i=l j=l 1. 1. J 

k-l 
~ a.L. (f). 

. 11.1. 1.= 

But this contradicts the linear indpendence of Ll)""~ on 

G. 

Bk1 ,B
k2 

such that 

k-l 
Lk = ~ 

i=l 
and 

k-l 

Lk = Z 
i=l 

PiLi 

y.L. 
1. 1. 

a. , 
1 

so there exists at least 2 balls 

on 
k-l 

C(( I. .... ' B
i

) U B
kl

) 
i=l 

k-l 
on C (( '.~ B i) U Bk2 ) 

i=l 

where Bi =:ti(Bkl ), Yi = CL i (Bk2 ), and OJ' F Yj' for some 

j' € (1. .. (k-l) }. This implies 



k-l 
t (~. - y.) L. 
'11. 1. 1. 1.= 

on 
k-l 

C{U 
i=l 

B. ) • 
1. 
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However, since 5 . I - y. I F 0 this contradicts 
) ) 

the linear 

independence of L
l

, ... ,L
k

_
1 

on 

Thus the lemma holds. • 

c (' k-l B ) 
'-'i=l i' 

Lemma 3.2: For every Nn € '7n ' every E:, 0 < E: ~ 1 diam (T) , 

d f 0 < « a/2 2 n+3 ), a J ~ / th . an or every y , y = ~8, ere eXl.sts: n n 

a function F 
n 

. x y 
str1.ps S ,S 

n n 

1 2 co 
= (f , f ) € C (T), 

n n 

(defined below), 

and balls B. with diam(B.) ~ y., i = l, ... ,k , 
1. 1. 1. n 

where k is the maximal number of linearly independant 
n 

~ 

: 

functionals on C (T) among Ll F , ... ,L
n 

F' (Let us denote 
, n ' n 

these functionals as Li, ... ,Lk .) Such that: 
n 

(3.2i) 
= [(x,y) € T: 1- 2a~ 

X· x 3. 
S' S 2 

n,2 n,l 22n+l 

(3.2ii) 
S~ = l (x, y) € T: I - 2 a ~ 

SY SY 2 a 
n,2 n-l 22n+l 

SY ~ Y ~ SY ~ I-a; 
n-l n-2 

(i.e. strips SX and SY are at least a 
n n 22n+ l 

uni ts wide). 



(3.2iii) 

(3.2iv) 

(3.2v) 

and 

(3.2vl.) 

where 

dist(SX,SY) 2 diarn(T) - c, where given n n 

sets W, Z c:: &2 dist(W,Z) d.:f 

inf I1w-zl!2 and dist (W, Z) = +co if 
wEW, ZEZ 

w or Z = )1. 

dist (B. , Sx) 
1. n 

dist (B . , SY) 
1. n 

Triangle T 

Yn i 1, ... ,k 22" = n 

Y 
2-D i = 1, ... ,k 

2 n 

is F -Sperner Triangle 
n 

F (x,y) 
n 

1 2 = (fn(x,y),fn(x,y» 

9 

> 0, (x, y) E T: OSxS 
x 

and 0 S s n,l 

f n(x,y) is: = 0, (x, y) E T: (x,y) E (SX u sy); 
n n 

< 0, (x, y) E T: 
x sy x > S 2' or y > n- n,2 

for i = 1,2. • 

Ys 

First we define a function needed in the proof of Lemma 

3.2. Let a,~, (a < p), be fixed real numbers. Define the 

function 

Z ,;;. a: 

Z 2 p. 

~y 
~ 

. 
n, l' 
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proof of Lemma 3.2: The proof is by induction on n. 

Suppose first that n = 0, i.e. we do not have any inforrna-

tion. We construct a function FO which satisfies (3.2i)-

(3.2vi). Let 

x 
So = 

5Y = a 

and define 

Fa (x, y). = 

x 
((x,y) £ T: 5 0 ,1 

( (x, y) £ T: 
y 

So 1 , 

for all (x,y) € 

(0,0), 

(1,1), 

= l-2a ~ x ~ l-a 

= 1-2a ~ y ~ l-a 

T: (see Fig. 3. 1) 

= 

= 

x 
5 0 ,2)' 

5~, 2 }, 

x y 
(x,y) €SOUSOi 

x~1-3a,y~1-3a~ 

(PL(x,1-3a,1-2a),PL(x,1-3a,1-2a» , 

(PL(y,1-3a,1-2a),PL(y,1-3a,1-2a», 1-3a~y~1-2a; 
-2 -2 

-(x+a-l) -(x+a-1) 
(-e ,-2e ), l-a~xi 

-2 -2 
(-2e- (y+a-1) ,-e- (y+a-1) ), 1-a~y. 

z 

Figure 3.1 Graph of Fa. 
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Note that the function FO satisfies (3.2i)-(3.2vi). 

x 'l a 
Namelyz for (3.2i) SO,2 - SO,l = (1-a)-(1-2a) = a > 2' 

Similarly (3.2ii) holds. For (3.2iii) note that 

dist(S~,S~) = diam(T) - f - 1 = diam(T) -~. Observe that 

(3.2iv) holds trivially since there are no B .. For (3.2v) 
1. 

note FO(O,O) = (1,1), and that FO(l,O) and FO(O,l) lie on 

opposite sides of the line y = x. Thus 

triangle, since (0,0) € 6(FO(0,O),FO(1,0),F
O

(O,1». Finally 

we see that condition (3.2vi) holds by the definitions of 

x y 
F ° ' SO' and SO' 

Now assume that Lemma 3.2 holds for n-l with func-

tion·F l' Then the information operator N € ~ yields 
~ n n 

df 
functional L (recall Ll F (.) = Ll (.». If 

n,Fn_ l ' ° 
o:l 

Li'· .. ,Lk ,Ln F are linearly dependent on C (T) then 
n-l ' n 

F = F 1 will satisfy the lemma. Therefore assume 
n n-

co 
Li"" ,Lk ,Ln,F are linearly independent on C (T). 

n-~ 1 n 2n+3 
Take Yn < m~n(2 Yn_l~(a/2 ». Then by Lemma 3.1, there 

must exist a ball Bk ~ T = (z: dist(z,T) ~ y } with 
Vn n n 

diam(B
k 

) = Yn and k n = 
n 

k
n

_
l 

+ 1, such that Li, ... ,Lk k n 
n 

(L* = L ) are linearly independent on C(L· 1 B.). '1 n F 1.= 1. l\,n ' n-l 
Two cases are possible: 

d ' x ) 1 d d' ( y) 1 ~st(Bk 'Sn_122'Vn an ~st Bk JSn_l 2 2Yn' 
n 1 n 

is at least 2'Y n away from both strips.) Then 

Case 1) 

: 
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x x y y 
letting F = F l' 5 = 5 , 5 = 5 l' we conclude that n n- n n-l n n-

(3.2i)-(3.2vi) are satisfied. 

2) ' x) 1 Case d~st(Bk ,5 n_ l ~ 2Yn or 

Bk 
n 

n 
is within Yn/2 of one of the 

dist(Bk ,5;_1) ~ 1Yn' 
n 

strips. Note that be-

(i. e. 

cause of the separation of the strips it can not be close 

to both strips at one time.) Assume, without loss of 

generality, that dist(Bk ,S~_l) ~ 1Yn 
n 

z y 
and let (b

k 
,b

k 
) be 

n n 
the center of the ball Bk . 

n 
The two possible subcases are: 

2a) 
x x x 

bk ~ «5 n_ l 1 + 5n- l ,2)/} (i.e. the ball is 
n ' 

centered or to the left of center of the strip 

2b) 

x 
S 1) • n-

b
X 

k 
n 

x 
> «Sn-l,l + 5~_1,2)/2) (i. e. the ball is 

to the right of center of the strip 
x 

5 1) • n-

First consider the subcase 2a) and define the function 

h(x,y) = 

And let 

1 
H (x,y) 

o 

Hl(y,X) = 
k 

€ C(U. n- l 
~=l 

(h(x,y),h{x,y». Now take a function 

1 
B.) such that L~{Hl) = -L~(H ), 
~ ~ ~ 

i = l, ... ,k l' 5uch a function must exist since 
n-

otherwise. 



t 

Li"",L{ are linearly independent on 
n-l 

k n-l 
C (U. 1 B.). 

~~= ~ 
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Therefore Li F (H1 + Hl) = 0 since Li F is a linear 
, n-l ' n-l 

combination of Li, ... ,Lk ,for all i = 1, ... ,no Let 
1 n-l 

Hl + H = (h1 ,h2 ) and choose a positive constant c so 

small that 

(3.3) 

> c 

(

max \ h 1 (x, y) I ) 
(x,y) €T / 

(

max lh2 (x, y) I) 
(x,y)€T :) 

and such that 

(3.4) if there exists a j' such that B., contains a 
J 

vertex v of T, and if it is the case that 

1 f
n

_
l 

(v) > 
2 f
n

_
l 

(v) (respectively <) then it is 

fl 2 
also the case that + ch l ) (v) > (f

n
_l + ch

2
) (v) 

n-l 

(respectively <) • 

Note that requirement (3.4) is needed to guarantee 

that T is (Fn_ l + C(Hl+Hl » Sperner triangle. Finally 

let F F (H 1) sy sY d n = n-l + c 1 + H , n = n-l' an 

( (x, y) E T: SX 
n,l 

Now we show that the properties (3.i)-(3.2vi) are satisfied 



by these choices. 

i) From the induction assumption, SX > (1-2a) 
n,l 
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x x x x 1 x x 
and S < (l-a), moreover S 2- S 1 = S -1 2--2(S -1 l+S -1 2 n,2 n, n, n, n, n , 

_ = l(Sx _Sx )_ 'a/(2'22 (n-l)+1)_a/(2.2 2n+3 ) 
Yn 2 n-l,2 n-l,l Yn ~ 

= a(l/22n_l/22n+3) .2 (a/2 2n+1). 

ii) is obviously true since sy y 
= S l' n n-

iii) is also obvious since SX 
n~ 

SX 
0 

and sy ~ sy 
O and 

n-

iii) holds for n = O. 

iv) holds for B., i = l, ... ,k 1 from the induction 
~ n-

dist(B
k 

,S;) assumption. For dist(B
k 

,S~) we have 
n n 

(Since we are considering .2 dist(B
k 

,S~) .2 
n 

subcase 2 a) we kn~ that ~(S~_1'1+S~_1,2) .2 b~ > 

S~-l,l-Yn)' As for dist(Bk ,S~) we have 
n x 1 x x . 

n 

bk ~ 2(Sn-l l+Sn-l 2) and d~am(Bk ) 
n " n 

conclude dist(Bk ,S~) .2 Ib~ + 1Yn -
n n 

:: y thus we can 
n 

x 1 
S 11.2 -2Y • n, n 

v) and vi) are satisfied since the choice of the 

the 

constant c was sma~l enough to meet (3.3) and (3.4). 

Thus Lemma 3.2 holds for subcase 2a. 

In the case 2b), we proceed as in case 2a), replacing 

the function h(x,y) by: 

-e 

1 x x -2 -2 
-(X2 (Sn-l,1+Sn-l,2)+Yn) (x-(l-a+Yn» , 

(sx +SX ) 
n-l, 1 n-l z 2 ~ '/1 ok. -Y x~ -a. T 2 n h(x,y) = 

: 

o otherwise. 

This finally completes the proof of Lemma 3.2 .• 
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4. ~roof of the Main Theorem. 

The proof is by construction of two fUnctions of the 

given class F having the same information and zeros 

separated by diam(T) - e for arbitrarily small positive 

Let us begin by defining a function U: a2 ~ a
2 

e. 

= (U1(X,y) ,u2 (x,y» where (see Figs. 4.1-4.2) 

x 

U1(X,y) = 

: 

Figure 4.1 Graph of u l + FO' 

x x x x 
l-PL (x,S l-Y ,S 1)' (x,y) €T:S 1-Y S x S S 1~ n- n n, n, n n, 

x x x x 
-1+2·PL(X,S 1,5 2)' (x,y)€T:S is x S S 2~ n, n, n, n, 

x x x x 
- PL (x, S 2 ' S 2 +y ), ( x , y) € T : S 2.s x S S 2 +y ~ n, n, n n, n, n 

e 

o 

y -2 Y -2 
-(Y-S~_l-Yn) (Y- Sn,2) y y 

(X,y)€T:S 1-Y <YSS 2 n, ~ n, 
otherwise. 

1 2 3 
= u

2
,u

2 
+ u

2
' where (see Fig. 4.2) 



1 
u 2 (X,y) = 

2 
U

2
(X,y) = 

and 

x x 
l-PL(x 5 - y n ,5n r)' , n, 1 , 

1, 

x x 
PL(x,5 2,5 2+Y )' n, n, n 

0, 

x 
1-2·PL(y,0,1-S 2)' n, 

x x 
PL(y,l-S 2:1-51)' n, n, 

0, 

16 

x x 
(x,Y)~T:5 l-Y ~X~5 1: n, IT"" n, 

x x 
(x,Y)~T:5 l~ x~ 5 2: n, n, 

x x 
(x,Y)~T:5 _~x~5 2+Y : 

n,?- n, n 

otherwise. 

x 
(x,Y)~T:OSy~(1-5 2): n, 

x x 
(x,y) e:T: (l-S 2)SYS(1-S 1): n, n, 

otherwise, 

Y -2 Y -2 : 
-(y-s ) (y-s +Y) 

= [-e n,l n,2 n 

0, 

y y 
(x,y)e:T:S l~YSS 2+Y n, n, n 

otherwise. 

2 2 
we take a function W: R ~ R = (w

l
(x,y),w

2
(x,y)) 

B.) such that N(W) = -N(U). ~gain W must exist 
J 

because of 
k 

the linear independence of Li' ... ,Lk on 
n 

n 
C (I_ j =1 

Next 

B.) (where L~ are the functionals from Lemma 3.2). 
J 1. 
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, 
·z 

1 

u 2 ----.,,~~~~ 

Figure 4.2 
1 2 3 

Graphs of u 2 ' u 2 and u
2

' 

letting F = (fl,f2) be the function from Lemma 3.2, 
n n n 

choose a constant c so small that: 

and 

( min If~l) > c (max IW1(X,Y)+U1(X,Y'I) 

(X'Y)E(L::~l (X,y)€T 
B . ) 

J 

( min If~1 ) > c (max IW2 (x, Y) +u2 (x, y) I) 

(X'Y}€(U:~l 
(x,y)ET 

B. ) 
J 

if there exists a j' such that B., contains a vertex 
J 

v of T, and if f1(v} > f
2

(v), (respectively <), 
n n 

1 2 
then (f

n 
+ C(Wl+U

l
» (v) > (f

n
+c(w

2
+u

2
» (v) (respec-

tively <). 
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Define the function G
1 = F + c· (U+W). Note that n 

N (G
l

) = N (F ), that 
n n n 

1 
T is a G -Sperner triangle, and 

1 
that G has exactly one zero a which is located inside 

the strip SX at the intersection of 
n 

1 x 
and the line y = -(l-S ) thus a 2 n,2 I 

1 x 
2(1-Sn,2». To see that a is a simple zero we calculate 

Jac(G
l

) at 0, where Jac(G
l

) is the Jacobian of G1
. 

~f~ ~11l 1 af2 2 2 
Jac(Gl ) = (- + c(~ + ~» (---E + c(~ + k.» 

ax ~x ax ay ay ay 

Of~ 1 1 f2 2 2 : 
- (- + c (..a::L + ~) ) (~ + c (.A.!:L + ~) ) 0. 

~y ay ay ax !X!X 

x 
Observe that on S , F = W ~ (0,0) so we can reduce the 

n n 

equation to 

1 
Jac(G ) 

x 
Using the fact that on S , n 

(ou
2

/ 0x) = ° we haveoJac(G
l

) la = 

(au 1/oY) = ° and 

2 1 2 
c (ou loX) I . (au 10 ) I . :r. y a 

Then recalling the definition of U note that in a 

sufficiently small neighborhood of a, 

x x x 
U = «-1+2·PL(X,S l'S 2»' (1-2'PL(Y,0,1-S 2»)· (Note n, n, n, 

that this implies that a 
1 

occurs where PL(z,a,b) = 2' but 

since the integrand is symmetric with respect to its 

argument the value of the integral at the midpoint is 



obviously 1 the total integral). Therefore 

1 
Jac (G ) I Cl 

2...l. x x 
= -4. c (~x (PL (x, 5 1,5 2» I ) 

\iii n, n, 0. 

Now noting that ~/~x(PL(Z,al,a2» 

-2 -2 -2-2 
(z-a) (:z:-a) a -(t-a) (t-a) 
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1 2 /~ 2 1 2 d = e e t, 
" a 1 

and recalling 

1 x x 1 x 
Cl = (2(Sn,1 + Sn,2) '2(1-Sn,2» we have 

1 
Jac (G ) I Cl = 

1 x x 2 
(-2 (S 1+5 2 ) ) * n, n, c ·e , 

~here c* is a non-zero constant. Therefore we can 

1 1 
conclude that Jac (G )/ ~ 0 and that G is a member of our 

I~ 

class F. 

: 

Next we similarly construct a function G
2 

in F with 

one simple zero in sY, such that N (G
2

) = N (F). Therefore 
n n n n 

N (G
l

) = N (G
2

). Thus for arbitrarily small positive n n 

£, we have constructed two functions in our class with 

the same information whose zeros are separated by at 

least diam (T) - £. 
. y x 

(Recall that zeros are ~n S ,S and 
n n 

by (3.2iii) these are seperated by at least diam(T) - c). 

The theorem follows by taking the limit as c ~ o. • 
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