
A ~IOTE ml D1PL21ENT!~lG OPSS PRODUCTIOH

SYSTENS ON 011-00

SALVATORE J. STOLFO

CUCS-130-84

CUCS-130-84

A Note on Implementing OPS5 Production Systems on DADOI

Salvatore 1. Stolfo

Department of Computer Science

Columbia University

New York City, NY 10027

2 July 1984

IThis resear~h has been .supported by ~he Defense Advanced Research Projects
Ag.::ncv thro~gn contract ,:\OOO;39-84-C-016.'), as well as arant5 from Intel, DIgItal
Equipment, Hewlett-Packard. Valid Logic SYstems, AT &~ Bell La.bora.tories and
IE'\! .Corporatlons and the ~ew York State SCience and Technology Foundation 'vVe
;=- J.te!ully 3.ck::owledge their support.

1

1 Introduction

ThIs brief note is written in response to a recent publication, "Implementing OPS5
ProductIon Systems on DADO," published as a Carnegie-Mellon Department of
Computer SCIence Technical Report by Anoop Gupta in March, 1984. Gupta's
paper analyzes the performance of OPS5 Production System programs on the
DADO parallel computer, a special purpose production system (PS) machine. The
analysis leads Gupta to conclude that DADO is not an effective OPS5 PS machine.
\Ve have studied Gupta's analysis carefully, and conclude that his conclusions are
Inaccurate, flawed by, at times, incorrect or outdated information about the DAD02
prototype, and, at other times, inexact reasoning.

\Ve have divided the following into two sections. Section 2 details specific
technical errors regarding the DAD02 design cited by Gupta. Although Gupta
properly cites statistics we reported in earlier papers proposing DADO, his analysis
is based on an earlier design of the second prototype system presently near·
completIon at Columbia University. However, after making the changes appropriate
to be conSIstent WIth the current technical design of DAD02, Gupta's analysis is
also flawed in not adequately understanding the detailed workings of several
reported algonthms. Section 3 focuses on philosophical differences. We shall be
careful to accurately quote Gupta to strengthen our case that his conclusion is
rather weak. \Ve conclude that DADO indeed is an effective OPS5 processor. More
Importantly, we belIeve the DADO machine will produce dramatic performance
Improvements of .-\.1 computation when the sequentialities inherent in OPSS are
removed.

The reader should first carefully read Gupta's paper and anyone of the most
recent reports detatling the DADO system and algorithms, (Stolfo and Miranker,
1984), for example.

2 Details Repaired

One of the stated goals of the DADO project IS to understand the nature of the
granl!iantv problem in the context of Al production systems. Granularity generally
refers to the relatIve power (function and storage capacity) of a processing element
(PE) In a multiprocessor architecture. Coarse-grain devices typically refer to
multIprocessors conSIstIng of hundreds of large, fast and perhaps specialized PE's
each WIth hundreds of thousands to milhons of bytes of memory. Fine-grain devices,
such as DADO, typically refer to the class of processor consisting of thousands of
smaller, less powerful PE's each with a few thousand bytes of memory. Very-fine
grain is reserved for those processors cO:J.sisting of hundreds of thousands to perhaps
mdltons of very simple PE's each with very small memories In the range of a few
hundred bytes.

Our first published report (Stolfo and Shaw, 1982) proposIng the DADO

A Note on Implementing OPS5 on DADO

architecture, although uncommitted, referred to the PE design as incorporating a 2K
byte RA .. \L Later (Stolfo, 1983) we revised this figllre to 8K as we prototyped
hardware and learned more about the nature of programming such a machine.
Gupta used the 8K RA .. vf figure appropriately (page 1, last paragraph). However,
our current hardware prototyping of DAD02 consists of a 16K byte R.-\...\1 at each
PE and an additional 4K byte ROM. ("We are still not convinced we know the
proper grain size of the DAD02 PE. During our next year of research
experimentation with various application programs running on DAD02 will shed
more light on this issue.)

This discrepancy between the 8K and 16K prototype PE affects Gupta's analysis
detailing the performance of Algorithm 2, for example. Page 17 details the weak
points of Algorithm 2 where he notes the 8K byte ~\1 is too small. His
measurements indicate at times 15K bytes may be required. Thus, the total 20K
available bytes are sufficient for Algorithm 2, neg.ating his conclUSIon. We will
return to his analyses shortly.

Another inaccuracy occurs in detailing the DAD02 I/O chip, nearly completed as
of thIS writing. The D.-\D02 I/O chip is not implemented in custom VLSI (page 3,
paragraph 2), but rather in semi-custom gate array employing approximately 1500
gates. Furthermore, we have discovered that the linear ordering of PE's in the tree
is Irrelevant and hence the planned functioning' of the chip has significantly
changed. The D.-\D02 I/O chip provides direct hardware support for Resolve,
global Broadcast, Report, memory access with parity, global interrupt with context
S"\'ltch lnd control of SL\ID/MTIvID modes of execution of a PE. Tree neighbor
communication is support~d by direct processor interconnections. DAD02 contains
two binary tree interconnections, one interconnecting I/O chips the other
interconnecting processors. Hence, if the I/O chip does not function· as planned,
D.-\D02 WIll thus remain operable as eVidenced by the functioning DADOI machine
which employs processor interconnections exclusively. Besides prOVIding some
measure of fault tolerancy, the two sets of tree connections also admit easy isolatIon
and diagnosing of faults should any arISe.

Since we have touched upon the size of R.-\"'\f of a DAD02 PE and detailed the
I/O chip, we should also mention the rationale for using an 8 bit Intel 8751
processor. D.-\DO hardware prototyping began three years ago in 1981. At that time
the 87.51 was the only commercially available single chip microcomputer In existence
that provided 4 parallel 8 bit ports. These ports allowed us to conveniently
Interconnect a number of PE's directly Without additional logic or chips. The 4K
onboard EPRO~vl also allowed us to directly program systems soitware with the
opportunity to reburn the ROM when software errors were discovered.

The analyses reported by Gupta should thus be viewed as approprIate only for the
prot.ot:',?,~.13 he correctly observes. T:1US, the reported statistics ar.: b3.Sed on a .5

A Note on Implementing OPS5 on DADO

3

mlp (2 microsecond instruction time), one address, 8 bit PE. Had we initiated
prototyplng today, we would use a 32 bit two address microcomputer chip with
onboard memory, for example the lnmos transputer chip. This design would
immediately deliver a 16 fold speed advantage over the 8751, as Gupta notes.

We view DAD02 as a laboratory vehicle to investigate fine-grain processors, rather
than a performance machine. Having resisted committing our designs entirely to
hardware (the EPROM and the two sets of interconnections) provides us with the
means to experiment with a flexible device. We expect DAD02 to produce
significant performance improvements demonstrating our architectural principles.
~fore Importantly, it will provide a testbed for the next generation machine, which
will have the advantage of even better hardware available for its design. Indeed, aU
of our software is implemented in high level languages to allow easy porting to the
newer deSigns.

\Ve now focus our attention on Gupta's detailed analysis of three algorithms. \Ve
shall not pick apart his numbers in terms of the number of effective cycles of
executIOn. The numbers he reports a.re adequate for our purposes for the time
being. Rather, we shall first focus on the number of PE's he calculates as required
to implement each algOrIthm for a variety of OPS5 programs. Here we have found
significant errors.

Gupta begins with the original DADO algorithm h.e calls Algorithm 1, reported in
(Stolfo and Shaw, 1982). His version of the algorithm as reported is accurate but
flawed by a fundamental misunderstanding of its implementation.

We stated our algorithm in the most simplistic terms for pedagogical reasons
bound by publication length restrictions. The stated algorithm is thus a model, and
not an implementation. Several crucial changes and enhancements are ignored by
Gupta. Thus, he cites, as we did, that the algorithm requires one production per
PM-level PE (page 9), and one \-\'?vi element in each \VM-subtree PE (page 10).
For large systems such as R1, which incorporates 2000 rules noted by Gupta, he
concludes that 2000· P:\i-Ievel PE's are required, each rooting a yV"\-! subtree With
100 PE's (page 1.3). Hence, R1 requires over 200,000 PE's to execute on a DADO
machine uSlllg Algorithm 1.

However, the 16K of R..\.i\J available in each DADO PE leads one to the
conclusion that much more data may be stored in any PE. Thus, many rules may
be stored at a P~I-level PE as well as many \~1 elements withlll each VIM-subtree
PE ThiS has been demonstrated in a working program runnlllg on DADOI.

This might then lead one to conclude, as Gupta (page l.3), that sigmficant
performance degradation will result when additional data is packed into aPE.
ThiS IS not the case if you consider statistics for R1 that Gupta reports.

A Note on Implementing OPS5 on DADO

4

The last paragraph on page 13 indicates on average about 50 productions are
affected by changes to ~f (or need to be matched) on each cycle of execution,
whereas page ~s notes 35 . productions. Other statistics reported for R1 indicate
about .30. Thus, with a suitable partitioning of Rl's rule base, each of 30-50
partitIOns (consisting of about 2000/30-2000/50 or 40-66 rules) would match no more
than 1 rule against W'}vf on each cycle.

For DADO~, we can thus conveniently store the PM-level at level 6 of the tree
with .32 PE's across. Each of these PM-level PE's would store 62 rules, which is
sufficient for all of R1's rule base. Thus, the required 2000 PM-level PE's reported
by Gupta is not correct.

Furthermore, Gupta's claim that 100 W:\f-subtree PE's are required per rule is
also wrong. Each WM-subtree PE could store a number of W1 ... f elements that are
pattern element disjoint. That is, store only one W1v1 element at a W1v1-subtree
PE that passes sor..: sequence of Rete one input tests. If another 'W:vl element
passes the same tests, it would be stored in a different W1vf-subtree PE.

In Rl's case, at most 26 \~f-subtree PE's would ever be needed to store all of
the \v}'f elements pote-ntially relevant to any single pattern in the LHS of a rule
(see page 12, footnote 8). Hence, the example DA.D02 configuration for Rl has a
P~1-level with 32 PE's each rooting a W~f-subtree of 30 PE's. The upper tree
consists of 31 PE's. Then, on average, one rule would be affected by changes to
\V\1 on each cycle within a PM-level PE for R:l. Similarly, all relevant ~f
elements would be accessed on one broadcast through the W1vf-subtrees on each
match of 3. pattern element. (This configuration presupposes that Rl's rule base
can be appropriately partItIoned so that no more than two rules are affected on
each cycle within a partItion. It is our conjecture that the match paradigm
employed in Rl lends itself to a simple and appropriate partitioning scheme based
on dIstnbuting one rule from each method to distinct processors. These technical
Issues are left for another paper.) Thus, all of the inherent parallelism in R1 is thus
appropriately captured by this example configuration using only 10~.3 PE's, not
'~OO,OOOI

The algorithm as stated would need to be slightly modified to identify which of
the rules in each partition needs to be matched, rather than iterating over all 62
rules in each PM-level PE. This can be done easily in two ways: either by hashing
the \\'\{ tokens at the PM-level or by associative probing. The former case has
been noted and implemented in several early versions of various PS languages. In
the latter case, all of the pattern elements of the 6~ rules at a P~f-Ievel are
distributed Uniformly throughout the vv\f-subtree. If there are 5 pattern elements
In each rule on average, a total of about 300 such patterns would be distributed in
groups of 10 throughout the 30 W"?vf-subtree PE's.

A !'~ote on Implementing OPS5 on DADO

5

.-\5 a \V}Y{ token is broadcast during the Act phase, at most 10 assoclatlve probes
\\Iould be required to determine the affected rules. Further, thinking can convince
one that one broadcast of the new vVM token follwed by a high-speed local search
in each WNl-subtree PE can calculate this result even faster. Daniel Miranker has
analyzed a variant of algorithm I, called TREA. T, which uses this approach and has
denved execution statistics for R1 on DAD02 running at 85 cycles per second.

In summary, Gupta's analysis of Algorithm 1 is inaccurate on two counts:

- The total number of PE's required to execute Rl is not :200,000. 1023
PE's would suffice. (We note that his hardware utilization is inaccurate
for DA..D02 using our example configuration.)

- The stated performance of 11 cycles per second (page 13) is roughly a
factor of 8 slower than what actually can be achieved using the .5 mip
Intel 8751 PE, (See (Miranker, 1984) for a detailed performance analysis
which projects 85 cycles per second.)

:'-Iext, we consider Gupta's Algorithm 2, mapping a Rete network directly on
DADO. \\fe have alre.ady noted the discrepency concerning ~he size of a DAD02
PE memory and the subsequent inaccurate conclusion.

Gupta also notes that a lower subtree need not be used for conflict resolution
since on average 2.5 changes to the conflict occur on each cycle. Thus, reporting
the changes to a control processor which performs conflict resolution is more
efficient In his opinion. DAD02's I/O chip provides direct hardware support for
.\fax-Resolve which, in one instruction cycle, calcuiates the maximum value of a
register stored in all PE's In the tree. Hence, conflict resolution is remarkably fast
on DAD02. This adjusts his figures for conflict resolution from 100 machine
instructions (step 4, page 16) to 3-4 instructions, thus attaining an overall execution
rate of 75 cycles per second, rather than 67.

He also notes that " ... the number of processors used is proportional to the number
of producttons (approximately eight processors per production) ... ". Using the general
scheme outlined above concerning the use of a PM-level PE for multiple rules, and
partitioning rules appropriately, a single PE can be used to store many match nodes
complied from many rules. Thus, once again, we need not use a system with over
16,000 PE's as his analysis implies, but rather 1023 would suffice.

\re prefer not to diSCUSS Gupta's A.lgorlthm 3, since this requires an architecture
much different than DADO We do note, however, that similar schemes discussed
above concerning distributing data structures (pattern elements, for example) as well
J.3 partitlomng rules and W1vf elements significantly changes his performance
analysis.

A Note on Implementing OPS5 on DADO

6

Lastly, the reader is encouraged to read (Stolfo, 1984) which identifies five
algorithms for ~he parallel execution of PS programs on DADO. We believe others
exist waiting to· be discovered. This leads us to· philosophical differences of opinion.

3 Philosophical Issues

The analysis reported is quite good and thorough, although the algorithms he uses
are flawed. Only three algorithms are explored, however, one of his own invention
that is not suitable for DADO. The statistics used in the analysis, calculated from
six existing OPS5 programs, also delineates some fundamental differences of opinion.

\Ve recently reported five algorithms that have thus far been invented for the
parallel execution of PS's on DADO. Basing his conclusions on only three
algorithms IS somewhat incomplete. (We are thankful that 35 or 40 years ago Von
Neuman machines were not judged solely on the basis of their performance in
executing sequential search.)

Furthermore, as Gupta notes (page 24, last paragra.ph), OPS5 programs do not
ha.ve a high degree of parallelism. ThIS is a direct result of the temporal
redundancy associated -with OPS programs. That is, the RHS's of rules generally
do not have many eifects on ~I. But my claim is that this is an artifact of
OPS5 PS programm£ng on serial mach£nes and not characterist£c of the problems
the PS programs attempt to solve. For example, on page S Gupta asserts "The
[Rete] dataflow graph embodies the parallelism that may be used to perform the
match." We note that the Rete dataflow graph embodies some of the parallel£sm
which can be expressed w£thin the OPS formalism, and has /£ttle to do w£th the
inherent parallelism £n the problem be£ng solved. Had Gupta studied another
formalism which admits the expression of more parallelism (PROLOG, for instance),
he might have started with a slightly different mindset, and he might have reached
different conclusions

We prefer to think along the lines of H. T. Kung. Rather than attempt to speed
up the Inherent parallelism in existing Fortran codes for numerical problems, for
example, rethinking the problem speciiication leads to systolic parallel structures,
based on large-scale parallelism, producing dramatic performance advantages over a
flng of Cray's. Indeed, a specialized OPSS processor may not turn out to be a
particularly SUItable device for dramatically speeding up AI computation.

A Simple Illustration using R1 might help clarify matters. Rl uses the match
paradlgm and works hard to sequence through a static collection of subproblems to
solve the 'Vax configuration problem. Suppose the subproblems are:

configure processor
configure memory
configure peripherals
configure cables

A Note on Implementing OPS5 on DADO

layout
final order

7

The OPS5 program forces serialization, and hence "configure memory" does not
occur until "configure processor" is complete and all information appropriate for
"configure memory" is available. Now, let's think about another approach. Say for
example the origInal customer specification includes information that microprogram
store is necessary. Then, when the "configure processor" subproblem is running, it
might produce information for the "configure memory" subproblem that
microprogram store must be present. If the "configure memory" subproblem can
begm executing prior to the completion of "configure processor" a natural parallel
plpelining results. The "configure memory" subproblem might produce information
useful to the "configure peripherals" subproblem which can begin executing before
both of the previous steps have completed. Synchronization might be necessary, but
then again there may be considerable "coarser-grain" parallelism that can be
implemented in this fashion, with suitable synchronization constraints. The possibility
eXIsts.

The OPS5 implementation of RI provides little information about what
subproblems are mherently parallelizable. Indeed all subproblems are carefully
handcrafted to be sequentially executed using "control elements". Our thinking is to
provide other formalisms that allows one to explore and implement much more
parallelism than OPS encodes or encourages.

For example, two simple experiments have been performed on two small OPS5
programs running at Columbia. A few additional parallel constructs were added to
OPS5 which simulate the parallel manipulation of WNL The statistics indicate that
these slight enhancements to OPS5 produce a factor of 6-10 fewer PS cycles of
execution to solve the same problem. Similar studies are underway using the ACE
expert system (see (Vesonder et al., 1983)). Thus, we can expect that a slightly
different formalism will admit much more opportunity for parallelism, and
concommitant speed up, than OPS5.

\V e next turn our attention to Gupta's interpretation
conSider Algorithm ~ with a stated performance of 67
we have noted 75 cycles per second is more accurate.
Gupta seem inconsistent.

First we note, page 8,

of his analysis. Let us only
cycles per second, although

Several remarks made by

"ie felt that our rough estimates were good enough. that is. the
inaccuracy in our estimates would not cause a qualitative change in
our conclusions."

"ie believe that a factor of two or three difference in such
calculations will not change our final conclusions about the
algorithms or the architecture.· J

A Note on Implementing OPS5 on DADO

8

In his conclusions, he cites a projected performance of 30-50 cycles per second
achievable on a Vax 11/780 for OPS83 (page 13, third paragraph). Other statistics
that have been reported for the OPS5 implementation of R1 on' a 780 indicate a
performance of 2 to 10 cycles per second. Thus, he implies that DAD02 achieves a
050% performance improvement over the projected performance (and a factor of six
faster than existing implementations) of a serial machine several times larger and
more complex, but adheres to his conclusion that this " .. .is not much higher than
what we can already achieve on a current .,. uniprocessor." (page 25, second
paragraph).

A factor of two or three beyond this increase, however, produces even more
signIficant performance advantages. Rather than achieving only 50% better
performance, DAD02 would achieve 200% to 300% improvements over a 780's
projected performance! (If we consider actual reported performance of 2-10 cycles
per second, DAD02 would outperform a 780 by a factor of 20!) His comments
about his method of analysis and interpretation of results seem rather curious2.

(To maintain our truth in advertising, we of course must note that the reported
statistics for DAD02 ¥e orojected, since DAD02 as yet does not exist. Indeed, we
would be delighted to achieve 10 cycles per second on DAD02 using the current
Implementation of LISP we have available. The overhead costs of diagnostics,
monitoring and LISP related inefficiencies will undoubtedly cause performance
degradation by perhaps a factor of 5-10. As we gain experience with the system. we
expect to be able to improve the LISP implementation and remove statistics
gathenng features to achieve our stated performance objectives. This is of course
the major reason for building and experimenting with DAD02 in the first place.)

As noted earlier, (page 25) "a uniprocessor with 32 bit datapaths and a .5 us
instruction cycle, already has a sixteen fold advantage over a DADO PE ... /I Thus,
had a 32 bit processor been available for DADO prototyping, we can estimate that
a DAD02 would execute over 1100 cycles per second. Miranker's statistics of
TREA. T would then project 85 X 16 or 1360 cycles. per second. Thus, a 1023 PE
version of DADO using 32 bit processors is 22-26 times faster than the projected
performance of a Vax 11/780 and 110-130 times faster than actual reported
performance. Might this be enough to produce a suitable performance factor?

Furthermore, the comment on page 25, second paragraph, "Large-scale parallelism

')

-Equally curious is his footnote on page 3. "Note that as the number of PE's
increases, the instruction cycle will have to be slowed down to compensate for the
~xtra logic levels .. " However, the machine would have to be slowed by one logic
'late delay when It doubles III size. If pipelined comm UnICatlOn were employed. no
delav \liould result at all as the machine size increases. This IS a rather favorable
r;araware feature, and not a disadvantage by any means.

A Note on Implementing OPS5 on DADO

9

almost always [?I Implies that each processing element is weak ... ,,3 is negated by the
continual advances in VLSI microprocessor technology. Single chip PE's do not
lncur the significant chip to chip signal delays (due to wire length and capacitive
loading of pins) incurred by board-level PE's. As VLSI continues its downward
trend in scaling, performance improvements of single chip processors can be
expected to outpace the advances made by board-level processors.

Since the tree structure is a remarkably regular and hence inexpensive architecture
to realize in hardware, we assert our conclusion:

"The DADO design is a very cost effective OPS5 production
system architecture, deSIgned to produce significant
performance improvements over conventional machines."

One remaining issue that seems difficult to resolve is how to compare hardware.
That is, what metrics should we use when analyzing hardware complexity? Our
companson of DAD02 to a Vax is probably inappropriate.

Should we compare a DAD02 to a Vax 11/750? 'We do not know the answer to
thIS questIon. Indeed, Vax's and DADO's are designed for quite different purposes.
Thus. Vax's as general" purpose devices have much more circuitry than is necessary
for DADO.

\Ve have compared DAD02 repeatedly to a Vax 11/750 primarily to give readers
a sense of its physical dimensions and complexity. Cabinet dimensions, number of
boards and solder JOInts are roughly the same for a 16 megabyte Vax 11/750 and a
0.-\.002. However, a 16 megabyte Vax 11/780 is roughly six times larger than a
OA.o02. (\Ve note with interest that if a OAD02 were coupled to a Vax 11/750,
we need only produce a performance factor of 2 over the 750 (since hardware is
douQled) to remain cost effective. Gupta's statistics show that we are indeed
outperforming a 780 and DAD02 is only a prototype device!)

If a coarser grain parallel symbolic processor with 16 megabytes of RA .. \l based on
1980 commercial chip technology existed, we would be delighted to compare DAD02
to it. Such a device, to our knowledge, does not exist, however.

Even so, the fact remains that the OAD02 system is inexpensive to realize in
hardware. (Market retail costs of all components for a single OAD02 machine is
roughly $100,000, approximately the cost of a 16 megabyte Vax 11/7.50.) !vluch
theory In v'LSI deSIgn has been developed which supports this assertion for binary
tree architectures. Thus. other parallel devices WIth the same number of bytes of
memory, tranSIstors, wires and solder joints as OA.o02 should be used for
companson. We believe DA.o02 will remaIn more cost effective to realize in
hardware than these other devices .

. 3The que~tlon mark added by the author of this paper.

A Note on Implementing OPS5 on DADO

10

Rererences

~finnker D. P. Performance Estimates for the DADO .\tfachine: A Compan"son
of TREAT and RETE. Technical Report] Department of Computer Science]
Columbia university] April 1984.

Stolfo S J. The DADO Parallel Computer. Technical Report] Department of
Computer Science, Columbia University] August 1983. (Submitted to AI
Journal).

Stolfo S. 1. Five Parallel Algorithms for Production System Execution on the
DADO Afachine. AAAI-84, University of Texas, August] 1984.

Stolfo S. J., and D. P. Miranker. DADO: A Parallel Processor for Expert Systems.
IEEE 1984 International Parallel Processing Conference] Michigan, 1984.

Stolfo S Land D. E. Shaw. DADO: A Tree-structured j.\tfachine Architecture for
Production Systems. AAAl-82, Carnegie-Mellon University, August] 1982.

Vesonder, G. T., S 1. Stolfo, 1. Zalinski, F. Miller, and D. Copp. ACE: An
E.xpert System for Telephone Cable Afaintenance. Proceedings of the
International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, August, 1983.

_-\ Note on Implementing OPS5 on DADO

