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1 Introduction 

ThIs brief note is written in response to a recent publication, "Implementing OPS5 
ProductIon Systems on DADO," published as a Carnegie-Mellon Department of 
Computer SCIence Technical Report by Anoop Gupta in March, 1984. Gupta's 
paper analyzes the performance of OPS5 Production System programs on the 
DADO parallel computer, a special purpose production system (PS) machine. The 
analysis leads Gupta to conclude that DADO is not an effective OPS5 PS machine. 
\Ve have studied Gupta's analysis carefully, and conclude that his conclusions are 
Inaccurate, flawed by, at times, incorrect or outdated information about the DAD02 
prototype, and, at other times, inexact reasoning. 

\Ve have divided the following into two sections. Section 2 details specific 
technical errors regarding the DAD02 design cited by Gupta. Although Gupta 
properly cites statistics we reported in earlier papers proposing DADO, his analysis 
is based on an earlier design of the second prototype system presently near· 
completIon at Columbia University. However, after making the changes appropriate 
to be conSIstent WIth the current technical design of DAD02, Gupta's analysis is 
also flawed in not adequately understanding the detailed workings of several 
reported algonthms. Section 3 focuses on philosophical differences. We shall be 
careful to accurately quote Gupta to strengthen our case that his conclusion is 
rather weak. \Ve conclude that DADO indeed is an effective OPS5 processor. More 
Importantly, we belIeve the DADO machine will produce dramatic performance 
Improvements of .-\.1 computation when the sequentialities inherent in OPSS are 
removed. 

The reader should first carefully read Gupta's paper and anyone of the most 
recent reports detatling the DADO system and algorithms, (Stolfo and Miranker, 
1984), for example. 

2 Details Repaired 

One of the stated goals of the DADO project IS to understand the nature of the 
granl!iantv problem in the context of Al production systems. Granularity generally 
refers to the relatIve power (function and storage capacity) of a processing element 
(PE) In a multiprocessor architecture. Coarse-grain devices typically refer to 
multIprocessors conSIstIng of hundreds of large, fast and perhaps specialized PE's 
each WIth hundreds of thousands to milhons of bytes of memory. Fine-grain devices, 
such as DADO, typically refer to the class of processor consisting of thousands of 
smaller, less powerful PE's each with a few thousand bytes of memory. Very-fine 
grain is reserved for those processors cO:J.sisting of hundreds of thousands to perhaps 
mdltons of very simple PE's each with very small memories In the range of a few 
hundred bytes. 

Our first published report (Stolfo and Shaw, 1982) proposIng the DADO 
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architecture, although uncommitted, referred to the PE design as incorporating a 2K 
byte RA .. \L Later (Stolfo, 1983) we revised this figllre to 8K as we prototyped 
hardware and learned more about the nature of programming such a machine. 
Gupta used the 8K RA .. vf figure appropriately (page 1, last paragraph). However, 
our current hardware prototyping of DAD02 consists of a 16K byte R.-\...\1 at each 
PE and an additional 4K byte ROM. ("We are still not convinced we know the 
proper grain size of the DAD02 PE. During our next year of research 
experimentation with various application programs running on DAD02 will shed 
more light on this issue.) 

This discrepancy between the 8K and 16K prototype PE affects Gupta's analysis 
detailing the performance of Algorithm 2, for example. Page 17 details the weak 
points of Algorithm 2 where he notes the 8K byte ~\1 is too small. His 
measurements indicate at times 15K bytes may be required. Thus, the total 20K 
available bytes are sufficient for Algorithm 2, neg.ating his conclUSIon. We will 
return to his analyses shortly. 

Another inaccuracy occurs in detailing the DAD02 I/O chip, nearly completed as 
of thIS writing. The D.-\D02 I/O chip is not implemented in custom VLSI (page 3, 
paragraph 2), but rather in semi-custom gate array employing approximately 1500 
gates. Furthermore, we have discovered that the linear ordering of PE's in the tree 
is Irrelevant and hence the planned functioning' of the chip has significantly 
changed. The D.-\D02 I/O chip provides direct hardware support for Resolve, 
global Broadcast, Report, memory access with parity, global interrupt with context 
S"\'ltch lnd control of SL\ID/MTIvID modes of execution of a PE. Tree neighbor 
communication is support~d by direct processor interconnections. DAD02 contains 
two binary tree interconnections, one interconnecting I/O chips the other 
interconnecting processors. Hence, if the I/O chip does not function· as planned, 
D.-\D02 WIll thus remain operable as eVidenced by the functioning DADOI machine 
which employs processor interconnections exclusively. Besides prOVIding some 
measure of fault tolerancy, the two sets of tree connections also admit easy isolatIon 
and diagnosing of faults should any arISe. 

Since we have touched upon the size of R.-\"'\f of a DAD02 PE and detailed the 
I/O chip, we should also mention the rationale for using an 8 bit Intel 8751 
processor. D.-\DO hardware prototyping began three years ago in 1981. At that time 
the 87.51 was the only commercially available single chip microcomputer In existence 
that provided 4 parallel 8 bit ports. These ports allowed us to conveniently 
Interconnect a number of PE's directly Without additional logic or chips. The 4K 
onboard EPRO~vl also allowed us to directly program systems soitware with the 
opportunity to reburn the ROM when software errors were discovered. 

The analyses reported by Gupta should thus be viewed as approprIate only for the 
prot.ot:',?,~.13 he correctly observes. T:1US, the reported statistics ar.: b3.Sed on a .5 
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mlp (2 microsecond instruction time), one address, 8 bit PE. Had we initiated 
prototyplng today, we would use a 32 bit two address microcomputer chip with 
onboard memory, for example the lnmos transputer chip. This design would 
immediately deliver a 16 fold speed advantage over the 8751, as Gupta notes. 

We view DAD02 as a laboratory vehicle to investigate fine-grain processors, rather 
than a performance machine. Having resisted committing our designs entirely to 
hardware (the EPROM and the two sets of interconnections) provides us with the 
means to experiment with a flexible device. We expect DAD02 to produce 
significant performance improvements demonstrating our architectural principles. 
~fore Importantly, it will provide a testbed for the next generation machine, which 
will have the advantage of even better hardware available for its design. Indeed, aU 
of our software is implemented in high level languages to allow easy porting to the 
newer deSigns. 

\Ve now focus our attention on Gupta's detailed analysis of three algorithms. \Ve 
shall not pick apart his numbers in terms of the number of effective cycles of 
executIOn. The numbers he reports a.re adequate for our purposes for the time 
being. Rather, we shall first focus on the number of PE's he calculates as required 
to implement each algOrIthm for a variety of OPS5 programs. Here we have found 
significant errors. 

Gupta begins with the original DADO algorithm h.e calls Algorithm 1, reported in 
(Stolfo and Shaw, 1982). His version of the algorithm as reported is accurate but 
flawed by a fundamental misunderstanding of its implementation. 

We stated our algorithm in the most simplistic terms for pedagogical reasons 
bound by publication length restrictions. The stated algorithm is thus a model, and 
not an implementation. Several crucial changes and enhancements are ignored by 
Gupta. Thus, he cites, as we did, that the algorithm requires one production per 
PM-level PE (page 9), and one \-\'?vi element in each \VM-subtree PE (page 10). 
For large systems such as R1, which incorporates 2000 rules noted by Gupta, he 
concludes that 2000· P:\i-Ievel PE's are required, each rooting a yV"\-! subtree With 
100 PE's (page 1.3). Hence, R1 requires over 200,000 PE's to execute on a DADO 
machine uSlllg Algorithm 1. 

However, the 16K of R..\.i\J available in each DADO PE leads one to the 
conclusion that much more data may be stored in any PE. Thus, many rules may 
be stored at a P~I-level PE as well as many \~1 elements withlll each VIM-subtree 
PE ThiS has been demonstrated in a working program runnlllg on DADOI. 

This might then lead one to conclude, as Gupta (page l.3), that sigmficant 
performance degradation will result when additional data is packed into aPE. 
ThiS IS not the case if you consider statistics for R1 that Gupta reports. 
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The last paragraph on page 13 indicates on average about 50 productions are 
affected by changes to ~f (or need to be matched) on each cycle of execution, 
whereas page ~s notes 35 . productions. Other statistics reported for R1 indicate 
about .30. Thus, with a suitable partitioning of Rl's rule base, each of 30-50 
partitIOns (consisting of about 2000/30-2000/50 or 40-66 rules) would match no more 
than 1 rule against W'}vf on each cycle. 

For DADO~, we can thus conveniently store the PM-level at level 6 of the tree 
with .32 PE's across. Each of these PM-level PE's would store 62 rules, which is 
sufficient for all of R1's rule base. Thus, the required 2000 PM-level PE's reported 
by Gupta is not correct. 

Furthermore, Gupta's claim that 100 W:\f-subtree PE's are required per rule is 
also wrong. Each WM-subtree PE could store a number of W1 ... f elements that are 
pattern element disjoint. That is, store only one W1v1 element at a W1v1-subtree 
PE that passes sor..: sequence of Rete one input tests. If another 'W:vl element 
passes the same tests, it would be stored in a different W1vf-subtree PE. 

In Rl's case, at most 26 \~f-subtree PE's would ever be needed to store all of 
the \v}'f elements pote-ntially relevant to any single pattern in the LHS of a rule 
(see page 12, footnote 8). Hence, the example DA.D02 configuration for Rl has a 
P~1-level with 32 PE's each rooting a W~f-subtree of 30 PE's. The upper tree 
consists of 31 PE's. Then, on average, one rule would be affected by changes to 
\V\1 on each cycle within a PM-level PE for R:l. Similarly, all relevant ~f 
elements would be accessed on one broadcast through the W1vf-subtrees on each 
match of 3. pattern element. (This configuration presupposes that Rl's rule base 
can be appropriately partItIoned so that no more than two rules are affected on 
each cycle within a partItion. It is our conjecture that the match paradigm 
employed in Rl lends itself to a simple and appropriate partitioning scheme based 
on dIstnbuting one rule from each method to distinct processors. These technical 
Issues are left for another paper.) Thus, all of the inherent parallelism in R1 is thus 
appropriately captured by this example configuration using only 10~.3 PE's, not 
'~OO,OOOI 

The algorithm as stated would need to be slightly modified to identify which of 
the rules in each partition needs to be matched, rather than iterating over all 62 
rules in each PM-level PE. This can be done easily in two ways: either by hashing 
the \\'\{ tokens at the PM-level or by associative probing. The former case has 
been noted and implemented in several early versions of various PS languages. In 
the latter case, all of the pattern elements of the 6~ rules at a P~f-Ievel are 
distributed Uniformly throughout the vv\f-subtree. If there are 5 pattern elements 
In each rule on average, a total of about 300 such patterns would be distributed in 
groups of 10 throughout the 30 W"?vf-subtree PE's. 
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.-\5 a \V}Y{ token is broadcast during the Act phase, at most 10 assoclatlve probes 
\\Iould be required to determine the affected rules. Further, thinking can convince 
one that one broadcast of the new vVM token follwed by a high-speed local search 
in each WNl-subtree PE can calculate this result even faster. Daniel Miranker has 
analyzed a variant of algorithm I, called TREA. T, which uses this approach and has 
denved execution statistics for R1 on DAD02 running at 85 cycles per second. 

In summary, Gupta's analysis of Algorithm 1 is inaccurate on two counts: 

- The total number of PE's required to execute Rl is not :200,000. 1023 
PE's would suffice. (We note that his hardware utilization is inaccurate 
for DA..D02 using our example configuration.) 

- The stated performance of 11 cycles per second (page 13) is roughly a 
factor of 8 slower than what actually can be achieved using the .5 mip 
Intel 8751 PE, (See (Miranker, 1984) for a detailed performance analysis 
which projects 85 cycles per second.) 

:'-Iext, we consider Gupta's Algorithm 2, mapping a Rete network directly on 
DADO. \\fe have alre.ady noted the discrepency concerning ~he size of a DAD02 
PE memory and the subsequent inaccurate conclusion. 

Gupta also notes that a lower subtree need not be used for conflict resolution 
since on average 2.5 changes to the conflict occur on each cycle. Thus, reporting 
the changes to a control processor which performs conflict resolution is more 
efficient In his opinion. DAD02's I/O chip provides direct hardware support for 
.\fax-Resolve which, in one instruction cycle, calcuiates the maximum value of a 
register stored in all PE's In the tree. Hence, conflict resolution is remarkably fast 
on DAD02. This adjusts his figures for conflict resolution from 100 machine 
instructions (step 4, page 16) to 3-4 instructions, thus attaining an overall execution 
rate of 75 cycles per second, rather than 67. 

He also notes that " ... the number of processors used is proportional to the number 
of producttons (approximately eight processors per production) ... ". Using the general 
scheme outlined above concerning the use of a PM-level PE for multiple rules, and 
partitioning rules appropriately, a single PE can be used to store many match nodes 
complied from many rules. Thus, once again, we need not use a system with over 
16,000 PE's as his analysis implies, but rather 1023 would suffice. 

\re prefer not to diSCUSS Gupta's A.lgorlthm 3, since this requires an architecture 
much different than DADO We do note, however, that similar schemes discussed 
above concerning distributing data structures (pattern elements, for example) as well 
J.3 partitlomng rules and W1vf elements significantly changes his performance 
analysis. 
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Lastly, the reader is encouraged to read (Stolfo, 1984) which identifies five 
algorithms for ~he parallel execution of PS programs on DADO. We believe others 
exist waiting to· be discovered. This leads us to· philosophical differences of opinion. 

3 Philosophical Issues 

The analysis reported is quite good and thorough, although the algorithms he uses 
are flawed. Only three algorithms are explored, however, one of his own invention 
that is not suitable for DADO. The statistics used in the analysis, calculated from 
six existing OPS5 programs, also delineates some fundamental differences of opinion. 

\Ve recently reported five algorithms that have thus far been invented for the 
parallel execution of PS's on DADO. Basing his conclusions on only three 
algorithms IS somewhat incomplete. (We are thankful that 35 or 40 years ago Von 
Neuman machines were not judged solely on the basis of their performance in 
executing sequential search.) 

Furthermore, as Gupta notes (page 24, last paragra.ph), OPS5 programs do not 
ha.ve a high degree of parallelism. ThIS is a direct result of the temporal 
redundancy associated -with OPS programs. That is, the RHS's of rules generally 
do not have many eifects on ~I. But my claim is that this is an artifact of 
OPS5 PS programm£ng on serial mach£nes and not characterist£c of the problems 
the PS programs attempt to solve. For example, on page S Gupta asserts "The 
[Rete] dataflow graph embodies the parallelism that may be used to perform the 
match." We note that the Rete dataflow graph embodies some of the parallel£sm 
which can be expressed w£thin the OPS formalism, and has /£ttle to do w£th the 
inherent parallelism £n the problem be£ng solved. Had Gupta studied another 
formalism which admits the expression of more parallelism (PROLOG, for instance), 
he might have started with a slightly different mindset, and he might have reached 
different conclusions 

We prefer to think along the lines of H. T. Kung. Rather than attempt to speed 
up the Inherent parallelism in existing Fortran codes for numerical problems, for 
example, rethinking the problem speciiication leads to systolic parallel structures, 
based on large-scale parallelism, producing dramatic performance advantages over a 
flng of Cray's. Indeed, a specialized OPSS processor may not turn out to be a 
particularly SUItable device for dramatically speeding up AI computation. 

A Simple Illustration using R1 might help clarify matters. Rl uses the match 
paradlgm and works hard to sequence through a static collection of subproblems to 
solve the 'Vax configuration problem. Suppose the subproblems are: 

configure processor 
configure memory 
configure peripherals 
configure cables 
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The OPS5 program forces serialization, and hence "configure memory" does not 
occur until "configure processor" is complete and all information appropriate for 
"configure memory" is available. Now, let's think about another approach. Say for 
example the origInal customer specification includes information that microprogram 
store is necessary. Then, when the "configure processor" subproblem is running, it 
might produce information for the "configure memory" subproblem that 
microprogram store must be present. If the "configure memory" subproblem can 
begm executing prior to the completion of "configure processor" a natural parallel 
plpelining results. The "configure memory" subproblem might produce information 
useful to the "configure peripherals" subproblem which can begin executing before 
both of the previous steps have completed. Synchronization might be necessary, but 
then again there may be considerable "coarser-grain" parallelism that can be 
implemented in this fashion, with suitable synchronization constraints. The possibility 
eXIsts. 

The OPS5 implementation of RI provides little information about what 
subproblems are mherently parallelizable. Indeed all subproblems are carefully 
handcrafted to be sequentially executed using "control elements". Our thinking is to 
provide other formalisms that allows one to explore and implement much more 
parallelism than OPS encodes or encourages. 

For example, two simple experiments have been performed on two small OPS5 
programs running at Columbia. A few additional parallel constructs were added to 
OPS5 which simulate the parallel manipulation of WNL The statistics indicate that 
these slight enhancements to OPS5 produce a factor of 6-10 fewer PS cycles of 
execution to solve the same problem. Similar studies are underway using the ACE 
expert system (see (Vesonder et al., 1983)). Thus, we can expect that a slightly 
different formalism will admit much more opportunity for parallelism, and 
concommitant speed up, than OPS5. 

\V e next turn our attention to Gupta's interpretation 
conSider Algorithm ~ with a stated performance of 67 
we have noted 75 cycles per second is more accurate. 
Gupta seem inconsistent. 

First we note, page 8, 

of his analysis. Let us only 
cycles per second, although 

Several remarks made by 

"ie felt that our rough estimates were good enough. that is. the 
inaccuracy in our estimates would not cause a qualitative change in 
our conclusions." 

"ie believe that a factor of two or three difference in such 
calculations will not change our final conclusions about the 
algorithms or the architecture.· J 
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In his conclusions, he cites a projected performance of 30-50 cycles per second 
achievable on a Vax 11/780 for OPS83 (page 13, third paragraph). Other statistics 
that have been reported for the OPS5 implementation of R1 on' a 780 indicate a 
performance of 2 to 10 cycles per second. Thus, he implies that DAD02 achieves a 
050% performance improvement over the projected performance (and a factor of six 
faster than existing implementations) of a serial machine several times larger and 
more complex, but adheres to his conclusion that this " .. .is not much higher than 
what we can already achieve on a current .,. uniprocessor." (page 25, second 
paragraph). 

A factor of two or three beyond this increase, however, produces even more 
signIficant performance advantages. Rather than achieving only 50% better 
performance, DAD02 would achieve 200% to 300% improvements over a 780's 
projected performance! (If we consider actual reported performance of 2-10 cycles 
per second, DAD02 would outperform a 780 by a factor of 20!) His comments 
about his method of analysis and interpretation of results seem rather curious2. 

(To maintain our truth in advertising, we of course must note that the reported 
statistics for DAD02 ¥e orojected, since DAD02 as yet does not exist. Indeed, we 
would be delighted to achieve 10 cycles per second on DAD02 using the current 
Implementation of LISP we have available. The overhead costs of diagnostics, 
monitoring and LISP related inefficiencies will undoubtedly cause performance 
degradation by perhaps a factor of 5-10. As we gain experience with the system. we 
expect to be able to improve the LISP implementation and remove statistics 
gathenng features to achieve our stated performance objectives. This is of course 
the major reason for building and experimenting with DAD02 in the first place.) 

As noted earlier, (page 25) "a uniprocessor with 32 bit datapaths and a .5 us 
instruction cycle, already has a sixteen fold advantage over a DADO PE ... /I Thus, 
had a 32 bit processor been available for DADO prototyping, we can estimate that 
a DAD02 would execute over 1100 cycles per second. Miranker's statistics of 
TREA. T would then project 85 X 16 or 1360 cycles. per second. Thus, a 1023 PE 
version of DADO using 32 bit processors is 22-26 times faster than the projected 
performance of a Vax 11/780 and 110-130 times faster than actual reported 
performance. Might this be enough to produce a suitable performance factor? 

Furthermore, the comment on page 25, second paragraph, "Large-scale parallelism 

') 

-Equally curious is his footnote on page 3. "Note that as the number of PE's 
increases, the instruction cycle will have to be slowed down to compensate for the 
~xtra logic levels .. " However, the machine would have to be slowed by one logic 
'late delay when It doubles III size. If pipelined comm UnICatlOn were employed. no 
delav \liould result at all as the machine size increases. This IS a rather favorable 
r;araware feature, and not a disadvantage by any means. 
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almost always [?I Implies that each processing element is weak ... ,,3 is negated by the 
continual advances in VLSI microprocessor technology. Single chip PE's do not 
lncur the significant chip to chip signal delays (due to wire length and capacitive 
loading of pins) incurred by board-level PE's. As VLSI continues its downward 
trend in scaling, performance improvements of single chip processors can be 
expected to outpace the advances made by board-level processors. 

Since the tree structure is a remarkably regular and hence inexpensive architecture 
to realize in hardware, we assert our conclusion: 

"The DADO design is a very cost effective OPS5 production 
system architecture, deSIgned to produce significant 
performance improvements over conventional machines." 

One remaining issue that seems difficult to resolve is how to compare hardware. 
That is, what metrics should we use when analyzing hardware complexity? Our 
companson of DAD02 to a Vax is probably inappropriate. 

Should we compare a DAD02 to a Vax 11/750? 'We do not know the answer to 
thIS questIon. Indeed, Vax's and DADO's are designed for quite different purposes. 
Thus. Vax's as general" purpose devices have much more circuitry than is necessary 
for DADO. 

\Ve have compared DAD02 repeatedly to a Vax 11/750 primarily to give readers 
a sense of its physical dimensions and complexity. Cabinet dimensions, number of 
boards and solder JOInts are roughly the same for a 16 megabyte Vax 11/750 and a 
0.-\.002. However, a 16 megabyte Vax 11/780 is roughly six times larger than a 
OA.o02. (\Ve note with interest that if a OAD02 were coupled to a Vax 11/750, 
we need only produce a performance factor of 2 over the 750 (since hardware is 
douQled) to remain cost effective. Gupta's statistics show that we are indeed 
outperforming a 780 and DAD02 is only a prototype device!) 

If a coarser grain parallel symbolic processor with 16 megabytes of RA .. \l based on 
1980 commercial chip technology existed, we would be delighted to compare DAD02 
to it. Such a device, to our knowledge, does not exist, however. 

Even so, the fact remains that the OAD02 system is inexpensive to realize in 
hardware. (Market retail costs of all components for a single OAD02 machine is 
roughly $100,000, approximately the cost of a 16 megabyte Vax 11/7.50.) !vluch 
theory In v'LSI deSIgn has been developed which supports this assertion for binary 
tree architectures. Thus. other parallel devices WIth the same number of bytes of 
memory, tranSIstors, wires and solder joints as OA.o02 should be used for 
companson. We believe DA.o02 will remaIn more cost effective to realize in 
hardware than these other devices . 

. 3The que~tlon mark added by the author of this paper. 
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