CUCsS-122-34

DADO: A PARALLZL PROCESSOR FOR EXPERT SYSTEMS

SALVATORE J. STOLFO
AND
DANIEL P. MIRANKER

CUCS-122-84

DADO: A Parallel Processor for Expert Systems*

Salvatore J. Stolfo

and

Dantel P. Miranker
Department of Computer Science
Columbia University
New York City, N. Y. 10027

Abstract -~ DADO is a parallel, tree-structured machine
designed to provide significant performance improvements in the
sxecution of large expert systems implemented in production
system form. A full-scale version of the DADO machine wauid
comprise a large {on the order of s hundred thousand) set of
srocessing elements (PE's), «ach containing its own processor, 3
small amount (16K bytes, in the current prototype design) of local
raadom access memory, and s specialized /O switch. The PE's are
interconnected to form a1 complete binafy tree.

This paper desscribes the application domain of the DADO
machine and the rationale for its design. We then focus on the
machine architecture and detail the hardware design of 3
moderately large prototype comprising 1023 microprocessors
suyrrently under development at Columbia University, We conelude
with very esncouraging performance statistics recently calcuisted
from an 1nalysis of sxtensive simulations of the system.

Introduction

Due to the dramatic increase in computing power and the
:oncomitant decrease in computing cost occurring over the last
decade, many researchers are attempting to design computiag
systems to solve complicated problems or sxecute tasks which have
in the past been performed by humaa sxperts, The focus of
Knowledge Engineering is the construction of such complex,
knowledge-based *xpert computing systems.

[n general, knowledge-based expert systems are Artificial
Intelligence (Al) problem-solving programs designed to operate in
narrow ‘‘real-world” domains, performing tasks with the same
sompetence as 3 skilled human expert. [llucidation of unknown
zhemical compounds [3], medical diagnosis {23], miaeral exploration
{] and telephone cable maintenance {30| are just 2 few examples.
The heart of these systems is a knowledge bdase, a large coilection of
facts, definitions, procedures sad ‘heuristic ‘‘ruies of thumb",
1cquired directly from 3 hAuman ezpert. The knowledge enginesr is
an intermediary between the expert and the system who extracts,
formalizes. represeats, and tests the reievant tnowledge within a
tomputer program.

*This research has been cupported by the Defense Advanced
Research Projects Ageney through contract N00039-82-C-0427, 1s
weil as grants from [ntel, Diﬁlﬂ Equipment, Hewlett-Packard,
Walid Logie Systems, AT&T 3ell Laboratories and [BM
Czorzoraticas 2ad the New Yerk State 3eiencs and Technology
roundation. We gratefuily acknowiedge their support.

Just as robotics and CAD/CAM technologies offer the
potential for higher productivity in the *'blue-coilar™ work force, it
appears that Al expers systems will ofTer the same productivity
increase in the "‘white-collar’” work foree. As a result, Knowledge
Engineering has attracted considerable attention (rom governmeat
and industry for research and development of tbis emerging
technology. However, as knowledge-based systems begin to grow in
size and scope, they will begin to push conventional computing
systems to their limits of operation. Evea for experimeatal
systems, many researchers reportedly experience (rustration based
on the length of time required for their operation. Much of the
research in Al has focused on the problem of represeating aad
organizing knowledge, but little attention has beea paid o
specialized machine architectures supporting problem-solving
programs.

DADO is 3 'arge-scale parailel machine designed to support
the rapid execution of expert systems, as weil 13 muitiple,
independent systems. [n the following sections we preseat an
overview of DADO's application domain as well as the rationale for
its design. We then detail the hardware design of the DADOZ
prototype, currently under construction at Columbia University,
consisting of 1028 microprocessors. We conclude with a
presentation of performance statistics recently calculated from
extensive simulations of the system, aad an ovarview of the
soitware systems implemented to date. Based on our studies, a full
scale varsion of DADO :omprising many thousaads of processing
eiernents will, in our opinion, be technically and sconomicaily
feasible in the near future.

Exoert Svstsms

Curren: Technolcgy. Knowledge-based sxpert systems have
been constructed, typically, from two loosely coupled modules,
coilectively forming the problem-solving engine (see Figure 1). The
knowledge base contains all of the relevant domain-specific
information permitting the program to behave a3 3 specialized,
intelligent problem-sciver. Expert systems coatrast greatly with
the earlier general-purpcose Al problem-soivers which wers typically
implemented without a specific spplication io mind. Oae of the key
differsnces is the large amounts of problem-specific kaowledge
encoded within present-day systems.

Much of the research in Al has concentrated on efTective
methods for represeating and operationalizing humaa sxperiential
domain knowledgs. T34 representations that have been proposed
have taken 1 variety of forms including purely deciarative-based
logical formaiiams, “highly-stylized” ruies or productions, sad

structured generalization hierarchies commonly referred to s
semantic nets snd frames. Many knowledge bases have been
impiemnented in rule form, to be detailed shortly.

Figure 1t Organization of a Problem-Solving Engine.

g

sexy s

The inference engine is that compoaeat of the system which
controls the deductive process: it implements the most appropriate
strategy, or ressoning process for the problem at hand. The
sarliest Al problem-scivers were implemented with an iterative
Sranching technique searching s large combinatorial space of
problem states. Heuristic knowledge, applied within a static control
structure, was introduced to limit the search process while
attempting to guarantee the successful formation of solutions. [n
sontrast, state-of-the-art expert syst€éms separate the controi
strategy from an inflexible program, and deposit it in the
cnowledge base along with the rest of the domain-specific
knowledge, Thus, the problem-solving strategy becomes domain-
-jependent, and is responsible to a large extent for the good
performance axhibited by today's systems. However, a great deal of
this kind of knowledge is necessary to achieve highly competent
performance.

Within a great number of =xisting expert system programs,
the corpus of knowledge about the problem domain is embodied by
3 Preduction System program. As has been reported by several
researchers, production system representation schemes appear welil
suited to the organization and implementation of knowledge-based
softwars. Rule-based systems provide 3 convenient means for
human experts to explicate their knowiedge, and are easiiy
implemented and readily modified 1nd extended. Thus, it is the =ase
with which rules can be acquired and explained that makes
production systems so attractive.

rcduction Systems. In general, 3 Production System |8, 17,
18, and 19 is defined by a2 set of rules, or productions, which form
the FProduction Memory{PM), together with a3 database of
issertions, cailed the Working Memory{WM). Each production
consists of s conjunction of pattern elements, called the left-hand
side {LHS) of the rule, along with a set of sctions called the right-
hand side (RHS). The RHS specifies information that is to be
idded to (asserted) or removed from WM when the LHS
successfuily matches against the contents of WM. An sxample
production, borrowed from the blocks world, is illustrated in Figure

a

In operation, the production system repeatedly executes the
‘ollowing zycle of operations:

L. Matca: For each rule, determine whether the LHS

Figure 2: An Example Production.

{Goal (Clear-top-of Block))

(Isa ==x Block)

{On-top-of =y =x)

(Isa =y Block) ~>
delete{On-top-of =y mx)
assert(Qn-top-of ==y Table)

If the goal is to clear the top of a block,
and there is a block (mx)
covered by something (my)
which is also a block,
thea
remove the fact that =y is on =x
and assert that =y is 0a top of the table.

matches the current environment of WM. All matching
instances of the rules are collected in the conflict set of
rules.

2. Select: Choose exactly one of the matching rules
according to some predefined criterion.

3. Adet: Add to or delete from WM all assertions specified
in the RHS of the selected rule or perform some
operation.

During the selection phase of production system sxecution, a
typical interpreter provides conflict resolution strategies based on
the recemcy of matched data in WM, as well as syntactic
discrimination. Rules matching data slements that were more
recently inserted in WM are preferred, with ties decided in favor of
rules that are more specific (i.2., have more constants) than others.

Why a specialized PS architecturs! One problem facing expert
systems technology is «fficiency. It should be evident from the
above description that large PS programs would spead most of their
time executing the match phase requiring an enormous number of
primitive symbol manipulation tasks. (Indeed, Forgy [6] notes that
some PS interpreters spend 0% of their time in the match phase.)
Hence. as this technology is ambitiously applied to larger and more
complex problems, the size and concomitant slow speed of sxecution
of production system programs, with {arge rule bases, on
conventional machines will most likely doom such itlempts to
failure. The RI program [13|, designed to configure Digital
Equipment Corporation VAX computers, provides a convincing
illustration.

In its current form, RI contains approximately 2500 rules
operating on a WM containing several hundred data items,
describing a partially configured VAX. Running on 2 DEC VAX
11/780 computer 1nd implemented in OPSS [8), 3 highly fficient
production system language, RI executes from 2 to 600 production
system cycles per minute. Coafiguring an entire VAX system
requires a cansiderable amount of computing time on 1 moderately
large and expensive computer., The performance of such systems

will quickly warsen 13 sxperts are designed with aot only one to
two thousaad rules, but perhaps with tens of thousands of rules.
Indeed. several such large-scale systems are curreatly under
development at various research centers. Statistics are difficult to
calculate in the absence of specific empirical data, but it is
conesivable that such large systems may require an unacceptable
amount of computing time for a medium size conventional
computer to sxecute a single cycle of production system sxecution!
Thus, we consider the design and implementation of a specialized
production system machine to warrant serious attention by parallel
architects and VLSI designers.

Much of the sxperimental research conducted to date on
specialized hardware for Al applications has focused on :he
reatization of high-performance, cleverly designed, but for the most
part, architecturaily conventional machines. (MIT's LISP Machine
exemplifies this approach.) Such machines, while quite possibly of
great practical interest to the research community, make 1o
attempt ‘o :mploy hardware paralielism on the massive scale
characteristic of our own work.

Thus. simply stated, the goal of the DADO machine project is
the design and implementation of a cost effective high peeformance
rule processor, based on large-scale parallel processing, capable of
rapidly executing 3 production system cycle for very large rule
bases. The sssence of our 2pproach is to execute a1 very large
aumber of pattern matching operations on concurrent hardware,
thus substantially accelerating the match phase. Our goals do not
include the design of 3 high-speed parailel processor ecapabie of a
fruitless parallel search through a combinatorial solution space.

A small (135 processor) prototypes of the machine, constructed
at Columbia University from components supplied by Intel
Corporation, has been operational since April 1983. Based on our
2xperiences with constructing this small prototype, we believe 3
farger DADO jrototype, c:omprising 1023 processors, to be
tecanicaily and s2conomically feasible for implementation using
current technology. We believe that this larger experimental device
will provide us with the vehicle for svaluating the performance, as
well as the hardware design. of a full-scale version of DADO
implemented entirely with custom VLSI circuits,

Ths DADO Machine

The Svstem Architecturs. DADO is a fine-grain, parallet
machine where orocessing and memory are axtensively
intsarmingled. A fuil-scale production version of the DADO machine
would comprise a vary largs {0n the order of a hundred thousand)
set of processing elements (PE's), each containing its own
procsssor, 3 small amount (16K bytes, in the current design of the
prototype version) of local random sccess memory (RAM), and a
specialized IfO switch. The PE's are interconnected 0 form s
complete binary tree (see Figure 3).

Within the DADO machine, #sach PE is capable of sxecuting
tn sither of two modes under the control of run-time scftware. [n
the first, which we will call SIMD mode (for single instruction
stream, multiple data stream [5]), the PE executes instructions
broadcast by some aacestor PE within the tree. (SIMD typically
refers to a single stream of “machine-level” instructions. Within
DADO. on the other nand, SIMD is generalized to mean a single
stream cf remote procsdurs invekation instructions. Thus, DADO
makes more «fTe:tivs use of its sammunization bus by broadeasting

more ‘'‘meaningful” instructions.) In the second, which will be
referred to as MIMD mode (for muitiple instruction stream,
muitiple data stream), each PE axecutes instructions stored in its
own local RAM, independently of the other PE's. A single
conventional coprocessor, adjacent to the root of the DADO tree,
controls the operation of Lhe #ntire ensemble of PE's,

When a2 DADQ PE enters MIMD mode, its logical state is
changed in such a way as to efTectively ‘*disconsect”™ it aad its
descendants from all higher-level PE's in the tree. [a particular, a
PE in MIMD mode does not receive any instructioas that mighat be
placed on the tree-stryctured communication bus by one of its
ancestors. Such a PE may, however, broadcast instructions to be
sxscuted by its own descendants, providing all of these descendants
nave themseives been switched to SIMD mode. The DADO
machine can thus be configured in such a way that an arbitrary
internal node in the tree acts as the root of a tree-stryctured SIMD
device in which all PE’s execute s single instruction (on different
data) at 2 given point in time. This Nexible architectural desiga
supports mulliple-SIMD execution (MSIMD), as, for sxample, {24,
but on a much larger scale. Thus, the machize may be logically
divided into distinct partitions, sach executing a distinct task, and
is the primary source of DADO's speed in executing 3 large number
of primitive pattern matching operations concurrently.

The DADO 1/O switch, which will be implemented in semi-
custom gate array technology and incorporated within the 1023
processing element version of the machine, has been designed to
support rapid global communication. [n addition, a specialized
combinational circuit incorporated within the IJO switeh will allow
for the very rapid selection of 1 single distinguished PE from a set
of candidate PE’s in the tree, a'process we call resolving. Currently,
the 15 processing zlement version of DADQ performs these
operations in firmware embodied in its off-the-shell components.

The Binary Tr=- Tooology. In our initial work, several
alternative parallel machine arsaitectures were studied to determine
1 suitable organization of a special-purpose production system
machine. High-speed algorithms for the parallel exs:ution of
production system programs were developed far the perfect shufTle
[21] and binary tree machine architectures [1]. Forgy [7] proposed
an interssting use of the mesh-connected [LLIAC [V machine {12]
for the paraliel ex=cution of production systems, but recognized
that his approach failed to find 3l matching rules in ecs2rtain
sircumstances. Of these architectures, the binary tree organization
was :hosen for implementation. For the preseat paper we
summarize these reasons as {ollows:

- Binary trees are «fficiently implemented in VLS
rechnology:

* Using the well known “Hyper-H™" 2mbedding (see
{21). binary trees can be smbeddsd in the plane in
in amount of area proportional to the number of
processors. Thus, as VLSI continues scaling
downward, higher processor deasities can be
achieved.

* A design for 1 single chip type, first reported by
Leiserson (11}, smbeds both a complete binary
subtree and one additional PE, which can be used
to impiement an arbitrarily large binary tree.
Thus, binary ‘ree machines have 3 very low
aumber of distinct iategrated paris.

* Pia-out on the Leiserson chip remains constant for
aay number of embedded PE's.

" The Leiserson chip used with a simple recursive
construction scheme produces printed circuit
board designs that make optimal use of available
area. This singie printed circuit board design is
suitable for implementing an arbitrarily large
binary tree,

- Broadeastiag data to 3 large number of recipients is
handled efTicieatly by tree structures,

- Most importaantly, the binary tree topology is a natural
fit for production system programs.

We note that binary trees do have certain limitations of
practical importance. Although broadcasting a small amount of
information to a large number of recipients is efficiently handled by
binary trees, the converse i, in general, unfortunately not true.
That is, for certain computational tasks {permutation of data
within the tree, for example) the effective bandwidth of
communication is restriczed by the top of the tree. Fortunately, as
we shalil see shortly, this “*binary tree bottleneck’ does not arise in
the sxscution of production systems.

Penduction System =xecytion. In our =arlier work, extensive
thecrztical aaalyses and soitware simulations of a high-speed
algorithm for production system execution on DADO was
zompleted and reported in [25]. In its svmplest form, the algorithm
operates in the following way:

1. By assigning 3 single :rule to each PE. executing in
MIMD mode, 1t 2 (logicaily) fixed level within the tres,
sach rule in PM is matched concurrently. (This fixed
tevel within the tres 15 raferred to as the PM-levsl, see
Figure 3.) Thus, the time to calculate the conflict set of
rules an each cyecle is independent of the number of
productions in the system. Variations of this approach
allow for multiple rules to be located at a PM-level PE,
thus increasing the time o match a modest degree.

2. By assigning a data item in WM to s single PE
sxecuting in SIMD mode, lying below the PM-level, WM
is tmplementsd 35 2 irue hardware content-addressable
memory, Thus. the time required to match a single
pattern element in the LHS of a rule is independent of
the qumber of facts in WM. (Ia 3 manner similar to
production storage, more :fTective use of the WM PE's
is made by allowing several WM clements to be present.
The WM :lements stored at a single PE, however, are
“disjoint” in the sense that they may match difTerent
condition slemeats in the LHS of a rule.)

3. The selection of 3 single rule for sxecution from the
zonflict set is also performed in parallel by a logarithmic
time binary tree selection executed above the PM-level,
Thus, the logaritimic time lower bound of comparing
and selecting a singie item (rom a coilection of items is
achievable on DADO 15 well.

4. Lastly. the RHS actions specified by the selected rule

are broadcast to all PM-level PE's which update their
respective WM-subtrees in parailel.

Figure 3: Functional Division of the DADO Tree.

pper Trae:
synenronize
select & act

" olevei:
matcn
> catermine
relevancs &
instantate

W otrees:

A comparative evaluation of this algorithm with various
allocation schemes has besn reported sisewhere (see [10, 1S, 25, 27,
and 28}). It shouid de nnted that aithough the running time of the
basic algorithm is shown to be insensitive to the size of PM and
WM, in practice a fixed size machine may not, in general, attain
these lower bound results. Thus, in situations whers WM aad PM
are too large to be onveniently distributed in the manner discussed
above for 3 machine of fixed size, some performance degradation
will result.

For example, the second DADO prototyps will consist of 1023
PE's and is expected to be logically divided with 3 PM-level
coasisting of 32 PE's, 2ach rooting 2 WM-subtree with 31 PE's. To
execute 3 2500 rule system such as Rl will require partitioning ~73
rules to each PM-level PE. [t would appear that the time to match
would depend on 73 ruies rather than 2500 for this example.
However, recent statistics reported indicate that never more than
~30 rules 1re active on each =ycle of sxecution of R1. Hence, with
1 suitable partitioning of rules, a0 more than 1 rule would be
processed by 2ach PM-level PE in our example -onfiguration, thus
attaining a match time independent of 2500 rules. Note, though,
that each PM-level PE can access 31 WM ciements in paraliel.
Thus, in total, 32 X 31 or ~1000 WM elements would be accessed
it 1ny one point in time. [n the case where 3 single rule might
require access to more than 31 WM eiements at a time,
performance wiil degrade gracefully. Hence, 31 elements can be
accessed by a single PM-level PE in one time unit, 82 in two time
units, 93 in thres, ete.

Recently, we have completed a3 number of re=ports which
detail five related algorithms for the parallei execution of PS
programs to account {or various differences in PS pregrams. As
noted, some PS programs, (R1, for example) may aot have 2 high
degree of “production-level parallelism™. That is, on each cycle
oniy a relatively small number of productions may have satisfied
LHS's. Other PS programs may have a high dsgr=e of production-

level parailelism. Many other variations are possible which lead to
1 variety of related aigorithms which attempt to maximize system
performance by integrating various rule partitioning schemes with
slever “'state saving” schemes. The details of the various methods
are beyond the scope of this paper, and thus the reader is
sncouraged 0 see (15| and {28]. Studies of such situstions have
been made and the projections of possible performance degradation
are summarized in 3 later section of this paper.

Although analytical studies and software implementations ire
primary tasks of the DADO project, our current efTorts have
focused on the construction of hardware. Many parallel computing
devices have beea propesed in the literature, however, often such
devices are :onstructed oniy on paper. Many scientific and
saginesring problems remain undetected until an actual device is
sonstructed and experimentaily evaluated. Thus, we ars activaly
building a large prototype consisting of 1023 Intel 8751
microcomputer chips. A small 15 PE version of DADO is curresntly
sperational at Columbia Univarsity acting as a development system
for the software base of the larger prototype. In the rzmainder of
this paper we concentrate on the details of the hardware for these
prototypes as weil a3 the software systemns that have been
implemented thus far.

Thz DADO Prototynes

Phy:zical Characteristics. A 15-element DADO! prototype,
‘onsiructed from (paruially) donated parts supplied by Intel
Corporation, has been aperational since April 25, 1983. The two
wirs-wrap board system, housed in a1 chassis roughly the size of an
MM PC. is clocked at 3.5 megahert: producing 1 million
wnstructions per second (MIPS)[16]. (The effective usabie MIPS is
~casiderably less due to the sigmificant overhead incurred in
inlarprocessor communication. For each byte quantity
communicated through the system, 12 machine instructions are
ronsumed at 2ach leval in the tres while :xecuting an asynchronous,
{-cyele handshake protocol.) DADOI contains 124K bytes of user
random aczess storage and S0K bytes of read only memory. A
much larger varsion, DADOS, is curreatly under construction which
«i}l incorporate 1023 PE's constructed from two commercially
ivailable [ntel chips and one semi-custom gate array chip (to be
fabricated by LSI Logic). DADO!1 does not provide =normous
computational resources. Rather, it is viewed as the development
system for the soltware base of DADO?2, and is not 2xpected to
demonstrate a significant improvement in the speed of execution of
2 production system 1ipplication,

DADO?2 wiil be implemeated with 32 printed ¢ircuit boards
housed in an [BM Series I cabinet (donated by BM Corporation).
A DEC VAX 11/750 (partiaily donated by DEC Corporation|
serves 3s DADO?2's coprocessor (aithough an HP 9836 workstation
may be used a3 weil) and is the only device 3 user of DADO? will
s2e. Thus, DADO? is considered a1 transparent back-end processor
o the VAX 11/730.

The DADO? system wiil have roughly the same hardware
-omplexity as 2 VAX 11/730 system, and il amortized over 12 units
«tll zost in the range of 70 to 90 thousand dollars to construct
onsidering 1982 market retail costs. The DADO? semi-custom [/O
hip s piaaned for implementation in zate 1rray technoiogy and
<ifl allow DADO? to bs clocked at 12 megahertz, the full speed of
*qe Intei chips. The averags machine instruction cycle time is 1.8

microseconds, producing 3 system with a raw computational
throughput of roughly 570 million instructions per second. We note
that little of this computational resource i3 wasted in
communication overhead as in the DADO!I machine.

The Prototvpe Processing Element. Each PE in the 13
siement DADO!L prototype system incorporates an [ntel 8751
microcomputer chip, serving s the processor, and an 8K X 8 [ntel
2188 RAM chip, serving ss the local memory. DADO?2 will
incorporate a slightly modified PE. The latel 2187, which is fully
compatible with but faster than an [ntel 2188, replaces the DADOL
RAM chip allowing the processor to be clocked at its fastest speed,
Two such chips will be used (with a 16K X 1 chip for parity),
increasing the PE storage capacity to 16K bytes, Further, the
custom [/O chip will contain memory support circuitry and thus
also replaces several additional gates employed in DADOL.

Although the original version of DADO had been designed to
incorporate a 2K byte RAM within sach PE, 2 16K byte RAM was
shosan for the prototype PE to allow a modest degree of flexibility
in designing and implementing the software base for the full version
of the machine. In addition, this extra “breathing room™ within
»ach PE allows for experimentation with various sps<ial operations
that may be incorporated in the full version of the machine in
~ombinational cireuitry. as well as affording the opportuanity o
eritically evaluate other proposed (tree-structured) parallei
architectures through sofltware simulation.

{t is worth noting though that the proper choice of “3rain
size” is an interesting open question. That is, through sxperimental
svaluation we hope to dstermine the size of RAM for each PE.
chosen igainst the number of such elements for 3 fixed hardware
-omplexity, appropriate for the widest range of production system
ippiications. Thus, future versions of DADO may -:onsist of 1
aumber of PE’'s each centaining an amount of RAM significaatly
larger or smaller than implemented in the current prototype
systems.

The Intel 8751 is 2 moderately powerful 8-bit microcomputer
incorporating 3 4K erasadle programmable read only memory
{EPROM), and a 256-byte RAM on 1 single silicon chip. One of
the ksy characteristics of the 8731 processor is its [/O :apabiiity.
The 4 parallel, 8-bit ports provided in 1 40 pin package has
contributed substantially to the =ase of implementing 3 binary tree
interconnection between processors. Indeed, DADOl was
implemented within 4 months of Jelivery of the hardware
components. Figure 4 illustrates the DADO! prototype PE, while
figure 3 illustrates DADQ?'s PE.

Note that the same procassor connections =xist in the DADO?2
PE design as those appearing in the DADO!L design. !f in the
anlixeiy =vent that the planned [fO chip does a0t (unction
properly, DADO?2 will thus remain operational, but wiil not rua as
fast as savisaged. Since the DADQIL hardwars 0 date has remained
operable, we are convinced that the fuily upward compatible
DADO? PE desiga ensures the successful operation of 3 1023 PE
version of the machine.

In DADOI! the communication primitives ind execution
modes of 3 DADO PE ar- impiemented by 1 small kernel system
tespdent within each processor EPROM. The spesiaiized [/O switch
envizaged for ine larger version of the macline is simuiated in the

Figure 4t The DADO! Prototype Processing Element.

Aarent

Bt
—ry

Tra

an
Termrer am
= 8
L &l
L - 17 Y
rareenens
)
A a
g'”‘ Ll

Figure 5: The DADO?2 Prototype Processing Element.

™
Par-erd
aier
Parent
—r L0 i8N =4 - e
arsy (=17 avlu &t‘n
aorve oMhig
coseuter
. ,
[e~ 17 uey
[S
raroen e s h‘!‘
Cires
o Ladt S gnt
heia gncw

smailer version by 3 short sequential computation. As noted, the
1023 :lement prototype would be capable of executing in excess of
370 MIPS. Although pipelined communication is employed in the
DADO! xernel design, it is sxpected that fewer MIPS would be
achieved on DADO?2 without the [/O chip, as detailed in the
‘nilowing section. Thus, the design and implementation of 1
+ustom [/O chip forms 3 major part of our current hardware
research activities.

It should be noted that, in keeping with our principles of
“low-cost performance,” we have selected 3 processor technoiogy
onz generation behind sxisting available microcomputer technology.
For exampie, DADO? could have been designed with 1023 Motorala
38000 processors or Intel 80288 chips. Instead, we have chosen a
selatively slow technology to limit the aumber of chips for sach PE,
as well 35 to demonstrate our most important architeetural
principals in 3 cost #iTective manner.

Furthermore, since the Intel 8731 does not press current VLSI
tschnoiogy o its limits, it is surely within the realm of feasibility to
imilement 3 DADO? PE on a single silicon chip. Thus, aithough

DADOQ2 may appear impressive (an inexpensive, compact system |
with a thousand computers executing roughly 600 mullica
instructions per second) its design is very conservative and probably
at least an order of magnitude less powerful than a similar device
using [aster techaology. It is our conjecture though that the
machine will be practical and useful and many of its limitations will
be ameliorated 33 VLSI :ontinues its downward tread in scaling.
{DADQ3 may serve to prove this conjecture.)

Performance Evaluation of DADO?,

Design Alternatives. Much of the available computing power
in the DADO! prototype i3 consumed by firmware executing s four
¢yele handshake communication protocol. For this reason we
investigated the tradeofls involved with adding 3 specialized I/O
circuit to each PE to handle global commusication ia DADOS,
The current [/O circuit design provides the meaas to broadesast a
byte to all PE's in the tree in less thaa one Intel 8751 instruction
cycle. This efMiciency gain does not come free. The /O circuit
increases 3 PE’s component count as well as the total area on a
printed circuit board for the system. To decide this issue, we
investigated the relative performance of a machine desiga
incorporating the [/O circuit and a design without the [/O circuit,
using the available area for additional PE's,

A second but orthogonal issue for the machine desiga is
whether or not it is worthwhile to buffer the instruction stream
broadcast to PE's sxecuting in STMD mode. [n a typical SIMD
machine 3 :ontrol processor issues s stream of machine level
instructions that are executed synchronously in lock step by all of
the slave processors in the array. DADO is differsnt. Since each
PE of DADO is a fully capable computer, 3nd communication
betwesn PE's is generally sxpensive, we wish to make 1a instruction
15 “meaningful” as possible. What is communicated as an
instruction in DADO is usually 3 pointer to a procedure, storsd
locally in each slave PE. Primitive SIMD DADO instructions ire in
fact parailel procedure calls and may be viewed as macro
instructions.

For sxample, 1 common instruction that will be executed by a
DADO PE is "MATCH(pattern)”, where MATCH is 1 generalized
pattern matching routine local to sach processor.

Transmitting pointers to procedurss makes +ffective use of
sommunication links but introduces a difficuit probdlem. A
procedurs may behave differently depending on the local data.
Thus, the same macro instruction may require difTerent amouats of
processing time in sach PE. In such a devics =ither the PE's must
synchronize on every instruction, aad therefors potentiaily lay idle
while the slowest PE finishes, or the PE’s must be able to bufTer the
instruciion stream to possibly achieve better utilization. However,
buifering the instructions :equires overhead and may in fact
Jecrsase the overall performance.

Evalyation Method. To resolve these two d=sign issues the
DADO :nstruction stream was charsclerized by scudying the code
implementing the match phase of the DADO production system
algorithm, (roughly 10 pagss of PPL/M. detailed in the following
section). Queuing models were deveioped for each conliguration
reprasenting the 4 possible combinations: 3 DADO PE with and
#ithout the [fO cireuit. and with and witdout bufTering. The four
modeis wers simulated using the [BM Research Queuing Network
Simulation package, RESQ?2, [70]. The packags has 3 number of

very powerful simulation primitives including generation of job
streams with a variety of distributions times, sctive queues with a
variety of queueing service disciplines as well as mechanisms o
provide {low control. Compiete details of this study caa be found
ia {14).

Evaluation Results. Figure 8 summarizes the relative
throughput of the four conligurations working on 3 problem typical
of the size we sxpect a3 1023 node DADO to handle: 1000
productions and 1000 working memory elements (although lor
certain PS programs, R1, for example, we will be able to implement
nearly 2500 production rules). The simulations show that the [fO
circuit can be expected to nearly double the performance of the
DADO machine. However, the overhead issociated with bufTering
causes a decresse in performance of 27 and 20 percent in
configurations with and without the [/O circuit, respectively.

Figure 8s Relative Performance of Four PE Configurations. _

2
om0 L o Lo~ DRDO2
~o wWith wWith
178 Cirzuse 170 Circur s0 Cirsun
£ 7d 3-8 noustersg

Figure 7 is a comparison of a 5 level DADO subtree
{comprising 31 PE’s) without the /O circuit, and 3 4 level DADO
subtree, (comprising 15 PE's) with the [/O ecircuit. The x-axis
represents a3 rough ipproximation of the number of WM data
slements in the system. The graph shows that for a typical size
problem a 9 level dzen DADOZ with the [/O circuit will outperform
2 10 level deep DADO! without the [/O circuit by roughly 15
percent. However, the smaller machine’s performance degrades
faster than that of the larger machine. The simulations indicate for
oroblems larger than those we anticipate it is worthwhile to
dispense with the [/O circuit in favor of additional PE's.

Pregramming DADO

PL/M, 9] is 1 high-level language designed by Intel
Corporation as the host programming snvironmeat for applications
using the full range of Iatel microcomputer and microcontroller
chips. A superset of PL/M, which we call PPL/M. has beea
implemented 13 the system-level language for the DADO
srototypes. PPL/M provides a set of facilities to specify operations
0 be performed by independent PE's in parallel.

Intei's PL/M language is 3 conventional block-oriented
la.ng'uage providing 1 full range of data structures and high-level
statements. The following two syntactic conventions havs Seen
added to PL/M for programming the SIMD mode of operation of
DADO. The design of these constructs was influenced by the
methods smploysd in specifying parallel computation in the
GLYPNIR language [12] designed for the [LLIAC [V parailel
processor. The SLICE atiribute defines variables and procedures

Figure 71 Performance Comparison of DADOL and DADO?2
on Variable Size Working Memory.

DADO 2

Relative
Taroughput

Working Memory Si:ce

that are resident within each PE. The second addition is a
syntactic construct, the DO SIMD block, which delimits PPL/M
instructions broadcast to descendant SIMD PE's. {In the following
definitions, optional syntactic constructs are crepresented within
square brackets.}

The SLICE attribute;

DECLARE variablef(dimension)] type SLICE;

name: PROCEDURE|(params)] [type| SLICE;

Each declaration of a SLICEd variable will cause 1a allocatica
of space for the variable to occur within sach PE. SLICEd
procedures are automatically loaded withia the RAM of each PE by
30 operating system executive resident in DADQO's coprocessor.

Within a PPL/M program, 3an assigament of 3 value to 3
SLICEd variable will :ause the transfer to occur within =ach
snabled SIMD PE concurrently. A constant appearing in the right
hand side will be automatically broadeast to ail snabled PE’s.
Thus, the statement

X=3;
where X is of type BYTE SLICE, will assign the value 5 to 2ach
oczurrence of X in each 2nabled SIMD PE. (Thus, at times it is
convanient to think of SLICEd variables as vectors which may be
operated upon, in whole or in part, in parallel) However,
statements which opsrate upon SLICEd variables can only be
specified within the bounds of 2 DO SIMD block.

DO SIMD ¥ock:

DO SIMD;
r-statementy;

r~st3temenln;
END;

The r-statement is restricted to be any PL/M statement
incorporating only SLICEd variables and constanta.

In addition :o the (full range of instructions available in
PPL/M. 3 DADO PE in MIMD mode wiil have available to it a set
of built-in functions o perform the basic tree communication
apcrations, in addition to functions controlling the various modes of
sxecution.

Direct hardware support is provided by the semi-custom [/O
chip for sacn of the global communication [functioas:
BROADCAST. REPORT and RESOLVE, other communication
primitives are implemented by firmware embedded in the processor
EPROM. The interssted reader is referred to [26] for the details of
these primitives, as weil as 2 complete specification of the PPL/M

language.

The RESOLVE instruction recently redesigned from studying
DADO1's behavior deserves special mention here, The RESOLVE
instruction is used in practice to disable all but a singie PE, chosen
fram among 3 specified set of PE's. In DADOI, first a SLICEd
variable is set o one in all PE’s to be included in the candidate set.
The RESOLVE instruction is then issued by a PE executing in
MIMD mode, causing il but one of the flags in descendant PE's,
=xecuting in SIMD mode, %0 be changed to zero. (Upon executing a
RESOLVE instruction. one of the inputs to the MIMD PE will
Secome high if at least cne candidate wus found in the tree and
low if the -andidate st was found to be empty. This condition
code is stored in 3 SLICEd variable, which sxists within the MIMD
PE.} By issuing an assignment statement, ail but the single, chosen
PE may be disabled, and a ssquence of instructions may be
2xecuted on the chosen PE alone. [n particular, data from the
chosen PE may be communicated to the MIMD PE through a
sequence of REPORT commands.

In DADO1, the RESOLVE function is implemented using
special sequential code, embedded within the EPROM, that
propagates a ssries of “kill" signals in parallel from all candidate
PE’s to all (higher-numbered) PE's in the tree. In DADO2, the
RESOLVE operation has been generalized to operate on 8bit data,
sroducing the mazimum vaiue stored in some candidate PE,
Repeated use of this max-RESOLVE (function allows for the very
rapid selection of multiple byte data. This circuit has proven very
useful for a aumber of DADO algorithms which made use of the
tr=e neighbor communication instructions primarily for ordering
data within the tree. The use of the high-speed max-RESOLVE
often obviates the need for such communication instructions.
Coneaquently, the visw of DADO 13 a3 binary tree architecturs has
b::ome, fortuitousiy. nearly transparent in most of the algorithms
written for DADO thus [ar.

Con:lucion

The largest share of our softwars efTort has concentrated on

parallel implementations of various Al applications. The most
important of these is an interpreter for the parallel exs=cution of
production system programs. A restricted model of production
systems has been implemented in PPL/M 13nd is currently being
tested. Our plans include the completion of an interpreter for a
mare general version of production systems in the coming months.

We have also become very interested recently in PROLOG.
Since PROLOG may be considersd as a special case of production
systems, it is our belief that DADO can quite naturally suppore
performance improvements of PROLOG programs over
conventional implementations. Some interesting work in this
direction has been reported in [31].

Lastly, we note the reiationship of LISP to DADO. Part of
our work has concentrated on providing LISP with additional
parallel processing primitives akin to those employed in PPL/M.
We have come to use PSL LISP this purpose due o ity relative ease
in porting to 3 new processor.

By way of summary, it is our belief that DADO can in fact
support the high-speed execution of a very large class of Al
applications specifically expert systems implemented in ruie form.
Coupled with an efficient implementation in VLSI technology, the
large-scale parailelism achievable on DADO will indeed provide
significant performance improvements over von Neumana
machines. [ndeed, our praiiminary statistics suggest that the 1023
PE version of DADO is sxpected to execute R!, for sxample, st an
average rale in excess of 95 production system cycles per second!
Present statistics for a reimplementation of R1 on 2 VAX 11/780
project a performance of 30-30 cycies per second. [t is interesting
to note further that the DADO?2 prototype will be comparable in
hardware compisxity to the DEC VAX 11/750, a smaller, siower
and much less expensive version of the VAX 780 used presently to
axecute RI. Hence, DADO?2's parallelism achieves 2 3509
performance improvement over a machine roughly six times its size.

Referancas

[1| Browning, S., “Hierarchically organized machines,” {a
Mead and Conway (Eds.), Introduction to VLSI Systems, 1978.

(2] Browning, S.. The Tree Machine: A Highly Concurrent
Computing Environment, Ph.D. Thesis, California Institute
of Technology, 1980.

{3] Buchanan, B. G. and Fsigenbaum, E. A.,
“DENDRAL and Meta-DENDRAL: Their applications dimension,"”
Artificial [ntelligence, 11:5-24, 1978,

[4] Duda. R., Gashnig, J. and Hart, P.E.,

“Model design in the PROSPECTOR consultant system for mineral
axploration.” In D. Michie (Ed.), Ezpert Systemns in the
Micro-Electronic Age. Fdinburgh University Press, 1673,

[3] Fiynn. M. J., “Some zomputer organizations and their
effectiveness,”” [EEE Transactions on Computers, 1972,

(6] Forgy, C. L., On the Efficient Implementation of Production
Systems, Ph.D. Thesis, Carnegie-Mellon University, 1973.

|7] Forgy. C. L., A note on produc:ion systems and ILLIAC [V.”
Technical Report 130. Department of Computer Science,

§

Carnegie-Melloa University, 1980,

18} Forgy, C. L., "RETE: A fast algorithm for the many
sattern/many object pattern problem,”
Artificial Intelligence Journal, 1982,

{9] Intel Corporation, PL/M-51 Users’s Guide for the 3051 Baaed
Development System, Order Number 121966, 1982,

[10| Ishida, T. and S. J. Staifo, “Simultaneous firing of production
rules on tree-structured machines,” Technical Report,
Department of Computer Science, Columbia University, 1984.
(Submitted to Int. Conf. Fifth Generation Computer Systems.)

{11] Leiserson, C. E., Ares-Ef/icient VLST Computation,
Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon
University, 1981.

{12} Lowrie, D. D., T. Layman, D. Daer and J. M. Randal,
“GLYPNIR-A programming language for ILLIAC IV,”
Comm. ACM, 18-3, 1975.

[13] McDermott, J., “R1: The formative years,”
Al Magarine 2:21-29, 1681,

[£4] Miranker, D. P, "The performance analysis of four competing
DADO PE configurations.” Tzchnical Réport,
Dapartment of Computer Science, Columbia University, 1983.

{18] Miranker. D. P, "Parformance sstimates for the DADO
machine: A comparison of TREAT and RETE,” Technical Report,
Department of Computer Sciencs, Columbia Univarsity, 1984.
(Submitted to /nt. Con/. on Fifth Generation Computer Systems.)

[16] Miranker. D. P.. “The system-level design of the DADO1
prototype,” (in preparation).

[17] Newell, A., “Production systems: models of ontrol structures,”
In W. Chase {sditor), Visual Information Processing,
Academic Press, 1973,

[18] Nilsson. N., Fundamental Principles of Artificial Intelligence,
Tioga Press, Menio Park, California, 1980.

{15] Rychener, M.. Production Systems as a Programming
Language for Artificial Intelligence Research, Ph.D. Thesis,
Department of Computer Science, Carnegie-Mellon University, 1976

{20l Sauer, Charles H., Macnair, Edward A., Kurcse, James F.
The research queueing package, CMS User's Guide,”
Tezhnical Report RA 139 %41127, BM Research Division, 1982,

[21] Schwartz, J. T., "Ultracomputers,” ACM Transactions on
Programming Languages and Systems 3(1), 1980.

[22] Shaw, D. E., *The NON-VON supercomputer,”
Technical Report, Department of Computer Science,
Columbia University, 1982,

(23] ShortlifTe, E, H., Computer-Based Medical Consultations:
MYCIN, New York: American Elsevier, 1976,

{24] Siegel, H. J., L. J. Siegel, F. C. Kemmerer, P. T. Mueiler, H. E.
Smolky and D. S. Smith, “PASM: A partitionable SIMD /MIMD
system for image processing and pattern recognition,”

IEEE Transactions on Computers, 1981,

[25] Stolfe, S. J. and D. E. Shaw, “DADO: A tres-structured
machine architecture for production systems,” Proc. National
Conference on Artificial Inteiligence, Caraegie-Mellon University
and University of Pittsburgh, 1982.

{268] Stolfo. S. 1., D. Miranker and M. Lerner,

“PPL/M: The system level language for programming the DADO
machine,”” Technical Report, Department of Computer Science,
Coiumbia University, 1982, {Submitted to ACM TOPLAS.)

{27] Stoifo. S. J.. “The DADO parallel computer,” Technical Report
Department of Computer Science, Columbia Univarsity, 1983,
{Suomitted to 4J Journal.)

{28] Stolfo, S. J.. “Five aigerithms for PS execution on the DADO
machine,’” Technical Report, Department of Computer Science,
Columbia University, 1984. (Submitted to AAAS 34.)

{29} Stolfo. S. 1., “On the 4=zign of parallel production system
machines: What’s in a LIP?."" Technical Report,

Departmeat of Computer Science, Columbia University, 1984.
iSubmitted to /nt. Con/f. on Fifth Genergtion Computer Systems.)

{30] Stoifo, S. J., Vesonder, G. T.,

“ACE: An expert system supporting analysis and management
decision making,” Bell System Technical Journal,

{To appear 1984).

i31] Taylor. S.. C. Maio. 3. J. Stolfo and D. E. Shaw,

“PROLOG on the DADO marhine: A parailei system for high-speed
logic programming,” Proc. Third International Phosnz
Conference on Computers and Communication, 1984,

