
................ ..- .. ~ ,

...... -.......... - -_ ... -"""-

LPS Algorithms: A Detalled Examination

Andy Lowry
Stephen Taylor

Salvatore J. Stolfo

Columbia University
DepartmeM or Computer Science

March 1984

Abstr&et

LPS is a Logic Programming System currently under development and specifically targeted for
implementation on massively parallel architectures. We present a detailed explanation of algorithms
under development for parallel execution of LPS programs. The explanation is significantly more detailed
than those published previously. An abstract proof procedure is developed which encompasses these
algorithms and several variants, as well as the standard sequential Prolog algorithm. This abstract
procedure provides a conceptual basis for our discussion and. in a companion paper, for a critical analysis
of various execution strategies.

The algorithms have been successfully implemented and demonstrated in simulation on a number of small
programs. Work is currently underway to transfer this implementa.tion to a working prototype machine
based on the DADO parallel architecture.

Due to the depth of our treatment we assume that the reader has read previously published literature in
t he area.

This research is supported cooperatively by: Defense Advanced Research Projects Agency under contract
:-':00039-82-C-0427, New York State Science and Technology Foundation, Intel Corporation. Digital
Equipment Corporation. Valid Logic Systems Inc., Hewlett-Packard. AT&T Bell Laboratories and
International Business Machines Corporation.

Table or Contents

1. Introduetlon

2. An Ab!traet Proof Procedure

2.1 Proors
2.2 The Procedure

2.2.1 Contributions
2.2.2 Instantiators
2.2.3 Constraints

2.3 Some Observations

3. A Proof Example

4. The Current LPS Implementation

4.1 The Binding Set Representation
4.2 Distribution of Data.
4.3 The Unification Phase
4.4 The Join Phase

4.4.1 A Heuristic For Ordering The Join Phase

4.4.2 Partition or The Join Phase

4.5 The Substitution Phase
4.6 Managing Created Variables

i>. Conclusions and FutUl"e Work

Referenee!

1

2
2
3
5
5
6

~

o
9

10
11
11
12
13

13
14

15

11

LIst of FIgure!

Ftgure %·11 Abstract Proof Procedure
FIgure 4-11 Flow of Data in LPS Execution

II

..
10

1. Introduetlon

Logic programming has attracted a great deal of attention as a medium ror the development of software

ror parallel execution. Two major ractors contributing to this perception are the demonstrated suitability
or logic programming for the expression of a wide variety of software tasks, and the identification of

several sources of parallelism inherent in the logic formalism itself. Thus logic programming languages

appear to ofrer a framework in which programs naturally lend themselves to emcient parallel execution,
but in which the programmer need not. be overly cognizant. of this goal.

With this view in mind we have developed methods for the execution of logic programs written in a

language we call LPS, under a particular parallel execution model IH, 121. Our methods are not well
characterized by any of the sources of parallelism identified by Conery [21. although t.hey bear some
resemblance to OR and AND parallelism. We uniry a conjunction or goals simultaneously throughout a
network of what may be considered intelligent memory devices. Each or these devices receives the ent.ire

goal list and attempts unification or each goal with every literal in its own local store. Upon complet.ion

or this activity, a series or mo:twork queries and combining operations results in the construction or a single

relation representing all potential solutions or the original conjunction. The cycle repeats by selecting one

member or that relation and producing rrom it a new conjunction to be solved.

\Ve may view our proof search as a perusal through a tree or goal lists, where each node gives rise to

children that can be obtained via resolution of one or more of its goals with clauses in the program. The

structure of this tree depends on which goals are chosen for resolution in each node. In particular, we note

that the standard sequential Prolog algorithm· chooses exactly one goal in each node, whereas the current
LPS algorithms· always resolve every goal in the goal list. Both algorithms pursue a depth first search,

although the LPS search tree, in comparison to the Prolog search tree, is characterized by:

- Shorter paths to leaves

- Earlier termination of unproductive paths

- Earlier consideration or most goals, causing earlier branching but not necessarily higher

branching ractors

- A substantially reorganized leaf structure. resulting in a different order to the construction of

solutions

Although the LPS algorithms may appear to exhibit something or a breadth first nature due to the

simultaneous construction or all children for whichever node is under consideration, that view is
misleading. Although the children are constructed in unison, one child's subtree is searched before any
other child is considered, so that the search pattern itself is purely depth first. The process may be viewed

as a hill-climbing strategy in which all branches are equally favored.

·See 1151. We will henceforth refer to this algorithm as simply the "Prolog algorithm."

·We note that the algorithms are under ongoing development

2

In this paper we begin by presenting an abstra.ct proof procedure that encompasses both the LPS and the

Prolog algorithms. as well as many variations. We proceed with a specific example or the algorithm at
work. followed by detailed explanation of the current LPS implementation in terms of the abstract.

algorithm.

For an introduction to logic programming methods the reader is rererred to [7, 8. 41. A very brief
description of the Prolog language, on which much or LPS has been modeled, may be found in [91; for
complete details see [11. A description or the computing model ror which our algorithms are targeted may
be found in [121. The DADO architecture, ror which a. specific implementation is underway. is described in
[10, 111. The reconciliation operation which we use may have been independently discovered by

Pollard [61, although we have encountered significant difficulty in obtaining this reference, Related

algorithms are described in [31.

t. An Abstract Proof Procedure

%.1 Proofs

We define a proof ror a given directive to be sequence or goal lists beginning with an instance or the

directive and terminating in the empty goal list. Each goal list is composed or contributions from the
individual goals in the preceding goal list. where each goal contributes anyone of'.the following:

· Itselr. as a singleton goal list. In this case we say the goal has been retained.

· The empty goal list. if the goal is satisfied via some fact. In this case we say the goal has been
removed.

• The instance. under some substitution. of a rule body whose rule head, under the same
substition, is identical to the goal. Here we say the goal has been expanded.

Our proof procedure can then be viewed as the search for such a sequence. In addition. if a proof is found,
the minimal substitution that transforms the directive into the first goal list in the sequence is displayed.

We call this substitution a 8olution for the directive.

Since there may be more than one way to satisry any given goal. one goal list may give rise to more than
one successor goal list. any or all or which may lead to a successful proof. Thus there may be several
proofs for a single directive. In general we will want our proof procedure to be capable of pursuing all
possible proofs in a systematic fashion.

The difference stated in the Introduction between the search trees traversed by the Prolog and LPS

algorithms may now be restated as follows: The Prolog algorithm pursues proofs in which each proof step
consists of either removing or expanding the lirst goal in a goal list and retaining all other goals. In the
current LPS algorithms no goal is enr retained in a goal step; rather, each goal is either removed or
expanded.

%.% The Proeedure

Our description of what constitutes a proof allows us to quite readily verify proofs that are handed to us,

but it is substantially more difficult to discover correct proors when they exist. Two processes allow us to
identify the substitutions that give rise to proofs: unification and reconciliation.

3

t.:nifica.tion [il provides a method for determining wh~ther a substitution exists that will transform two

terms into id~ntical terms. Such a substitution is call~d a unifier, although in the sequel we shall use this

term to r~f~r sp~cifically to the m08t general unifier. By "most gen~ral" we m~an that if U is th~ most

genera.! unifi~r of t~rms T 1 and T 2' and S is any oth~r unifying substitution, then 5(T 1) is an instance of

U(T 1)·

Reconciliation [6, 31 is a proc~dur~ for d~t~rmining whether two substitutions are compatibl~, and if so,

producing th~ "most general" substitution that subsum~s both. By this we m~an that if R is th~

reconciliation of substitutions S 1 and 52' th~n for any t~rm T, R(T) is an instance of both S 1 (T) and
S..,(T). As with unification, by "most g~neral" w~ m~an that any oth~r substitution with this prop~rty,
when applied to any term T, gives rise to an instance of R(T).

Given th~ mechanisms of unification and reconciliation, the construction of a solution for a directive can
be accomplished as shown in Figure 2-1. Starting with the dir~ctive its~lf as a goal list, the algorithm

produces succ~ssive goal lists until eith~r an empty goal list is constructed or a failure condition is

encountered. Upon successful t~rmination, Substitution_List contains a sequ~nce of substitutions whose
composition is a solution for the directive.

Construction of a new goal list from its predecessor proc~~ds as follows:

1. Ea.ch goal is analyzed individually to produce:

- Its contribution {o the new goal list,

- A substitution (which we call an inJtantiator) that will be applied to the contribution
before its addition to the new goal list, and

- Another substitution comprising con"traint" on th~ overall solution.

2. The constraining substitutions are combined via reconciliation to produce a substitution
supporting this goal step as a whole. This substitution is saved as a component of the solution
that we seek.

3. All instantiators are updated through composition with the above reconciliation.

4. Each contribution is passed through its corresponding instantiator, and the results are
collected into a single goal list.

2.2.1 Contributions

Contributions (in their pre-instantiated form) are determined as follows:

. A RETAINED GOAL contributes itself, verbatim.·

- A RE~fOVED GOAL contributes nothing.

- An EXPANDED GOAL contributes the body of the rule with whose head it unifies, verbatim.

-Keep in mind that we are presenting an abstract proof procedure which encompasses several practical
stratesies. Thus although we have stated that the LPS algorithms never retain a goal, we include goal
retention in our abstract procedure in order to accomodate both the Prolog algorithm and several variants
on the LPS algorithms.

Goal_List := Directive;
Substitution_List := NIL;

WHILE Not Empty(Goal_List) DO

Constraint Set:= NIL;

FOREACH goal G in Goal_List DO
Decide whether G is to be retained, removed, or expanded;

IF retaining G THEN
Contribution(G) := G;
Instantiator(G) := Nn.;

ELSE IF removing G THEN
Find a ract unirying with G, call the unifier U;

IF none can be round, FAIL;
Contribution(G) := Nn.;
Instantiator(G) := NIL;
Restrict U to bindings ror variables in G, add

the result to Constraint_Set;
ELSE IF expanding c:J THEN

Find a rule R whose head unifies with G, call the unifier U;
IF none can be found. FAIL;

Contribution(G) := rule body of unifying rule;
Instantiator(G) := U restricted to variables in R;
Insert bindings to new created variables into Instantiator(G)

for all variables rrom R not bound by U;
Restrict U to bindings for variables in G, add

the result to Constraint Set;
FI;

OD;

Compute reconeiliation of all substitutions in Constraint _ Set,
call the result Rec; IF reconciliation fails, FAIL;

Add Rec to Substitution List;

New _ Goal_List := Nn.;
FOREACH goal G in Goal_List DO

Instantiator(G) := Instantiator(G) composed with R;
Instantiate Contribution(G) using Instantiator(G),

and add the result to New Goal List;
00;

Goal_List := New _ Goal_List;
00;

Figure %-1: Abstract Proof Procedure

5

2.2.2 Instantiators

:'-ion-empty instantiatol'! are only produced for expanded goals. It would be pointless to compute an

instantiator for a removed goal since its contribution is always empty; in the case of a retained goa.l. all
instantiation information comes from the constraints imposed by unification or non-retained goals. so an

empty instantiator is set in place awaiting composition with the reconciliation of those constraints.

The instantiator ror an expanded goal is simply the unifier that resulted from unification of the goal with

a rule head. We only include bindings for variables that are contained in the rule (rule variable~), since

other bindings cannot contribute to instantiation of the rule body. We also insure that every rule variable
is represented in the instantiator by binding any unbound rule variables to new created variables. Such a

binding adds no information; the objective is to insure that the instantiated rule body will contain none of
the original rule variables.

2.2.3 Constraints

Constraints are produced by unification of removed goals with facts a!!d expanded goals with rule heads.

Each unifier is added to a constraint set, arter restricting it to variables that occurred in the goal (goal
variable,,). The constraint set is used to produce a consistent substitution for the preceding goal list which

supports its transformation into the succeeding goal list. Thus the only bindings of interest are those for
goal variables. which is why the unifiers are pruned before adding them to the constraint set. Indeed, if

the same fact or rule head -is used to uniry with more than one goal. inconsistent bindings for non-goal
variables might result, but these must not prevent the proof from progressing. For example, consider the

following program:·

Rule 1: tasty(X) :- sweet(X).
Fact 1: sweet(cookies}.
Fact 2: sweet(cake).

Directive: tasty(cookies), tasty(cake).

We suppose that (as would be the case with LPS) our algorithm chooses to expand both of the original

goals in its first step, using Rule 1. Unification of tasty(eookles) with tasty(X) produces the unifier

[X/cooklesj, while unification of tasty(eake) with tasty(X) produces [X/cakej. Reconciliation of these

two unifiers cannot succeed since variable X cannot be bound to both eookles and eake simultaneously.
Clearly, though. the directive is provable. This problem of unwanted binding interaction does not occur if

we discard bindings for X prior to reconciliation. Note that these bindings remain in instantiators so that

they may be used for instantiation of rule bodies.

Similar reasoning shows why it is necessary to include "dummy bindings" for non-unified rule variables in

the instantiators ror expanded goals. If this were not done, those rule variables might end up occuring in
two or more goals at some point during the proof. This would cause unwanted interactions since the
algorithm would insure that only mutually compatible bindings were produced for all occurrences of those

variables, while the separate occurrences should in fact be treated independently.

The purpose of composing each instantiator with the constraint set reconciliation is to insure that each

*For our examples we adopt the Prolog convention that. symbols beginning with a capital letter are
considered variables. while all others are considered predicate and runction symbols.

6

goal list is cast in terms of the current state of knowledge of the solution under construction. That

solution is constructed as a sequence of component substitutions, where each proof step produces one
component. rr goal lists are not kept up to da~e in this fashion, the same variable may end up bound by
two or more different components. During later composition of the components, all but the first of these

bindings would be completely lost. For example, the composition of [X/cookies] with [X/cake} is
simply [X/cookIes}. In general, it will be the case that no goal list will ever contain a variable for which

a binding exists anywhere in the component substitutions produced thus far in the proof procedure.

:.3 Some Observations

Due to the "most general" nature of unification and reconciliation, our algorithm computes the most
general solution that will support the constructed proof. This translates into conciseness in the solution

set reported for a directive, although it does not guarantee that no solution will be an instance of another.
This may arise if there are multiple proof paths for some particular solution.

Upon failure of a particular proof path, both the LPS and Prolog algorithms backtrack to the most recent

choice point and pursue an alternate path. In the LPS algorithms we find that all of these alternate paths

have already been started by the simultaneous construction of all possible successor goal lists from the
choice point. The Prolog algorithms do not benefit from such a head start. As mentioned in the
Introduction, this feature may easily mislead one to suspect that the LPS search strategy includes some
breadth first component rather than being strictly depth first.

Finally, it will be seen that in LPS the composition of the component substitutions is performed

incrementally as each component is produced, rather than computing the entire composition at the end of

the proof.

3. AProor Example

Consider the following program:

Rule 1: can_eat(X):· food_store(S), open(S,now). has_money(X).
Rule 2: has_money(X) :. friend(Y,X), has_money(Y).
Fact 1: food_store(mama_joys).
Fact 2: food _ store(take _ home).
Fact 3: friend(chris.andy).
Fact 4: friend(tori.chris).

Suppose the author is interested in whether or not he is currently able to eat. First, from general
knowledge of neighborhood food stores. and by subtly questioning his friends. he arrives at the following
additional facts:

Fact 5: open(mama_joys.now).
Fact 6: has_money(tori).

Next he invokes the algorithm with the directive can_eat(andy) and observes the following execution:

1. The initial goal list is {csn_est(sndy)}. We choose to expand the single goal via Rule
1. Unification witb the rule head produces the substitution [X/andy).

Our goal's pre-instantiated contribution is the rule- body, {rood _ store{S), open(S.now).
hM_money(X)}. The instantiator is [X/andy,S/_I). where _I is a created variable to
which S is bound since it was not bound during unification. This expansion contributes
nothing to the constraint set since no goal variables were bound during unification (indeed,
there were no goal variables to be bound!).

Reconciliation or our (empty) constraint set produces an empty substitution. so our
instantiator is not afrected. and the next goal list is {rood_store{_I), open(_I,now),
ha.s _ money(sndy)}.

Retain goal rood_store{_I):

Contribution: rood _ store(_1)
Instantiator: NIL
Constraint: NIL

Remove goal open(_I.now) via Fact 5:

Contribution: :"ilL
Instantiator: NIL
Constraint: !_l/mama_Joys]

Expand goal has _ money{ andy) via Rule 2:

Contribution: {rrlend(Y.X), ha.s _ money(Y)}
Instantiator: [X/andy.Y/_:!]
Constraint: NIL

The overall constraint set is {[_l/mama_Joys]}, whose reconciliation is just
!_l/mams_Joys]. The only instantiator that is affected by this reconciliation is the first.
which becomes !_I/mama_Joys). Instantiating all of the contributions with their
instantiators then produces the new goal list: {rood_store(mama_Joys).
rrlend(_ ~.andy). has _ money(_ %)}.

Remove goal rood_store(mams_Joys) via Fact 1:

Contribution: NIL
Instantiator: NIL
Constraint: NIL

Remove goal rrlend(_ %.sndy) via Fact 3:

Contribution: NIL
Instantiator: NIL
Constraint: _ 2/chrls

8

Expand goal h&!l_ money(_:n via Rule 2:

Contribution: {trtend(Y,X). has_money(Y)}
Instantiator: [X/_ 3, Y 1_ 4]
Constraint: [_:,_3]

The overall constraint set is {L :Ichrls], [_ :1_ 3]}, whose reconciliation is [_ %/chrls.
_ 3/chrls]. This affects the instantiator for the third goal. which becomes [X/chris. Y / _ 4].
Instantiating all of the contributions with their instantiators yields the new goal list:
{trlend(_ 4.chrls), has_money(_ ..)}.

4. Current goal list: {trlend(_ 4.chrls), has _ money(_ ..)}

Remove goal trlend(_ ... chrls) via Fact 4:

Contribution: NIL
Instantiator: NIL
Constraint: [_ .f/torl]

Remove goal has_money(_ 4) via fact 6:

Contribution: NIL
Instantiator: NIL
Constraint: [_ 4/torl]

The overall constraint set is {[_ 4/torl]. [_ 4/torl]},· whose reconciliation is [_ 4/torl]. All
contributions are nil. so the new goal list is empty.

5. Current goal list: {}

The algorithm terminates successfully upon encountering an empty goal list.

The sequence of reconciliations that was generated by the algorithm is:

[]
L I/mama_joys]
L2/chris, _3/chris]
1_ 4/toril

The composItIon of these components yields the overall substitution: [_l/mama_Joys. _2/chrls.
_ 3/chrls. _ 4/torl]. The sequence of generated goal lists is:

{can _ eat(andy)}
{food_store(_l), open(_l,now), has_money(andy)}
{rood _ store(mama _joys}, friend(_ 2,andy), has_ money(chris)}
{rriend{_ 4,chris}, has_money(_ 4)}
NIL

If we apply the overall substitution to this sequence of goal lists, we arrive at our final proof:

·or course, this constraint set is not really a ut since it contains duplicate entries. However, the
terminology is useful in a loose sense, and the current LPS implementation will in fact go through the
work of reconciling two identical constraints rather than removing the duplicity.

9

{ can _ eat(andy)}
{food_ store(mama_joys), open(mama _joys.now). has _ money(andy)}
{food _ store(mama _joys), friend(chris,andy). has _ money(chris)}

{friend(tori,c hris). has _ money(tori)}
;-.Jll..

4. The Current LPS Implementation

The LPS algorithms that we have formula.ted can most easily be understood as comprISIng three
computa.tional phases: unification. join, and substitution. In this section we will discuss an actual LPS
implementation in terms of these components, relating each functionally to the abstract algorithm
outlined above.

The implementation is based on the computing model described in Taylor et 3011121. Very brieny, we
envision a network of independent processing elements (PE's) each equipped with a moderate local storage

capacity. The network is controlled by a contol processor (CP) which coordinates global communication

and invokes individual instructions as well as local procedures in unison throughout the PE network.

Global communication consists of broadcast messages from the CP to the network, and reports solicited
by the CP from individual PE's.

4.1 The Binding Set Representation

A binding set represents the result of applying a single step of our proof procedure to a goal list. It

contains the following information:

- The reconciliation of the constraint set produced by unification of goals with facts and rule
heads.

- A list of rule body keys by means of which rule bodies may be obtained at the CP for
instantiation and inclusion in a new goal list. Note that a single rule body key may appear
more than once. This will be the case if the same rule head was used to expand more than one
goal in the goal list.

- An instantiator for each rule body key contained in the binding set. If a key appears more
than once, each is associated with its own instantiator.

Recall that the current LPS algorithms never retain goals from one goal list to the next. Thus the above

set of information includes everything required to construct the successor goal list as well as the solution

component produced by this goal step.

The overall data structure may be viewed as comprISIng several "layers," each identilied with a layer

"marker." Each layer contains a substitution or some sort -- either the single reconciliation carried by the
binding set or one of the possibly many instantiators. In the former case, the layer is called the common
layer owing to its nature as a substitution that encompasses all the constraint set components contributed
by the unifications. The layer marker for the common layer is the atom, COMMON. A layer
containing an instantiator is called a rule layer. since a non-empty instantiator is produced only for a goal

that is expanded by unification with some rule head. The marker for a rule layer is a key identifying the

rule that was used in the expansion.

10

A binding set with no rule layers is or special interest, and we call it a simple binding $ft. Other binding

sets are symmetrically termed complex binding 6et8. A simple binding set is important because it is

reported only at the completion or a successrul proor.

4.% DIstribution or Data

As we shall see, all unification is perrormed in the individual PE's that rorm the processor network.

whereas instantia.tion takes place in the CPo For this reason we store all racts and rule heads, (that is, all
the positive literals or our program) in the PE network itself. Each literal resides in a single PE, although
any PE may contain several literals. Rule bodies, on the other hand. are kept in the CPo Each rule head
in the PE network is tagged with a key which can be used to identiry the corresponding rule body in the

table maintained by the CP.

During execution or a logic program. goal lists are constructed in the CP. initially rrom the directive and
subsequently rrom the goal list contributions carried in the binding sets. When a goal list is complete it is
transmitted to the PE network where unification, reconciliation. and composition operations produce new

binding sets. or the possibly many binding sets produced. a single set is selected ror transmission back to

the CPo and the entire cycle is resumed while the other binding sets lie dormant in the PE network

awaiting later selection. The operation is shown pictorially in figure 4-1.

Figure 4-11 Flow or Data in LPS Execution

11

4.3 The Unlneatlon Phase

The first phase of the LPS algorithm begins with the transmission of a goal list from the CP into the PE
network. Residing in each PE is some (possibly empty) collection of facts and rule heads that were placed
there when the program was initially loaded into the machine. Once the transmitted goal list has been
captured, each PE unifies every goal with as many of its resident literals as possible. producing unifiers
which are stored in the PE's local storage.

Unification with a fact produces a simple binding set whose common layer is the constraint set.
cont.ribution specified by the abst.ract. algorithm for a removed goal. That. is, t.he unifier is stripped of all
bindings for variables t.hat. were not present in the unified goal, and the resulting substitution becomes the
common layer.

Cnification with a rule head produces a complex binding set whose common layer is the unifier stripped of
its non-goal variable bindings (same as the common layer for a removed goal). The rule layer is the
instantiator for the expansion, as specified in the abstract algorithm. In other words, the unifier is
stripped of all bindings for non-rule variables, and supplemented with bindings to new created variables
for all unbound rule variables.· The marker for the rule layer is the key associated with the unifying rule
head.

Each binding set produced during the unification phase is tagged with a level number which identifies, via
its position within the transmitted goal list. the goal whose unification gave rise to the binding set. It will
become clear during the discussion of the join phase why this tagging is required:

4.4 The Join Phase

We have named the second phase of our execution loop as the "join phase~ due to a useful interpretation
of the basic operation as an equi-join over a set of database relations. Indeed, if we recall that each goal
in the transmitted goal set gave rise, during the unification phase, to a collection of binding sets with a
common level number, we see that the level number provides us with a key to the "relation" defined by
the corresponding goal. The database from which the relation was produced is the collection of literals
(facts and rule heads) present in the PE network.

With this interpre'tation in mind, one sees that joining these several relations, using reconciliation as the
basic pair-wise matching operation, computes reconciliations for all compatible combinations of unifiers for
the goals in the transmitted goal list. At the completion of the join phase, everyone of these binding sets
will reside in the PE network and will be elegible for later selection and elaboration of the particular proof
path it represents. Thus the transmitted goal list can be discarded at that point.

Any matching operation performed on two binding sets will require that the two bindings sets be
accessible to the same processor. In general that will not be the case at the completion of the unification
phase, since each binding set is stored in the PE containing the unifying literal. The join phase thus
requires communication of binding sets around the network. This communication is coordinated by the
CPo

The basic step in the join phase consists of selecting two relations out of the several to be joined and

-Note that variables created by two different PE's must be distinguishable. This is e~ily done if the
PE's can be assigned unique identification tags, as those tags may then be incorporated Into the cre,ated
variable names. Such tags may be assigned at system startup using resolve and rep.ort o!,eratlOns.
Alternatively. many existing and proposed machines fitting our model can generate Unique [D's uSIng
various highly efficient methods.

12

JOIning those two into a single relation, thus decreasing by one the number of relations to be joined.

When only one relation remains, the join phase is complete.

In order to join two relations, one of the two is chosen to "feed into" the other. The CP loops over the
feeder relation, extracting one member from the PE network during each iteration. As each element is
obtained from the feeder it is broadcast to the entire PE network. and any PE that holds elements from
the "consumer" relation attempts to reconcile the common layer of the feeder with each of its resident
consumers (remember. the common layer is where the constraint set contributions .were placed during the
unification phase). Whenever reconciliation succeeds, a new binding set is created whose common layer
contains the reconciliation. Any rule layer that appeared in either of the contributing binding sets is
included in the new binding set, and the level number is set so as to identify the new binding set as
belonging to the new joined relation under construction.

Each feeder binding set is discarded as soon as it has been matched against all possible consumers, and
when the entire pair· wise join has been completed, the original consumer relation is discarded as well.
Thus two relations have been discarded, and one has been produced. bringing us nearer to our goal of a
single relation.

4.4.1 A HeurIstIc For OrderIng The JoIn Phase

[n our computing model communication should be held to a mIDI mum since it must all be funneled
through a single channel (the CP). Due to the commutative nature of the reconciliation operation, we
may exercise a simple heuristic that should, under most circumstances, keep join phase communication
close to minimal. Specifically. we always choose the smallest existing relation as the feeder, and the
largest relation as the consumer. Cases can easily be constructed in which some other ordering turns out
to be preferable. but the heuristic seems reasonable in the absense of methods for predicting the sizes of
intermediate join results.

In the general case we choose to implement an approximation to the above heuristic since our computing
model does not provide an efficient means of determining the size of a distributed relation.· We make use
of a sequencing mechanism applied to the relation members. The idea is that within each relation the
individual binding sets are assigned unique uquence number8 in the hope that the difference between the
highest and lowest sequence numbers in a relation will generally be a useful estimate to the size of the
relation.

In the current LPS implementation, sequence numbers are assigned during the unification phase according
to the order in which the clauses were asserted during program loading. Thus any binding set that is
produced by unification with the program's first clause is assigned a sequence number of one. Unification
with the program's second clause yields sequence number two, and so on.

The assignment of sequence numbers to join results is analogous to the calculation of storage offsets to
multi·dimensioned array elements. The first "dimension" is represented by the sequenc~ number of the
contributing binding set from the first relation (level number one), and so forth. The "offset" calculation
can be performed efficiently by precomputing (in time linear in the number of relations) a "dope vector"
similar to that used by many programming languages for array indexing. All sequence numbers are
mUltiplied (again in linear time) by the dope vector elements corresponding to their level numbers prior to

*Note, however, that many architectures fitting our model do in fact allow for fast network·wide sums.
makin~ the heuristic viable as presented. We hope to clarify the need for such a mechanism through
statistical in v estigations.

13

the commencement of the join operation. Then when two binding sets reconcile successfully, the sequence
number for the new binding set is the sum of the two contributing sequence numbers.

In addition to their contribution to the join ordering heuristic. sequence numbers provide a method for
ensuring a predictable perusal of the proof space by our implementation. Although from the point of view
of pure theorem proving such predictability is inessential, under some circumstances such as I/O and
recursion, it is crucial if the programming system is to be useful for a more general class of programs, as is
the case with Prolog. Unfortunately, the sequence numbers as described here do not appear to provide a.n
ordering that is easily comprehended or well suited for ma.ny programming tasks, so that a.lternatives
must still be investigated.

4.4.% Partition or The Jotn Phase

For reasons that will become apparent in the upcoming discussion of variable purging, it may be desirable
to impose a global constraint on the join phase ordering so that the relations arising from any single goal
list contribution are fully joined among themselves prior to any attempt at combining results from
different contributions. We adopt this strategy in the current LPS algorithms by conducting the join
phase in two steps. First, a series of pa,.tial join8 takes place in which each goal list contribution is
reduced to a single relation in the PE network. When the partial joins have completed. a. final join joins
each of these relations into a single relation representing the successors to the goal list under
consideration.

4.5 The Substitution Phase

The last task to be performed upon the discovery of a successful proof is the composition of the various
substitutions that were generated along the way. As indicated in the abstract algorithm, these
substitutions are the constraint set reconciliations computed to support the individual proof steps. Their
composition is computed in the substitution phase of our algorithm.

As was brieny mentioned in the observations rollowing the abstract proof procedure. we have chosen in
our current implementation to compute this composition incrementally as the individual components are
generated. Thus each time a new reconciliation is produced. we compute its composition with all prior
reconciliations in its proof path. Once this has been computed. the individual reconciliation itself can be
discarded.

In order to achieve this strategy, we store in the common layer of a binding set, not the individual
reconciliation that produced the binding set. but its composition with all prior reconciliations on its proof
path. This is easily implemented because all of the binding sets produced by a join phase share a common
proof history, and the cumulative substitution representing that history is exactly the substitution stored
in the common layer of the complex binding set that gave rise to this proof step in the lirst place.

In our LPS implementation, then, the substitution phase is accomplished by transmitting the prior
reconciliation history to the PE network following the join phase and computing in each PE the
composition of that substitution with any new reconciliations.

Three possible benelits derive from our incremental substitution strategy. First, composition
computations are performed in parallel in the PE network rather than individually for each reported
solution by the CPo Second, debugging is easier because the progress represented by each binding set can
be read directly in terms of the original directive variables rather than an obscure collection of created
variables. Finally, we avoid a bookkeeping chore in the CP which, depending upon whether certain
variants on the basic algorithms are chosen, may be extremely expensive in both time and space.

14

4.0 ~!,"aglng Created Variables

In order to keep communication and processing cost3 to a minimum, it is desirable to discard bindings
from our binding sets whenever they are no longer needed. In general the instantiator stored in a rule
layer of a binding set will contain a binding for each variable appearing in the rule body, and no other
bindings. Thus rule laye~ are not a problem in this respect. The common layer is more complicated.

In general there are two possible reasons for keeping a binding in the common layer of a binding set:

. The binding will be required in order to construct a solution, should the current proof path
succeed .

. The binding might interact with other bindings to constrain the search space, so that
discarding the binding could lead to incorrect proofs.

If at any point a particular binding can be determined not to fulfill either of these conditions, we may
freely discard the binding and proceed with our proor.

When we report a solution, we limit the report to a display of a minimal substitution that will transform
the directive into a satisfiable goal list. In particular, the intermediate goal list3 are not displayed, in
either their instantiated or uninstantiated form. Recall that our substitution phase is implemented
incrementally, so that. common layer substitutions always represent the total accumulated current
knowledge of the solution b~ing pursued. Thus we see that. our first condition demands only that we not
discard bindings for variables that appear in our original directive (top-level variable!).

Other bindings are required ror their constraining eITects. However, we observe that once a binding has
been produced for a variable, it is immediately used to remove all appearances of the variable from the
binding set. Aside from this instantiation, the only way a binding can ever act to constrain the search
space is through reconciliation with another binding for the same variable. But by the instantiation itself,
we are guaranteed never to see the variable in a future goal list along the same proof path, so that no
future bindings for it will ever be produced. Thus no further constraint by the variable is possible. We
conclude that we need never maintain bindings for a variable (other than a top-level variable) once a
binding for it has appeared at the end of a proof cycle.

We do not claim that the binding would not undergo further changes were it to be maintained throughout
the remainder of the proor. For instance, if we produce the binding l_l/p(_2)) we may later produce
the binding [_2/s]. The overall proof substitution would then include the binding l_l/p(s)]. However,
the search constraints that are represented by this refinement are accomplished by the construction and
reconciliation of bindings for _2; the refinp.ment of _I's binding is a more or less passive side-erfect.
Since _I is not a top-level variable, we have no interest in this side-eITect, so there is really no point in
producing it in the first place.

We see, then, that when a binding set is reported to the CP from the PE network its common layer should
contain bindings only for top-level variables. However, more can be said about the other variables as well.
In particular, we recall the join phase partitioning strategy discussed earlier. in which the join phase
proceeds by a series of partial joins involving relations produced by common goal list contributions.
followed by a final join of the partial join results. It turns out that many bindings can be pruned from the
binding sets before the final join takes place, thus saving in communication costs during that join.

Recall that if a rule variable is not bound during unification the resulting instantiator is augmented by
binding that variable to a new created variable. The created variable will thus appear in exactly one of
the goal list contributions represented by the complete binding set, and hence in exactly one of the partial

15

JOin result relations. Such a variable cannot constrain the final join. and since it is not a top-level

variable. it will be discarded when the final join is complete. We can save communication costs in the

final join if we discard the variable prior to the final join.

A list of such discardable variables may be computed easily by the CP during instantiation of a rule body
by gathering together term sides of all variable/variable bindings in the instantiators. For example, if the
binding [_ 34/_ 4ft] appears in an instantiator. we can safely discard all bindings for variable _ -to prior

to the ensuing final join.

We note here that if we are to discard bindings before the final join takes place. we must account for the
possibility that some of our top-level variables are bound to terms that include discardable variables.
Thus the composition operation that constitutes our substitution phase must in fact be performed prior to

the final join. We may apply the operation simultaneously to a.ll the relations that will take part in that
join by waiting until all the partial joins have completed.

5. ConclusIons and Future Work

It has not yet been established that the pilot algorithms presented in this paper can result in efficient

interpreters for the execution of logic programs under the parallel computing model that we propose. A
limited form of OR parallelism is achieved through simultaneous unification of individual goals with

literals that are distributed over a large multiprocessor network, and a limited form of AND parallelism is

achieved by satisfying an entire list of goals in a single algorithm cycle. Our abstract proof procedure has

provided a convenient basis for comparison between the LPS algorithms and the Prolog algorithm.

Our algorithms have been implemented in order to uncover problems in parallel execution of logic
programs and to discover various alternative strategies applicable under our computing model. The

experience and information gained will be used in conjunction with statistical measurements to highlight

fruitful areas for future research.

A companion paper [51 investigates specific alternatives to the LPS algorithms, again in the context of our

abstract proof procedure, and presents a comparative analysis of the various strategies. It is found that

no one strategy is optimal in all situations. Future research will further explore these and other

alternatives, and will attempt to develop mixed strategies in which alternatives are chosen based on static

and dynamic analysis of the program under execution.

We are currently planning an implementation of a LPS interpreter on a prototype machine based on the
DADO parallel architecture. One such prototype comprising fifteen PE's is currently functioning; a 1023-
node prototype is under construction. Weisberg and Lerner are working on an implementation of a

parallel version of Portable Standard Lisp for the DADO machine [161. As our simulation software was

written in PSL. we expect that this effort will substantially simplify our implementation task by allowing

a simple recompilation or large portions of the existing code for execution on the actual machine.

Taylor [131 describes various methods currently under development for statistical analysis of logic
programs. These include static. dynamic, and data-now analyses intended to guide algorithmic decisions

in the implementation of LPS. It is hoped that these analyses will quantify the potential for parallel

execution. allow accurate performance estimates to be made. and isolate various qualities of logic

programs which can be used in building intelligent compilers and interpreters.

~fany reatures must be added to the LPS Ia.nguage in order to make it suitable for a wide range of

16

applications. We intend to investigate such features a.'I negated condition elements in rules, evaluable
predicates, and condition elements with side effects. Khaban's work 131 appears promising a.'I a basis jor
the implementation or negation a.'I jailure in the LPS framework. In addition, we will explore issues
relating to control or program execution, including a more userul ordering oj the solution set.

17

References

1. Bowen, D. L., L. Byrd, F. C. N. Pereira, L. M. Pereira, D. H. D. Warren. DEC!y~tml-l0 Prolog
User '! Manual. University of Edinburgh, Dept of Artriciail Intelligence, 1982.

:. Conery, John S. The AND/OR Proce!! Model for Parallel Interpretation of Logic Program!. Ph.D.
Th., University of California Irvine, June 1983.

3. Khabaza. Tom. Negation As Failure And Parallelism. 1984 International Symposium On Logic
Programming, IEEE Computer Society, Technical Committee on Computer Languages, Atlantic City,

February, 1984, pp. 70-75.

4. Kowalski, Robert. Artificial Intelligence Seriu. Volume 7: L<Jgic for Problem Solving. North
Holland, New York, 1979.

5. Lowry, Andy, Stephen Taylor, Salvatore J. Stolfo. LPS Algorithms: A Critical Analysis. Columbia
University, New York, NY 10027, March, 1984.

6. Pollard, G.H. Parallel Ezecution of Horn ClaU8e Program!. Ph.D. Th., Department of Computing,
Imperial College, 1981.

7. Robinson, J. A. "A Machine-Oriented Logic Based on the Resolution Principle." Journal of the
ACM Vol. le (1965), 23-44.

8. Robinson, J. A .. Logic: form and function. Edinburgh University Press, 19i9.

Q. Shapiro. Ehud YtCAI Di~tingui!hed Di""ertation!. Volume: Algorithmic Program Debugging. The
MIT Press, Cambridge, \tA, 1982.

10. Stolfo, S. J. and Shaw. D. E. ~DADO: A Tree-Structured Machine Architecture For Production
Systems." Proceeding! of the National Confr?rence on Artificial Intelligence Vol. 1 (August 1982).

11. Stolfo, S. J., Miranker, D. and Shaw. D. E. Architecture and Applications of DADO, A Large-Scale
Parallel Computer for Artificial Intelligence. Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, International Joint Conferences on Artificial Intelligence,. Inc., Karlsruhe, West
Germany, August, 1983, pp. 850-854.

12. Taylor. 5., Lowry, A., Maguire. G. Q. Jr., Stolfo, S. J. Logic Programming using Parallel
Associative Operations. 1984 International Symposium on Logic Programming, Atlantic City,
February, 1984, pp. 58-68.

13. Taylor, Stephen, Andy Lowry, G. Q. Maguire Jr., Salvatore J. Stolfo. Analyzing Prolog Programs.
Columbia University, New York, NY 10027, March, 1984.

14. Taylor, S., C. Maio, S.J. Stolfo, D.E. Sha.w. Prolog On The DADO Machine: A Parallel System for
High-Speed Logic Programming. Third Annual International Phoenix Conference On Computers And
Communications, IEEE, March, 1984.

15. Warren, D. H. D. Implementing Prolog - Compiling Predicate Logic Programs. Tech. Rept. D.A.I.
39/40, Department of Artificia.l Intelligence, Edinburgh University, May, 1977.

1~. Weisberg, M. K .. Lerner, M. D., Maguire, G. and Stolfo, S. J. IIPSL: A Parallel Lisp for the DADO
Machine. Columbia University, New York, NY 10027, February, 1984.

