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Abstract 

AutomatIc concept learning from large amounts of complex input data IS an 

interestmg and difficult process. In this paper we discuss how the use of a 

permanent, generalization-based, memory can serve as an important tool In 

developing programs that learn in rich input domains. The use of Generalization­

Based ~emory (GBM) allows programs to determine what concepts to learn, as well 

as definitlOns of the concepts. We present in this paper a characterization of our 

research, descnbe our use of Generalization-Based Memory in two programs under 

development at Columbia, UNIMEM and RESEARCHER, and describe how they 

perform concept evaluation and generalizatIOn of complex structural descriptions, 

problems tYPical of those we are concerned wIth. 

Key Terms: Learmng, automatic concept formation, generalization, 

GeneralizatIon-Based Memory, intelligent InformatlOn systems, artificial intelligence, 

cognItIve SCIence 

1 Introduction 
AutomatIC concept learning In the form of generalizatIOn has been shown to 

be useful in interpreting and organiZing large amounts of informatIon about a 

domain [Lebowitz 80; Schank 82; LebOWItz 83aj, as well as bemg an mterestmg task 

In Its own right. Recently, we have been concerned with the development of new 

IThis research was supported in part by the Defense Advanced Research Projects Agency under 
contract :'-IOOO39-84-C-Ol65. Comments by Kathy McKeown and anonY!f1ous reviewers 00 an earher dra.ft 
of this paper were most helpful. Work on RESEARCHER and UNIMEM has been greatly advanced by 
graduate students at Columbia including Tom Ellman, Larry Hirsch, Laila ~ioussa, Cecile Paris. Kenneth 
Wasserman and Ursula Woh. 
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methods of concept formation that employ a permanent memory of previously 

determmed concepts along with the examples that led to theIr creatIon. These 

methods involve the determInation of what concepts to learn, as well as the 

definitions of the concepts. In particular, we have concentrated on the problems of 

concept formation from a stream of input that is complex in any of several 

dIfferent ways. In this paper, we detail the class of problems we are addreSSIng, 

present the basiC learnIng technique that we_use, known as Generalization-Based 

Memory (GBM), and indicate solutions to some of the speCific problems that are 

Involved. 

Much of the concept learning research that has been done m ArtificIal 

Intelligence has consisted of either supplying programs WIth examples, and possibly 

counter-examples, of specified concepts and having these programs der.ermine 

definitions of those concepts ( [Winston 72; Mitchell 82; Diettench and Michalski 

83]' for example) or of USIng largely analytiC techniques to classify input (e.g., 

[Michalski 80; Langley 811). In "real-world" settings, the crucial concepts to be 

learned -- those that best help ~xplaln and organize information about a domain 

-- are not pre-supplied; rather, it is necessary to determine these concepts from a 

stream of very complex input data. Consequently, our research concentrates not 

Just on how to compare examples, but also on methods for determming what 

examples to compare, which largely determines the concepts to create. 

Takmg examples from various programs we have worked on, we look here at 

how intelligent systems could extract from complex input streams generalizatlOns 

such as: "States that have high school expenditures have hIgh per capita incomes" 

(from InformatlOn about the states of the United States); "A large class of disk 

drIves use fleXIble (floppy) discs" (from patent abstracts about disk drives); or 

"Terrorist attacks in Northern Ireland a.re frequently carried out by the IRA" (from 

news stones about terrorism), to the same extent as human learners. 

\Ve descnbe here a powerful memory organizatlOn and concept learnIng 

techmque, GeneralizatIon-Based Memory GB~f was developed for IFP, a computer 

program that read, remembered and generalized from news stones [Lebowitz 80; 

LebOWitz 8330, Lebowitz 83bJ, based on Intuitions about how complex human 
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episodes might be stored m memory m a manner analogous to Schank's MOPs 

[Schank 80; Riesbeck 81; Schank 82] and Kolodner's E-MOPs [Kolodner 841. We 

believe it is advantageous to use the same techniques in more traditional concept 

learning environments and for intelligent information systems that make use of 

complex streams of input. Our presentation of the problems of concept learning 

from complex Input focuses on two mtelligent information systems being developed 

at ColumbIa, lJ'Nl}vfEM and RESEARCHER, both of which use GBM. 

L~fEM is a program that can accept a large quantity of relatively 

unstructured facts about a domain, use generalization techniques to determine 

Important concepts, and use these concepts to organize the information in a fashion 

that allows rurther generalization and intelligent question answering. For example, 

tf information about the states in the U.S. is given to such a program (a domain 

used in prototype testing), the program might determine that New England states, 

or states with large education budgets are useful concepts. UNIMEM is being used 

to study problems that can arise when the individual items used for learning are 

not hIghly structured, each consisting simply of a set of descriptive features. 

The problems in forming concepts from complex input data involved m our 

research WIth UNL\fEM include: the impact of domain-dependent knowledge on 

concept learmng; categorizing numenc mput information so that generalizatIon is 

pOSSIble; concept evaluation and refinement rrom further examples; using concepts 

that very slightly contradict new input items (those like Winston's «near misses" 

[Winston i2], but not pre-identified as such); dealing with concepts that change 

over time, a.nd questIon answering based on Generalization-Based Memory. In thIS 

paper, we present the basic techniques for using GBM and for evaluating concepts 

In the context of UNThfEM. 

RESEARCHER [LebOWItz 83c; Lebowitz 83d], in contrast with lJNThfEM, deals 

with highly structured, physical descriptions of devices. RESEARCHER reads 

patent abstracts In natura.l language form, and then remembers and genera.lizes 

infOrmatIon from these texts, automatically creating appropnate object classes. 

Complete understanding (and generalization) of patent abstracts requires many kinds 

of analYSIS. To date, we have concentrated on the complex physical deSCrIptions of 
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the objects descrIbed (i.e., part x is on top of part y), as opposed to, for example, 

functional characteristics. In this paper, we use RESEARCHER as a context in 

which to discuss the problems of companng complex, highly structured 

representations. 

Figure 1 shows som,=, typical concepts generalized by each of the 

GeneralizatlOn-Based Memory programs mentioned here. The IPP and UN1i\-fEM 

generalizations were actually made by the programs (although the English was 

generated by hand), and the RESEARCHER examples are target concepts which 

can currently be learned fro:n Simplified input. 

IPP Concepts: 
Bombings In EI Salvador cause damage, but do 

not often hurt anyone. 
Urban terrOrIsts in Italy frequently Use 

sllencer eqUIpped pistols. 

UNIMEM Concepts: 
State class - High urban percentage, low minority 

percentage, moderate Income, low taxes. 
manufactUrIng Important [RI, NJ, TX, MI, FLA, OR] 

State class -- High value of farmland, fairly high 
popuiatlOn, manufacturIngl ~gnculture, tOUrIsm 
Important [NC, ARK, TENN, MINN, WISe, VA, MOl 

RESEARCHER Concepts: 
Floppy dlsk drIve 

Double denSIty disk dnve 

Fully enclosed disk drive 

Figure 1: GEM Concept Examples 

In the remainder of thiS paper, we deSCrIbe how our research relates to other 

work in concept formation, and present an overvIew of our concept learning 

methods, concentrating on our use of GeneralizatlOn-Based Memory Finally, we 

deSCrIbe the way we handle concept evaluatlOn and generalizatlOn of complex 

structural deSCrIptions, problems typical of those we are concerned With. 
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2 Complex Input Domains 

The intelligent information systems we are developing basically engage in what 

IS called multiple concept learning from observation (descn'ptive generalization) in 

[Michalski 831· These programs are given large number of examples, with no pre­

specification of the concepts to generalize, and they acqUire sets of concepts by 

deciding what Instances to compare and how such examples are similar. The 

concepts derived are often overlapping, in that many concepts can describe the 

same example. 

The tasks of our programs also involve aspects of Michalski's concept 

acquisition. In addition to determlOing the properties of instances in the classes 

that they create, they fit objects to those classes. There are elements in our 

programs of both observing patterns 10 data and developing discriminant 

descriptions of the classes thereby derived. 

Our research is characterized by several other properties, all somewhat novel 

for working systems (particularly in combination), but, we feel, crucial to the 

development of useful, dynamic, information systems. The first parameter that 

characterizes all our work is that we are deallirg with "pragmatic" generalizations. 

That IS, we are concerned with concepts that describe what is usually, but not 

necessarily always, true. This means, crUCially, that methods that invalidate 

generalIzed concepts on the basis of a slOgle example are not acceptable . In the 

same vein, we do not require that every concept that could legitimately be 

generalized be found. The class of pragmatic generalizations provides more power 

and fleXlbthty In representing what it is pOSSible to learn about a rich domain. 

The pragmatic nature of our generalizatlOns IS in sharp contrast with most 

other learning methods. While there has been work dealing WIth noisy lOput data 

(eg., [Quinlan 831. and to some extent [Mitchell 82]), It has always been assumed 

that the generalizations themselves perfectly described the world, although they were 

perhaps obscured in the input data. The need to deal with pragmatic generalizations 

strongly affects all aspects of our work. 

Secondly, we look at learning that IS incremental. It 15 not possible in systems 
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that are continually reCeIVIng Input to wait for all examples to bp. avaIlable for 

inspection before creating concepts. We require that after every exam pIe IS 

processed, our systems have made the best possible generalizations based on the 

input that has been processed. \Vhile it is possible to imagIne many other methods 

being applied Incrementally, most other learning research has assumed that all the 

Input IS available at once to the learning process. and that the process IS rerun 

from scratch If new informatIOn is added. A notable exception is [Winston 72]. 

whIch Incrementally develops a concepL (although It only learns a SIngle concept 

from speCially selected inputs). 

Finally, we expect that our systems will ultimately deal with large numbers of 

examples It is the ability to deg,l with many examples and many concepts 

slm ultaneously that gives human learning the power we would like our systems to 

have. 0[0 method that requires comparison of a new instance with all, or a large 

portion of, previous examples will be acceptable, for computational reasons. Even 

comparIson with generalized concepts must be done 10 a principled way .. 

Furthermore, our systems must deal with whatever examples they are given, not 

speCially prepared (as by a teacher) input. \Ve are, in addition, sometimes concerned 

WIth cases where the individual items to be generalized are themselves complex, as 

In RESEARCHER. 

\Vhile there has been learning researc..b. that Involves large numbers of 

~xamples (e.g., [Quinlan 79]), much of it has been statIstically oriented (see [Cohen 

and FeIgenbaum 821), and little of it has dealt WIth pragmatic generalizations (With 

the exceptIOn of [Schank 82]' and related research). The fact that all concepts are 

not guaranteed to be logically correct turns out to have a major effect on the 

learlllng process. 

We feel that methods for dealing WIth the type of input deSCrIbed here WIll be 

necessary in developing systems that take full advantage of the large quantItIes of 

complex Information. One area that we have not addressed. but feel wIll be 

Important in our future work, is the use of ~xplanatIOn-based generalizatIon, of the 

sort discussed in [Dejong 83; Mitchell 83; Mastow 83; Riesbeck 831. 
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3 Generalization-Based Memory 

In this section, we provide an overview of the techniques used to form 

concepts as part of maintaining a Generalization-Based Memory, For clarity, we 

descnbe the way the process works in UNIMEM, but the main techniques are 

Identical In IP? and RESEARCHER. 

The basic Idea of Generalization-Based Memory is that a generalizatlOn system 

begInS to create a hierarchy of concepts that descnbe a situation from a small 

number of examples, and then records in memory specific items, both those 

~xamples from which the concepts are generalized and others, in terms of the 

generalized concepts. ~ore specific generalizations are recorded along with speCIfic 

examples under the more general cz..ses. GB~f involves identifying and defining 

multiple concepts, as opposed to maintaining a single model of a concept, 

In order to standardize our terminology, we refer to the objects stored In 

memory which are used to build generalizations, i,e" the input examples, as 

instances. In UNTIvfEM these are descriptions of objects in a domain, An instance 

is described in UNTh1EM terms of a set of features (essentially property/value 

pairs). As we will see, RESEARCHER uses more complex deSCrIptions of instances. 

The com btnations of generalizations, themselves sets of features, and the events and 

sub-generalizations they organize are called GE1V-NODEs. 2 GEN-NODEs form the 

basiS of GBM, The structure of a typical GEN-NODE IS shown in Figure 2. The 

manner tn which GEN-NODEs are combined to form. a concept hierarchy is 

III ustrated In Figure 3. 

Generalization-Based ~emory consists basically of one or more hierarchies of 

GEN-NODEs that descnbe concepts of Iflcreasing speclficity.3 As shown 10 Figures 

2 and 3, instances and sub-GEN-NODEs are stored under each GEN-NODE using 

.., 
-GEN-NODE8 were called S-MOPs in IPP, as they are, in some sense, specialized versions or Schank's 

Memory Organization Packets [Scbank 821. 

3Technically, through methods not described in this paper, the set or GEN-NODEs may not actually 
rorm a tree, but rather a. directed acyclic graph. 
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GEN-NODE 
descriptive features 

sub-GEN instance 
D-NET D-NET 

More k1e~ific 
GEN-NODEs 

Flgure 2: 

. I I I d Instances un er 
this GEN-NODE 

GEN-~ODE Structure 

GEN-NODE 
sub-GEN diserimination net 

GEN-~ODE dEN-NODE ..... IGEN-NODE 
instance discrimination nets I 

I I instances 
instances instances 

GEN-NODE 
• I Instances 

Figure 3: Schematic Structure of GBM 

dIscnmlnatlon networks (D-~'ETs) [Charniak et a1. 801. (Note that a ·:;EN-NODE 

can organize both Instances and more speCific GEN-NODEs.) D-NETs provide an 

effiCient way to retrIeve any object stored with a gIven set of indices. In the GBM 

model, every feature of an instance or sub-GE0I-0rODE is 10ltially used as an Index, 

resulting In shallow, bushy D-NETs that allow retrIeval of an object given anyone 

of Its features. The resulting plethora of indices IS pruned by ceaslOg to use as 

indices features that pertain to 3. large number of objects In a given D-i'.'ET 

The use of a hierarchy of GEN-NODEs With D-~'ETs as a method of memory 

organizatlOn allows efficient storage of InformatlOn SlOce IOformatlon 10 a 

generahzation does not have to be repeated for each instance that It desCrIbes. In 

addition, It a.llows relevant generaliza.tions and Instances -- and only relevaJ.t 

generalizations and instances - to be found efficiently in memory dunng processmg, 

allowlOg further generalizations. This property of GBM IS largely independent of 

the speCific knowledge representation being used. 
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The use of concept hierarchies to intelligently and ~fficiently organize 

mformation about concepts is not a new one. Semantic networks [Quillian 78], 

frame systems [Minsky 75], MOPs [Schank 80; Schank 82], among many other 

formalisms all include this property A primary feature of the representation 

language KRL [Bobrow and Winograd 771 is its abllity to allow inheritance to be 

Implemented easily. [\Vasserman and Lebowitz 831 shows how frame-based schemes 

can be applied to physical object descriptions. What is new here is the dynamically 

changmg nature of the concept hierarchy, and its use to guide the development of 

further concepts. Only a limited amount of work has been done on automatically 

generalizmg concept hierarchies, including [Hayes 77; Michalski and Stepp 83; 

Sammut and Banerji 83/, and this work has not dealt with pragmatic 

generalizatlons or particularly large numbers of examples. 

The process of maintaining GBM, which is the learning process we are 

considering here, IS a relatively simple one, once the memory organization method 

has been defined. As each new instance is processed, the most specific GEN-NODE . 

that describes it IS found. This IS done, easily and efficiently, usmg the 

discrimmation nets that index the GEN-NODEs in memory, starting with a very 

general node that covers the whole range of instances in the domain. Then, before 

the instance IS actually indexed under that GEN-NODE, a check is made for 

mstances already stored there that have additional features in common with the 

new mstance, which can be found using the instance D-NET. If there are enough 

such features (one of many adjustable parameters of GBM4), a new concept IS 

generalized, and the contributing instances Indexed there. 

mstance is simply stored under the existing GEN-NODE. 5 

Otherwise, the new 

Two further Important features 

generalized on the basis of few instances, 

generalIzation (including the elimination 

characterize GBM. Since concepts are 

they must be evaluated to eliminate over­

of whole concepts). This is discussed in 

4Future research ma.y look at how the pa.ra.meters or GBM could be a.djusted automatically . 

.)The process is actually a bit more complex, as a given insta.nce ca.n be stored in multiple spots in 
memory fo: two difre.re~t reasons. An insta.nc~ ca.n either be. c1assifie,d initially \~ ~~veral different w~ys, 
ea.ch or whIch would IndIcate a. place to store It, or several dIfferent 'most SpeClIlC GEN-NODEs mIght 
be found, ea.ch of which would lead to the processing described. 



10 

Section 4. The second feature is the use of an idea known as pred£ctabilily. While 

space does not permit a discussion of predictabilIty here (see [Lebowltz 8330]), the 

basic idea is that only the presence of some features of a concept 10 an instance 

tndicate the relevance of the concept, and that these features can be Identified qUite 

easily usmg GBM. 

Further details of the algorithm used to ma10tain GBM are shown 10 Figures 

4, 5 and 6. Figure 4 shows how the addition of a new 10stance to GBM consists 

of finding the GEN-NODE (or GEN-NODEs) that best describe the 10stance 

(updatmg feature confidence factors as this IS done), followed by indexing the new 

10stance (which includes a check for new generalizations). Figure 5 shows the 

process that searches for the GEN-NODE that best descnbes the new instance 

(essentially a depth first search heuristically guided by features of the new 10stance 

that have not been explained), and Figure 6 shows how the new instance IS actually 

added to memory, possibly causing new concepts to be generalized. 

Ilew input in.tance ( .. li.t of feature.).' 

" \I 

'Search GHM for .o.t .pecific GEl-lODE that describe. I 
lin.tance by callins SEARCH(root-node. input feature.).' 
I (Fi(Ure 6) , 

" \/ 

IAdd new in.tance to GB~, seneraliz1ns if nece •• ary. I 
I (Figure 6) I 

Figure 4: GBM Update Algonthm 

'We believe the use of GBM as described in this sectIOn can successfully satisfy 

the domain characteristics descnbed in Section 4. In particular: 
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----------------------------------------------------Incre ... confidence in ~1 feature. 01 ren-node 
in the unexplained feature li.t (note -- gen-node 
h ~ar~teed t,o be a 'potentiallr releT~t.· node. 
by the way the algoritha i. Itruc ured). 

----------------------------------------------------1/ 
\/ 

------------------------------------ Ie. 

I
Are there any feature. in gen-nodel ---) 
contradicted in the unexplained 
feature li.t! 

--------------------------------Decre .. nt the confidence 
of tho.e feature. ~d 
return IlL. (If the confidence 
of a feature i. loy enough, 
delete it.) 

--------------------------------
-------------------------------------------------------------For each lub-gen-node. IX. of fen-nOde with at 
le .. t one feature in the unexp ained li.t (detera1Ded 
by a.ing the lub-gen-node discriaination network), 
call SElRCH(lx. [unexplained-feature. - gen-node featnres]). 

II 
\/ 

IDoes SEARCH return a Don-ilL let. of nocie. for ~1 IX! 1 

II yeB II no 
\/ \/ 

IReturn the union of those li.t •. 1 IReturn ,en-node I 

Figure 5: Searching GBM for Most Specific GEN-NODE 

1) All concepts generalized in GBM are "pragmatic" No concept is removed 

by a. s1ngle counter-example, but instead, the process described in the next section is 

used to evaluate all concepts. The generahzation process is also pragmatic because 

1t can sometimes miss concepts that could be found by comparing instances that 

were stored in widely different parts of memory, but this seems a reasonable trade­

off to avoid combinatoric numbers of comparisons. 

2) GBM is inherently incremental. As each instance 1S a.dded to GBM, the 

best possible concepts that can be generalized so far are made . 

. 3) GBM 1S 1deal for learning from large numbers of examples. The use of a 

hierarchy of concepts that organize specific lnstances allows only instances that 

m1ght lead to generalizatlOns to be compared to each other. Releva.nt concepts are 

easlly found. It 1S also an efficient way to store the concepts. 
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UPDATE (ren-node, new-instance) 

-----------------------------------------------------------------------

I
Detime unexplained-features aa the features of the new inltance I 
that are not part ot «en-node (or its parent nodes). The intoraation 
cu be retuned fro. SEARCH. 

-----------------------------------------------------------------------II 
\I 

-----------------------------------------------------------------------

l
Collect the let ot all instance. currently ltored under ~en-node I 
that have at least one ot new-instance'. unexplained features. (This 
can be done usinS ~en-node'. in.tance dilcriaination netTork). 

-----------------------------------------------------------------------II 
\I 

IDo &Dy ot thes. instances Ihare enoush else in co..an I 
with the new instance to warrant a ney seneralizationr 

ye. 

\I 

II no 
\I 

Index the new instance in ~en-node'l 
instance dilcriaination netTork, 
usinS all the unexplained-feature. 
aa indicel. Retnrn. 

For each luch inltance, create a Dew ,en-node 
with the unexplained features shared by the new instance 
and the instance of the ,en-node. 

1) Index the new «en-node in the ,en-node'l .ub-,en-node 
dilcriaination net, ulin« each of its featurel a. an index. 
2) Index both inltances under the new «en-node, as above. 
3) De-index the old instance fro. the ori,inal ,en-node'. 
inltance di.criaination net york. 

Return. 

Figure 6: updating GB~f 

We further Illustrate the detaIls of updatIng GBM WIth an example In SectIon 

S that follows a discussion of concept evaluation. 

4 Concept Evaluation 

As mentioned lD the preVIOUS section. the concept learning process we have 

descnbed Inherently leads to over-generalizatIon, partIcularly lD a domalD where 

there IS a. large a.mount of lDformatIOn about each Instance. Thus, we reqUIre each 

concept learned to be evaluated over tIme. For each generalization made by 

UNL\fE~f, an evaluatIon process continually looks for later Instances for whIch the 

generalizatIOn might be relevant. This occurs as a. normal part of the memory 
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search process, since the generalizations to be evaluated are exactly those that 

might be used to store the new instances. ~1?vfEM checks whether a relevant 

generalization is confirmed or contradicted by each new instance. 

A new lDstance found by UNIMEM is considered to contradict an applicable 

concept Ii It possesses a predictable feature indicat10g that the concept is relevant, 

but also another feature with the same property as the concept (such as the regIon 

of a state), but with a different value (Midwest instead of East, perhaps). When 

thIS conditlOn occurs, intuitively, confidence 10 the concept should be reduced. 

Early verSions of confidence for generalizations in GBM simply involved adding 

or subtract10g points from a numeric confidence level for each GEN-NODE, 

resultIng in a property much like the confidence in conclusions discussed 10 [Collins 

781. or the confidence in rule application used in some expert systems (e.g., MYCIN 

[Shortliffe 781). In a domain rich in information this technique will not suffice, as 

there will almost always be extraneous information in each generalized concept, as 

the result of ineVItable cOlncidences, that WIll ·cause confidence in the concept to be· 

undermined. 

What we would like to do when a. generalization is disconfirmed is to throw 

away the "bad" (overly speCIfic) parts and keep the "good" parts. The problem 

then reduces to identifying the components of a generalization that are overly 

speCific, so that they can be deleted, leaving IDtact a valid generalization. 

Furthermore, for this to be useful, it must be done at a minImum of cost, hopefully 

occurnng as a natural part of the memory update process, and requiring only a 

small amount of extra record-keeping. The task is somewhat similar to that for 

which pattern recognition techniques a.re used (see [Cohen and Feigenbaum 82] for 

an Al perspective to pattern recognition), but deals with concrete, if pragmatic, 

concept definitions, rather than statIstical representations. 

The solutlOn deVIsed for lJNThfEM is straIghtforward. Instead of keeping a 

smgle confidence level as part of each GEN-NODE, UNThfEM tracks how often 

each feature of a concept is confirmed or contradicted. In effect, a confidence level 

is maIntamed for each feature of each concept, rather than a slDgle value for an 

entlre concept. 
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Specifically, a counter is maintained for each feature of each generalization 

a.nd these counters are incremented or decremented as their features are confirmed 

or contradicted, respectively, in a situatlon where a concept is deemed relevant. 

The counter modification occurs as U'NIMEM determines which GEN-NODEs best 

descnbe a new Instance, as described' in SectlOn 3. II a counter passes a negatlve 

threshold (another adjustable parameter), then we can eliminate the feature from 

the generalizatlOn, smce the feature has been wrong much more often than right. 

We sometlmes have to eliminate entlre generalizations when too many of their 

features have been elimInated. Detatls of this process, and an example of its 

application in the domaIn of football plays, can be found in [LebOWitz 821. 

\Vhen this scheme was added to UNLViEM, it proved quite effective in culling 

extraneous features from generalizatIOns, and only totally disconfirming those 

concepts that were completely the result of coinCidence. In several test domams 

this procedure produced generalized concepts that made excellent intuitive sense. We 

show here a simple example from the domam involving Information about states in 

the United States. Our use of this domain is fully explained in the detailed 

ex am pie In SectlOn .5. 5 

Figure i Illustrates a concept (GND1) generalized by UNIMEM. Roughly, this 

concept descnbes states with moderately high per capita income, rather low taxes, 

high school expenditure, and fairly low minority population (the last is actually a 

broad category that covers most states). This concept can be used to deSCrIbe the 

seven states listed. 

GlDl: 
neOK!: RAJGE IIC3 : 4 
TAlES RAJCE TAI~:S 
SCHOOL-EIP RAJGE SCH3:3 
WIIORlrT-PCT RAJC!: Wlll:~ 
OrS&niz1nC: lOlA. IAlSAS. WICHICAJ, WOITAll. IEBRASI!. PEJlSTLVAJIA. TEIAS 

Figure 7: Final UNTIviEM Generalization 

5:\ dirferent run or the progra.m is used (or the exa.mple here. 
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Figure 8 shows how this concept was initially generalized from Iowa and 

Nebraska). Notice that these states are similar in a number of additional ways, 

e.g., they are both farm states, so UNIMEM initially generalized an over-general, 

and not widely applicable, concept. These features, which are extraneous in the 

sense that they inhibit wider application of the concept, were ultimately removed by 

the evaluatIon process described in this section, leaving a much more useful concept. 

GIDI: 
CRIlCE-RAT! 
STATE-DEBT 
I1COlCE 
TAIES 
WIGRATIOI-IET 
SCHOOL-EIP 
STATE 
WIIORITT 
Or!ui%1l1! -

RAJG! 
RAJe! 
RAJG! 
RAJG! 
RAJe! 
RAJG! 
RECIOI 
RAJeE 

Ion IEBRASU 

CRI3:5 
DEB2:1 
IIC3:4 
UI2:5 
WIG1:g 
SCH3:3 
FA.Rl( 
Wlll:2 

Figure 8: 

5 A UNThfEM Example 

Initial Generalization 

As a further illustration of how GBM is maintained, including the formatlOn of 

new concepts. we wIll present here an example taken from an actual run of 

U:"i1\fE~f m which we provided the program with a number of facts about each 

state m the United States. Figure 9 shows a small portion of GBM after 

mformation from 42 states (not including Oregon) had been added to memory. (The 

states were presented to UNIMEM in random order.1) 

Each GE~-NODE in Figure 9 ~s shown in terms of a set of features. For 

features derived from numeric data, the third column of each feature (the value) 

mdicates a category derived from the numeric value by a method described in 

[Lebowltz 851. For example, the fourth feature of GE~-NODE GNDl, taxes, has 

the value T.A~X2:S, indicating that the tax rate for the states described by this 

.. 
I Since UNP.vfEM has certain subjective aspects (in the sense or IAbelson 73: Carbonell 811. the concepts 

formed in GBM vary depending on the order instances are added. However, the efrect does not seem to 
be strong, and the concept evaluation process described in the next section tends to lead to similar 
concepts arising over time, though not necessarily identical ones. 
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Figure g: A Section of l.JNllvfEM GBM \Vithout Oregon 

GEN-0l'ODE falls m the second of five categorIes, ie, rather low The numeric 

value follOWIng each feature Indicates l)NllvfE~rs current confidence In that feature 

(as described In the previous section). These values start at 0 The threshold for 

eliminatIng a. feature was -3 for this run. The features followed by a "deleted" are 

not a.ctually In the generalizatlOns, but were orIgmally included, and then deleted by 

the concept evaluatIon algOrIthm. Listed under each GEN-0l'ODE are the Instances 

(states) Indexed there 

The section of GBM shown in Figure 9 includes five GEN-~ODEs. The top­

level node, G~O, has no features and hence descrIbes all Instances. It serves to 

organIze the GBM hierarchy for states, and Index any Instances not yet described 

by any generalizatIon. GNDl descnbes states WIth fairly low taxes, low mmorIty 

populatIon and industrIes including manufacturIng, tOUrIsm and agriculture 
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Additional feature present when It was created (from Idaho and Colorado, as it 

happens), have been deleted to make the GEN-NODE more widely applicable. 

GNDl organizes several sub-GEN-~ODEs, one of which, GNDS, is shown 10 

Figure 9 This node describes middle-income mining states with high school 

expenditures. Ctah is 10dexed under GNDS. This GEN-NODE organizes, in turn, 

two yet more specific GEN-NODEs, GND7 and GNDl3. GND7 describes mId-sized 

states With relatively high crime rates, moderate state debt. government as a 

Significant Illdustry and high proportIOn of urban population. Colorado and ~evada 

are Indexed under It. 8 GND13 descnbes mid-SIzed states with high valued farm 

property, fairly high state debt and a. high proportion of urban population. It 

10dexes Michigan and Minnesota. Notice how for the states at the bottom of the 

hierarchy, such as Colorado, Nevada, Michigan and Minnesota, none of the 

mformation in GEN-NODEs GNDl, G!'rDS, and GND7 or GNDl3 will have to be 

repeated for the specIfic instance. 

With GB~f containing the 1Oformation 10 Figure 9, we next added mformation 

about Oregon to memory. Figure 10 shows the first phase of this addition 

procedure Shown are the features givell to descnbe Oregon. Also shm'm are the 

results of the search phase, where UNTh1EM determmed that GNDS (as well as 

GEN-NODEs In other parts of GBM) best descnbed the new instance. GNDS was 

selected because it contained at least one feature of Oregon (two, 10 fact, income 

and school expenditure), none of its features are contradicted by Oregon, and 

neIther GND7 nor GNDl3 is appropriate (GND7 conflicts III state debt and urban 

percentage, and GNDl3 conflicts in farmland value and urban percentage). 

HaVIng decided that GNDS is the GEN-NODE that currently best descnbes 

Oregon, UNIMEM proceeds to update GBM, by attempting to index Oregon under 

that node. This results of process are shown 10 Figure 11. Dunng the indexing 

process, UNTIvfEM notIces that Utah, which IS already 10dexed under GNTIS, has the 

Identical values for state SIze, cnme rate, and regIOn of the country as does Oregon. 

8:"-1ote that althou~h these states probably have small numbers or total urban residents. the proportion 
of such residents is high. 
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Figure 10: G'NThfEM Finding a GEN-NODE that DescrIbes Oregon 

Thus, a. new GEN-NODE, GNDSO, can be created wlth these features. (It also 

mherIts all the features of GE:"I-NODEs GND1 and GNDS). 

Creatin~ .ore specific STATE (GIDS~) tha..n GIDS fro. event. UTAH OREGOI 
with features: 

SUTE REGIOI IS 
SUTE SIZE SIZ.:15 
CRlKE-RATE RAJGE CRU:5 

SCHOOL-EIP RAJGE SCH3:3 
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<proce.sin( for other GEl-lODE. that describe Oreron> 

Figure 11: uNllvfEM Addmg Oregon to GBr-.f 

Figure 12 shows how GBM has been changed by the additIOn of Oregon. 

G0."DSO. the new GEN-NODE, has been added under GNDS Oregon and Utah have 

both been indexed there. Also note how the confidences of features supported by 

Oregon have be Incremented, and those contradicted have been decremented, using 
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the algorithm descnbed In the previous section. For example, in G~1)13, confidence 

In state debt and state SIze has increased, and confidence in farm value and urban 

percentage has gone down. 
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6 RESEARCHER 
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The Same Section of GBM \Vith Oregon 

As mentioned earlier In thIS paper, RESEARCHER [LebowItz 83c; LebOWItz 

83d], IS a program that reads patent abstracts and adds information from them to a 

Generalization-Based Memory so that it can effectively answer questions. In this 

paper, we look only at the process of taking representations of two objects (or, 
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equivalently, a generalized concept and a concrete object) and forming a generalized 

concept. The representations we compare are frame-like and primitive-based. 

concentrating on the physical relations among the various parts of a complex object. 

(See [Wasserman and Lebowitz 831 for a complete description of the representation 

scheme.) 

In the disc drive domain, typical concepts the generalization process might 

identify as belng useful would be floppy disc drives or double sided discs. A.s wIth 

all our work, this must be done without specifically providing with exam pIes of 

these concepts. Instead, instances stored together in Generalization-Based Memory 

are recognized as being similar and generalized. 

The use of GBM is more complex here than in the UNIMEM. The "features" 

that two objects have in common can only be determined by comparing two 

complex object representations. The matching problem is much the same as that 

faced by Winston in his blocks world tearnlllg work [Winston 721. Our problem is 

in certain ways both more difficult and easier than Winston's. It is more difficult· 

because we are dealIng with much more complex representations. It is simplified, 

however, at least in the long run, by the existence of an entire GBM, rather than a 

model of a single concept. \Ve believe this will simplify the match10g process. We 

look here both at the complexity of matchlllg object descriptIOns and at how GBM 

can simplify the process. 

The representatIOns for two simIlar. slightly SImplified, disc dnve patents, used 

to test the imtial version of RESEARCHER's generalization module are shown in 

Figure 13. 

Clearly the two disc dnves In Figure 13 have much 10 common that can be 

the source of a new concept derived through generalization -- an "enclosed dISC 

drIve" Figure 14 shows the concept created by RESEARCHER's generalizatIOn 

module. The process that created this generalizatIOn, while conceptually simIlar to 

the GEM update algonthm shown in section 4, differs in many detaIls, largely due 

to the lmposslbility of representing complex physical objects as SImple sets of 

features. 
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Figure 13: Similar Disc Drives 

-
encloled-dl.e-driTe' 
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(enclo.ed-dl.c-drivel and enclo.ed-dl.c-drive2 
.tored a. variant. of encloled-di.c-driye') 

Figure 14: Generalized Enclosed Disc Drive 

The idea illustrated in Figure 14 is that RESEARCHER finds the parts of two 

objects that are similar, and abstracts them out lOto a generalized concept. In thlS 

example, the two devices contained similar disc drives and enclosures. Each had a 

cover on top of some other object. These simllanties form the basis of a 

generalized enclosed disc drive. Only the additIonal parts and relations of each 

lOstance need be recorded in memory along with the generalization. Currently, the 

generalization module of RESEARCHER, which IS lOtegrated in a sImple fashion 

wIth the parser, is able to handle a moderate number of simple examples, lOcluding 

lOdexlOg the new objects as variants of existing generalizations. • 



22 

Adapting GBM for use on complex structural descriptions has proven to be a 

difficult problem, even when only considering the assorted relations among the 

objects in the descriptions. Here we present one of the major problems and suggest 

the nature of the possible solution. 

A central problem in generalizing structural descriptions is the process of 

matching two representations (either of two objects or an object and a generalized 

object), thereby determining what parts and relations correspond (as was pointed 

out for simpler examples in (Winston i2J). Clearly, if we have two distinct disk 

drive representatIons and wish to determine that the disk mounts in them are 

SImilar, then we must determine that they should be compared with each other. 

(Note that if the SImilarity is strong enough, we may wish to modify the 

representations to POInt to a single disk mount representation in memory.) Since 

one part of the description of complex objects is a set of relations, we must 

associate the relations in one object with those in the other. 

The matching process here is a quite difficult one. Since we are dealing with· 

structured objects, the parts of very similar objects may be aggregated differently in 

varIOUS deSCrIptions. For example, a read/write head might be described as a direct 

part of a disc drive in one patent, but part of a. "read/write assembly" in another. 

This makes the inherent similarity difficult to identify. 

At the moment, we deal with thIS "level problem" with simple heuristics that 

allow only a limited amount of "level hopping" dUrIng the comparIson process (to 

avoid the need to consider every possible correspondence among levels), and a bit of 

combinatOrIC force. 

We feel that the ultimate solution to the level problem lies in more extensive 

use of GeneralizatIOn-Based Memory If a new object can be identIfied as an 

instance of a generalized concept, wlth only a few minor differences (done WIth a 

discrImination-net-based search of the sort described In SectIOn 3), then the levels of 

aggregation will be set. By using GeneralizatIOn-Based ~vfemory, we need compare 

only a small number of differences between objects, rather than entIre complex 

descriptions. This should allow RESEARCHER to meet all our performance 
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constraints (i.e., generalize pragmatically, be incremental, and handle large numbers 

of objects), even using the complex representations needed to describe real world 

objects. 

In effect, what we are doing here is using the generalized descriptions that we 

have created to dynamically form a canonical framework for describing new objects. 

Such an approach, we believe, can help solve one of the major problems wIth 

canonlcal representatIons systems. Such representation schemes have many well­

known advantages (see [Schank 721. for example), including simplifying the inference 

process. However, it is often difficult to select the canonical primitives needed for 

such schemes, and in domains that :har:ge over time, perhaps impossible. A 

dynamIcally created framework of the sort we are suggesting has the potential to 

gain the advantages of systems based on canonical primitives with the ability to 

adapt to the domain and without the problems of initially selecting the primitives. 9 

A SImIlar approach for cognitive modeling type tasks is taken in [Schank 821. and 

the Issues of a dynamically changing canonical framework are a topic of our current 

research. 

7 Conclusion 
\Ve believe that our work with Generalization-Based ~1emory has several 

Important morals. The first is that the development of a dynamic set of concepts 

is a powerful approach to take when learning from a nch input domalD. It is not 

realistIC to hope to find the "right" set of concepts all at once, so it is crucial that 

we constantly update the concepts that we have and look for new ones. This 

allows us to take advantage of new informatlOn that is being provided and 

hopefully adapt to changes in the domain. Furthermore, the use of long-term 

memory, in the form of GBM, allows us to deal with many concepts at once, and 

stIll retain efficiency. In fact, as we have shown, conSIdering many concepts at 

once often ends up being easier than learning one at a time and certainly leads to 

more powerful systems. We feel that our development of UNThiEM and 

RESEARCHER Indicate that the idea of Generalization-Based Memory is a sound 

9While we still have to develop an initial representation ror the instances given to our system. it is not 
as crucial as in other systems, since many properties or the representation can change over time. 
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one, and that these programs can serve as valuable testbeds for the pursuit of 

Important issues in concept learning. 
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