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Abstract

Inductive learning, which involves largely structural comparsions of examples,
and explanation-based learning, a knowledge-intensive method for analyzing examples
to build generalized schemas, are two major learning techniques used in Al. In this
paper, we show how a combination of the two methods -- applying generalization-
based techniques during the course of inductive learning -- can achieve the power of
explanation-based learning without some of the computational problems that arise in.
domains lacking detailed explanatory rules. We show how the ideas of predictabslity
and tnterest can be particulary valuable in this context.

1 Introduction

Current research 1n  machine learning includes two relatively disparate
approaches. traditional inductive learning [rom many examples (e.g., [Winston 72;
Winston 80; Michalski 80; Michalski 83; Dietterich and Michalski 83; Lebowitz 83a)
among many others), and a newer line of research that involves intensive
application of knowledge to a single example (at a time), which we will refer to as
ezplanation-based learning (e g, [Mitchell 83; DelJong 83a; Mostow 83|, [Carbonell
83] 1s also related).? Little has been done to relate these two methods, and yet the
combination seems crucial to robust learning. In this paper, we will show how two
1deas, interest and predictability, can help bridge the gap. The main 1dea 1s that

interast will tetl us when tc learn and pradictability what to learn.

lThis cesearch was supported in part by the Defense Advaaced Research Projects Agency under
sontract N0OD39-82-C-0427. Comments by Kathy McKeown on aa sariirr .draft of this paper were quite
useful as were discussions with Jerry DeJong.

b
“Term due to DelJong.




Much Al learning research in the past has involved inductive learning. While
there are many varieties of inductive learning, the basic idea is that a program
takes a large number of examples (or instances), compares them in terms of
similarities and differences, and creates a generalized description based on this
structural analysis. Such learning has been studied for cases where the input is
specially prepared by a teacher, for unprepared input, where there are only positive
instances, where there are both positive and negative instances, for a few examples,
for many examples, for determining only a single céncept at a time, and for
determining multiple concepts. [Cohen and Feigenbaum 82| provides a good
summary of this research. Pragmatically, inductive learning programs have learned
by comparing examples more or less syntactically, using little ‘high level”
knowledge of their domains (other than deciding what to represent for each

instance).

In the last few years, another approach has become popular in learning research
-- ezplanation-based learning (EBL). This line of research views learning as a
knowledge-intensive activity, much like other tasks in AI. The basic idea 1s that a
program takes a single example, builds up an explanation of how the various
components relate to each other using traditional AI understanding or planning
methods (dependent on the domain), and then loosens the properties of various
components of the instance for as long as the explanation remains valid. What 1s
left 1s then viewed as 2 generalized descniption of the instance that can be applied
to further examples This kind of learning is tremendously useful, as it allows
generalized concepts to be determined on the basis of a single example. On the
other hagld, it does require extremely detailed knowledge of the domain {which may
minimize the need to learn). In addition, current EBL work seems to be in the

“perfect learner’” paradigm that assumes that all input 1s typical

The major apparent problem with EBL s that 1o an unresinicted domain 1t
may be very difficult to develop the wtial causal explanation that the process rehes
upon, particularly for systems that lack detaled domain knowledge and must use

general understanding rules. Additionally, since the EBL process is computationally




complex, we will not want to apply it to all examples or to all elements of
examples we do consider. We suggest here a model that combines inductive and
EBL methods, one that does inductive learning by noticing similarities when efficient
(e.g., specific) understanding rules are not.available, or when the payoff from EBL
1s not likely to be high, and applies EBL-type analysis at carefully selected times
(on only appropriate examples and onlyappropriate parts of examples). The rules
that are generalized can then be applied to understand later examples. We feel
this 1s a promising path to robust learning, while minimizing the amount of initial

domain information.

2 An EBL Example
Delong, in [Delong 83b], used the following story, STORY1, to illustrate
explanation-based learning. We will use 1t to show some of the problems that can

arise 1n doing such processing.

STORY1 - John, a bank teller, discovered that his boss, Fred, had
embezzled $100,000. John sent Fred an inter-office memo saying that he
would inform the police unless he was given $15000. Fred paid John the
money.

Delong's program first applies standard story understanding techniques to build
up a detailed causal representation of the events in STORY1. This representation
includes links that show how various aspects of the deduction depend on each
other Then Delong repeatedly substitutes more and more general descriptions of
entitles 10 the story, for as long as the causal understanding remains valid. So, for
instance, 1t might discover that the $15,000 could be replaced by any large amount
of money and that the place of employment need not be a bank, but can be any
place that involves money  The f{inal representation with the most generalized

entities that work constitutes a hypothesized “embezzlement’’ schema.

The EBL method works very well for this example, primanly because the
program has a rich model of the domain, and so can build up a very detailed

representation of the story  Further, EBL 1s applied easily because the program




appears to have only this relevant information. We will look at the problems that
would arise if this story was embedded in a system with a wider range of
information that operated on a large number of examples. In terms of the questions
posed above, the problems would be deciding, from among all our examples, when
to generalize, and from all the possible explanations that could be derived from a
story, and all the parts of a complex explanation, deciding exactly what to

generalize.

Delong does address the ‘““when’ question. He presents five heuristics for
deciding when to generalize (whether the main goal of a character is achieved,
whether the goal i1s general, whether the resources needed by the character are
generally achievable, whether the method is at least as effective as known ones, and
whether the method is not already known). These heurnstics are certainly related
to the interest-based proposal we will make, in some sense defining ‘‘interesting’’ for
Delong's system. However. note that these heuristics are, like the method itself,
knowledge intensive 1n terms of the information needed about the domain. We will
consider the case where considerably less information is available for deciding when
and what to generalize, or, more specifically, what instances (or generalizations

made inductively), should be subjected to full EBL analysis.

Even given that a particular instance generalization should be made, we may
still have a problem in deciding what aspects of the instance should be subject to
generalization, and indeed how to control the process that creates the 1mtial
explanation. DelJong does not directly address this problem directly Due to the
state of -his knowledge-base, he 1s able to simply generalize everything. Also, since
he has a very complete domain model, he can make use of existing story
understanding methods, as described above, to derive the initial representation. So,
for example, though his system must explain why a bank executive is a plausible
target for extortion, it presumably does not try to explain why all bank executives
are targets of extortions (1.e, it does not start with the concept of an executive and
try to explain why that requires the person to be an extortion target, since 1t has

detalled knowledge of intentionality).



In the next section, we will show how one can deal with this problem, and

then return to deciding when to generalize.

3 EBL with Less Information -- Predictability

Having outlined the EBL process, and suggested problems that might arise, we
will now look at these problems in the context of the a domain typical of those
that have been dealt with by inductive learning programs. UNIMEM is a program
that takes a stream of facts about objects in a domain and organizes them into a
generalization-based long-term memory where specific instances are stored in terms
of generalized concepts [Lebowitz 80, Lebowitz 82; Schank 82; Lebowitz 83b;
Lebowitz 83a]. UNIMEM learns by observation, and is not specifically provided
with a set of concepts to learn. Figure 1 shows two generalized nodes in memory
from a run of UNIMEM 1nvolving information about congressional districts and the

voting records of their congressmen.
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Figure 1: A Piece of UNIMEM Memory

Instances and generalizations in UNIMEM are described in terms of sets of




features.  The first generalization 1n Figure 1, GEN5, formed inductively by
noticing districts with similar features, describes congressional districts with
congressmen who voted '‘no’ on bills about nuclear power and hospitals, '‘yes’ on
bills about Nicaragua and windfall profits for oil companies, where farm value 1s
high (in the fifth of six categories; the categorization method 1s described in
[Lebowitz 83c]), population went up between 1970 and 1980, and the minority
population 1s relatively low. This generalization describes one district directly (the
Pennsylvania 22nd) and a number of others (listed between the braces) indirectly
under more specific versions of this generalization. GEN6 is one such more specific
generalization, which describes moderately high income districts with Republican
congressmen who voted In a particular way on several bills. GEN6 describes the
Pennsylvania 16th directly, and several other districts indireetly. The numbers in
parentheses i1n Figure 1 represent UNIMEM's confidence 1n a given feature (the
numbers start at 0 and can nise or fall). The numbers in brackets will be explained

later.

The EBL programs in the literature would approach this domain from a
different angle Presumably, they would start by looking 1n detail at the'
information from a given congressional district.  The 1information available to
UNIMEM for one such district, in the form of 32 features about the district, the
state it i1s located 1n, and the votes of their congressman on a number of issues, is

shown in Figure 2.

An EBL program such as DelJong’s would first build up a causal analysis of the
various features of the input, using whatever reasoning rules were available, and
then seeing how constraints of the features could be relaxed such that the causal
analysis would still hold up. So, for example, the program might decide the 22nd’s
congressman voted ‘‘no” on the MX issue (which was a vote to cut MX funding),
because military spending in the district was high. Then 1t would see just how high

the military spending had to be for the causal explanation to hold.

This approach might be appropriate if we had very thorough information about
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Figure 2: The Pennsylvania 22d

the domain, and could construct a detailed causal explanation, particularly if there
were a only limited number of points to vary in EBL's generalization phase.
However, if we have only very general rules to apply, as is often the case in a new
domain, then the combinatorics of the explanation process would not be feasible,
particularly as 1t must be applied to many modified versions of the instance as

constraints are relaxed.

What we propose s, first, to apply EBL methods to inductively created
generalizations, rather than individual instances or episodes. This means that we
will wait for inductive learning to suggest generalizations that will then be analyzed
by EBL-type methods (1.e., a causal explanation wil be derived and constraint-
loosening applied). At the very least, this will avoid spending effort analyzing cases

that are totally atypical. There 1s a larger advantage, however.

Causal explanation involves determining why a given set of conditions leads to
an observed behavior. In order to do this in a domain where we have limited
knowledge, we must first i1dentify which elements of an instance are causes, and
which are results. Doing so will provide a focus for applying general rules to come
up with an explanation of the instance.. Most EBL systems simply posit the
explanation (determine it in a fashion unrelated to the generalization phase), and

needn’t deal with this problem. For example, DelJong bases his EBL on a causal



explanation of the sort provided by [Schank and Abelson 77, Carbonell 81, Wilensky
83, based on detailled knowledge of human intentionality. Such method’s rules

about human intentionality imply the causes in a situation.

If we look at generalization GENS3 in Figure 1, we see that identification of
causes 1s not self-evident. For example, 1t might be that districts with high f{arm
property values have little o1l and hence their congressmen could vote safely for a
windfall profits tax. Conversely, it might be that voting for a windfall profits tax
actually causes the farm value to be high. (Remember, we are assuming we do not

have detalled domain knowledge.)

The solution to this problem is to use predictability (presented in [Lebowitz 80;
Lebowitz 83b| for indexing and understanding purposes). The basic idea is that
features of a generalization that are most nearly unique to that generalization in a
given context indicate the 1its applicability. These f{eatures are called predictive.
Most importantly here, the predictive features are exactly those that are likely to
be causes 1n a causal explanation. This follows from the observation that non-
predictive features occur in many generalizations, and yet are assoctated with many
other combinations of features. Hence they cannot predict a single outcome. So,
for example, if we noticed that all Al conferences were exciting, we would assume
that a conference being Al causes 1t to be exciting, since we probably have few
generalizations about Al conferences, as opposed to assuming that because an event
was exciting 1t was probably an Al conference 3 (See [Hempel 43; Goodman 63] for

related philosophical discussion.)

If we return to Figure 1, we can see how this process might work. The
numbers in brackets next to each feature indicate how many generalizations in the
specified context the feature appears in. So, the ‘“no’” vote on the nuclear power
1ssue and being a district in 3 state with fairly high farm value each appear only in

one generalization, GENS5. In contrast, the feature ‘‘districts in states with low

) 3Not_e that if we knew a number of things about Al conferences, they are usually in the summer, in
interesting locations, have papers in a number of areas, perhaps, then these facts would form a singie
conjunctive generalization.




minority percentage’ appears In eight generalizations. The figures for the features
in GENSG6, reflect only that generalization’s context, in this case the set of

generalizations under GENS.

Using the predictability information from GEN5, we can see that an
explanation should be formed that shows why features like a ‘““no’’ vote on nuclear
power, high farm value and possibly a “yes” vote on the Nicaragua issue imply the
remaining features. The other features will certainly work less well as the causes in
an explanation, since they are associated with a variety of other generalizations.
Similarly, an EBL program trying to explain GEN6 should look for rules that
indicate why a congressman from a state with fairly high income that gained

o N

congressional seats and who voted ‘““yes” on food stamps (the features that we
assume to be the causes) should be a Republican who voted against the Chrysler
guarantee, against gas controls, etc. [Every single one of the predictive features
may not be part of the cause, but only the predictive features may appear as
causes. With the starting point set, we can apply general plan/goal-based
understanding methods such as those in [Schank and Abelson 77, Carbonell 81;

Wilensky 83|, or whatever explanation methods seem appropriate.

Predictability can be applied beyond analysis of generalizations. If wé did want
to apply EBL to a specific instance, say the Pennsylvania 22nd district, in the
manner of current EBL program, then we could use the predictability of the
generalization 1t 1s stored with (GENS, in this case) to provide starting points for
the analysis. While such analysis may still be difficult, as any single instance might
be anomalous in some way, at least the search will not be totally unconstrained.
Note that if the instance 1s stored in several places in memory, which is allowable,
then several possible explanations might be generated. Nonetheless, this Is superior

to trying to explain all combinations of cause and effect.

The point here 1s simply that in any given situation there are variety of
different features or effects we could try to explain. Predictability provides a focus

for apphication of general explanatory rules, even for domains with limited amounts
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of available world knowledge. Many problems remain 1n applying predictability,
notably how to deal with combinations of features that are predictable even when
none of the individual features are, but predictability appears to be a good place to

start 1n building up knowledge of a domain.

4 Further Control -- Interest

Even having taken predictability into account, an EBL system will still have a
large amount of work to do. We have the problem mentioned earlier of deciding
when to generalize, and the explanation process could use further control. One way
that people seem to deal with both of these problems is to focus on the instances
that seem tnteresting to them, and the parts of the instances that are interesting.
As pointed out 1n [Lebowitz 81], the interesting instances are exactly those that are

likely to lead to successful learning.

Saying that interesting instances and interesting parts of instances are useful in
learning 1s almost tautological. Defining interest in terms of what helps in learngng
would make some sense. This i1s the tack that [Davis 71| takes in a study of what
constitutes interesting soctological theories.. But, there 1s another way to look at 1it.
We will assume that interest is a heuristic measure of what 1s likely to help in
terms of learning. It might well be easier to study our intuitive feel for what makes
something interesting than to look directly at what is a good learning instance. We
will not look formally at the components of a heuristic measure of interest in this
paper (but see {Schank 79; Lebowitz 81, Lenat 82]), and instead rely on an intuitive

1dea of interest as we look at how interest can be applied to EBL.

If we look back at the Delong and UNIMEM examples, we can see why
interest can provide useful control. DelJong, for his extortion example, has already
applied his heunstics (2 form of interest), to decide that the story as a whole 1s
interesting.  Nonetheless, we can still apply the i1deas of interest here. Specifically,
we would want to limit the number of features in the story we actively look at
when loosening constraints, or, again, the search process will become

computationally unsound. So, while we certainly want to worry about the amount
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of money being extorted by the bank teller from his boss (it is expected to be
large, but not exactly $15000), we might not worry about the form of
communication between the extorter and his victim. It is not that we would then
assume the communication muse be-by inter-office memo, but rather we would
loosen the constraints without doing a detailed feasibility analysis. This i1s because
our heuristics presumably show that the amount of money is interesting, while the

form of communication 1s not.?

For the UNIMEM example in Figure 1, we have two potential ways to apply
interest.  Unlike DelJong’s situation, but common to the state of many learning
domains, we do not have a straightforward set of heuristics to tell us when to
apply EBL. So, we will want to make use of interest. Actually, the fact that we
are looking at generalizations instead of instances is one application of interest
-- 1.e., we are assuming that generalizations are more interesting (because they are
more reliable) than individual instances. The second application of interest would

be. as in the Delong example, to decide how to focus the EBL process.

Several interest heuristics based on the ideas of relevance and novelty [Lebowitz
81] come to mind for deciding which generalizations to analyze. We would want to -
concentrate on generalizations that describe a number of instances, rather than just
a few, and perhaps those that involve an unusual set of features. In addition, we
would prefer generalizations that organize other generalizations, as they have wider
applicability So, in Figure 1, we would be more interested in GEN3 than GENG6
since 1t describes more instances (as well as having a number of more specific
generalizations. Should 1t turn out that GEN6 1s the only generalization involving
congressmen voting ‘‘yes'' on the food stamps bill and “‘no’’ on the Chrysler bailout,
then 1t would be more interesting, becazuse 1t 1s novel. Note that this i1s just what
we want, since new combinations of features are likely to lead to rules we have not

previously come up with.

Note that since interest is idiosyncratic, what is interesting will differ from person to person, or within
a learning program as it evolves over time.
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Interest rules for deciding what features of a generalization on which to focus
the explanation process would be similar. We would tend to focus on explaining
features that are novel, but not too novel. Novel, since otherwise we can
presumably just look up existing explanations, but not too novel, since we want to
relate the explanations and generalizations that we derive to other parts of our

knowledge base.

Note that the interest heuristics described here, as. well has most of the others
one can think of (at least those that do not use pre-existing domain knowledge),
crucitally depend on having a sizable number of instances in memory, and hence
indicate the bridge between inductive learning and EBL. If processing resources are

limited, interest can tell us how these resources should be expended.

If we were developing a learning system with user-imposed outside interests
(e.g., “be interested in hospitals’), we can superimpose these interests on the more
genefal heuristics in developing a system that makes generalizations relevant to the

user

To recapitulate, interest 1s a very intuitive 1dea that leads to many descriptive
heuristics. If we apply these heuristics to the learning process, they will help focus
on the 1tems that accelerate learning most efficiently. We need not have a detailed

understanding of why each heuristic focuses learning to make use of interest.

5 Conclusion

EBL methods hold the promise of developing learning systems that can make
full use .;)f the knowledge they already possess. However, 1t 1s necessary to relate
these methods to inductive learning techniques so that our systems can not only
make use of a priort1 knowledge, but also use similarities noticed among instances.
This 1s particularly important in domains lacking detailed domain knowledge. We
have described n this paper a three step plan involving 1) applying EBL to
inductively derived generalizations, instead of individual instances, 2) using interest

to determine when to learn. and 3) using predictability to help control an otherwise
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unmanageable explanation process.  Further integration of EBL with inductive
methods (not the least of which might be the application of methods for evaluating
the quality of generalizations even with realistic, noisy data [Lebowitz 82; Lebowitz
83a), 1.e, how we use examples after doing EBL), should lead to extremely powerful

learning capabulities.
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