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Abstract 
InductIve learmng, which involves largely structural comparsions of examples, 

and explanation-based learning, a knowledge-intensive method for analyzing examples 

to bUlld generalized schemas, are two major learmng techniques used in AI. In this 
paper, we show how a combmation of the two methods - applying generalization· 
based techniques dunng the course of inductive learning - can achieve the power of 
explanation-based learning WIthout some of the computational problems that arise in. 
domams lackIng detaIled explanatory rules. \Ve show how the ideas of predictability 

and interest can be partlculary valuable in this context. 

1 Introduction 
Current research 10 machme learnlOg IOcludes two relatIvely disparate 

approaches' tradltlOnal inductive learning from many examples (e.g., [Winston 72; 

\Vlnston 80; ~fichalskl 80; :\lichalski 83; Diettench and :\fichalski 83; LebOWItz 83801 

among many others), and a newer line of research that IOvolves intenSIve 

appItcatlon of knowledge to a slOgle example (at a time), whIch we will refer to as 

explanation~ased learning (e g., [Mitchell 83; Dejong 8380; Mostow 831; [Carbonell 

831 IS also related}.2 Little has been done to relate these two methods, and yet the 

combinatIon seems crUCIal to robust learning. In thiS paper, we Will show how two 

Ide33, interest and predictability, can help bridge the gap. The main Idea IS th~" 

Interest Wlll teil us when tc !P.'MIl -a.nd predictabilIty what to learn. 

IThis .. ~search was supported in part by the Defense AdT~t'a fte:se:u't'h Projects Agency under 
,:ontract :--:OOO39-82-C-04'2i. Comments by Ka.thy ~cKeown on ao ~!.rlit!r dn.ft. oi this paper were quite 
useful 3.S were dlscuss10ns 'Nith Jerry Dejong. 

''1 
-Term due to Dejong. 
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Much AI learning research in the past has involved indudive learning. While 

there are many varieties of inductive learning, the basic idea is that a program 

takes a large number of examples (or instances), compares them in terms of 

simllaritles and differences, and creates a. generalized description based on thIs 

structural analysis. Such learning has been studied for cases where the tnput is 

speclally prepared by a teacher, for unprepared input, where there are only positive 

Instances, where there are both positive and negative instances, for a. few examples, 

for many examples, for determining only a single concept at a time, and for 

determInIng multiple concepts. [Cohen and Feigenbaum 821 provides a good 

summary of this research. Pragmatically, inductive learning programs have learned 

by companng examples more or less syntactically, USIng little "high level" 

knowledge of theIr domains (other than deciding what to represent for each 

instance). 

In the last few years, another approach has become popular in learning research 

explanation-based learning (EBL). This line of research VIews learning as a 

knowledge-intensive actIVIty, much like other tasks in AI. The basic idea IS that a 

program takes a single example, builds up an explanation of how the various 

components relate to each other using traditional A1 understanding or planning 

methods (dependent on the domain), a.nd then loosens the properties of various 

components of the Instance for as long as the explanation remams valid. \Vhat IS 

left is then VIewed as a generalized descnptlOQ of the tnstance that can be applied 

to further examples Thls kInd of lea.rnIng is tremendously useful, as It allows 

generalized concepts to be determIned on the basIS of a Single example On the 

other hand, it does requlre extremely detaIled knowledge of the domain (whIch may 

mInImize the need to learn). In addltlon. current EBL work seems to be In the 

"perfect learner" paradigm that asS\lmes that all Input IS typical. 

The major apparent problem With EBL 15 that 10 an unres:ncted domaIn It 

~ay be very dlificult to develop the Initlal causal explanation that the process relIes 

upon, partIcula.rly for systems that lack detaIled domaIn knowledge and must use 

general understanding :-ules. Addltionally, Since the EBL process is computationally 



complex, we will not want to apply it to all· examples or to all elements of 

examples we do consider. We suggest here a model that combines inductive and 

EBL methods, one that does inductive learning by noticing similaritIes when efficient 

(e.g., specIfic) understanding rules are not. available, or when the payoff from EBL 

IS not likely to be high, and applies EBL-type analysis at carefully selected tImes 

(on only appropnate examples and onlyappropriate parts of examples). The rules 

that are generalIzed can then be applied to understand later examples. We feel 

thIS IS a. promising path to robust learnmg, while minimizing the amount of inItIal 

domam lOformation. 

2 An EBL Example 
Delong, In [Delong 83b], used the following story, STORYl, to illustrate 

explanatIOn-based learmng. "We will use it to show some of the problems that can 

anse 10 domg such processmg. 

STORYl - John, a bank teller, discovered that his boss, Fred, had 
embezzled $100,000. John sent Fred an mter-office memo saying that he 
would mform the police unless he was gIven S15,000. Fred paid John the 
money 

Dejong's program first applies standard story understanding techniques to buIld 

up a. detaIled causal representation of the events 10 STORYl. This representatlOn 

10eludes hnks that show how various aspects of the deduction dep~nd on each 

other Then Dejong repeatedly substitutes more and more general descriptions of 

entIties In the story, for as long as the causal understanding remaIns valid. So, for 

1Ostance, it might discover that the $1,),000 could be replaced by any large arnOllnt 

of money and that the place of employment need not be a bank, but can be -:Lny 

place that involves money The !lnal representatIon with the most generalized 

~ntltles that work CO:1.5tItutes a hypothesized "embezzlement" schema. 

The EBL method works very well for thIS p.xample, prImarIly because the 

program has a nch model of the domain, and 50 can build up a very detaIled 

representatlOn of the story Further, EBL IS applied easIly because the program 
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appears to have only this relevant information. We wIll look at the problems that 

would arise if this story was em bedded in a system with a wider range of 

Information that operated on a large number of examples. In terms of the questions 

posed above, the problems would be deciding, from among all our examples, when 

to generalize, and from all the possible explanatlons that could be derIved from a. 

story, and all the parts of a complex explanation, deciding exactly what to 

generahze. 

Dejong does address the "when" questIon. He presents five heuristics for 

decIding when to generalize (whether the malO goal of a character is achieved, 

whether the goal IS general, whether the resources needed by the character are 

generally achIevable, whether the method is at least as effective as known ones, and 

whether the method is not already known). These heurIstics are certainly related 

to the Interest-based proposal we WIll make, in some sense defining "interesting" for 

Dejong's system. However. note that these heuristIcs are, like the method itself, 

knowledge intenSive In terms of the informatIon needed about the domain. \Ve will 

conslder the case where conslderably less mformation IS available for deciding when 

and what to generalize, or, more specifically, what instances (or generalizations 

made mductlvely), should be subjected to full EBL analysis. 

Even given that a partIcular Instance generalizatlon should be made, we may 

sclll have a problem in deciding what aspects of the mstance should be subject to 

generallzation, and indeed how to control the process that creates the IDltial 

explanatIon. Dejong does not directly address thiS problem directly Due to the 

state of 'his knowledge-base, he IS able to slmply generalize everythmg. Also, Slnce 

he has a very complete domam model, he can make use of eXlsting story 

understanding methods, as descnbed above. to derive the IDltial representatlOn. So, 

for example, though hIS system must explain why a. bank executive is a. plauslble 

ta.rget for extortIOn, It presumably does not try to explain why all bank executlves 

are targets of extortlons (i.e, It does not start wlth the concept of a.n executlve and 

try to explain why that reqUIres the person to be a.n extortion ta.rget, Since It has 

deta.ded knowledge of Intentionahty). 
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In the next section, we will show how one can deal wIth thIS problem, and 

then return to deciding when to generalize. 

3 EBL with Less Information .-- Predictability 
Havmg outlined the EBL process, and suggested problems that might arise, we 

wtll now look at these problems in the context of the a domain typical of those 

that have been dealt with by mductive learmng programs. Ur--.1MEM is a program 

that takes a stream of facts about objects lD a domalD and orgamzes them lOto a 

generalization-based long-term memory where specific instances are stored in terms 

of generalized concepts [Lebowitz 80; LebowItz 82; Schank 82; Lebowitz 83b; 

Lebowitz 83al. UNL\1EM learns by observation, and is not specifically prOVIded 

wIth a set of concepts to learn. Figure 1 shows two generalized nodes in memory 

from a run of UNL'vtE~1 involving information about congressional districts and the 

votmg records of theIr congressmen. 

G£JS 
JUC-POIEB VOTE 10 1 (13) 
STATE FARlf-VAL FARS:! 1 (20) 
IICAlUGUA VOTE YES 2 10) 
HOSPITALS VOTE 10 4 14~ 
DISTRICT POP-DIR UP 4 26 
IIIDF'ALl VOTE YES 4 18 
STATE WIIORITY-PCT WIll:2 8 40) 
[P£JISTLVAIIA22] 
{ALABAKA2 CAlIFORIIA14 CAlIFORIIA26 CALIFORIIA34 FLORIDA! GEORGIAI 

GEORGI!6 KIlTUClTl IElTUCIT4 WISSISSIPPIS IORTHCAROLIIAI0 P£JJSTLVAlIA1S 
TEIAS6 TEIAS22 VIRGIIIA1 VIRGIII!2 VIROIIIA4 VIRGIIIA6} 

G£J6 
F'OOD-ST!¥PS VOTE 
STATE I1COKE 
STATE SEATS 
CHRTSLDl VOTE 
GAS VOTE 
SOCIAL-FUIDS VOTE 
OSHl VOTE 
CAJDIDUE PARTY 
PAC VOTE 
HOUSIIG VOTE 
[PEJlsnVAlU15] 

YES 
I1C3: 4 
GAlm 
10 
10 
TES 
TES 
R 
10 
10 

1 
1 
1 
2 
2 
2 
2 
2 
2 
3 

{CAlIFORII!14 CALIFORII!26 CALIFORII!20 CALIFORII!34 FLORIDA6 
TEIAS6 VIRGIIIAI VIRGIIIA4} 

Figure 1: A Piece of UNTIvtEM Memory 

Instances and generalizatIons in UNJ1.tEM are descnbed In terms of sets of 
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features. The first generalization in Figure 1-, GENS, formed inductIvely by 

notIcing districts with similar features, describes congressional districts wIth 

congressmen who voted \I no" on bills a.bout nuclear power and hospitals, "yes" on 

bills about ~icaragua and windfall profits. for oil companies, where farm value IS 

hIgh (In the fifth of SIX categorIes; the categorization method IS described In 

[Lebowitz 83cj), populatIOn went up between 1970 and 1980, and the minority 

popuiatlOn IS relatIvely low. This generalization describes one district directly (the 

Pennsylvama 22nd) and a number of others (listed between the braces) indirectly 

under more speCIfic versions of this generalization. GEN6 is one such more speCIfic 

generalizatIOn, which describes moderately high Income districts wIth Republican 

congressmen who voted in a particular way on several bills. GEN6 deSCrIbes the 

Pennsylvania 16th dIrectly, and several other districts indirectly. The numbers in 

parentheses In Figure 1 represent UNThfEM's confidence in a given feature (the 

numbers start at 0 and can rIse or fall). The numbers in brackets will be explained 

later. 

The EBL programs In the literature would approach this domain from a 

different angle Presumably, they would start by looking in detail at the 

informatIOn from a given congressional district. The information available to 

CNrvfE~l for one such district, in the form of 32 features about the district, the 

state It IS located In, and the votes of their congressman on a number of issues, IS 

shown in Figure 2. 

An ~BL program such as Dejong's would first budd up a. causal analYSIS of the 

varIOUS features of the Input, using whatever reasoning rules were avaIlable, and 

then seeing how constraInts of the features could be relaxed such that the causal 

analYSIS would stIll hold up So, for example, the program might deCide the 22nd's 

congressman yoted "no" on the ~fX: Issue (whIch was a yote to cut ~fX funding), 

because mtlitary spending In the distrIct was high. Then It would see Just how hIgh 

the mliitary spending had to be for the causal explanatIOn to hold. 

ThiS approach mIght be appropriate. If we had very thorough Informatlon about 



Feature.: PEJlSTLVAJI!22 (DISTRICT) 
CAJDIDAt! OCCUPATIOI LAI 
DISTRICT POP-DIB UP 
STAn: IS PDlSTLYAJU 
IICARAGUA YOn: YES 
JUC-POfEB VOTE 10 
HOUSIIC VOTE YES 
FOOD-STAKPS VOTE 10 
OSHA VOTE 10 
HOSPITAlS VOTE 10 
IIIDFlLL VOTE rES 
SUTE SOTS LOST 
STATE POPULATIOI POpe:7 
STATE WIIORITY-PCT ~II1:2 
STATE SIZE SIZ3:5 
STATE CRIKE-RiTE CRI2:5 
STATE ~ILITART-' ~IL7:g 
SUTE FARM-VlL F!R5:6 

Figure 2: 
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DISTRICT IICOKE 
CAJDID!TE PARTY 
DRJFT YOTE 
III YOTE 
!L!SIl YOTE 
PAC YOTE 
EDUC!TIOI VOTE 
SOCIAL-fUlDS VOTE 
GAS YOTE 
CHBTSLEB VOTE 
ST!TE RECIOI 
STATE ORBAJ-PCT 
STATE ~ICRiTIOI 
ST!T! SCBOOL-EIP 
ST!TE STATE-DEBT 
SUTE !lCOKE 
SUTE TUES 

The Pennsylvania 22d 

IIC2:4 
o 
rES 
10 
10 
10 
TES 
10 
TES 
TES 
U 
ORB8:5 
IfIC1:g 
SCB3:3 
D£B8:7 
IIC3:4 
UI2:5 

the domaIn, and could construct a detailed causal explanation, particularly If there 

were a only limIted number of points to vary In EBL's generalization phase. 

However, If we have only very general rules to apply, as is often the case in a new 

domain, then the combInatorics of the explanation process would not be feasible, 

particularly as It must be applied to many modified versions of the instance as 

constraInts are relaxed. 

What we propose IS, first, to a.pply EBL methods to Inductively created 

generalizations, rather than individual instances or episodes. This means that we 

wlll '.valt for Inductive learning to suggest generalizatIOns that wlll then be analyzed 

by EBL-type methods (I.e., a causal explanation wIll be denved and constralnt­

loosenIng apphed). At the very least, thiS wIll aVOid spendIng effort analyzing cases 

that are totally atypical. There IS a larger advantage, however. 

Ca.usal explanation Involves determlnIng why a given set of conditions leads to 

an observed behaVior. In order to do this In a domain where we have limited 

knowledge, we must first Identify which elements of an Instance are causes, and 

which are results. DOing so wtll provide a focus for applYIng general rules to come 

up With an explanatIOn of the instance., Most EBL systems Simply pOSit the 

explanatIOn (determine It In a fashion unrelated to the generalization phase), and 

needn't deal With thiS problem. For example, Dejong bases hiS EBL on a. causal 
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explanation of the sort provided by [Schank and Abelson 77, Carbonell 81; 'vVilensky 

83]. based on detailed knowledge of human intentionality. Such method's rules 

a.bout human intentionality imply the ca.uses 10 a situation. 

II we look at generalization GENS in Figure 1, we see that identification of 

causes IS not self-evident. For example, It might be that districts With high farm 

property values have little 011 and hence their congressmen could vote safely for a 

Windfall profits tax. Conversely, it might be that voting for a windfall profits tax 

a.ctually causes the farm value to be high. (Remember, we are assuming we do not 

have detailed domatn knowledge.) 

The solution to thiS problem is to use predictability (presented in [LebOWItz 80; 

LebOWitz 83b] for index10g and understanding purposes). The basiC idea is that 

features of a generalization that are most nearly unique to that generalization 10 a 

gIven context 10dicate the Its applicability. These features are called predictive .. 

Most Importa.nt!} here, the predictive- features are exactly those that are likely to 

be causes In a causal explanation. This follows from the observatIOn that non­

predictive features occur 10 many generalizations, and yet are associated with many 

other combinations of features. Hence they cannot predict a s10gle outcome. So, 

for example, If we noticed that all :\1 conferences were exciting, we would assume 

that a conference being Al causes It to be exclt1Og, slOce we probably have few 

generalizations about AI conferences, as opposed to assummg that because an event 

was exclt10g It was probably an AI conference. 3 (See [Hempel 43; Goodman 65] for 

related phIlosophical discussion.) 

II we return to Figure 1, we can see how thiS process might work. The 

num bers in brackets next to each feature 10dicate how many generalizatIOns 10 the 

speCified context the feature appears In. So, the "no" vote on the nuclear power 

lssue and being a district 10 a state with fairly high farm value each a.ppear only In 

one generalizatIOn, GENS. In contrast, the feature "districts In states w1th low 

3~ote that if we knew a. number of things about AI conferences, they are usually in the summer, in 
interesting locations, have papers in a. number of areas, perhaps, then these facts would form a single 
conjunctive generalization. 
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minority percentage" appears in eight generalizations. The figures for the features 

in GEN6, reflect only that generalization's context, in this case the set of 

generalizations under GENS. 

Csing the predictability information from GENS, we can see that an 

explanation should be formed that shows why features like a "no" vote on nuclear 

power, high farm value and possibly a "yes" vote on the Nicaragua issue imply the 

remalOing features. The other features will certainly work less well as the causes in 

an explanatIOn, since they are assocIated with a variety of other generalizations. 

SimIlarly, an EBL program trymg to explain GEN6 should look for rules that 

lOdicate why a congressman from Cl. state with fairly high income that gained 

congressIOnal seats and who voted "yes" on food stamps (the features that we 

assume to be the causes) should be a Republican who voted against the Chrysler 

guarantee, agalnst gas controls, etc. Every single one of the predictive features 

may not be part of the cause, but only the predictive features may appear as 

causes. With the startmg point set, we can apply general plan/goal-based 

understanding methods such as those 10 [Schank and Abelson 77; Carbonell 81; 

\Vilensky 83], or whatever explanation methods seem appropriate. 

Predictabdity can be applied beyond analysis of generalizations. If we did want 

to apply EBL to a specific instance, say the PennsylvanIa 22nd district, 10 the 

manner of current EBL program, then we could use the predictabdity of the 

generalizatIOn it IS stored with (GENS, In thiS case) to provide starting points for 

the analysis. \Vhile such analysis may still be difficult, as any single instance might 

be anomalous in some way, at least the search WIll not be totally unconstrained. 

Note that if the instance IS stored in several places in memory, which is allowable, 

then several possible explanations might be generated. Nonetheless, this is superior 

to trYlng to explaIn all com binations of cause and effect. 

The pOlOt here is simply that In any glven situation there are variety of 

dIfferent features or effects we could try to explain. Predictabdity provides a focus 

for application of general explanatory rules, even for domalns WIth limited amounts 
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of available world knowledge. Many problems r.emam 10 applying predictability, 

notably how to deal with combinations of features that are predictable even when 

none of the individual features are, but predictability appears to be a good place to 

start In buIlding up knowledge of a domalO. 

4 Further Control -- Interest 

Even haVIng taken predictability lOto account, an EBL system will stIll have a 

large amount of work to do. We have the problem mentIOned earlier of deciding 

when to generalize, and the explanation process could use further control. One way 

that people seem to deal with both of these problems is to focus on the Instances 

that seem interesting to them, and the parts of the mstances that are interestmg. 

As pOinted out In [Lebowitz 811. the interesting instances are exactly those that are 

likely to lead to successful learning. 

SaYIng that Interesting mstances and interestmg parts of Instances are useful in 

learmng IS almost tautological. Defining mterest in terms of what helps in learning 

would make some sense. ThiS IS the tack that [Davls ill takes in a study of what 

constltutes Interesting socIOlogIcal theories .. But, there IS another way to look at it. 

We wIll assume that Interest is a heuristic measure of what is likely to help In 

terms of learmng It might well be easier to study our IntUltive feel for what makes 

something Interestmg than to look directly at what IS a good learning instance. We 

Will not look formally at the components of a heuristiC measure of Interest in thiS 

paper (but see [Schank 79; Lebowltz 81; Lenat 821), and Instead rely on an intUltlve 

Idea of interest as we look at how interest can be applied to EBL. 

If we look back at the Dejong and UN1\ffiM examples, we can see why 

Interest can prOVide useful control. Dejong, for his extortion example, has already 

apphed hiS heUrIstics (a form of Interest), to decide that the story as a whole is 

Interestmg. ~onetheless, we can stIll apply the Ideas of Interest here. SpeCifically, 

we would want to limit the number of features In the storv we actively look at 

when loosenIng constraints, or, again, the search process wlll become 

computationally unsound. So, whIle we certamly want to worry about the amount 
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of money being extorted by the bank teller from his boss (it lS expected to be 

large, but not exactly $15,000), we might not worry about the form of 

comm unication between the extorter and his victim. It is not that we would then 

3.Ssume the commUnlCatlon muse be· by Inter-office memo, but rather we would 

loosen the constraints wIthout doing a detalled feasibility analysis. This is because 

our heUrIstics presumably show that the amount of money is interesting, whIle the 

form of commUnlcatlon IS not. 4 

For the UNIMEM example In Figure 1, we have two potential ways to apply 

Interest. Unlike Dejong's sltuation, but common to the state of many learning 

domainS, we do not have a straightforward set of heuristics to tell us when to 

apply EBL. So, we Will want to make use of interest. Actually, the fact that we 

are looking at generalizations instead of instances is one application of interest 

-- l.e" we are assuming that generalizations are more Interesting (because they are 

more reliable) than indiVIdual instances. The second application of Interest would' 

be. as In the De Jong exam pIe, to decide how to focus the EBL process. 

Several Interest heurtstlcs based on the Ideas of relevance and novelty [Lebowitz 

81j come to mind for deciding which generalizations to analyze. We would want to 

concentrate on generalizations that describe a number of instances, rather than just 

a few, and perhaps those that Involve an unusual set of features. In addition, we 

..... ould prefer generalizations that organize other generalizatlons, as they have wider 

applicability So, In Figure 1, we would be more interested in GENS than GEN6 

since It descnbes more Instances (as well as having a number of more speCific 

generali~ations. Should It turn out that GEN6 IS the only generalization involving 

congressmen voting "yes" on the food stamps bill and "no" on the Chrysler bailout, 

then It would be more interesting, because It IS novel. Note that this IS Just what 

we want, since new combinations of features are likely to lead to rules we have not 

preVIously come up With. 

4~ote that since interest is idiosyncratic. wha.t is interesting will dirrer rrom person to person. or within 
a. learning program as it evolves over time. 
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Interest rules for deciding what features of a generalization on which to focus 

the explanation process would be similar. We would tend to focus on explaming 

features that are novel, but not too novel. Novel, since otherwlse we can 

presumably Just look up eXlsting expl-anations, but not too novel, SIQce we want to 

relate the explanatlOns and generalizations that we derive to other parts of our 

knowledge base. 

:"-lote that the Interest heuristics descnbed here, as. well has most of the others 

one can thmk of (at least those that do not use pre-existmg domain knowledge), 

cruclally depend on having a. sizable number of instances 1D memory, and hence 

Indicate the bridge between mductive learning and EBL. If processmg resources are 

limlted, lnterest can tell us how these resources should be expended. 

If we were developing a learning system With user-imposed outside interests 

(e.g., :lbe Interested In hospitals"), we can superimpose these interests on the more 

general heunstics In developing a. system that makes generalizatlOns relevant to the 

user 

To recapitulate, Interest IS a very Intultive ldea that leads to many descriptIve 

heunstics. If we apply these heuristICS to the learmng process, they WIll help focus 

on the ltems that a.ccelerate learning most efficiently. We need not have a detailed 

understanding of why each heunstlc focuses learnlng to make use of interest. 

5 Conel usion 

EBL methods hold the promlse of developing learnmg systems that can make 

full use of the knowledge they already possess. However, It is necessary to relate 

these methods to inductlve learmng techmques so that our systems can not only 

make use of a prion knowledge, but also use simllarities noticed a.mong mstances. 

Thls IS particularly Important in doma.ins lacking detaIled domalD knowledge We 

have descnbed In thls paper a three step plan involVing 1) applying EBL to 

inductively derIved generahzations, Instead of indiVIdual Instances, 2) uSing interest 

to determme when to learn. and 3) using pred£ctability to help control an otherWIse 
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unmanageable explanation process. Further integration of EBL with inductive 

methods (not the least of which might be the application of methods for evaluating 

the quality of generalizations even with realistic, noisy data [Lebowitz 82; Lebowitz 

83aJ, i.e, how we use examples after doing, EBL), should lead to extremely powerful 

learning capabllities. 
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