
Simultaneous Firing of Production Rules

on Tree Structured Machines1

Toru Ishida.-

and

Salvatore J. Stolfo·

Department of Comp,uter Science.

Columbia University·

New York City, N.Y. 10027

CUCS-109-84

vrisiting from Yokosuka Electrical Communication Laboratory

Nippon Telegraph and Telephone Public Corporation

28 March 1984

Abstract

~

This paper describes a method to realize the simultaneous firing of production rules
on tree c structured machines. We propose a simultaneous firing mechanism
consisting of °&Iobal,.communication and global synchronization between subtrees.
We alsd:.proposea· hierarchical decomposition algorithm for production systems
which -mmmizes ;,total throughput by satisfying two requirements, Le. maximizing
parallel eX'~\ltability and minimizing global communication.

, ~ J'. _

~ -
t_:- -

I This research hu been supported by the Derense Adn!1ced Research Projectl Agency throu,h contact NOOO30-84-
C-OI8S. u well u grants from Intel, Dicit&! Equipment, Hewleu-Packard Valid Locic Sy.tems, AT&T Bell Labontories and
IBM Corporations and the New York State Science and Technoloa FoundatioD. We II""&teCully acicnowledge their support.

Table oCContents
~:-,;;:;,:

1 Int~ctibn 1
2 Basia.·Dmniti9ns and Concepts 2

2.1 Production Systems 2
2.2 Tree Structured Machines 2

3 Overview of Decomposition and Allocation Process of Production Rules 3
3.1 Data Dependency Graph 3
3.2 Decomposition and Allocation Process 4

4 Simultaneous Firing Mechanism 4
4.t- Global Communication Mechanism 4
4.2 Global Synchronization Mechanism 6

5 Decomposition Algorithm for Production Rules 8
5.1 Merits and Demerits of Decomposition 8
5.2 Evaluation Algorithm' for a Particular Partition 9
5.3 Practical Decomposition Algorithm) 11·

6 Conclusion 12

1

1 Introduction

Tree structured: machines have been studied and constructed for parallel execution
~S"

of productit?~~sYstems. Stolfo[l] and Miranker[2] invented several tree structured

machine ori~nt~d'tmatching algorithms for the DADO machine[3]. Gupta[4] proposed

a method to implement the Rete Match algorithm (5),. which is used in OPS5[6], on

tree structured machines.

This paper is mainly concerned with simultaneous firing of production rules on a

tree structured machine. Two problems are discussed in this paper; i.e. how to fire
- ~ , ,

production rules simultaneously, and how to decompose and allocate production rules

to many processors. Both problems are. solved by using. data· depf!ndency analysis of

production rules.

. . "'. . - ,"

The simultaneous firing mechanism consists of the following functioIl$.

• Global communication, which is required when- a particUlar processor ~
executes the rule and sends the change of working memory to other
processors.

• Global synchronization, which is required when simultaneous firing causes
interference and produces a different result from the sequential execution
of these rules.

In order to increase the effectiveness of simultaneous firing, the decomposition

algorithm of production rules should satisfy the following requirements.

• Maximize parallel executability. There are two. kinds of parallelism in
production rules. One is fully parallel execution without any data
passing between rules, and the other is pipeline execution with a
continuous stream of data passing between rules:

• Minimize globa1~ communication. It is often pointed out that the effective
bandwid.t~c of· communication is restricted by the top of the tree
(othe~ known as the "binary tree bottleneck").

:~~: ~:

In this pa~lr~' w~~propose a hierarchical decomposition algorithm for production

systems which satisfies the above two requirements.

2

2 Basic Definitions and Concepts

. ~ .~~ ~ ,

2.1 ProductioD~,stems
A production BfI.ttm (PS) is defined by a set of rules together with a database of

assertions, called the working memo,., (WM). Each production consists of a

conjunction of conditional elements, called the It/t-hand side (LHS) of the rule,

along with a set of actions called the right-hand sidt (RH$). The RHS specifies

information which is to be added to or removed from WM when the LHS

successfully matches against the contents of WM.

The PS repeatedly executes.· the following cycle of operations on conventional

machines.

• Match: For each rule, determine whether the LHS matches the current
environment of WM.

• Select: Choose exactly one of the matching rules according to some-2
predefined criterien.

• Act: Add to or delete from WM all assertions as specified by the RHS of
the selected rule.

""

In this paper, however, we do not assume that only one rule is chosen in the

Select phase, but rather propose to execute a considerable number of matching rules

simultaneously on a tree structured machine.

2.2 Tree Structured Machines

The tree structured machint comprises a very large set of processing elements

(PEs). Each PE has its own local memory,and can execute its own programs.

However, there-,'is no gl~bal memory, so that communication is only allowed between

the adja~? ii'eighbors~
~: ~lf..?:,:.- 'J:, •. - •

. :~;y?;~~-~~~ -~. ';
In this p~; we assume that the tree structured machine 15 functionally divided

---:,,0_,
-

into two l'ayets;'i.e. an upptr layer and a lower layer:

• A lower layer consists of many subtrees, each of which contains a group
of production rules and relevant WM elements.

• An upper layer controls global communication and global synchronization
between lower layer subtrees.

3

3 Overview of Decomposition and Allocation Process of Production Rules

3.1 Data Dependency Graph

Data dfPeride~cy graphs are often used to analyze parallelism In

microprograms[7,8J or to represent control structures m non-procedural

languages[9,10J. To analyze production rules, we introduce a data dependency

graph of production rules which is slightly modified for our own purpose.

A data dependency graph of production ruiea is made' of the following three

primitives.
. -. :,'

• A production node (a P-node), which represents a production rule.
• A working memory node (a W-node), which represents· a cleJa""of' working

memory elements.
• A directed edg! (or simply an ed~), which represents a data dependency.

There are two kinds of. edges. . . .

o A directed -edg! from P-node to W-node, which represents that the
RHS of a production rule modifies (adds or deletes). a class of
working memory elements.

o A directed edge from W-node to P-node, which represents that the
LHS of a production rule refers to a class of working memory
elements.

Fig. 3.1 shows an example of a data dependency graph.

(p ruleA
(classl)
(class2)
->
(make class3»)····

"- -': _ ~ . ~ _,-, '. -_' . 1',
";.:.-- ~ :-..... ~ .~,,:.

clasea

ru 1.8

o P-NOIE

o w-NOIE

Fig. 3.1 An Example of Data Dependency Graph

4

3.2 Decomption and Allocation Process

The deeolapoeition and allocation process of production rules recursively proceeds

as follows.

• Decompose the production rules into two groups; allocate one group to
the left subtree, and the other to the right subtree.

• Repeat the process in each subtree.

Production rules are represented by a data dependency graph. To decompose the

data dependency graph- into two groups, the necessary number of W-nodes should

be split. The split W-nodes represent the same copy of the original W-node. Thus

if a particular W-node is split, the WM elements in that class are stored in both of

the right· anq. left subtrees. Fig. 3.2 illustrates this hierar~hic.~ decompOsition and

allocation process.

(p ruleA
(class2)
-->
(make class!))

(p ruleB
-(class!)

(class2)
->
(make class4))

(p ruleC
(class3)
-->
(make class2»

(p ruleD
-(class5)
-->" '-: ..
(remove class2)
tm~.i:elass3» -
_~ , __ , -.. _. _ f.

A
~i

1 S.

V SlLITTING
clus2
2

A

1 5

V 511..ITTING
classl,2,3

!5

'iti 3~2 An Example of Data. Dependency Graph Decomposition

4 Simultaneous Firing Mechanism

4.1 Global Communication Mechanism

Communication and global communication between two rules are defined as

follows.

• If rule B refers to a WM class which is changed by rule A, we say there

5

is communication from rule A to rule B, and represent it by
comfA->B).,

• If com(A->B) and if rule A and rule B are allocated in different lower
subtNelt then the changes of WM must be communicated from rule A to
rule B by passing through an upper layer. This kind of communication
is called global communication from rule A to rule B, and represented
by g-com(A->B).

Global communication is processed as follows.

• When working memory elements in· a split WM' class are modified in

some lower subtree, changes are reported to the necessary level of an
upper layer.

• Then the changes are broadcast to every lower subtree which contains
the split WM class.

Since production rules are decomposed in a hierarchical manner, only a small

number of changes are reported to the root node. Fig. 4.1 illustrates global

communication among _ the production rules of Fig. 3.2.

.....

~Of"
clu.l

r------ ------, ,
'cp· rulaA cp rulaB

eelu.~) -eel ... l)

I

-)

c.-.

r~"·
~---... ~------

eel ... 2) --)
-) e-.ka

(Make el ... 2»
e 1 ... 44», , L _____________ I L ____________ ~

,.----- -------, ep ruleD
-eel ... !!)

-)

erelnCua

el ... ~)

,
el ... ~» I L _____________ ~

Fig. 4.1 An Example of Global Communication

6

4.2 Global .. Synchronization Mechanism

Synchroniiati~n between two rules is defined as follows.

• If th. tesult of simultaneous firing of rule A and rule B is different from
the result of sequential firings in any order, we say synchronization is
required between rule A and rule B, and represent it by sYfI{A<->B).

• Synchronization set 0/ rule A is defined as the set of rules which
require synchronization with rule A.

In order to analyze the synchronization requirements on a data dependency graph,

we first label '+' or '-' on each directed edge by the following operation.

• If the edge originates at a P-node and terminates at a W-node then label

o 1+', when the rule adds WM elements of the class;
o '-', when the rule deletes WM elements of the class.

• If the edge originates at a W-node and terminates at a P:node then label

o 1+', when the class is referenced by a positive conditional element.·:.
of the rule.-

o '-', when the class is referenced by a negative conditional element
of the rule.

• The edge which has both of '+' and '-' label is split into two edges,
each of which has '+' or 1_' label.

Fig. 4.2(1) shows an example of the labeled data dependency graph.

ruleA (ruleB, ruleD)

ruleB: (ruleA, ruleD)

ruleC: (ruleD)

ruleD: (ruleA, ruleB, ruleC)

claae3 clsee5

(1) Labelled Data Dependency Graph (2) Synchronization Set
Fig. 4.2 An Example of Synchronization Analysis

The following observations can be derived from the labeled data dependency

graph.

• If all W?vl classes lying between rule A and rule B are either 1+'(changed

7

by rule A) and '+'{referred to by rule 8), or '-'{changed by rule A) and
'-'{referrt.d to by rule B), then the firing possibility of rule B is increased
monotcmously by executing rule A. Thus, even if rule A is fired during
the extcuiion of rule B, interference never occurs.

• Conver;ely; if some WM classes lying between rule A and rule 8 are
'+'(changed by rule A) and '-'{referred to by rule B), or '- '(changed by
rule A) and '+'{referred to by rule B), then the firing possibility of rule
B is sometimes decreased. In this case, synchronization is necessary.

• If rule A and rule B change the same WM class, and if the class is
'+'(changed by rule A) and '-'(changed by rule 8), or '-'(changed by rule
A) and '+'(changed by rule B), then the result of simultaneous firing is
sometimes different from the result of sequential execution.

From the above observation, we can say that synchronization between rule A and

rule B is required if the following conditions are satisfied on the data dependency

graph.

• syn(A<- >B) is satisfied if there exists a WM class, which is

o '+'(changed- by rule A) l.nd '-'{referred to by rule B), or
o '-'(changed by rule A) i '+'(referred to by rule 8), or
o '+'(changed by rule B) and '-'{referred to by rule A), or
o '-'(changed by rule B) and '+'{referred to by rule A), or
o '+'(changed by rule A) and '-'(changed by rule B), or
o '- '(changed by rule A) and '+'(changed by rule B).

Fig. 4.2(2) shows an example of synchronization sets obtained by applying the

above conditions to the production rules in Fig 4.2(1).

Now, global synchronization. can be defined as follows.

• If syn(A<->B), and if rule A and rule B are allocated in different lower
subtre",~then synchronizing requests are sent from rule A to rule 8 or
from rul.~B to rule A by passing through an upper layer. This kind of
syncbroJU'ation is called global synchronization between rule A and rule
B, ~.r.presented by g-syn(A<->Bj.

Global synchronization is processed as follows.

• When rule A, whose global synchronization set is non-empty, is fired In

some lower subtree, the request for the global synchronization is sent to
the necessary level of an upper layer.

• The request is broadcast to every lower subtree which contains a rule in
the global synchronization set of rule A. Then, the firings of the
interference rules are suspended. If interference rules are currently
executed, their firing is suspended immediately after the current execution
has finished.

8

• Rule -A is executed.
• The;:liriill -iuspension is released in every subtree.

'~~, #~ J.
Because 'the data' dependency graph is decomposed in a hierarchical manner, only ...

a small number of global synchronizations are requested of the root node.

From the above discussion, the condition for simultaneous. firing is derived as

follows.

• If not syn(A<->B), rule A and rule B 'can be fired simultaneously. In
this case, we say rul~ A and rule B are fHlraJltl eztcutabft. '

•
Two kinds of parallel executions, fully parallel, ex~cution_ a~~' pipeline execution,

are realized by sim ultaneous firing.,

- ~. ir-- ,

5 Decomposition Algorithm (or Production Rules ,', .
~. 'r,.- ,,-

~
5.1 Merits and Demerits of Decomposition

We first discuss the merits and demerits derived; from decomposition of production

rules. Clearly decomposition is intended to· reduce the execution time. For

simplicity, we assume the same execution time for all production rules, and call that

execution time a production cycle. Thus the merit of decomposition can be

expressed by the number of reduced production cycles (represented by 1') obtained

by sim ultaneous firing.

On the other hand; the drawback of decomposition IS increased global

communication (represented by C). We define a global communication unit as one
-«"-

WM element communication between physically adjacent PEs. For example, one

WM elem~: communication between sibling subtrees costs 2 units.
. .', t" "'- .

The' gl~tl,~~iDi~ation cost depends on the following situations .

• It depends on the decomposition stage. The PS is decomposed through
n stages- and allocated on 2D lower subtrees" If a WM class is split in
the first stage, global communication is attained through the root node.
However, if the splitting is done in the last stage, global communication
is limited within- adjacent lower subtrees. If a WM class is split in the
i-th stage, one WM element communication costs 2(n-i+l) units.

• It also depends on the decompOSition history. If a WM class is split by
more than one stage, then only half the cost is required in the second or
later stages.

9

From the above discussion, the total gain of decomposition (represented by G) can

be calculated by the following equation.

. ;ro' r

G ::::ItO{: po- - C2 C;. where c1 and c2 are appropriate coefficients .
• • , ___ ', ._. 't

5.2 Evaluation Algorithm for a Particular Partition

In this subsection, we, describe how to evaluate the total· gain of a particular

partltlon. We use sample execution traces to calculate the total gain, because the

quantity of total gain can- not. -be· obtained only by static analysi&.- The· evaluation

algorithm is described below.

Steplz Buildins the Initial Trace Graph
,.,C

We first define the trace graph, which is made of the following two primitives.
, .

• A node, which represents a production rule firing and
• A directed edge, which represents the ~iring order of two production t

rules.

The initial trace graph can be easily constructed from sample execution traces, by

creating nodes and connecting them with directed edges in the original execution

order [10]. Fig. 5.1(1) represents an example of initial trace graph.

:I

'rul~

ruleS

ru I.e

rul.D.
ru I.&-> I"'U I lie

.rul.A· rulaa-)rulaD
rulaC-)rulaA
rul.C-)r-ul.D

ru IliA

r-u Ille

(1) fnitial Trace- Graph (2) Transformed Trace Graph
Fig. 5.1 Trace Graph

Step2: Transforming the Trace Graph

Directed edges represent the firing order of production rules. If two firings can

be done simultaneously, we can remove the edge between these firings. Conditions

and operations for removing edges are as follows.

10

-
• If (l).not: syn(A<->B) and (2) not com(A->B) then

~ ~"~o(lldelete an edge which goes from A to B, and
.. -: (2) add edges which go from A's predecessors to B, and

o:'(3Fadd edges which go from A to B's successors.

Condition (1) indicates the parallel executability of two rules. However, parallel

executability does not directly imply that successive· two firings actually occur

simultaneously. This is the case because, if there exists communication between

successive- two' firings,. it should; be considered that the latter firing!, is the result of

the former firing. Thus condition (2) is necessary. Operation (2) and' (3)- preserve

the order for two firings in connection with other firings.

The transformed trace graph, which represents parallel executability, is obtained

by applying the above operation to all edges. Fig 5.1(2) shoWs the resulf of this

~ transformation.

Step3a Simulation

The final step of the evaluation is a simulation of simultaneous firing on a gIven

partition. The sim ulation algorithm is as follows.

• (1) Set C (which represents the global communication cost) to 0 and set
P (which represents the reduced production cycles) to the number of
original production cycles. Ca.lculate the cost of one WM element
comm unication for every split WM class.

• (2) List the nodes which have no predecessors in the trace graph. IT the
list is empty,. then simulation terminates.

• (3) Classi!y the listed nodes into the following three groups.
- ;;!im. .. : ~~,~ .".

o Group R::):Nodes, in this group should be executed In the right . ..\.~'t'&. ,;" .
. ~' 0:' Glijup' L:" Nodes in this group should be executed in the left
',,, C;')ulit'tee. ~'.

::,': 0 Gto~up OTHER: Nodes in this group are not objects of current
decomposition, i.e. these nodes are executed outside of the current
tree.

• (4) If group OTHER is not empty, delete all nodes in group OTHER
from the transformed trace graph and go back to (2).

• (5) Choose one rule from group R according to some predefined criterion
and delete it from the transformed trace graph. If the rule changes
some split WM classes, then count the global communication cost and
add to C.

11

• (6) Choose one rule from group L and do same as (5).
• (7) Deerement P and go back to (1).

" . ~: ", -' , -, .. .
Total gai~{ 'c ~ obtained from P and C. By applying the evaluation algorithm to

all partitioned candidates, we can obtain the best partition. However, this approach

is possible only if there exist only a small number of partitioned candidates.

5.3 Practical Decomposition Algorithm

The practical decomposition algorithm reduces the computational complexity by

the following strategies.

• First, by approximating the total gain of the decomposition by summlDg
the gains obtained from decomposing every rule pair.

• Second, by not considering every possible partition of the rule set,

The practical decomposition algorithm is described: below., :" ,- ~'-

Step1: Calculate Gain or Decom~ins Rule Pair

.
Reduced production cycles' (represented by- P-(A,B)) and global- communication cost

(represented by C*(A,B)), which are caused by decomposing two rules (A and B),

are calculated without considering other rules by using sample execution traces.

The total gain of decomposing rule A and rule B (represented by G*(A, B)) IS

expressed by the following equation.

G*(A,8) = c1 P*(A, B) - c2 C*(A,B)

Step2a Alloeatins. RuleanOne by One
. ..

1M _ -: '-,j': t ,

To obtai!i: a .. nearly optimal partition In an incremental manner, the most

influential :fule pair should be first allocated. The allocating algorithm proceeds as

follows.

• (1) Make a list of all rule palrs and sort it in decreasing order of
IG*(I,J)I·

• (2) Repeat the following steps until aU rules are allocated.

o (2-1) Pop the first rule pair (I,J) from the list, and allocate it as
follows.

o If G*(I, J) >= 0, allocate I and J to different subtrees.

12

,... If G*(I,J) < 0, allocate I and J to the same subtree.

o (.i) Scan the rule pair list from first to last, and do the following
lor. each rule pair (I, J). If all pairs have been examined, go back
io(2--1) .

6 Conclusion

• If both of I and J have been allocated, remove the pair from
the list.

o If both of I and J have not been allocated, simply go on to
the next pair .

• If one of 1 and J has been allocated, do as follows. Then
remove the pair from the list and· go back to (-2-2)~ -

• If G*(I, J) >= 0, allocate I and J to different subtrees .
• If G*(I,J) < 0, allocate I and .. J. to the, same subtree .

. ; ,

The main results of this research are as follows.

• We show how production rules are decom posed and allocated on a tree -
structured machfne by use- of a. - hierarchical: decomposition algorithm.
This algorithm provides a solution to the binary tree bottleneck problem.

• We clarify the mechanisms which are necessary to realize simultaneous
firings of production rules, i.e. the global communication and
synchronization mechanisms. We also show these mechanism are effective
for both fully parallel execution and pipeline execution.

• We propose a practical decomposition algorithm of production rules.
This algorithm calculates both the merits and demerits of decomposition,
and produces a nearly optimal solution. The algorithm is also applicable
to the decomposition of large scale expert systems. In this case, one
node of a data dependency graph or trace graph represents not only one
rule but a rule set.

This research' has been, conducted as part of the research of the DADO tree
'" structureci::machine. The _ next step is the implementation and evaluation of a

simultaneou;:{il'ing,.mechanism in the actual DADO environment.
J _.:-,-:_. .,

~

'.- ,"!!!ItT~;.~.
Aeknowledgmen ts

We would like to thank Dan Miranker and Mark Lerner for their comments on an

earlier version of this paper.

13

Retereneea

1. Stolfo/ S. J. and Shaw, D. E., "DADO: A Tree Structured Machine
Architecture for Production Systems II , In Proceedings of the National
Conference of Artificial Intelligence, 1982.

2. Miranker, D. P., "Performance Estimates for the DADO Machine",
Technical Report, Department of Computer Science, Columbia University,
1984 (in preparation).

3. Stolfo, S. 1., "The DADO Parallel Computer ll
, Technical Report,

Department of Computer Science, Columbia University, 1983.

4. Gupta, A., "Implementing OPS5 Production System on
Technical Report, Carnegie Mellon University, 1983.

S. Forgy, C. L., "Rete: A Fast Algorithm for the Many Pattern/Many-_
Object Pattern Match Problem II, Artificial Intelligence, Sep. 1982.

6. Forgy, C. L., "OPSS User's Manual", Technical Report CS-81-13S,
Department of Computer Science, Carnegie Mellon University, 1981.

7. Tsuchiya, M. and Gonzalez, M. 1., "Toward Optimization of Horizontal
Microprograms", IEEE Trans. Comput., vol. C-25, pp.992-999, Oct. 1976.

8. Isoda, S., Kobayashi, Y. and Ishida, T., "Globa.! Compaction of
Horizontal Microprograms Based on the Generalized Data Dependency
Graph", IEEE Trans. Comput., vol. C-32, pp.922-933, Oct. 1983.

9. Charniac, E., Riesbeck, C. K. and McDermott, D. V., "Artificial
Intelligence Programming ll

,' Laurence Erlbaum Associates, pp. 193-226,
1980.

-, .--.,
. -

10. Stol~LiS~!: J;"ICAutomatic Discov.ery

~=i ·V~;. Sample ExecutIOn
'.- .• ~.:.-:;.;- J/;;~_ -

'.',w,

of Heuristics for Nondeterministic
Traces", Ph.D. Th., New York

"

CUCS-109-84

?o.; Simultaneous Firing of Production Rules

on Tree Structured: Machines l

" ... ;- ~2; ... :." . ~

, ,,' Torn Ishida.-· '.
~ t:. ~ ,,:. and' .'

",,', _. . -:'.1 r: .. :.~ ":' I" ":: u-"7:- -= :: .. - -_.
Salvatore:- J. Stolfo.,,..,, .. ~ ,~ ! .. ,-, ' .. ." . I' l ,-' -...

.. ':,: i} :1\';:~·: '", 'or 1'< r~,-,.:·.r.;i/A ... ~!.::r: .!

, ~ t, ... ~, .. ~ : '.,'t, '"'\.; '-' •• " ,-"T ,.,_ ... '":I: - .~

Dep~in~'nt'.'of pompl~~r .. ~~i~·nc~~.::~i~'~::~"::~
Columbia- University.~"Y··" ~ .. ':~''';

New York City, N.Y. 10027 ,,:\,-;,; .. - :

-Visiting from Yokosuka Electrical Communication Laboratory· ..

Nippon Telegraph and Telephone Public Corporation

28 March 1984

Abstract

This paper describes a method to realize the simultaneous firing of production rules
on tree., stru~tured,o machines. We propose a simultaneous firing mechanism
consistinii"9{~&obal~~'communication and global synchronization between subtrees.
We aIs4~!<f~e; ,.-a:.-- hierarchical decomposition algorithm for production systems
which ,~~~iz~~total throughput by satisfying two requirements, i.e. maximizing
paral1erre~jiiaoiliti-- and minimizing global communication.

··~~n~~;·
' :

lThis r~urt:h hu bHD supported by the Defense AdY~t:ed Reseuch Projects AgeDCY throu(b contact NOOO30-8+
C-Ola~. u we!l U (nnts (rom IDtel. Di,itu EquipmeDt. Hewlet~Packud Yuid Lolic Systerru. AT&T Bell LaboratoriH and
IBM COrpOr1.t10DS Illd the New York State ScieDce and TechDololY FouDdaLioD. We (ntefully ackDowledce their support.

Table of Contents

1
Z B~riamatiol[lS and Concepts

Systems
2.2 Tree Structured Machines

3 Overview of Decomposition and Allocation Process of Production Rules
3.1 Data. Dependency Graph
3.2 Decomposition and Allocation Process

4 Simultaneous Firing Mechanism
4. t- Global Comm unication Mechanism·
4.2 Global Synchronization Mechanism

5 Decomposition Algorithm for Production Rules
5.1 Merits and Demerits of Decomposition .
5.2 Evaluation Algorithm" 'for' a Particuiar Partition
5.3 Practical Decomposition' Algorithm)

6 Conclusion; ,
J •• ..-.

1
2
2
2
3
3
4
4
4
6
8
8
9

11'
12

1

1 Introdu~lI¥~,'_'

Tree st.<in~chines have been studied and constructed for parallel execution

of produ~~~~~.ms. Stolfo[l] and Miranker[2) Invented several tree structured

machine orientea:-matching algorithms for the DADO- machine[31. Gupta[41 proposed

a method to implement the Rete Match -algorithm [5J .. , which is used in OPS5[6J, on

tree structured machines.,

-

This paper is mainly concerned with simultaneous firing of production rules on a
. . -..... -'.

tree structured machine. Two problems are discussed' in this paper; i.e. how to fire
. ~ .~"; - .' .:..., ~ . .' '-:

production rules simultaneously, and how to decompose and allocate production rules

to many processors., Both problems are, solved: by' usin&l data· dep~ndency analysis of

production rules.

The simultaneouS 'firing m~~hanism c~~~ts" cif-the r~iiowing fh1~tio~.,
- . _ --. -,-._ .. - '. -~

• Global communication,'- whien is required' when··:a particUlar- -processor ~
executes the rule and sends the change of working memory- to other-
processors.

• Global synchronization, which is required when simultaneous firing causes
interference and produces a different result from the sequential execution
of these rules.

In order to increase the effectiveness of simultaneous firing, the decomposition

algorithm of production rules should satisfy the following requirements.

• Maximize parallel executability. There are two kinds of parallelism In
production rules. One is fully parallel execution without any data
passing . between rules, and the other is pipeline execution with a
continuous stream, of data passing between rules:

• Minimii&~'global: communication. It is often pointed out that the effective
banc!.~~!-_o!': communication is restricted by the top of the tree
(ot"!~fwn as the "binary tree bottleneck").

In this '~" propose a hierarchical decomposition algorithm for production

systems which satisfies the above two requirements.

2 Basic Defmiiions and Concepts
.'._~ ~.~r:t~~
~BllWJ:! =-./ ••

'. .-r;~ •..
2.1 Prod ',' ~SI(:Stems'

2

. ,""

A prod~·ctiOfi~;iJ.tem (PS) is defined by a set of rules together with a database of

assertions, called the working memory (WM). Each production consists of a

conjunction of conditional elements, called the left-hand side (LHS) of the rule,

along with a set of actions called the right-hand side (RHS). The RHS specifies

information which is to be added to or removed from WM when the LHS

successfully matches against the contents of WM.

The PS repeatedly executes~ the; following: cycle of· operatioIlS-.·· on conventional

machines.

• Match: For each rule,
environment of WM ..

determine whether the LHS matches the current
T1 _' _ ••

• Select: Choose exactly one of the matching .. .rules according to some' ~
predefined criteriQn.

• Act: Add to or delete from WM all assertions as specified by the RHS of
the selected rule.

In this paper, however, we do not assume that only one rule is chosen in the

Select phase, but rather propose to execute a considerable number of matching rules

sim ultaneously on a tree structured machine.

2.2 Tree Structured Machines

The tree. structured machine compnses a very large set of processIng elements

(PEs). Each PE has its '()wn local memory, .and can execute its own programs.

However,. thtrJt~·no-·gI~bal memory, so that communication is only allowed between
, .'i:_":1¢ ;;.. .. >J>-... I: . '..,

the adj~':"lieighbors:
~:. ~:?;.)~

In this P~W4t assume that the tree structured machine is functionally divided
.. -~:!'" '.

into two layers;> i.e; an upper layer and a lower layer:

• A lower layer consists of many subtrees, each of which contains a group
of production rules and relevant WM elements .

• An upper layer controls global communication and global synchronization
between lower layer subtrees.

3

3 overv:8:omposition and Allocation Proc oC Production Rule.

3.1 Data.'l!E~e.ncy Graph
'_ ~~~r.:1~~!"~t ,

Data .. , d.e~nd~ncy·, graphs are often used to analyze. parallelism In

microprograms[7,8J or to represent control.~. structures' 1Il. non-procedural

languages[9,lO]. To analyze production rules;::i·we ; introduce a data dependency

graph of productio:ll rules which is slightly modified for our o~_n purpose.

A data dependency graph of production ".lea is made 20f the following three

primitives.
''": .,", ~ 1;.. .,: ;i:'~~. .. ·;1-~j:l·;:·...~

• A production node (a P-node), which represents a produc~ion rule ..
• A . working memorY node (a; W-noder, whicH representi a'C/a"6'"of,wo.rking .

memory elements. . .:e: ~ '; -. . ~.:..
• A directed edge (or~simply an edge), which represents a data dependency:

There are_ two' kinds' of .. edges> .. ~- ~' . .;: 3;:~.:~; ... , .
~.- .~~J;!" '.

o A directed ~dge f,.o;n P-n~de to W-node, which represents. thal the -~
RHS. of 3o. production rule modifies (adds or deletes), a class of'· .. ·
working memory elements. '-' .

o A directed edge from W-node to P-node, which represents that the
LHS of a.' production rule refers to a class of working memory
elements. -

Fig. 3.1 shows an example of a data~ dependency graph.

c laaa2

ruleS

o P-NOIE

o w-NOIE

Fig. 3.1 An Example of Data Dependency Graph

4

. ,;.:-~ ~v:·· -.....
3.2 Decom·--~~·hon.:and Allocation Process

. ~'r;' .. ~'t-..-~:-,.

The de'''' . .,,, 'tion. and allocation process of production rules recursively proceeds
. -.~(~ ... ~~:~,;i.r

as follows ... ·:):.. <~?~~
" ... :~:t~~~.'

• DecompOSe- the production rules into two groups; allocate one group to
the left subtree, and the other to the right subtree .

• Repeat the process in each subtree.

Production rules are represented by a data dependency graph'. To decompose the

data dependency graph: into two .. groups, the necess~ number of W-nodes. should
. ' . '., .

be split. The split W-nodes represent the sam~ copy of the original W-node. Thus

if a particular W-node is split, the WM elements in that class are stored in both of
; .. _ . .,"-.~.:- ,. l,.: '; ~. ~ . . ., .,~_ . . _ ... ' '.!~~ _.. ~_

the right, anq. left. subtrees. FIg.. 3.2 illustrates ,this hierarchfcaI· decomposition and
• -:. -. ..- , • j~t' .~ .• ~._.- " .: __ .•

allocation process.
:".' -" J

(p ruleA
(class2)
->
(make classl))

(p ruleB
-(classl)

(class2) ,
-->
(make class4))

(p ruleC
(class3)
->
(make class2)),.,

(p ruleD
-(cla.ss5)

A

.1

A

1

I
I
I
I
I
I

-- >oC':;;!t-.. >, • A : B
(n!niclie:-: class2) :

.:..c.-

,s.
--.rL SPLITTING
~Clus2'

"~
/I
/I
II lie D
" " II

:: 5

--.rL 5'LITTING·
~ classl,2,3

2

.~~.~». 1 ~
;lit§i.3~21 An: Example of Data Dependency
"1<'''''"-"" 'H~K-"1''\~.' L

Graph Decomposition
... '. t:;.:~~.~:~ ; _ !.~

4 Simultaneous Firing Mechanism

4.1 Global Communication Mechanism

Communication and global communication between two rules are defined as

follows .

• If rule B refers to a \VM class which 1S changed by rule At we say there

5

is. communication from rule A to rule B, and represent it by
comW->.!1P.i, ' .

• If .•. :I'~Bl and if rule A and rule B are allocated in different lower
sub~ . .1~n,:.the changes of WM must be communicated from rule A to
rule~BfDj£'$assing -through an upper layer. This kind of communication
is - called:- global communication from ruh.· A to rule B t and represented
by g~om{A->B).

Global comm unication is processed as follows .

• When working memory' elements
some lower:'subtree, ." changes are

in 'a split WM' class are modified 10

reported' to the necessary level- of an
upper layer_ .

• Then' the-changes are' broadcast
the split WMcla.ss-> ~J-' ' ..

:;~f,! _ ,.: -", ,,j- ~.:: '~'.

Since. prodl:lction rules are decomposed 10 a hierarchical manner, only- a'_ small·
. . -'. : ,-'" ., . '~: .':

number of changes are reported to the root node. Fig. 4.1 illustrates·. global
. .

communication among the production rules of Fig. 3.2:' .' ~

r----- ------,
I

: (p' ru laA-
I

: <cl ... ~)
I. : -)

I.,;;,C" •.
~~~:; .. ,~- ~.:." -. 

-~;j,i~~/~·t~.l» · (.'.S~-~ ___ 
Fig. 4.1 

r----- r----- -----, r----- -------, 
I I I <p ru laD 
: <p rulaB : (p. rutae' I 

I -ecl ... S) I I I 
I -<cl ... 1) I <cl ... 3) I 
I , , 

-) I , I , <cl .... ) I -) , 
eramaua , I I 

I I , 
1 -) I <maKa I , I I clu.~) 
I 

(a.ka 
I ,-

cl .... » 
, 

I I I I 
I J I , <n.ka , 

c I ... ~»: I , , , , 
cl ... ~» I , , I , 1.. _____________ 1 L. ____________ .J I.. _____________ .J 

La.EA LA~ 

An Example of Global Communication 



6 

4.2 Global Synphronization Mechanism 
;"'?~7';k:::-' 

Sync~?~~~It",Eetween two rules is defined as follows . 

• If t~i.(:~~c- simultaneous firing of rule A and rule B is different from 
the:'resillt~or, sequential firings in any order, we say synchronization is 
required ~tween rult! A and rult! B, and represent it by syn(A<->B). 

• Synchronization set 0/ rule A is defined as the set of rules which 
require synchronization with rule A. 

, . 

In order to analyze the sync~ronization requirements on a data dependency graph, 

we first label '+' or '-' on each,! directed edge by the following.op'eration. 

• If the edge. originates at a P-node and terminates. at, a _W-node then label 
• • ~ '-;.' • • 4 

o '+', when the rule adds WM elements of the class;',·: 
o '-', when the rule deletes WM elements of the class. 

• .' . '*. • ~ _. . ' . .J . _.:. • • • -

• If the edge ongInates at a W-node and termInates at a P-node then' label 
. . - -

o '+', when the class is referenced by :l positive conditional element .. ~ 
of the rule.- ' " !, ' ;; 

o '-', when the class is referenced by a negative conditional element·; 
of the rule. 

• The edge which has both of. '+' and ,_, label is split into two edges, 
each of which has '+' or ,_, label. 

Fig. 4.2(1) shows an example of the labeled data dependency graph. 

class2 

ruleA (ruleB, ruleD) 

ruleB: (ruleA, ruleD) 

ruleC: (ruleD) 

ruleD: (ruleA, ruleB, ruleC) 

class3 claee5 

(1) Labelled Data Dependency Graph (2) Synchronization Set 
Fig. 4.2 An Example of Synchronization Analysis 

The following observations can be derived from the labeled data dependency 

graph. 

• If all \VM classes lying between rule A and rule B are either '+'(changed 



7 

by r.~~:and '+'(referred to by rule B), or '-'(changed by rule A) and 
'-'(re~to by rule B), then the firing possibility of rule a is increased 
mon~lt __ by executing rule A. Thus, even if rule A is fired during 
th&-.~ii' of rule a, interference never occurs . 

• Conve~Iir- if some WM classes lying between rule A and -rule B are 
'+'(changed- by rule A) and '-'(referred to by rule B), or '-'(changed by 
rule A) and '+'(referred to by rule B), then the firing possibility of rule 
B is sometimes decreased. In this case, synchronization is necessary. 

• If rule A and rule B change the same WM class, and if the class is 
'+'(changed by rule A} and '-'(changed by rule B}, or '-'(changed by rule 
A} and '+'( changed by rule- B},_ then the result of simultaneous firing 1S 

sometimes different from -the result of sequential 'execution. 

From the- above observation; we- can say that -syncnronizati6n between rule A and 

rule B is required if the following conditions are satisfied on- the data dependency 

graph. 
- -

• syn(A< -> B} is satisfied if there exists a WM -class, which -is : 

o '+'( changed- by rule A) l.nd '-'(referred to by rule B), or 
o '-'(changed by rule A) ! '+'(referred to by rule B}, or 
o '+'{changed by rule- B}: and '-'(referred to-by rule A}, or 
o '-'(changed by rule B) and '+'(referred to by rule A), or 
o '+'(changed by rule A) and '-'(changed by rule B), or 
o '-'(changed by rule A} and '+'(changed by rule B}. 

Fig. 4.2(2) shows an example of synchronization sets obtained by applying the 

above conditions to the production rules in Fig 4.2(1}_ 

Now, global synchronization _can be defined as follows. 

• If syn(A <~ > B),- and, if rule A and- rule B are allocated in different lower 
subtre~,.;s.theJl- synchronizing requests are sent from rule A to rule B or 
frolI!:,,;-~.; __ to rule A by passlOg through an upper layer. This kind of 
sync~lltion -is called global synchronization between rule A and rule 
B, --~'~-~""";'}~~~nted by g-syn(A<->B). 

-'-..,' 

Global synchrOD~zation is processed as follows. 

• When rule A; whose global synchronization set is non-empty, is fired in 

some lower subtree, the request for the global synchronization is sent to 
the necessary level of an upper layer. 

• The request is broadcast to every lower subtree which contains a rule in 
the global synchronization set of rule A. Then, the firings of the 
interference rules are suspended. If interference rules are currently 
executed, their firing is suspended immediately after the current execution 
has finished. 



8 

• RuIe--A.iLexecuted. 
_.-.::. ... ->- .01' "'--'", 

•. T,,~~il~:~.~~~on is released in every subtree. 

Becaus~~<iU:~.:dependency graph is decomposed in a hierarchical manner, only 
~.-"";-:'~.~!lJ;~ .~~.~~ - . -

a small number orgr6bal synchronizations are requested of the root node. 

From· the above discussion, the· condition for,simultaneo~: firing. is derived as 

follows . 

• If notsyn(A<->B), rule A and rule. B ·ca~. be fired.simult~~usly. In 
this' case, we say rul~A and. rule B' are.p4~el e:reCJ'~~p[e. ',: 

Two kinds of parallel. executi()p.8, fully, parallel'l,.e~~~u~w.I; ~J?~~pip~line execution, 

. are realized by simultaneous firing, (;;.;; .. t. .~ •• ·,(.::k:i ~:;; : iJ~r;wr:~~; 

5 Decomposition Algorithm Cor Production .Rules . 
- --,.. , ._'.'1. .' ~ .: .'''9: .~.: i,~ _& I ..................... . 

. . ' --

execution time a production cycle. Thus the merit of decomposition can be 

expressed by the number of reduced production cycles (represented by PJ obtained 

by simultaneous firing. 

On the other hand; the drawback of decomposition IS increased global 

communication (represented by C). We define a global communication unit as one 

WM' u;~ation between physically adjacent PEs. For' example, one 
, '-, -: --.;. ':.~ 

WM '. , between sibling subtrees costs 2 units. 

cost depends on the following situations . 

• It depends on the decomposition' stage. The PS is decomposed through 
n stages· and allocated on 2° lower subtrees., If a WM class is split in 
the first stage, global communication is attained through the root node. 
However, if the splitting is done in the last stage, global communication 
is limited within adjacent lower subtrees. If a WM class is split in the 
i-th stage, one WM element communication costs 2(n-i+l) units . 

• It also depends on the decomposition history. If a WM class is split by 
more than one stage, then only half the cost is required in the second or 
later stages. 



9 

above-discussion, the total gain of decomposition (represented by G) can 

be following equation. 

where c1 and c2 are appropriate coefficients. 

5.2 Evaluation Algorithm for a. Particular Partition 

In this subsection;! ;we . describe how to' evaluate- the total:: gain of. a particular 

partition_ We. use sample-· execution:. traces tc>. .calculate the·· total gaini' because the 

quantity .. oL total· 'gain, calf· no~·· be.,·obtained· only:. by,·, stati~analysi&:-: The- evaluation 

algorithm .is. described;· helow:' ',<:' '.: , ::: : 

.. 1·~. _.-T: . .:;.:<:."; .. ..; _..;. .. : ~"..,.J -:.,,-: 

Step!: Building the Initial Trace Grapb 

We first define the . trace graph, _ which is made of the following two primitives. 
. . ... ' ..• :;. • ,'. ~ .:~L - ' ...• '(;-::; .~. "~b ,,,: .):.. .... ~.:./_ . 

• A node, which represents a production rule firing and ') .::-i ol. • 

• A directed edge, which represents the firing order of t~~' p;odu~ilon ~:. 
rules.. :. 

"_' , I' • ~ '" : ~ ~. ... 

The initial trace graph can be easily constructed from sample execution traces, by 

creating nodes and connecting them with directed edges in the original execution 

order [101. Fig. 5.1(1) represents an example of initial trace graph. 

·rulaA 

rula8 

ru laC 
RD1OUFULE: 

EDC;ES 

ru faB-)ru laC 
I.A· ru lal!t-)ru laD 

rulaC-)rulaA 
rul.C-)rul.D 

ru laA 

ru I iii 8 

Trace- Graph (2) Transformed Trace Graph 
Fig. 5.1 Trace Graph 

Step2: Transforming the Trace Graph 

Directed edges represent the firing order of production rules. If two firings can 

be done simultaneously, we can remove the edge between these firings. Conditions 

and operations for removing edges are as follows. 



10 

-f!;':-;~':'l~ ;: f. . 
• If (rJf~Syn(A<->B) and (2) not com(A->B) then 

. ,-, ~~~Lte.' -
." -";-~f.~~V·.';'_ . -. , -~!itll:{eJe~e' an edge which goes from A to B; and 

-. :·c;.;,tn.r~~,e,dges which go from A's predecessors to B, and 
. o~(3r'addtedges which go from A to B's successors. 

Condition (1) indicates the parallel executability of two rules. However, parallel 

executability does: not directly imply that successive'," two firings actually occur 

simultaneously; This is th&:case·because:· ii;:therE!': exists communication between 

successive- twO', firings,:, it, should! be conside~ed·-. thab the; latter' firing t . is the result of 

the former firing. Thus condition (2) is necessary,"; Operation' (2)' ano- (3~ preserve 

the order for two firings in connection with other firings . 
. J", :n:~o '::.z:rd~ii: ;;.'-'1 

The transformed trace graph, which represents parallel executability, is obtained 

by ~p~IYing th~:-'~&jv~ operation to all-edges.:'" Fig 5:1(2) shoWs- the' ~~uit~of this 

~ transformation. 
. ). . ........ 

Step3s Simulation 

The final step of the evaluation is a simulation of simultaneous firing on a gIven 

partition. The sim ulation algorithm is as follows. 

• (1) Set C (which represents the global communication cost) to 0 and set 
P (which represents the reduced production cycles) to the number of 
original production cycles. Calculate the cost of one WM element 
communication: for every split WM class. 

• (2) List the nodes which have no predecessors in the trace graph. If the 
list is empty" then simulation terminates. 

• (3) Classi!y, ,t~e listed nodes into the following three groups. 
~.,;. i~ '" .i~~ -." ,- .. ,."' . 

,.~9J.~~~N<;>de~~ in this group should be executed In the right 
,'," ,~~" , . .. : '.~'.~. :~f~~' Nodes in this group should be executed in the left 
-. c~..JU 8";;:-~ 

-> ~ ~\(;toliPt~:OTHER: Nodes in this group are not objects of current 
decomposition, i.e. these nodes are executed outside of the current 
tree. 

• (4) If group OTHER is not empty, delete all nodes in group OTHER 
from the transformed trace graph and go back to (2). 

• (5) Choose one rule from group R according to some predefined criterion 
and delete it from the transformed trace graph. If the rule changes 
some split WM classes, then count the global communication cost and 
add to C. 



11 

\.i~QOSI~,one rule from group L and do same as (5) . 
. l1ij~Il.nt P and go back to (1). 

". , .... '. 

Total' obtained from P and C. By applying the evaluation algorithm to 

all partitioned candidates, we can obtain the best partition. However, this approach 

is possible only if there exist only a small number of p~itioned candidates. 

5.3 Practical Decomposition Algorithm 

The practical, decomposition .algorithIii reduces,. the; co~putational complexity by 

the follo~ing s.t!}~~.egi;.s.... . ", ..~ .. . . .1:: H , 

• First; by:: approximating;·the total!· gain of the .. decalnposition by summing 
the gains obtained from decomposing every rule pair. _ . 

• Second, by not considering every possible partition of the rule set,- ~'~. ..:' 

The practical decomposition 'algorithm is described' bero""." .. u,,·:u~~ •. ;:·:3;!-( .' 
,.. . ~: 

.•• " !.. . ..-- -.. 

Stepl:. Calculate Gaill ot Decompoeins Rule. Pair , 

. 
Reduced' productioIr cycles· (represented. by. P*(A)3}) and global communication cost 

(represented by C*(A,B)) , which are caused by decomposing tw~ rules (A and B), 

are calculated without considering other rules by using sample execution traces. 

The total gain of decomposing' rule A and rule. B (represented by G*(A, B)) IS 

expressed by the, following equation. 

G*(A,B) = c1 P*(A, B) - c2 C*(A,B) 

Step2t...~.1"""6.lng .. Rulea ... One by One. 

To ·w 

inn 

. .-. -~- . -

. :ll:· opti~al partition In an incremental manner, the most 

. should be first allocated. The allocating algorithm proceeds as 

follows. .,' 

• (1) Make a list of all rule pairs and sort it in decreasing order of 
IG*(I,J)I· 

• (2) Repeat the following steps until all rules are allocated. 

o (2-1) Pop the first rule pair (I, J) from the list, and alloca.te it as 
follows. 

o If G*(I,J) > = 0, allocate I and J to different subtrees. 



12 

·.;~i~:,;~- G*(I,J) < 0, allocate I and J to the same subtree. 

'. ;r(~~Scan the rule pair list from first to last, and do the following 
.·~~~'t)~ruJ. pair (I,J). If all pairs have been examined, go back 

6 Conclusion 

• II both of I and J have been allocated, remove the pair from 
the list. 

• II both of I and J have not been allocated, simply go on to 
the next pair. 

• If one of I and J has been allocated, do as follows. Then 
remove the· pair from the list and- gci' back to- (-2-2): -. . 

• If G*(I, J) > = 0, allocate I and J to- different subtrees . 
• If G*(I,J) < 0,· allocate I andd,: t9 the- same subtree .. 

. : ;:. 2 '_ ~.-

The main results of. this research are as follows. ,~':, ',.:: -1'- '.: .:.;: . 

• We show how production rules are decomposed and allocated on a tree ~ 
structured machine by use- of . a - hierarchical: decomposition algorithm. 
This algorithm provides a solution to the binary tree bottleneck problem. 

• We clarify the mechanisms which are necessary· to realize· simultaneous 
firings of production rules, i.e. the global. communication and 
synchronization mechanisms. We also show these mechanism are effective 
for both fully parallel execution and pipeline execution. 

• We propose a practical decomposition algorithm of production rules. 
This algorithm calculates both the merits and demerits of decomposition, 
and produces a nearly optimal solution. The algorithm is also applicable 
to the decomposition of large scale expert systems. In this case, one 
node of a data dependency graph or trace graph represents not only one 
rule but a rule set. 

This researc1F:.has· been conducted as part of the research of the DADO tree 
''';~'''''''--

structure .. ... ...... hirie~.- The next step is the implementation and evaluation of a 
-s;~ '~,: -

sim ultan~~'Dg-~mechanism 10 the actual DADO environment . 
. ~:~~~:~:_:;~t:~.,~ 

- -"~r-:"." 

Acknowledgments 

We would like to thank Dan Miranker and Mark Lerner for their comments on an 

earlier version of this paper. 



13 

Retereneea 

l.·.i::~"and Shaw, D. E., "DADO: A Tree Structured Machine 
Archi' ~ for Production Systems", In Proceedings of the National 
Conference of Artificial Intelligence, 1982. 

2. Miranker, D. P., "Performance Estimates for the DADO Machine", 
Technical Report, Department of Computer Science, Columbia University, 
1984 (in preparation). 

3. Stolfo, S. 1., "The DADO Parallel Computer", Technical Report, 
Department of Computer Science, Columbia University, 1983. 

4. Gupta, A., "Implementing OPS5 Production System on 
Technical Report, Carnegie Mellon University, 1983. 

DADO" . . , 

.:':!~:::J :-. 
5. Forgy, C. L., "Rete: A Fast Algorithm for the Many Pattern/Many·:· 

Object Pattern Match Problem", Artificial Intelligence, Sep. 1982. :" , ";' 

6. Forgy, C. L., "OPS5 User's Manual", Technical Report CS-81-135,
Department of Computer Science, Carnegie Mellon University, 1981. 

7. Tsuchiya, M. and Gonzalez, M. 1., "Toward Optimization of Horizontal 
Microprograms", IEEE Trans. Comput., vol. C-25, pp.992-999, Oct. 1976. 

8. Isoda, S., Kobayashi, Y. and Ishida, T., "Global Compaction of 
Horizontal Microprograms Based on the Generalized· Data Dependency 
Graph", IEEE Trans. Comput., vol. C-32, pp.922-933, Oct. 1983. 

9. Charniac, E., Riesbeck, C. K. and McDermott, D. V., "Artificial 
Intelligence Programming"" Laurence Erlbaum Associates, pp. 193-226, 
1980. 

.' 
10. '.,- "Automatic Discovery of Heuristics for Nondeterministic 

Sample Execution Traces", Ph.D. Th., New York 



_:_: .. :I! ... 

'-

~, ........... . . ' .~ .. 
. ~'''- ~ --:.' .. . ~ . 

-~ ; 

-' 

--: ,~ 

,'.--

".::. 


