CUCS-109-84

.~ Simultaneous Firing of Production Rules

on Tree Structured Machines!

Toru Ishida’
| and
Salvatore J. Stolfo-

Departrﬁéilt of Comp,ﬁﬂer Scienc,e,:__'"
Columbia University - -
New York City, N.Y. 10027

g

*Visiting from Yokosuka Electrical Communication Laboratory
Nippon Telegraph and Telephone Public Corporation

28 March 1984

Abstract
This paper describes a method to realize the simultaneous firlng of production rules
on tree structured machines. We propose a simultaneous firing mechanism

consisting of global: communication and global synchronization between subtrees.
We also: propose -a hierarchical decomposition algorithm for production systems
which -maximizes stotal throughput by satisfying two requirements, ie. maximizing
parallel eku;utgb}lity; and minimizing global communication.

SR

Lo -

This research has been supported by the Defense Advanced Research Projects Agency through contact N00039-84-
C-0185, as well 2s grants from intel, Digital Equipment, Hewlett-Packard Valid Logic Systems, ATZT Bell Laboratories and
IBM Corporations and the New York State Science and Technology Foundation. We gratefully acknowledge their support.

Table of Contents

1 Introduction -
2 Basio Definitions and Concepts
2.1 Production Systems
2.2 Tree Structured Machines
3 Overview of Decomposition and Allocation Process of Production Rules
3.1 Data Dependency Graph
3.2 Decomposition and Allocation Process
4 Simultaneous Firing Mechanism
4.1 Global Communication Mechanism
4.2 Global Synchronization Mechanism
5 Decomposition Algorithm for Production Rules
5.1 Merits and Demerits of Decomposition
5.2 Evaluation Algorithm- for a Particular Partition
5.3 Practical Decomposition Algorithm:
6 Conclusion ,

DO = © 00 00 O Wb b b (O WD RO KD

—

1 Introduction =

Tree structured (machlnes have been studied and constructed for parallel execution
of produchon systems Stolfo[l] and Miranker[2] invented several tree structured
machine onenéod matching algorithms for the DADO machine[3]. Gupta[4] proposed
a method to implement the Rete Match algorithm(5}, which is used in OPS5([6], on

tree structured machines.

This paper is mainly concerned with simultaneous firing of production rules on a
tree structured machine. Two problems are discussed 1n this paper, i.e. how to fire
production rules simultaneously, and how to decompose and allocate production rules
to many processors. Both problems are solved by using- data- dependency analysis of

production rules.

The simultaneous firing mechanism consists of the fo'llowi'ng: fﬁhotioﬁ,s.

Ay

¢ Global communication, which is required when- a particular processor
executes the rulé and sends the change of working memory to other-
processors.

¢ Global synchronization, which is required when SImultaneous firing causes
interference and produces a different result from the sequential execution
of these rules.

In order to increase the effectiveness of simultaneous firing, the decomposition

algorithm of production rules should satisfy the following requirements.

e Maximize parallel executability. There are two kinds of parallelism in
production rules. One 1is fully parallel execution without any data
passing between rules, and the other is pipeline execution with a
continuous stream of data passing between rules:

o Minimize global communication. It is often pointed out that the effective
bandwidth: of communication i3 restricted by the top of the tree
(othemuﬁ?‘ known as the “binary tree bottleneck”).

In this paper, Wéjpropose a hierarchical decomposition algorithm for production

systems which satisfies the above two requirements.

2 Basic Definitions and Concepts

2.1 Productlen Systems
A produchon “system (PS) is defined by a set of rules together with a database of

assertions, called the working memory (WM). Each production consists of a
conjunction of conditional elements, called the left-hand side (LHS) of the rule,
along with a set of actions called the right-hand side (RHS). The RHS specifies
information which is to be added to or removed from WM when the LHS
successfully matches agaxnst the contents of WM.

The PS repeatedly executes. the following cycle of operations on conventional
machines.

o Match: For each rule, determine whether thehLHS matches the current

environment of WM.
o Select: Choose exactly one of the matching rules according to some -

predefined criterien.
o Act: Add to or delete from WM all assertions as specified by the RHS of

the selected rule.

In this paper, however, we do not assume that only one rule is chosen in the
Select phase, but rather propose to execute a considerable number of matching rules

simultaneously on a tree structured machine.

2.2 Tree Structured Machines

The tree structured machine compﬁses a very large set of processing elements
(PEs). Each PE has its own local memory, and can execute its own programs.
However, there is no- g]obal memory, so that communication is only allowed between

the adjacg_xh‘*% ne!ghbors

In this pa]mf wo assume that the tree structured machine is functionally divided

into two layers ie. an upper layer and a lower layer:

o A lower layer consists of many subtrees, each of which contains a group
of production rules and relevant WM elements.

e An upper layer controls global communication and global synchronization
between lower layer subtrees.

3 Overview of Decomposition and Allocation Process of Production Rules
e

3.1 Data Dfeﬁéndétncy Graph

Data de?"‘iiendency graphs are often used to analyze parallelism in

microprograms(7,8] or to represent control structures in non-procedural

languages[9,10]. To analyze production rules, we introduce a data dependency

graph of production rules which is slightly modified for our own purpose.

A data dependency graph of productwn rules is made of the following three

primitives.

e A production node (a P-node), which represents a production rule.

e A working memory node (a W-node), which represents a- claaa of - working
memory elements.

o A directed edge (or simply an edge), which represents a data dependency
There are two kinds of. edges

o A directed edge from P-node to W-node, which represents,that the -
RHS of a production rule modifies (adds or deletes). a class of
working memory elements.

o A directed edge from W-node to P-node, which represents that the
LHS of a production rule refers to a class of working memory
elements.

Fig. 3.1 shows an example of a data dependency graph.

(p ruleA
(class1) class2
(class2)
->
(rnake cl}ass3))"'~
O p—nome
[] w—nome

Fig. 31 An Example of Data Dependency Graph

3.2 Decomézition and Allocation Process
The dee@ihpqsitidn and allocation process of production rules recursively proceeds

as follows.

. Decompéée the production rules into two groups; allocate ome group to
the left subtree, and the other to the right subtree.
o Repeat the process in each subtree.

Production rules are represented by a data dependency graph. To decompose the
data dependency graph-into two groups, the necessary number of W-nodes should
be split. The split W-nodes represent the same copy of the original W-node. Thus
if a particular W-node is split, the WM elements in that class are stored in both of
the right. and. left subtrees. Fig. 3.2 illustrates this ll_ier,a_tghi-c}lﬂdécompmition and
allocation process. B '

(p ruleA .
(class?2) A c ‘
--> -
(make classl))
(p ruleB
-(classl)
(class2) - 2
->
(make class4))
(p ruleC
(class3) 1
->
(make class2)): '
(p ruleD !
-(class5) E
>, a() !
(remove class2) i
(makes:class3)) - 1 N mp
" Ffg. 3.2 An Example of Data Dependency Graph Decomposition

-
s
w
n

S e - —— -
" — - - -

W

N - -

4 Simultaneous Firihg Mechanism

4.1 Global Communication Mechanism
Communication and global communication between two rules are defined as

follows.
o If rule B refers to a WM class which is changed by rule A, we say there

is communication from rule A to rule B, and represent it by
com(A->B).

o If com(A->B) and if rule A and rule B are allocated in different lower
subtrees, then the changes of WM must be communicated from rule A to
rule B by passing through an upper layer. This kind of communication
is called global communication from rule A to rule B, and represented

by g-com(A->B).

Global communication 13 processed as follows.

e When working memory elements in a split WM class are modified in
some lower subtree, changes are reported to the necessary level of an

upper layer.
o Then the changes are broadcast to every lower subtree which contains

the sphit WM class.

Since production rules are decomposed in a hierarchical manner, only a small
number of changes are reported to the root node. Fig. 4.1 illustrates global

communication among the production rules of Fig. 3.2.

) 1 1 r -
i P o 1 1 ¢p rulaeD '
1¢p- rulaR | 1<p ruleB i\ 1¢<p rulaC Vo 1
! 1o [i+ —¢tclassS)y
i (class@ | | —<classl) | ! (ciass® | | N H
1 X ro oo T -)
E > E E (Classa) E E --> i ! cramoua !
. n.‘ 1 1
: . ¢ ¢ : : - : : (maka : : classa) :
. ‘
i classid) : E ¢make E E class@>>| |
4”] 1] ']]] : ¢ e :
2 1o class4>), o '
. P o v class3))
[| Leccccccccman- I =d bcccccmcme———— J
w LONER LAYER

Fig. 41 An Example of Global Communication

4.2 Global Synchromzatlon Mechanism
Synchron;zauon between two rules is defined as follows.

o If the. teault of simultaneous fmng of rule A and rule B is different from
the result of sequential firings in any order, we say synchronization is
required between rule A and rule B, and represent it by syn(A<->B).

o Synchronization set of rule A 13 defined as the set of rules which

require synchronization with rule A.

In order to analyze the synchronization requirements on a data dependency graph,
we first label ‘4’ or ‘-’ on each directed edge by the following operation.

o If the edge originates at a P-node and terminates at a W-node then label

o ‘4+’, when the rule adds WM elements of the class. -
o ‘-', when the rule deletes WM elements of the class.

o If the edge originates at a W-node and terminates at a P node then label

o ‘+', when the class is referenced by a positive condltlonal element .-

of the rule -
o ‘', when the class is referenced by a negative conditional element -

of the rule.

e The edge which has both of ‘4’ and ‘-’ label is split into two edges,
each of which has ‘4’ or ‘-’ label

Fig. 4.2(1) shows an example of the labeled data dependency graph.

ruleA: (ruleB, ruleD)
ruleB: (ruleA, ruleD)

ruleC: (ruleD)

ruleD: (ruleA, ruleB, ruleC)

c?@Ticluo4 classd classS

(1) Labelled Data Dependency Graph (2) Synchronization Set
Fig. 42 An Example of Synchronization Analysis

The following observations can be derived from the labeled data dependency
graph.
o If all WM classes lying between rule A and rule B are either ‘+’(changed

by rule A) and ‘+'(referred to by rule B), or ‘-(changed by rule A) and
‘’(referred to by rule B), then the firing possibility of rule B is increased
monotomously by executing rule A. Thus, even if rule A is fired during
the execution of rule B, interference never occurs.

. Conve;gely; if some WM classes lying between rule A and rule B are
‘+'(changed by rule A) and ‘-‘(referred to by rule B), or ‘-’(changed by
rule A) and ‘+'(referred to by rule B), then the firing possibility of rule
B is sometimes decreased. In this case, synchronization is necessary.

e If rule A and rule B change the same WM class, and if the class is
‘4+’(changed by rule A) and ‘-’(changed by rule B), or ‘-’(changed by rule
A) and ‘+'(changed by rule B), then the result of simultaneous firing is
sometimes different from the result of sequential execution.

From the above observation, we can say that synchronization between rule A and
rule B is required if the following conditions are satisfied on the data dependency
graph. . ,

o syn(A<->B) is satisfied if there exists a WM class, which is “

o ‘+'(changed-by rule A) and ‘-’(referred to by ruie B), or
‘-'(changed by rule A) {1 ‘+’(referred to by rule B), or
‘+’(changed by rule B) and ‘-'(referred to by rule A), or
‘-'(changed by rule B) and ‘+'(referred to by rule A), or
‘+’(changed by rule A) and ‘-'(changed by rule B), or
‘-'(changed by rule A) and ‘+'(changed by rule B).

o 0 o o o

Fig. 4.2(2) shows an example of synchronization sets obtained by applying the
above conditions to the production rules in Fig 4.2(1).

Now, global synchronization. can be defined as follows.

o If syn(A<->B), and if rule A and rule B are allocated in different lower
subtrees,, then synchronizing requests are sent from rule A to rule B or
from rule.B to rule A by passing through an upper layer. This kind of
synchronization is called global synchronization between rule A and rule
B, - represented by g-syn(A<->B).

TR

Global synchronization is processed as follows.

e When rule A, whose global synchronization set 1s non-empty, is fired in
some lower subtree, the request for the global synchronization is sent to
the necessary level of an upper layer.

o The request is broadcast to every lower subtree which contains a rule in
the global synchronization set of rule A. Then, the firings of the
interference rules are suspended. If interference rules are currently
executed, their firing is suspended immediately after the current execution
has finished.

o Rule A is executed.
o The; Imhg suspension is released in every subtree.

i xk
Because;thet data- dependency graph is decomposed in a hierarchical manner, only

a small number of global synchronizations are requested of the root node.

From the above discussion, the condition for simultaneous. firing is derived as

follows.

e If not syn(A<->B), rule A and rule B ‘can be fired simultaneously. In
this case, we say rule A and rule B are parallel ezecutable.

-

Two kinds of parallel executions, fully parallel execution and - pipeline execution,

are realized by simultaneous firing.. S P

Tyl v‘-v‘:"'
I A

5 Decomposition Algorithm for Production Rules

5.1 Merits and Demerits of Decomposition

We first discuss the merits and demerits derived: from decomposmon of productlon
rules. Clearly decomposition is intended to reduce the execution time. For
simplicity, we assume the same execution time for all producﬂion rules, and call that
execution time a production cycle. Thus the merit of decomposition can be
expressed by the number of reduced production cycles (represented by P) obtained

by simultaneous firing.

On the other hand, the drawback of decomposition is increased global
commumcatlon (represented by C). We define a global communication unit as one
WM element commumcatlon between physically adjacent PEs. For example, one
WM elemqnt commumcatlon between sibling subtrees costs 2 units.

‘.‘.: a

.”communicatlon cost depends on the following situations.

The’ glo

o It depends on the decomposition stage. The PS is decomposed through
n stages and allocated on 2° lower subtrees. If a WM class is spht in
the first stage, global communication is attained through the root node.
However, if the splitting is done in the last stage, global communication
1s limited within: adjacent lower subtrees. If a WM class is split in the
i-th stage, one WM element communication costs 2(n-i+1) units.

e It also depends on the decomposition history. If a WM class is split by
more than one stage, then only half the cost is required in the second or
later stages.

From the above discussion, the total gain of decomposition (represented by G) can
be calculated by the following equation.

T
G ==‘¢'{'P’-v ¢, C, where ¢, and c, are appropriate coefficients.

5.2 Evaluation Algorithm for a Particular Partition

In this subsection, we . describe how to evaluate the total gain of a particular
partition. We use sample execution traces to calculate the total gain, because the
quantity of total gain can- not.be- obtained only by static analysis. The- evaluation
algorithm is described below.

Stepl: Building the Initial Trace Graph
We first define the trace graph, which is made of the follqwiﬁg two primitives.

e A node, which represents a pi'oduction rule firing and .=
e A directed edge, which represents the °firing order of two production %
rules. ’ E

The initial trace graph can be easily constructed from sample execution traces, by
creating nodes and connecting them with directed edges in the original execution
order [10]. Fig . 5.1(1) represents an example of imtial trace graph.

ruiafA
‘rulefR

(J
ru l_“ :> ruieB ruleC
ru Iknc REMOURABRLE . ' .
’
re l,cn‘.
@

T * ruleB->ruiec ruleA()
€) ruieA ruleB->ruleD

T rulaC-ruleA

@ krulaB | eC->ruieD

e rulaeB
(1) Tnitial Trace Graph (2) Transformed Trace Graph
Fig. 5.1 Trace Graph

Step2: Transforming the Trace Graph

Directed edges represent the firing order of production rules. If two firings can
be done simultaneously, we can remove the edge between these firings. Conditions

and operations for removing edges are as follows.

10

o If (1): noﬁ syn(A<->B) and (2) not com(A->B) then

- v"?e.{‘.("l)}'délet.e an edge which goes from A to B, and
"2 (2} add edges which go from A's predecessors to B, and
o"(3)‘add edges which go from A to B’s successors.

Condition (1) indicates the parallel executability of two rules. However, parallel
executability does not directly imply that successive - two firings actually occur
simultaneously. This is the case because if: there exists communication between
successive- two: firings; it should:be considered- that the latter firing:is the result of
the former firing. Thus condition (2) is necessary. Operation (2) and- (3) preserve
the order for two firings in connection with other firings.

The transformed trace graph, which represents parallel executability, is obtained

by applying the above operation to all edges. Fig 5.1(2) shows the fesul’t‘_’ of this

transformation.
Step3: Simulation

The final step of the evaluation is a simulation of simultaneous firing on a given

partition. The simulation algorithm is as follows.

¢ (1) Set C (which represents the global communication cost) to 0 and set
P (which represents the reduced production cycles) to the number of
original production cycles. Calculate the cost of one WM element
communication for every split WM class.

o (2) List the nodes which have no predecessors in the trace graph. If the
list is empty,. then simulation terminates.

e (3) Classify the listed nodes into the following three groups.

° G;%up RZ:Nodes- in this group should be executed in the right

. subtree. = -

Group L. Nodes in this group should be executed in the left

"o Group. OTHER: Nodes in this group are not objects of current
decomposition, i.e. these nodes are executed outside of the current
tree.

e (4) If group OTHER is not empty, delete all nodes in group OTHER
from the transformed trace graph and go back to (2).

¢ (5) Choose one rule from group R according to some predefined criterion
and delete it from the transformed trace graph. If the rule changes
some split WM classes, then count the global communication cost and
add to C.

11

¢ (6) Choose one rule from group L and do same as (5).
. (7)‘:Doereme_nt‘P and go back to (1).

Total gam \G‘ 13 obtained from P and C. By applying the evaluation algorithm to
all partitioned candidates, we can obtain the best partition. However, this approach
is possible only if there exist only a small number of partitioned candidates.

5.3 Practical Decomposition Algorithm
The practical decomposition algorithm reduces the computational complexity by

the following strategies.

o First, by approxxmatmg the total gain of the decomposmon by summing
the gains obtained from decomposing every rule pair.
e Second, by not considering every possible partition of the rule set, -

The practical decomposition algorithm is described below.: - ~ - .

b e

Stepl: Calculate Gain of Decomposing Rule Pair

Reduced production cycles: (represented: by-fP‘(A,B}) and global communication cost
(represented by C*(A,B)), which are caused by decomposing two rules (A and B),
are calculated without considering other rules by using sample execution traces.

The total gain of decomposing rule A and rule B (represented by G*A, B)) is
expressed by the following equation.

G*A,B) = ¢, PX(A, B) - ¢, C*AB)

Step3: Allocating,Rulu..One by One

-~

To obtun a nearly optimal partition in an incremental manner, the most
influential mle pmr should be first allocated. The allocating algorithm proceeds as
follows. '

e (1) Make a list of all rule pairs and sort it in decreasing order of
IG*(LJ)I.
e (2) Repeat the following steps until all rules are allocated.

o (2-1) Pop the first rule pair (I,J) from the list, and allocate it as
follows.

o If G*(I,J) >= 0, allocate I and J to different subtrees.

12

e I G¥(LJ) < 0, allocate I and J to the same subtree.

o (22) Scan the rule pair list from first to last, and do the following
for each rule pair (IJ). If all pairs have been examined, go back
to (21).

o If both of I and J have been allocated, remove the pair from
the list.

o If both of I and J have not been allocated, simply go on to
the next pair.

o If one of I and J has been allocated, do as follows. Then
remove the pair from the list and: go back to (2-2). - -

o If G*(I,J]) >= 0, allocate I and J to different subtrees.
o If G*(1,]) < 0, allocate I and.J.to the same subtree.

8 Conclusion

The main results of this research are as follows. ..

¢ We show how production rules are decomposed and allocated on a tree =
structured machine by use- of a- hierarchical- decomposition algorithm.
This algorithm provides a solution to the binary tree bottleneck problem.

o We clarify the mechanisms which are necessary to realize simultaneous
firings of production rules, 1ie. the global communication and
synchronization mechanisms. We also show these mechanism are effective
for both fully parallel execution and pipeline execution.

e We propose a practical decomposition algorithm of production rules.
This algorithm calculates both the merits and demerits of decomposition,
and produces a nearly optimal solution. The algorithm is also applicable
to the decomposition of large scale expert systems. In this case, one
node of a data dependency graph or trace graph represents not only one
rule but a rule set.

This research ~has been conducted as part of the research of the DADO tree
structured-‘;;‘:i‘nﬁ@hine.- The next step i1s the implementation and evaluation of a
simultaneous- firing, mechanism in the actual DADO environment.

- Acknowledgments

We would like to thank Dan Miranker and Mark Lerner for their comments on an

earlier version of this paper.

13

References

.Stélfé',fi S "'J;A and Shaw, D. E.,, “DADO: A Tree Structured Machine
Architecture for Production Systems”, In Proceedings of the National
Conference of Artificial Intelligence, 1982.

. Miranker, D. P, “Performance Estimates for the DADO Machine”,
Technical Report, Department of Computer Science, Columbia University,
1984 (in preparation).

. Stolfo, S. J,, “The DADO Parallel Computer’”, Technical Report,
Department of Computer Science, Columbia University, 1983.

. Gupta, A., “Implementing OPS5 Production System on DADO’,
Technical Report, Carnegie Mellon University, 1983.

. Forgy, C. L., “Rete: A Fast Algorithm for the Many Pattern/Many-
Object Pattern Match Problem', Artificial Intelligence, Sep. 1982. - :

. Forgy, C.L., “OPS5 User's Manual”, Technical Report CS-81-135, -
Department of Computer Science, Carnegie Mellon University, 1981.

. Tsuchiya, M. and Gonzalez, M. J., “Toward Optimization of Horizontal
Microprograms’’, IEEE Trans. Comput., vol. C-25, pp.992-999, Oct. 1976.

. Isoda, S., Kobayashi, Y. and Ishida, T. “Global Compaction of
Horizontal Microprograms Based on the Generalized Data Dependency
Graph”, IEEE Trans. Comput., vol. C-32, pp.922-933, Oct. 1983.

. Charniac, E., Riesbeck, C. K. and McDermott, D. V., *“Artificial
Intelligence Programming”, Laurence Erlbaum Associates, pp. 193-226,
1980.

: . “Automatic Discovery of Heuristics for Nondeterministic

CUCS-109-84

v Snmultaneous Firing of Production Rules

on Tree Structured M"achmes‘ '

PP

», 1.2

- Toru Ish.lda: .

Loemd MO
Salvatore J Stolfov « feao-

o bk e st weomesld noip
e, T g :

Department of Computet S'cleuce .
Columbia Umvemty‘.w. LS LIELE

New York City, N.Y. 10027 Ama s

v
pRS

“Visiting from Yokosuka Electrical Communication Laboratory?"-.:, -
Nippon Telegraph and Telephone Public Corporation
28 March 1984
Abstract
This paper describes a method to realize the simultaneous firing of production rules
on tree. struptured machines. We propose a simultaneous firing mechanism

consxstxngf,of_zglobal ‘communication and global synchronization between subtrees.
We alscmpmpose ‘@ hierarchical decomposition algorithm for productlon systems

which n;m Zeq s total throughput by satisfying two requirements, i1.e. maximizing
para.lleL emutablhty and minimizing global communication.

!This research has been supported by the Defense Advanced Research Projects Agency through contact NG0039-84-
C-0165, as well 1s grants from Intel, Digital Equipment, Hewlett-Packard Valid Logic Systems, ATZT Bell Laboratories sad
IBM Corporations and the New York State Science snd Technology Foundation. We gratefully acknowledge their support.

Table of Contents

gz I’%dt'x’ctxon Systems
2.2 Tree Structured Machines
3 Overview of Decomposition and Allocation Process of Production Rules
3.1 Data Dependency Graph
3.2 Decomposition and Allocation Process
4 Simultaneous Firing Mechanism
4.1 Global Communication Mechanism-
4.2 Global Synchronization Mechanism
5 Decomposition Algorithm for Production Rules
5.1 Merits and Demerits of Decomposition
5.2 Evaluation Algorithm:for a Particular Partition

5.3 Practical Decomposxtlon A.lgonf.hm) e

6 Conclusion:

DO = © 00 00 O W iix W €O D D KD B

p—

1 Introductlom ‘.

"& machmes have been studied and constructed for parallel execution

—v

of producho%sptems Stolfo[l] and Miranker(2] invented several tree structured

machine orxeﬁted‘matchmg algorithms for the DADO- machine(3]. Gupta[4] proposed
a method to implement the Rete Match-algorithm(5},. which is used in OPS5[6], on

tree structured machines.. . TaTm

This paper is mainly concerned with sirhultaneous firing of pfoduction rules on a
tree structured machine. Two problems are. dlscussed m thls paper, i.e. how to fire
production rules simuitaneously, and how to decompose and allocate production rules

to many processors. Both problems are.solved by using; data. dependency analysis of

production rules.
The simultaneous firing mechanism consists of the folIow;'ng fu;ICtIOI;S - T
o Global communication;” whick is required when--‘d particular - processor

executes the rule and sends the change of workmg memorr to other-

processors.
¢ Global synchronization, which is required when 31multaneous firing causes

interference and produces a different result from the sequential execution
of these rules. :

JRRTINY

In order to increase the effectiveness of simultaneous firing, the decomposition

algorithm of production rules should satisfy the 'following requirements.

e Maximize parallel executability. There are two kinds of parallelism in
production rules. One is fully parallel execution without any data
passing -between rules, and the other is pipeline execution with a
continuous stream. of data passing between rules:

o Minimize-global. communication. It is often pointed out that the effective
bandwrdfﬁ,pol communication is restricted by the top of the tree

Enown as the ‘‘binary tree bottleneck”). -

In this 155 iJ“;ve} propose a hierarchical decomposition algorithm for production

systems which satisfies the above two requirements.

2 Basic Deﬁmtrons and Concepts

A productwmayatem (PS) is defined by a set of rules together with a database of
assertions, called the working memory (WM). Each production consists of a
conjunction of conditional elements, called the left-hand side (LHS) of the rule,
along with a set of actions called the right-hand side (RHS). The RHS specifies
information which is to be added to or removed from WM when the LHS
successfully matches agalnst ‘the contents of WM. '

The PS. repeatedly executes. the: following: cycle of -operations.-on conventional
machines.

o Match: For each rule, determine whether the LHS matches the current

environment of WM. -
o Select: Choose exactly one of the matching rules according to some-—

predefined criteron.
e Act: Add to or delete from WM all assertxons as specified by the RHS of

the selected rule.

In this paper, however, we do not assume that only one rule is chosen in the
Select phase, but rather propose to execute a considerable number of matching rules

simultaneously on a tree structured machine.

2.2 Tree Structured Machines

The tree structured machine comprises a very large set of processing elements
(PEs). Each PE has its own local memory, and can execute its own programs.
Jis 7' no- globa.l memory, so that communication is only allowed between

However theté

the adjacentife
‘3} f§ 5

In this. pamwe assume that the tree structured machine is functionally divided
into two la.yers le. an upper layer and a lower layer:

o A lower layer consists of many subtrees, each of which contains a group
of production rules and relevant WM elements.

e An upper layer controls global communication and global synchronization
between lower layer subtrees.

3 Overview.of Decomposition and Allocation Process of Production Rules

3.1 Data @Aﬁndency Graph

Data.- dependency graphs are often used to analyze. parallelism in
microprograms{7,8] or to represent control.: structures = in non-procedural
languages(9,10]. To analyze production rules,” ‘we ' introduce a data dependency
graph of production rules which is slightly modified for our own purpose.

A data dependency graph of product:on ru/ea 18 made -of the followlng three
KN S S LA

primitives. o
. a~.J - ~ M .-, .. G {,

e A product:on node (a P-node) wluch represents a production ‘rule.
o A working memory node (a W-node), which represents a clau‘ of worlnng

[P et

memory elements. SEL
o A directed edge (or:simply an edge) which represents a data dependency
There are_two kinds of. edges“ : AR -~"~~.<?_
‘-'4_5 ."“

o A directed edge]mm P-node to W-node, which represents that - tbe -
RHS of a. production rule modifies (adds or deletes) a class: of

workmg memory elements.
o A directed edge from W-node to P-node, which represents that the
LHS of a- production rule refers to a class of working memory

elements. -

Fig. 3.1 shows sn exarnple of a data-dependency graph.

(p ruleA -
(classl)- Lo classi class2
(class2) .
_.> b -
(make class3))“
ey B) ru leB ruief
O pnore
clasa3l D W—NODE

Fig. 3.1 An Example of Data Dependency Graph

on and Allocation Process

'tlon and allocation process of production rules recursively proceeds

. Decompose the productlon rules into two groups; allocate ome group to
the left subtree, and the other to the right subtree.
o Repeat the process in each subtree.

Production rules are represented by a data dependency graph. To decompose the
data dependency graph into two_ groups,. the necessary number of W-nodes. should
be split. The split W-nodes represent the same copy of the original W-node. Thus
if a partlcular W-node is spht the WM elements in that class are stored in both of
the nght and leff. subtrees Flg. ‘3.2 illustrates t.lus hlerarchxcal decomposmon and

<1

allocation process

(p TuleA

(class2)

->

(make classl))
(p ruleB

-(classl)

(class2) -

->

(make class4))
(p ruleC

(class3)

->

(make class2))- .
(p ruleD

-(class5)

= DT,
(remotefclass2)

4 Simultaneous Firing Mechanism

4.1 Global Communication Mechanism
Communication and global communication between two rules are defined as

follows.

o If rule B refers to a WM class which is changed by rule A, we say there

is. communication from rule A to rule B, and represent it by
com{ﬁ)ﬂﬁ

X->B} and if rule A and rule B are allocated in different lower
sub e tﬁen ‘the changes of WM must be communicated from rule A to
rule;@ﬁ‘ﬁpassmg through an upper layer. This kind of communication
is. called” global communication from rule A to rule B, and represented

by g-com(A->B).

Global communication is processed as follows.
o When working memory elements in ‘a split WM’ class are modified in
some lowersubtree,: changes are reported to the necessary level of an

) upper layer.
"o Then the changes are broadcast to ‘every lower<subtree which’ contains

the spht WM class. - e te e e oag
3361, C 1 T e e : B IS I P R

Since productlon rules are_ decomposed 1n a hxerarchxcal manner, only a small -
number of changes are reported to the root node " Fig. 41 1llustrates global

communication among the productxon rules of Fig. 3.2 . E

- w-- - - = " - . - - an - - -

1 peesmedeeooe-- 1 pee-—- 5. I ar ittt)
o . { P ruleD
p ruleB (p.rulacC’
PP PP bl —cclaseS) |
!+ —¢classl> | | <classd) | | !
T b Vo -> N
E E (Class@> : 1: - E E <ramoue E
B B R B I R
E E (make E E claa-i::s i ¢ e E
class4))
N Lo Lo class®)) |
1 becrcconsacccacaoe 1 | S -— bececcwnecaeee=
LOWER LAYER

VFi‘g. 41 An Example of Global Communication

4.2 Global Synchromzatlon Mechanism

Synchro "'gatlon: between two rules is defined as follows.

: tof simultaneous fxrlng of rule A and rule B is different from
the: result of sequential firings in any order, we say syncAronization is
required between rule A and rule B, and represent it by synfA<->B).

o Synchronization set of rule A 13 defined as the set of rules which
require synchronization with rule A.

In order to analyze the synchronization requirements on a data dependency graph,
we first label ‘+' or ‘-’ on each-directed edge by the following. operation.
o If the edge originates at a P-node and terminates ‘el;_,a»rW‘-node‘ then label

o ‘+', when the rule adds WM elements of the class; "
o -', when the rule deletes WM elements of the class. -

o If the edge originates at a W-node and termlnates at a P-node then- label -

o '+, when the class is referenced by a posmve condltlonal element ¢

of the rule.
o '-', when the class is referenced by a negative conditional element &

of the rule.

o The edge which has both of ‘+' and ‘-’ label is split into two edges,
each of which has ‘+' or ‘-’ label.

Fig. 4.2(1) shows an example of the labeled data dependency graph.

class2

ruleA: (ruleB, ruleD)
ruleB: (ruleA, ruleD)
ruleC: (ruleD)

ruleD: (ruleA, ruleB, ruleC)

(1) Labelled Data Dependency Graph (2) Synchronization Set
Fig. 4.2 An Example of Synchronization Analysis

The following observations can be derived from the labeled data dependency
graph.
o If all WM classes lying between rule A and rule B are either ‘+'(changed

by rulté) ‘and ‘+'(referred to by rule B), or ‘-'(changed by rule A) and

‘ ’(reﬁnﬁto by rule B), then the firing possibility of rule B is increased

sly; by executing rule A. Thus, even if rule A is fired during

Qon: of rule B, interference never occurs.

. Conversely, ‘if some WM classes lying between rule A and tule B are
‘+'(changed by rule A) and ‘-'(referred to by rule B), or ‘“’(changed by
rule A) and ‘+'(referred to by rule B), then the firing possibility of rule
B is sometimes decreased. In this case, synchronization is necessary.

o If rule A and rule B change the same WM class, and if the class is
+'(changed by rule A) and ‘-'(changed by rule B), or ‘-’(changed by rule
A) and ‘4+’(changed by rule B}, then the result of simultaneous firing is
sometimes different from-the result of sequential execution. - :

From the- above observation; we can say that-synchronization between rule A and
rule B is required if the following conditions are satisfied on the data dependency

graph.

EoAY

e syn(A<->B) is satisfied if there exists a WM “class, whichis = *

o ‘+'(changed-by rule A) and ‘-’(referred to by ruie B), or
o ‘-’(changed by rule A) { ‘+'(referred to by rule B), or

ny

+'(changed by rule- B)-and ‘-'(referred to-by rule A), or
‘-'(changed by rule B) and ‘+’(referred to by rule A), or
‘+’(changed by rule A) and ‘-’(changed by rule B), or

o ‘-'(changed by rule A) and ‘+’(changed by rule B).

o

Fig. 4.2(2) shows an example of synchronization sets obtained by applying the

above conditions to the production rules in Fig 4.2(1).

Now, global synchronization.can be defined as follows.

o If syn(A<->B), and. if rule A and rule B are allocated in different lower
subtrees,&then synchronizing requests are sent from rule A to rule B or
from: r B to rule A by passing through an upper layer. This kind of
synch@ﬂlon ‘is called global synchronization between rule A and rule

Global synchromzatlon is processed as follows.

e When rule A, whose global synchronization set is non-empty, is fired in
some lower subtree, the request for the global synchronization is sent to
the necessary level of an upper layer.

e The request is broadcast to every lower subtree which contains a rule in
the global synchronization set of rule A. Then, the firings of the
interference rules are suspended. If interference rules are currently
executed, their firing is suspended immediately after the current execution

has finished.

. RuIeA. is: executed.
. The'f_in gauspensuon is released in every subtree.

Because Er~ dafa: dependency graph is decomposed in a hxerarchlcal manner, only

a small numbser of gIobal synchromzatlons are requested of the root node.
From- the above - discussion, the . condition for. ,s-imultaneon;:firing._is derived as

follows.

o If not syn(A< >B), rule A and rule B can. be fired. srmultaneously In
this case, we say rule A and. rule B are parallel ezecutable. .

Two kinds of parallel.executions, fully. parallel, execution, and. pipeline execution,

- are realized by simultaneous firing...... . . iisi sr: o bevuss-
5 Decomposition Algorithm for Production _Rulesq:.' e 7
5.1 Merits and Demerits of Decomposition A o T

We first discuss the merits and demerits demred from decomposmon of productlon
rules. Clearly decomposxtlon is intended “to" reduce the- executron time. For
simplicity, we assume the same execution time for all productxon rules and call that
execution time a production cycle. Thus the merit of decomposition can be
expressed by the number of reduced production cycles (represented by P) obtained

by simultaneous firing.

On the other hand, the drawback of decomposition is increased global
commumcatlon (represented by C). We define a global communication unit as one

WM elem.en‘ ‘gommumeatlon between physically adjacent PEs. For example, one
Sk Wm e
A mumcatlon between sibling subtrees costs 2 units.

7

g -

,_. 'mumcatxon cost depends on the following situations.

o It depends on the decomposition stage. The PS is decomposed through
n stages- and allocated on 2° lower subtrees. If a WM class is split in
the first stage, global communication is attained through the root node.
However, if the splitting 1s done in the last stage, global communication
is limited within' adjacent lower subtrees. If a WM class is split in the
i-th stage, one WM element communication costs 2(n-i+1) units.

o It also depends on the decomposition history. If a WM class is split by
more than one stage, then only half the cost is required in the second or
later stages.

5.2 Evaluation Algorithm for a Particular Partition

In this subsectiom;’:we.describe how to: evaluate- the total: gain of. a particular
partition. We. use sample execution.traces to:-.calculate the total gain: because the
quantity-of. total -gain. can- not-be-obtained - only - by: static: analysis- . The- evaluation

algorithm .is. described: below: - =« . R S T A
B L AV LUIOY L DIl s
Stepl: Building the Initial Trace Graph

T e - - =1 v--r} P

‘ P& (d .- .
e reitn- - T ST Mleny

We flrst defme the trace graph whlch is made of the folIow1ng two prumtlves

o A node Whlch represents a productxon rule fmng and A
o A directed edge, which represents the firing order of two productlo § -

rules. . o

The initial trace graph can be easily constructed from sample execution traces, by
creating nodes and connecting them with directed edges in the original execution

order [10]. Fig . 5.1(1) represents an example of imtial trace graph.

ruiaf

‘rulefR

ruleB :
, - __> ruleB ruieC

‘ "'i'"c REMOUVRBLE

ruleB=)ruleC TUIeR (J
ruieB—->rulal
rulaC->rulaef
ruieC->ruled ruleB

(1) TmtxaP Trace Graph (2) Transformed Trace Graph
Fig. 5.1 Trace Graph

Step2: Transforming the Trace Graph

Directed edges represent the firing order of production rules. If two firings can

be done simultaneously, we can remove the edge between these firings. Conditions

and operations for removing edges are as follows.

10

a(Sf*.ach edges which go from A to B's successors.

Condition (1) indicates the parallel executability of two rules. However, parallel
executability does: not directly imply that successive:-two. firings actually occur
simuitaneously: This is the: case -because: if::there: exists communication between
successive- two: firings;: it - should: be considered-.that the: latter firing'.is the result of
the former firing. Thus condition (2) is necessary:' : Operation: (2)-andr (3} preserve

the order for two firings in connection with other flnngs
A #7 2 '4 feiz di "isf L. ;f'ﬁ-“j . ’

The transformed trace graph which represents parallel executablhty, is obtamed
by applymg the’ aBove operatxon to all “edges. - F'g 51(2) shows’ the resulf.” of thls

transformation. ' R .
Step3: Simulation

The final step of the evaluation is a simulation of simultaneous firing on a given

partition. The simulation algorithm is as follows.

e (1) Set C (which represents the global communication cost) to 0 and set
P (which represents the reduced production cycles) to the number of
original production cycles. Calculate the cost of one WM element
communication: for every split WM class.

o (2) List the nodes which have no predecessors in t:he trace graph. If the
list is empty,.then simulation terminates.

e (3) CIasslfy t.he listed nodes into the followmg three groups.

"sNodes, in this group should be executed in the right

U Gronps OTHER Nodes in this group are not objects of current
decomposition, i.e. these nodes are executed outside of the current

tree.

o (4) If group OTHER is not empty, delete all nodes in group OTHER
from the transformed trace graph and go back to (2).

¢ (5) Choose one rule from group R according to some predefined criterion
and delete it from the transformed trace graph. If the rule changes
some split WM classes, then count the global communication cost and
add to C.

11

o (6) Cﬁoosx one rule from group L and do same as (5).
(7) D’emnont P and go back to (1).

Total gams : m’l obtamed from P and C. By applying the evaluation algorithm to

pracht e
TS R

all partltloned candldates we can obtain the best partition. However, this approach

is possible only if there exist only a small number of partitioned candidates.

5.3 Practical Decomposmon Algonthm .
The practxcal decompomtxon algonthm reduces the, computatlonal complexity by

the followmg strategles e e

- 2 E
o First] by- approxxmatmg the total -gain of the: decomposmon by summing

the gains obtained from decomposing every rule pair. o
¢ Second, by not considering every possible partition of the rule set

..‘.4 ot < -

The practical decomposition ‘algorithm is deseribed’ befow:: - vacv = «ﬁ R

Stepl: Calculate Giin of Decomposing Rule. Pair

g A g

Reduced production cycles: (represented. by-v.P;'(A,B}) and gIobaI:'zcommunication cost
(represented by C*(A,B)), which are caused by decomposing two rules (A and B),
are calculated without considering other rules by using sample execution traces.

The total gain of decomposing rule A a.nd rule B (represented by G*A, B)) 1s

expressed by t,he following equation.
G*(AB) = ¢, P*(A, B) - ¢, C*(AB)

Steph Al!oc:ting Rulec..One by One

tel ~ne_a.rly optxma.l partition in an incremental manner, the most

mfluentx: : {paxr should be first allocated. The allocating algorithm proceeds as
R

follows. =~ +¥Iz= . -

o (1) Make a list of all rule palrs and sort it in decreasing order of
IG*(1,1)1.
¢ (2) Repeat the following steps until all rules are allocated.

o (2-1) Pop the first rule pair (I,J) from the list, and allocate it as
follows.

o If G¥1,J) >= 0, allocate I and J to different subtrees.

12

ﬁ‘ilf G*(I,]) < 0, allocate [and J to the same subtree.

o

e (Mk Scan the rule pair list from first to last, and do the following
w&%each rule pair (I,J). If all pairs have been examined, go back
t.o (21-1)

o If both of I and J have been allocated remove the pair from
the list.

o If both of I and J have not been allocated, simply go on to
the next pair.

o If one of I and J has been allocated, do as follows. Then
remove the- pair from the list and- go" back to (2-2). - -

o If G*(I,J) >= 0, allocate I and J to-different subtrees.
o If G*(1,J) < 0, allocate I and:.J, to the same subtree..

’!), Teee T Lo T 5200

8 Conclusion

The main results of this research are as follows.~r <. -5 -0 L5

e We show how production rules are decomposed and allocated on a tree *
structured machine by use- of - 3 hierarchical* decomposition algorithm. *
This algorithm provides a solution to the binary tree bottleneck problem.

. o We clarify the mechanisms which are necessary to realize simultaneous
firings of production rules, 1i.e. the global communication and
synchronization mechanisms. We also show these mechanism are effective
for both fully parallel execution and pipeline execution.

e We propose a practical decomposition algorithm of production rules.
This algorithm calculates both the merits and demerits of decomposition,
and produces a nearly optimal solution. The algorithm is also applicable
to the decomposition of large scale expert systems. In this case, one
node of a data dependency graph or trace graph represents not ouly one
rule but a rule set.

This researeh‘ has been conducted as part of the research of the DADO tree

Acknowledgments

We would like to thank Dan Miranker and Mark Lerner for their comments on an

earlier version of this paper.

10.

13

References

Sto ',;. .:f Vand Shaw, D. E., “DADO: A Tree Structured Machine
Archxtecture for Production Systems” In Proceedings of the National
Conference of Artificial Intelligence, 1982.

Miranker, D. P., ‘Performance Estimates for the DADO Machine”,
Technical Report, Department of Computer Science, Columbia University,

1984 (in preparation).

Stolfo, S. J, “The DADO Parallel Computer’”, Technical Report,
Department of Computer Science, Columbia University, 1983.

Gupta, A., “Implementing OPS5 Production System on DADO"
Technical Report, Carnegie Mellon University, 1983.

.,1..5’.)"‘
Forgy, C. L., “Rete: A Fast Algorithm for the Many Pattem/Many" ;
Object Pattern Match Problem”, Artificial Intelligence, Sep. 1982. == =~

Forgy, C. L., “OPS5 User's Manual”, Technical Report CS-81-135, -~
Department of Computer Science, Carnegie Mellon University, 1981.

Tsuchiya, M. and Gonzalez, M. J.,, “Toward Optimization of Horizontal
Microprograms'’, IEEE Trans. Comput., vol. C-25, pp.992-999, Oct. 1976.

[soda, S., Kobayashi, Y. and Ishida, T., “Global Compaction of
Horizontal Microprograms Based on the Generalized Data Dependency
Graph”, [EEE Trans. Comput., vol. C-32, pp.922-933, Oct. 1983.

Charniae, E., Riesbeck, C. K. and McDermott, D. V., “Artificial
Intelligence Programming’’,, Laurence Erlbaum Associates, pp. 193-226,
1980.

g f “Automatlc Discovery of Heuristics for Nondeterministic
from Sample Execution Traces”, Ph.D. Th, New York

]
¢
t
’

e

