CUCS-107-84

||PSL: A Parallel Lisp
for the DADO
Machine*

Michael K. Van Biema
Mark D. Lerner
Gerald Maguire

Salvatore J. Stolfo

Columbia University
February 6, 1084

Abstract

We describe a system level programming language and integrated environment for programming
development on the DADO parallel computer. In addition a set of language constructs augmenting LISP
for programming parallel computation on tree structured parallel machine are defined . We discuss the
architecture of the DADO machine and present several examples to illustrate the language. "In particular
we describe how thelanguage provides an integrated approach to the problem of parallel software design.
Parallel algorithms may be designed analyzed on a sequential machine under simulation and then simply
recompiled to run on s parallel machine. In concluding sections we outline the implementation using the
Portable Standard LISP Compiler.

*This research was supported in part by the Defenss Advaaced Research Projects Agency under contraet NOOO39-82-
C-0427 and the New York State Science snd Technology Foundation, as well as grants from Intel Corporation, International
Business Machines, Hewiett Packard, Digital Equipment Corporatios, Valid Logic Systems, aad Bell Laboratories.

Table of Contents

1 Introduction
2 The DADO Machine
3 PPL/M: A First Pass
4 ||PSL: Language Overview
4.1 Semantics of Parallel Communicstion Functions
4.2 Parallel Procedure Activation
4.3 The Parallel Communication Functions
4.4 ||PSL Examples
4.4.1 Sequentially Loading DADO
4.4.2 Associative Probing
4.5 Implementation Issues
4.5.1 The Symbol Table
4.5.2 Passing Lisp Objects
4.5.3 Garbage Collection
4.5.4 Debugging: Calls with one level of indirection

$ Conclusion

O Q@ © © 00 00 00 =8 =3 o o W W Q) =

1 Introduction

This paper describes the development of & system level programming language which greatly re.duces the
difficulty of programming tree structured machines. We view each node of the parallel machine as an
abstract datatype which sy any point in time contains data and code; moreover, primitives and high-level
functions are provided to manipulate these data objects. The approach provides an integrated
environment for software development and debugging. We call this language ||PSL, standing for Parallel
Portable Standard Lisp.

We discuss the difficulties of providing s system level programming language for a parallel machine and
outline the difficulties encountered with a previously used language.

This language has been developed in the context of the DADO project. The final goal of this project is
the development of both hardware and software systems designed for the rapid execution of Artificial
Intelligence (AI) systems. Two AI systems are currently under development (see [Miranker 84| and
[Taylor 84] for details):

o Herbal, named in honor of Herbert Simon and Allen Newell, inventors of the Al production
system paradigm. Herbal is a parallel production system language which uses a modification of
the Rete-match algorithm [Forgy 82].

o LPS, A Logic Programing System which is a logic based language facility [Taylor 83|.

This paper examines the system level programming language in which these systems are being developed.
Before giving the language specification we briefly describe the structure and operation of the DADO
machine. -

2 The DADO Machine

DADO is a fine grain, binary tree-structured machine which will eventually contain many thousands of
processing elements (PEs). A 1023 node machine is under coastruction with a planned completion date
within a year. There is currently a 15 node prototype functioning at Columbia University.

The DADO machine works in conjunction with-a host processor, which ¢an be any machine with sufficient
capacity to support the PSL [GRISS 81| environment. The host processor, also known as the Control
Processor (CP), functions in several capacities:

o It works as a file server.

o It stores parts of the symbol table which are not needed in each PE.

o It provides a convenient user interface.

o It runs a high level debugger.

o It gathers statistics on the performance of programs as they are executed in the tree.
o It runs the simulstor.

Within the DADO machine, each PE is capable of executing in either of two modes. In the first, which we
will call SIMD mode (for single sastruction stream, multiple data stream [Flynn 72]), the PE éxecutes
instructions that are broadcast by some ancestor PE within the tree. A SIMD processor is in either an
enabled or a disabled state. When enabled it executes the instructions received from its parent and passes
them along to its children; when disabled it does not execute them locally, but continues to pass them oa.

The second mode is MIMD mode (for multiple instruction, multiple data stream). Whed a DADO PE
enters MIMD mode, its logical state is changed in such s way as to effectively ‘‘disconnect’ it and its
descendants from all higher-level PEs in the tree. In particular, a PE in MIMD mode does not receive any
instructions that might be placed on the tree-structured communication bus by one of its ancestors. Such

a PE may, however, broadcast instructions to be executed by its own descendants, provided they are in
SIMD mode.

The DADO machine ean thus be configured in such & way that an arbitrary internsl node in the tree acts
as the root of a tree-structured SIMD device in which all PEs execute a single instruction (on different
dats) st s gives point in time. This flexible architectural design supports multiple-SIMD execution
(MSIMD). Thus, the machine may be logically divided into distinet partitions, each executing » distinct
task, and this is the primary source of DADO's speed in executing » large number of primitive patters
matching operations concurrently. This also generalizes to full MIMD mode as each node may function
independently, forming its own degenerate tres (see [Stolfo 83] for details).

The host processor interfaces directly with the DADO root processor and functions in s manner analogows
to s DADO PE in MIMD mode. When a PE enters MIMD mode it becomes the CP of its own subtree.
The root PE executes all SIMD instructions locally as well as broadcasting them to its descendants. Ip
this manner the semantics are the same as when the SIMD instructions are broadeast by the host
processor. Careful sttention has been paid to the design of the language to maintain consistency st the
two points of local asymmetry in the tree: the root and the leaf nodes.

3 PPL/M: A First Pass

The antecedent of the language developments described in this paper was parallel PLM (PPL/M) [Stolfo
84]. It was our first parallel systems programming langusge. The langusge has been used to implement »
small parallel production system interpreter and many of our comments are based upon this.

PPL/M suffered from many problems which diminished its effectiveness as a too! for the implementation
of high level parallel algorithms. Nevertheless, the work with PPL/M ‘suggested many langusge
improvements. These improvements have been incorporated the new ||PSL language, and others were
already in Lisp. ‘

PPL/M was implemented using Intel's existing high level PL/M language as the core language. It isa
standard block structured language based on PL/I, to which we added the necessary parallel processing
primitives. It provided several primitive communication functions, which are still used in the ||PSL
language. These are described in detail later. The difficulties with PPL/M, described below, include
limitations in creating data structures, problems passing data structures sround the tree, limited calling
conventions, and the unavailability of recursion. h

The most serious of these difficulties is the inability to pass arbitrary dats structures around the tree. In
a parallel environment, ease of specifying communication of dats, as well as the efficiency of
communication, are of the utmost importance. Later we present a simple and efficient solution to this
problem. .

As an example of the limitation of PPL/M communication constructs, the langusge does not directly
support the parailel assignment of arbitrary expressions. Instead it requires that the user provide a
detailed specifieation of how the data transfer will occur. For example, it is frequently necessary to
transmit a list from one processor to many others, but PPL/M only permits the broadcasting (or
reporting) of a single byte. The ||PSL language permits the user to do this with one statement.

Apother limitation of PPL/M is the requirement that procedure invokations be rigidly defined within the
block structure, and consequently it is difficult to write data driven programs. The new [|PSL language
uses a more general calling mechanism that permits execution of any precompiled function at any time.
For example, it is relatively simple for one function to pass another function a list of candidate functions.
and the second level function can execute any of these. ’ -

The PPL/M langusge had other limitations as well. The availsbility of dynamic data structures, which we
consider fundamental to development of salgorithms, was not part of the language. The user was required
to develop these mechanisms, and this increased development time while decreasing relisbility.

Finally, the programming environment was powerful but too slow. It was limited to a development
system with an in-circuit emulator. It took as much as s half hour to compile, link and execute a
program. We note, on the other hand, that we used an old development system, that faster systems are
now available, and this would have reduced development time.

The |[PSL system, on the other hand, is far more powerful and faster. It allows the programmer to use
either of two simulators: a machine simulator at the language level, or a single processor simulator at the
machine instruction level. Moreover, |[PSL programs, when executed on the hardware of the DADO
machine, can make use of the function cell to embed debug and trace [unctions into the program.

4 ||PSL: Language Overview

As stated earlier our goal is to provide a system level programming Ianguage that sufficiently reduces the
complexity of programming the DADO machine so that higher level programming languages and Al
systems may be easily implemented. A natural choice for such s language is LISP. The University of
Utah compiler generation tools make such a choice even more attractive.

LISP is an appropriate language for several reasons: it is both interpretable and compilable, it encounge's
independent small modular functions, and it has traditionally been used as the systems programming
language for Al

There are good reasons for this. For example, we have found that general list manipulation features are
essential, and if these features are missing from the language, the user is obliged to provide them. Finally,
the ability to manipulate the program as a data object is a valuable tool which is not available in most
conventional languages.

However a {ull LISP implementation in each PE is not practical due to the limited st.or#ge capacity of the
PEs. We therefore make the following restrictions on LISP data types allowing only:

e atoms

e s-expressions
o integers

e inums

These are known as LISP Objects. We have also extended the LISP language with two features provided
by the PSL system. The first, RLISP, is an Algol-like syntactic form which is translated into.typical LISP
syntax by a preprocessor supplied with the system. In what follows we present all of our specifications in
both RLISP and normal LISP form in order to give the reader the flavor of RLISP. The second extension
is SysLISP which, unlike LISP, allows access to the actual machine bits, bytes and words. Most of the
kernel functions such as the allocator and the garbage collector are written in SysLISP. The high level
interface to the parallel communication functions is implemented in SysLISP as well.

4.1 Semantics of Parallel Communication Functions

Our language design decisions were based on the following view of the machine. Each node within the tree
is viewed as an abstract datatype which al any point in time contains its own data and code. This
abstract data type communicates with the rest of the tree by means of its current functional value. This is
always the most recently computed value. The rest of the tree communicates with the abstract datatype
by calling its functions, passing external values as parameters to these functions, as well as specifying
which internal values are to be operated on. '

In PSL all global variables must be declared explicitly. All of the global variables declared SLICE reside in
each PE. All fluid variables must also be declared in & like manner. Undeclared variables are presumed

to be locals. They are allocated on the runtime stack at the time of function entry. This is a msjor
difference between interpreted and compiled code and we retain it for ressons of efficiency. We also feel
that, due to the nature of parallel procedure execution, programmers are well advised to limit themselves
to the use of globals and locals.

To declare s sliced global one calls the sliced declaration function as follows:

RLISP: slice glodal <varislename>:

LISP: (slice global <variable-name>)

A function may also be declared with the slice attribute. Such functions are stored in compiled form in all
PEs. All global and fluid declarations must precede reference to the variables, since different code will be
compiled in these cases. The syntax for a sliced function definition ia:

slice <function-type> Procedure <function-name> (<arged) <[function-body>;
(slice <function-def> <funcdion-nome> (<orgs>) <function-body>)

In the above, <function-type> is any of the usual LISP function types (i.e. expr, fexpr, etc). <function-
def> is any of the corresponding definition functions (i.e. de, df, ete.).

4.2 Paralle] Procedure Actiyation

There are two alternatives for parameter passing for sliced functions. In the default case the evaluation o
parameter forms proceeds as: -

1. evaluate the form in the root processor
2. broadcast the value to the descendants
3. store in the parameter area (registers).

The sliced function is then invoked in the local PEs.

The alice parameter is the second case. In this case the variables used in the parameter form must be
alresdy present as global variables in all PEs. The parameters are broadcast to the PEs, which then
locally evaluate the parameters., These are subsequently used in the evaluation of the sliced function.
Sliced parameters must be declared. For example:

slice expr Procedure f (slice: argl, arg2, slice: argd): ...:
(slice de f((slice argl) arg2 (slice argd))....)

where argl and arg3 are sliced, and therefore are evaluated in each PE prior to function execution. Arg?2
is evaluated in the root, and this value is used in all PEs.

4.3 The Parallel Communication Functions

In this section we define a complete set of communication primitives for global and local communication
in the tree. ’

Global communication is accomplished by means of two instructions, one to send data down from the
root, and another to send data up to the root. The broadeast instruction allows any MIMD processor to
transmit a local value descendant SIMD PEs; these PEs forward the information to their children. The
data propagates throughout the entire tree in an instruction cyele.

Sending data in the other direction, from a processor within the tree to the root, is sccomplished with a
report instruction. This sends a value from s single enabled PE to the root.

An additional instruction, resolve, selects one processor from the currently enabled processors. It is often
used prior to s report instruction. The selection is made on the basis of an integer comparison between the
values supplied by each PE. The minimum or maximum valued PE is selected depending on the form of
the instruction. Ties are resolved in favor of the lowest numbered PE based on an inorder tree numbering.
In all cases this resolve is completed within O(log n) times (where n is the number of PEs in the tree). It
should be noted that a semi-custom integrated circuit has been designed for the 1023 elemnent version of
the machine which executes these operations in one machine instruction cycle.

The ||PSL language provides a special function for algebraically associative functions. Named the TAO
function (for tree associative operation), it applies its functional argument to three inputs. One input is
the local value from the PE, and the other two are the values returned by its children. This allows
logarithmie time associative operations. If a node is SIMD disabled its value does not participate in the
operation.

Local communications augment the above global communication operations. Local communication is
accomplished by the send and recv instructions. In the case of the receive instruction, s value may be
received from the parent PE or either of the children PEs. The send instruction is more limited - it sends
3 value only to the children. Sending to a parent is not allowed as the semantics would be not be clear if
both children tried to send simultaneously.

Parallel communication may also be accomplished by implicit communications, which is done by use of
the LISP primitive SETQ.

The semantics of SETQ are defined to permit manipulation of the abstract datatypes stored in the
descendant processors. There are three factors that determine the efTect of 2 SETQ. These are:)

1. State of the processor: MIMD or SIMD
2. The destination variable: MIMD or SIMD
3. The source variable: MIMD or SIMD

State of Destination Source Effect on Effect on
Processor Variable Variable MIMD PE SIMD PE
MIMD Simd Simd none Local assignment
in all PEs
Simd Mimd none Root value assigned
to all PEs
Mimd Simd Simd variable none
from Simd half
assigned to
Mimd variable
Minmd Mimd Mimd destination none

assigned value
of MiImd source

SIMD Simd Sind 10t alloved Simd value assignod
to Simd variable
Simd Mimd not allowed net allowved
Mimd Simd not alloved not alloved
Mimd Minmd not allowved not allowved

This produces The exact syntax and semantics of the communication functions if given below:

(Broadcast <form>)
Places the value of the locally evaluated form into the Input variable of all descendant
processors. The function returns T. : -

(Enadle) Transfers a 1 into the enable bit of all SIMD PEs, and thereby permits them to execute
instructions which are communicated from above. The function returas T.

(Disabdle) This disables a SIMD processor and causes it not to execute instructions locally, but to
continue passing them to its children. It continues in this mode until receipt of an
enable instruction. The fuaction returns T.

(Min-Resolve <form>) (Max-Resolve <forw>)
A parallel comparison of the value of all <form>s is performed in logarithmic time.
The processor with the ‘smallest/largest” object remains enabled, and all other PEs are
disabled. The function returns T to the root if any processor becomes the winner, and
Nil il no processor wins.

(Report <form>)
The <form> is evaluated in the single enabled processor and its value is returned in
the root processor as the functional value of Report. If more than processor is enabled
when the Report function is called the first enabled PE in an inorder traversal is .
selected to do the report.

(Mimd <function-name>)
All SIMD enabled descendants logically disconnect themselves from their parents,
change their state to MIMD, snd begin execution of the specified function. The function
returns T.

(ExitMimd) Unlike the previous instructions, this is s MIMD primitive which is executed by the
processors when in MIMD mode. It is executed by MIMD nodes to return to SIMD
mode. Under current semantics the processor will not execute further instructions until
reconnection of the machine is complete. There is potential to change this in the future
because the DADO [I/O chip is designed to support interrupt driven multi-processing.
Exit returns Nil il the processing element has any MIMD descendants. .

(Syne) This MIMD primitive is executed by the processor which called the Mimd function. It
forces the processor to wait until its MIMD descendants invoke the (Exit) function.
The sync function in DADO hardware waits until all descendanu return to the SIMD
state. This function returns T.

(Send <form> <tree-neighbor>)
This transmits the value of the <form> to the Input variable of the designated <tree-
neighbor>, which may be either the left child or the right child. Seading to the parent
is not allowed as the semantics would be unclear if both children were enabled. The
function returns T if the <tree-neighbor> is enabled and Nil if it is not.

(Recy <var> <tree-neighdor>)
The current functional value (Output variable) of the <tree-neighbor> is assigned to
<var>. The Tree neighbor is either the parent, left-child or right-child. The function
returns T.

(TAD <function> <form>)
(for tree associative operation), it applies its functional argument to three inputs
<form>s. One input is the local value from the PE, and the other two are the values
returned by its children. This allows logarithmic time associative opera.t.xons If a node:
is SIMD disabled its value does not participate in the operation.

The semantics of Send and Recy are not clear from the above description when the operand PE is in
SIMD disabled mode. In these cases it is the status of the recipient PE that determines the semantics, not
the status of the originator of the call. Specifically, it is always possible to receive data from a PE, but
data will only be sent to an enabled PE. Data can be passed through s SIMD disabled PE.

4.4 ||PSL Examples

In this section we present code for two fundamental operations: loading the DADO tree with data, and
aasociative probing, where data in the tree is matched against an external search string.
4.4.1 Sequentially Losding DADO

This example is rewritten from a portion of the PPL/M code implementing a small production system
that runs on the prototype DADO! machine. It demonstrates how each processing element can be
sequentially loaded with data from some external source. It functions by use of the resolve primitive to
select one unused PE. All other processors are then disabled. The assignment to RECORD occurs in this
designated processor. This process stops whea all processors have been used, or the user data is exhausted.

Code
In RLISP:

Explanation

Sliced Expr Procedure DisablelLoadedPEs ():

If DONE then Disable;
Eégr Procedure LoadTree (FromFilse);
BEGIN

Sliced Global RECORD:;
Sliced Global DONE:

ENABLE(Q) ;
DONE:=N1l:

nélciuothcraocordp(FronFuc) do

egin

ﬁonzmotNonaccord (FromFile);
ENABLE() ;

DisableLoadedPES();
If MinResolve(DONES then

Boﬁin
ECORD:=Next;
DONE:=T;
End
4 else error (No-More-PEs) ;

In LISP:

(SLICE DE DISABLELOADEDPES ()
(COND (DONE DISABLE)))

(DE_LOADTREE (FROMFILE)
(PRGG ()

(SLICED GLOBAL RECORD)

SLICED GLOBAL DONE)

ENABLE)

éSETQ DONE NIL)

WHILE (ANOTHERRECORDP FROMFILE)
(PRgG QO

ENAE

DISABLELOADEDPES)

COND (2HINRESOLVE DONE)
PROG ()

SETQ RECORD NEXT)

SETQ DONE T)))

Declare RECORD resident in sll PEs
Declare DONE resident in all PEs

Enable all PEs
Set DONE to Nil in all PEs

another record to put into tree

aet Nezt to be new record

Enable all PEs .

If a PE has been loaded Disable it
there is still a PE available to load
lg one such PE is enabled now

Load the PE with the Nezt record

This PE is now loaded

Er:}Lg)m (GETNEXTRECORD FROMFILE))

(T (ERROR (DIFFERENCE (DIFFERENCE NO MORE) PES))))))))

4.4.2 Associstive Probing

This routine determines if sny processor bas a record with data that matches a particular constant. It
uses the minresolve function to select only one processor. After the resolution is complete, the selected
processor reports additional data back to the host processor,

Code Explanation
In RLISP: ‘

%% selector procedures

Sliced Expr Procedure NAME (sliced:REC): car :
Sliced Expr Procedure AGE (sliced:REC): cadr(REC
Sliced Expr Procedure IQ (sliced:REC): caddr(REC

E{Er Procedure Find-Student(WithlQ):
BEGIN

.
’

Sliced Global RECORD; Declare RECORD resident in all PEs
Sliced Global FOUND: Declare FOUND resident in all PE,s
Enable(): Enable all PEs
FOUND:=eq(W1tdIQ, IQ(RECORD)) ; See_‘l wEeC;OIRD ezists
wie ir
If MinResolve iFOUND) See if one found ...
then Report(NAME (RECORD)) e i 80 return name
) else NIL: «. herwise return Nil.
In LISP:

%% selector procedures

SLICE DE N (REC) (CAR REC
SLICE DE AGE (REC) (CADR REC
SLICE DE I1Q (REC) (CADDR REC

(DE FéN‘DS‘)l'U’DENT (VITHIQ)

(PROG
SLICED GLOBAL RECORD)
SLICED GLOBAL FOUND)
ENABLE)
SETQ FOUND (EQ WITHIQ (IQ RECORD)))
COND é;‘-"};’fﬁ?‘)s%‘vg FOUND) (REPORT (NAME RECORD)))

4.5 Implementation [ssues

The PSL compiler functions within the control processor by translating LISP code into a set of CMACROs
representing an instruction set for s primitive sbstract machine. These CMACROs are then recursively
expanded into the actual assembly or object code for the real machine. The compiler itself is completely
written in PSL, as are the interpreter and other system components. This allows relatively rapid
bootstrapping for a new machine.

The compiler uses a tagged representation of all LISP data types. A tagged object is called an item and
in our implementation consists of three bytes (24 bits). The first byte contasins 5 tag bits and 3 garbage
collection bits. The remaining bytes are used for the information field. This informstion field is either
immediate data, in the case of an inum, s pointer into the id space, or a reference to the heap space for
other Lisp objects.

4.5.1 The Symbol Table

A PSL variable is s tagged item with an information field that contains a pointer into the identifier space
(this is the local symbol table). This symbol table contains four entries for each id (varisble): a pointer to
the print name, a pointer to the property list for this id, s value cell, and a [uaction cell. In our

implementation both the hash table and print name are stored in the host processor since these structures
are only needed at the user-machine interface.

Variables are represented in the rest of the tree as their offset into the id space. This saves considerable
space in esch PE. Further space economies may be achieved by sharing s-exprs upon consing. The
technique called H-consing, which uses s hash table for cons cells in much the same way as a hash table is
used for placing atoms into the symbol table, guarantees that equal s-expr's share the same physical
location. Its use is highly recommended due to the significant space savings achieved by the sharing of
structures. This may in fact become the system default.

4.5.2 Passing Lisp Objects

In order to pass arbitrary Lisp Objects around the tree with the communication functions we build a
normalized relocation map of the object and then pass this relocation map. The object is then recreated
from the relocation map at the receiving node. This approach has three distinct advantages.

First if the object is not too large a single byte may be used for each pointer instead of a full word.
Secondly, if hash consing is used, for each string with multiple identical substrings the unique substrings
will only be passed once. A pointer is passed to the unique subatring occurrence for all other occurrences.
This is particularly important in an environmeat where unification occurs as a large number of such
strings with multiply occurring substrings are often produced. Finally, this method also allows the passing
of sell referential structures.

4.5.3 Garbage Collection

Garbage collection in a parallel environment is & well known problem. Our solution is not particularly
elegant, but is practical. When a PE discovers it must do a garbage collect it interrupts the rest of the
tree and the entire tree garbage collects at one time. We use a simple linked list garbage collector. Due ta
the imposed restrictions on LISP data types we allow only items which are all the same size (24 bits),
consequently compaction is not required. This is accomplished at the price of excluding vectors and
strings.

This restriction can be removed as needed by special allocation of a fixed segment with.its own allocation
mechanism. In the simplest implementation we simply use SysLISP to allocate a large chunk of storage,
and compute an explicit pointer into this region. The more sophisticated approach is to have two garbage
collection facilities, the string vector region having its own compacting collector and allocator.

4.5.4 Debugging: Calls with one level of indirection

The use of function-value cells in the symbol table has always been recognized as important for tracing,
monitoring, snd debugging. The need for these facilities is acute in a parallel environment, as it would be
otherwise impossible to efficiently monitor a myriad of processors. For example, one major problem with
a parallel machine is the monitoring and debugging of the PE contents. By changing the contents of the
function value cell of an id we may easily insert a call to a debugging or monitoring routine. The price for
this is one additional memory access. We slso maintain separate data and code spaces so that the code
space need not be reported to the CP in order to determine the state of s PE during debugging.

5 Conclusion

||PSL is a significant tool for the definition snd implementation of parallel processing systems. It provides
both & coherent language and a development environment for algorithm specification on s tree structured
machine. In particular it provides effective communication between the tree and the external environment
as well as global and local communication within the tree. The integrated debugging aand simulation

10

facilities are expected to be of great aid during program development especially since they are all written
in snd accessed through s common language.

11

References

Griss, M. L., and Hearne, A. C. “A Portable LISP Compiler.” Software - Practice and Ezperience,
11:541-605, June, 1981, .

Intel, PL/M Language Reference Manual, 1979.

Johnson, S. C. Yace: Yet Another compiler Compiler, Computing Science Technical Report No. 32, 1975,
Bell Laboratories, Murray Hill, NJ 07974.

Lesk, M. E. “Lex - A lexical Analyzer Generator,” Comp. Sei. Tech. Rep. No. 39, Bell Laboratories,
Murray Hill, New Jersey (October 1975).

Lowerie, D., Layman T., Daer D., and Randal, J., “Glypnir — A programming Language for [LLIAC
IV,” Comm. ACM, 19 3, March 1975.

Miranker, D, “Herbal, A Production System for the DADO Machine,” Technical Report (in preparation)
Department of Computer Science, Columbia University, 1984,

Stolfo, S., Miranker, D. and Lerner, M., “PPL/M: A Systems Programming Language for the DADO
Machine,” Columbia University Department of Computer Science, 1984.

Stolfo, S., “The DADO Parallel Computer,” Department of Computer Science, Columbia Umvemty
Technical Report,"” submitted to Al Journal, 1983. .

Stolfo, S., “Knowledge Engineering, Theory and Practice,” Proceedings of the [EEE Trends and
Applications, 1983.

Taylor, S., “LPS, A Logic Programming System: Motivations and Goals” Technical Report (in
preparation) Department of Computer Science, Columbia University, 1984.

Taylor, S., Lowry A., Maguire, G. Q., and Stolfo, S.J. “Programming using Parallel Associative
Operations,” in 1984 International Conference on Logic Programming, February 8-9, 1984.

Tzoar, D., and Taylor, S., “Unification in s parailel Environment,” Technical Report (in preparation)
Department of Computer Science, Columbia University, 1984.

