
· -

CUCS-107-84

IIPSL: A Parallel Lisp
Cor the DADO

Machine*

Michael K. Van B:i,.ema
Mark D. Lerner
Gerald Maguire

Salntore J. Stolro

Columbia Uninrsit.1
February 8, 19S4

Abstract

We describe a. slst.em level programming language and int.egrated environment. ror programming
development on the DADO parallel computer. In addition a set. or language constructs augmenting LISP
ror programming parallel computation on tree structured parallel ma.chine are defined. We d~cuss the
architecture or the DADO machine .. nd present. senral examples to illustra.te the language. 'In putieular
we describe how thelanguage proyides an integrat.ed approach to the problem or parallel sort.ware design.
Parallel algorithms may be designed analyzed on a sequential machine under simulation and then simply
recompiled to run on a parallel machine. In concluding sectio~ we outline the implementation using the
Portable Standard LISP Compiler.

eThia rHearcla wu IUpponed ill pan by tb. Deleue Ad~coed R..vela Prajen. ApuC)' uuder C'Outnn NOOOS~·
C-0421 gd \be Ne .. York Slaw Scieace gd TecbucloO' Fcaaclalioa. u _U u IT'U" rrolD lu&el Corporalioa. lu&ensa&iouaJ
BlUiIl_ M&cbill-. H ... leu PKkvcl. DicitaJ Eqaipme., Corporuioa. Valid !.ope Synema, gd BeU Laboratori ...

Table or Contents

1 IntrodueUoa
2 The DADO Machinf
3 PPL/M: A First Paaa
• IIpSL: Lanluaae annie.

4.1 Semanties or Parallel Communication FunctioDl
4.2 Parallel Procedure Actiution
4.3 The Parallel Communication FunctioDl
4.4 IIpSL Examples

4.4.1 Sequentially Loadinl DADO
4.4.2 A.uociatin Probinl

4.5 Implementation IalUel
4.5.1 The Symbol Table
4.5.2 Pusing Lisp Objecta
4.5.3 Garbaae Collect.ion
4.5.4 Oebugginl: Calli with one Inel or indirect.ion

5 Conclusion

- .

1
1
2
3
3
4
4
7
7
8
8
8
g
g
g
g

1

1 Introduction
This paper describes the dnelopment or a system lenl progn.mming language which greatly reduces the
difficulty or pro&ramming tree structured machines. We view each node or the par&llel machine as an
abstract dataLype which ay any point in time containa data and code; moreover, primitins and high-lnel
runctions are proyided to manipulate tbese data objects. The approach proyid~ an integrated
enyironment. ror sortware dnelopmenL and debugin&. We caU tbis language IIpSL, standing ror Panllel
Portable Standard Lisp.

We discuss the difficulties or providing a system lenl programming language Cor a parallel machine and
outline the difficulties encountered witb a previously used languaae•

Tbis language haa been developed m Lhe contexL or the DADO project. Tbe nn&l goal or tbis project is
the developmenL or boLb hardware and soltware systems designed ror tbe rapid execution or Artificial
Intelligence (AI) systems. Two AI systems are currently under dnelopment. (see [Miranker 841 and
[Taylor 8"1 ror deLails):

• Herbal, named in honor or Herbert. Simon and Allen Newell, innntors or the AI production
system paradigm. HerbGl is a parallel production system language which uses a modification or
the Rete-matcb algorithm [Foru 821.

• LPS, A Logic Programing Syst.em wbich is a losic bued luguage racility [Taylor 831.

This paper examines the system lenl programming languaae in whicb these systems are being dneloped.
Berore giving the language specification we brieny describe tbe structure and operation or tbe DADO
m&ebine.

2 The DADO Machine

DADO is a nne grain, binary tree-structured machine which will nentually contain many thousands of
processing elements (PEs). A 1023 node m&chine is under construction with a. planned completion date
within a year. There is currently a 15 node prototype runctioning at Columbia University.

The DADO machine works in conjunction with- a host processor, which can be any machine with sufficient
capacity to support the PSL [GRISS 811 environment. The host processor, also known u the Control
Processor (CP), runctiona in several capacities:

• It works &II a file sernr.
• It stores parta or the symbol table which are not needed in each PE.
• It provides a convenient user interrace.
• It runs a high lnel debugser.
• It gathers statistics on the performance or programs &II t.hey are executed in t.he tree.
• It runa the simulator.

Within the DADO machine, each-PE is capable or executing in either or two modes. In the nrst, wbich we
will call SIMD mOtU (Cor lingle inatruction stream, multiple data stream [Flynn 721), the PE executes
instructions that are broadcut by some ancestor PE within the tree. A SIMD processor is in either a.n
enabled or a disabled state. When enabled it executes tbe instructions received rrom its parent and paMe5
them along to its children; when disabled it does not execute tbem locally, but continues to PaM them on.

The second mode is MIMD mOtU (ror multiple instruction, multiple data stream). When a DADO PE
enters MIMD mode, its logic&l state is changed in such a way as to eerectively "disconnect" it and its
descendants Crom &II higher· level PEs in the tree. In particular, a PE in MIMD mode does not. receive any
instructions that might be placed on the tree-structured communication bus by one or its ancestors. Such
a PE may, however, broadca.st instructiona to be executed by ita own descendanta, provided they are in
SIMD mode.

2

Tbe DADO macbine caD tbUi be eonfilured iD ."ell a 1'&1 tbat an arbitl'a11 internal node in tbt trtf &eta

14 tbe rooL 01 a tr trueLured SIMD dniet in wbiell all PEl execut. a .inlle iDltructioD (on dirrerent
data) at , ainD point iD time. Tbil ntxibl. arcbitteLunl dni,D IUpporta muUiple·SIMD executioD
(MSIMD). TbUl, tbe macbiae ma, bt locicul, diTidtd iato diatinet partitions, eacb executin, a diltinct
tui, ,nd tbia ia tbe prim&r1 .ource ot DADO' • • pted in exec"tinl , larle number or primiLin patt.erD
matching operations concurrentl,. Tbil a1eo leDerali," to tull MlMD mode u tacb node mal rUDetioD
independently, torminl it.a own de,enerate trtt (s .. (Stolto I3J tor dttaila).

Tbe boat proceuor interface. directl, witb t.be DADO root proctllOr 'nd tunctioDi in , manner an&1oloUJ
to a DADO PE in MIMD modt. Wben, PE ente,. MIMD mode it becomes the CP ot it.a own subtree.
Tbe root PE execute. all SIMD iDlt.ruct.ioDi loca111 .. well .. broadcut.iDI them to ita descendaDta. In
tbi. manner tbe eemantiea are tbt lam. U WbtD Lb. SIMD iDitruct.ioDl are broadcut. b, t.b. bOlt
proeeuor. Carerul att.tntioD bu b.eD paid to tb. dqn of tb. laD,,,,,. to maintain coasiatenc1 at tbe
two point.a or local ulmmetl'1 in tbe tree: tb, root ud tbe I.al Dod ...

3 PPL/M: A First Pass
The antecedent or tbe lanlu"e den!opmenta describtd ia tbia paper wu para1J.1 PLM (PPL/M) \Stolfo
841. It wu our first par&1lel systems proarammiq lUll""" Tbe lanlu"e bu betn uaed to implement a
small parallel production system interpreter and mUJ 0(our comments are bued upon tbia.

PPL/M sufTered rrom maD1 problems wbicb dimiailbed ita .fTecLinneaa .. , tool for tbe implementatioD
or bigb lenl parallel algoritbms. NuerLbeleu, tbt work witb PPL/M 'suueated many lUlU",
improvements. These impronment.a baye been incorporated tb. a.w IIpSL lanluage, and others were
already in Lisp.

PPL/M wu implemented using Intel's existin& bilb lnel PL/M languaee u tbe core languase. It is -&

standard block structured languaee bued on PL/I, to wbicb we added the necessary parallel proc~in,
primitives. It provided several primitin communication runctions, whicb are still used in tbe IIpSL
language. These are described in detail later. The dimculti .. with PPL/M, described below, include
limitations in creating data structures, problems puaing data structures around the tree, limited callina
conventions, aad the unavailabilit, or recursion. .-

The most serious of these dimculti .. is tbe inabilitl to pus arbitrary data structures around the tree. In
a parallel environment, eue or speeityinl communication or data, u well as t~e emeiency or
communication, are or the utmost importance. Later we present a simple and emeient solution to this
problem.

As an example of the limitation or PPL/M communication constructs, the b.nguage does not. directly
support. the parallel assignment or arbitr..". expresaions. Instead it requires t.hat the user provide &

detailed specification or how the data transrer will occur. For example, it is frequently necess&l'1 to
transmit a liat (rom one proceS50r to manl others, but PPL/M only permits tbe broadcasting (or
reporting) or a single byte. The IIPSL language permits t.he U3er to do this with one statement..

Another limitatioa or PPL/M is the requirement. that procedure invokations be rigidl, defined within the
block structure, and consequently it is dimcult to writ.e data drinn programs. The new IIpSL language
uses a more general caJling mechanism t.hat permitl execution ot any precompiled runction at any time.
For eumple, it is relatinly simple ror one runction to pua another function a list or candidate (unctions.
a.nd the second level runction can execute aDY of then. ..

The PPL/M lansuaae bad other Iimitationa 14 well. The availabilit, or dynamic data structures, which we
consider fundamental to development ot all0rithma, w .. ~ part or the language. Tbe user was required
to develop these mechanisms, and this increased dneiopment. time while decrewnl reliabilit,.

3

Finally, the prognmminl environment wu powerful but too slow. It wu limited to a development
system with aD ill-circuit emulator. It took u much u a halt hour to compile, link and execute a
program. We note, on the other hand, that we used an old development system, tbat raster systema are
now an.ilable, and this would have reduced development time.

The IIPSL system. on the other hand, is rar more powerrul and raster. It allows the programmer to use
either or two simulators: a machine simulator at the language level, or a single processor simulator at the
machine ill!truction leni. Moreonr, IIPSL prograrJl5, when executed on the hardware ot the DADO
machine, can make use or the tunction cell to embed debug and trace runctions into the program.

4 IIPSL: Language Overview

As stated earlier our goal is to provide a system level program minI language that sufficiently reduces tbe
complexity or programming the DADO machine so that higher lenl programming languages and AI
systems may be euily implemented. A natural choice ror such a language is LISP. The UniTersity or
Utah compiler generation tools make such a choice even more attractin.

LISP is an appropriate languaae ror several reasons: it is both interpretable and compilable, it encourages
independent small modular runctions, and it hu traditionally beeD used u the lIysterJl5 programming
language ror AI.

There are good reasons for this. For example, we have round that general list qtanipulation teatures are
essential. and if these reatures are missing from the language, the user is obliged to provide them. Finally,
the ability to manipulate the program a.s a data object is a nJuable tool which is not aYailable in most­
conventional languages.

However a rull LISP implementation in each PE is not practical due to the limited storage capacity of the _
PEs. We therefore malte the following restrictions on LISP data types allowing only:

• atoms
• s-expressions
• integers
• inums

These are known as LISP Object". We have also extended the LISP language with two reatures provided
by the PSL system. The first, RLISP, is an Algol-like syntactic form which is translated into typical LISP
syntax by a preprocessor supplied with the system. In what follows we present all or our specifications in
both RLISP and normal LISP rorm in order to give the reader the na.YOr or RLISP. The second extension
is SysLISP which, unlike LISP, allows access to the actual machine bit", bytes and words. Most or the
Iternel tunctions such a.s the allocator and the garbage collector are written in SysLISP. The high level
interface ~ the parallel communica.tion functions is implemented in SysLISP as well.

4.1 Semantics or Parallel Communication Functions

Our language design decisions were based on the rollowing view or the machine. Each node within the tree
is viewed as an abstract datatype which at. any point in time conta..ill! ita own data &nd code. This
abstract data type communicates with the rest or the tree by means ot ita current functional value. This is
alw&ys the most recently computed value. The rest or the tree communicates with the &bstract dat&type
by calling it" runctions, p&SSing external values a.s parameters to these runctions, as well a.s specifying
which internal values are to be operated on.

In PSL all global variables must be declared explicitly. Allor the global variables declared SUCE reside in
each PE. All nuid variables must also be declared in a like manner. Undeclared variables are presumed

to b. locala. The, art alloc&ted OD tht runLime Itack U tbt tim. o((unction entry. Tbi. ia a major
difference betWteD intupnttd and compiled codt and Wt r.tain it ror rtuona or emdency. Wt aJao rtel
tbat, dut to tb. DUllrt of panJltl procedure execution, pro&rammers art well adyiaed to limit tbemselYe'
to tbt use or Ilobala aDd locala. •

To declare a slictd Ilobal ont calla tbe IUced deelaratioD runction u rollowl:

RL1SP: .t iet slobal <von'GWI-nGm,>:

LISP: CSUet slobal <vo~io61e-nGm.»

A (unction may also bt deelared witb the slice attribut.. Such runctiona are stored in compiled (orm in all
PEa. All ,Iobal and nuid declarations must precede rererence to the uriablea, since different code will be
compiled in theae cuea. The .yntu (or a a1ietd (unction definition ia:

sUet </"ndiOft-l".> Procldurl </"nditlft-nGm.> «4t',.» </"ndion4od,>;

CsUCt </"nditlft-d./> </"nditlft-nom.> «4t',.» </"nditlft.6od,»

In the abou, </"nditlft-l".> it any or tbe usual LISP (unction tyP" (i.t. expr, rexpr, etc). <runctioll­
de(> is any o(tbe correspondinc definition rUDCtiona (i.t. de, dr, etc.).

4.2. Parallel Procedure ActiJation

There are two aiternati1'es ror parameter paaaial ror sliced (unctions. In tbe derault Cue tbe naluation or
parameter rorms proceeds 14:

1. evaluate the rorm in the root processor
2. broadcaat the yalue to the desceadanta
3. store in the parameter area (registers).

The sliced runction is then in1'oked in the local PEa.

The dice parameter it the second cue. In thia cue the Yariables used in the parameter rorm must be
already present aa global uriables in all PEa. The parameters are broadca.st to the PEs, wbich tben
locally naluate the parameters. These are subsequently used in the naluation or the sliced runction.
Sliced panmeters must be declared. For example:

slici Ixpr Procldurl f CsllcI: ars1. arg2. slicI: arg3); ... ;

Cslici dl fCCslicl arS1) arJ2 Cslict arg3»)

where argl and &1'13 are sliced, and tbere(ore are naluated in each PE prior to runction execution. Arg2
is evaluated in the root, and this 1'alue is used in all PEs.

4.3 The Parallel Communication Functions

In this section we define a complete set or communication primitiYes ror global and local communication
in the tree.

Global communication it accomplished by means or two ill!tructioll!, one to send data down rrom the
root, and anotber to send data up to the root. The brOGdetJlt instruction allows any MlMD processor to
transmit a local 1'alue descendant SlMD PEa; these PEs rorward the inrormation to their children. The
data propagates throuChout the entire tree in I.n instruction cycle.

Sendinl data in the other direction, rrom a processor within the tree to the root, is accomplished with a
repor1 instruction. This sends a Yalue rrom a single enabled PE to tbe root.

5

An additional instruction, ruolue, select" one processor (rom the currently enabled proc eSSOr3. It is OneD
used prior to a report instruction. The selectioD is made on the basis o(an integer comparisoD between the
values supplied by each PEe The minimum or m&X.imum valued PE is selected depending on the (orm o(
the instruction. Ties are rescind in (avor o(the lowest numbered PE based on an inorder tree numbering.
In all cases t.his rescl.,. is completed within O(log D) times (where n is the number o(PEs in the tree). It
should be noted that & semi-c~tom integrated circuit. has been designed (or the 1023 element. ver3ion o(
the machine which executes these operations in one machine instruction cycle.

The IIpSL language provides a special (unction (or algebraically IMOciative (unctions. Named the TAO
(unction ((or tree associative operation), it applies ita (unctional argument to three input". One input. is
t.he local value (rom the PE, and the ot.her two are the nlues returned by ita children. This allows
logarithmic time associative operat.ioDS. It a nod, is SIMD disabled ita value does not participate in the
operation.

Local communications augment the abon global communication operations. Local communication is
accomplished by the ,end and rtt:l1 instructions. In the case o(the receive instruction, a value may be
received (rom the parent PE or either o(the children PEs. The send instruction is more limited - it sends
a value only to the children. Sending to a parent is not allowed as the semantics would be not be clear i(
both children tried to send simultaneously.

Parallel communication may &Iso be accomplished by implicit communications, which is done by use of
the LISP primitive SETQ.

The semantics o(SETQ are derined to permit. manipulation o(the abstract datatypes stored in the
descendant. proceSSOr3. There are three (actors that determine the errect o(a SETQ. These are:

1. State o(the processor: MIMD or SlMD
2. The destination variable: MlMD or SIMD
3. The source variable: MIMD or SIMD

Sta.te of Destinat10D Sourci Effect on Effect OD
Processor Variable Var1able MIMD PE snm PE -------- ----------- - --------------- ----------- - --------

MIMD S1111d S1111d nonl Local ass1gnlllent.
1n all PES

S1111d M1111d none Root "lUi assignld
to all PEs

Millld S1111d S1111d Tar1able nonl
froll S1111d half
ass1gnld to
M1111d Tar1abl.

M1111d M1111d M1111d destinat10n none
ass1rmed "lUI
of M IIId sourc.

sum S1111d S1111d not alloved S1md "lUI ass1f:ed
to S1md nriab e

S1md M1md not alloved not alloved
M1111d S1md not alloved not allovld
M1111d M1md not alloved not all oVid

This produces The exact syntu and semantics o(t.he communication (unct.ions i(given below:

(Broadcast <fol"1ll»

(Enable)

Places the value o(the locally evaluated form into the Input varia.ble o(all descendant
proceSSOr3. The (unction returns T.

Trans(er3 a 1 into the enable bit o(all SIMD PEs. and thereby permit" them to execut.e
inst.ructions which are communicated (rom above. The (unction returns T.

(Dl.able) Thil dilabln a SIMD proe.uor aDd caUl" it Dot t.o .xecute inatrucLiolLl locally, but t.o
CODUDa. puaiq th.m t.o ita childr.D. It cODtiDaH iD thia mod. UDtil receipt of aD
.nabl. iuuuctiOD. Th. fUllctioll r.turu T.

(M1D-R •• olY, <tor.» OKaz-R,.olY, <tcr.»

(R'port <fon»

A panJlel comparilOll or ~h. nJu. of &II <form>. ia performed iD locarithmie time.
The proetuor with the "am&lle.t/larant." obj.ct remaina enabled, and all other PEa are
disabled. Th. fUDCtiOD r.turu T t.o tbe root. ir &Dy processor becomH the winDer, and
Nil lI' no proeluor wlll.l.

Th. <form> it n&luattd iD tbe aiD< .Ilabl.d proetSlOr aDd ita value is returDed in
the root proeeuor u the fUDctioll&l ,&lue or Report. It more thu proctSlOr is enabled
wheD the Report functioD ia caUed t.he lint. enabled PE in aD inorder tranrsal is
selected to do t.he report.

(M184 <funct1on-nam.»
All SIMD enabled descendanta locic&lly diRoDDect. themselna from their paren~,
chanle their state t.o MJMD, aDd beain executioD or the specified runction. The funct.ioo
returll.l T.

(£Xi tMla4) Unlike t.h. prnioua inatructioDl, tbia ia a MIMD primitin which is executed by tbe
proceuon wben in MIMD mod.. It is executed by MIMD nodes t.o returD to SIMD
mode. Under current semantics the proeeuor will DOt. execute furtber iD!tructiona antil
reconoect.ion of t.be macbine is complete. Tbere is pot.eot.ial to chance t.bis in tbe fut.ure
because t.he DADO I/O chip is dt!igned to support iot.errupt driYtn mult.i-processing.
Exit returns Nil if the proeeaain& element. hu any MIMD descendanta:

(Syuc) This MIMD primitive is execut.ed by the processor which called t.he Mla4 function. It.
forces the processor to wait until ita MIMD descendanL3 invoke t.he (£X1 t) funct.ioD.
The sync function io DADO hardware waita unt.i1 all descendanL3 return to t.he SIMD
st.ate. This funct.ion returns T.

(S.n4 <form> <trll-nlighbor»
This transmita t.he value or t.he <form> to the Input uriable of t.he designated <t.ree­
neighbor>, which may be either the len child or t.he right. child. Sendinl to the parent
is not allowed u t.he semantics would be unclear if bot.h childreD were enabled. The
function "turna T it the <t.ree-Deigbbor> is enabled and Nil ir it is Dot.

(R.cy <Y&r> <trl.-nlighbor»
The current functional value (Output ,.ariable) or t.he <t.ree-neigbbor> is &S.!igned to
<var>. Tbe Tree neigbbor is either t.he parent., len-child or right-child. The runct.ion
returD! T.

(TAO <function> <fora»
(ror tree &.'!SOciatin operatioD), it applies ita runct.ional argument to three inputs
<Corm>s. One input is the local value Crom tbe PE, and the other two are tbe values
returned by ita children. This allows logarithmic time associ~tive oper~tioM. U a node
is SIMD disabled iL3 value dOH Dot participate in tbe operation.

The semantics oC Send and Rec, are not clear Crom the abon description when the operand PE is in
SIMD disabled mode. ID these cut! it is the status of the recipient PE that det.ermiDes the semantics, not
the status or the originator or the call. Specifically, it is always possible to receive dat.a rrom a PE, but
data will only be sent to an enabled PE. Data caD be paaaed Lbroulb a SIMD disabled PE.

7

4.4 IIPSL Examples

In this sectioD .e present code ror two rundamental operationa: loading the DADO tree with data, and
(186oci4tive probing, where data in the tree is matched against an external search string.
4 1 Sequenti&ll1 Lawnl DADO

This example is rewritten rrom a portion or the PPL/M code implementing a small production system
that runs on the prototype DADOl machine. It demonstrates how each proces.sing element can be
sequentially loaded with data (rom some external source. It (unctions by use o(the re60lve primitiYe to
select one unused PE. All other processors are then disabled. The as.signment to RECORD occurs in this
designated processor. This process stops when all processors have been used, or the user da.ta. is exhausted.

~ E!plana~ioD

In RLISP:

Sliced ~r Procedur. DisableLoadedPEa ();
If DONE then Disabl.;

~r Procedure LoadTr •• (Frearile);
B~IN

Sl1ced Global RECORD: Deel4re RECORD re6ident in Gll PE,
Sl1ced Global DONE: Deel4re DONE ruident in 411 PE,

ENABLEO;
DONE:=Nll:

While ADotherRecordp(FroaFile) do
Beg1n

Rert:=GetNertR.cord(Froaril.);
ENABLEO;
DisableLoadedPEs.{l<
If MinResolY.(DO"~ then

Begin
RECORD:=Next.;
DONE:=T;

End
e1sllrror(No-Morl-PEs);

End;

In USP:

(SLICE DE DISABLELOAOEDPES 0
(COHO (DONE DISABLE»)

(DE LOADTREE (FROMFILE)
(PROG 0

(SLICED GLOBAL RECORD)
(SLICED GLOBAL DONE)
(ENABLE)
(SETQ DONE NIL)
(WILE (ANOTHERRECORDP FROMFILE)

(PROG 0

En4bie 4U PE,
Sd DONE to Nil in 4ll PE,

GnoCh". rect:lf'd to put into tree

,d Nezt to be new record
En4ble 4U PE,
1/ a PE ha, been loaded Di,able it
[J there i8 dill a PE available to load
Only' one 6uch PE i8 en4bled nQUI
Load the PE with the Nezt record
Thi8 PE i, now loaded

ISm NEXT (GETNEXTRECORD FROMFILE»
ENABLE)
DISABLELOADEDPES)
COHO «MINRESOLVE DONE)

(PRQG 0
(SETQ RECORD NEXT)
(SETQ DONE T»)

(T (ERROR (DIFFERENCE (DIFFERENCE NO MORE) PES»»»»

8

4.4.2 AIIoei"i'ft Probinl

This routine d.ttrminH it any proeeuor bu a record witb data that matcbes a particular conatant. It
uaes tb, mi"ruolv. function to .. Iect only on, proeeuor. AnAr tb, rtlOlution is complete, tbe selected
processor rtporta additional data back to the beet proeeuor.

Codt E!plaDat1oD -
In RLISP:

II .tltctor proctdurt.
S11c.d ~r Proc.durt NAME (.11ctd:REC); car~oo;
S11c.d ~r Proc.dur. AGE C.11c.d:REC); cadr I£C ;
S11c.d E%pr Proc.durt IQ C.11ctd:REC); caddr REC ;

~r Proc.durl F1nd-Studlnt(WlthIQ);
BEGIN

S11c.d Global RECORD;
S11c.d Global FOUND;

£ND;

Enablt () ;
FOUND:=lq(W1thIQ,IQ(RECORD»;

If KlnR.solYI(FOUND)
th.n Rtport(NAME(RECORD»
tl.t NIl..;

In USP:

II s.l.ctor proctdur.s

~SLICE DE NAKE (REe) (CAR REC~~} SLICE DE AGE (REe.) (CADR lEC
SI..Iet DE IQ (REe) (CADDR REC

(DE FINDSTUOENT (WITHIQ)

SLICED GLOBAl.. RECORD)

Deeltare RECORD ruidmt i" aU PE,
D,t:l4r, FOUND ruitkftt i" taU PE,

E"tJbl, All PE,
See i/ ° RECORD e:i,t,

witJa tlui,.ed lQ
See i/ eme /("",4 ...
... i/..o reiam "om •
••• citlatrWli" ,.dvm Nil.

(PROG !)
SLICED GLOBAl.. FOUND)
ENABLE)
SETQ FOUND (EQ WITHIQ (IQ RECORD»)
COHO «KINRESOI..VE FOUND) (REPORT (NAME RECORD»)

(T NII..»»

4.5 Implementation wues

The PSL compiler runctions within the control processor by translating LISP code into a set or CMACROs
representing an instruction set ror a primitiTe abstract machine. These CMACROs are then recursiYel,
expanded into the actual asaembly or object code ror the real machine. The compiler itselr is completely
written in PSL, as are the interpreter and other system components. This allows relatively rapid
bootstrapping ror a new machine.

The compiler uaes a tagaed representation or all LISP data types. A tagged object is called aD item and
in our implementation consists or three bytes (24 bits). The first byte contains 5 tag bits and 3 ga.rbage
collection bits. The remaining bytes are uaed ror the information field. This inrormation field is either
immediate data, in the case or an inum, & pointer into the id space, or a rererence to the heap space ror
other Lisp objects.

4.5.1 The Symbol Table

A PSL variable is a tagged item with an information field th~ contains a pointer into t.be identifier space
(this is the local symbol table). This symbol table contains rour entries ror each id (nriable): a point.er to
the print. name, a pointer to the property list ror this id, & nlue cell, and a runction eell. In our

implementation botb tbe bub table and print name ate stored in the boat processor since these structures
are only needed at tb, user-machine interface.

Variables are represented in the rest ot the tree u tbeir ofTset into the id space. This saves cOll3ider&ble
space in each PE. Further space economies may be achieved by sharing s-exp~ upon consing. The
technique called H-consing, which uses a huh table tor COll3 cells in much the same way u a huh t.able is
used (or placing atoms into t.he symbol t.able, guarant.ees that. equal s-expr's share the same physical
location. Its use is highly recommended due to the significant space savings &ehieved by the sbaring ot
structures. This may in (act become t.he system detault..

4.5.2 Paasing Lisp Objects

In order to pa.sa arbitrary Lisp Objecta around th' tree with the communication (unctioll3 we build a
normalized relocation map ot the object and then pua this reloeation map. The object is then recreated
trom the relocation map at t.he receiving node. This approacb baa tbree distinct a.dvantages.

Fi~t it the object is not too large a single byte may be used (or each pointer ill3tead ot a rull word.
Secondly, it huh cOll3ing is used, ror each strinl wit.h multiple ident.ical subst.rings the unique subst.rings
will only be passed once. A pointer is puaed to the unique subatrinl occurrence ror all other occurrences.
This is particularly important in an environment where unification occu~ as a large number or such
strings with multiply occurring substrings are often produced. Finally, this method also a.llows the pa.ssing
ot selt rererential struct.ures.

4.5.3 Garbage Collection

Garbage collection in a parallel environment is a well known problem. Our solution is not particularly
elegant., but is practical. When a PE discove~ it must do a garbage collect it interrupts the rest or the
tree and the entire tree garbage collects at one time. We use a simple linked list garbage collector. Due to _
the imposed restrictions on LISP data types we allow only items which are all the same size (24 bits),
consequently compaction is not required. This is accomplished at the price or excluding vectors and
strings.

This restriction can be removed as needed by special allocation ot a rlXed segment. with- its own allocation
mechanism. In the simplest implementat.ion we simply use SysLISP to allocate a large chunk or storage,
and compute an explicit pointer into this region. The more sophisticated approach is to have two garbage
collection racHities, the string vector region having its own compacting collector and allocator.

4.5.4 Debugging: Calls with one level or indirection

The use or (unction-value cells in the symbol table hu always been recognized u important (or tracing,
monitoring, and debugging. The need ror these (acilities is acute in a parallel environment, as it would be
ot.herwise impossible to efficiently monitor a myriad ot processo~. For example, one major problem with
a parallel machine is the monitoring and debugging or the PE contents. By changing the contents or the
(unction value cell o(an id we may euily insert a call to a debugging or monitoring routine. The price (or
t.his is one additional memory &ecess. We also maint.ain separate dat.a and code spaces so that the code
space need not be reported to the CP in order to determine the state or a PE during debugging •

.) Conclusion

IIPSL is a significant tool ror the definition and implementation ot parallel proces.sing syst.ems. It: provides
bot.b .. coberent language and a development. environment ror algorithm specification on a tree structured
machine. In particular it. provides efTective communication between the tree and t.he ext.ernal environment
as well aa global and local communica.tion within the tree. The integrated debugging and simulation

10

(acilitie. &1" .xp.ct.d to b. or ,reat aid durin, proaram dn.JopmeDt elp.cialb' .iDc. ~be1 &1" all writteD
iD aDd acc d tbroulb a eommOD laD'u

II

References
GriM, M. L., and Hearne, A. C. "A Portable LISP Compiler." Software - Practice a.nd Ezperienee,
11:541-606, Junl, 1081.

Intel, PL/M Language Rererence Manual, H~7g.

Johnson, S. C. Ya.cc: Yet Another compiler Compiler, Computing Science Technical Report No. 32, 1975,
Bell Laboratories, Murray Hill, NJ 07Q14.

Lesi, M. E. "Lex - A lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 3Q, Bell Laboratories,
Mumy Hill, New Jersey (October lQ15).

Lowene, D., Layman T. , Our D., and Randal, J. , "Glypnir - A progamming Language ror n.LIAC
IV," Comm. ACM, lQ 3, March lQ75.

Minnier, 0, "Herbal, A Production System ror the DADO Machine," Technical Report (in preparation)
Department or Computer Science, Columbia University, 1984.

Stolro, 5., Miranier, D. and Lerner, M., "PPL/M: A Systems Programming Language ror the DADO
Machine," Columbia University Department or Computer Science, lQ84.

Stolro, S., "The DADO Parallel Computer," Department or Computer Science, Columbia University
Technical Report," submitted to Al Journa.l, 1983.

Stolro, S., "Knowledge Engineering, Theory and Practice," Proceedings or the IEEE Trend.! and
Applicat ionl, 1983.

Taylor, S., "LPS, A Logic Programming System: Motivations and Goals" Technic&! Report (in
preparation) Department or Computer Science, Columbia University, 1984.

Taylor, S., Lowry A., Maguire, G. Q., and Stolro, S. J. "Programming using Parallel Associative
Operations," in 1984 Internation&! Conrerence on Losic Programmins, February ~g, 1984.

Tzoar, D., and Taylor, S., "Unification in a parallel Environment," Technical Report (in preparation)
Department or Computer Science, Columbia University, 1984.

