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Linear Problems (with Extended Range) Have Linear Optimal Algorithms 

ABSTR~CT 

Let F 1 and F 2 be normed linear spaces a.nd S:F 0-- > F z a linear operator on a 

balanced subset F 0 of F 2' If N denotes a finite dimensIonal linear informatIon 

operator on F 0' it is known that there need not be a lz'near optimal algOrIthm 

~:N(Fo)-->F2 which is optimal in the sense that 1Icf>(N(f))-s(nll IS minimIzed. We 

show that the linear problem defined by Sand N can be regarded as having a 

linear optimal algorithm if we allow the range of cf> to be extended In a natural 

way. The result depends upon imbedding F 2 isometrIcally In the space of 

contInUOUS functIons on a compact Hausdorff space X. This IS done by making use 

of a consequence of the classical Banach-Aboglu theorem. 
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1. Introduction . 
There hu been coO!iderable recent progress in applying and generalizIng the 

Information centered theory of optimal algorithm,. In particular, when the problem 

and ita in1ormation are linear, there are numeroU! useful and satisfying results 

Thus, it has been shown that nonadaptIve informatIon i.s no leS! powerful (10 terms 

of the error of optlmal algonthms) than adaptive ln1ormation of the same 

cardinality (see Traub and Wo~niakowski I., p. 491). Also, for a Wide varIety of 

classICal linear problems and in several general linear settlngs, it i.s known that . 
linear optimal error algOrithms emt. While it might seem reasonable to expect, In 

the light of the above results, that linear problems should always have hnear 

optimal algorIthms, there eXlSt specially constructed examples to the contrary 

In thiS paper we resurrect the above intuition that linear problems ought to have 

optlmal linear algonthms. We do' this by shOWIng that, under the minimal 

requlrement that the range of the' solution operator lS a normed linear space, there 

must be an optlmal linear algonthm if we allow Its rang~ to be extended in a 

natural way. Thus, linear problems do have linear optimal error algonthms as long 

as the solution operator IS gIven an. appropriate codomaln (perhaps conSIderably 

larger than its range) 

To develop thiS result. we will need some machInery from functional analysIs. 

Inchiding the classICal Banach-Alaoglu theorem. The presentatIon will be organized 

as follows. The next sectIon reVIews the Information centered approach to 

algorIthms in the linear framework, Including some of the existing positive and 

negative results The third sectIon introduces addItional notation needed to state 

and dlscuss the maln result. The final sectIon summarizes the technical material 

needed (rom functional analyslS and proves the main result 

2. The Information Centered Approach to Linear Problems 

A thorough development of the framework for the InformatIon centered approach 

may be found In Traub and Wo~niakowskl [41. Here we summarIze bnefly the 

standard settIng for linear problems. 

Let F 1 and F 2 be normed linear spaces over the scalar field K, where K IS elther 

the real or complex numbers. Let F 0 be a balanced .oQ.vex subset of F l' In what 
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10110ws, a lunction with domain F 0 will be said to be linear u it is the restriction 

of a lin.ar fUllction defined on Fl' Given S:F 0- > F 2 a linear operator and 

N:F cr >K- a finite dimell!ional linear information operator, the inherent error, 

r(S,N), in approximating the IOlution S worEJng with the (incomplete) information N 

i.s called the ratliu. oJ inJO""4titm. This Important concept i.s defined as follows 

Given f' F 0' let y-N(f) a.nd set V(y)={g€F o:N(g)=y}. 
Now define r(S,N,f) to be the radiU! of S(V{y») as a subset 01 F 2' 

Fin!ily, define r(S,N)=sup{r(S,N,l):ffF o}. 

We now investigate algorithms to aprroximate S(r). Since we only have limited 

information y=N(f) on I, such algorithms can only be defined on N(F oJ. Of 

ObVIOUS importance are optim4l algoritJam. ;:N(F o)->F 2' where optimality means 
lJ;(N(f)) • S(I~~ r(S,N) lor all lifo· 

~ indicated earlier, we are interested in the existence of (inta,. algorithms whIch 

are optimal. There are several reasons why linearity l.S deSirable, which we now 

summartze. Linear algorithms would appear to be natural Cor problems In a linear. 

setting. Indeed, many of the standard algorithms for classiCal numerical problems 

(integratIon and interpolation, lor exam.ple) are linear. Lanear algorithms tend to be 

Simpler and easier to implement. Most importantly, hnear algonthms have small 

com binatorial complexity and optimal linear algorithms can be formally shown to 

have nearl" optimal eom6inatorial complerit" (see [4, Chapter 51). In addition to 

thlS valuable efficiency in tlme, linear algorithms also have small space compleXity 

(if we ignore precomputation). 

Since the result we will develop is immediate when r(S.N) is infinite, we can 
assume for the remainder of the paper that r(S.N~. We now state two general 
positive results concerning the existence of optimal linear algorithms for linear 
problema. The first theorem covers the case where the solution operator S is 
scalar-valued. 

Theorem 11 U F 2=K then there eXLSU a hnear optimal error algOrIthm 
,*N{Fo}->K. Thus 1,*(N(f)}-S(f)I~r(s,~ for all ff.Fo 

proor: The case when K=R i.s due t.o Smolyak [al and can be found an 
[4, p. s.tl; the complex case 15 due to Osipenio [II 

The second result requIres a alight reformulation of the general linear problem 

We can, without loa of generality, assume that the balanced, convex set F 0 on 

which S and N are defined i.s ,enerated by ~ jinear rnt,;dion opt,.ator 
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TF1->F4 .. T(Fl) in the sense that Fo~{f.Fl·IT(r)fJ'l} 
"..... II .. U F .=-T(F 1) l! a' Hilbert space 

ud T(kar(N)) is closed in t. then there exuts a llQear optimal error 

a!&orithm. 
PPOOfl See [ .. , Chapter 41 The result emerge! 10 the contu: of the 

theory of spline algonthms, and the de!lred algonthm turns out to be a 
spline algonthm wblch l! central a..nd hence stron~lY opum:1l. 

Theorems 1 and 2 IndIcate that, In the presence of appropnate structure, optima! 

hnear ~genthms can be constructed. A completely general result ~ong these llnes 

15 ruled out by a counterexample constructed by Micchelli (see [41. p 60) W~ 

sketch below a somewhat Simpler example of a linear problem WhICh has no opttmal 

hnear algonthm 

Example. 

Flx >"(O.~&J1d let Fo-{(xO'x1.x,) :).1%11+1"21~1.1l:ol:: -; 

Lft S:Fo--)12 be defined by S(xO'%1'''2)-(%1.x2) ,wbere 
1 1. gIven 1ts .1lber~ DOr.. 

Let 114:1'-->1 be defined by N(%O'%1'''2)-~1.).%0' 

Ie rely beavily upon Flgure 1. wbicb pictures S(Fo) aDd SeVey»~ tor 
so.e critical value. of yaN(x). wbere %-("0'%1'%2)' 

Part (a) of the flgure 1. si.ply tor orieDtatioD. It can be checked 
that the broken liDe hal leDgtb < 1 fro. whicb it tollows tbat S(V(O» 
hal radius 1. 

It can be checked that tbe radius of tbe set S(V(>') 1n part (b) 
1. tbe length of each of tbe broken liDes. Further.or" S(V(>'» 
deter.iDes r(S.N), wbicb equal. the square root of 1+>' . 

By the vert1cal (x~) syaaetry of the proble •. an l1near opt1.al 
algoritha aust bave the tor. '(y)-(cy.O) tor soae c'l. 
It tben tollow. fro. tbe above that 1t t. 1s to be a liDear opt1aal 
algor1tha it .ust have tbe fora '(1)-(>' ·y.O). 

Now UsiDg p'art Jc) ot the figure. 1t caD be sholr,A. that witb 1-1/>.->'. 
Ih(y) - U/>'.O)l ) r(S.N) (this 1s wbere >.£ (0. \2/2) 1s needed). 
ie CaD thus conclude tba~ tbe stated proble. bas no opt1aal liDear 
algoritu. 

lo,t) 

FilUN ~ll The Imace under S 

(Co) S(Vl~- V).)) 

l~-}., ~) 

~~.i·~.oJ 
I 



While it. is clear that the above example is somewhat contrIved, It d~s show that . 
no general result about. optimal linear algorithms (or linear problems IQ the standard 

setting is poaible. In the next sectIon we show that a small but signIficant 

reform ulation of the standard linear settmg allows for optimal linear algonthms IQ a 

very general context. 

3. Optimal Linear Algorithms 

To state our m3.ln result, we recall some standard notation from functional 

analysis. A more complete exposition o( these ideas, including proofs of standard 

results used in this and the next sectIon can be (ound in Packel [21 (or any other 

Introductory functional analysis text). Given a compact Hausdorff space X, dellne 

C(X)={g:X->Klg continuous} 
B(X)={g:X->Klg bounded} 

where each function space is endowed With the ,up norm 

U E a.nd F are normed linear spaces, they are deflned to be i,omttrically 

isom01'phic if there exists a linear bijection b:E->F which IS norm-preservIng In 

thiS case we regard E and F as Identical as rar as t~.~!r normed and lInea.r 

structures are concerned. 

We are now prepared to sta.te the m3.ln result. 
Theorem I: Given a general linear problem defined by Sand N, With 

S.FoSF1->F2• there eX1!ts: 

i) A compact HaU!dorff space X such that F:2 IS Isometncally IsomorphiC 
to fl"2§B(X). 

lil A linear optimal error algonthm 
,. (N(f))-5(1)'.r(S,N) ror all r.Fo 

• ~ N(For->8(X) satisfYing 

Before deTeloping the proof, we discuss Interpretations of thiS Theorem. Theorem 

1 of the previous sectIon showed that If the range of S IS suffiCiently Simple 

(namely the scalar field K), then an optimal linear algonthm was assured. The 

Example sketched In that section then showed that merely expanding the range of S 

to R2 destroys the guarantee of an optimal linear algonthm i/ algorithm' a,.e 

,.e,trieted to tlae range 0/ S. Theorem 2 now suggests that by givlOg S a codomain 

(namely B(X)) which extends beyond Its range, an optlmal linear algonthm (WIth 
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r~le in tlus extended Codomaln) must emt. 

~ the fcnheomin, proof wIll show, the extended codoma.n IS generally vastly 

larger ud more complicated than the ongmal range In addItIon, Its members 

(other than the isometnc images Crom F 2) may have no meanlOgful connectIon WIth 

the members of F 2. Nevertheless, one interpretatIon of the result LS that a llnear 

problem does have an optImal linear algonthm if the solutIon operator LS gIven an 

"appropnate" codom~n. WhIle the theorem uses the rather extreme case of 8{X) 

Cor this todomaln, it may be the case that linear optImality holds Cor less drastIC 

exterl!lons of the range of S In partu:ular, It seems reasonable to conJecture. 

perhaps WIth added hypotheses, that the Theorem aught be strengthened by 

replaCIng B(X) WIth C(X). We leave thl! for now as an open problem. 

4. Technical Background &nd Proofs 

Let Y be a normed linear space over the scalar field K The eonj1Jgctl 'pact Y' 
of Y 15 defined by 

•• • Y ={f Y->Klf contInuous and hnear on Y} 
A natural "operatorn norm on Y' LS defined by 

If'a =,up{IC'(OI: lUG =-1} , 
A weaker topoloIY on Y can be deCtned as follows Each (, F Induce! a hnear 

functlonal C· on Y' defined by 

("((')-C'(f). 

The Wfck· topo/OW on Y' IS defined as the weakest topology such that r' IS 

contInuous ror every r in Y 

Under the weak' topelol)', It tbus follows that fAe F" (SInce fA IS clearly hnear 

and must b. ContInuous on F') USIng tbe natural norms on F' and F", we also 

note tbat Dr"'1 - HI Indeed. \I f-' " \1 fI SInce 

Hr", =-,.p{W"(f')I:I\f·1 =l}=,up{lre(f)I:UC'1 =l}:!up{IIC'U Ir'dlf'~ =l}=lfl 

The fact that Ilrl :&Ilr~ follows by a routIne appilcatlon of the Habn-Banach 

theorem on tbe space F' The above result says that F IS IsometrIcally IsomorphIC 
'" •• e. to a subspace F of Y (by means of the linear Isometry "~Y - >F) '!.ie now 

apply tbese Ideas to state and prove the followlng "Colkll result about normed hnear 

spaces Though this result can be found in a variety of texts, we give the 

proof here since it is short and sets the stage for the main theorem. 
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Lemma 4: Let F be a normed linear space. Then there eXIsts a 
compact Hausdorff space X such that F is iSOmetncally tsomorphlc to a 
subspace f" of C(X). U F is a Banach space, then 'f 15 a closed subspace 
of C(X). 

Proof: Give the conjugate space Fa it" weak· topology Let X be the 
• • a ., 

UOlt ball of F -X={f ,F : If " I}. The classiCal Banach-Alaoglu 
theorem says that X is compact in the weak a topology on X. Dehne 
. F->C(X) by f ~co, where r(Ca)=Ca(f) Cor all C· E X. Then, as . ,.... 
developed above, U C I = VII, so the subspace F of C(X) deCmed by 
~ {f

O f~F} is lSOmetncally IsomorphiC to F. U F IS a Banach space, then 
F and F are complete, making r closed as a complete subspace of C(X). 

Remark The above result IS not as powerful as It may seem at hrst glance, 

sIDce very httle IS known about the subspace! of C(X) Our appilcatlon to the 

proof of Theorem 2 IS, to our knowledge, the first really meanmgful use of thiS 

cunous result. Before proceeding, we note that we can also treat F as being 

Isometrically Imbedded In B(X) since C(X) ~ B(X). 

We now prove the maln theorem which we restate fo;- :he convenience of the 

reader 
TheoM!m 

S Fo~Fl->F2' 
Given a general hnear problem defln~: bv Sand N. With 
there eXIsts: 

1) A compact Hausdorff space X such that F I) IS Isometrically IsomorphiC 
~ . 

. to F2~X) 

III A llnear optimal error algonthm ~. ~(F 0)-- > 8{X) satisfYing 
II- (N(f))-S(7}I.r(S,N) for all f6Fo A 

Proof: I) The existence of X and F 2 follow directly from the Lemma 
proved previously. 

11) For each fixed x,X, conSider the hnear problem 
""'" Sx·F 0- >K where Sx(f)=S(f)(x) 

B] Theorem 1 we know there eXIsts a linear optimal algonthm 
• xN(Fo}->K such that 

Lettmg x vary over X. we now must show that the linear operator ~ 
• 

thus deftned on N(F 0) has Its range lD 8(X). First observe that 

( 1 ) 
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. 
..--.. tI". 

where the inequalit.y follows from US(f}( =,up{IS(f)(x)I·X4X}. USIng (1) 
and (2). we have fot ~ll f "F o. 

I. a(N(f))(x)1 ~ I; a(N(f))(x}-Sx(OI + ISx(f)1 
&. 1.:(N(f)}-Sx(f)1 + ISx(f)1 
~ r{S,N) + U S(f)1 . 

Since the hnal expreSSlon l! Independent of x, ; 8(N(f))f B(X) and the proof 
IS com plete. 
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