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Abstract

This paper relates our experience implementing a production compiler from an attribute grammar. The
compiler is Intel Corporation's Pascal-88 compiler. It runs on a microcomputer-based development system
without virtual memory. An attribute grammar was written describing semantic analysis, storage
allocation, and translation to intermediate code. Attribute evaluation is done in two alternating passes
and the program tree is kept in intermediate files on disk.

The first version of the compiler was manually implemented from the attribute grammar. Using what was
learned from this experience, an automatic attribute evaluator-generator was then written and a new
version of the compiler was mechanically created from the attribute grammar.

Various techniques for optimizing the evaluator were tried. Their degree of success is reported and they
are compared with other ideas from the literature. Complex attribute-values, such as sets, sequences and
finite functions, were carefully implemented using applicative data structures in order to conserve
memory.

The attribute grammar was designed using the principles of data abstraction and information-hiding.
The internal organization of many types of attributes is completely hidden from the attribute grammar
author and the attribute evaluator. These values are manipulated only by specific out-of-line semantic
functions that can be viewed as the operators of an abstract data type for this attribute. This also
contributed to an efTicient use of memory.
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1. Introduction

In the past several years attribute grammars (19| bave been discussed in the literature as & bagiy 1
compiler-writing-systems (28, 6, 10, 5, 23, 18]. Most of the attention has focused oa attribute evaluation
strategies and oo testing the evalusbility of aa sttribute grammar according to some particular Srateyy.
Less sttentioa has been paid to actually writing sa attribute grammar for & real language and looking g
what sort of compiler would be generated from it. This paper relates our experieace of writing an
attribute grammar for Pascal and then implementing a compiler based on this attribute grammar by using
» particular attribute evaluation scheme.

The compiler is Iotel Corporation’s Pascal-88 compiler. It geperates code for the iAPX-8086
microprocessor family and is hosted oo sn 8088-based microcomputer system. The compiler caa run in as
little a3 98K bytes of memory and can use either floppy diskettes or a faster rigid disk for temporary files
sod for the output. The language supported is a slight superset of the ISO standard for Pascal. The
principal extensions sre:

- » separste compilation facility,

- allowing the use of names before their definition,

- extra built-in functions that are useful in & microprocessor environment.

The Pascal-88 compiler is neither & ‘toy” nor sa experiment; rather it is one of Intel's three production
compilers that support the iAPX-8088.

The attribute grammar specifies those phases of the compiler that do semaantic analysis, storage
allocation, and translation to intermediate code. Thess three phases of the compiler are collectively
referred to as the SEMANTICIST. The outputs of the SEMANTICIST are:

- a list of intermediate code that is the code generator's input,
- a list of semantic errors and warnings,
- o list of cross-reference transactions,

- & set of literal constants that will be memory-resident at run-time and the storage locatioas
that need to be initialized to these values,

- 3 set of user-defined and predefined objects (e.g. variables, types, named constants, procedures
and functions),

- a set of procedure-objects that have been designated to field particular interrupts,

- 8 set of objects of the compilation unit whose name's are exported beyond the compilation
unit.

We decided to use attribute grammars because we thought this was a good formalism for specifying aad
designing these protions of a compiler. Also, we anticipated that later on we would be able to
sutomatically generate much of the compiler from its attribute grammar. However, the first released
version of the compiler was written by hand, rather than being automatically generated by s traasiator.
writing-system. The sttribute evaluator was written by having the programmers ‘‘play evaluator-
generator” on the Pascal-86 attribute grammar.

Even so, we definitely wanted the hand-implementation to be f;it.hful. to the sttribute grammar tht.fw;.s
its design. To this end the implemeators strove to write the actual high-level lsngu.xge source code ojt e
SEMANTICIST as a mechanical transiation of the sttribute grammar according to our attri u:e
evaluation paradigm. Optimizations of this code were allowed only so long as they could be exactly

specified and uniformly applied.

The resulting hand-coded version was 58,000 bytes of machine code and cost 18 man-months of d.eslgtu
and implementation effort. 34K of the 58K bytes of machine code cone.sponded to t.he attri ut:
evaluator that would eventually be automstically generated; the rest was either out-of-line semsnti
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functions or support Poutines that would be haad-coded even in aa sutomatically generated compiler.

After the compiler was delivered we started working on sutomatically generating the attribute evaluator
portion of the SEMANTICIST from its attribute grammar deseription. This involved two distinet tasks.
The first of these was to build & program to geaerate attribute evaluators from attribute grammars. We
already had s program that would check that ag sttribute grammar was well-defined and that it was
evaluable sccording to the alternating-pass evaluation strategy that we used. This program had to be
enhanced to sctually generate the evaluator. Furthermore, our experience with the macually-coded
version had suggested several minor changes to the evaluation strategy and several gsot-so-minor
optimizations. These also had to be included in the attribute evaluator-generator. This generator
program, LINGUIST-88, is described in (8.

The second task was to bring our attribute grammar up-to-date with the SEMANTICIST. Since the first
version of the SEMANTICIST was not sutomatically generated it was possible Lo correct compiler errors
that were discovered without having to make appropriate modiflcations to the attribute grammar; in fact,
it usually took less time to do so. Since the primary goal of this project was to produce & compiler rather
than to explore the technology, we used this short-cut more and more frequently as the delivery-time
approsched. After the first version of the compiler was finished all of these modifications had to be
incorporated into the attribute grammar. Doing this took about three man-months. Several heretofore
undiscovered errors in the released compiler were found by this process.

While we were working to sutomatically generate the SEMANTICIST the compiler was 3 major software
product that required on-going support. This support included both repairing any errors that were
discovered, and adding new functionality to the compiler (including the SEMANTICIST). This coatinuing
modification of the SEMANTICIST complicated our efforts to automatically generate a version of the
current SEMANTICIST and test it against the production version. However, this was eventually doae.
At this time the manually-coded production-SEMANTICIST was 70K bytes of machine code, of which
41K bytes were attribute evaluator; the sutomatically-generated SEMANTICIST was 71K bytes of
machine code, of which 38K bytes were attribute evaluator.

Other implementations of attribute evaluators have needed a lot of memory and they are usually designed
to rup on large machines with some sort of virtual memory system. The SEMANTICIST ruas in a small
amount of memory (as little as 96K) on a system without virtual memory. We think the principal reasons
for this success are that:

- the semantic tree is kept on sequentially-sccessed intermediate files,

- complex attribute-values, such as sets, sequences, and finite functions, are implemented using
applicative data structuring techniques, -

- data abstraction techpiques are used in the design and implementation of semantic functions ia
order to successfully exploit the value-orieated nature of attribute grammars.

This paper is intended to explain how we used attribute grammars in designing and implementing a
compiler; it is oot iatended to be a description of the Pascal-88 compiler. To this ead, the paper is
organized into 3 major sections:
- section 2 is a brief tutorial on attribute grammars; readers who are familiar with attribute
grammars aad their terminology can skip this section, or skim it quickly, and retura to it oaly
if some unfamiliar terminology or notation is later encountered,

- section 3 discusses the Paascal-88 attribute grammar and the philosophies behind its design,

- section 4 describes the SEMANTICIST's attribute evaluator.

Several .i.ssues concerning the design and implementation of the semantic functions are explored in
sub-section 3.2, The symbol table is a major component of most compilers; sub-section 3.3 discusses those
upecu_of the SEMANTICIST that correspond to the symbol table. Sub-section 4.1 presents the attribute
evaluation strategy we use, sub-section 4.2 describes our implementation of the attribute evaluator,
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sub-section 4.3  discusses  several optimizations of the basie attribute evaluser,
sub-section 4.4 describes how the sttribute evaluator fits in with the rest of the compiler.

and

Our copclusions are presented in the final section. Various statistics sbout the SEMANTICIST are
distributed around the paper; sn appendix collects all of these in one place. These statistics are from
three different versions of the SEMANTICIST: the original hand-coded version that was relessed as
version 1.0 of the compiler, an updated hand-coded version that was released as version 3.0 of the
compiler, and the latest automatically-generated version that has not yet been released.

9. A Brief Introduction to Attribute Grammars
A contezt-free grammar is a 4-tuple (N,Z.S,P), where N is the set of non-terminal symbols, L is the sey
of terminal symbols, S € N is the start symbol, and P is the set of productions. A production is of the

form (p : Xo ::3 X, X|’]. X, € Nis the left-part of p; X, X, ... X" is the right-part of p and for
i > 0, either X; € Nor X; € L. Sometimes the expression “p[i|" is used to denote X;.

Attribute grammars were first proposed by Knuth [19] as & way to specify the semantics of context-free
languages. The basis of an attribute grammar is a context-free grammar. This describes the context-free
language that is the domasin of the translation, that is, those strings on which the translation is defined.
This context-free grammar is sugmeated with attridutes and semantic functions.  Attributes are
aasociated with the symbols of the grammar, both terminal and non-terminal. We write "X. A" to deaote
attribute A of symbol X, and A(X) to denote the set of attributes associated with X. Semaatic functions
are associated with productions; they describe how the values of some attributes of the production are
defined in terms of the values of other attributes of the production.

Below is an attribute grammar that describes based integers in Ada and the values they denote. Examples
of Ada based integers are:

16#49f == 9f base 18 == 159 base 10
2#10110 = 10110 base 2 = 22 base 10
3#%10110 = 10110 base 3 == 93 base 10.

{1 number ::= digitsl °'#' digits2.
2 number VAL = digits2 VAL
3 digits2 RADIX = digitsi.VAL

4 digitsl .RADIX = 10

5 digitsi . POVER = 1|

) digits82 .POWER = |

7 digits @:= digi

8 igits VAL digit VAL

9 digit .POVER = digits.POWER

10 digitso IS digitsl digit.

i1 1gite0.V = digitsi VAL + digit.VAL
12 digitsz RADIX = d1gits0 .RADIX
13 digitsl .POWER = digitsO.POWER * digits0.RADIX
14 digit.POUER = d1g1ts0.POWER
15 disit =

16 igit.VAL =

17 gt ..

18 git digiz POWER

19 51 I
20 1git. VAL = 2 » digit POWER
45 = 'F |

digit il D S
46 {git.VAL = 16 = digit.POWER
Figure 2-11  An attribute grammar for based numbers in Ada
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Lines 1, 7, 10, 15, 17, ..., 45 of figure 2-1 are context-free productions; the other lines degote semaatic
functions. The notation of this example will be used throughout this paper: in the production of lige 1,
digitst and dig1tsl denote separate occurrences of the same symbol, digits; the numeric suffixes
distinguish these differsat occurrences. Differeat symbol-occurreaces in a production, such as digits in

the first production, give rise to difTerent attribute-occurrences. Symbol-occurrences and attribute-
occurrences are associated oaly with individual productions.

A semastic fuaction specifies the value of an attribute-occurreace of the production, e.g. digitsl .VAL.

Semantic functions are pure functions, they have no side-effects. Their only arguments are either
constants or other attribute-occurrences of the productioa.

Let us consider just how an sttribute grammar specifles s translation. The underlying context-free-
grammar of an sttribute grammar describes a language. Any string in this language has a parse tree
associated with it by the grammar. The nodes of this parse tree can be labelled with symbols of the
grammar. Let N be an interior node of the tree. Each N has two productions associated with it. The
left-part production (LP) is the production that applies at N. The childrea of N are labelled with the
symbols in the right-part of N's LP-production. The right-part production (RP) is the production that
spplies at the parent of N. The parent of N is labelled with the left-part symbol of N's RP-production; N
and its siblings are labelled with the symbols in the right-part of N's RP-production. Leaves of the tree
don’t have LP productions; the root doesn't have an RP production. Figure 2-2 shows a parse tree for the
string 7#53. Each node in this tree is labelled with ita associated grammar symbol, which is the left-part
symbol of ita LP production.

<aumber> N1

tocmmam e
| VAL I
Pmm——————— *
.............. S
<digits> | N2 <d151cl> | N3
IEBG&IRRBIQTGRLW @GE&I&E&TGZLW
fommmmmmmm—mmmmem ‘----—-—I ........
<digit> N4 <digics> I ------ ig—_—<;I;I;;-I N8
[POVER| VAL | |POVER | RADIX] VAL | TPOVER] VAL |
P + L b L L B ------I- -----
<digit> '
'E'éééliéél
4 ) l 3

Figure 2-21 A semantic tree fragment

A semantic tree is s parse tree in which each node contains fields that correspond to the attributes of its
labelling grammar symbol. Each of these fields is an sttridbule-instance. Associated with each attribute is
a set of possible values that instances of this attribute can be assigned. This is analogous to the “type” of
a vaniable in a programming language. However, each sttribute-instance takes on precisely one such
value; attribute-instances are not variables. The values of attribute-instances are specified by the
semantic functions.

The semantic functions of a production represent a template for specifying the values of attribute-
instances in the semaatic tree. Consider figure 2-2 again. N3 is a semantic tree node that is associated

with digits2 in the production (pumbder ::= digitsi '#’' digits2] (its RP production) and N3 is
associated with d1git80 in production ([digits0 ::= digitst digit) (its LP production). The

4



semantic function 41g1t82 RADIX = digitsi.VAL indicates that the value of sttribute-instanee
N3RADIX will be copied from the value of attribute-instance N2.VAL. Similarly, the semaatie function

digits0.VAL 3 digitsl VAL ¢ digiv.VAL indicates that the value of attribute-instanee N3, VAL
should be calculsted by adding together the values of N5.VAL and N6.VAL,

The productions, sad their agsocisted semantic functions, can be viewed s “tiling” the semantic Lree.
Each interior node lies on the boundary between two ‘tiles”, those correspoading to the node's Lp.
production sad RP-production, respectively. Thus, interior nodes lie partly in one “tile" sad partly in
snother. Figure 2-3 is a pictorial representation of this. The “tiles” can be viewed as “templates’ thy;
describe how to define the attribute-instances that lie [partially] within them. Two different “tijeg"
cooperate or commupicate through the values of the attribute-instances of their common node.

<!llb0r> Ni

Poomsama=wd

+ |POVER |[RADIX] VAL 15

rt. ...............

l 7 ]
Figure 2-3: “Tiling'* the semantic tree

Since two different productions are sssociated with esch attribute-instance, there could be two semantic
functions that indepeadently specify its value, one from the LP ‘“tile’’' and one from the RP “tile". If we
assume that esch sttribute-instance is defined by only one semantic function, either from the LP
production xor from the RP production, then we must guard against an attribute-instance got being
defined at all because the LP production assumed that the RP production would define it and viee versa.
These difficulties are svoided in attribute grammars by adopting the convention that for every attribute,
X.A, either: (1) every instance of XA is defined by s semaatic function associated with its LP production,
or (2) every instance of X.A is defined by s semantic function associated with its RP production.
Attributes whose instances are all defined ia their LP production are called synthesized attributes;
attributes whoee instances are all defined in their RP production are called inherited attributes. Every
attribute is either inherited or synthesized. The start symbol has no inherited attributes; terminal symbols
have no synthesized attributes. From the point of view of an individual production these coaditions
require that the semantic functions of s production MUST define EXACTLY the right-part occurrences of
inherited attributes and sll synthesized attributes of the lef-part symbol. [nherited attributes propagate
information down the tree, towards the leaves. Synthesized attributes propagate information up the tree,
toward the root. The ioherited attributes of s non-terminal X are denoted by /(X), the synthesized
attriubtes by 5(X): A(X) = [X) @ S(X).

Thus the semantie functions of an attribute grammar specily a unique value for each attribute-instance.
Howaever, in order to sctually compute the value of attribute-instance Z we must first have available the
values of those other attribute-instances that are arguments of the semaatic function that defines Z.In
the example of figure 2-2, before N3.RADIX can be computed the value of N2.VAL must Have aiready
beea computed. Such dependency relations restrict the order in which attribute-iastances can be
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evaluated. The semantic tree of figure 2-2 is reproduced in figure 2-4 with ares drawn in to show the
various dependency relations amoag the attribute-instances of the tree.

<puaber> Nl

L L O L Y = L Tt +
<digite> | (w2
.......... cmmbeaey

IPOU‘ERIRADIXI VAL |

7 L 6 3

Figure 2-41 A semaatic tree fragment with dependency arcs.

In extreme cases an attribute-instance can depend on itself; such a situstion is called a circularity and by
definition such situations are forbidden from occuring in well-defined sattribute grammars. In general, it is
an exponentislly hard problem [13] to determine that an attribute grammar is non-circular; i.e. that no
semantic tree that can be generated by the attribute grammar contains a circularly defined attribute-
instance. Fortunately there are several interesting and widely applicable sufficient conditioas that can be
checked in polynomial time [4, 14, 18, 17].

The result of the translation specified by an attribute grammar is realized as the values of one or more
attribute-instances of the root of the semantic tree. In order to compute these values the other attribute-
instances must be computed. An ATTRIBUTE EVALUATION PARADIGM is a meta-algorithm for
building an algorithm that will compute attribute-instances in such an order that: (1) no attribute-instance
is computed before all dependent attribute-instances are available, and (2) all attribute-instances of the
root are computed. [t may be that an attribute evaluation paradigm works correctly only on a subset of
all weil-defined attribute grammars, but it must work correctly on every semantic tree of an acceptable
attribute grammar.

One of the simplest and most commoanly used family of evaluation paradigms is that of evaluation in
passea. For evaluation in s left-to-right pass the attribute-instances are defined during a left-to-right,
depth first walk over the semantic tree [4]. A general left-to-right pass evaluator consists of several such
passes run in succession. Each pass is able to evaluate more attributes because their dependencies were
made available by the preceding passes. The model for a left-to-right pass evaluator is shown in
figure 2-5.

In order for a pass-structured attribute evaluator to work one must know in advance when attributes can
be evaluated. That is, for each attribute X.A, there must be 3 pass number, i A» Such that every instance
of X.A in any semantic tree can be evaluated on pass iy ,. Because of this requirement, not all attribute
grammars can be evaluated in [eft-to-right passes,

An clternating-pass attribute evaluator [14) consists of one or more passes in which the semantic tree
nodes are visited in either left-to-right order or right-to-left order. II pass i visits nodes in left-to-right
order, then pass i+1 visits them in right-to-left order, and vice versa. Alternating-pass evaluators can be
used on s wider class of attribute grammars than left-te-right pass evaluators, but not every non-circulsr
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X0 ::= X1 X2 ... Xa.

evaluste inherited sttridute-instaaces of Xi for this pass
visit node Xi

evaluate inherited sttribute-instances of X2 for this pass
visit aocde X2

evaluate inherited attridbute-iastances of Xa for this pass
visit node Xa

evaluate synthesized sttiribute-instances of XO for this pass
return froa visiting X0

Figure 3-8: The paradigm for a left-to-right pass evalustor.

attribute grammar can be evaluated in alternating passes. The SEMANTICIST uses an alternating-pass
evaluator.

Attribute grammars are attractive specification tools. Two principal reasons for this are their locslity of
reference and their non-procedural nature. We say that an attribute grammar has locality of reference in
that the values it defines (i.e. the attribute-instances) are specified exclusively in terms of other attribute
instances local to s production. An attribute grammar does not contain any global variables or implicit
state information that can affect the translation. Each local piece of an attribute grammar, i.e. each
production, commuaicates with the rest of the attribute grammar oanly through strictly defined interfaces:
the attributes of the symbols occurring in this production. .

Although there are many similarities between writing aa attribute grammar and writing s program in a
high-level language, these two tasks are fundamentally different. An attribute grammar is a process
independent specification of what is to be computed. The relationship betweea an attribute grammar
and an attribute evaluator for that grammar is very similar to the relationship between a context-free
grammar and » parser for that grammar.

A context-{ree grammar is & specification of the set of strings in some langusge. Although we may be
able to generate a parser for this language from the grammar, creating the grammar is different from and
easier than writing the parser. The widespread adoption of automatic parser-generating-systems based on
context-free grammars is testimony to this. The context-free grammar is a declarative specification of the
language; the parser can also serve as a specification of the language, but it is a procedural specification.
In general, a context-free grammar can be used as the basis of several different parsers: an LL parser, an
LR parser, a recursive descent parser, a precedence parser, etc. The details of operation of these parsers
will be different (e.g. a production will be recognized at different times by a recursive descent parser than
it will by an LR parsar) but the parses that are produced will be the same.

In just the same way an attribute grammar is a declarative specification of a translation rather than a
procedures for computing the transiation. Different translators can be produced from an attribute
grammar based on different attribute evaluation strategies, e.g. a translator based on a left-to-right pass
evaluator versus an alternating pass evaluator.

The declarative nature of an attribute grammar is manifested in several ways:
1. attribute-instances are not varisbles, they are names for vaiues,

2. semantic functions are pure functions, they do not use global variables and they have no side-
efTects,

3. the order in which the semantic functions of a production will be evaluated is not determined
by the textusl order in which they occur in the attribute grammar; they can be evaluated in
any order that is consistent with the attribute dependencies of the grammar.

When writing a2 sttribute grammar one does not refer to the current value of an attribute-instance; it has
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oaly one value and at any time during attribute evaluation it will either be undefined or it will be defined
with this value. In particular, one is not concerned about whether aa attribute-instance has been
“correctly updated” st the time one wants to use it; one simply uses it. The attribute evaluator-generator
is then responsible {or ordering the semantic functions so that no instance of this attribute is used before it

is defined.

The lack of side-effects in semantic functions mesns that all the resuits of a semantic function must be
returned as explicit results; that is, all the effects of a semaantic function must appear as a compogent of
the value(s) that are returned by that function. The iack of global variables means that all srguments to
a semaantic function must be explicit sarguments.

The effect of this is to put & heavy emphasis on values; the values that are assigned to attribute-instances
and that are used and produced by semantic functions. Besides the usual data types of integer, character,
string, ete., the attribute grammar uses more complex values such as: [variant| records, sets, sequences,
functions, sets of sets, sequences of sets, functions from sets to sequences, ete. In this respect attribute
grammars are similar to the applicative programming |anguages, such as: pure LISP; FP (3], ML [22]! ;
VAL (1, 2| and SISAL [21]%3.

Although sttribute-instances are aot variables, attribute grammars can be designed so that sets of
sttributes are connected by semantic functions in such s pattern that together they simulate the effect of
s global varisble. For example, consider the following attribute grammar fragment that assigrs
consecutive ‘'sddresses” to a list of elements whose individual lengths ¢an vary, snd that computes the
total amount of storage needed by the entire list.

1i= Xlise

Xlist . IN =0
GOAL .RESULT = X1is%.OUT

X11st0 ::= Xlistl *.* Xlist2
Xl1ist1.IN = X1ist0.IN

X1ist2.IN = Xlisti.OUT

X118t0.0UT = X1ist2.0UT
Xlist ::= X

X.ADDRESS = X1ist.IN

X11ist.0UT = X1ist.IN + X1ist.LEN
The pair of attributes, X1ist IN and X11is%.0UT, denote the value that would be in the global variable
when the attribute evaluator enters the sub-tree and lesves the sub-tree, respectively. Thus the various
instances of these attributes in the semantic tree reflect the values that the global variable would take on
during the course of attribute evaluation.

3. The Pascal-86 Attribute Grammar

Although there are some similarities between writing an attribute grammar and writing a program in a
high-level language, these two tasks are fundamentally different. An attribute grammar is & process-
independent apecification of what s to be computed, rather than an algorithm for doing this
computation. In this section we describe portions of the Pascal-86 attribute grammar and use these to
illustrate our techniques for designing the attribute grammar and implementing the semantic functions;
our techniques for implementing the attribute evaluator are described in section 4.2. The four sub-
sections describe:

- the notation we use for describing attribute grammars, especially semantic functions,

- the use of applicative data structures to represent the values of attribute-instances,

Nibese are members of the sub-clase of applicative languages known as functional languages

""thm are members of the sub-class of spplicative languages known as data-flow languages

4N more detailed discussion of the relstionship between attribute grammars aad applicative languages, especiaily data-flow
languages, caa be fouad ia [0}
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- grouping together selected stiributes and semaatic functions into abstract data types,

. adjusting the underlying context-free phrase structure and sttribute-dependencies to makse the
attribute grammaz evaluable in two alternating passes.
Several productions and their semaatic functions are shown in figures 3-1 and 3-2. Figure 3-1 shows the
two productions used to expsnd & VarList non-terminal in the Pascal-88 attribute grammar
figere 3-2 shows the two productions used to expand a Statlist non-terminal.

VarlList = COLON TypeSpec.
Ssenantics
TypeSpec.NAME = nullNsme,
Typosgoc PACKED T o5pec.NEED ORD = false,
VarList . TYPE = gcc .0BJ,
varLise.TOO_ BIG (v dtiof (TypeSpec.0BJ) = OVLwidtd)

n

sss Implicit copy-rnlo: VarList.DEFS = Tygos lc DEFS
*ss Implicit copy-rule:. VarList ERRS ERRS 0

*ss Japlicit copy-rule: VarList. XREF'D = T oc XREF'D

sss Iaplicit copy-rule: TypeSpec.SYME = Var 132

sss Iaplicit copy-rule: TypeSpec.ERRS I= VtrLlnt ERRS I

*ss Implicit eopy-rulo: TypeSpec . XREF™T = VarList.XREF 1

ess Iaplicit copy-rule: TypeSpec.CIRCULAR LIST = VarLiBt.CIRCULAR LIST

sss Implicit copy-rule: TypeSpec.PUB EXT LOC FLAG = VarlList.PUB EXT_LOC_FLAG
sss Implicit copy-rule:. TypeSpec.SCUPE NAME = VarList.SCOPE NAME =~ ~
sex Igplicit copy-rule: TypoSpcc.LEVEL = VarlList. LEVEL

sas Iaplicit copy-rule: TypeSpec .PUBLIC SUBSYSTEM = VarList.PUBLIC SUBSYSTEIM
*s3 Implicit copy-rule: TypeSpec.IS_DOMESTIC = V:rLilt.Is_DOHESTIC'

VarList0 = ID VarlListi. v
zgggancics
1t ItAcc.ssiblo(VarListo LEVEL,
D.INDEX,

VarLlltO PUBLIC SUBSYSTEM,
VarList0.1S DOMESTIC,
VarList0.PUB_IND)
then genObjVar (ID.INDEX,
VarList! . .TYPE,
VarList0.LEVEL,
varList0.PUBLIC SUBSYSTEM,
VarList0.IS_DOMESTIC)
else 1ullOdy
endift,
VarLiato.DEFS =
if OBJ = nullObj then VarListi .DEFS
aie, else cons(0BJ, VarListi.DEFS)
ean

ERR
17 lootup(VtrLilto SYMS, ID.INDEX) <> 0BJ then =multDefError
elsit v;rListt T0O_BIG then varTocoBigError
elsge 1o or
endif,

VarLigstO0.ERRS O
coasErr (ID.COC,ERR NUM, ID.INDEX,VarListl.ERRS Q),

VarList0.XREF 0 - -
pntXREFdof(UBJ ID.LOC, VarList0.SCOPE NAME, VarListO0.PUB_EXT_LOC_FLAG,

variisti. XREF Q) -

s3s Iaplicit copy-rule: VarListO.DEFS
sss Implicit copy-rule: VarList0.TYPE
ez Implicit copy-rnlo: VarListl . SYMS
=33 Implicit copy-rule: VarListi.ERRS I = VarListQ.ERRS I

sss Tmplicit copy-rule: VarListl.XREF— VarList0.XREF_I

sss Implicit copy-rnlo: VarListl .CIRCULAR LIST = VarLis®0.CIRCULAR LIST

sxs Implicit copy-rule: VarListi .PUB EXT LOC FLAG = VarListO.PUB EXT_LOC_FLAG
sss Implicie copy-rnlc: VarListl SCOPE_NEME = VarListo. SCOPE_NAME

*ss Taplicit copy-rule: VarListi.LEVEL™= VarList0.LEVEL

xxs Igplicit copy-rule: varListi.PUBLIC SUBSYSTEM = VarlList0.PUBLIC SUBSYSTEM
*ss Iaplicit copy-rule: Varlisti.IS_DOMESTIC = VarList0.IS_DOMESTIC™

Figure 3-1: Attribute grammar fragment for VarList
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statlist =
emantics
.gtltL18t DEFS, StatlList.LBL DEFS, StatlList .RANGE LBLS = emptySet,
Statlist. GET87, StatList .MASKB7 = f faise,
StatList.ERRS O = StatList.ERRS I,
Statlist . XREF Q = StltLilt.XREF:I.
Statlist.ILR O = Statlist.ILR I

StatlList0 = gtat Statlistt.
ssemantics
stat.IS LABELLED = false,
StatlLisT0.LBL DEFS = union gltlb LBL DEFS, StatlListi . LBL Dl-ZFsg
statlistQ. TMP DEFS = union(stat.TMP DEFB, StatListl.TMP DEFS
StatL1st0.RANGE LBLS = union(stat.LBL SEf, StatListi.RANGE LBLS),
Statl18t0.GETB7 = stat.GET87 or StatCisti.GET87 -
StatL1st0.MASXS7 = stat. msxa'r or StatlListi.MASKS?,

StatList0.ERRS 0 = stat.ERRS 0

stat.ERRS I = suu.uu-mns I,

suu.ur,om 0 = stat.XREF O

Stat.XREF I = suu.um‘xm: I,

StatlListOTILR 0 = stat.ILR O

stat.ILR_I = StatlistT.fLR O
sse Implicit copy-rnlo: Statlisti .ERRS I = StatlListQ.ERRS |
sss Implicit copy-rule: St.lt.l..ilt.l.)mﬂ-"‘l = StatList0 . XREF I

sss Implicit copy-rnlo: StatlListl.JLR T = StatListQ0.ILR I

ssx Jmplicit copy-rule: StatList1.LEVEL = StatlList0.LEVEL

sss Implicit copy-rule: StatListi.SCOPE NAME = StatList0.SCOPE_NAME
ss» [mplicit copy-rule: StatListl.INPUT = StatList0.INPUT

ss» Implicit copy-rule: StatlListl .QUTPUT = StatlList0.QUTPUT

ss» Implicit copy-rule: StatlListl.PUB DCLS = StatlList0.PUB DCLS
s»s Implicit copy-rule: StatlListi.DCLE = StatlList0.DCLS ~

sss [mplicit copy-rule: StatListl.LBLS = StatlList0.LBLS

ssx [mplicit copy-rule: stat.SYMS = StatList0.SYMS

sss [mplicit copy-rule: stat . LEVEL = StatlistQ.LEVEL

ssv Implicit copy-rule: stat.SCOPE NAME = StatListo. SCOPE_NAME
sxs Implicit copy-rule: stat.INPUT = StatlListQ.INPUT

«sx Implicit copy-rnlo: stat.QUTPUT = StatlList0.QUTPUT

ss» [mplicit copy-rule: stat.PUB DCLS = StatList0.PUB DCLS

sss Implicit copy-rule: stat.DCLS = StatList0.DCLS ~

ssx Implicit copy-rule:. stat.LBLS = StatlList0.LBLS

Figure 3-2; Attribute grammar fragment for StmtList

3.1. Some Notation for Attribute Grammars

In order to make sense of the attribute grammar fragments of figures 3-1 and 3-2 one must be aware of
several conventions and extensions of the aotation that we used: intrinsic attributes, the form of semantic
functions, *emporary attributes, and implicit copy-rules. These do not affect the power of attribute
grammars to describe translations; they only make it easier to write and read an attribute grammar.

Intrinsic attributes are attributes that are already defined before attribute evaluation starts, much as the
semantic tree is defined before evaluation starts. Intrinsic attributes are set by the parser, just as the
semantic tree is built by the parser. In the Pascal-88 attribute grammar they are used to denote either
the name-table-index of a terminal symbol or the location (line number) in the source text of an
occurrence of a terminal symbol. An iotrinsic attribute is like any other attribute except that it is
evaiyated before any pass; no semantic function can define an intrinsic atteribute.

Form of semantic functions. For the purpose of formally defining sattribute grammars a semantic function
is just that, a function. [t has s same, takes arguments, and returns results. However, for the purposes of
actually engineering a translation we found this to be restrictive. One does not want to write an out-of-
line function call in order to add 1 to the value of an argument. The early versions of the Pascal-86
attribute grammar had many semsatic functions that were each used in just one or two places. These
functions tended to have many argumeants and be very simple. A common situation was for a functioa to
compute as its result one of several different simple expressions, with the choice of which expression to use
being based on the [e.g. boolesn] value of one argument. Frequently several different attribute

Our use of intrinsie attributes, including the term itself, was proposed by Schuls {28).
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occurrences would be defined this way using exactly the same coanditions, so that the most aatural and
succinet expression of these functions would be as a single function that returned muitiple values.

The management of so many small, out-of-line functions soon became unwieldy. In order to read and
understaad the sttribute grammar one had to constantly flip back and forth between the source of th,
altribute grammar and a desription of the out-of-line functions. Additions to, or modifications of, the
attribute grammar involved either searching through the definitions of existing out-of-line functions, or
creating & new function and writing it4 definition somewhere other than in the source of the attribute
grammar. Furthermore, we feared that the performance penalties of using so many out-of-line functions
could be serious, although we did not experimentally test this.

To avoid these problems we allowed some simple semantie functions to be specified in-line, and these were
transisted into in-line code in the attribute evaluator. The syntax of semantic functions was expanded to
include multi-valued expressions that could include both arithmetic and conditional operators. Ap
example is:
X, Y, 2=
1f A+*1 > B
then A+i, O, NullOd

else t, A, L.ookUp%SYHS,NME)
endi?

Because we only adopted an expanded expression structure, this did not change the applicative nature of
the specification. The readability of the attribute grammar improved remarkably.

Temporary attributes. Normally attributes are used to traasmit information around the semaatic tree.
But sometimes it is useful to compute s value with a semantic function, but only use this value as an
argument to other semantic functions associated with the same production. For example, to be able to
name s value that is private to this production in order to avoid repeating s calculation, or to hoid a
value that is computable in one pass but not used until s later pass. To accomodate this, simple
identifiers (i.e. FOO rather than X.Y) can occur in the left-hand-side of semantic functions, and can be
referenced as arguments to other semantic functions. Like attributes, these can have but one vaiue
specified and can be written to/read from the intermediate files. Unlike attributes, they are only
accessible to the semantic functions of a single production. Examples are ERRNUM and OBJ in the
second production of figure 3-1.

Implicit copy-rules. Normally, the semantic functions of a production must define all synthesized
attributes of the left-part symbol and all inherited attributes of any right-part symbols; if not then this is
an error. However, in many cases where such definitions are missing it makes sense to sutomatically
supply implicit copy-rules.

Our formula for inserting these implicit copy-rules has two flavors: one for. defining s'ynthesized attribute-
oceurrences of s left-part non-termiasl, and one for defining inherited attributes of nght.:put sy‘mbols. If
R.A is an inherited attribute of right-part symbol R which is not defined Py any semantic f'unctxon of this
production, and if there is sn attribute L.A of the left-part symbol L with the same attribute name, A,

then sa implicit copy-rule of the form R.A = L.A will be inserted as s semantic functioa of this

production. [f L.B is s synthesized attribute of the left-part symbol L which is oot defined by 'anz
semantic function, sand if there is exactly one right-part symbol, B, such that R has ;‘synthesnze
attribute named B, and if there is only one occurrence of R in the right-part of the production, then an

e ————————

implicit copy-rule of the form L.B = R.B will be inserted.’

The Pascal-88 attribute grammar has 2030 semaantic functions. 1147 of these are copy-rules and 910 of

. The major
SThese implicit copy- ia effect to the TRANSFER construct of the GAG system |16]
diﬂ-c?;:.c.v u:p‘l;c‘x: t%oopmsﬁRu::ﬁr:’dmmw“h explicitly supplied by the sttribute grammar sutLor. whereas our

insertion of implicit copy-rules is sntomatie.
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the copy-rules are implicit copy-rules.

3.2. Representing sttribute values with applicative data structures ‘ -
\.13‘111 resesrchers have recognized the necessity of not cresting and copying around many instances of
::uon-;wmic values such as sets, sequences, functions, relstions, ete. This was addressed early in the

development of the SEMANTICIST.

The SEMANTICIST builds these complex values in & separate dats space: the m.ribur.einsu‘nce ﬁ{ld: in
semantic tree nodes hold pointers to these values. Copy-rules are implemented by copying p(flnters
instesd of by copying the list or srray that represents s set. This solution has been proposed in the
litersture by so many resesrchers that it has become a sort of folklore.

Copying pointers instead of complete data structures requires that one be careful when updating t!me
dats struetures. For example, when taking the union of two sets, the result must be represented in &
msoner that preserves the two arguments; i.e. existing pointers to the argument sets must still be vslid
after the UNION operation is completed. Otherwise s UNION operation could inadvertantly chaage the
value of an unrelated attribute-instance that happened to point to the same data structure.

Figure 3-3 illustrates the problem that could arise; If UNIONC A, B) is built from A and B by modifying

A then any existing references to A will now be wrong.

Flgure 3-3:1 Problems with updating a shared data structure.

One way to observe these restrictions is to eopy the arguments before modifying them. All the exist‘ing
pointers are preserved because the original data structure isn't changed. This strategy can be expensive,
not only in terms of the space required to represent so many values, but also in terms of the time needed
to copy large data structures,

The SEMANTICIST uses an alternative strategy: implementing large data structures in such s way that
they share identical sub-structures. As an example, consider, again, the problem of forming the UNION of
two sets. To do this the SEMANTICIST allocates another cell (sets are implemented as linked lists) that
points to both sets and sets s special flag in this cell to indicate that both components are sets. This is
illustrated in figure 3-4.

With this strategy, it requires only marginally more memory to create a new complex value (e.g. set of
definitions in a declaration list, symbol table for s new scope) if it differs just slightly from other complex
values (e.g. set of definitions in a sublist, symbol table for an outer scope). As an example, consider the

semantic function VarList0.DEFS = UnionSetOf(VarList0.0BJ,VarListi DEFS) in the attribute
grammar (ragment of figure 3-1. VarList.DEFS is a synthesized sttribute that denotes the set of all
variables that are being declared in the sub-tree. As figure 3-5 shows, because the internal representation
of VarListi.DEFS is reused to represent VarListO.DEFS, the internal cell-space needed to represent all
of these intermediate set values is no more than the cell-space needed to represent the final, resulting set.

12
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Figure 3-4:  Ap implementation of UNION that preserves shared data structures.
Semantic Tree List Spacse

+
*B* IN.UE | GBJ | ... |DEFS o=

Figure 3-51 Re-using internal representations in the values of several attribute-instances.

Another example of reusing large, complex values is the table used to resolve symbolic references to
variables, types, procedures, ete. This is discussed in sub-section 3.3.

The drawback to viewing complex dats structures as immutable values is that it's hard to determine when
they are longer needed so that their space can be reused. These values can be copied from one attribute-
instance to another and written to the intermediate file. [t is difficult to tell that a complex value will
never be referenced again, and thus that its space can be reclaimed. Garbage collection in the
SEMANTICIST is s serious problem.

Raiha [24] also describes allocating large attribute values in a separate data space and copying around
pointers to these values. He suggests doing garbage collection by having the attribute evaluator
determine equivalence classes of attribute-instances that are copies of the same value and finding the last
reference to this value; i.e. the last reference to an attribute-instance in the equivalence class. The data
structure that represents this set or list or function, etc., can be ‘‘released” and its memory reused alter
this last reference. B

The SEMANTICIST does not use this strategy. In our scheme a complex data value can be used as a
component of several other large data structures. Determining which is the last reference to such a value
is much more complicated than just examining the attribute grammar and looking for copy-rules. Each
semantic function would have to be examined to see whether any of its arguments, or components thereof,
could be incorporated into another data structure that is returned as the result of the semaatic funetion.
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The solution used in the SEMANTICIST is to manually identify those attribute-occurrences that always
hold *‘desd” values snd to garbage-collect those values as & side-effect of evaluating s dummy semaantic
function. This is s very unsatisfying solution for several reasons:
1. this is & side-effect that may only work for s particular evaluation order and hence may be
completaly invalidated if the evaluation order changes,

2. it is very prome to error; incorrectly garbage-collecting s list is the most frequent error in the
automatically-generated evaluator, and

3. this strategy doesn't reclaim sll dead space.

One possible enhancement to the SEMANTICIST would be to implement & garbage collection algorithm
bssed on dynamic reference counts. However, such sa sigorithm should be implemented as part of » more

general data abstraction mechanism, as well as part of the attribute evaluator.

Despite the problems with garbage collection, we feel that the ability to re-use large data structures as a
component of the values of manay different attribute-instances is s key reason why the SEMANTICIST
can be used in & production compiler on & small machine.

3.3. Data abstraction in semantic functions

The techniques of the previous sub-section can be viewed as a simple bit of data abatraction. In the
SEMANTICIST, attributes and collections of semaatic functions are grouped together to form simple
abatract data types. There are functions to create new values of a type, to interrogate s value, to
combine values, ete. and these functions take care of all the bookkeeping behind the internal
representations. The external represeatations of such values are usually one word wide. The exported
operations of such an abstract data type are the semantic functions that manipulate these values.

Collecting sets of semantic functions into abstract data types imposes (or perhaps,just makes appareat) a
lot of structure in the resulting compiler. The out-of-line semantic functions are not an amorphous
collection of functions; they are a small set of familiar modules: a symbol table module, 3 module for
generating intermediate code, 3 module for keeping track of literal constants, a module for generating
cross-reference information, ete. When this structure on the semantic functions is recognized then the
central role of the attribute grammar can be appreciated: the attribute grammar describes how the
various pieces of the translator communicate and coordinate with one another.

In the minds of many, the techniques of dats sbstraction are linked to those of object-oriented
programming. [n the context of sa sttribute grammar the distinction must be drawn between these two.
Attribute-instances are not objects; they are values. There can be no global variables associated with the
type; they must be associated with some instance of the type, i.e. with some value. The exported
operations must be “pure” lunctions that do not modify their arguments. [n the SEMANTICIST this does
not mean that the implementation of semantic functions does not use hidden state variables and side-
efTects; they are used widely, though carefully. Rather, it means that such uses should not be detectable
through the externally visible semantic functions of the abstract data type. The values returned by these
semantic functions should depead only on the arguments supplied to them. On the other hand, the
particular representation of such resuits may depend quite heavily on various hidden pieces of state
information.

These techniques will be illustrated below by three different abstract data types used in the
SEMANTICIST.

Literal constants. The SEMANTICIST contains s module that keeps track of addresses of memory-
resident constaats. These addresses are assigned “on demsand”. When asked for the address of 2 literal 3
search is performed of a list of literals that have already been assigned addresses. If the it
‘ ' : A eral has alread
:,;j:u“:.::n:::;l;djres: then this address is returned; otherwise the next available address is assigned L;
; and its address are put on the list, and the newl '
' -488] i
y-assigned address vayp g returned,
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This module contains two private variables, the list of previously assigned values sad the sext availasle
Hisimvig addrves. la srdsr for tha Affégatlflitaral funstiag ta he o true semantis f\lnﬁf}ﬁﬂ \,h“' A1)

values would have to be passed as arguments, and updated values would have to be returnmed. These
values would have to be passed around the semaatic tree as values of attribute-instances. The resylt
would be similar to the pattern of sttributes and semantie functions used to simulate & variable that was
deseribed i sectioa 2.

The SEMANTICIST uses the function OffsetOfLitersl even though it is not a pure function. Tweo

distinet applications of this fumction with the same srgumeant will alwsys yield the ssme value, and
although different evaluation orders will give slightly different results, the difference is aot important.
Unfortunately the attribute grammar formalism does not make allowances for “‘a difference that makes no
difference.’” This topic deserves further consideration by researchers in the field.

Intermediste code generation. Lists of intermediate language instructions, lists of semantic errors, and lists
of cross-reference transactions are the principal outputs of the SEMANTICIST. These lists, especially the
list of intermediate code, can be quite large; their size is of the same order 23 the size of the semantic tree.
To keep them in memory would require exorbitant amounta of memory ard seriously restrict the capacity
of the compiler. Moreover the contents of these lists are never referenced by the SEMANTICIST; only
the single list that represents the intermediate code for the entire program is ever examined, and that
happens after attribute evaluation, during the code generstion phase of the compiler.

The SEMANTICIST implements the lists of intermediate code as an abstract data type whose internal
representations reside in & file. In the attribute grammar we are careful to never combine two lists of
intermediate code. Lists are built by adding one or two intermediate language tokens to the froat of an
existing list. The implementations of these semantic functions just write out these tokens to the
intermediate file whenever they are added to the front s list. Since lists are never combined and since the
process generates just one list there must be only one list ever built (or at least all but one list is thrown
away). This means that the list to which a token is added must be the list of all tokens that will appear
“after’” it in the final list of intermediate code.

To see how this is done, consider two consecutive statements, stat-1 ; stat-], in a list of statements.

A semantic tree fragment for this is shown below in figure 3-8; the attribute grammar (ragment that
describes it was in figure 3-2.

RERS

| ILR 0 | ILR I |

poapesssasasagaaa +

+
Stat-1 | ILR O | ILR_I |
+

stat-] | ILR_O i | ILR O | ILR_I |

i v-‘--'k +'----U*——-'+
I

Figure 3-8: Generating intermediate code for s list of statements

Stmtlist

The intermediate code for Stmt-] should be at the head of s list, to which the intermediate language
tokens for Stat-1 are added. To do this each StmtList node must have a synthesized attribute-
instance, ILR_O, that propagates this list-value from the Stat-j node, through its parent StmtlList
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node, and on to the Stat-1 node. Similarly, each Stat node must have an inherited attribute-instance,
ILR I, that accepts this list-value from its sibling Statlist node and propagates it dowan to the sub-tree
t.hu.-it. roots. Each Stat node must also have a synthesized attribute-instance, ILR_O, that transmits an
updated list-value up the tree through its parent StatlList node, and then to the Stat node to its left.
This list-value will bave been updated by adding the intermediate code for Stat-1 to the front of the list.

This is exactly like the pattern of sttributes and semantic functions needed to simulate a varisble during
sttribute evaluation; the file of intermediate code can be viewed as sort of a variable.

This construction constrains the attribute evalustor to evaluate the semantic functions that generate
intermediate code in the proper order, so that tokens are added to the list (i.e. writtea to the file) in the
proper sequence. Notice that we have paid a hesvy price for this efficient implementation of the lists of
intermediate code. The semantie functions so constrain the evaluation order that the LR_Iaad LR_O
attributes must be evalusted during a right-to-left pass. If we were to decide to generate intermediate-
laaguage during s leM-to-right pass then portions of the attribute grammar would have to be revised.

The symbol table. Unlike most compilers, the SEMANTICIST does not have a ceatral, mosolithic symbol
table that contains all information about program-objects, such as variables, procedures, types, symbolic
constants, etc. [nstead, this information is distributed among several attributes and the semaatic tree
itself. In more traditionally structured compilers, the symbol table serves to transfer information about
program-objects between the places in the program where they are declared and the places where they are
used. However, as usually designed, the symbol table is 3 large global variable, and putting informatioan
into it is a side-effect that is awkward to describe in the value-oriented formalism of an attribute
grammar.

Other researchers have addressed this problem by creating pairs of attributes, X.SYMTBL_IN and

X.SYMTBL_QUT, that together simulate the variable nature of the symbol table [20]. This sort of
construction, whereby several pairs of attributes are used during attribute evaluation to simulate the
effect of a variable, was described in section 2. One virtue of this approach is that the usual, efTicient
algorithms for manipulating symbol tables can be used. However, unless implemented very carefully, it
will also create many different versions of a very large value: 8 symbol table. Creating so many large
values will strain the capacity of even the largest virtual memory system, and those who have used this
approach have also integrated special garbage-collection procedures into their attribute evaluation
paradigms [24, 20|.

The SEMANTICIST takes a different approach. Each program-object gives rise to a dictionary-object
that will be the value, or part of the value, of various attribute-instances. Each dictionary-object contains
part of the information that is accumulated about program-objects. There is only one dictionary-object
for a given program-object.

Each dictionary-object contains the name of its program-object and what kind it is (e.g. variable vs.
symbolic constant), as well as the type of s variable or procedure object, or the value of s symbolic
constant. But the dietionary-object does not contain other information, such as whers its program-object
is referenced, or in what scopes its program-object is visible. Such information is represented in other

attributes: XREF_I and XREF_O attributes for cross-reference information, SYMS attributes for scope

information.

Each kind of user-defined program-object is associated with a particular non-terminal symbol that
describes its declaration: ProcList symbols for procedure-objects, VarL1st symbols for variable-objects,
TypeSpec symbols for type-objects, and Const symbols for symbolic constant-objects. Conceptually, the

fields of a dictionary-object are like the attributes of a symbol. For instaace, the dictionary-object for a
variable contains the following [elds:
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NAME an index into the compiler's table of source-text-identifiers
TYPE s reference to the dictionary-object for the type of this variable

OFFSET an integer value giving the offset, in the appropriate stack-frame, of the memory
allocated to this variable

LEVEL the nesting level of this varisble.

Each of these values is an attribute of the VarList symbol (see figure 3-1). These values are computed
as part of attribute evaluation and then copied into the dictionary-object.

These values are grouped together into a dictionary-object in order to make it easy to propogate this
information sround the semsatic tree - from the node associated with the object's declaration to a node
that describes & reference to the object. This propogation takes place through a set of attributes (of Mmany

symbols) whose name is SYMS: ProcBody.SYMB, stat.SYMS, ¢xpr.SYMB, ete. The SYMS attributes
also incorporate all of the scope information.

A SYMS value is & function that maps an identifier to s dictionary-object, and thus to the values of
certain attributes of Lhe semantic tree node associsted with s program-object's declaration. The SYMS
values are the explicit data-paths used in the attribute grammar to transfer information from the point of
declaration to the point of use. Recall that such explicit data-paths are necessary because an attribuyte
grammar does not use global variables or other state information.

The SEMANTICIST implements a function as & list with an even aumber of elements. For each pair of
consecutive elements, the second element is the value of the function at the first element. For the SYMS-
functions the further assumption is made that if the list has more than one pair with the same first
element then the value of the function is specified by the pair that is closest to the head of the list. This
assumption makes it easy to update s SYMS-function; just insert another pair on the froat of the list.
Furthermore, as discussed in section 3.2, the SEMANTICIST impiements lists so that inserting elements
at the front of the list does not disturb the original list. Consequently any existing pointers to that list,
and hence any existing SYMS-functions, remain valid for later or concurreat use. Figure 3-7 illustrates
this. The function that represents a new scope, NEWSYMS, is formed as follows:

Let OLDSYMS be the function that represents the parent scog .
Let DEFS be the sot of dictionar{ objects for the nev ¢cal variabdbles,
procedures, types c.

For each 0BJ in DEFS
Let NAME be the name of 0BJ.
Insert a pair (NAME,OBJ) onto the head of OLDSY™S.

The result is NEWSYMS.

Thus, the SEMANTICIST divides the symbol table into two pieces: dictionary-objects and SYMS-
functions. Dictionary-objects are created during the [irst pass, and are relatively long-lived. But the
SYMS-functions exist only during the second pass, while the SEMANTICIST is ‘“visiting”” the sub-tree
that corresponds to the inclusive extent of the associated scope.

3.4. Making the attribute grammar evaluable in 2 alternating passes

Heretofore our discussion of the Pascal-88 attribute grammar has focused on how it describes the
transiation: questions of efficiency and feasibility have been pretty much hidden behind the ‘“‘curtains™ of
data abstraction. However, at least one aspect of the efficiency and feasibility of the attribute evaluator
had to be addressed directly in the design of the attribute grammar: it had to be evaluable in alternating
passes,

The evaluability of an attribute grammar is determioed by both the attribute dependencies of the
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Figure 3-7: Updating a SYMS-function to represent a nested scope having local definitions of A and B

semantic functions and by the underlying context-free phrase structure. Modifying the latter turned out
to be a very effective technique for coercing the attribute grammar into 2-pass evaluability.

The method should be quite lamiliar to resders who have designed context-free, phrase structure
grammars that had to be LL{1) or LALR. There are many equally valid attribute grammars for a
programming language, just as (and often beecause) there are many valid context-free grammars for the
phrase structure of the language. In order to get the attribute grammar to be evaluable in just two
alternating passes we sometimes had to use awkward or artificial constructions.

The best way to see this is with an example. Consider oace again the productions of figure 3-1. They
describe a variable declaration list in Pascal. An alternative way to describe the phrase-structure of
variable definitions would be:

Varlist := VarlIdList COLON TypeSpec.
VarldList = 1ID.
Varldlist0 ::=

ID COMMA VarlIdListl.

These productions seem more straight-forward and they build a shallower semantic tree. However,
dictionary-objects for both types and variables need to be created during the first pass. A type-objectisa
component of s variable-object and must be available before the variable-object can be created. The

type-object for a varisble declaration is computed during pass 1 as the synthesized attribute
TypeSpec.TYPE. If the above phrase-structure were used then during the first pass (a left-to-right pass)
the TypeSpec.TYPE attribute would not be computed before visiting the sub-tree corresponding to
VarldList. Therefore, the variable-objects could not be defined until after the first pass.

The productions used in the Pascal-86 attribute grammar (shown in figure 3-1) avoid this problem by
making the TypeSpec sub-tree a descendant of the VarList nodes. These nodes correspond to variables
aad variable-objects in the dictionary are created as the value of their attributes. The type-object is
propagated back to these nodes as the value of the syathesized attribute VarList.TYPE. This attribute

is evaluated during pass I, and hence the semantic functions that create dictionary-objects can also be
evaluated during pass 1.
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The Pascal-86 attribute grammar contains many places like this, where careful sttention to the

i . underiying
phrase-structure of the attribute grammar was aecessary to achieve two pass evaluability.

4. The Attribute Evaluator of the SEMANTICIST

4.1. The Attribute Evaluation Strategy .

The SEMANTICIST uses the strategy of ‘“‘evaluation in alternating passes” proposed by Jazayeri [14).
The Pascal-86 sttribute grammar is evaluable in two alternating passes: & left-to-right pass followed by a
right-to-left pass. For alternating pass evaluation, Schulz [26] describes a simple strategy that keeps most
of the semantic tree on linearly-sccessed, secondary storage (e.g. disk or tape). The SEMANTICIST uses
alternating pass evaluation in order to take advantage of this and not have to keep the semantic tree ia
main memory. )

Schulz’s evaluation strategy stores a linearized version of the semantic tree in an intermediate file. Whea
s semantic tree node, N, is encountered during the course of attribute evajuation it is read from the
intermediate file into & stack in main memory. N is kept on the stack while the sub-tree descended {rom
N is visited (and those nodes get put on the stack “below’ N) and attribute-instances in that subtree are
assigned values. The evaluation of the sub-tree may use the values of some attribute-instances of N and
may define other attribute-instances. When the evaluation pass over N's subtree has finished, node N is
written to the intermediate file. Because of the evaluation order, the nodes of N's subtree will have
already been written to the file. -

Figure 41 describes the SEMANTICIST's paradigm for semantic tree traversal and attribute evaluation ia
a left-to-right pass. Depicted is the process of ‘‘visiting'' a node X0 that has childrea X1, X2, ..., Xn. For
a right-to-left pass the paradigm would be the same except that the right-part nodes would be visited in
the order Xn,....X2,X1.

X0 ::= X1 X2 ... Xn.

resd attridute-instances of X1 frow input intermediate file
evaluate inherited attridute-instances of X! for this pass
visit node X1

wTite atiribute-instances of X1 to output intermediate file

read attridute-instances of X2 from input intermediate file
evaluate inherited attridbute-instances of X2 for this pass
visit node X2

write attribute-instances of X2 to output intermediate file

read attribute-instances of Xan froa input intermediate file
evaluate inherited attridute-instances of Xn for this pass
vigit node Xn

vrite attribute~-instances of Xn to ocutput intermediate file

evaluate synthesized attridbute-iastances of X0 for this pass
retura froa visitiag X0

Figure 4-1: Alternating-pass evaluation paradigm with semaantic tree on intermediate files.

Schulz discussed an interpretive approach that used a single intermediate file. The SEMANTICIST
contains compiled, in-line code to read and write semaatic tree nodes and to evaluate semantic functioas.
Two intermediate files are used for each pass: nodes are read from one intermediate file and written to the
other intermediate file.

This modei of attribute evaluation calls for reading nodes from the input intermediate file in prefix order
and writing them to the output intermediate file in postfix order. Thus, for a left-to-right pass, the input
intermediate file contains the nodes in prefix, left-to-right order and the output intermediate file contains
the nodes in postfix, left-to-right order. For s right-to-left pass, the input intermediate file contains the
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sodes in prefix, right-to-left order and the output intermediate file contains the nodes in postfix, right-to-
left order.

As it happens, the reverse of & postfix, left-to-right order is the same as a prefix, right-to-left order; and
the reverse of s postfix, right-to-left order is the same a3 a prefix, lefl-to-right order. This trait is
illustrated in Figure 42,

¥
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Figure 431 Ordering of nodes in intermediate files

Thus, if the output intermediate file of a left-to-right pass is read backwards then its nodes are in the
order expected for the input intermediate file of a right-to-left pass. Similarly, if the output intermediate
file of a right-to-left pass is read backwards then it can be used as the input intermediate file for a left-to-
right pass.

In the SEMANTICIST the output intermediate file of one pass becomes the input intermediate file for the
next pass. Each intermediate file is [irst written during one pass, then read backwards during the next
pass, then discarded. Because the direction of the passes alternates, an output intermediate file can serve
as an input intermediate file for the next pass if it is read backwards. It is crucial to this strategy that
attribute avaluation be done in aiternating passes.

This strategy does not tell how to build the first input intermediate file. There are two approaches that
fit naturally with the strategy. The first approach is for the parser to emit tree nodes in bottom-up order.
This creates an intermediate file that is identical to what would have been created by a left-to-right
attribute evaluator. No attribute evaluation is done during the first pass (the parsing pass) because there
is no prefix encounter of the semantic tree nodes. The first semantic evaluation pass is a right-to-left
pass.

The other approach is for the parser to emit nodes in prefix order, like a recursive descent parser.
Accepting the next node from the parser takes the place of reading the next node from the input
intermediate file. In this case, semantic functions can be evaluated during the same pass as parsing, so
the first semantic pass is a [eft-to-right pass. The Pascal-88 compiler uses this second strategy.

4.2. Implementing Attribute Evaluators

The code that reads and writes semaatic tree nodes, evaluates semaantic functions, and *'visits” other sub-
trees is organized as two sets of mutually recursive procedures called production-procedures. There is a
distinct sets of pps for each pass. There is & one-to-one correspondence between productions and the
productiog-procedures of 2 pass.

Each grammar symbol has its own type definition. This type is a record that contains one field for every
attribute of the symbol. A semantic tree node is implemented as a variable of this type. Each
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production-procedure has one value/result parameter and several local variables that hold various kinds of
semantic tree nodes. The parameter corresponds to the left-part non-terminal of the :.uoem,eod
production; the local variables correspond to the right-part symbols of the production. The body of
eachproduction-procedure:

- reads right-part semaatic tree nodes from the input intermediate file,

- computes values and defines attribute-instances by assigning to the appropriste record-fields,

- ‘visita” the right-part nodes by calling other production-procedures, passing the right-part
node as the argument, and

- writes right-part nodes to the output intermediate file.

The prototypical production-procedure for a left-to-right pass is given in figure 4-3; it is quite similar to
the evaluation paradigm described in figure 4-1. Figure 4-4 shows the pasas 1, left-to-right production-

procedure for the production (digits0 ::= digitsi digit] of figure 2-1. By convention, the name
of the production-procedure in pass i that correspoands to production FOO is FOO _PPi.

This organization is similar to that of s recursive descent compiler. Notice that the stack of semantic tree

nodes is intermixed with the system run-time stack that supports procedure call/returd, parameter
passing, and recursion.

/® production FOO 18 X0 ::= X{ X2 ... Xa. s/

FOO_PP{ : procedure (LHSptr);
d¥clare
LHSptr pointer,
X0 based LHSptr XO_nodeType,

X1 X1 nodeTyps,
X2 X2 nodeTyps,

Xn Xn_nodeType.

call GetNode( X1):

/% evaluate inherited attridute-instances of X! for pass i s/
call PP1( X1):
call PutNode( X1);

call GetNode( X2);

/* evaluate inherited attridute-instances of X2 for pass 1 s/
call PP1( X2);
call PutNode( X2);

call GetNode( Xa);

/% evaluate inherited attribute-instances of Xn for pass i s/
call PP{( Xn);
call PutNode( Xn);

/* evaluate synthesized attridbute-instances of XO for pass i */
retura;
end; /% of procedure FOO_PPL =/

Figure 431 The prototypical production-procedure for a left-to-right pass

Listed below are some figures describing performance characteristics of the three versions of the
SEMANTICIST. The object-code size figures were computed by adding together the size of each module
in the SEMANTICIST, ignoring whether or not the module occured in both passes. The lines-per-minute
figures were detemined by averaging the lines-per-minute observed on s set of 8 test programs of varying
sizes; the figures for individual test programs can be found in the appendix.
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Digitslist PP1 : procedure (LHSpur);

et oracar
r |

dig tsopgasod LHSper digits_ nodeTYype,

digitsl digits nodoTypo,
dig%t digit_HodeType:

call GetNode( digitsi).
/" ovtlnats tnRerited attribute-instances of digitsi for pass { s/

digits! RADIX = digitsO.RADIX:

digitsl POWER = disiuo RADIX * digitsO.POVER;
call PP1( digitsl);
call PutNodel digitsi);

csll GetNode( digit)
/t evaluate inBerited attridute-instances of digit for pass 1 =/

digit.POWER = d1g1ts0.POVER;
call PP1( digit);
call PutNodel digit):

/® eviluate synthesized attridute-instances of digits0 for pass | s/
digits0.VAL = digitsl.VAL + digit.VAL;
return;
end; /* of procedurs DigitsList PP1 s/

Figure 4-41 Pass 1, L-to-R production-procedure for (digits0 ::= digitst digit] of figure 2-1

object-code (bytes) original updated automatic
rotal 58387 887680 70722
production-procedures 34046 41387 38417
% 1o production-procedures 68% 59% 64%

avg. speed (lines-per-ainute) 588 460 339

The notion of a production-procedure shell is very useful for analyzing the performance of the
SEMANTICIST. The shell of a production-procedure is that production-procedure without any of the
code to evaluate semantic functions: just the procedure prologue and epilogue, calls to GetNode and
PutNode, and the recursive calls to production-procedures for the right-part non-terminals of the
production. The shell of a production-procedure is slightly different for a left-to-right pass than it is for a
right-to-left pass (if the production has more than one right-part non-terminal), but the size of these is

exactly the same. However, the pass 2 production-procedures of the SEMANTICIST do not contain any
PutNode calls becayse the last attribute evaluation pass need not write an intermediate file of semantic
tree nodes; consequently, the production-procedure shells for the second pass also do not have PutNode

calls and so are smaller than the the first pass shells.

The total size of all the production—proéedure shells gives the code-size ‘‘overhead’” of a pass. The
running-time of & sheil tells the dynamic (i.e. run-time) overhead of a pass: that is, the amount of time
the pass will take, exclusive of the time needed for any semantic function evaluation. I[nformation about
shells is available only for the automatically-generated production-procedures: the total object-code size of
all the sheils for pass 1 is 5505 bytes, for pass 2 it is 3860 bytes. The average running time of both the
pass 1 and pass 2 shells is 838 lines-per-minute. The appendix gives the individual figures for each
member of the performance test-suite. [Note that the figures on shell performance can be usefully
compared only to the automatically-generated version of the SEMANTICIST.

4.3. Attribute Evaluator Optimizations

The previous sub-section described the basic attribute evaluation paradigm, according to which the
SEMANTICIST was produced {rom its attribute grammar. However, there were several optimizations
that were applied to this paradigm. Some of these were simple, local re-arrangements of the production-
procedures, or minor modifications to the aiternating pass evaluability criterion (see page 164 of (8}).
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Others involved more complicated global analysis of the sttribute grammar. This sub-section will describe
three optimizations. Two of the three sre the most effective of the optimizations that were applied. The
other was 8 complex optimization that we expected to be effective, but that turned out to be 5
disappointment.

Shortenirs intermediste files. One important and obvious optimization is to reduce the amount of data
traasfsrred between the intermediate files and memory by not writing sttribute-instances that will never
be referenced after the current psss. In 3 two pass evaluator this means that we must write to the
intermediste file only those attributes that are defined in pass 1 and referenced in pass 2. The majority of

attributes in our attribute grammar are used only during the same pass in which they are defined: the
attribute grammar has 898 total attributes, only 168 of them are actually transferred between the
intermediate file and memory.

The effect of not writing such dead attribute-instances to the intermediate file turns out to be very similar
to an evalustor optimizstion suggested by Saarinen [25]. He proposes that sttributes be divided into
“significant” attributes and ‘‘temporary’ attributes. An attribute is “significant” if it is referenced in a
later visit than the one in which it was defined; otherwise it is “‘temporary’. ‘“'Significant’ attributes are
kept in the data structure for a node (roughly corresponding to the SEMANTICIST's intermediate files);
“temporary’’ attributes are kept on a stack (analogous to the SEMANTICIST's stack-resident local
variables of production-procedures). Jszayeri and Pozefsky [15| analyze this approach in detail for pass
structured attribute evaluators, especially alternating pass evaluators. Their experience is also that most
attributes are “temporary’” attributes.

Nesting production-procedures. Another optimization we considered was to nest the production-procedures
within one another when possible. By doing this we sought to asvoid explicitly passing & pointer to the
left-part node as an argument to the nested production-procedure; references to left-part attribute.
instances would just be up-level variable references. Furthermore, we hoped to eliminate, in the parent
production-procedure, many copy-rules whose target or source was sn sttribute-instance of aode X, where
X was the node that was not explicitly passed as an argument to the nested procedure. This couid be
done because the attribute-instances of X would be known to to be the source or target of such a copy-
rule and furthermore, they would be addressable from within the nested production-procedure,

Figure 45 shows an example of how this optimization works. The statements that are commented out
are the usual statements; they are replaced by the non-commented statements on the same lines, which
may be a null statemeat.

This turned out not to be an effective optimization for two reasons:
1. it was not appiicable very often, and

2. even when it could be applied, most of its improvements could be realized anyway through the
static subsumption optimization described later.

Production-procedure GLORP _ PPi can be nested within FOO _PPi only if production FOO coatains the
only right-part occurrence of the left-part symboi of production GLORP. Our attribute grammar has few
such occurrences, and no instances of this optimization survived in the manually-coded production-
procedures. LINGUIST-88 does not implement this optimization.

Static subsumption is the third optimization. Its effect is to eliminate copy-rules and to decrease both the
stack space needed to evaluate an attribute grammar and the size of the intermediate semantic tree files.
Static subsumption can be applied to the entire class of “‘tree-walk’" evaluators (18], but we will discuss it
only for alternating pass evaluators.

In order to understand static subsumption it is useful to reconsider how theevaluation paradigm calls for
information to be communicated around the attribute evaluator. Attribute-instances are allocated on the,
stack by making them local variables of recursive procedures, so that right-part attribute-instances are
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»
X_list0 ::= X X_listl.
X.A = X 118t0.A,
X 118t0.B = X'B,
X_listl.C = X.C
X = Y 2.
X.B = £(Y.B),
X.C= E Z.C}).
Y.A = .
*/
X list PP{ : procedure (LHSptr);
“declire
LHSper gotntor
X 11st0 ssed LHSptr X list nodelype,
x X" nodeType,
X_listl X_1ist_todeType;
X_PP{ : procedure (LHSptr):
“declare
LHS tr Eﬁinter,
Y bzscd Sper X nodo;ypo.
(]
Z Z:nodeT;go
call GetNode( Y);
Y.A = b(X 118%0.A); /* Y.A = h(X.A) s/
esll PPL( YT

call PutNode( Y):

call GetNode( 2);
call PP1( 2);
¢all PutNode( 2);

X 118t0.8B = fEY.Bg: /t X.B = fEY.B; s/
X"list1.C = g(Z2.B): /% X.C = g(2.B) =/
retlrn;
end; /® of procedure X PPy s/
call GetNode( X);
/% X.A = X_11St0.A %/

call PPI( X);
call PutNode( X);

call GetNode( X_listl):

call PPL( X listl);
call PutNed¥( X_list1);

/% X_118t1.C = X.C s/

X.B s/

/% %_11st0.B
return;
end; /® of X_list PPi s/

Figure 4-5: An example of nesting one production-procedure within another and of the optimizations
that could then be done.

directly addressable as local variables of the corresponding production-procedures. Left-part attribute-
instances are referenced through a pointer that is passed as an argument to the production-procedure.
This pointer represents the only communication between the various production-procedures.

An alternative to passing a pointer is to copy the attribute-instances of a node into a global variable just
prior to calling the production-procedure and then, after returning from that cail, copying these attribute-
instances back to the local variables. Suppose that FOO is a production whose left-part non-terminal is
symboi S. If every instance of attribute S.A is always copied to a specific global variable, say S_A, before
eatering FOO _PPi, then code in the body of FOO _PPi can obtain the value of the left-part attribute-
instance S.A from the global variable S_A. Similarly, if FOO _PPi defines a [synthesized] attribute-
instance S.B and by assigning the value to global variable S_B, then any production-procedure with an
S-node in its right-part can access global variable S_B to obtain the value of attribute-instance S.B. If
this is done then we say that the attribute is statically allocated.




In most cases, copying several attribute-instances back and forth is more expensive than passing single
pointer and making indirect references through it. However, if the semantic function that defines 3
attribute-instance is 3 copy-rule whose source and target are merely different instances of the same
attribute, and if this sttribute is statically allocated, then no explicit code is required to implemeant the
copy-rule; the proper value is already in the global variable. We say that such a copy-rule is subsumed by
the static allocation of the attribute. Figure 48 shows a simple example of how copy-rules can be
subsumed: the subsumed copy-rules are commeated out.

/®

Production LISTprod is
s ::= X 81,
S1.A = S.A,
X.A = S.A,
§.8 = 81.8B,
Si1.C = fE)S(.C, X.E)
, §.D = g(X.A, S1.C, 81.D)
.
/e
y globsl variadles for static attribdbutes
declare

S A A attridType,
STB BTattridType.

LISTprod PP{ : procedure (LHSptr):
declar¥
LHSper Eglnur,
S based LHSptr S nodeType,
X X_nodeType,
S1 S_nodeType;

call GetNode( X);
XA := S A;
calT PPI( X):
call PutNode( X);
call GetNode( S);

S1.¢ := t( X.E, 5§.C);
call PP1( 8);
call PutNoda( 3);

/% S1.A := S.A &/

/% S.B := §1.B 3/
S.D = g(X.A, S1.C, S1.D);
return;
end; /s of LISTprod_PPi s/

Flgure 4-0: A simple example of static subsumption.

The penalty for eliminating this explicit copying is paid at those points where the affected attributes are
not defined by subsumable copy-rules. [n these cases a new valye will be assigned to the global variable
for propagation to the sub-tree. However, the previous value of the global variable is not “‘dead’; it may
be referenced later in when evaluating attributes at the parent node. Hence the old value must be saved
in a temporary variable in the production-procedure’s stack-frame. After visiting a right-part node (i.e.
upon return (rom the call to the production-procedure) the saved value must be ‘‘restored’ to the global
variable. A further complication is that any newiy-computed, right-part values (i.e. synthesized, right-
part attribute-instances) may be used elsewhere in this production-procedure intermingled with refereances
to the old value of the global variable {i.e. the value of the left-part attribute-instance), and after this oid
value has been restored to the global variable. Figure 4-7 shows the production-procedure of the earlier
example modified as would be required if attributes S.C and S.D were statically allocated.

Static subsumption can be even more widely applied by allocating several difTerent attributes to the same
global variable. The major restriction is that two different attributes of the same symbol can not be
allocated to the same global variable. Many more copy-rules are subsumable by such a strategy and
hence can be eliminated. In the example above, S.A and X.A could be allocated to the same variable,

thereby enabling us to eliminate the copy-rule X.A := S.A. On the other hand, this strategy may
require that global variables be saved and restored more frequently.
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/s
Prognction &ISTprod is

S1.A = S.A,
$hc8its
s1.C = £(8.¢, X.E)
8.0 = g{X.A, 81.C, S1.D)
s/
/®
glodbsl variables for static sttributes
declare

S A A attridType,
§ B B attridType.
STC C attridType,
§0 D-attribType:

LISTprod PPi : procedurs (LHSptr);

declard
LHSptr Eﬂintcr
S based LHSptr S nodeType,
X X'nodnrypc,
s1 S_nodeTYype;
/®

local variables for saving
y the values of glodbal variabdbles
 J
declare
S C PZQ C attridType,
s o"PZQ DT abtribTypo'

declare
st C C_attridType,
S17D DTattridType;
csllAGctNodc( X);

call PPI( X) .
call PutNode( X);

call GetNode( S1);
/® S1.A = S.A %/

S1 C =f(XE s Q)
S T SAV :=
sC “‘STC
call PP1( Sl) -
S1 D:=8D /* save & nev right-part glodal value =/

call ™ PutNod¥( Sl)

/®* 8.B := S1.B »/
= g(X.A, S1_C, S1 D)
ond /t ot LISTprod_PPt{ =/

Flgure 4-7: How global variables must be saved and then restored under static subsumption.

Static subsumption also reduces the smount of stack space needed to store attribute-instances. If a
collection of attribute-inatances is being used to transmit information around the semantic tree via copy-
rules then explicit flelds in the record that represents a node need not be allocated. This can result in
significant decrease both in the stack space needed for nodes and in the size of the intermediate file.

In general, the extra code neccessary to save and later restore a global variable is as much as the code
saved by subsuming several copy-rules. For static subsumption to be effective we must be careful to
statically allocate a set of attributes that allows many copy-rules to be subsumed, but that doesn't cause
global variables to be saved and restored too often. When the SEMANTICIST was manually coded only
those attributes with obviously high pay-off were statically allocated. LINGUIST-86 uses a more
systematic, polynomial-time algorithm to select the attributes to statically allocate. It statically allocates
more attributes than in the manually-coded SEMANTICIST, but even this algorithm will not always find
an optimal set of attributes to statically allocate.

Our experience indicates that it is very effective to allocate to the same global variable all inherited
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attributes that have the same name. AR enormous amount of context information is copied down the tree
via inherited attributes. Static subsumption can eliminate most of these copy-rules at very little cost
because this context information is aot often updated.

The Pascal-88 attribute grammar has 1147 copy-rules; static subsumption eliminates 746 of these, or 85%.
Statie subsumptios eliminates 13% of the code that implements semantic functions in the
SEMANTICIST's sitribute evaluator (i.e. not counting the “shells” of the attribute evaluator). At first
blush this is disappointing in an optimization that can potentislly eliminate, on average, half of the
semaantic functions. However, notice that each copy-rule generates very little code, whereas semantic

functions that aren't copy-rules can be quite large. -

We also timed versions of the SEMANTICIST that were automatically generated without having static
subsumption applied. The resuits are tabulated in the appendix. Because the evaluator is [/O bound
there was essentially no change in runsing times.

Static subsumption has some elements ia commoan with & method investigated by Ganzinger [11], who also
suggests trying to allocate attribute-instances to global variables. His main purpose is to conserve storage
by allocating many attribute-instances to the same variable. However, his algorithm tries to do such
allocation independent of an sttribute evaluation strategy and his resuits are pessimistic. On the other
hand, static subsumption is tailored to & particular evaluation strategy, and it permits saving and later
restoring the values in global variables.

Static subsumption is also similar to some optimizations done by the GAG transiator-writing-system [186).
GAG uses attribute-stacks and static variables to hold some attribute-instances during attribute
evaluation. Static subsumption is a sort of hybrid of these two techniques in that the effect of saving and
then restoring a global variable is similar to that of an attribute-stack. The possibility, under static
subsumption, of allocating several attributes to the same global variable would correspond to using a
single stack for several attributes,

4.4. The SEMANTICIST and the Pascal-88 compiler

This sub-section describes how the SEMANTICIST fits into the rest of the Pascal-88 compiler. As was
mentioned in the introduction, the intent of this paper is to describe how attribute grammars were used in
the compiler rather than to describe the compiler itself. Therefore, this description will be brief and at a
very high level.

Figure 4-8 is an overview of the Pascal-88 compiler. The compiler is organized as seven logical phases,
which are partitioned into five physical passes. Each phase takes an intermediate representation of the
program and ‘‘massages’” it to produce another intermediate representation of the program; thus, the
original source program is incrementally ‘‘massaged’” into the resulting object-code. The phases
communicate with one another both through these intermediate files, and through various data-structures
in memory (esp. the dictionary and the table of source-text identifiers). This is a pretty traditional
organization for a compiler hosted on a mini-computer or micro-computer. The SEMANTICIST
comprises two of the phases: one in the first pass and one in the second pass. The first phase of the
SEMANTICIST is the first attribute evaluation pass; the second phase is the second attribute evaluation
pass. The SEMANTICIST shares the first pass with the lexical analyzer and the parser; the second pass is
entirely the SEMANTICIST.

The dictionary is created by the SEMANTICIST during the first pass, is used by the SEMANTICIST
during the second pass, and is left in memory for use by later passes. The dictionary is one of the data-

values that is the result of attribute evaluation.

Other results of attribute evaluation are the lists of semantic errors, cross-reference transactions. and
intermediate-code instructions. These are generated in intermediate files that are used by the third and
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Figure 4-81  An overview of the Pascal-88 compiler.

fourth overlays. Section 3.2 described how we arrange to have a data-value that is the result of attribute
evaluation be written to a file without violating the applicative nature of an attribute grammar.

The intermediate file of semantic tree nodes produced by the first pass of the SEMANTICIST is the
compiler’'s intermediate file between overlay 1 and overlay 2. Because there is no attribute evaluation
after the second pass, the SEMANTICIST does not produce an output intermediate file of semantic tree
nodes during the second pass. The compiler's intermediate file between overiay 2 and overlay 4 is the list
of intermediate-code produced by the SEMANTICIST as a resuit of attribute evaluation.

5. Conclusions

The most interesting thing we learned from this project is that the SEMANTICIST is efficient enough to
compete in the market place with hand-coded compilers. Surprisingly, the SEMANTICIST spends half its
time in reading and writing intermediate files: besides writing and then reading the intermediate file of
semantic tree nodes, this includes writing the intermediate files of semantic errors, cross-reference
transactions, and intermediate code for the code-generator. Any inefficiency due to copying values around
the semantic tree is not great compared to the rest of the evaluation process.

We were somewhat surprised by another conclusion: attribute evaluation in alternating passes is quite
restrictive. At the beginning of the project we recognized that other semantic evaluation strategies could
theoretically handle a wider class of grammars, but we thought that alternating pass evaluation was
robust enough to specily the transiation of most programming languages. We still think this is true but
we have come to appreciate that it can take many passes to evaluste some grammars. [t is irksome to
discover that one pass of the evaluator may do little but turn the tree around. Of course, if we had it to
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do over again we would still use alteroating pass evaluation in order to be able to put a ligearizeq
semantic tree into intermediate files.

Attribute grammars were originally proposed for specifying the semantics of languages. We Bave ais
found them to be s good way to specify the design of 3 compiler. By the nature of the attribute grammar
formalism, all data paths are explicit; that's the function of all those copy-rules. Although this may be ag
obstacle to deriving sn efficient implementation, it is exactly the information a good design should specify
and document. Furthermore, the attribute grammar has s very cohesive influence on all aspects of the
compiler that it touches. We mentioned earlier (section 3.2) that the attribute grammar controls how the
various modules of the SEMANTICIST interact with one another. The automatically-generated attribute
evaluator serves as a sort of ‘‘glue” to connect the other components. This “glue” is flexible and easily
modified while still being sufficiently regular and tractable that it can be mechanically checked for
consistency. Much of the maintenance to the SEMANTICIST is done as maintenance on the attribute
grammar; after each modification the attribute evaluator is mechanically regenerated and in the process
LINGUIST-88 checks that all attributes are defined where they should be, that no attribute is multiply
defined, and that all of the various optimizations reflect the new structure of the grammar.

Furthermore, the intermediate files that connect one pass with another are linesrized semantic trees. This
structure need not be explicitly designed or maintained, and it is conceptually the same from one pass to
another (although its actusl physical structure may vary for efficiency considerations). At first we saw
this as a disadvantage. For example, an identifier reference in an expression can not be changed to s
niladic procedure reference when the compiler identifies it as such. Now, after writing sad using the
attribute grammar and the production-procedures, we see this stability as a positive feature. [f the
structure of the semaantic tree remains the same throughout the compiler then different aspects of the
translation can be specified separately as collections of semantic functions associated with sa unchanging
phrase-structure that is specified by the context-free productions. These separate collections of semaatic
functions can communicate with one another through the attributes, and this communication can be
checked for consistency.

Using a common intermediate representation to unify the compiler is not unique to attribute grammars.
For instance, in [12] the authors discuss this as a valusble technique to use with the S/SL compiler-writing
system. However, unlike systems such as S/SL, an attribute grammar does not directly specify an order
of evaluation; i.e. the evaluator-pass during which a semantic function should be computed. Thus,
partitioning an attribute grammar into functional pieces need not lead to a similar, physical organization
of the compiler.

The SEMANTICIST is the result of combining and trying a lot of ideas about how to build a compiler
from an attribute grammar. Many of these ideas had appeared in the literature, some were developed
along the way. Some of the ideas worksd well, some were not so effective. Sometimes our preconceptions
about what was important turned out to be right; often they did not. What is most interesting about this
effort is that there were enough good ideas available that a major part of a production compiler couid be
automatically generated from an attribute grammar.
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I. Appendix - collected facts and figures

object-code (bytes) original  updated  sutomstic
total 58387 69780 70722
production-procedures 34048 41367 38417
% in production-procsdures 58% 659% 54%

production-procedure shells, passi gincluding GetNode and PutNode) 559§
production-procedure shells, pass2 (including only GetNode) 3880

Yrodnction-proc.duros vithout static subsumption 43148
4% of non-shell production-procedurs code eliminated by static subsumption

SEMANTICIST's speed (1lines/min)

Le8Y lines originsl updated automatic shell
RUIT Prog ~— -- "'ELTU' '2"T1' - 1w - T

1 s 166 1414 196 240

2 63 289 192 212 363

3 108 498 382 381 689

4 1093 293 713 308 874

5 2493 1081 852 478 1611

8 2614 1083 438 483 1484
average -- 588 450 339 838 .

These figures reflect oanly the SEMANTICIST, not the entire compiler. The
figures tfor the production-procedure shells are availadle only for the
automatically-generated version. The figures for the Null Prograa are
included to slov the run-time overhead for just loading the prograa into
momor¥. A comparison of the fiiuros for the updated version of the
S ICIST (v3.0) wvith those for the auntomatically-generated version shows
that the latter is smaller and hence loads faster, bdut that the former |s
taster wvhen this overhsad igs discounted. This reflects the coatinuing effort
to put more functionality into the SEMANTICIST, and hence the necessity to
trade time for space in order %o do this.

The Pascal-88 attriduts grammar

source lines 8299
symbols 149
attributes ass
tuo-gasc 158 éiei of all attributes)
static 387 (41% of all attributes)
productions 107
semantic fumctions 2030
copy-rules 1147 (57% of all semantic fuactions)
Em liciv 910 (79% of copy-rules, 45% of all fuactions)
subsuzed 748 (85% of copy-rules, 37% of all functions)
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