
CUCS-102-84

Experience with a Production Compiler

Automatically Generated

trom an

Attribute Grammar

Rod •• , FIl'r"OW

Compuu!' Sdence Dep&rtmeQ~
Columbia Uni",rsit.y

New York. N.,. York 10021

2 Marcil 1014

n. hit of this ruellell wu performed wbile tbe autbor WIoS Oil tbe ua./T or (oul Corp .. Sao!.& Clan. C ..
EartJ. "Maa altome ot t.be maLtn&! io tbis documeo~ were pruiou~11 pmeated ill 111 ~od 181

Experience with a Production Compiler
Automatically Generated

from an
Attribute Grammar

by

Rodney F&rl'OW

Computer Science Department
Columbia UniYe~ity

New York, New York 10027

Abstract

This paper relates our experience implementing a production compiler rrom an attribute grammar. The
compiler is Intel Corporation's Pascal-gO compiler. It runs on a microcomputer-based deHlopment system
without virtual memory. An attribute grammar was written describing semantic analysis, storage
allocation, and translation to intermediate code. Attribute evaluation is done in two alterna.ting passes
and the program tree is kept in intermediate nIes on disk.

The ri~t version of the compiler Wa8 manually implemented rrom the attribute grammar. Using what was
learned rrom this experience, an automatic attribute evaluator-generator Wa.! then written and a. new
version or the compiler wa.s mechanically created rrom the attribute grammar.

Va.rious techniques ror optimizing the evaluator were tried. Their degree or success is reported and they
are compared witb otber idea.! rrom the literature. Complex attribute-values, such a.! sets, sequences and
rinite runctions, were carefully implemented using applicative data $tructure8 in order to conserve
memory.

The attribute gra.mmar Wa.! designed using the principles or data ab8traction and information-hiding.
The internal organization or many types or attributes is completely hidden rrom the attribute gr~mma.r
author and the attribute evaluator. These values are manipulated only by speciric out-of-line semantic
runctions that can be viewed a.! the operators or an ab8tract data type ror this attribute. This also
contributed to an emcient use of memory.

Ta.ble of Contents
\. t nt.l'f'lri uetion
2. A Brld Introduction to Attribute G~mman
3. The Pucal-88 Attribute G~mmar

3.1. Some Not.ation ror Attribute G~mman
3.2. Repntent.ing a.ttribute values with &ppliea.tin datI. structures
3.3. Data abstraction in semantic runetiollS
3.4. Matin& the attribute gnmmu evaluable in 2 ~ternatin, puus

4. The Attribute Evaluator or the SEMANTICIST
4.1. The Attribute Eu.lu&tioll Senteu
4.2. Impiemelltin& Attribute E,aluI.tors
4.3. Attribute EyaluI.tor Optimilatiolll
•. 4. The SEMANTICIST &nd tile Pue~88 compiler

5. CoaelusiollS
I. Appendix· collected (act.! and figures

1
3
8

10
12
14
17
19
19
20
22
27
28
31

List of Figures
FIcure t.1J . .\n attribute grammu (or baaed numbers in Ada 3
FIcure :-%. ..\ semantic tree (r&&ment 4
FIlUre %-3. "Tiliq" the semantic tree 5
Ftcure 2.,.. A semutic t"e (I'S3ment. with dependency ares. 6
FIlUre :-6. n. pandicm (or I lett-t.c>naht pus euluator. 7
FIcure 3-11 Att.riblat. anmmar (r&&me at. (or VarList 9
FIlUre 3-:. Attribute &f&mmar (ra,ment. (or StmtLiat 10
FllUre 3-3. Problema with updatinl a shared data structurt. 12
FtlUre 3-... An implementation or UNION that preSt"" shared data structures. 13
FIll1re 3-61 Re-~ing internalrepresentatioas in the ,alues or senn! attribute-ill3tanees. 13
FtllJre 3-8& Gener&tinl intermediate code (or a list at statementa 15
FIlUre 3-1. Updatinl a S~(unctioll to represent a nested scope haTing local definitions or 18

A and B
fIIUJ'e"1s Alternating-pass eTaluation paradilm with semantic tree on intermediate riles. Ig
FIcure .. :. Ordering or nodes in intermediate riles 20
ftlUre .. 3. The prototypical production-procedure (or a lef't.-t.c>nlht pus 21

FtlUre I Pa.sa 1, L-to-R production-procedure ror [d1S1 taO :: = d1gita1 dig1 t] or 22

l'ilure 2-1
ftlUre "SI An example or nesting one production-procedure within another lnd or the 24

optimizations that could then be done.
ftlUJ'e "&1 A simple example or static subsumptioD. 25
FtlUJ'e .. 11 How global v&r1ables m~t. be SaYed and then restored under static subsumption. 2e
FIgure .. 8, An overview or the Pueal-88 compiler. 28

ii

1. Introduction
In the pili In.raJ ,eVl attribute anmmLl'l [101 han beu diseuaaed ill the literuure u a b&aia ror
eompiler-writiq-syst.eml lze, e, 10, 5, 23, 151. MOlt of the utention bu foeU!e<i 011 att.ribqte naluUioQ
straH1ia aDd 01 etatiq the enJqability of aD attribqte snmmll aceordiq to lOme patticlllat ItNtI1.

1MI &&&tItleD bu ~I paid to act.ually writin& &II att.riba~ Il'mmll ror a reaJ laDlu"e aDd lootiD, '"
WU& IOn ot compiler would be ,enemed rrom it. Thil paper relata our experience of writiDI &11

aurib .. p-ammll ror Pucal and tbell implementiq a compiler bued on tw attribute ,rammll by WOs
a pwnlar att.ribuw naluatioD aeheme.

The compiler is Intel Corporation's PuuJ·M compiler. It generata code for the iAPX·808e
microproc~r family &ad is boated OD aD ~bued microcomput.er syst.em. The compiler can run in u
little u Q6K bytes of memory and CUi u.se either noppy diskettes or a ruter rilid disk ror t.emporvy liIes
and for the out.put. The laquaee ~upport.ed is a ali&bt supef3et of tb, ISO at.&l!dlld ror Pucal. The
principal exteaaions are:

• a "pante compilation facility,

• aJlowiq tb, 11M of names before tbeir definitioll,

• exira built-ill functions tbat are useful ill a microprocts30r enyironment.

The Puca1-88 compiler is neither a "toy" nor an experiment; rather it ia on, of Intel's three pl'O<iuctioa

compilef3 that support. the iAPX·8OM.

The attribute gnmmu speeifitS tboee phues of the compiler that do semantic ua!Ya1a, stong,
allocation, and traaalation to intermediate code. These three ph..,., of tb, compiler art coUectinl,
referred to .., the SEM..'u'ITICIST. The output.! or the SEMANTICIST art:

• a list or intermediate code that is the code generator's input,

• a list of semantic errOf3 and warnings,

• a list of crosa-reference transactions,

- a set. or literal constants tbat will be memory-resident at run-time and the ston.&e loeatiolll
tha~ need to be initiaJiud to these yaJues,

- .. set or user·defined and predelined objects (e.g. yuiables, types, named constanta, procedures
and functions),

• a set of procedure-object.! that ban been designated to lield particular interrupts,

• a. set. or objecta of the compill.tion unit wbose na.me·s are exported beyond the compilation
unit.

We decided to us. attribut.e grammars because we thought this wu .. good formalism ror speeifying lod
desi,l1in& these protioaa of a compiler. Also. we anticipated that later on we would be able to

automatically "n,rate much of the compiler rrom its attribute grammar. However, the rif3t. rele&sed
ursio. ot the compiler wu written by band. ratber than being automatically generated by a traa.slator·
writiq-'Yltem. The attribute evaluator wu written by having the programmef3 "play evaluator­

generator" on the P..,caJ·8tS attribute grammar.

EYen so, we dennit.ely want.ed tbe band-implementa.t.ion to be r&itbrul. to tb. attribute &rammu that wu
its design. To tbia end tbe implementof3 5tro.,. to write tbe actual blgh-Ievel langu~e source code o.r tbe
SEMANTICIST u a mecbanical translation or the attribute gram.mar accordlnl to our attribute
evaluat.ion pandigm. Optimizations of tbis code were allowed only so loog a.s tbey could be exactly

specified and uniformly applied.

The rtSultin& hand-coded "'f3ion wu 58,000 bytes of macbine code and cost. 18 man-months of d~Sigll
and implementatioD efrort.. 34.1(or th' 58K bytes of macbine code corresponded to the attribute
enluator tbu would neDtually be automat.ically geDerated; the rest wu eitber out,.or-line semantIc

1

functions or support routines that would be bud-coded eYeD ia u automatically lenented compiler.

Aner tb, compiler WII deliu"d Wt started workine on automatically aeaentin& the attribute enJultor
portion 01 tht SEMAN1'ICtsT from iLl attribute anmmar description. Thit involved two distinct tuu.
Th. finL ot thne ." \0 baUd a procnm to ,tner&t.. att.ribute naluators rrom attribute &nmmus. We
already had a ProtrUD thai wocaJd ch.ck that &11 attribute lrammar WII well-defined and th&t. it waa
evaluabl. accordi .. \0 th aJt.ernLiq-pua naJuatioll stratel1 t.bat Wt uaed. Thit proaram had to be
enhuced to &etullJ ,1I.rut tb, nalultor. Furtbermore, our experience wit.h th. manually-coded
UrsiOD had 'UUnted sennJ miDOr CbaDI" to the nalu&t.ioD strateu and sneraJ not-so-miDor
optimintiou. Thtse &lao had to be included in the attribute naluator·Ienerator. This ,eaerator
procram, LlNGUlST·88, is described in 181.

The secoDd tuk waa to briq our attribute arammar up-t.I>datt with the SEMANrICIST. SiDCI the rtnt.
versioD or the SEMANTICIST WII not. automaticaJ1y ,enerated it WII poe3ible to correct compiler errors
that were diaconred without. huiq to maie appropriate modincations to the attribute arammar; in fact,
it. usually toot leu time to do so. SiDce the primary ,oal or this project WII to produce a compiler rather
tbaD to explort the tecbnolou, WI uaed thia short,..clJt. more and mort frequently II the delinry·time
approached. Mer the fim union ot the compiler wu filliahed all 01 thtse modincatioll! had to be
iDeorporated into tbe attribut.e arammar. Ooia, thiJ took about three man-months. Sneral heretofore
undiscovered errors in the releued compiler were found b, t.his proce~.

While we were workine to automatically ,eaerate the SEMANTICIST tbe compiler wu a major sot't.wue
product that required on-goinl support.. This support. included bot.h repairing any errors that were •
diaconred. and addina Dew funct.ionality to t.he eompiltr (includin& the SEMANTICIST). Thil continuinl
modification 01 the SEMANTICIST complicated our erT'orta to automatically generate a n"ion ot the
current. SEMANTICIST and test it &«ainst tbe productioD ve"ioD. Howner, this wu eventually done .
. -\t this time the manually. coded production-SEMAN'I'IC[ST wu 70K bytts or machine code, ot which
o4lK bytes were attribute evaluator; the automatically· generated SEMANTICIST wu 11K bytes ot
machine code, or wl1ich 38K bytes were attribute naluator.

Other implementations or attribute enluators hue needed a lot. or memory and they &re usually designed
to run on large machines with some sort. or virtual memory system. The SEMANTICIST runs in a small
a.mount or memory (u little ~ 06K) on a system without virtual memory. We think the principal reasons

ror this succeM are that:
· the semantic tree is kept. on sequentially-aeceMed intermediate riles,

· complex attribute-values. such u set.3. sequences, and nnite runctions. are implemented using
applicative data structurin, techniques, ..

· da.ta abstraction techniques ate uaed in the design and implementation or semantic runctioD~ ill
order to succn,hll, exploit. t.be ,aJuMriented nature of attribute grammars.

This paper is iD&'tIldtd to explain how we uaed attribute grammars in designing and implementing a
compiler; i&. ia ~ iA&. ... ded to be a descriptioD or the PascaJ-88 compiler. To this ead, tbe paper is
organized into 3 major MetioDl:

• sectiOD 2 ia a brier tutorial OD attribute ,rammars; readers wbo are ramiliu with attribute
~rammus and their terminolou can stip thia section, or skim it quickly, and return to it onl,
Ir some unfamiliar terminolo&1 or DotaLioD is later encountered,

• sectiOD 3 disclWes the Pueal-88 att.ribute grammar and the philosophies behind it.3 design.

· section. dtscribes the SEMAI"'ITICIST's attribute evaluator.

Several wues concerDinc the desigD and implementation or the semantic runctions are explored in
sub-sectioD 3.2. The symbol table is a major component ot moet compile,,; sub-section 3.3 discusses those
upect.3 or the SEMAN1'ICIST that correspond to the symbol table. Sub-section 4.1 prtsenta the attribut.e
naluation str&t~ we use, sub-section •. 2 dtscribes our implementat.ion or the attribute evaluator,

2

sub-section 4.3 diacusses senral optimiutiolll or the buic a.ttribute nalua.tor, l!1d
sub-section 4.4 describes how the a.ttribute naluator tita in witb the rest or the compiler.

Our eoraciuaiolll an presented iD the tinal section. VuioUJ st&tilties about the SEMANTICIST ate
dJaVibQud IlOQDd the pap"; IJl appendix collecta all or these in one place. These statistics ate (rom

Lbrtt M,nD' UnicOI or the SEMANTICIST: the oricinal hand· coded Yersion that. wu releued La

unioa 1.0 of the compiler, aD updated hand-coded Yersion that wu releL!ed u version 3.0 or the
eompiltr, ud til. latest automaticall,.-,ene~ted version that baa not yet been releued.

2. A Briel Introduction to Attribute Gramma.rs
A COflt=t·/ree grcSmm41' is a 4-tupl, (N,L',S.P), wbere N it the s.t or r\Oft-terminai symbo14, r is tbe m
or termir\tU symbob, SeN it the d4l1 ,,,,,bol, Ind P is the set or pt'od.dion,. A production is of the

(orm [p : ~ :: = Xl ... x.,l. ~ E N is th. left-port or p; Xl ~ .,. ~p is the right·porl or 11 Ind ror

i > 0, either X. e N or X. e r. Sometimtt th. expnsaion "p!il" is UJed to denote ~.

Attribute &nmmars were first proposed by lUuth 11g1 u a wly to specify the semantics or context·free
Iinlua,es. Th. buia or In attribute g~mmar is a. cont.ext-rru &rammar. This describes the cont.ext-free
Ilqu&ge tha.t. is the domaln or the truslation, tha.t is, th08e strings on which the transla.tioD is defined.
Thia context-rree grammar is aUlmented with attributu and ,emGntic /."dian,. Attribute3 ate

uaociated with tbe symbol3 o(tbe grammu, botb terminaJ and aon-terminaJ. We write "X.A" to de not.
at.tribute A or symbol X, and A(X) to denote the set. o(ILttributes uaodated with X. Semal!tic (unctions
ate uaociated with productions; tbey describe bow the ,alues of some attributes o(the production ate
defined in terms or the values or otber attributes or the production.

Below is &n attribute gr~mmlU' that. de3cribes blLSed integers in Ada and the values the, denote. Ex&mpl~
or Ada b~ed integers are:

lefgr - gr base Ie - ISg base 10
2#10110 - 10110 bue 2 - Z2 bue 10
3#10110 - 10110 bILSe 3 - 93 bue 10.

1 number::= ~lg1t.l 'J' ~lglts2.
2 number.VAL = 4lg1ts2.VAL
3 ~lg1ta2.RADIX = ~lglt'l.VAL
4 dlg1tal.RADIX = 10
6 dlgltal.POWER = 1
e dlg1ta2.POWEA = 1

7 ~lg1t. ::= dlglt.
S alg1t •. VAL = ~lglt.VAL
g dlg1t.POVER = dlg1t •. POWER

10 ~lgltsO ::= dlg1tsl dlglt.
11 algltaO.VAL = 4lg1tSl.VAL • d1g1t.VAL
12 dlgltal.RADIX = dlg1tsO.RADIX
13 dlgltSl.POWER = dlg1tsO.POWER * d1g1tsO.RADIX
14 dlglt.POWER = ~lgltsO.POWER
15 ~lnt ::= '0'.
18 alglt.VAL = 0

17 ~lnt ::= '1'.
18 !lg1t.VAL = digit.POWER

19 dlnt::= '2'.
20 !lg1t.VAL = 2 • ~lglt.POVER

46 dlglt ::= 'F' I 'r'.
46 algit.VAL = 16 • ~lg1t.POWER

F1cun 2-11 An attribute grammar ror bued numbers in Ada.

3

Lines I, 7, 10, IS, 17, ... , 45 or figure 2-1 ate context-free productioaa; the otber lines deno~ semantic

runctions. T.he notation or thia eumple will ~ UJed tbrouehou~ thil plptr: in tbe production or line 1.

d1S1 u1 and 41(1 U2 denote separate occurrences or the same symbol, d1(1 t.: the numeric sumx~

distinaw.,b these dilfe"Jl~ occu.rrtnctl. DifTe"n~ 5ymbol-«cumncea in a productioa. sucb u cHg1 e. in

tbe first productioa. &i .. riM to ditTertnL tJltriftte-occvrmc:u. Symbol-occurrences ,nd attribute­
occurrences Ilt IIIOri»td olb' 1ri~h indhidual productioDi •

. -\ seml!ltic runction specines tbe nlue or ID .Itt.ribute-oeeurrenee or the production, e.,. 41S1 e.l . VAl..

Semantic runctions &l'e pure runctions, they ban no aid .. efT«ta. Their only ariumenLi &l'e eitber
constaaLi or otber at.tribute-occmencea of the productioll.

Ld UI cOMider juat how III attribute anmm&l' specines I trualatioD. The underlyin, context-free­
grammar or all &t.tribut.e gnmmll describes I IIDlu .. e. Ally It.riac in thll lanlu"e haa a pane tree
usociated with it by the gnmmar. The nodes ot thi' pa.ne tr .. caD be IlbtUed with symbols ot the
grammar. Let N b. aa interior node ot the tret. Each N hu two productioDi usociated with it. The
lett-part production (LP) iJ tbe production that. applies at. N. The cb.ildten 01 N are labeUed witb the
symbols in the ri,ht-pa.rt or N's LP-productioD. The "eht-part production (RP) is the production that.
applies at the pllent or N. The pllent or N ~ labelled witb the len-part symbol or N's RP-production; N
and ita siblinp &l'e labelled with the symbols in the right-part or N's RP·production. Leal'es or the tree
don't hlTe LP productions; the root doesn't hlTe an RP production. Fieure 2·2 shows a p&l!e tree (or the
strin,7153. Each node in tltis ~ret is labeUed with ita woeiated &r&mmar symbol. which is the Jet't.-part
symbol or ita LP production.

<uuabtr> N1
+---------+
I VAl. I
+---------+

I
+--------------+-------------------------+

<d1g1ts> I H2 <d1g1t.> I N3
+-----------------+ +-----------------+
I PO'WER I RAD IX I VAl. I I POWER I RAD IX I VAl. I
+-----------------+ +-----------------+

<d1g1t> I H4 <digits> i------HS---:41g1~;-i He
+-----------+ +-----------------+ +-----------+
I ?O\iD I VAl. I I POWER I RADIX I VAl. I I PO\IER I VAl. I
+-----------+ +-----------------+ +-----------+

<41(1 t.> I tn I
+-----------+
I POWEll VAl... I
+-----------+

I
1 • Ii 3

flcu"' 2-'1 A sema.ntic tree rracment

A 1t1Tlantic tra it • pane tnt in which eacb node contains nelds tbat. correspond to tbe attributes or ie"
labelling grammar symbol. Eacb or tbese nelds is an att,.ihl,..irutancc. Associated with eacb a.ttribute is
a set or possible T&!Ues that. insta.nces or th~ attribute ca.n be aaaiined. This ~ an&!ogous to the "type" of
a. variable in a. programming langu"e. However, each attribute-instlDce takes on precisely one such
nlue; a.ttribute-inst.ances an not variables. The v&!ues or attribute-instances are speeined by the
semantic (unctions.

The semantic runct.ions or a production represent & template ror specirying the values or attribute­
instances in the semant.ic tree. Consider figure 2·2 aca.in. N3 ~ a semantic tree node that is a.ssociated

with d1g1 ts2 in the productioB [number :: = d1g1 tal '.. d1(1 U2] (iu RP production) lnd N3 is

a.wxi&ted with 41S1 e.o in production [41S1"0 :: = d1S1 Ul cl1g1 tl (iu LP production). The

semut.ie runet.ioD 41S1 tl2. JW)IX = 4111 til. VAJ. indicates that the "JIl' ot ittribQ~illJt&lle.

N3.RADOC will b. eopied rrom the "Jue ot attribut.e-inatuce N2.V AL. Similltly, tbe Hmuue rUllctioD

4111 t.aO. VAl.. ::I d1S1 til. VAL + 4111 t. VAL indicates that the v&lue of at.tribut.e-iaatuce N3.V AL
.IaoUd be e&leaJ.ud by addina toeet.htr tht ulun or NS.V Ai and N8.V AL.

n. "odanio .. ud their auociat.d Hm&J1tic rUDctioll!, can be viewed u "tilin," tht semutic tree.
Eac. iaMriof DOd. Uti OD t.h. boundary betwetll two "tiles", thoee correspondin& to the node's LP.
prodUCtJoll &J1d RP·productioa, rttllectinly. ThUl, interior lIodes lit plltly ia oat "tilt" &lld p<ly in
ano,h.r. Fi,,," 2-3 ia a pictoria.l rtpresutatioa or thil. The "tiles" can bt yi.wed u "templates" thlt
describe how to denn. the &t.t.riblltt-inat&nces that U. [pllti&llyl withia thtm. Two ditruut "tiltS"
cooperu. or commullic&tA t.hrou,h the nJutl or the itt.ribute-inawces or their commoa nod •.

<nabtr) Nt
+---------+

+ ----------------- 1--------------------------------+

+--------------+-------------------------+ ta> I <dl ita> 1

-----------------. +- I POWER I IUD IX I VAl. 1 ~_P-_~_:"='_+_~_~+~--":":-~-...... --:----------_...J_ 1 POWII RADIX 1 VAl. 1--

~;~~I~~~;;::::]
+----IPOWERI VAl. 1- --+

----+
+-----------+--------+

-----------+

7 • 6 3

F1cuJ'e 2-31 "Tiline" the semantic tree

Since two ditrerenL product.ions are &&$(Xiated with each attribute-illstance, there could b. two semantic
(unctioll! that independently specify ita yalue, oae (rom the LP "tile" aad olle (rom the RP "tile". lr Wt

uaume that each &t.tribute-inatance is denned by only one sema.ntic (unction, either (rom the LP
production xor from the RP productioa, then we must guud against aa attribute-ins'ance lIot being
derined at a.J1 because the LP productioa uaumed tnat the RP production would denne it and vice vern.
These dimculties Itt aToided ia attribute gr~mm&t"S by adopting tbe eonvention tht for eYery attribute,
X.A. either: (1) en" iuunct or X.A is derined by a semantic function a.ssociated with ita LP production,
or (2) eYerf in.stuctot X.A ia den ned by a semantic runction a.ssoeiated with it..t RP production.
Attributes WhOM in.stances ar. all derined in their LP production are called 'ptlle8izecl attributes:
aUributes whoet in.stances u. all defined in their RP production are called inll"'ilea attributes. Every
&ttriba. ia either inherited or synt.hesized. The stll'\ symbol hu no inherited attributes; terminal symbols
han DO I1nthesiud attributes. From the point. or view or an individua.l production these conditions
reqwre that th. semantic functions or a production MUST define EXACTt. Y the right- part occurrences or
inherited attributes and all synthesized attribut.es of the lel't,-part symbol. Inherited attributtS prop&&ate
information dowa tht tree, towards tb. leayes. Synt.hesized a.ttributes prop&&ate informatioa up tbe trn,
toward t.ht roo~. Th. inherited attributes of .. no~terminal X are denoted by J(X), the synthesized
aLtriubtes by S(X): A(X) - I(X) ~ S(X).

Thus the semantic ruactioDJ or aa attribute gummlt sptcify a unique value ror each attribute-instance.
Howner. in order to actually compute the .. lu. or &t.tributt-ilUtance Z we must first han availa.ble the
valU" or ~hou other attribute-in.st.aaces th&t. are &I'1ument..t or the semantic runetioll t.hat derines Z. [n

tbt exampl. or n,urt 2-2. beron N3.RAD1X caD b. eomputed the value or N2.V AL m~i bave ilready
beel computed. Slicb UpCfttkftCJ ,.dGtiOftl restrict the order ia which at,ribllte-in.stuces can be

5

enlua~ed. The semantic tree of filure 2·2 is reproduced in figure 2--4 with area d~.ll in to show the
vuioua dependency relatiol13 amonl the attribute-instances of the tree.

<11Uabtr> N1
+---------+ I VAL I
+------~-+ (

I ~ L\ <~1S1t.> i----~N2------+----------------;41g1t;;-f\ N3
+ _____________ 1_~_+ +--------~J--- ___ +

I POWER I RADIX I VAL I IPOVDIRADIXI VAL I

·::~I~~--· !~~~ • ---_~--::~~~~~~.
I POVER I VAL I I POWER I RADIX I VAL I I POWER I VAL I

+--~-----I-d.-----+

<~1(1t> H7
+---- -- ---+

--+

IPO'WD1 VAL I
+--"9--+

7 • 6 3

Ftpre %--4. A semantic tree rra&ment with dependency ar~.

In extreme caos" an attribute-il13tance can depend on it,.,elr; such a situation is called a circuluity and by
definition such situatiOn! are (orbiddea (rom oecuring in well-defined attribute grammars. In general. it is
a.n exponentially hard problem 1131 to determine t.hat an attribute gnmmar is non-circu14r, i.e. tbat no
semantic tree t.bat can. be generated by the attribute grammar cont&in! a circularly defined attribute­
instance. Fort.unately there are several interesting and widely applicable sumcient conditiOn! that can be
checked in polynomial time 14. 14. 18. 171.

The result of t.he translation specified by &D attribute grammar is realized a.s t.be values of one or more
~t.tribut.e·instances or t.be root. ot t.he semantic tree. In order to compute t.bese v&.1ues t.be ot.her at.tribute­
instances must be comput.ed. An ATTRIBUTE EVALUATION PARADIGM is 3. meta-algorithm for
building an algorithm t.hat will compute attribute-il13tallces in such &D order that: (1) no attribut.e-instance
is computed before all dependent attribute-instances ue available. and (2) all attribute-instuces o(the
root ue computed. It may be that an attribute enJuation puadigm workl correctly only on a subset of
a.ll well·defined a.ttribute grammars. but it muat work correctly on eYery semantic tree o(an accepta.ble
~ttribute grammu.

One or tbe simplest and mOlt commonly u.sed (amily of evaluation paradigms is that or tv41uation in
p48"e8. For evaluation ill a lef'trt.<>ri,~t pLY the attribute-instances are defined during a lert-t<>right.
depth first walk oYer the semantic tree 141. A general lert·t<>rigbt. pa.sa evaluator consists of several sucb
puses run in succesaioa. Each pa.sa is able to evaluate more attributes beca.u.se their dependencies were
made av&ilable by t.b, preceding pa.ssts. The model (or a lef'trt.<>right pus naluator is shown in
figure 2·5.

In order (or a pus-structured attribute naluator to work one mu.st know in advance wben attributes can
be evaluated. That. is. (or each attribut.e X.A. there mWl~ be a pa.ss number. i)(.A. such that, nery instance
of X.A in any semantic tree can be ev&.1uaLed on pa.s.s iX,A' Becau.se or this requirement. not all attribute
gramma.rs can be evaluated in lef'trt<>right. puses.

An alternating-p4" 4ttribute e11al.,4tor 1141 cOl13ists at one or more paaaes in wbich tbe semantic tree
nodes ue visited in either lef'trt.<>right order or right-to-le!l. order. It PLY i visits nodes in lef'trto-right
order. then pa.ss i+l visits them in right.-t.<>len order. al1d vice 'fers&. AJt.erllatin,·pLSS ev&.1uators can be
u.sed on 3. wider cl&.sa ot att.ribute &rammars thaD lef'trt.o-right. paaa naluators. but. Ilot nery nOD-circular

XO :: = X1 X2 .•. XD.

tYaluat. lDhtr1t.d at~r1but.-1D.taaCt. of Xl tor th1. paa.
'111 t. nodi Xl
t~uatl lnbtr1ted attribute-ln.taaci. of X2 tor thl. p ...
,1I1t. lode X2

tYa!uat.. lnhtrlttd attrlbutl-1D.taaet. of XD tor thl. p ...
yl.1 t. noell XD

tYaluatt .yntht.1Ztd attrlbutl-ln.tanct' ot XO tor thl. p ...
rttUrD tro. ,1.1tlnS XO

nCUH t-I. The pandiem ror a left..~rilht pus eniuator.

&t.tribut. &rammar caD bt naluated in alternat.ine p s. Th. SEMANTICIST uses an alternating-pw
ev al ur.tor .

Attributt &nMmus ue attn.din specincatioa toolJ. Two principal reuons ror this ue their 10C4lit, 01
re/f:f'mce and their "Oft-proctdurlll "at"re. We sa1 that an attribute grammu haa locality or rererence in
th&& the TalUes it derines (i.e. the attribute-in.st&l1cea) &tt specified exclusiYely ia terma of other attribut ..
in.st&nces local to a production. An attribute &f&l1lmar doa not. contain all1 alobal uriabl" or implicit
stat.e inrormation that. caa atreet. the tn.l1!lation. Each local pieee or an attribute grammu, i.e. eatb
production, communicates with the rest or the attribute &nmmu onl1 through strictly derined interf&ces:
the attributes or the symbols occurring in this productioa.

Although there &Ie man, similarities between writin& aD at.tribute grammar and writing a procnm in a
high-leYeI language, these two ta.sb ue rundamentally dirrerent. An at.tribute grammar I.s .. proees,s.
independent 8peci/icatiOft o/II1"at i8 to be computed. The rel&tiol1!hip between an ,ttribute gnmmar
and an attribute evaluator ror that. grammar is very similar to the relation.ship between a context-free
grammar and a paner ror that. grammu.

A context-rree &rammar is a specific~tion of the set of strill3S in some langu&&e. Although we ma, be
able to generate a pa.ner ror this langu&&e rrom the grammar, creating the grammar is dirrerent. rrom and
euier than writing th. puser. The widesprew woption or lutomatic paner·generating-syst.ems ba.sed on
context-rree grammars ia ttstimoay to this. The context-rree grammar is , dedlntiTe specification or tbe
llnguage; the paner can alao se", a.s a specification of the' language, but it i" a procedural specification.
In general, a context-rree srammar C&l1 be used LS the baais or several dirrerent parse~: an LL paner, an
LR parser, a reeunin desceat parser, a precedence parser. etc. The details or operation or these parse,.,
will be dirrerent (e.,. a production will be recognized a.t dirrerent times by a reeu~ive descent paner than
it will by a.n LR paner) but the parses that. are produced will be the same.

In jUit tbe same W&y an at.tribute gnmmar is a ded&r&tive specification of a translation rather than a
procedun for computin& the translation. Dirrerent translato~ can be produced rrom an attribute
gn.mmar bued on dirrerent attribute 'Taluation strategies. e.g. a translator ba3ed on a left..t<>right pw
eYalur.tor Tenus all alterllating pa.ss eYaluator.

The dedaratiYe nat.ure of an attribute grammar is manifested in several ways:
1. attribute-il1!tances are not variablts. they are names ror valuts,

2. semantic (unctions &Ie pure runctiol1!, they do not use global variables and they bave no sid~
errecta.

3. the order ia which the semantic runctions or a production will be evaluated is not. determined
by the t.extual order in which tbey occur in the attribute gMlmm&l; the, can be evaluated in
any orde ... that ia conaisteDt. with the attribute tkpmdenciu of the gramm&!.

When writinc all attribute &rammar one does DOt. refer to the currmt value or an &ttribut~il1!t.ance; it bas

1

only on. value lnd at any time during &ttributf enJultion it will either be undefined or it "ill be defined
witb tbis niue. ID p&rticulat, one ia not. concerned about. "b.tb.r u attribut.-iD3tance hu been
"correctly updated" at the time one "ants to un it; one simply U!es it. The attribute e"aluator-gener~r
is then responaibl, Cor ordenal tilt semantic functiona so that no inat&!lct or this at.tribute ia used before it
is defined.

The lack or sid .. ,trtdl ia Itm&!ltic (unctions means that all the result.a or a semantic runction must be
returned u explici\ mqJta: t.hat ii, all the etrecta or a semantic (unction must appear u a component of
the nJue(.) that UI I'1turned by tbat (unction. Th. lack of slobaJ "'liabltS me&D.S tbat all ugumenta to
a lem&J1tic functioll must b, explicit arlumenta.

The etreet. or this is to put a heaT1 emphuis Oil ulues: the "aJues that are uaigned to attribute-iD3tances
and tbat a.re U!ed .. nd produced by semantic runctioD3. Besides tb. usuaJ data types of integer. cbancter.
Itrinl, et.e., the attribuk snmmar naes more complex "aJues such 1.5: lutilntl recorda, seta, sequences.
(unctions. seta of seta, sequences of seta, runctions (rom sets to sequ'nces, etc. In this respect attribute
grammars a.r. similar to the Ql'11liC4tivt pro&nmmin, languages, such a.s: pure LISP; FP 13'. ML 122j1
VAL II, 21 .. nd SISAL 12112,1.

Although "tribute-instances an not uriables, attribute gnmman can be designed 50 that sets or
attributes ue connected by semantic runctiofta in such .. pattern that toteth.r they simuJate the etrect of
a globaJ ,,&tiable. For example, cOD.!ider thl rollo"inc attribute gramma.r rrqment that &S!ign3
conucutiYe "addresaes" to a list. or el.menta "boee individuaJ lenlLIla caD nT1, aDd tbat computes the
total amount or storlIe needed by the entire list.

GOAL ::= X111t
Xl1lt. IN = 0
GOAL.RESULT = X111t.OUT

Xl1stO :: = Xl.11ti '; I Xl1.t~
X11Itl.IN = X11stO.IN
X11st2.IN = X118ti.0UT
X11.tO.OUT = X111t2.0UT

Xl1st ::= X
X.ADDRESS = X11.t.IN
X11st.OUT = Xlist.IN + X11st.LEN

The pa.ir or &ttributes, Xl1st. IN a.nd Xl1st. 0tJT. denote the v&Jue that would be in the slobal variable

when the attribute e"aluat.or enters the sub-tree and leaves the sub-tree. respectively. Thus the various
instances or these attributes in the semantic tree renect the values that the global variable would take on
during the course 01 .. ttribute evaluation.

3. The Pa.scal-86 Attribute Grammar
.. \lthough tbere ue some similuities between writing an a.ttribute grammar a.nd writing a program in a
high-level languag., tbeM two ta.su are rundament&1ly dirterent. An a.ttribute grammar ia a. process­
independent ~ptt:i/it:tUi<m 0/ wildt i, to be computed, rather than an a.lgorithm for doing this
computa.tion. lD tlUa ~tion "e describe portio~ or the pucaJ-se .. ttribute gramma.r a.nd use these to
illustrate our tecbniqud lor designil1& the a.tt.ribute gnmmar a.nd implementing tbe semantic (unctions;
our techniques ror impiementinl the att.ribute evaJuator a.re described in section 4.2. The rour sub­
sections describe:

- the nota.tion we use (or describing attribute gramman, especi&IJy sema.ntic (unctions.

- the use or a.pplicatiYe data structures to represent the vcr.luu of &ttribute-instances,

..
"th ... '" membll'l 01 'hi ruboca. 01 ~pU~'iTl IUIU&IW ItDO'W"lS II d.sa-now lulU

'. mar. d.l&lled ciilnaioD 01 lhl r.laUoukip btl_D "lrihaw p-am.m&rI uel ~pUcl.'ive IUIUac-t. "peci~ cb, ... now
lulU eu b. foud ia [01

8

. grouping together selected &ttribut~ &.lld semalltic runetio~ into abltrad d4t~ tVJIu,

• adjuatinl the undertyinl context-rrH phnat stnetu" and attribute-dependeneies to malt the
a.ttribute snmmu enluable in two L1ternatin, puaes.

SennA productiou ud their semutie runetiol1l lie shown in ngllres ~l ,nd ~2. Filun ~l abo tbe
two prodadioaa ,,"d to expand a- VuLl.t non-terminal in the Puea.!·8& a.ttribute snmmu;
ftc .. 3-2 showa tilt two produetiol1l uaed to expand a Stat1..1st Don·terminLi.

VuLi.t = COLON TypeSpec.
a.lautle.

,

TypeSpec.HAME = nullNaae.
Typ.Sp.c.PACKED, T~tSpec.NEED OaD = fal.l,
VuLl.t.TYPE = Typ'S~lc.OSJ. -
VUL1.t.TeD_BIG = (vidthot(TyptSp.c.OBJ) = OVLvidth)

••• Iapllclt copy-rult: VarLl.t.DEFS = T~tSPtc.DEFS
••• Iapliclt copy-rult: VuL1st.ERRS 0 =-TypI~lc.£RftS 0
••• Iapllclt copy-rull: VuLl.t.~O = TyptSptc.~O
••• Imp11clt copy-rult: TyplSptc.SYMS = VarL1It.SYMS -
••• Implicit copy-rult: TyptSptc.ERRS I = VarLl.t.ERKS I
••• Implicit copy-rull: TyptSptc.~l = VarL1.t.~
••• Iap11c1t copy-rul.: TyptSplc.CIRCOLAR LIST = VarLllt.CIRCULAR LIST
••• Iaplic1t copy-rule: TypISplc.PUB EXT toe FLAG = VarLl.t.PUB EXT woe FLAQ
••• Iap11c1t copy-rul.: ryptSp.c.SCOPE NXME ~ VuLl.~.SCOPE NAME - -
••• Iapllc1t copy-rule: TypISple.LEVEL-= VuLi.t.LEVEL -
••• Iap11c1t copy-rule: TyptSple.PUBLIC SUBSYSTEM = VuLl.t.PUBLIC SUBSYSTEM
••• Iaplic1t copy-rule: TypISptc.IS_DOKESTIC = VuL1.t.IS_DOMESTIC-

VarLlat.O
a.lmlLD t1 c.

= ID VarLl.tl.

OBJ =
if I.Acce •• 1blICVarL1stO.LEVEL,

IO.IHOEX.
VarL1.tO.PUBLIC SUBSYSTEM,
VuL1.tO.IS DOMESTIC.
VarLlstO. PUB IHO)

- tlln gtnObjVu(IO.IHOEX.
VarL1stl.TYPE.
VarLlstO.L.EVEl..
VarL1stO.PUBLIC SUBSYSTEM.
VarLl,tO.IS_DOMESTIC)

tlSl
tnd1t •

VarLlstO . OD'S =

nullObj

. ••• ••• ••• ••• ••• ••• ••• ••• ••• •• *
•••

if OSJ = nullObj then VarLlstl.0EFS
tl.t cons(OBJ. VarLlstl.DEFS>

tndU,
ERR HUM =

if lootup(VarL1.tO.SYMS. IO.INDEX) <> OBJ thtn multOtfError
,lsif VarL1.tl.TOO 8IG thtn TarTooBlgError
tl.e noError
tnd1f.

VarL1.tO.ERRS 0 =
cOD.!rT(IO.toc,£RI NUM.IO.INDEX.VarLlstl.ERRS 0).

VarLlItO . XREF a = - -
putXREFdtf(OBJ. IO.LOC. VarL1stO.SCOPE NAME. VarLlstO.PUB EXT LOC FLAG.

VarL1stl.XREF 0) - - - -

Iapllc1t copy-rull: VarLlstO.DEFS = VarLlstl.DEFS
Impl1c1t copy-rull: VarL1stO.TYPE = VarLlstl.TYPE
Implic1t copy-rull: VarLlstl.SYMS = VarLlstO.SYMS
Iap11clt copy-rull: VarL1.tl.ERRS I = VarLlstO.ERRS I
Imp11c1t copy-rull: VarLlstl.XR~I = VarLlstO.~I
Implicit copy-rul.: VarL1stl.CIRCOLAR LIST = VarLls~O.CIRCULAR LIST
Implic1t copy-rull: VarL1stl.PUB EXT tOC FLAG = VarL1stO.PUB EXT LOC FLAG
Imp11cit copy-rul.: VarLlltl.SCOPE NXME ~ VarLlstO.SCOPE NAME - -
Impl1cit copy-rule: VarLlstl.LEVEL-= VarLlstO.LEVEL -
Iap11c1t copy-rule: VarL1stl.PUBLIC SUBSYSTEM = VarLlstO.PUBLIC SUBSYSTEM
Iap11c1t copy-rule: VarL1stl.IS_OOMESTIC = VarL1stO.IS_DOMESTIC-

F11UJ'e 3-1. Attribute grammar rragment. ror VarList

9

StatL1st =
a •• aant.lc.
S~tLlst.. nIP om. Stat.1.1.t. L.Sl. DEn. Stat1.1at. AAHCi!: LBLS = .aptys.t.
StatLlat. GET87. StatLUt .MASJC8T"= tal ...
StatLl.t.ERRS 0 = StatLl.t.ERAS I.
StatLl.t.XI!T'O = StatLllt.XJUT'"I.
S~tLUt.IL1 a :z Sta~lIt. 11.1 1-- -

StatLl.tO a.~ S~tLi.ti.
a •• aant1C8
stat. IS LA" I ED :z tal •••
St.tL1.tO.LBL DEFS = UD1oD(.tat.LBL DEFS. StatLi.tl.~ DEFS).
StatLUtO . TMP"'1)E7S = unlon (.~t. TMr'DEFS StatL1atl . TMPI)EFS) .
StatLlItO . R.AHC! LSLS = UUOD (.~t.. LSL sEt. St.at.1.l.t.l.1WtGE LeU).
StatLlIt.O.GETBr = .tat.GET87 or St.attl.tt .G~~ -
StatLl.t.O.KASX87 = .tat.MASK87 or StatLlItl.ftMl\.Crl.
StatL1.tO.ElRS 0 = ltat.ERRS O.
stat. EJUlS I - = S~tLi.tl-:1JUlS I.
StatL1.tO~ 0 = .tat.XlU7 O. -
.tat.XltU I - = StatL1.tl7XJlU I.
StatL1.t071Ll 0 = .t.at. ILl Of -
stat.IL.I_I - = StatL11t.t'. LI_O

••• Implic1t copy-rul.: StatLl.ti.ERAS I = StatLl.tO.ERAS I
••• Impl1cit. copy-rul.: StatLl.tl.~I = StatLl.tO.~I
••• Implic1t copy-rul.: S~tLl.tl.ILR T = StatLl.tO.ILI X­
••• I'pllc1t copy-rul.: StatLl.tl.LEVEL = Stlt.1.l.tO.LEVEL
••• Implicit copy-rul.: StatL1.ti.SCOPE MAKE = StatLl.tO.SCOPE NAME
••• Impl1c1t copy-rul.: StatLl.tl.I~= StatL1ItO.IHPUT -
••• I.pl1cit copy-rul.: StatL1.tl.0UTPUT = StatL1.tO.OUTPUT
••• Impl1c1t copy-rul.: StatL1.tl.PUB DCLS = StatLl.tO.PU! DCLS
••• Impllcit. copy-rul.: Stat.1.i.tl.DCLS = StatL1.t.O.DCtS -
••• Impl1cit. copy-rule: StatL1.tl.LBLS = StatLiltO.LBLS
••• Impl1c1t. copy-rule: .tat.SYKS = StatLi.tO.SYMS
••• Impl1c1t copy-rule: .tat.LEVEL = StatLi.tO.LEVEL
••• Implicit copy-rule: .tat.SCOPE NAME = StatLi.tO.SCOPE NAME
••• Implic1t copy-rul.: It.t.I~= StatL18tO.IHPUT -
••• Implic1t copy-rule: stat.OUTPUT = StatL1.tO.OUTPUT
••• Implicit copy-rule: stat.PUB OCLS = StatListO.PUB DCLS
••• Implic1t copy-rule: .tmt.DCLS = StatL1stO.OCLS -
••• Implic1t copy-rul.: stat.LBLB = StatLlstO.LeLS

Ftcure 3-%1 Attribute grammar rra.gment ror StmtList

3.1. Some Notation ror Attribute Gramman
In order to male sense or the attribute grammar rra.gment,., or rigures 3.1 and 3.2 one must be a.wan or
several conventions and extensions or th. notation tbat we used: intrinsic attributes. tbe rorm or semantic
runctions. ~emporaty attributes. and implicit copy· rules. These do not &trect the power o(attribute
gra.mmU'S to describe tr~nslations; they only make it euier to write ~nd read an attribute gnmmar.

Intrinsic attributes· are attributes that art &Iready dtlfned berore a.ttribute evaluation starts, much a" the
sema.ntic tree is derined berore euJuation starta. Intrinsic attributes are set by the paner. just a" the
semantic tree is built by the parser. In tbe PucaJ·8& attribute grammar they ue used to denote either
the name· table-index ot & tuminaJ symbol or tbe location (line number) in the source text. or an
occurrence or a terminaJ symbol. An intrill!ic attribute is like any other attribute except that it is
Haiuated berore an1 p .. ; DO Mm~tic runction can denne an intrinsic attribute.

Form of semantic function.. For the pW'~e or formally dennin, attribute gramman a semantic (unction
is just that. a runction. It bu a name, taies arlumenta. and returns result,.,. However. ror the purposes or
actually engineering a t~nslation we found this to be restrictive. One does not want to write a.n out-or·
line (unction call in order to add 1 to the value or an U'lument. The early versions or the P~caJ-815
a.ttribute grammar had many semantic functiona tbat were ea.ch used in jlUt on. or two places. These
(unctions tended to han many arlumenta and b. nry simple. A common situation Wa.! (or a runction to

compute a.s it,., result one or sneraJ dirrerent. simple expres.sions. with the choice or which expres.sion to u.se
being ba"ed on tbe Ie.,. booleanl value or OQe argument. Frequently sneral dirrerent a.ttribute-

10

; .

occurrencu would be defined thia way u.sinl exactly the same conditioQl, so that tht mou IIUuraJ and
succinct exprtSaion o(thtSe (unctiol1l would bt II , sinll, (unction that returned multiple YaJuea.

Th, mu"emnt o(so many small, out,.o(-lint runctiol1l soon became unwieldy. In order to read alld
uDd,mud the attributt Inmmu onl bad to cOl1ltantly nip but and rortb between the source of tb.
attribal If'&DlJDat ud , desriptioD of tht out,.o(-lint runctioD.S. Additiol1l to. or modificationa of. tb,
attrih&. cnmmat inolnd either aeuchinl throulh the definitiol1S or existing out-or-line runctiol1!, or
creatiq , nt. rUDction and writina ita definition somewhere other than in the source of thl attribute
grammar. Furthermore,.t reartd that thl performance penalties or u.sinl so many out-or-line functiolll
could be seriou.s, althoulh .e did not experimentally test. thia.

To ayoid thtH problems Wt aJlowed some simple semantic runction.a to be specified in-line. aDd these wert
translated into ill-line code in tbt attribute naJu&t.or. Th, syntax or semantic runctiolls wu expanded to

include multi-YlJu,d expresaiol1l that could include both arithmetic and conditional operators. An
example is:

x. Y. Z :I
it A+l > 6

th'B A+l, 0, NullObt
,18, 1. A. LookUp~SY'MS,MAME)

,ndU
Because we only adopted an expanded expression structuft, this did not chanse the applicative nature of
the specification. The readability or the attribute grammar imprond remukably.

Temporary attributes. Normally attributes ue used to tral1Smit inrormation &round the "'mantic tre!.
But sometimes it is u!erul to compute a Yalue with a semantic runctioll, but. only use thia yaJUt II an
argument to other semantic (unctions MSOcia.ted with the same production. For example, to bt able to

name a value that is printe to thia production in order to &Yoid repeatinl a calculation, or to bold a
value that i! computable in one PaM but not used until a later pass. To accomodate tbi!, simple
identifiers (i.e. FOO rather tban X.Y) can occur in ~be len-band-side or semantic runction.s, and e&n be
referenced a! a.rgumen~ to other semantic functioD.S. Like &ttributes, these can have but. one value
specified and can be written to/read from the intermediate riles. Unlike attributes, thty are only
accessible to ~he semantic (unction! of a single production. Examples ue ERRNUM and OBJ in tbe
secood production or figure 3-1.

Implicit. coPy· rules. Normally, the semantic functioD.S or a production mu!t. derine all syntbesiz.ed
attributes of the len-part symbol and all inherited attributes of any right-pm symbols; if not. then tbis is
an error. HoweYer, in many cues where such definitions are missing it ma.ke! sen!e to automa.tielLlly
supply implicit cOP1-rules.

Ollr formula ror il1lertinl these implicit copy-rules hI.! two naVOr3: one fo~ defining ~ynthesized attribute­
OCCUrTtlleea or • lert-part. non-terminal, and one ror derining inherited attnbutes or rlght:part. s~mbols. ~
R.A is u inberited a.ttribute or right-part symbol R wbich ia not denned by any semantic function or tbls
production, and it there is an attribute L .• ' or the lef't..pm symbol L with tbe same attribute name, A,

tbea u implicit copy·rule or tbe rorm R. A = L. A will be inserted a.s a semantic (unction of tbis

production. U L.B is a syntbesized attribute or tbe len-put symbol L wbich is Dot defined by .&n1

semant.ic (unction, and if tbere is exactly 2!l! rigbt-part. symbol. R, such ~bat R bu a. syntbeSlZed
attribute named B, and it tbere is only oDe occurrence or R in the rigbt-put or the production, then &n

implicit. copy-rule or tbe rorm L. B = R. B will be in!erted.
6

The Pl.!cal-8e at.tribute snmmar hu 2030 semantic runctioas. 1141 or these are copy-rules and 910 or

11

tbe eop1-rul~ U't implicit copl-rul~.

3.2. Repr~eIltill' "tribute ".lues witb Ipplieative da.La structures
MallJ rtsurc:bel"l b ~Jtd the oeetsait1 or 1I0e. creatina Illd eOPJill, &.roulld milly ill3tlllces or
lIoll-atomic nlull 'IC~ II at"', sequtllct1. tUllctiol18, rellLiou, etc. This wu Iddru,ud euly in the

dnelopme ll' or tb. SEWANTIClST.

The SEMANTICIST huilda tlltst eomplex TaJun ia I sepa.l"&t.t dati spaet: tile attribut~instlnce rields ill
semalltic tree oodts bold poiDtel'S to tiles. ulun. Copy-rul" at. implemeDhd by copyio, pointers
iostead or by copyin, tile lis, or IlT'al th" reprenau I let, Thit $Clutioll hloS ben propoud in tbe
literature bJ 10 mill, resu,c:hers that. ie. bu beeom. a son. of folklon.

COPlil1C pointtl"S illJtea4 of c:omplet. data structurn requires tba.L oat b. C:llefw when updatinl th"e
da~ structures. For examplt, wbell tali a, the union of two sey, tb. result mILSt be represeDted in a
maDntr tbat prueM'U tb. two arlument.!; i.e. existilll pointel'S to the u,umellt seU mUlt still be n.lid
~er tbe UNlON operatioD is completed. Otherwise, UNION operation could iaa.dvertILDtly cblnge tbe
value or la lIarelated Ittribut~ill!tance tba.L bappelled to point to the same data structure.

Fiallre 3-3 iII~tr'tts the problem that could &Jist; It' UNION(A, 8) is built !'tom A and 8 bJ modir,iag

A tben 1.111 existia, rerereaces to A will aow bt "tol:l8.

/

/
/

!! --.:_--------.
!-----!-}--!
. __ L ____ .
!-----!-f--!
. __ L. ____ .
I I I
.-----------+

Oae way to ObSffve the,e resttictioM is to cop,. tbe &1IUmen~ befote modirying them. All the existing
pointer'S are preserved b@caust tbe originaJ da.ta structure isn't cbanged. This stnteu can be expensive,

not only in terms or tbe 'pace required to represent so maay values , but also io term3 or the time Duded
to copy targe data. structures.

Tbe SE~'lTI~IST ~u an a.lternatiu stra.teC: implementing larse data. strllcturu in such .. wly that
the, shlle IdeatlcaJ sub-Itructures .. "'-s &II. example, coasider, again . tbe problem of rormins tbe UNION or

two StU. To do ,bit til. SEMANTICIST allocates .. notber cell (set.s are implemented L! linked Iist.l1) that
poinu to botb set. I.Ild set. a sped&.! nag ia this eell to indicate tbat both co mponent! lLle ,et:!, Tbis is
iIIu.stra.ted in ri,un ~ ...

With. ~his ~tra.te&1, i, requires 0111, mar,ill&.!IJ mon memorJ to create I Ilew co mplex v&.!ue (e.g. set or ______ _
deliDltlOIlS III a dec!&1ation list, symbol ta.ble for a new scop.) if it differs just sligbtly from otber complex
nlues (e.g. set of derillitions in a sublLs:t., symbol ta.ble tor In ollter scope) . ..u an example, consider the

semantic: rUDetiOIl VarListO , DEFS = UnionSttOt (VuLlstO . OSJ, VarListl . DEFS) ia the attribute

grammll fragment of ngllrt 3-l. VarLUt..DEFS is a syatbesiJed attribute tbat deaotn tbe set of &11

variablu t hat are being declared ill tbe sub-tree. AJ rig un ~S sbows, because tbt intern aJ representation

or VuL1stl .DaS is reused to represent VarL.l.tO . DEFS, the Illtetll3..1 cell-space oeeded to represent all

ot tbest intermediate set valuts is ao mar. tban th. cell·sp&c. needed to repr~ellt the nn&!, r~ulting set.

12

+-----------+

~ (
+ __ L---__ +

!-----~-}--l
+ __ L:. ____ +

l----~!~--l

+--L..----.
I I· I
+-----------+

y--~--~
-~~~--.....

~----------+
l-----!:J--l
+-L--__ +

l-----!:f--l
+--L ____ +

I I I
+-----------+

F1cun s..f. An implementation or UNION thu preserves shued da.ta structures.

S •• antic !!!! ~ Space

+-----------------------+ +-----------------------+ +-----------+
INAME I OSJ I ... IOEFSI.~--------+ ... -""_1A-Obj I I

, +-------- --+

+-----

F1cure 3-0. Re-usin& internaJ representations in the v&lues or several attribute-instances.

Another example or reusia, IUle. complex values is the table used to resolye symbolic rererences to
variables, types, procedures, ete. This is discuS3ed in sub-section 3.3.

The drawback to viewing complex data structures &oS immutable values is that it's hard to determine when
they are longer needed so that their space can be reused. These va.lues can be copied (rom one attri~ute-­
instance to another and written to the intermediate rile. rt is dirricult to tell that a complex value will
neYer be referenced "ain, and thus that it" space can be reclaimed. Garbage collection in the
SEMANTICIST is a serious problem.

Raiba 124\ also describes &Jlocating large a.ttribute values in a separate data space and copying around
pointers to these v&Jues. He suggest.! doing garbage collection by having the attribute evaluator
determine equivalenee eluses or attribute--insta.nees that are copies or the S&!1le va.lue and rinding the lut
reference to this v&Jue; i.e. the la.st reference to a.n a.ttribute-instaace in the equivalence e1a.s.s. The data
strueture that represent.! this set or list or (unction, ete., can be "relea.sed" and its memory reused alter
this la.st rererenee.

The SEMANTICIST does not use this str1.t.egJ. In our seheme a. complex data value can be used a.s a
component or several other luge data structures. Determining which is the lut reference to such & value
is mueh more eomplicated than jU.5t examining the attribute grammar and looking (or copy-rules. Each
semantic funct.ioll would ha.n to be examined to see whether any or it" argument.!. or components thereor.
eould be incorpo~t.ed into another data strueture tha.t. ~ returned u the rnult or the semantic runction.

13

The ~Iution uaed in tbe SEMANTICIST i3 to maAually identif, thOle lttriout@-occurrences that always
bold "dew" 1'1.11.1" ,nd t.o larb&Ce-conect tbOie U.lUH U I sid .. errect or enluatillg .. dummy ,emantic

functioD. Tm iJ a ul'1 u~i.sr,in, solution rOt ,.nr1.l reuou:

1. tbil 11 a ,id ... rrtcL ~b." mI., oDly work for a puticwar enJul.tion order 'nd beace ma, be
completAi)' iuddWd it the e,..Juation order ebID,es,

2. it 11 "''1 pro .. Lo .rror; iaeorftctly l&I'bact-eolleetiq a lilt i3 tb. mOlt frequent mor in tbe
aut.om~CI,U1·1 ••• ru..d lTalua.tor, I.I1d

3. tbil s~e" doesn 't reclaim a1J dud span.

Oae posaibl' eabancemen1. t.o tbe SEMANTICIST 'tIfouJd bl to impl,mlll1. a IlIb"e collection Llloritbm
bued on dynam.ic rereru.cI count.a. Howner, such an alloritbm sbowd b, impllmenud loa pitt or a more
genetal data. abstraction mecbanism, u well u p&l1. or tbe attribute na.luat..or.

Despite tbe problefTU witb ,arbace colleetioa, we reel lbat. the ability to rr-U3e luge data structur~ u a
component or tbl T:l.lUe5 or maaI dirrereat attribute.instaace, iJ I te, reuca wb, tbl SEMANTICIST
can be l1.5ed La a production compiler oa a small macbillt.

3.3. Data abstra.ction ia semantic runctiollS
Tbe techniqun or tbl prnioUi sul>-section CI.Q be vinnd u a simple bit or ,uuG d,t'lJdi011. In the
SEMANTICIST, attributes and colledion, or semantic runctions an grouped tolether to form simple
ab"tra': d4ta t1lJlu. Tbert "I functions to tru~e ne. ValUIS of .. tIpt, to interrosate a valUt, to

combine values, etc. and the" functions take Cart or aJl lb, bootteepinc bebind tbe internal
representatioQ.S. Thl externa.J represlntations or such values "I UJua1J, on. word widt. The exported
opera.tions or sucb Ion a.bstract da.ta type are the semantic fUDctions tbat man.ipulate tbese ,alues.

Collecting sets or ,em antic functions into abstract data typ" imposes (or perbaps,just mates apparent) 1.

lot or structure in the r"ultin, tompiler. The out-or-linl semantic function! are not an amorpbous
collection of functions; they lie a ,mall set or ramili..,. moduln: I. symbol table mod ule, a module ror
generatins inte rmediate code, a. module for keepinl tnd of literal constantl, a module rOt generating
crOM-reference inCormatioa, etc. Wbu tbil structure on tbe semantic runction! is recogniad thea the
central role or tbe attribute gra.mmar can be appreciated: the attribute gra.mmu describe, bow tbe
various pieces of the translat.or communicatl and coordiuate witb one IDother.

In the mind3 or manl, t be tecbniques or data. abstraction are linked to those or ohjed-oriented
p,ogrammi"g. In the context or an. attributt gr~mll tbe di,tinct ion must be drawn between these two.
Attributt-instances are DOt object.a; tbl' all niuH. Then can be no global variables usociated with the
type ; the, mUlL be associated witb somt Il1.1tao.cI of tbe type, i.e . witb some value. The exported
o perations must be "pun" functiol1.l1.bat do DOt modiCy tbeir argumentl. In the SEMANTICIST this does
not mean tbat tbe imp/emutatioD of semantic fUDCtioM does not U.!e bidden stale variables and side­
errecLS; tbe, Itt uud widely, thougb carefully . Ratber, it means that such uses should not be detectable
through tht IXtArna.ll, ,.iaibl. semantic fUDctioQ3 or the ab'tr~ct da.ta type. The values returned by thesr
semantic fuo.ct.iona sbawd depud only 0.11. tb. &rgumenLS supplied to tbem. On the other hand. the
putieulll representatioll or sucb rnulta may depead quit. beavily 00 vatiol1.5 biddea pieces or state
inrorma.tion.

These techniques will be iUl1.5trated be low b, three dirrer!llt a.bstra.ct data. types und ia the
SEMANTICIST.

!::ll.ll:!! constant.s. Tbt SEMANTICIST coata..ins a module tbat keeps track of addrr~u or memory­
resident COQ3taou. Tbes. addrus~, ar. Wligned "on dtmao.d". Wb,e "'ked for tbe addres.s or a literal a
searcb is. purormrd or a li.st or Jiterw that bau alreadJ beea wiened addresses. If tbe literal b aJ d
breD LUllned an address thea tbia a.ddrUI i.s returned' b . . U ttl Y
this li teral, tbe literal and iu dd . ,ot enuse tb, next &YlJlable addreS! iJ wil/ad to

a te", are put on the lut, and tbe newl,-usiened addre~ aJ .

"
, UI U mUIDld.

Tbil module contai05 tllO privati nri.bl .. , lit liat of pmio!W1 ",i,Dfd raJ d to. "XI I.".
mtffiQry . ;,I, \I, r __ . to. t4' ~ b. Offut..C fL1.t af"l. l tltQ.et.~Q. t,t) b. II. ~ru. MmUl.\ ic fllue\io'l'.l \ bnt two

" Jues would baft to bt paased u at,umenta. aad updattd ".lues would ban to b. retuntd. Tb~.
values would hau to bt- pused uouad th, •• maatie tru u uluH or u.tribute-in.et&J:1ces. Th. r~ult
W'ou.ld be limilar to the p&ttern of IttMeut.ta lad a.muti. (ulI:ctioDJ und to simulate & uriabl. tbat waa
dtsCrihd i. ,"\ioa 2.

Thl SEMANTICIST I1In the (uDctioll OUnt.Oft.l teral UeD tbouah it it DOL Il pur. (uDetiOIl. Two

distinct 3.pplic~ioQJ or tbia (uadloD. with tb. sr.mt ulum.nt will aJW&1S yield tb. sam. nIue, &.lid

although dirr.rtI'-' naJuatioll ordtrs will pu sli,bU,. ditr'"Dt rtSuJ~, the ditTer'Dcl! is not import&Dt.
Unrortuutely tb. auribute &l'l.mm&r (orma..li.!lm dott act. maie aJJowanc!'l.l ror " .. ditr"enct that. malt! 110

difference ." This t.opic desenes turther eo~ideration by resu.leherl in the neld.

Intermediate ~ !leDen.tjoa. List! or intermediate [aaluace i~truetions, list! ot semaatic errors, and li3t.s
ot erOS!-rertrence tn~actio~ are the prineipa.l outputs of the SEMANTICIST. These list.a, especi&.lb the
Jist ot intermediate eode, ean be quite larle; their sin is of tbe same order u the .site ot the semantie tree.
To ieep them in memory would require exorbitant amaunta ot memory and seriousl), re.strict the capacity
ot the compiler, Moreonr the contents ot tiltH listl att nner reterenced by the SEMANTICIST; ooly
the !in&le list. tlla!. represent.! the intermediate eod. tor tb.. eDtin provam is ner eumined, a.nd that
happens after .. ttribute naJuatioa , durinl the code aeaeration ph..,e ot t h. eompiler.

The SEMANTICIST implemeat! the 1i3t! ot intermediate code loS an abct.nct data type w~OM internal
representations re.side in a rile, Tn the attribute anmm&r we I.le eareful to neur combine two lista or
intermediate eode, Listl are built by adding one or two intermediate language toteDS to tbt front ot In
exi.sting list. The implementatioos or these semantie tunetiona jU3t write out these toietl3 to the
intermediate rile wbenenf they are add!d to the tront a list. Since lista art never eombined and siDce tbe
proens generates just ooe list there mllst be only ODe list ever built (or at leL1t aH but one list. is thrown
away). This meana tb.1ot tbe list to whle!:! a t.oitD is ~ded must be the list of a.li toleo.! that will appell
" after" it in the OnaJ list or intermediate code,

To see ho tbis is dODe, eonsider two eooseeutin statement!, It.t-l ; Itzlt-j, in a list of statemeoLS.

A sema.otie tree tn.gmeot ror this i.! $hown below io ngure 3-8; the a.ttribute gra.mmar rragmeot that
describes it WL1 io Ogun 3-2.

SUitList

rtgure 3-81 Generating iote rmediate eode rOt a list or statements

The intermediate code tor Stat-l should be .. t the hew of a lillt., to wbieh the intermediate langu3.ge

tottns rot Stat-l are added. To do thi.! eaell StIIt.LUt node must have a. synthesized attributt­

instance, IUl_O, that prop&.&ates thill lillt,.nlue trom ~b. StIIt-l node, tbrough it.s pa.rent StatLlSt

15

node, lnd on to tbe Sat-1 node. Similllly, each Stat node mU3t. ban an inherited &t.tribute--in3t.&nce,

IU_I, that ~cepta this liat-nlue from ita sibiin, StatL1at node ud propI&ates it dowa to tb. sub-tret

that. it roots. Each Stat node mU3t. We bave a synt.hesized attribute--instance, IUl_ 0, tbat t~nsmjta ~n

updated li3t.-ulue up til, tnt throuah ita parent Stat1.ist node, and thea to the Stat node to ita len.

This list.-vaJue willllan btta tlpdaUd by addinl tht intermediate code for Stat-1 to tht front of tbe list.

Tbis is exactly lit. the p&tt.tn of attribut~ and semaotic ruactioM needed to simulate, uriable during
attribute evaluation; ~b. rut of intermediate code can be yiewed u sort 01 a '&liable.

This construction constn.ins the attribute evaluator to naluate the semantic runctions that ,ene~te
intermediate code in the proper order, so that tokn. are added to the list. (i.e. written to the nit) in the
proper sequence. Notice that w. hau paid a bea,y price ror tbis emcieDt implementation or tb. lilta or
intermediate code. Tbe semantic runctiona 50 cOMtrain tbe naluatioD order tbat tbe n.R _ I aDd n.R _ 0
attributtl ~ be ."luated durinc a ri&bt.-t<>left pua. It Wt were to dtcide to ,enerate intermediate-­
lanluage during a l.~t<>rilht. pus tbea portioM ot tbe attributt If&lDmar would ban to be revised.

The symbol table. Unlite most compilers, tbe SEMANTICIST does no~ b&u a central, monolitbic symbol
table that contajM aJl information about. progum-object3, sucb u Y&liablH, procedures, types, symbolic
const.anta, etc. Instead, this inlormatioD is distributed amonl seTe~ attributH and tbe semantic tree
itaell. In more traditionally structured compilers, the symbol table senes to t~n.ster information .. bout
prolram-objects between tbe plac~ in tbe program wbere tbey are declared .. nd the pl&(es wbere they are
used. However, aa usually designed, tbt symbol table is a IUSI &Jobal Y&liable, and puttins inrormation
into it is a side-errect that is awkward to d~cribe ill the uJue-ori.nted formalism 01 aD attribute
grammar.

Other resea.rchers have addres.sed thi3 problem by creating pairs 01 attributes, X. SYKI'BL _ IN and

X.SYl1T8L_OUT. that together simulate the variable nature ot the symbol table [201. This 50rt. or
construction. whereby sever&! pa.irs or attribut~ a.re used durin, .. ttribute euluation to simulate the
errect or a variable. was described in section 2. One virtue or this .. pproach is that the usual. emcient
algorithms (or manipulating symbol tables can be used. However. unle~ implemented very ca.re(ully, it
will also create many dirrerent versioM 01 a nry large value: a symbol table. Creating so many large
values will strain the capacity or even the largest virtual memory system, and those wbo have used this
approach h:lYe &.\SO integrated special larb&ge-collection procedures into their a.ttribute evaluation
paradigms [24. ~I.

The SE~l-\.'ITICIST takes a dirrerent approacb. E&(h program-object gives rise to a dictionary-object

that will be the va.lue. or part of the value, or various attribute-instances. Each dictionary-object contains
part of the information that is accumulated about program-objects. There is only one dictionary-object
(or a given program-object.

Each dictionary-objtd conta.ins tb. n .. me or i~ program-object and what kind it is (e.g. varia.ble vs.
symbolic constant), u weU u the type ot a ,ariable or procedure object. or the value or .. symbolic
constant. But the dietioD&l1-object does not contain other information, such as where its progra.m-object
is referenced. or in wbat. scopes ie.. program-object is visible. Such inrormation is represented in other

attributes: XREF I a.nd XREJI' 0 attributes ror cross-rererence inrormation, SYMS a.ttributes ror scope

informa.tion.

Each kind of user-defined program-object is usociated with a particular non-terminal symbol that

describes its declaration: ProcLls~ symbols ror procedure-objects, VILrLls~ symbo13 ror va.riable-objects.

TntSpec symbo13 ror type-objects. and CoDS~ symbo13 ror symbolic constant.-objects. Conceptually, the

fields at a dictionary-object a.re. liie the attributes or a symbol. For iMtance, the dictionary-object ror a
va.riable contains the rollowing Cielda:

~AME an index into the eompiler's table or source-text.identiliers

TYPE .. rererence ~ the dietionary-objeet (or the type or thj, unable

OFFSET u inteser ulu. siYinl the otrset, in the appropriau sta.cl-fr&me, of the memory
alJe<Ued ~ thiJ ,ariable

the nestiq lenl or thia ,ariable.

Each of these uJues is an attribute or the V&rLin symbol (see tigure 3-1). These ulues are computed

U part or attribute naluation and then copied into the dietionary·object.

These values are &rOuped together into a dictionary-¢bject in order to make it easy to proposate this
information around the semantic tree - (rom the node uaociated with the object's deelaration to a node
that describes Po reference to th. object. This propocation takes place through a set of attributes (01 many

symbols) wboa. nam. is SYMS: ProcBod1· SYMS, .tat. SYMS, '%pr. SYMS, etc. The SYMS attributes

also incorporate all of the scop. informatioD.

A SYMS "lue is a function that mapa an identifier to a dictionary-object, and thus to th. ulues or
certain attributes or th. semantic tree nod. uaociated with a program-object's declaration. Th. SYMS
values r.re the explicit dat~patbJ used in the attribute gnmm&l' to transfer information from the point or

decl&l'ation to th. point or use. Rec&Jl thU such explicit d .. t~paths ar. necess&l'Y becaus. an attribute
grammar does not. use global yariables or other state information.

The SEMA.."'ITICIST implemen~ a function as a list with all eYen number or elemen~. For each pair or
conseeutive elemen~, the second element is the value of the (unction at the rlnt element. For the SYMS­
functions the further a.ssumption is made that ir the list baa more than one pair with tbe same ri~t

element then tbe value or the function is specified by the pair tbat is closest to the bead of the list. This

aMumption makes it euy to update a SYMS-runction; just ill!ert another pair on tbe front ot th. list.

Furthermore, as discusaed in section 3.2, the SEMANTICIST implemen~ lista so tbat insertin, elemen~
at tbe front of th. list does not. disturb the original list. Consequently aoy existing pointers to tbat. list.
and bence any existing SYMS-functions, remain valid for later or concurrent use. Figure 3-7 illustrates

this. The function that representa & new scope, NEWSYMS, is formed u rollows:
L.t OLDSYMS bt tht function that rtpr.s.nts the parent SCOpt.
L.t DEFS bt tht .tt of d1ctionary-obJ.cts tor the n.y. local yar1ablts.

proc.dnr •• , typ.s .• tc.

For tach OBJ in OEFS
L.t HAKE bt th.· naat of OSJ.
Ins.rt a pair (NAKE,OSJ) onto tht htad of OLDSYMS.

Thl r.sult i. HEWSYKS.

Thua. th. SEMANTICIST divides tbe symbol table into two pieces; dictionary-objects and SYMS·

runetioDi. Dictionary-objec~ are crea.ted during the ti~t pass, and are relatiHly long-lived. But the
SYMS-functions exist only during the second pa.ss, while the SEMANTICIST is "visiting" the sub-tree

that corresponcU to the inclusive extent or the uaociated scope.

3.4. Making the a.ttribute lfa.mmar eYalu~ble in 2 alternating paMes
Heretofore our discussion or tbe PascaJ·8/5 attribute gnmmar has focused on bow it describes the
translation; questions or emciency Iond reasibility bue been pretty mucb hidden behind tbe "curtains" or
dat.a abstra.ction. However, at. leut one aapect of the emciency and fe3.1ibility or tbe at.tribute evaluator
bad to be a.ddres.sed directly io the design of the attribut.e gra.mmar: it bad to be eYaluable in alt.ernating

passes.

The euluability or an at.tribute grammar is determined by botb the attribute dependencies or the

17

new seo~. --+-----------------+
l~~~-~~~!--J----l
+--~-----+ +-----------------+
l~~~_~~L! __ .. !_-_-_O+!--+·l~~!-!~!!-~----l

parent seope

+---~------+ +-----------------+
l~~!_~~L!----·~ .. ---.... !-... · ~:~~2~~-;)----!

+--- ------------+
l~~!-~~~-!~----l

+----~-------+
l~~!-~~!~-~----l
+----- -----------+
~~~!~~~----! 

FtlUJ'e 3-1. Upd .. t.inl" SYM>runctioQ to represen~ .. nested scope havinl local definitions or A and B 

semantic (unctions and by the underlyin& context.free phra"e structure. Modiryin& the latter turned out 
to be a .,ery errectin technique for ccerein, the attribute gramma.r into 2·pua enluability. 

The method should be quite familiar to readers who han desiloed context.(ree, phr",. structure 
grammars that had to be LL(1) or LALR. There are many equally valid attribute gramman (or ,. 
programming langua.ge,_ j~t u (and o(hn beeause) there ue many nlid context,.free gramm&rs (or the 
phrase structure or the language. In order to get the at.tribute grammar to be evaluable in just two 
a.lternating p&!.Ses we sometimes bad to U!l awkwa.rd or artificial constructions. 

The best way to see tbis is with an example. Consider once ag&in tbe productions of rigure 3-1. They 
describe a variable declaration list in Pa"eal. An alternative way to describe the phra"e-structure or 
variable definitions would be: 

VuL1st 

VarIdLlst 

VarIdLlstO 

VarIdLlst COLON Typ'Sp'c. 

ID. 

ID COMMA VarIdLlstl. 

These productions seem more straight-forward and they build a shallower semantic tree. However, 
dictionuy-objects for both types and .,ari .. bles need to be crea.ted durins the first pus. A type-object is a 
component of .. vr.riable-object and must. be available before the vuiablt-object can be created. The 

typt-object for a ,viable decla.ration ~ computed during pUll 1 a.& the synthesized attribute 

Typ,Spec. TYPE. It the abo" phn.ae-struct.ure were used then durin& the first. p&!.S (a lel't.~right pass) 

the Typ'Sp'c. TYPE .. t.t.ribute would not. be computed before visiting the sub-tree corresponding to 

V~rIdLlst. Therefore, the yariable-objects could not be derined until alter the first P&!.S. 

The productions used in the pucal-Se attribut.e grammar (shown in rigure ~l) a.void tbis problem by 

making the Typ'Sp'c sub-tree a descendant of t.he VarLlst nodes. These nodes correspond to variables 

and variablt-object.! in the dictiona.ry are creat.ed loS the value or their attributes. The type-object is 

propa.gated baci: to these nodes u the ulue or the syathesized a.ttribute VarLlst. TYPE. This a.ttribute 

is evaluated during pa.s.'l 1. and hence the semantic functions that creste dictionary-objects can also be 
evaluated during pa.sa 1. 

18 



The PueaJ·S8 attribute gnmmar eonta.i!1.5 maDY pluea liie thi!, "here careful aU-ution to the d!' 
un er Ylog 

phr~e-!trueture or the attribute grammar "u aeceaul1 to uhien two pua euluability. 

4. The Attribute Evaluator or the SEMANTICIST 

•. 1. TIlt Attribut. EuJuation Stratec 
Th. SEMANTICIST Il.US the stratec or "naluatioll ill alt.ernating puaes" proposed by Jazayeri [HI. 
The Paacal·88 attribute grammar is naluabl. in two alternatin, puaes: a len.-toorigbt paaa (ollowed by l 

right-tooleft pLY. For alternatin, pua naluatioll, Scbull [281 describes .. simple strate&.r tbat keeps moat 
or the semantic tree on Iinevll·accesaed. secondary stonee (e.,. disk or tape). The SEMANTICIST uses 
L1ternating pua enJuation in order to take adnnt~e or thia and not ban to keep tbe semaDtic tree in 
main memory. 

Scbulz's evaluation strate&.r stores a lineariud Yersion or the semantic tree in an intermediate me. When 
a semantic tree node. N. is encountered durin, the COUrH or attribute enJuation it is rea.d (rom tbe 
intermediate m. into a stack in main memory. N i.a kept Oil the stack wbile tbe sub-tree descended rrom 
N is visited (and those nodes get put on the stack "below" N) and .. t.tribute-instances in tll&t. subtree ue 
aaaigned values. Th. enJu&t.ion or the sub-tree may l1&e the values or some attribute-instances or N .. nd 
may derine other attribute-instances. When tbe evaluation pLSl oYer N's subtree haa rinished. node N is 
written to the intermediate til.. Becauae or the evaluation order, the nodes or N's subtree will baft 
already been written to the ril •. 

Figure 4-1 describes the SEMANTICIST's paradigm ror semantic tree traYel'Sal and attribute evaluation in 
a left-to-right pa.ss. Depicted is the proces.s or "visiting" a node XO that haa children Xl, X2, ... , Xn. For 
a right-to-Ieft pa.ss the paradigm would be tbe same except that the right-part nodes would be ,isited in 
the order Xn .... ,X2 ... Xl. 

XO :: = Xl X2 ... XD. 

read attrib~te-in8tancts of Xl tro. input inttrmtdiate tilt 
evaluate inhtrittd attributt-in.tanctl of Xl tor thi. paa. 
visit nOdt Xl 
'writt attribute-instances of Xl to o~tp~t interm.diatt tilt 

re&4 attrib~te-instances of X2 trom input intermediate t11t 
.valuate inherited attribute-inst~ct. of X2 tor this pass 
visit node X2 
.r1tt attribute-1nstances of X2 to outp~t int.rmediate filt 

re&4 attrib~te-in.tanc'8 of Xu fro. input intermediate tile 
evaluate inherited attr1bute-instances ot Xn tor this pass 
vi.it nodt Xu 
.rite attributt-instance. of Xn to output int.rmediatt tile 

evaluatt synthesized attributt-instance. ot XO for this pa&s 
ret~rn fro. visit1ng XO 

Flcure .f-1. Alternating-pass ev&.luation paradigm with sema.ntic tree on intermediate files. 

Schulz discuMed an interpretive approach that used & single intermediate rile. The SEMANTICIST 
contains compiled, in-line code to rnd and write semantic tree nodes and to ev&.luate semantic runctions. 
Two intermediate tiles are used ror each pa.ss: nodes are read (rom one intermediate tile and written to the 
other intermediate file. 

This model or attribute ev&.luation c&.lls (or rea.ding nodes rrom the input intermediate lile in prefix order 
and writing them to the output intermediate tile in postrlX order. Thus. ror a. len.-to-right p3.S3. the Input 
intermediate til. eont:uns tbe nodes in pre rlX , len.-tooright order and the output intermediate rile conta.ins 
the nodes in pOCU,rlX, len.-tA>right. order. For a risht-toolert pua. the input intermedia.te lile eont:uns the 

19 



nodes in prerlX, ri&ht..-t.o-\ef\ order &nd the output intermedi&~. rut eontains the nodes in poetrlX, rightrt.o­
len. order . 

. 4.l it. bappelll, the r."I'I' of & poIdtx, l,ft..t.o-ri,bt. order i. tb. urn, u & prerIX. right-t.o-Ien. order; aDd 
tbe reverse of a pcI&ftx. richt.-t.o-let\ order iJ tb, same u a prefix, left..t.o-right order. This trait is 

illust.rat.ed in rIC"" .2. 

M 
I 

+---------------+--------------+ 
I I I 
F G L 
I I 

+-----+-----+ +-----+-----+ 
I I 

i---!---i f 
I I 
K K 

I 
+---+---+ 
I I 

A C D I J 

prlt1%. llft-to-r1sht ---> <--- r1Sht-to-llft. po.tf1% 
M F 8 ACE D G L K K I J 

po.tf1%. llft-to-r1sht ---> <--- r1Sht-to-llft. prlf1% 
A C 8 D £ , G K I J K L M 

ftpre 4-21 Ord.rin, of nodes in intermediat.e nItS 

Thus. if tbe output intermediate tile of & left..t.o-ri,ht pas! is read backwards then i~ nodes ue in the 
order expected rot the input intermediate tile of & rigb~t.o-Ien. pus. Similarly, it tb. output intermediat. 
rue or a right-t.o-len. pa.s! is read backwards then it can be used u the input intermediate rile ror a left..t.o­
right pa.sa. 

In the SEMAl~'TICIST the output intermediate tile or one pus becomes tbe input intermediate rile ror the 
next pas!. Each intermediate rile is first. writt.en during one Pa.s!. tben read backwards during tbe next. 
pa.ss. then discarded. Because the direction or the puaes alternates, an output intermediate rile can serve 
a.s an input intermediate rile rOt the next. piaa if it is read backw&l'ds. It is crucial to this strategy that 
attribute evaluation be done in alternatins puses. 

This strategy does not tell how to build tb, rirst input intermediate file. There are two approaches that 
fit naturally with the strategy. The (irst. approacb is rOt the parser to emit tree nodes in bottom-up order. 
This crea.tes an intermediate tile tbat. is identical to what would bave been created by a lert-t~right 
attribute evaluator. ~o attribute evaluation is done during the first pa.M (tbe parsing pass) because there 
is no prerIX encounter or the semantic tree nodes. The (irst semantic evaluation pas! is a right-t~le(t 
pa.ss. 

The other approach ia ror tbe paner to emit nodes in prerIX order. like a recursive descent parser. 
Accepting the next Dod, rrom the paner takes tbe place of reading the next node rrom the input 
intermediate nle. III t.taiI cue, s,mantic runctiona can be evaluated durinS the same pa.ss '"' parsing, so 
the Cirst semantic pUll is a len.-t(>right. pua. The pa.scll-ge compiler uses this second strategy. 

4.2. Implement.ing Attribute Evaluators 
The code that reads and writes semantic tree nodes, evalua.tes semantic runctions. and ·'visit.s" other sub­
trees is orga.nized a.s two sec." or mutually recursive procedures called production-procedure". There is a. 
distinct sec." or pps ror each p~. There is a on ... to-one correspondence between productions and the 
production-procedures of a pas!. 

Each grammar symbol bIoS it.s own type definition. This type is a record that containa one lield for every 
attribute of the symbol. A semantic tree nod, is implemented u & v&l'iabl. or this type. E~h 

20 



production-procedure ha.s one value/mult pan.meter and 'eYer&llocal variabl~ tha.t hold urioua ~ind3 o( 
semantic tree nodes. The panmeter correspond" to tbe left-part non-terminal or the USOeiated 
produetion: tbe 10u.I variabl~ correspond to the right-part symbola of tb. production. Tht body or 
eachproductioo-pfO(edure: 

- rtada rieht-pan semantic tree nodes rrom the input. int.ermediate rile, 

- computet .. Jun and dennes at.tribute-ill!tanees by IMigning to the appropriate record-nelds, 

- ''TiJita'' tht ri,ht-pan nodes by calHn, other production-procedures, pa.ssing tbe right-part 
node u the argument., and 

- writes right-put nodes to tht output. int.ermediate rile. 

The prototypica.! production-procedure ror a left-tA>right pus is given in ngure 4-3; it is quite similar to 
th. enJuatioa pandi,m described ia ngure 4-1. Figure 4-.. shows the pus I, left-tA>right Pro<iuction-

procedure ror the productioa (eUg1 tlO :: = d1g1 ~l d1g1 t] or ngure 2-1. By convention, the name 

of the pro<iuctioo-procedure in pa.ss i that correspond" to production FOO is FOO _PPi. 

This organization is similar to t.hat of a recu~iTe descent compiler. Notice that the stack of semantic tree 
nodes is intermixed with the system run-time stack that support.! procedure caJI/return, parameter 
pUling, and recunion. 

/. productlon FOO 1s XO ::= Xl X2 ... XD. */ 

FOO PP1 : procedure (LHSptr); 
d~clart 

LHSl)tr po1nter, 
XO buea LHSptr XO_n04eType, 

Xl Xl nodeType, 
)(2 )(2:nodITypl, 

Xll XD_nodeType; 

call aetHode( Xl); 
/* e .. luate lnhlr1tld attrlbute-lnstances of Xl tor pass 1 ./ 

call PP1 ( Xl); 
call Pu~dl( Xl); 

call attNodl( X2); 
/* eyaluatt inher1tld attributl-instancts of X2 tor pass i */ 

call PP1( )(2); 
call PutHodl( X2); 

call attModl( Xn); 
/* lYaluate inhlritld attribute-lnstances of Xn tor pass 1 */ 

call PP1C Xn); 
call PutHodlC Xn); 

/. lYaluatl synthls1ZId attributl-1nstances of XO for pass 1 */ 
rltun: 

Ind; /* of procedurl rOO_PP1 ./ 
Flgure 4-3. The prototypical production-procedure ror a lert-to-right PaM 

Listed below are some figures describing performance chara.cteristics of the three ve~ions or the 
SEMANTICIST. The object-code size figures were computed by adding together the size or eacb module 
in the SEMANTICIST, ignoring whetber or not the module occured in both pa.s.ses. Tbe liaes-per-minute 
figures were detemined by avera.ging the Iines-per-minute observed on a set or 6 test. program! of varying 
sizes; the ngures ror individua.! test progranu can be round in tbe appendix. 

21 



Oi«it.List PP1 : procedure (LHSptr); 
aeclare -

t.HS})tr ~1nter, 
41g1t10 b .. ed LHSptr d1gita_DodeTypt, 

41~ tal 4111 t.a BodtTypt, 
cUC1~ 41C1~_lodtType: 

call a,tHodtC d1Cta1); 
/* .~luate In er1ted attr1bute-ln.tance. of diS1t.l 
dlg1t.l.RADIX = dlSlt.O.RAOIX; 
dlgital.POWER = dlSitaO.RAOIX * dlS1taO.POVER; 

call PP1( dlglt.l); 
call PutNodet diglt.l); 

for Pal, 1 */ 

call aetHode' diI1t); 
/* .~luat. in er1ted attribute-in.t&Dce. of dlS1t for Pal, 1 */ 
d1g1t.POWER = dlS1t.0.POWER; 

call ?PtC d1g1t); 
call PutHodet dlgit); 

/* eYaluat. s~th •• ized attrlbute-ln.tance. of dlg1t10 for pall 1 */ 
d1g1tsO.VAL = dlg1tal.VAL + dlS1t.VAL; 

retun; 
end; /* of procedure D1S1tsL1.t_PPl *1 

Ftsure 4-41 Pw 1, lAa-R production-procedure (or [dlgl taO :: = dlg1 tal digl t] or figure 2-1 

object-code (by tIS) orlsinal UEdat.d automatic 

total 68387 ei7eO 70722 

productlon-procedure. 3404e 413e7 38417 

S in production-procedure. 681 6" 641 

~ speed (11nes-per-=inut.) 6ea 460 33; 

The notion or a production-procedure ,hell is very userul (or analyzing the perrormance or the 

SEMANTICIST. The shell or a production-procedure is that production-procedure without any or the 
code to evaluate semantic (unctions: just the procedure prologue ~nd epilogue, calls to GetNode and 
Put.Node, and t.he recursive calls to production-procedures ror the right-part non-terminals or t.he 
production. The shell or a production-procedure is slightly dirrerent ror a left-ta-right paM tha.n it is ror a 
right-tc-Iert pw (ir the production ha.s more than one right-part non-terminal), but the siu or these is 

exactly the same. However, the pus 2 production-procedures or the SEMANTICIST do not contain any 

PutNode calls because the la.st attribute evaluation pa",s need not write an intermediate tile or semantic 

tree nodes; consequently, the production-procedure shells ror the second pa.ss also do not have PutNode 

calls and so are smaller than the the nrst. pI&! shells. 

The tota.! sin of a.ll the production-procedure shells gins the code-size "overhead" or a PaM. The 
running-time 01 , shell ~lla the d,umic (Le. run-time) overhead or a PaM: that is. the amount or time 
the pass will tail, excluain or the time needed ror any semantic runction evaluation. Inrormation about 
shells is available only ror the automatica.!ly-generated production-procedures: the total object-code size or 

- a.! I the shell" (or pa",s 1 is SSQS bytes. (or pus 2 it is 38twl bytes. The average running time or both the 
PaM 1 and pa.sa 2 shell" is 838 lines-per-minute. The appendix gives the individual figures ror each 
member or the perrormance test-suite. Note that the figures on shell performance can be usefully 
compared only to the automatically-generated vel'3ion or the SEMANTICIST. 

".3. Attribute Evaluator Optimiutions 
The previous sub-section described the buic attribute evaluation paradigm. according to which the 
SEMANTICIST wa.s produced rrom its attribute grammar. However. there were sever&! optimizations 
that were applied to t.his paradigm. Some or these were simple, loca.l re-arrangements or the production­
procedures. or minor modifications to the alternatinl pus evaluabilit1 criterion (see page l~ or 181). 

22 



Others involved more complicated gJob&! an&!ysi3 of the attribute grammar Thi3 sub-sectl'on 'U d ' . ..., ucnbt 
three optimizationa. Two of the three lie the most etrectiYe of the optimiutiona that were applied. The 
other was a ctJmplex optimization that we expected to be ertectiYe. but th&t. turned out to be 3. 

dia&ppointmeD~ 

Shor!tlli,M intermediate !ili!:. One important and obyioua optimization is to reduce the a.mount of data 
trauftmd b.t..tell tbe intermediate filH and memory by not writing attribute.iD:ltances that will never 
b, ,..rtrtllc:td after tbe current paaa. In a two paaa n&!uator this meana that we m~t. write to the 
intermedi,.tt Iile only tbose attributH th&t. are deCined in paaa 1 and referenced in paaa 2. The majority of 
&ttribtl,t~3 in our &ttribute grammar are ~ed onJy during tbe same pa.s.s in whicb they are deCined; the 
attribute grammar ba.s S98 total attributH, onJy 168 of them are actually traD:lferred between the 
intermediate Iile and memory. 

The etrect of not writing sucb detld attribute.inatancH to the intermediate Iile turna out. to be very similar 
to an enluator optimintion suggested by Surinen 1251. He proposes th&t. attributes be diyjded into 
"significant" at.tributH and "temporary" attributes. An attribute is "significant" if it is referenced in a 
la.tn visit tban the one in which it wu deCined; otherwise it is "temporary". "Significant" a.ttributH a.re 
kept. in the data structure ror a node (roughly corrHpondinl to the SEMANTICIST's intermediate tiles); 
"temporary" attributes are kept on a staci (analogo~ to tbe SEMANTICIST's stack-resident. loe&! 
variables or production-procedures). J&uyeri &ad Poufsky 11S1 an&!yze t.his &pproaeb in detail for pua­
structured &ttribute naluators. especially alternatin, pu.a evaJu&tors. Their experience is aI!o that. mOISt 
attributes are "temporary" attributes. 

Nestins productioa.procedures. Another optimintion we conaidered wu to nest the productioD-procedures 
within one another when possible. By doing thi3 we sought to avoid explicitly pusing & pointer to the 
left.part node u an argument to the nested production-prondure; rererences to lert-put attribute. 
instanc'es would just be up-level variable references. Furthermore, we hoped to eliminate. in tbe partnt 
production-procedure. many copy-rules whose target or source wu an attribute.iD:ltance of node X. where 
X wu the node that wa.s not explicitly pa.s.sed U &n argument to the nested procedure. This could be 
done because tbe a.ttribute.instances ot X would be known to to be the source or target of such a copy­
rule and rurthermore. they would be a.ddre!Sable rrom within the nested production-procedure. 

Figure 4-5 shows an exa.mple of how this optimization worb. The statement3 that are commented out 
a.re the usual statement3; they are replaced by the non-commented statement3 on the same lines. which 
may be a null statement. 

This turned out not. to be an e([ective optimization ror two reasons: 

1. it wa.s not applicable very often. a.nd 

2. even when it could be applied. most of its improvements could be realized anyway through the 
8tGtic lub,,,mption optimization described later. 

Production-procedure GLORP _PPi can be nested within FOO _PPi only if production FOO contains the 
onJy rilht-p&l't occurrence of the len.-part symbol of production GLORP. Our attribute grammar ha.s rew 
such occurrenCH. and no instances of tbis optimization survived in the manually-coded production­
procedures. LINGUlST-8e does not. implement. this optimization. 

~ subsumption is the third optimization. It3 effect is to eliminate copy-rules and to decre",e both tile 
stack space needed to evaluate an attribute grammar and the size or the intermediate semantic tree riles. 
Static subsumption can be applied to the entire dUoS or "tree-walk" evaluators [lSI, but we will discuS! it 
only (or alternating pa.s.s evaluators. 

In order to understand static subsumption it is ~erul to reconsider how tbeevaluation paradigm ca.lls ror 
information to b, communicated around the a.ttribute evaluator. Attribute-instances are allocated on the. 
stack by making them local variables or recursiYe procedures. so that right-part attribute-instances a.re 

23 



*/ 

X.A 
X l1ltO.B 
X-l1.t1.C 

X ::= Y Z. 

x X l1st1. 

= X l1ItO.A. = A.B, = X.c 

x.a :z t~.~, X.C : f Z.C , 
Y.A - . 

x lUt PPi : 
-dlcllrl 

L.HS-pt.r 
X !lItO 
X-
X lUti 

procldurl (L.HSptr); 

-pointer, 
b .. ld LKSptr X l1.t DOdlTypI, 

X-n04ITypt, 
X:ll.t_DOdtTypt; 

X PPi : procldurl 
-dlcl~rl 

(I..HSptr); 

L.HSptr -pointlr, 
X baald I..HSptr X nodlTypl, 
Y V-nod ITyp I , 
Z z:nodITypt; 

call GetNodl ( Y): 
Y.A = heX ll.tO.A); 

call PPH Y1; 
call PutNodI( V); 

call Glt.Hodl( Z); 
call PPi ( Z); 
call PutHc41C Z); 

X llstO:B = f(Y.B); 
X-llstl.C = g(Z.B); 

rttlIrn; 
Ind; /* ot procldure X_PPl */ 

call Get.HodiC X); 

call PPH X); 
call PutNodl( X); 

call GetHodl( X_listi); 

call PP1( X list.i); 
call PutHodiC X_listi); 

rlt.urn; 
end; /* of X_llSt._PPl */ 

/* Y.A = h(X.A) */ 

/* X.B 
/* X.C 

= fCY.B) */ = g(Z.B) */ 

/* X.A = X llstO.A */ 

FIgure .. Sa An example or nestin, ooe production-procedure within another a.nd or the optimizations 
thaL could then be done. 

directly addressable u local vviables or the corresponding production-procedures. Lett-part attribute­
instances are referenced through a poioter tha.t i~ pwed as an argument to the production-procedure. 
This pointer represent..s t.he ooly communica.tion bet.ween the va.rio~ production-procedures. 

An alternative to p~ing a. point.er is to copy the attribute-insta.nces or a node into a global varia.ble just. 
prior to caliing the production-procedure and then, alter returoil13 trom that. call, copying these attribute­
instances back to the local variables. Suppose tha.t FOO is a. product.ion whose lef't.part non-terminal is 
symbol S. (f every instance or attribute S.A is always copied to & specific global variable, 5&1 S _A. berore 
entering FOO _PPi, then code in the body or FOO _PPi can obtain the va.lue or the lert-part attribute­
instance s.:\. rrom the global variable S _:\.. Similarly. it FOO _PPi defines a. [synthesizedl a.tt.ribute­
instance S.B and by a.s.signing the value to global varia.ble S_B. thea any production-procedure with an 
5-node in i~ right-part can a.ccess global variable S_B to obtain the value or a.ttribute-instance S.B. (f 

this is done tllen we sa.y that. tile a.t.tribute is 1t4ticilily ailocated. 



In most cases, copyin, several attribut&-ill!t&nces bad and rorth is more expell!in than Puainl & sin Ie 
pointer and makin, indirect references throulh it. Howner, if the semutic (unction that derines ~II 
lttribut&-ill!tance is 3. copy-rule whOle source and t&tlet are merely ditrerent ill!tances or the same 
lttribut4, and if thi! attribute it st&t.ically allocated, then no explicit code is required t.o implement the 
copy-nalt; tht proper value is already ill t~e &lobal uriable. We say that such a. copy-rule is IUh.med by 
tht Rliic alloe&t.iOD or the attribute. Fl,urt 4-8 show. a simple example of how copy-rules can be 
sublamtd; the subsumed copy· rules are commented out. 

/-
Product.loD LISTprod 11 

S ::= X S1. 
Sl.A = S.A, 

X.A = S.A. 
X.E) 

S.B = St.B, 
S1.C = tes.c, 

S.D = gex.A, S1.C, S1.0) 

global Y&r1able. tor .t.at1c at.t.r1but,. 
*/ 

~ecla.rt 
S A A attrlbTypt. s:a S:att.rlbTypt; 

LISTprod PP1 : proc,~ure (LHSptr); 
~tcl&r' 

LHSptr pointer, 
S b"t~ LHSptr 5 nOdtTypt, 
X X-nodtTypt, 
Sl S:nodtTyp,; 

call Ot tHod. ( X); 
X A := S A; 

cal! PP1C X); 
call PutHode( X); 

call OetHode( S); 

Sl.C := t( X.E, S.C); 
call PP1C S); 
call PutNodeC S): 

S.O = geX.A. Sl.C, S1.0); 
retur'll; 

.n~; /* ot LISTprod_PP1 */ 

/* Sl.A .- S.A */ 

/* 5.9 .- Sl.8 */ 

Flcure .. 8. A simple example of static subsumption. 

The penalty ror eliminating this explicit copying is paid at those points where the arrected attributes ue 
not derined by subsumable copy-rules. In these ca.ses a. new value will be ~igned to the global vuia.ble 
(or propa.gation to the sub-tree. However, the prnious value of the globa.l variable is not "dead"; it may 
be referenced later in when ev&luating attributes at the parent. node. Hence the old value must be saved 
in a temporary variable in t.he production-procedure's stack-trame. Arter visiting a. right.-part node (i.e. 
UPOIl return trom the call to tbe production-procedure) the saved value mu"t be "restored" to the global 
variablt. A turther complication is that any neWly-computed, right-part values (i.e. synthesized. right­
part &t.tribut&-ill!tances) may be used e13ewhere in this production-procedure intermingled witb rererences 
t.o tb, old v.!ue ot the ,lob&! uria.ble (Le. the v&lue ot tbe left.part attribute-instance), and &!ter this old 
value haa been restored to the global variable. Figure 4-1 shows the production-procedure ot the eulier 
example modiried as would be required it attributes S.C and S.D were statically allocated. 

Stat.ic subsumption can be even more widely applied by allocating several dirrerent a.t.tributes to the same 
glob&! variable. The major restriction is that two ditrerent attributes ot the same symbol can not be 
allocated t.o the same global variable. Many more cOPI-rules are subsumable by such a strategy and 
hence can be eliminated. In the example above. S.A and X.A could be allocated t.o the same va.riable, 

thereby enabling us t.o eliminate the copy-rule X. A : = S.A. On the other hand, this strategy may 

require that glob&! variables be saved and restored more rrequently. 

25 



l-

*/ 

Product10n LISTprod 1. 
S .. - X S1. 

Sl.A = S.A, 
X.A = S.A, 
S.B = Sl.S, 

S1.C = teS.C, X.E) 
S.D ~ ,CC.A, Sl.e, S1.o) 

global ..r1ablt. for stat1c attributt. 

dtclart 
S A A attr1bTypt. 
s-a a-attr1bTypt. 
S-C C-attr1bTypt, 
s-o 0:attr1bTypt; 

LISTprod PP1 : proctdurt CLHSptr); 
dtclarl 

LHSptr po1nttr. 
S baald LHSptr 5 nodtTypt. 
X X-nodtTypt, 
51 S:nodtTypt; 

/-
local Tar1ablt. for laT1ng 
tht Talu •• of global Tar1ablt. 

*/ 
dtclart 

S C PZQ e attribTypt. 
S:O:PZQ O:attr1bTypt; 

dlclart 
51 C C &ttribTypt. 
Sl-o O:attrlbTypt; 

call GttNodlC X); 
X.A := 5 A; 

call pp1( X); 
call PutNodtC X); 

call attHodtC Sl); 

Sl C := t( X.E. S_C); 
S C SAY := S c; 
S-C- := ST C; 

I- 51.A .-

cal! PP1( 51); -
Sl 0 := S 0; 

call~tHodl( 51); 
I- SaTt a ntw right-part global Talut *1 

I- S.B := Sl.B *1 
S 0 = geX.A. 51 C. 51_D); 

rltlIn; -
Ind; 1* of LISTprod_PP1 */ 

FIgure .. 71 How global variablH must. be sand and then restored under static subsumption. 

Static subsumption aJao reduces thl amount or stack space needed to store attribute.instances. Ir a 
collection or attribu~inatances i.1 beina used to transmit inrormation around the semantic tree via copy­
rules then explicit. nelda iD the record that represents a node need not be allocated. This can result in 
significant. decreue both in t.be sta.ck spa.ce needed ror nodes and in the size or the intermediate rile. 

In general. tbe extra code necces.s&J'Y to san and lat.er rest.ore a glob&! variable is as mucb .., the code 
saved by subsuming several copy-rules. For static subsumption to be efrective we must be carerul to 
statically allocate a set. or attributes that. allows many copy-rules to be subsumed. but that. doesn't cause 
globa.l vuiables to be saved and restored too often. When the SEMANTICIST was manually coded only 
those attributes witb obviously hiah pay-off were statically allocated. LlNGUIST-Se uses a more 
syst.ema.tic. polynomia.l-time algorithm to select the attributes to stat.ically allocate. It statically allocates 
more attributes than in the manually-coded SEMANTICIST. but even thi.1 algorithm will not always rind 
an optimal set of attributes to stl.tically allocate. 

Our experience indicates the. it is very efrective to allocate to tbe same global uriable all inherited 



aUributes tbat bau tbe same Dame. AA enormoua amount of context information is copied down the tree 
via. inherited attributes. Static subsumption can eliminate most ot these copy-rules " fery little cost 
becuse thia context. information ia not orten updated. 

The PIICal-88 attribute grammar bu 1147 copy-rules; static sUbsumption eliminates 74~ ot these, or ~%. 
S~ 'lIblQmptioa eliminates 13% of the code that implements semantic runctions in tbe 
SEMANTICIST', "tribute enJuator (Le. not counting the "shells" of the attribute naluator). At nrst 
blu.~ ttail La diaappointinl in an optimization that cn potentially eliminate, on aYer&ge, half of tbe 
semutic functions. Howeur, notice that each copy-rule genen.t.s very little code. wbere .. semantic 
functions tha~ aren't copy-rules can be quit. l&rge. 

We a.bo timed yenions of the SEMANTICIST that were automatically gener&ted without huing static 
subsumption applied. The result.a &re tabulated in the appendix. Becaua. the eyaluator ia I/O bound 
tbere wu esaentially no cbange in running times. 

Static subsumption haa some el.ment.a in common with a method investigated by Ganzinger 1111, who also 
suggest.a trying to allocat. a.ttribute-instances to global variables. His main purpose is to conae"e sto!"1.&e 
by allocating many attribute-instances to the same variable. However, bis algorithm tries to do such 
allocation independent of u attribute evaluation str'teg,y and hia result.a &re pesaimistic. On the other 
band, st"ic subaumption is tailored to a particular eYaluation stn.teg,y, and it permits sa.ving and later 
restoring the values in global uriables. 

Static subsumption is also similar to some optimintions done by the GAG tn.nslator-writinj-system [lei. 
GAG uses a.ttribute-stads and static uriable! to hold some attribute-instances duril1l "tribute 
eyaluation. Static subsumption is a sort of hybrid of these two techniques in that the etrect. of saying a.nd 
then restoring a globa.! variable is simil&r to tbat of a.n attribute-stack. Tbe possibility, under static 
subsumption, of allocating several attributes to the same global variable would correspond to using a. 
single stack ror several attributes. 

4.4. The SEMANTICIST and tbe Pasc&!·8~ compiler 
This sub-section describes how the SEM-'u'ITICIST rits into the rest of the Pa.scal-8~ compiler. ...., wu 
mentioned in the introduction, the intent of this pa.per is to describe how attribute gramman were used in 
the compiler rather than to describe the compiler itselr. Therefore, this description will be brief a.nd a.t a 
very high level. 

Figure 4-8 is an overview of th,e Pa.scal-8~ compiler. The compiler is organized a.s seven logical pha8t~. 
which are partitioned into rive physical paUt8. Each pha.se takes a.n intermediate representation o( tbe 
program a.nd "muaages" it to produce another intermediate representation o( the progra.m; thus, the 
origin&! source pr0tnm is incrementally "m~a.ged" into the resulting object-code. The phases 
communicate with one another both through these intermediate mes, and through various data.-structures 
in memory (esp. the diction&ry and the table of source-text identifie~). This is a pretty traditiona.1 
orcuiJation for ~ compiler bosted on a. mini-computer or micro-computer. The SEM.A.NTICIST 
compriaes two of the pha.ses: one in tbe ri~t pass and one in the second pa.ss. The ri~t phase of the 
SEMANTICIST is the rinc. attribute evaluation PaM; tbe second pha.se is tbe second attribute eva.1uation 
pass. The SEMANTICIST shares the first paM with the lexical a.na.lyzer and tbe pa.rser; the second pass is 
entirely the SEMANTICIST. 

The diction&ry is created by tbe SEMANTICIST during the first pass, is used by the SEMWTICIST 
during the second pua, a.nd is lett in memory ror use by later passes. Tbe diction&ry is one of the data.­
values that. is the result. of at.t.ribute evaluation. 

Other results or attribute evalua.tion are the lists of semantic erron, cros.s-reference transactions. a:ld 
int.ermediat.e-cod. instructions. These are generated in intermediate mes th&t are used by the third a.nd 

27 



(:~:iiii:~~ +-------------------------+ 1 ~ IcanDer. parltr 1'-___ 

+-------------------------+ attr1butl IT&luator 1 I 
+------------j------------+ 

+-------------------------+ 
attr1butl IT&lu&tor 2 I 

+-------------------------+ 
opt,1ollal 

+-----------------+ 
I .1.ant1c Irror. I 

cro,,-rlterlnCI 
+------------ ----+ 

+-------------------------+ 
codl Slnlrat10ll I 

+-------------------------+ 
I 

+-------------------------+ 
t1nal &Ss.ably I 

+-------------------------+ 

FIgure .. 8a An overview or the Pa.scal-8e compiler. 

( ------------r NUl Table 
Data 

OYlrlay 
-------------

+-------------+ 
I MI.a~y- I Res141nt 

01ct.lon&ry 
+-------------+ 

rourth overlays. Section 3.2 described how we &rrange to bave a data-nlue that is the result of attribute 
evaluation be written to a. file without violating the applicative na.ture or a.n a.ttribute gnmmar. 

The intermediate tile of semantic tree nodes produced by the rirst pa.s.s or the SEMANTICIST is the 
compiler's intermedia.te tile between overlay 1 and onrlay 2. Because there is no attribute eva.luation 
after the second pa.s.s, the SEMANTICIST does not produce an output intermediate file of semantic tree 
nodes during the second pa.,sj. The compiler's intermediate tile between overlay 2 and overlay 4 is the list 
or intermediat~code produced by the SEMANTICIST as a result of attribute evaluation. 

5. Conclusions 
The moat interestin, thin, we learned (rom this project is that the SEMANTICIST is emcient enough to 
compete in the marke\ plac. with hand-coded compilers. Surprisingly, the SEMANTICIST spends half its 
time in readin, and writins intermediate /'iles: besides writing a.nd then reading the intermediate liIe or 
semantic tree nodes. this includes writins the intermediate rues or semantic errors, croM-reference 
tra.nsactions, and intermediate code ror the cod~generator. Any inemciency due to copying values around 
the semantic tree is not great compared to the rest of the evaluation process. 

We were somewhat surprised by another conclusion: attribute evaluation.in alternating pa.s.ses is quite 
restrictive. At the beginning or the project we recognized that other semantic evaluation strategies could 
theoretically handle a wider claaa oC grammlLtS, but we thought that. alternating pa.s.s evaluation wa.s 
robust enough to speciCy the translation or most prognmming languages. We still think this is true but 
we have come to appreciate that. it. can take many pasaes to evaluate some gramman. It is irksome to 
discover that one pa.ss or the naluator may do little but turn the tree around. or cou~e, ir we ba.d it to 



do our "ain Wt would st.ill uat aJt.ern&tiD& pua naJu&t.ion in order to be able to pu& ~ !inumed 
semantic tree into intermediate rilet. 

Attribuc.. aramm&l'l were oricin&lly propoled (or apecityina the semantics or lansuyes. We haTe &lso 
(ouad t.laem to be a ,oed way to speci(y the desiln ot ~ compiler. By the nature of the utribuw cnmmar 
(ormalIIm, all dUa paths are explicit; th&t.'s the function of &ll thoee copy· rules. Although this may be all 
oblUde to deri'Jilll an emcient implementation. it. is exactly the intormation a good design should specify 
and document.. Fmhermore. the &t.tribute &nmmar haa a TerJ cohesive innuence on all &.3pecta of tbe 
compiler that it touchet. We mentioned earlier (section 3.2) that the a.ttribute grammar control! how the 
various modules or the SEMANTICIST inten.ct. with one another. The automatically·gener.ted ~ttribute 
eniuator se"es u a sort of "glue" to connect the other component.!. This "glue" is nexible and euily 
modified while still beinl sutriciently relular and tn.ctable that it cu be mechanically checked ror 
cOll!istency. Much ot the maintenance to the SEMANTICIST is done u maintenance on the attribute 
grammar; &tter each modificat.ion the attribuc.t naluatcr is mechanically relenerated a.nd in the proeeM 
LINGUIST·M cheeo that &ll attributes art defined where they should be, that no attribute is mUltiply 
derined. and that allot the fariolLS optimizations renect. the new structure or the grammar. 

Furthermore. the intermediate riles that connect. ont pua wit.h another ate lineariud semantic trees. Tbis 
structure need not. be explicitly desi&ned or maintained, and it is conceptually the same (rom one pus t.o 
another (altbough ita actual physical structure may f&rJ ror emeiency considerations). At !'int. we s&w 
this as a disaduntage. For example, an identifier reterenee in an expresaion can not be chanced to a 
niladic procedure reference when the compiler identities it u such. Now, &tter writing and lLSin, tbe 
attribute grammar and the productioD-p~edures, we Set this stability u a positive (eature. It tb. 
structure of tbe semantic tree remains tbe same througbout tbe compiler tben ditrerent upecta of the 
translation can be specined separately &oS collections of semantic runctioQJ asaodated witb u uncbanging 
phra.se-structure that. is specified by lobe context-rree productions. These separate collectiona ot semantic 
runctions can communicate with one I.notber tbrough tbe a.ttributes, and this communica.tion can be 
checked ror consistency. 

Using a common intermediate representation to unify tbe compiler is not. unique to attribute g~mmars. 
For instance. in [121 the authors diseusa tbis u a faluable technique to use with tbe S/SL compiler·writing 
system. However. unlike systems sucb as S/SL. an attribute grammar does DOt. directly speciry an order 
or evaluation; i.e. tb. naluator-pasa during wbich a semantic runction sbould be comput.ed. Thu.s. 
partitioning an attribute grammar into runctional pieces need not Iu.d to a similar. pbysical organization 
or the compiler. 

The SEMANTICIST is tbe result or combining and trying a lot or idea.s about how to build a compiler 
(rom an attribute grammar. Ma.ny ot tbese idea.s bad appeared in the literature. some were developed 
along tbe way. Some ot the ideas worked well. some were not 50 effective. Sometimes our preconceptions 
about wbat. wu important turned out. to be right; often they did not. What is most interesting about this 
erron ia tbat tbere were enough good ideas available tbat a major part of a production compiler could be 
automatically generated from an attribute grammar. 

Acknowledgements 
In a project so larae. and with results accumulated over 50 long a period of time, there are simply too 

many people whose cont.ributiolU were important ror tbem all to be listed here. Even so. the Pascal·86 
compiler (of wbicb the SEMANTICIST is only a part) was a. team effort and it came to (ruition only 
because of tbe bard work, dedication, ,nd occasionaJ brilliance. or the originaJ development team: Jobn 
Crawford, Dain Samples, Sue Ojeda and especiaJly tbe Pa.scaJ-86 project leader. Tom Wilcox. 

Since the originaJ release of tbe compiler sneral engineers have worked on tbe SEMANTICIST. enhancing 
it! capabilities and working to automatically generate it (rom tbe attribute grammar. Without tbe efforts 
of Ron Farrer. Marek Juiorek. Mike Ouye, and Nancy Simmons many of the results of this paper would 
not exist. to be reported. Ron Farrer wu especially instrumental in rinaJly generating tbe SEMANTICIST 



(rom it.s attribute grammu, and in determining mOlt or the performance rigures that. ue cited herein. 

And finally, I &m indebted to the engineering manacement or Intel's Dnelopment Systems Ope~tion ror 
ulowinl me to bother their enginters aDd to h&ft access to a lot or proprietary intorm&tion, eun a.tter I 
waa no longer aaaociattd wit.h the compan1. 

30 



I. Appendix - collected (acts and figures 
obllct-eocll (byt .. > or1!!nal u:edated au~at1c 

total 58387 ei7eo 70722 

productlon-procldurl. 34048 41367 38417 

I ln productlon-procldurl. 581 5il 641 

productlon-procldurt Illtll •. p .... t (includins GttHodl and PutModl) 6Si5 
production-procldurt ,11111 •. pass2 (including only GttHodt) 3880 

productlon-procedures yithout Itatic subsumptlon 43148 
141 of non-.htll production-procldurl codl Iliminatld by static sub.umption 

SEMANTICIST's ~ (lintl/.in) 
test l!!!! original updatld automat1c shtll 
mITT Pros 10 14 10-r 

1 3e 1ge 141 lie 240 
2 63 28i li2 212 353 
3 108 4ge 3e2 381 6Si 
4 10i3 2i3 713 30& 874 
5 24i3 10S1 662 478 1611 
6 2514 1063 638 463 14e4 

aTlragl 658 450 33~ 838 

nl.. t1~r .. rlfltct only tht SDlAH'TICIST. not tht Intirt COlIpUtr, nl 
figurls ~or tht productlon-procldurt slltlls art aT&ilabll only for the 
automatically-gtnerated 'IrsloD, nt figurls for tht Null Pfogra. arl 
Includld to s!lOY tilt ru-time onrhnd for just loading tht progru Into 
mlmorr. A compar1son of tilt figures for tht updated 'traion of thl 
S~ICIST (T3. 0) y1th thou for tlit automatically-glnerated "rsion sho"s 
that thl latter is S1IIallir and hlDCI loads futer. "but that tht tormtr 11 
fasttr vhtn this o'trhlad Is discountld. nis rtflects tht continuing etfort 
to put mort tunct10nal1 ty into thl SDlAH'TICIST. and hlnce thl nlcessi ty to 
tradl timt for spact in order to do this. 

nl Pascal-se attributt grammar 

sourct l1nts 

sJ'1IIbols 

a.ttr1but •• 
t',;o-pas. 
static 

production. 

sl.antic tunct10ns 
copy-rules 

Impl1c1 t 
subsumld 

107 

2030 

156 (181 of all attr1butes) 
367 (411 of all attributes) 

1147 (671 of all semantic functions) 
910 (791 of copy-rules. 451 of all functions) 
746 (661 of copy-rules. 371 of all functions) 

31 



[11 

121 

References 

W.B. Ackerman and J.B. Denn~. 
VAL - IS vcsl,,, oriented cJlgoritAmie IcJ"guge: P,elimi,.4,., re/t:I'mee m4"uJ. 
Technical Ripon 21St Labont.ory (or Computer Science, MIT, June, 197Q. 

W.B. Acbrmu. 
Data now laque" 
IEEE Comrdt:l' 15(2), February, 19S2. 

131 J. Backl1l. 
Can Pl'OIramming Be Liber&ted (rom the YOD Neumann Style! A FUDctional Style and ita Algebra 

o( Procnma. 
CACM 21(8), Aucust, 1918. 

1"1 G.V. Bocbmann. 
Semantic naluation (rom len. to right. 
Communication, 0/ tA, ACM 19, 1918. 
pp. 55-62. 

[51 B. Lorbo. 
Semantic attribute proces"inl in the system DELTA. 
In A. Et'3boy and C.H.A. Kotter (editor), MethorU 0/ Algorithmic LAngucJge Implementation. 

Sprinler-Verlac, Bulin-Heidelber,-New York, 1m. 

[61 I. Fans. 
FOLDS, IS declarative /ormtU IcJnguage definition .,dem. 
Technical Report ST AN-C>72-329, Stanford Univet'3ity, 1972. 

[71 Rodney Fano •. 
Experience with an attribute grammar bued compiler. 
In Con/et'mce Record 0/ the Ninth ACM Splpe,ium on Principlu 0/ Programming LAnguage,. 

ACM. January, 1982. 

[81 Rodney Farrow. 
LINGUlST-86 Yet another translator writing system bued on attribute gramma.rs. 
10 Proceeding, 0/ the SIGPLAN 8e Splpo.ium on Compiler Con4truction. ACM. June, 1982. 

[91 Rodney Farrow. 
Attribute Gramm&t'3 and Data-Flow Languases. 
In Procwiing. 0/ the SIGPLAN'83 Splpo,ium on Progamming Language IIIut3 in Software 

SY3tem,. ACM, June, 1983. 

110\ H. Ganzinger, K. Ripken. and R. Wilhelm. 
Automa.tic generation o( optimizin&, multipaaa compilet'3. 
In Proced4ing, o/IFIP lQ77. 1m. 

1111 H. Ganlin&er. 
On storace optimisation ror t.utomatica.lly generated compilet'3. 
In K. Wein.ucb (editor), TheoreticcJl Computer Scimce - Fourth GI Con/ermce •. Springer-Verlag, 

Berlin-Heidelberg-New York, H17g. 

\121 R.C. Holt. J.R. Cordy, and D.B. Wortman. 
An Introduction to 5/SL: Syntax/Semantic Laogu'3e. 
ACM 1)oClnlClction, on ProgJ'Clmming LAnguClgu and Sy.tem6 4(2), April. 1982. 

1131 ~. Jauyeri. W.F. Ogden, &od w.e. Rounds. 
The intrinsically exponential complexity o( the circularity problem ror attribute gramm&t'3. 
Communication, 0/ the ACM 18, 1975. 

32 



M. Jauyen Ind K.G. Walter. 
Alternating semantic evaluator. 
In Procteding. 0/ ACM lQ75 Ann,,4l Con/f:I'mct. ACM. 1015. 

[151 Dlul Ponrsky and Mebdi Jauyen. 
Altriht, evoJ"Gtion witlaouJ G pGru trtf. 
Tecbnical Report. University or North Carolina, Chapel Hill. 1019. 

Ilet U.I Kwel1l, Bri&itte Hutt, and Ericb Zimmermann. 
GAG.:A PrGctictU Compiler GmerGtor. 
Spring-Yerl", Serlin-Heidelber&-Ne. York, 1082. 

[111 U. Kutel1l. 
Ordered attribute grammus. 
Ada In/ormGtiCG 13, 1080. 

[181 K. Kennedy and S. K. WllTen. 
Automat.ic generation or emeient eu.luators ror at.tribute grammus. 
In Con/f:I'mct Record 0/ tlae nird AC M 'Yf"po.j"m on Principlu 0/ Programming ungtsGge,. 

ACM.I01&. 

1101 D. E. Knuth. 
Semant.iC3 or context-rree languaaes. 
MCltlaemGtiCGl S,.tem. TheOf'J 2, 10M. 
correction in volume 5, number 1. 

[201 K. Koslimies. K-J. Raiba. and M. Sarjaioski. 
Compiler Construction Usin, Attribute Grammars. 
In Proceeding' 0/ tlae SIGPUIV Sympo,ium on compiler con"trudion. ACM. June. 1082-

[211 McGraw, James. Stephen Skedzielewski, Stephen Allen. Dale Grit, Rod Oldehoert. John Glauert, 
Ivan Dobs. and Paul Hohensee. 
SISAL: Stream, and Iteration il'l a Single-A6Iignmmt LAnguage, LAngucsge Re/errnce ,\{csnucsl, 

\r'er8ion 1.1. 
Tec hnica.l Report. Lawrence LiTermore Laboratory National Labora.tory, July. 1IJ83. 

[221 Luca Cardelli. 
ML under Uniz. 
Technical Report, Sell Laboratories, Murray Hill. N.J .. 1983. 

[231 Kari-Jouko Raiba, M. Sunnen. E. Soiulon-Soininen and M. Tienari. 
The Compiler Writing Sv,tem HLP (Hel,inki Lcsnguage Proce3"()f'). 
Technical Report A·I07~2. Dept. or Computer Science. Univ. or Helsinki. 1978. 

[241 Ra..iba. Kari-Jouio. 
Dynamic allocation or space ror attribut.e-instances in multi-paM evaluators or at.tribute grammars. 
lD Proceeding, 0/ tlae SIGPUN 7Q Symp08ium on Compiler Con8truction. ACM, 1979, 

!2Sf M. Surinen. 
OD cOl1.!tructin& emcient. evaluators ror attribute grammars. 
In C. Ausiello a.nd C. Bohm (editor), Automata, LGngucsge3, and Programming: 5th Colloquium. 

Springer-Yerll8, Springer-Verl&3, New York. 1978. 

[261 W.A. Schulz. 
Semcsntic analY8i8 csnd target langucsge ~yntheli8 in a tran31cstor. 
PhD tbesi". Unive",it.y or Colorado, Boulder. Colorado. July, 197~. 

33 


