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Abstract

 

Computational auditory scene analysis – modeling the
human ability to organize sound mixtures according to
their sources – has experienced a rapid evolution as the
simple principles suggested by psychological experi-
ments have turned out to be less than the whole story.
Phenomena such as the continuity illusion and phonemic
restoration show that the brain is able to use a wide range
of knowledge-based contextual constraints when inter-
preting obscured or complex mixtures: To model such
processing, we need architectures that operate by con-
firming hypotheses about the observations rather than
relying on directly-extracted descriptions. One such
architecture, the ‘prediction-driven’ approach, is pre-
sented along with results from its initial implementation.
This architecture can be extended to take advantage of
the high-level knowledge implicit in today’s speech rec-
ognizers by modifying a recognizer to act as one of the
‘component models’ which provide the explanations of
the signal mixture. Although this adaptation raises a
number of issues, a preliminary investigation supports
the argument that successful scene analysis must exploit
such abstract knowledge at every level.

 

1. Introduction

 

The work described in this paper fits into a kind of evo-
lutionary tale of approaches to sound organization: In the
beginning, there was the ‘simplistic’ or “blank back-
ground” view that sound objects somehow defined them-
selves, and that identifying a single perceptual object
was as simple as picking out a figure in a child’s coloring
book. The experimental stimuli on which so much of our
understanding of auditory organization is based – the
sinusoids and bandlimited noise bursts of Bregman
[1990] and others – echo this approach, since, as pre-
sented in soundproof listening booths, they would actu-
ally be amenable to such an approach. 

The second stage of evolution, which we might call the
‘optimistic’ or “uniform background” view, emerged
from the initial efforts to apply the insights of experi-
mental results in auditory organization (especially those
in [Bregman 1990]) and apply them to real sounds.

Unlike sinusoids against a silent background, real
sounds contain all kinds of noise and distractions to
defeat simple extraction routines, and therefore demand
a more sophisticated approach. However, the signal pro-
cessing community is long used to dealing with noise
and offers various approaches for making the best possi-
ble decisions under some simple, but useful, assump-
tions. These amount to a kind of template matching, such
that if the form of the target and the interference can be
exactly specified, the parameters of the target can be
recovered in the mathematically best-possible fashion.
The essence of this approach is that we can produce sim-
ple definitions of what we are looking for – sinusoids of
unknown frequency, or narrowband noise energy – and
we can then go through a given signal identifying and
extracting just the parts that interest us, and ignoring the
rest – in analogy to the way a human listener is able to
‘screen out’ interfering sounds that are not of interest. I
consider the early models of Cooke and Brown [Cooke
1991/3, Brown 1992, Brown & Cooke 1994] to fall into
this category.

We are now at the third evolutionary stage, and in this
paper I will describe one view of its defining characteris-
tics. Based on efforts to overcome the limitations of the
‘optimistic’ view, we might call this ‘realistic’ or “struc-
tured, obstructive background” approach; the key insight
is that it will not always be possible to extract a signal
from interference in a unique or optimal way, but rather
it is necessary to bring to bear a wide range of contextual
constraints and prior biases in a heuristic search for an
account of the signal that is at least reasonably satisfac-
tory. This approach represents a considerably reduced
ambition for automatic sound organization, forced upon
us both by the limitations of systems based on the ‘opti-
mistic’ view, and by a more careful look at some experi-
mental results that reveal how the brain operates in more
taxing perceptual situations.

Perceptual illusions come to have a central importance in
this approach: Throughout the history of perceptual
research, illusions – i.e. percepts which somehow failed
to track the objective truth of the external world – have
offered rich insights into perceptual mechanisms and
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processing, as well as providing the basis for many cru-
cial technologies, such as the flickering cinematic image
that is perceived as smooth motion. The model of audi-
tory organization to be developed in this paper not only
draws upon specific illusions for inspiration, but sees the

 

existence

 

 of illusions as a central defining feature of per-
ceptual systems – one to be emulated, not avoided, in our
computational models. In a very important sense, the
starting point for the approach to be described is: What
kind of architecture can we build that would be capable
of ‘experiencing’ human-style auditory illusions?

 

Restoration phenomena

 

The specific class of illusions to which we will attach so
much importance are the so-called restoration or ‘audi-
tory induction’ illusions [Warren 1996]. A simple
instance is the continuity illusion (to use the term of
[Bregman 1990], also studied as the ‘pulsation thresh-
old’ [Houtgast 1972]) in which a sine-tone is alternated
with a narrow-band noise signal centered on the same
frequency. If there is no gap between the two signals,
and provided the noise burst is of sufficient amplitude,
the sine tone can be heard as continuing during the noise
bursts. This is an illusion because the signal was not, in
fact, constructed by adding noise bursts to a continuous
sinusoid, although it is hardly a perceptual error given
that even if the tone had been continuous, the required
level of the noise ensures that the two conditions (sine
tone continuous or interrupted) would be difficult to dis-
tinguish even by optimal means. The key point, however,
is that the listener perceives a sine tone as present during
the noise bursts by inferring that the tones before and
after the burst are likely to have continued during it i.e. it
is 

 

induced

 

 from the signal context rather than directly
calculated from the signal in ‘real time’. The operating
assumption, that it is more likely that the noise burst is
superimposed on a steady sine tone than the more com-
plex arrangement of a noise burst that starts just at the
instant that the sine tone ceases, was termed ‘old-plus-
new’ by Bregman [1990].  It is clearly a reasonable and
useful perceptual principle, but it is important to remem-
ber that listeners do not apply it consciously; rather, they
perceive the sine tone as affirmatively present during the
noise: At the level of conscious introspection, there is no
distinction between the percepts that are based directly
on the observed signal, and those that have been induced
from context and other biases.

A more complex example of the same principle at work
is the well-known ‘phonemic restoration’ phenomenon.
In the classic experiment, reported in [Warren 1970], lis-
teners were unaware when a particular phoneme in a
recording of running speech was replaced with silence –
provided a loud, broad-band masking signal (a cough in
that example) was added to cover up the gap. Not only
did listeners effortlessly restore the deleted phoneme
(inferred from the lexical context), but they were unable
to say exactly when the cough had occurred relative to

the speech, making a typical error of 5 phonemes. Again,
at the conscious level, the speech sound which was actu-
ally absent in the original signal, and which the masking
noise had permitted to be restored, had no subjective dis-
tinction from the percepts arising from speech that had
been heard without any obscuring signal. Later experi-
ments went on to show that manipulating the context
words could make a single deletion-plus-masker be
‘restored’ in several different ways – even when the dis-
ambiguating word occurred several words 

 

later

 

 than the
deletion (e.g. “the *eel was on the axle” versus “the *eel
was on the orange”, where “*” indicates the noise-
masked deleted phoneme) [Warren & Warren 1970].

There are two things to note here: Firstly, the required
masking noise (of energy sufficient to have masked the
inferred sound) shows that this not simply carelessness
in the perceptual system: If a  signal contains silence
where there should have been a phoneme, listeners are
acutely aware, and intelligibility of the modified speech
is considerably disrupted. Restoration occurs only when
the masking sound is present – which makes the purpose
of deleting the phoneme mainly a check for the experi-
menter that the masker was adequate, since the listener is
unlikely to be able to distinguish between masker+pho-
neme and masker alone.  Thus, restoration reflects a
‘well-adapted’ response (in the evolutionary sense):
Given the limitations of the auditory periphery, and the
unfortunate conjunction of a loud interference with a
longer speech signal, the most robust course of action is
to use the surrounding context to infer, where possible,
the obscured speech sound – operating at any level avail-
able, including the lexical/semantic information.

The second point is that while we can state with cer-
tainty that the deleted phoneme has been restored based
on context alone – since we reduced it to silence in the
original signal – the fact that its perception had no imme-
diate conscious distinction from the surrounding unob-
scured speech casts doubt on what we would otherwise
have assumed, namely that our perceptions of speech
sounds in normal conditions are based on a direct analy-
sis of the sound. The fact that we so readily and transpar-
ently replace obscured information with inferences
based on all kinds of complex expectations raises the
possibility that even in less difficult conditions a signifi-
cant part of our auditory perception may be based on
inference, if for some reason this is easier or more reli-
able that a detailed direct analysis of the actual signal.
This observation could relate to a number of speech-per-
ception phenomena such as categorical perception
boundaries or our abilities to communicate despite wide
differences in accent and pronunciations; such matters
are beyond the scope of this paper.

 

‘Top-down’ and ‘bottom-up’

 

As discussed in many places [Ellis 1993, Slaney 1995,
Bregman 1995, Cooke 1996], restoration phenomena
show the action of ‘top-down’ processes in perception:
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On a continuum which places the physical realization of
a sound at the bottom, and its most abstract conceptual-
ization (for example, “a piece of music”) as the top level,
processes that gather information at a lower level to con-
struct descriptions higher up are termed ‘bottom-up’,
and thus perception is, overall, a bottom-up process. The
term ‘top-down’ refers to activity in the reverse direc-
tion, where the existence or particular state of a more
abstract representation influences the fate of more con-
crete information at a lower level. Thus, in phonemic
restoration experiments, the abstract entity of the per-
ceived (partial) word sequence has a top-down influence
on the portion of the signal during the masking noise,
causing it to be interpreted as both a noise and the
deleted or obscured phoneme. In practice, of course,
there may not be any specific location where information
is flowing ‘backwards’, but  regardless of the actual
implementation,  such context-dependence may be
termed ‘top-down’.

The concept of top-down processing is important
because it is not immediately obvious as necessary. In a
purely bottom-up system, fixed mechanisms process a
limited region of observed evidence and generate an
abstracted representation for it independent of other
parts of the processing - such as generating a time/fre-
quency/magnitude sample in a sinusoidal representation
from a local maximum in a spectral slice. Such process-
ing is largely adequate for the conceptions of perceptual
organization embodied in the first two ‘generations’ of
modeling described at the beginning of this paper. It is
only when more complex restoration-style effects are
considered that top-down processing becomes an irre-
sistible necessity. Since, in a top-down system, the exact
treatment of the local maximum in the spectral slice can
depend on very much more than the immediately local
features, such systems are far more complex to build and
characterize, and we naturally would not consider them
unless they were strongly implicated by the evidence. 

Note, in contrast, that you cannot have a 

 

purely

 

 top-
down perceptual system: at some point, the influence of
the context-sensitive mechanisms must ‘make contact’
(in the words of [Darwin 1984]) with the concrete,
observed information to permit bottom-up processing,
even if that processing merely confirms the chain of
abstractions hypothesized by the top-down processing.
Thus any top-down perceptual model is necessarily a
combination of top-down and bottom-up mechanisms,
and the interactions and domains of these two styles of
information flow define a major part of the character of
any processing system. As we shall see, in the particular
example of speech sounds, the regular, periodic structure
of voiced speech often allows it to be extracted with little
ambiguity by bottom-up mechanisms alone, whereas the
lesser structure of unvoiced speech such as sibilants
makes them more dependent on top-down processing for
their effective characterization.

 

Modeling restoration

 

What can we say about models for the kind of process-
ing occurring in restoration experiments? If the essence
of these phenomena is that an intermediate abstraction
(the perception of the ‘sound’ of the words) can be influ-
enced both by the stimulus signal and by the abstracted
context, then we need separate pieces for all three of
these levels - signal, intermediate representation and
abstract knowledge - and, at a minimum, mechanisms by
which both extremes can influence the middle level.
Also, if we compare phonemic restoration with the sim-
pler phenomenon of the continuity illusion, we see that
the kind of high-level knowledge that can exert a top-
down effect may occur over a wide range of scales, from
simple continuity tendencies for low-level representa-
tions to the vastly more complex processing implicit in
choosing a phoneme to complete a sentence subject to
semantic demands. Thus the structures providing the
top-down influence might be expected to extend over
several levels of abstraction themselves, quite probably
containing their own mix of upwards and downwards
information flow. 

Although there are doubtless many possible interpreta-
tions, one processing metaphor able to provide a satisfy-
ing explanation of top-down phenomena is ‘constructive
perception’ (also known as ‘analysis-by-synthesis’
[Stevens & Halle 1967]). As presented here, this con-
ceives of perception as a process of constructing an
internal model of the external world such that incoming
information from the perceptual periphery can be com-
pared to the expected behavior of the world-model as it
stands, which is then confirmed or revised as appropri-
ate. Often, it is possible closely to keep track between
the external world and internal model, but circumstances
such as a loud masking signal (or, more generally, some
separate obscuring object) may make a temporary dis-
connection between the model and the observations for
which it is providing an explanation.  In this case, an
idea of what is happening in the external world can be
maintained – despite the lack of information – by allow-
ing the model to continue evolving in the ‘most likely’
fashion (which can be defined with a wide range of
sophistication), and, depending to the extent that past
history forms part of the internal model, it may be appro-
priate to revise the model when more detailed observa-
tions again become available, to maximize agreement
with all the available information. Such an account
seems a plausible starting point for a computational
description of restoration phenomena.

 

2. The prediction-driven architecture

 

Prediction-driven computational auditory scene analysis
[Ellis 1996] is proposed as an architecture that follows
the structural requirements presented so far. Full details
are given in that document, but here we review the key
principles of operation, focussing on how they can
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encompass restoration-style effects. As illustrated in fig-
ure 1, in the prediction-driven approach, the straight,
left-to-right processing chain of a data-driven sound
organization system is folded back into a loop, taking the
predictions derived from the internal ‘world model’ rep-
resentation to be compared against the input as the impe-
tus for changes to the system’s state. In this respect, it is
reminiscent of the ‘residue-driven architecture’ proposed
by Okuno et al [1996] - except here the comparison is
made in perceptually-motivated domains, rather than
directly on the time-domain signal, and the outcome of
comparison reflects a probabilistic assessment that the
observation matches the predictions, rather than a simple
remainder after subtraction to be dealt with indepen-
dently of the terms being differenced.

Starting with the incoming signal, the first stage is the
front-end processing which sets the most concrete level
of the analysis. This consists of a time-frequency energy
envelope, formed by smoothing the energy output by a
set of gammatone band-pass filters approximating the
peripheral filtering of the cochlea [Patterson & Hold-
sworth 1990]. Experiments show that a great deal of
information is carried by even a rather coarse approxi-
mation to the signal at this level [Drullman et al. 1994],
thus the envelopes contain no detail below the scale of a
few milliseconds. However, certain aspects of the fine-
structure of sound are highly perceptually significant,
and there is thus a second representation in terms of a
correlogram [Slaney & Lyon 1992], which adds an auto-
correlation-lag dimension to make a three-dimensional
representation for sound which reveals the pitch-range
periodic modulations that may be dominant in each
peripheral frequency channel. This representation is col-
lapsed across channels to give a ‘periodogram’ (i.e. the
summary autocorrelation as a function of time), which is
the foundation of the formation of ‘wefts’, the represen-
tations of wideband periodic signals used in the system
[Ellis 1997a], further described below.

This dual representation of the observed acoustic signal
feeds one side of the comparison block, whose other
input comes from the predictions based on the world-
model. This latter internal representation is conceived of

as a hierarchy of increasingly specific source
descriptions whose bottom level is expressed in
terms of a few types of ‘generic sound element’,
each one subject to different constraints on its
parameters depending on the particular hierarchy it
is supporting. In [Ellis 1996], there were three kinds
of sound element: wefts, representing pitched sound
via a pitch-track and a broadband energy envelope,
noise clouds, which had the same kind of energy
envelope but no periodicity information to represent
sound without a clear pitch, and click transients,
which were characterized by an onset time and an
exponential decay rate in each channel, recognizing
the particular ubiquity and importance of such colli-

sion-style sounds in our world. 

These three classes recall the division into periodic and
stochastic components for musical tones in [Serra 1989],
and the streams and noise beds of [Klassner 1996], as
well as many other extended sinusoidal models. How-
ever, it is worth explaining that using a broad spectrum
of periodically-excited energy as the lowest level of rep-
resentation rather than tracking individual sinusoids -
even though they might be resolved - was a deliberate
effort to get away from the laborious and unsatisfying
stage of harmonic grouping necessitated in sinusoid
models. As a philosophical point, the ideal mid-level
representation should introduce as much structure as
possible that can be unambiguously observed, where
doing so will not obstruct the later processing [Ellis &
Rosenthal 1995].

Given a world-model in terms of these sound elements,
as well as constraints or most-likely estimates for their
future evolution derived from the higher-level constructs
of which they form a part, it is straightforward to gener-
ate predictions for the input observations to feed to the
comparator. A key idea here is that by combining the
predictions from different elements which may overlap
in both time and frequency, and by requiring only inex-
act agreement to the observations (expressed as a ‘confi-
dence bound’ on the predictions), phenomena such as
the ‘induction’ of the sine tone or phoneme may be
accommodated: As long as the predictions of the model
of the noise burst and the model of the continuing nar-
row-band pitched tone combine into an overall predic-
tion that satisfactorily matches the noisy observation, the
comparator will report agreement between model and
reality, and no changes will be required. Of course,
depending on the preceding context, there are very many
possible combinations of elements that might have pre-
dicted equally acceptable matches to the observation,
which is to say that there is a consistent bottom-level res-
olution of the top-down variability inherent to this
approach.

The reconciliation engine, which updates the world-
model in response to errors reported between the
observed and predicted signals, is the most critical part
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Figure 1: The principle modules of data-driven sound organization
(upper panel) such as [Brown 1992] contrasted with the prediction-
driven approach (lower panel) described in this paper.



 

Ellis - Using knowledge to organize sound 1998Jan20 - 5

of the system. It is implemented as a rule-base (within a
blackboard framework [Carver & Lesser 1992]) which
classifies the different kinds of prediction inadequacies
depending on the elements involved. The basic operation
is to adjust the parameters of existing elements, provided
the deviations are not too great; when the discrepancies
are larger it will add new elements or terminate existing
ones as appropriate. Since very often the best course of
action or the most appropriate kind of new element will
be ambiguous, the reconciliation engine is also able to
split models into multiple alternative hypotheses; these
are pursued in parallel until the associated goodness-of-
fit metrics indicate a particular winner. 

Reconciliation is pursued in both domains of the front-
end representation, namely energy envelope and peri-
odogram. While any kind of element contributes to the
energy envelope, only the periodically-excited wefts can
account for pitch-indicating features in the periodogram,
and thus the flow of causality from periodic modulation
in the input to formation of a weft element in the repre-
sentation is essentially still data-driven - in contrast with
noise energy, which is far more context-dependent; this
distinction gives a hint for the reason that pitch is so
valuable in auditory organization.

As we have discussed, restoration effects often rely on

very abstract knowledge or constraints to
influence the interpretation of the signal: How
does this appear in the prediction-driven
approach? Although barely developed in [Ellis
1996], the idea was that the addition of generic
sound elements in the world model would trig-
ger the construction, within the same black-
board architecture, of higher-level
abstractions, which would then invoke top-
down mechanisms to reflect their particular
character in the predictions of the elements
supporting them. This general idea of incorpo-
rating constraints through the components of
the world model forms the basis of integration
with speech recognition described in part 3 of
this paper. 

 

Practical results

 

To demonstrate the initial implementation, the
system of [Ellis 1996] was applied to a small
number of ‘ambient sound scenes’ (such as
“city street” or “construction site”), and the
results compared to those obtained from
human listeners. The rationale for this testing
domain was that (a) sound ambiences repre-
sent the kind of dense acoustic scene that
human listeners face for the majority of the
time, where every sound is overlapping with
several others essentially all the time, and (b)
by sticking mainly to environmental sounds
(bangs, squeals etc.) rather than more highly-
structured human sounds (speech and music,

the domains of virtually all previous work in the area), it
would be possible to examine the ‘fundamental’ problem
of sound organization – as might be being solved by cats
and rats – while stripping away the complex adaptations
operating in human listeners, which exploit the very
complex knowledge that the brain can bring to bear, but
with which the model was not endowed. An example
result of this analysis is given in figure 2 (taken from
[Ellis 1996], which shows the machine analysis of the
“construction site” ambience example. The first panel
shows the bottom-level representation of the sound, in
terms of its time-frequency energy envelope and the cor-
responding periodogram. The boxes below each illus-
trate separate generic elements used by the system to
account for the scene: in this implementation, the world
model consisted of just this bottom layer rather than add-
ing any more complex explanatory abstractions; this is
tolerable because of the limited structure of the particu-
lar sound sources in the example. The response of listen-
ers in the subjective tests is displayed as horizontal bars
indicating the average times when listeners pressed a key
‘in time’ with a particular one of the sources they heard
in the mixture: This allows us to confirm that the objects
extracted by the system do indeed correspond to gener-
ally-perceivable auditory entities.
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Figure 2: Analysis of the “construction-site” ambience by the initial imple-
mentation of the prediction-driven approach (from [Ellis 1996]).  The top
panel shows the original signal, represented by its time-frequency energy
envelope and periodogram.  Subsequent panels depict the various elements
constructed by the system to explain the sound.  Horizontal bars show the
distinct components identified by subjects, along with the consensus as to
their identity.  This sound example can be heard at the web site:  http://
sound.media.mit.edu/~dpwe/pdcasa/.
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Issues with the prediction-driven approach

 

The development of the prediction-driven architecture
was motivated by the theoretical concerns presented in
the introduction, obviously without complete foreknowl-
edge of the implementational issues that would arise. In
practical terms, the most significant questions and areas
that emerged in the system were as follow:

• As mentioned above, the 

 

rule-base

 

 that maps from
the prediction errors to the appropriate modifications
of the world-model elements constitutes the real heart
of the system, almost completely determining the
overall system behavior, and requiring, in practice, a
great deal of empirical tuning to obtain satisfactory
behavior. The rules basically consisted of sets of heu-
ristics and thresholds for when to hypothesize ele-
ments of different kinds based on unaccounted-for
features in the observations, or which existing ele-
ment to terminate if the predictions exceeded what the
observations could support.
Although standard procedure for traditional Artificial
Intelligence techniques such as blackboards, it is
worth noting that because models of this kind require
the researcher to define explicitly all of the system’s
knowledge and behaviors, they lack the appeal of
more statistical techniques such as those used in
speech recognition where aspects of the behavior can
be derived automatically from training examples.

• When the rule-base did not change the set of explana-
tory elements, or even when it did, there remained the

 

error allocation

 

 problem of splitting-up the devia-
tions (e.g. in energy) between prediction and observa-
tion between the several elements that might overlap
in a particular time-frequency cell. This too was
accomplished through a complex heuristic that
favored accommodating changes within elements
whose parameters had the least confidence or stability.
Thus if a particular noise-cloud had been observed for
some considerable time and had exhibited stable
properties, it would absorb much less of the difference
than a newly-created transient click at the same loca-
tion whose peak energy was still to be determined.
(The form of the allocation did, however, ensure that
they were both allocated at least a little).

• We have noted that the world-model could split into
alternative hypotheses to maintain a step-by-step anal-
ysis of ambiguous situations. This raised the issue of

 

hypothesis ratings

 

, to allow the system to compare
the success of the alternates in explaining the subse-
quent evolution of the signal, and to decide which
path ultimately to pursue. The rating scheme
attempted to calculate the probability of the observa-
tions given each particular model (i.e. a posterior cri-
terion), while also accounting for the uncertainty in
model parameters; a near-miss to a model with very
tightly-defined parameters may or may not be better
than a slightly worse fit to a more uncertain model.

• One aspect specifically emphasized in [Ellis 1996] but
leaving clear room for improvement was the question
of 

 

resyntheses

 

. By arguing that a model of perceptual
organization ought to represent every aspect of the
signal that is perceptually salient, we can expect that
the world-model representation should contain suffi-
cient detail for satisfactory resyntheses of the separate
components that have been identified; contriving a
suitable resynthesis algorithm, however, is a different
question. Although the generic sound elements were
structurally simple to synthesize, subjects in listening
tests gave rather modest similarity scores for extracted
components when compared to the real mixtures,
indicating weaknesses in analysis, synthesis or both.

• The final limitation of [Ellis 1996] is one we have
already mentioned: Although a major attraction of the
prediction-driven approach was its capacity to incor-
porate higher-level knowledge through an 

 

explana-
tion hierarchy

 

, this was left almost completely
unexplored in the original implementation. While the
appropriate structure and representations for this kind
of knowledge are still very difficult questions, the
work on integration with speech recognition to be
described in the remainder of this paper constitutes
one approach to injecting abstract knowledge of the
structure of particular sound classes into the predic-
tion-driven framework.

 

3. CASA and speech recognition

 

Although speech recognition systems have, in the past
20 years, developed from awkward laboratory demon-
strations to successful consumer products, they have
always been highly susceptible to disruption by non-
speech signals, reflecting the widely-adopted restricted
formulation of the problem as recognizing spoken words
given that the input signal is speech. Consequently, the
idea of auditory organization models that could separate
mixtures and thereby free recognizers of this interfer-
ence has long been attractive, and has been the more or
less explicit motivation behind many of the important
projects in the field [Weintraub 1985, Cooke 1991/3,
Brown 1992, Okuno et al 1996]. These projects adopted
an ‘enhancement preprocessor’ architecture, seeing the
CASA system as an independent first stage to supply a
conventional speech recognizer with a version of the
unobstructed speech; the results as measured by recogni-
tion enhancement were disappointing – principally
because the particular distortions introduced by the sepa-
ration schemes were hugely disruptive to speech recog-
nition systems, far beyond their perceptual impact. This
enhance-then-recognize approach has been roundly cri-
tiqued in [Cooke 1996]. 

Viewed from the prediction-driven perspective, this
independence of operation between organization and
recognition is exactly wrong: The recognizer must
include a great deal of high-level information about the
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structure and constraints of the speech signal, and this is
exactly the kind of information that should be helpful in
forming the best explanation of a mixture in terms of
sound components that may include speech. As Wein-
traub [1985] observed, human-level performance will
require a close interaction between organization and rec-
ognition, with each able to influence the other. 

Using the concepts introduced so far, the ideal way to
integrate speech recognition within the prediction-driven
approach would be to construct a hierarchy of ‘speech
explanations’ that worked in the domain of the three
‘generic elements’ (periodic wefts, transient clicks and
noise clouds) to identify and refine hypotheses of speech
signals within a sound mixture. Unfortunately (and this
has surely been an influence on other researchers inte-
grating speech recognition with auditory organization),
existing speech recognition systems are very complex
and highly specific to the particular problem formulation
they have adopted; there is no simple path to adapt them
to work within a different control structure or with a rad-
ically altered signal representation. Similarly, the pros-
pect of building a recognition system from scratch
within a new problem formulation that would be able to
rival the complexities (and hence performance) of cur-
rent state-of-the-art systems is extremely daunting. The
most promising path, in the short-to-medium term, is to
find ways in which existing speech recognition systems
can be used with minimal alterations within novel pro-
cessing schemes. 

The compromise solution we have developed is to intro-
duce, alongside the wefts, clicks and clouds, a new kind
of bottom-level signal explanation element specifically
matched to speech sounds, as shown in figure 3. These
elements are the result of a specific ‘speech component
model’, which is a conventional speech recognizer
extended to be able to generate the predictions required
by the architecture. While we have achieved only prelim-
inary implementations of this approach at the present
time, it represents a genuine integration of the signal
knowledge embedded in the recognizer into mixture-
organization process, and as such overcomes the severe
limitations of the enhance-then-recognize approach.

 

Analyzing speech/nonspeech mixtures

 

The system operates as follows: When a new mixture is
presented to the system, the speech module attempts to

interpret it as speech, in the process applying its intrin-
sic constraints concerning the acceptable forms of a
‘speech signal’. The output of the module is an estimate
of the speech component in the mixture, reflecting
these constraints, which is then used in the reconcilia-
tion module to focus the nonspeech explanatory ele-
ments on the remaining signal features. The predictions
from these elements similarly form a ‘projection’ of the
residual which was not accounted for by the speech
module into the (less constrained) space of signals con-
forming to the simple nonspeech models (possibly aug-

mented by higher explanatory levels). This estimate of
all the nonspeech elements can then be used iteratively
to re-estimate the speech component taking account of
the nonspeech signals hypothesized to be in the mixture.
Assuming that the initial estimates have some validity,
cycling through this iteration should lead to a stable and
satisfying explanation of the original mixture.

The issues arising from this process are:

• The speech recognition system needs to generate, in
addition to the abstract description of current recog-
nizers (i.e. the word sequence), an estimate of the
actual form of the speech, less any interference, in the
domain of the basic signal representation.

• The speech module should be able to take advantage
of estimates for nonspeech components in the mix-
ture, available from the iterative reprocessing.

• To get started on a new signal, there needs to be a way
to get a ‘bootstrap’ estimate of the speech and/or non-
speech elements.

Each of these points is now discussed in more detail.

The extension of a conventional speech recognizer to
reconstruct an estimate of the speech signal is described
in [Ellis 1997b] and [Ellis 1998]. Although this is very
similar to the task faced in speech synthesis, it cannot
easily use results from that field since the problem is not
to generate just any rendering of speech uttering the
extracted words, but rather the precise one present in the
original signal – including all the peculiarities of timing
and pronunciation. We approach this problem as a ques-
tion of inverting each of the stages in speech recognition
– i.e. signal normalization and classification. The pho-
netic-state label sequence (Viterbi path) assigned by the
hidden Markov model decoder is the starting point, since
it contains all the information about how the signal inter-
acted with the high-level constraints of phoneme struc-
ture, phonotactics, lexicon and grammar. 

Inverting these symbolic labels to a continuous-valued
feature space is the stage at which the most information
has to be re-introduced, since it is effectively reversing
the many-to-one projection accomplished by the classi-
fier (Gaussian-mixture or neural-network) in the recog-
nition path. We have experimented with weighted-
overlap of simple mean templates, but more complex
neural-net estimates that can track particular output tra-

input
mixture

Front end Compare
& reconcile

Hypothesis
management

Predict
& combine

Periodic
components

Noise
components

Speech
components

Figure 3: Extending the prediction-driven architecture to incor-
porate a ‘speech component model’, which is a conventional
speech recognizer adapted to generate predictions.
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jectories, starting from a finer classification symbol set
(accommodating phonetic context and perhaps more
allophonic pronunciations), should improve this stage.
The key objective, however, is that the system be able to
produce good estimates of the speech features in time-
frequency regions where nonspeech components have
obscured direct observation; thus, a further possibility is
to train a system to detect these situations explicitly (per-
haps by looking at something like the entropy of the rec-
ognizer’s classification outputs) and adapt the
reconstruction process accordingly.

Undoing the stages of normalization, such as the equal-
ization of average dynamic range achieved by RASTA
processing [Hermansky & Morgan 1994], can be defined
more precisely: Careful design and analysis of the nor-
malization algorithms permit the generation of addi-
tional information which can be used in synthesis to
reintroduce these phonetically-irrelevant aspects of vari-
ation. When speech recognition is the only goal, there is
a trade-off between normalization effort and classifier
complexity: A very powerful classifier (such as a large
neural-network or a multiple-component mixture) can
alleviate the need to normalize-away certain forms of

variation. When resynthesis is also desired, however,
normalization – which can often be exactly inverted –
is preferable to the information loss associated with
classification, leading to different priorities in con-
structing the recognizer portion of the speech mod-
ule.

Figure 4 illustrates the operation of the extended
speech module, showing how the inverted label
sequence and the reconstructed normalization infor-
mation combine to approximate the speech compo-
nent of a mixture. At this stage of development,
distortions introduced in the reconstruction lead to
the generation of a number of spurious nonspeech
elements; the enhancements proposed in this paper
will alleviate this.

 

Recognizing speech given nonspeech estimates

 

The second issue mentioned as arising from the pre-
diction-driven approach is the question of using the
nonspeech estimates to help guide the speech recog-
nizer. Since current recognizers are, generally, built
to recognize signals presumed to consist of a single
voice, they have no conception of nonspeech energy
in the signal, let alone any way to make use of that
information. If the central expression of the acoustic
model in a speech recognizer is the emission proba-
bility distribution of the hidden Markov model, i.e.
the probability

p(

 

Y

 

|

 

q

 

s

 

)(1)

where 

 

Y

 

 is a signal feature-vector frame and 

 

q

 

s

 

 is the
phonetic label assignment for that frame under a
given hypothesis, then a system that exploits infor-
mation about additional, nonspeech elements needs

to calculate
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) (2)

where 

 

Z

 

 is the information describing the combined non-
speech elements, expressed, for instance, in the same
feature space as 

 

Y

 

. This is reminiscent of the ‘HMM
decomposition’ approach [Moore 1986, Varga & Moore
1990] which treats a mixture as the combined output of
several processes, each described by a hidden Markov
model. In that case, the observation probability is 

p(
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) (3)

where the probability is additionally conditioned on the
state of the second or subsequent signal models, 

 

q

 

n

 

 etc.
The attraction of HMM decomposition is that every sig-
nal is treated the same way, and the existing speech-
related tools can be used to build models of other struc-
tured interference such as helicopter noise and machine-
gun fire. By contrast, eqn. (2), needed for the approach
described here, depends on signal models that can gener-
ate resynthesis estimates but otherwise can be of any
form. This offers several benefits: it carries no penalty
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Figure 4: Preliminary results of the speech-component model.  Panel
(a) shows the cochlea-model spectrogram of a nonspeech intrusion (a
clap), which is added to speech in panel (b).  Panel (c) shows the
speech recognizer’s analysis both as the posterior label estimates
from the classifier, and the phoneme and word labels from the HMM
decoder. Panels (d), (e) and (f) show the stages of reconstructing the
speech-only estimate, and panels (g) and (h) show the nonspeech ele-
ments additionally constructed to complete the signal explanation.
Many of these are spurious owing to deficiencies in the reconstructed
speech estimate (from [Ellis 1998]). 
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for signals which, unlike speech, are not appropriately
modeled as a sequence of discrete states; it does not
grow in complexity as the number of additional signals
increases, since any number of interfering signals can be
combined into a single masking 

 

Z

 

; and finally, assuming
a representation such as spectral energy is being used,
the calculation of eqn. (2) can be defined algorithmically
(by backing off to priors for channels that are dominated
by interference), rather than the explosively large num-
ber of enumerated cases required to cover every possible
combination of states in eqn. (3). (Both approaches
require tracking and accounting for the absolute level of
each source, which was easily normalized out of eqn.
(1), but this is a very natural thing to do in the predic-
tion-driven domain).

 

Boostrapping the mixture analyzer

 

The final issue identified in the speech/nonspeech analy-
sis approach considers the initial starting state of the sys-
tem. In the algorithm described, the speech component
model first attempts to recognize the entire mixture as
speech, but in order for this to be a useful approach, the
mixture should be capable of a reasonable analysis by
the (conventional) speech-recognizer part of the model.
When this is not the case – which, experience dictates,
constitutes the majority of speech/nonspeech mixtures,
as well as signals that do not contain speech – this first
step will be inappropriate. What is needed is a more
sophisticated mechanism for deciding when the speech
model should be invoked, and for generating an initial
estimate of the speech in the mixture.

The key here is to use the pitch cue: The system we have
described actually uses only the time-frequency energy-
envelope feature, which does not reflect any pitch infor-
mation. The pitch-related features in the correlogram
and periodogram have not been used, yet they offer a
basis for (a) providing a somewhat robust separation
between the speech (or at least its periodic, voiced parts)
and other signals in the mixture, and (b) acting as a spe-
cific trigger and guide for invoking the speech-compo-
nent module.   The ‘pitch cue’ of coherent modulation
periodicity across frequency channels was used as the
sole basis for speech separation in previous CASA-for-
speech systems [Brown & Cooke 1994]; like those previ-
ous systems, since the periodic features detected in the

periodogram and explained by the weft elements
depend far less on the state of the world-model, they
can to a large part be derived directly from the signal
in a data-driven fashion. Current speech recognizers
do not use pitch information or make distinctions
between voiced (pitched) and unvoiced sounds
because this has not offered any advantages in the
isolated-voice domains for which they have been
developed. However, there is no obstacle in principle
to building a speech recognizer that 

 

does

 

 operate on
features divided by this criterion, for instance a rec-
ognizer trained on pairs of spectral slices, one reflect-
ing the pitched energy (extracted perhaps by weft-

style processing [Ellis 1997a]), and a second represent-
ing the unvoiced energy.  (The pitch information itself
would not be used (although it could be), but merely the
distinction between periodic and aperiodic portions of
the spectrum.) Such a recognizer could then estimate the
speech content of a signal represented only by its pitched
energy – estimated from a mixture without any addi-
tional knowledge – by treating the unvoiced energy
(which is incapable of purely-bottom up separation) as
‘missing data’ dimensions [Cooke et al 1997]. 

The vision, then, is to further modify a conventional
speech recognizer to treat periodic and aperiodic energy
as separate feature dimensions, and then incorporate
them into a prediction-driven scene analysis system as
illustrated in figure 5, where bottom-up periodicity-
based element extraction leads to an initial estimate of
any speech components.  These estimates will then result
in predictions, now including the unvoiced energy that
would be expected for the estimated utterance, thereby
facilitating a top-down, knowledge-based organization
of the remainder of the signal. Such a system constitutes
a sophisticated combination of bottom-up and top-down
processing for the organization of mixtures containing
both speech and nonspeech, and appears to be a fair
model of the sophisticated processing performed by
human listeners in accomplishing this task.

 

4. Summary and conclusions

 

A consideration of some specific ‘illusory’ perceptual
phenomena leads to the conclusion that auditory percep-
tion relies on the application of knowledge-based con-
straints at a range of levels to be able to make reasonable
and useful analyses of mixtures in which direct feature
observation is not possible. Building computer models
of this kind of processing requires an approach different
from the unidirectional data-driven calculations of con-
ventional signal processing and more like the construc-
tion hypothesis-confirmation mechanisms that have been
investigated for speech recognition. The ‘prediction-
driven’ architecture embodies this alternative approach,
and holds the promise of incorporating higher-level
knowledge via the abstraction hierarchy in the internal
world-model components.

speech objects
(pitched+aperiodic)

input
mixture

pitched

noisePitched energy
extraction (wefts)

Speech
hypothesis
generation

Compare
& reconcile

Hypothesis
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Predict
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Periodic
components

Noise
components

Speech
components

Figure 5: Proposed structure for an improved speech/nonspeech sig-
nal organization architecture that uses bottom-up estimates of
pitched signals to bootstrap estimates of the speech components
within the mixture.



 

Ellis - Using knowledge to organize sound 1998Jan20 - 10

Speech constitutes a particularly important class of
highly-structured signals, and research into automatic
speech recognition has resulted in systems that embody
a great deal of knowledge about that structure, knowl-
edge which ought to be helpful in separating speech
from other sounds in a mixture; hitherto, however, this
problem has been largely ignored. By adapting a conven-
tional speech recognizer into a ‘speech component
model’ this knowledge can be exploited for scene analy-
sis within the prediction-driven framework, although
further study is needed of the consequent issues of
regenerating speech-component ‘predictions’ that reflect
the abstract analysis. One major problem, that of making
an initial estimate of the speech component in a mixture,
could be addressed by building a speech recognizer that
works separately on periodic and aperiodic spectral
energy, then using bottom-up estimates of the former to
seed the initial speech hypothesis. 

Computational Auditory Scene Analysis systems able to
approach the ability of human hearing to separate sounds
in extremely demanding circumstances will require both
the appropriate processing architecture and the incorpo-
ration of suitably-represented knowledge. While our cur-
rent models represent only the beginnings of such a
system, the results presented offer an encouraging ave-
nue of investigation.
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