
CUCS-IOO-84

AN O(EV log V) ALGORITHM FOR FINDING A MAXIMAL

WEIGHTED ~TCHING IN GENERAL GRAPHS

Zvi Galil* Silvio Micali**

computer Science Department
Tel-Aviv University
columbia university

Laboratory for Computer Science
MIT

Harold Gabow***

computer Science Department
University of Colorado

Revised February 1984

*Research supported in part by National Science Foundation
Grant MCS78-2530l at the University of California at Berkeley,
by thQ Israel Commission of Basic Research, and by National
Science Foundation Grant MCS-8303139 at columbia University.

**Research supported in part by DARPA Grant N00039-82-C-0235
and by National Science Foundation Grant MCS82-04506 at
the University of California at Berkeley.

***Research supported by National Science Foundation Grant

MCS - 8 3 0 2 6 4 8 •

2

Abstract.

We define two generalized types of a priority queue

by allowing some forms of changing the priorities of the

elements in the queue. We show that they can be implemented

efficiently. Consequently, each operation takes O(log n)

time. We use these generalized priority queues to con­

struct an O(EV log V) algorithm for finding a maximal

weighted matching in general graphs.

O. Introduction

We are given a graph G = (V,E) with vertex set V

and edge set E. Each edge (i,j) € E has a weight w ..
~J

associated with it. A matching is a subset of the edges,

no two of which have a common vertex. We want to find a

matching with the maximal total weight.

In this paper we deal with the general problem.

There are three restricted versions of the problem: ~e

3

can restrict attention to bipartite graphs, or to maximizing

cardinality (unit weights) or both. For a survey on the

status of the four versions of the problem see [5]. In

the time bounds mentioned below we use V and E for the

size of the corresponding sets. No confusion will arise.

Edmonds [3] gave the first pOlynomial time algorithm

to the problem, whose time bound is O(V
4

). Lawler [8J and

independently Gabow [4J improved Edmonds' algorithm by

finding a way to implement it in O(V
3

).

We develop ah O(EV log V) algorithm, which is much

better for sparse graphs. We note that for the problem

of finding a maximal flow in networks, a number of

efficient algorithms for sparse graphs have been developed

in recent years ([6], [9J), while an O(V
3

) algorithm has

4

been known for some time (7). OUr algorithm is also an

implementation of Edmonds' algorithm.

OUr improvement is derived from some simple observa-

tions on data structures. We design two generalized types

of a priority queue by allowing some forms of changing

the priorities of the elements in the queue. We show that

each operation on these priority queues can still be im-

plemented in time O(log n), where n is the total number

of elements.

In Section 1 we define the two types of priority

queues, In Section 2 we show how to implement each opera-

tion on these priority queues in time O(log n). In Section

3 we review the notions of augmenting paths and blossoms.

In Section 4 we describe our version of Edmonds' algorithm.

We leave out some details of the implementation. In

Section 5 we show how a straightforward implementation

yields an O(EV
2

) algorithm.
4

(Edmonds' bound was O(V).)

3
Then we show the changes needed to obtain an O(V) bound,

yielding (a more complete version of) the algorithm by

Lawler [8]. In Section 6 we show how to use the generalized

priority queues to obtain the O(EV log V) algorithm.

5

1. Generalized priority Queues

A priority gueue [1] or a p.q. in short is an abstract

data structure consisting of a collection of elements.

each with an associated real valued priority. Three

operations are possible on a p.q. :

(1) insert an element i with priority p. ~
~

(2) delete an element~ and

(3) find an element with the minimal priority.

An implementation of a p.q. is said to be efficient if

each operation takes O(log n) time where n is the number

of elements. Many efficient implementations of p.q. 's are

known~ e.g., 2-3 trees [1].

In p.q. 's elements have fixed priorities. We con-

sider here the following question. What happens if we allow

the priority of the elements to change? Obviously, an

additional operation which changes the priority of one

element can be easily implemented in time O(log n). On

the other hand, it is not natural to allow arbitrary changes

in an arbitrary subset of the elements in one operation

simply because one has to specify all these changes.

We introduce two generalized types of p.q. 's which

we denote by P.q'l and P.q'2' The first simply allows a

uniform change in the priorities of all the elements

6

currently in it. The second allows a uniform change in

the priorities of an easily specified subset of the elements.

More precisely, P.q'l enables the following additional

operation:

(4) subtract from the priorities of all the current

elements some real number O.

This type of p.q. is not new. A version of P.q'l was

used by Tarjan [10]. Note that in (4) we can add instead

of subtract. In our case we will mostly subtract 0 > O.

To define P.q'2 we first need some assumptions. We

assume that the elements are partitioned into groups,

Every group is either active or nonactive. An element is

active (or not) if its group is, We assume that the ele-

ments are totally ordered. By splitting a group according

to an element i we mean to create two groups from all the

elements in the group greater (not greater) than i. Note

that unlike the usual:split operation we split a group

according to an element and not according to its priority.

The operations possible for P.q'2 are:

(1) I insert an element

of the groups~

(2) I delete an element7

i with priority p. to one
1.

(3) I find an active element with the minimal prioritY7

(4) I decrease the priorities of all the active

elements by some real number ~~

(5) I generate a new empty group (active or not) i

(6) I delete a group (active or not) i

(7) I change the status of a group from active to

nonactive or vice versa: and

(8) I split a group according to an element in it.

In Section 6 we use P.q'l and P.q'2 to obtain an

improved algorithm for finding a maximal weighted matching

in general graphs.

2 , An Efficient Implementation for P·q'l and P.q'2'

It may look at first that one may need up to n

steps to update all the priorities as a result of one

change, However, it is possible to implement efficiently

P,q'l and P,q'2' In particular, the change of priorities

will be achieved implicitly by one operation.

P,q'l can be easily simulated by a conventional p,q,

We maintain 6 = !~, where the sum is over all changes 6

7

so far. In the p,q. we use modified priorities which are

computed when elements are inserted into the p,q,. The modified

9riority of i is p. + U.
~

So when aD element is inserted

we add 6 to its priority. The nice property of

the modified priority is that, unlike the original

8

priority, it does not change. Tarjan's implementation

[10] is more complicated because he also allows merging

of p.q. 's. Instead of storing priorities he maintains

differences of priorities.

The efficient implementation of P.q'2 is less straight-

forward, Each group 9 has a p.q. A corresponding to it,
9

and each element has its modified priority. However, the

modification is not the same for all the elements. If i is

inserted into group g, then its modified priority is set to Pi + ~g

where 6 = ~~, and the sum is over the changes made when
9

g was a part of an active group (possibly g itself). As

for P,q'l' these modified priorities do not change. To

. . last h' h' th 1 f update 6 we ma~nta~n 6 ,w ~c ~s e va ue 0
9 g

6 when

9 was last considered (in operations (1)', (2)', (7)', or (8) ').

Whenever we consider an active group g, before

last last
resetting its 6

g
we update ~g as follows: 6 g + 6 g + t-t g

When we split a group. 9 to groups gl and g2 we set

last
Lg ,6 + 6 for i = 1,2, We also maintain a P.q'l . g. g

~ ~

B which contains one element with the minimal priority

from every active group,

Implementing the first seven operations is quite easy.

Note that an insert to or a delete from A may require an
g

insert to or a delete from B (or both). Note also that

if i is in group g and its modified priority which is

stored in ~g is qi (= Pi + ~g)' then if it is inserted to

B, the modified priority in the p.q. that implements B

should be q. - ~ +~. To implement efficiently a split
~ g

9

one needs to make a key observation on 2-3 trees. We need

the observation because, ~nlike conventional p.q. 's, we

split according to an element and not its priority.

In [1] two kinds of priority queues are described.

In the first kind the elements are stored in the leaves

and each internal node contains the smallest element of

the two (or three) subtrees rooted at his sons. In the

secorid kind the elements are stored in the leaves, and in

addition the order is preserved~ i.e. the smallest element

is stored in the leftmost leaf, etc. This kind supports

the operations of concatenate and split. Such priorities

queues are called concatenable gueues.

In our case we have two order relations: the priori-

ties and the order of the elements. Fortunately, the same

2-3 tree can support both. It contains the information of

the first kind for handling the priorities, and of the

second kind to handle the order of the elements. The

ability to handle both simultaneously is the result of the

following observation: assume we treat our 2-3 trees

10

as being of the second type: we split them or concatenate

them. If we visit and possibly make changes in a node,

we also visit all its ancestors in the tree up to the root.

These are eXactly all the nodes that may be affected and

have to be updated if the tree is of the first kind.

For more details on the various operations see [1J.

3. Blossoms and their Representation.

We assume that we are given a graph referred to as

the original graph. and a matching M. The algorithm

discovers certain sets of vertices (of odd size) called

blossoms and shrinks them. It is convenient to consider

also the vertices of the graph as (trivial) blossoms of

size one. Consequently, at any moment the blossoms consti-

tute the vertices of the current graph.

An alternating path from a vertex Uo to a vertex

u in the original graph is a sequence of edges
r

(e.
r such that distinct and = (u. I' u.) }. 1 u l '··· ,ur

are
l. l.- l. l.=

for i = 1, ... ,r-l, e. € Miff e. I t M. An alternating
l. l.+

path from a blossom BO to a blossom Br (possibly BO = Br)

is a sequence of edges (e. = (u. l'v.)}~ I such that for
l. l.- l. l.=

i=O,l, ... ,r u. ,v. € B. where B
l

, ... ,B are distinct
1. l. l. r

blossoms and for i = 1, ... ,r-1, e. € Miff e. 1 t M.
1. 1.+

11

When the algorithm discovers an alternating path of odd

r
length (e. = (u. l'v.)}. 1 (r odd) from a blossom BO

~ ~- ~ ~=

to itself (BO = Briel,er t M), a new blossom B is formed.

The blossoms B
l

, ... ,B
r

stop being blossoms and are refer-

red to as the subblossoms of B. Consequently, at any

time each vertex is in a unique blossom.

Each blossom has a base vertex. The base of a trivial

blossom is the unique vertex in it. The base of the blossom

B defined above is the b~se of B. Note that if b is
r

the base of Band c is a vertex in B then (b,c) t M.

Also if u is in B and is not the base of B, then

there is a v in B such that (u,v) € M and for every

w not in B (u,w) t M.

A nontrivial blossom is represented by the doubly

linked list ((B. ,e.)}~ 1 and by its base. Note that
~ J. ~=

Fact 1. For every 1 S i ~ r-l, (e
l

, e
2

' ... , e i) and

(e , e l' ... , e. 1) ar'e alternating oaths from BO to B ..
r r- J.+ - ~

One is of odd length and one of even length. The one of

even length is the one whose last edge is in M.

An easy induction on the structure of the blossom implies

Fact 2. In the original graph, there is an even

length alternating path from the base of the blossom to

any vertex in it.

12

A vertex i is matched if there is an edge (i,j) in

M, and is exposed otherwise. A blossom is matched (exposed)

if its base is. Edges in M are said to be matched. An

augmenting path is an alternating path between two exposed

vertices (blossoms). By Fact 2, any augmenting path

between two exposed blossoms can be expanded to an augmenting

path in the original graph between the two (exposed) bases

of these blossoms.

One can define a tree that represents the structure of

a blossom. In this tree Bl , ... ,Br are the sons of B,

and the leaves are the vertices of the blossom. We call

it the structure tree. This tree is implicitly repre­

sented by the lists (B.,e.)}~ l' The tree implies a
~ ~ ~=

total order on the vertices of the blossom: u < v if u is

to the left of v in the tree. Note that the base of a

blossom is its largest vertex.

Al though we conc'eptually consider the blossoms shrunk,

we do not actually shrink them. Edges (u,v) retain their

identity. So u and v may belong to blossoms but the

edge remains (u,v). If we use such an edge and reach a

vertex v we will need to find the blossom of v. So

in addition we represent blossoms as ordered sets of

vertices. The operations that we need are find, concatenate

and split [1].

13

4. The Algorithm

4.1 A Sketch of the Algorithm

The algorithm applies the primal-dual method [8].

At any moment we have a matching M and an assignment of

values to the dual variables: u for every vertex i d i ' an

zk for every odd subset Bk of vertices, IB
k

' = 2r
k
+l,

r
k

> O. As will be explained below, it is not important

to know what is the meaning of the dual variables.

For every edge (i,j) we define

- = u. + u. - w .. + ~ z
. ij 1. J l.J L..k:i,j€Bk k'

By duality theory (see [8]), the matching has maximum

weight if (0)-(3) hold for every verteX i, edge (i,j).

and odd subset B
k

:

(0)

(1)

(2)

(3)

u . , .,.. . ,zk 2 0:
1. l.J

(i,j) € M -.rr .. = 0:
. 1.J

i exposed = u. = 0: and
1.

Zk > 0 = Bk is full (I ((i, j) 1 i, j € Bk , (i, j) € M} 1

= r k)·

In fact, we need duality theory for motivation only.

The following short proof implies that if (0)-(3) hold,

then the matching M has maximal weight: let u., Z,
1. K

and

be the values associated with M, and let N be any
ij

other matching. Then

~ r; u; + ~- rkzk = ~(' J')EM w;J.' K ~,~

The first inequality follows from rr, . 2 0 ~ the second
~J

from ui,zk 2 0 and the fact that N is a matching; and

the equality follows from (2), (3) and the fact that M

is a matching.

14

The algorithm will have zk > 0 only for blossoms B
k

,

Consequently the number of positive ~'s will be small

(O(V)), Moreover, (3) will hold automatically,

We start with M = ~ and u. = (max w
k

)/2 for all
~ k,t ,},

~ and no blossoms (and no zk's). So except for (2) all

other conditions for optimality hold. The algorithm makes

changes that preserve (0), (1). (3) and eventually reduce

the number of violations of (2) to zero, The resulting

matching therefore has maximal weight.

4.2 The Search.

The main part of the algorithm consists of a search

for an augmenting path between two exposed blossoms. The

search uses only edges (i,j) with 'M' •• = O. During the
~J

search, blossoms are labeled by Sand T, where an S (T) label

denotes an even (odd) length alternating path from an exposed

15

blossom. (Other papers use outer and inner for Sand T.) A

blossom labeled by S (T) is referred to as an S-blossom

(a T-blossom). A vertex in an S-blossom (a T-Blossom)

is an S-vertex (a T-vertex). We also have free blossoms--

those without a label, and free vertices--those in free

blossoms. During the search new (S) blossoms can be

generated. The search may lead to the discovery of an

augmenting path. In this case the matching is augmented

and we have two less exposed vertices and consequently two

less violations of (2). After an augmentation all the

labels are erased. So, all blossoms become free. Each

augmentation terminates a stage.

Initially all exposed blossoms are labeled S. Then

the search uses useful edges to label more blossoms. A

useful edge is an unmatched edge (i,j) with "' .. = 0, i
~J

an S-vertex and j is either a free vertex (case 1) or

an S-vertex in a blossom different from the blossom of i

(case 2).

Case 1: j is in a free blossom B with base b.

In this case B is labeled with [T, (i,j)]. There must be

an edge in M of the form (b,c) (otherwise B would be

labeled by S). Assume c is in a blossom C. C must

be free because ~e al~ays use immediately the edge in the

matching. (It cannot be labeled S because an S label

arrives al~ays through a matched edge. so it could a rrive

only through (b,c). It cannot be labeled by T because

if C were labeled by T, we would have immediately

labeled B by S.) We label C by [S, (b,c)j. The

second part of the label records the edge through which

it has arrived . In the case of an 5 label, this part

is redundant because c is the base of C and (b,c) is

the unique edge in M that is incident with c.

Case 2· j is in an S-blossom B, i is in an S­

blossom C I B.

Using the second part of the labels, ~e backtrack alo ng

the two paths from exposed blossoms to B and to C. If

the exposed blossoms are different , an augmenting path has

been found . If they are the same, a new blossom is dis ­

covered.

If we discover an augmenting path between two exposed

blos s oms, we first change the status of the edges on the

path (from matched to unmatched and vice versa) . Consider

a blossom B on this path and the t~o edges e E M and

e' t M incident with it. The first enters b, the base of

B, and the second leaves through some vertex c that is in

17

some subblossom B. of B.
J.

(See Figure 1.) We recursively

find the even length alternating path in B from b to

c (guaranteed by Fact 2) and change the status of its

edges: Using the list of subblossoms of B and Fact 1,

a b

Figure 1. Recursively finding the augmenting path. Matched

edges are drawn wiggly.

a Before the augmentation in a blossom B. The base

is b and the list of subblossoms (B
l

, e
1

) , ... , (B 7 , e 7) }.

b After the agumentation in B. The base is c and the

18

we find the alternating path through the subb1ossoms of

B (e
1

, ... ,e
i

or e
i
+

1
, ... ,~) of even length. We change

the status of the edges on this even length path. We also

change the base of B to c and cyclically permute the

list of subblossoms of B (so B. is now last). We continue
1.

recursively with the subblossoms along this even length

path. The parts of the alternating paths inside the two

exposed blossoms are found similarly.

In case the backtracking leads to the same exposed

blossom, we find the first common blossom D on the two

paths. We use the parts of the paths from D to B and

r
to C to generate the list ((B.,e.)}. 1 for the new blossom.

1. 1. 1.=

B = D and e. are taken from the two paths. We initialize r 1.

the dual variable associated with the new blossom to 0,

and label the new blossom by S.

During the search we choose any useful edge and act

according to the case. we are in. As a result, some

useful edges may stop being useful and some edges may

become useful. The search may succeed (if we find an

alternating path) or fail (if there are no more useful

edges) .

4.3 A Change in the Dual Variables

If the search fails, we make the following changes

19

in the dual variables, We choose 6 > 0 and execute:

(a) u. .. u. ~ for every S-vertex i;
~ ~

(b) u. +- u. + ~ for every T-vertex i;
~ ~

(c) zk +- zk + 2 ~ for every S-blossom B
k

; and

(d) zk +- zk - 26 for every T-blossom B
k

,

Such a choice of ~ preserVes (1) and (3) , To preserve

(0) we choose 3 = mi n (~ 1 ' ~ 2 ' 63 ' <5 4) ,

.. = min u.
~l ~

i: S-vertex

.. = min
'"'2 ij

(i,j) € E

i: S vertex
j: free-vertex

~3 = min(..... ./2)
~J

(i,j) € E

where

i,j: S vertices not in the same blossom

34 = min (zk~2)

Bk aT-blossom

Note that u.
~O

= (max wk ,2.)/2 - 6 where io is any
k,2.

exposed vertex and ~ is the sum of the changes 0 so far. This

is because initially u. = (max wk ,n)/2
~ k,2. x..

for every vertex i,

and the fact that the exposed vertices were always S-vertices

and their u. 's were always decreased by o. Consequently, if
~

6 = °1 , then after the change (2) is satisfied and we have a

matching with maximal weight.

20

If 6 = 6
4

, we expand all T blossoms Bk on which

the minimum was attained. (Their zk becomes 0.) Expanding

a blossom B is described in Figure 2. B stops being a

blossom and its subblossoms become blossoms. The label

of B is [T, (p,q)] where (p,q) is the edge through which

B received its T label. Assume q € B., where
~

B
l

, ... ,Br are the subblossoms of B. The subblossoms on

the odd length path from BO = Br to Bi (see Fact 1) except

and B. become free.
~

The ones

on the even length path get alternating labels starting

and ending with T. It is here where we need the split

operation. For i = 1, ... ,r-l, we split each B. from
1

B according to its base which is its largest element. As

a result of expanding a T-blossom some edges may become

useful. If that is the case we resume the search. Other-

wise we make another change of the dual variables.

If l = ~2 (e = ~3)' all edges (i,j) with i an

S-vertex and j a free vertex (an S-vertex not in the

same blossom) on which the minimum was attained become

useful (their _ .. becomes 0) and we resume the search. The
~J

two cases correspond to the two cases in 4.2.

21

00

a b

Figure 2. Expanding a T-blossom: a before, and b after

the expansion.

B k

At the end of each stage we also expand all S-blossoms

with zk = O. Note that finding the alternating path

within a blossom can be deferred to the time we expand it.

This way we save the repeated changes within the same blossom.

Keeping the blossoms with positive dual variables to the

next stage is important. This makes sure that (3) always holds.

This explains why T-blossoms can be generated. The latter are

expanded whenever their dual variables become O.

22

5. The Known Algorithms

Let us call a substage each change in the dual

variables. Obviously, there are O(V) stages. There are

O(V) different blossoms per stage: each S-blossom corres-

ponds to a unique node in ~ne of the structure trees at

the end of a stage. Each T-blossom (free blossom) corres-

ponds to a unique node in one of the structure trees at

the beginning of the stage. But, whenever 0 = O2 (0 = 6 3)

a new T-blossom (S-blossom) is generated, and whenever

6 = 54 a T-blossom is expanded. Hence, 0= 0., i = 2,3,4, at
~

most O(V) times per stage. Finally, 6= °1 at most once. Con­

sequently, there are O(V) substages per stage.

The most costly part in a substage is finding useful

edges and computing 5. The obvious way to do it takes

O(E) steps (in each substage we consider all the edges) and

yields an O(EV
2

) algorithm. To maintain the sets one uses

ordered lists for concatenate and split and an array for

the find. The naive implementation costs O(V
3

). (There

are O(V) concatenates and splits per stage, each costs

O(V).) The cost of maintaining the dual variables is also

O(V
3

) (O(V) per substage) . The resulting algorithm is

essentially Edmonds' algorithm. The time bound that was

given for it was O(V
4

) because E
2

was bounded above by V .

23

3
The only parts which require more than O(V) are

maintaining ~2 and ~3 and finding useful edges. The

latter is handled automatically because ~2 = 0 (03 = 0)

iff ~~ere are useful edges of case 1 (case 2) and these

are the edges on which the minimum (0) is attained. We

show first how to take care of 02' For every free vertex

min 'IT ••• (T-vertex) j let TT. =
) . .) 1.)

(1.,) €E
Then °2= min T"'.

j: fre~ vertex
i: S-vertex

Together with -. we record an edge (i,j), i an S-vertex,
)

such that" . = - For
) . ij' each change of Q , we only change

~j for free vertices j. Consequently, the changes of

(i'1' • } and computing ~2 cost o (V3
) . Recall that free ver-

J

tices may become T-vertices (when a blossom is labeled by

T) and T-vertices may become free (when we expand a

T-blossom). That is why we need -. 's for T-vertices as well.
)

To take care of e
3

, we define for every pair of

min
(i,j)€E
i€Bk,j€Bl,

(T"' .. /2).
1.)

We record the edge ek,~

on which the minimum is attained and maintain Ok = min Ok .
I

,1.

We do not maintain Ok ' but any time we need it we compute
, l

it by using ~,l' Obviously ~3 = min Ok' The changes in the
k

dual variables and computing e3
cost 0(V

3
) as for ~2 . We

have to update (~} and (~, l} any time an S-blossom Bk is

24

constructed from B. , ... ,B .. Recall that (r+l)/2 of them
1.1 lor

are S-blossom and (r-l)/2 of them are T-blossoms. We first

"make" each T-blossom B an S-blossom by scanning all its
m

edges and computing for it (M } and (e 1. Then we use m,1. m, 1. .

the ~ '5 of B. , ... ,B. to compute ~,(a } for the
m,t 1.1 lor ~K K,}.

new blossom Bk , and to update (~j} for j ~ k.

The total cost (per stage) to make T-blossoms S-blossoms

is O(E). We now compute T(n), the rest of the cost of maintaining

03' where n is the number of S-blossoms plus the number of non

S-vertices in the graph. As above, assume that a new S-blossom

is constructed from r subblossoms. It follows that T(n) ~

crn + T(n-r+l) because rn is a pound on the number of ~,~'s

considered after making the T-blossoms S-blossoms. T(n) = O(n 2)

(by induction on n), and the cost of computing 03 is O(V3). The

resulting O(V3) algorithm is essentially a (more complete version

of) Lawler's algorithm [8].

6. The O(EV log V) ~lgorithm.

The most costly part of Edmonds' algorithm is the

frequent updates of the dual variables, which cause changes

in (TT. .). Note that all the elements that determine each
1.,)

~. are decreased by e for each change in the dual variables.
'1.

-the new algorithm is also an implementation of Edmonds'

algorithm. The high level description of Section 4 (including

the search, augmenting the matching, the change of dual variables

and the resulting changes in the blossoms) is identical. The

main difference is in maintaining the c. 's by generalized
1.

25

priority queues that we describe next.

We maintain 01 by a P.q'l' In this p.q. the elements are

the S-vertices i and their priorities u ..
~

We do not need this

P.q'l for computing 01' since 01 = u.
~o

= (max w
k

~)/2 - ~ where
k,l '

iO is any exposed vertex and 6 is the sum of the 5'5 so far.

We use a P.q'l because we need to

maintain the u. '5 for computing ~ .. when the edge (i,j)
~ ~J

is considered. For the same reason we maintain another

P,q'l for the ui's of the T-vertices.

We maintain ~3 by a P,q'l' The p.q. contains all

good edges (i,j) with i and j in different S-blossoms

as well as some suoerfluous edges (i,j) with i and j

in the same S-blossom. The reason for having

superfluous edges is that we do not have time to locate

them and delete them any time a new S-blossom is constructed.

The priority of a good edge (i,j) is ~ .. /2,
~J

We maintain 3
4

by a P.q'l' The elements in the p.q.

are the T-blossoms Bk'and their priority zk/2. We have a

similar P,q'l for the S-blossoms, because we need to

maintain their ~, (At the end of a stage they become

free and in the next stage they may become T-blossoms,)

If we try to maintain ~2 by a P.q'l' we have a

difficulty, Consider Figure 3. Initially there may be a

large free blossom B
l

. At that time all edges in Figure 3

should be considered for finding the value of 02' B1 may become

26

Figure 3, Edges from an exposed vertex to the innermost

blossom that we may have to consider again and again if the

blossoms Bl ", "B
k

are eventually expanded.

a T-blossom. Then these edges are not among those edges that

determine 02. Later on Bl may be expanded and one of its

subblossoms, B
2

, may become free. The latter may later

become a T-blossom and so on. ~ simple implementation

requires the consideration of each such edge an unbounded

number of times (up to k in Figure 3),

To maintain ~2 we have a P.Q'2' For every free

27

blossom (T-blossom) ~ we have an active (a nonactive)

group of all the edges from S-vertices to vertices in B
k

.

The priority of an edge (i,j) is 'I"!' ... Note that if (i,j)
l.J

is in a nonactive group (i is an S-vertex and j is a

T-vertex), then ~ .. does not change when we make a change
l.J

in the dual variables. It is now easy to verify that the

eight operations of P.q'2 suffice for our purposes.

Consider a group g which corresponds to a blossom

B. The elements of the group are the edges ((i,j) Ii an

S-vertex, j E B}. The order on the elements is derived

from the order on the vertices of B. The order between

two edges (il,j) and (i2 ,j) is arbitrary. The order

enables us to split the group corresponding to B to the

groups corresponding to B
1

, ... ,Br when we expand B to

its subblossoms.

The search is similar to the one described in subsection

4.2. The labeling p~ocess is identical. During the search,

whenever we have a new S-vertex i we consider in turn all

the edges (i,j). This requires a queue Q for new

S-vertices, since we sometimes have many new S-vertices

at once. When considering an edge (i,j) we distinguish

between 3 cases depending on the type of B the blossom

of j:

28

Case I (II): B is a free blossom (T-blossom). We insert

(i,j) with priority ~ .. to the active (nonactive) group
~J

corresponding to B.

Case III: B is an S-blossom. If the blossom of i is

not B we insert (i,j) with priority ~ .. /2 to the P.q'l
~J

that maintains ~3'

During the search we compute ~ = min(~1'~2'~3'~4)' If

6 > 0, we make a change of ~ in the dual variables. This

is accomplished by increasing ~ by ~,and results in a

new value of c = O.

If ~ = 0, we consider all ~l = O. If ~l = 0, then

we are done. If ~2 = 0, this means that the minimum (0) is

achieved on an edge (i,j) j in a free blossom Bi i.e.

(i,j) is useful. We delete (i,j) from the corresponding
p.q. and label as in Case 1 of subsection 4.2.
In addition the group corresponding to B becomes nonactive

(B is labeled by T) ,and the group corresponding to C

is deleted and the vertices in C (that become S-vertices)

are inserted into Q. We repeat the above as long as 6
2

= O.

If ~3 = 0 we delete one by one the elements (i,j)

in this p.q. with priority ~ .. = O. If i and j are
~J

in the same blossom we do not do anything. Otherwise

((i,j) is useful) we act as in Case 2 of subsection 4.2.

29

If a new S-blossom is generated, then for all the sub-

blossoms B, that were T-blossoms up till now we delete the
1.

group corresponding to Bi (from the P,q'2 Of~2) and

insert all the vertices of B, to Q.
1.

If 04 = 0, we delete one by one the elements Bk in

this p.q. with priority zk = O. For each such Bk' we

expand it and label the new blossoms (the previous subblossoms

of Bk) as in 4.3 and Figure 2. We split the corresponding

group in the P.q'2 of 02' The groups corresponding to the

new free blossoms (T-blossoms) are inserted as active (nonactive)

groups to the P.q'2' The vertices of the new S-blossoms

are inserted to Q.

"TO derive an O(EV log V) time bound we need to

implement carefully two parts of the algorithm:

1. We maintain the sets of vertices in each blossom

(for finding the blossom of a given vertex) by concatenable

queues [1]. Note that the number of finds, concatenates

and splits is O(E) per stage.

2. Assume we consider an edge (i,j) where both i

and j are S-vertices not in the same blossom. If we

execute the backtracking as described above, we may need

up to O(V
3

)time. Instead, we make a careful backtrack by

backtracking one blossom on both paths each time, marking

the blossoms on the way. If there are r subblossoms in

30

the new blossom, then we will visit at most 2r blossoms

before discovering the first common blossom on both paths

(D). So the total number of blossoms that we traverse in

one stage is O(V). (Charge 2 each one of the corresponding

nodes in the corresponding structure tree.)

The time bound is easily derived as follows. There

are at most V augmentations. Between two augmentations

we consider each edge at most twice and have O(E)

operations on (generalized) p.q. 's.

2 above.)

(This includes 1 and

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The
Design and Analysis of Computer Algorithms, Addison­
Wesley, Reading, Mass., 1974.

31

[2] J. Edmonds, "Path, Trees and Flowers," Canad. J.
Math. 17 (1965), 449-467.

[3] J. Edmonds, "Maximum Matching and a Polyhedron
with 0,1 Vertices," J. Res. NBS 69B (April-June
1965), 125-130.

[4] H.N. Gabow, "Implementation of algorithms for
maximum matching on nonbipartite graphs," ph.D.
thesis, Stanford University, 1974.

[5] z. Galil," Efficient Algori thms for Finding
Maximal Matching in Graphs'; Technical Report, columbia
University, February 1983.

[6] Z. Galil and A. Naamad, "An O(EV log
2

V) Algorithm
for the Maximal Flow problem," JCSS 21,1. (1980),
203-217.

(7] A.V. Karzanov, "Determining the Maximal Flow in
a Network by the Method of preflows," Soviet Math.
Dokl. 15 (1974), 434-437.

[8] E.L. Lawler, combinatorial Optimization: Networks
and Matroids, Holt, Rinehart and winston, New York, 1976.

[9] D.D. Sleator, "An O(mn log m) algorithm for
maximum network flow," ph.D. thesis, Stanford University,
December 1980.

[10] R.E. Tarjan,"Finding optimum branchings,"
Network 7 (1977), 25-23.

