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Abstract. 

We define two generalized types of a priority queue 

by allowing some forms of changing the priorities of the 

elements in the queue. We show that they can be implemented 

efficiently. Consequently, each operation takes O(log n) 

time. We use these generalized priority queues to con­

struct an O(EV log V) algorithm for finding a maximal 

weighted matching in general graphs. 



O. Introduction 

We are given a graph G = (V,E) with vertex set V 

and edge set E. Each edge (i,j) € E has a weight w .. 
~J 

associated with it. A matching is a subset of the edges, 

no two of which have a common vertex. We want to find a 

matching with the maximal total weight. 

In this paper we deal with the general problem. 

There are three restricted versions of the problem: ~e 
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can restrict attention to bipartite graphs, or to maximizing 

cardinality (unit weights) or both. For a survey on the 

status of the four versions of the problem see [5]. In 

the time bounds mentioned below we use V and E for the 

size of the corresponding sets. No confusion will arise. 

Edmonds [3] gave the first pOlynomial time algorithm 

to the problem, whose time bound is O(V
4

). Lawler [8J and 

independently Gabow [4J improved Edmonds' algorithm by 

finding a way to implement it in O(V
3

). 

We develop ah O(EV log V) algorithm, which is much 

better for sparse graphs. We note that for the problem 

of finding a maximal flow in networks, a number of 

efficient algorithms for sparse graphs have been developed 

in recent years ([6], [9J), while an O(V
3

) algorithm has 
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been known for some time (7). OUr algorithm is also an 

implementation of Edmonds' algorithm. 

OUr improvement is derived from some simple observa-

tions on data structures. We design two generalized types 

of a priority queue by allowing some forms of changing 

the priorities of the elements in the queue. We show that 

each operation on these priority queues can still be im-

plemented in time O(log n), where n is the total number 

of elements. 

In Section 1 we define the two types of priority 

queues, In Section 2 we show how to implement each opera-

tion on these priority queues in time O(log n). In Section 

3 we review the notions of augmenting paths and blossoms. 

In Section 4 we describe our version of Edmonds' algorithm. 

We leave out some details of the implementation. In 

Section 5 we show how a straightforward implementation 

yields an O(EV
2

) algorithm. 
4 

(Edmonds' bound was O(V ).) 

3 
Then we show the changes needed to obtain an O(V ) bound, 

yielding (a more complete version of) the algorithm by 

Lawler [8]. In Section 6 we show how to use the generalized 

priority queues to obtain the O(EV log V) algorithm. 
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1. Generalized priority Queues 

A priority gueue [1] or a p.q. in short is an abstract 

data structure consisting of a collection of elements. 

each with an associated real valued priority. Three 

operations are possible on a p.q. : 

( 1) insert an element i with priority p. ~ 
~ 

(2) delete an element~ and 

(3) find an element with the minimal priority. 

An implementation of a p.q. is said to be efficient if 

each operation takes O(log n) time where n is the number 

of elements. Many efficient implementations of p.q. 's are 

known~ e.g., 2-3 trees [1]. 

In p.q. 's elements have fixed priorities. We con-

sider here the following question. What happens if we allow 

the priority of the elements to change? Obviously, an 

additional operation which changes the priority of one 

element can be easily implemented in time O(log n). On 

the other hand, it is not natural to allow arbitrary changes 

in an arbitrary subset of the elements in one operation 

simply because one has to specify all these changes. 

We introduce two generalized types of p.q. 's which 

we denote by P.q'l and P.q'2' The first simply allows a 

uniform change in the priorities of all the elements 
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currently in it. The second allows a uniform change in 

the priorities of an easily specified subset of the elements. 

More precisely, P.q'l enables the following additional 

operation: 

(4) subtract from the priorities of all the current 

elements some real number O. 

This type of p.q. is not new. A version of P.q'l was 

used by Tarjan [10]. Note that in (4) we can add instead 

of subtract. In our case we will mostly subtract 0 > O. 

To define P.q'2 we first need some assumptions. We 

assume that the elements are partitioned into groups, 

Every group is either active or nonactive. An element is 

active (or not) if its group is, We assume that the ele-

ments are totally ordered. By splitting a group according 

to an element i we mean to create two groups from all the 

elements in the group greater (not greater) than i. Note 

that unlike the usual:split operation we split a group 

according to an element and not according to its priority. 

The operations possible for P.q'2 are: 

(1) I insert an element 

of the groups~ 

(2) I delete an element7 

i with priority p. to one 
1. 

(3) I find an active element with the minimal prioritY7 



(4) I decrease the priorities of all the active 

elements by some real number ~~ 

(5) I generate a new empty group (active or not) i 

(6) I delete a group (active or not) i 

(7) I change the status of a group from active to 

nonactive or vice versa: and 

(8) I split a group according to an element in it. 

In Section 6 we use P.q'l and P.q'2 to obtain an 

improved algorithm for finding a maximal weighted matching 

in general graphs. 

2 , An Efficient Implementation for P·q'l and P.q'2' 

It may look at first that one may need up to n 

steps to update all the priorities as a result of one 

change, However, it is possible to implement efficiently 

P,q'l and P,q'2' In particular, the change of priorities 

will be achieved implicitly by one operation. 

P,q'l can be easily simulated by a conventional p,q, 

We maintain 6 = !~, where the sum is over all changes 6 

7 

so far. In the p,q. we use modified priorities which are 

computed when elements are inserted into the p,q,. The modified 

9riority of i is p. + U. 
~ 

So when aD element is inserted 

we add 6 to its priority. The nice property of 

the modified priority is that, unlike the original 
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priority, it does not change. Tarjan's implementation 

[10] is more complicated because he also allows merging 

of p.q. 's. Instead of storing priorities he maintains 

differences of priorities. 

The efficient implementation of P.q'2 is less straight-

forward, Each group 9 has a p.q. A corresponding to it, 
9 

and each element has its modified priority. However, the 

modification is not the same for all the elements. If i is 

inserted into group g, then its modified priority is set to Pi + ~g 

where 6 = ~~, and the sum is over the changes made when 
9 

g was a part of an active group (possibly g itself). As 

for P,q'l' these modified priorities do not change. To 

. . last h' h' th 1 f update 6 we ma~nta~n 6 ,w ~c ~s e va ue 0 
9 g 

6 when 

9 was last considered (in operations (1)', (2)', (7)', or (8) '). 

Whenever we consider an active group g, before 

last last 
resetting its 6

g 
we update ~g as follows: 6 g + 6 g + t-t g 

When we split a group. 9 to groups gl and g2 we set 

last 
Lg ,6 + 6 for i = 1,2, We also maintain a P.q'l . g. g 

~ ~ 

B which contains one element with the minimal priority 

from every active group, 

Implementing the first seven operations is quite easy. 

Note that an insert to or a delete from A may require an 
g 

insert to or a delete from B (or both). Note also that 



if i is in group g and its modified priority which is 

stored in ~g is qi (= Pi + ~g)' then if it is inserted to 

B, the modified priority in the p.q. that implements B 

should be q. - ~ +~. To implement efficiently a split 
~ g 

9 

one needs to make a key observation on 2-3 trees. We need 

the observation because, ~nlike conventional p.q. 's, we 

split according to an element and not its priority. 

In [1] two kinds of priority queues are described. 

In the first kind the elements are stored in the leaves 

and each internal node contains the smallest element of 

the two (or three) subtrees rooted at his sons. In the 

secorid kind the elements are stored in the leaves, and in 

addition the order is preserved~ i.e. the smallest element 

is stored in the leftmost leaf, etc. This kind supports 

the operations of concatenate and split. Such priorities 

queues are called concatenable gueues. 

In our case we have two order relations: the priori-

ties and the order of the elements. Fortunately, the same 

2-3 tree can support both. It contains the information of 

the first kind for handling the priorities, and of the 

second kind to handle the order of the elements. The 

ability to handle both simultaneously is the result of the 

following observation: assume we treat our 2-3 trees 
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as being of the second type: we split them or concatenate 

them. If we visit and possibly make changes in a node, 

we also visit all its ancestors in the tree up to the root. 

These are eXactly all the nodes that may be affected and 

have to be updated if the tree is of the first kind. 

For more details on the various operations see [1J. 

3. Blossoms and their Representation. 

We assume that we are given a graph referred to as 

the original graph. and a matching M. The algorithm 

discovers certain sets of vertices (of odd size) called 

blossoms and shrinks them. It is convenient to consider 

also the vertices of the graph as (trivial) blossoms of 

size one. Consequently, at any moment the blossoms consti-

tute the vertices of the current graph. 

An alternating path from a vertex Uo to a vertex 

u in the original graph is a sequence of edges 
r 

(e. 
r such that distinct and = (u. I' u. ) }. 1 u l '··· ,ur 

are 
l. l.- l. l.= 

for i = 1, ... ,r-l, e. € Miff e. I t M. An alternating 
l. l.+ 

path from a blossom BO to a blossom Br (possibly BO = Br ) 

is a sequence of edges (e. = (u. l'v.)}~ I such that for 
l. l.- l. l.= 

i=O,l, ... ,r u. ,v. € B. where B
l

, ... ,B are distinct 
1. l. l. r 

blossoms and for i = 1, ... ,r-1, e. € Miff e. 1 t M. 
1. 1.+ 
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When the algorithm discovers an alternating path of odd 

r 
length (e. = (u. l'v.)}. 1 (r odd) from a blossom BO 

~ ~- ~ ~= 

to itself (BO = Briel,er t M), a new blossom B is formed. 

The blossoms B
l

, ... ,B
r 

stop being blossoms and are refer-

red to as the subblossoms of B. Consequently, at any 

time each vertex is in a unique blossom. 

Each blossom has a base vertex. The base of a trivial 

blossom is the unique vertex in it. The base of the blossom 

B defined above is the b~se of B. Note that if b is 
r 

the base of Band c is a vertex in B then (b,c) t M. 

Also if u is in B and is not the base of B, then 

there is a v in B such that (u,v) € M and for every 

w not in B (u,w) t M. 

A nontrivial blossom is represented by the doubly 

linked list ((B. ,e.)}~ 1 and by its base. Note that 
~ J. ~= 

Fact 1. For every 1 S i ~ r-l, (e
l

, e
2 

' ... , e i ) and 

(e , e l' ... , e. 1) ar'e alternating oaths from BO to B .. 
r r- J.+ - ~ 

One is of odd length and one of even length. The one of 

even length is the one whose last edge is in M. 

An easy induction on the structure of the blossom implies 

Fact 2. In the original graph, there is an even 

length alternating path from the base of the blossom to 

any vertex in it. 
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A vertex i is matched if there is an edge (i,j) in 

M, and is exposed otherwise. A blossom is matched (exposed) 

if its base is. Edges in M are said to be matched. An 

augmenting path is an alternating path between two exposed 

vertices (blossoms). By Fact 2, any augmenting path 

between two exposed blossoms can be expanded to an augmenting 

path in the original graph between the two (exposed) bases 

of these blossoms. 

One can define a tree that represents the structure of 

a blossom. In this tree Bl , ... ,Br are the sons of B, 

and the leaves are the vertices of the blossom. We call 

it the structure tree. This tree is implicitly repre­

sented by the lists (B.,e.)}~ l' The tree implies a 
~ ~ ~= 

total order on the vertices of the blossom: u < v if u is 

to the left of v in the tree. Note that the base of a 

blossom is its largest vertex. 

Al though we conc'eptually consider the blossoms shrunk, 

we do not actually shrink them. Edges (u,v) retain their 

identity. So u and v may belong to blossoms but the 

edge remains (u,v). If we use such an edge and reach a 

vertex v we will need to find the blossom of v. So 

in addition we represent blossoms as ordered sets of 

vertices. The operations that we need are find, concatenate 

and split [1]. 
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4. The Algorithm 

4.1 A Sketch of the Algorithm 

The algorithm applies the primal-dual method [8]. 

At any moment we have a matching M and an assignment of 

values to the dual variables: u for every vertex i d i ' an 

zk for every odd subset Bk of vertices, IB
k

' = 2r
k
+l, 

r
k 

> O. As will be explained below, it is not important 

to know what is the meaning of the dual variables. 

For every edge (i,j) we define 

- = u. + u. - w .. + ~ z 
. ij 1. J l.J L..k:i,j€Bk k' 

By duality theory (see [8]), the matching has maximum 

weight if (0)-(3) hold for every verteX i, edge (i,j). 

and odd subset B
k

: 

( 0) 

( 1) 

(2 ) 

(3 ) 

u . , .,.. . ,zk 2 0: 
1. l.J 

(i,j) € M -.rr .. = 0: 
. 1.J 

i exposed = u. = 0: and 
1. 

Zk > 0 = Bk is full (I ( (i, j) 1 i, j € Bk , (i, j) € M} 1 

= r k )· 

In fact, we need duality theory for motivation only. 

The following short proof implies that if (0)-(3) hold, 

then the matching M has maximal weight: let u., Z, 
1. K 

and 

be the values associated with M, and let N be any 
ij 



other matching. Then 

~ r; u; + ~- rkzk = ~(' J')EM w;J.' .. .. K ~,~ .... 

The first inequality follows from rr, . 2 0 ~ the second 
~J 

from ui,zk 2 0 and the fact that N is a matching; and 

the equality follows from (2), (3) and the fact that M 

is a matching. 
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The algorithm will have zk > 0 only for blossoms B
k

, 

Consequently the number of positive ~'s will be small 

(O(V)), Moreover, (3) will hold automatically, 

We start with M = ~ and u. = (max w
k 

)/2 for all 
~ k,t ,}, 

~ and no blossoms (and no zk's). So except for (2) all 

other conditions for optimality hold. The algorithm makes 

changes that preserve (0), (1). (3) and eventually reduce 

the number of violations of (2) to zero, The resulting 

matching therefore has maximal weight. 

4.2 The Search. 

The main part of the algorithm consists of a search 

for an augmenting path between two exposed blossoms. The 

search uses only edges (i,j) with 'M' •• = O. During the 
~J 

search, blossoms are labeled by Sand T, where an S (T) label 

denotes an even (odd) length alternating path from an exposed 
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blossom. (Other papers use outer and inner for Sand T.) A 

blossom labeled by S (T) is referred to as an S-blossom 

(a T-blossom). A vertex in an S-blossom (a T-Blossom) 

is an S-vertex (a T-vertex). We also have free blossoms--

those without a label, and free vertices--those in free 

blossoms. During the search new (S) blossoms can be 

generated. The search may lead to the discovery of an 

augmenting path. In this case the matching is augmented 

and we have two less exposed vertices and consequently two 

less violations of (2). After an augmentation all the 

labels are erased. So, all blossoms become free. Each 

augmentation terminates a stage. 

Initially all exposed blossoms are labeled S. Then 

the search uses useful edges to label more blossoms. A 

useful edge is an unmatched edge (i,j) with "' .. = 0, i 
~J 

an S-vertex and j is either a free vertex (case 1) or 

an S-vertex in a blossom different from the blossom of i 

(case 2). 

Case 1: j is in a free blossom B with base b. 

In this case B is labeled with [T, (i,j)]. There must be 

an edge in M of the form (b,c) (otherwise B would be 

labeled by S). Assume c is in a blossom C. C must 



be free because ~e al~ays use immediately the edge in the 

matching. (It cannot be labeled S because an S label 

arrives al~ays through a matched edge. so it could a rrive 

only through (b,c). It cannot be labeled by T because 

if C were labeled by T, we would have immediately 

labeled B by S.) We label C by [S, (b,c)j. The 

second part of the label records the edge through which 

it has arrived . In the case of an 5 label, this part 

is redundant because c is the base of C and (b,c) is 

the unique edge in M that is incident with c. 

Case 2· j is in an S-blossom B, i is in an S­

blossom C I B. 

Using the second part of the labels, ~e backtrack alo ng 

the two paths from exposed blossoms to B and to C. If 

the exposed blossoms are different , an augmenting path has 

been found . If they are the same, a new blossom is dis ­

covered. 

If we discover an augmenting path between two exposed 

blos s oms, we first change the status of the edges on the 

path (from matched to unmatched and vice versa ) . Consider 

a blossom B on this path and the t~o edges e E M and 

e' t M incident with it. The first enters b, the base of 

B, and the second leaves through some vertex c that is in 
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some subblossom B. of B. 
J. 

(See Figure 1.) We recursively 

find the even length alternating path in B from b to 

c (guaranteed by Fact 2) and change the status of its 

edges: Using the list of subblossoms of B and Fact 1, 

a b 

Figure 1. Recursively finding the augmenting path. Matched 

edges are drawn wiggly. 

a Before the augmentation in a blossom B. The base 

is b and the list of subblossoms (B
l

, e
1

) , ... , (B 7 , e 7 ) }. 

b After the agumentation in B. The base is c and the 
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we find the alternating path through the subb1ossoms of 

B (e
1

, ... ,e
i 

or e
i
+

1
, ... ,~) of even length. We change 

the status of the edges on this even length path. We also 

change the base of B to c and cyclically permute the 

list of subblossoms of B (so B. is now last). We continue 
1. 

recursively with the subblossoms along this even length 

path. The parts of the alternating paths inside the two 

exposed blossoms are found similarly. 

In case the backtracking leads to the same exposed 

blossom, we find the first common blossom D on the two 

paths. We use the parts of the paths from D to B and 

r 
to C to generate the list ((B.,e.)}. 1 for the new blossom. 

1. 1. 1.= 

B = D and e. are taken from the two paths. We initialize r 1. 

the dual variable associated with the new blossom to 0, 

and label the new blossom by S. 

During the search we choose any useful edge and act 

according to the case. we are in. As a result, some 

useful edges may stop being useful and some edges may 

become useful. The search may succeed (if we find an 

alternating path) or fail (if there are no more useful 

edges) . 

4.3 A Change in the Dual Variables 

If the search fails, we make the following changes 
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in the dual variables, We choose 6 > 0 and execute: 

(a) u. .. u. ~ for every S-vertex i; 
~ ~ 

(b) u. +- u. + ~ for every T-vertex i; 
~ ~ 

(c) zk +- zk + 2 ~ for every S-blossom B
k

; and 

( d) zk +- zk - 26 for every T-blossom B
k

, 

Such a choice of ~ preserVes ( 1 ) and (3) , To preserve 

(0) we choose 3 = mi n ( ~ 1 ' ~ 2 ' 63 ' <5 4 ) , 

.. = min u. 
~l ~ 

i: S-vertex 

.. = min 
'"'2 ij 

(i,j) € E 

i: S vertex 
j: free-vertex 

~3 = min( ..... ./2) 
~J 

(i,j) € E 

where 

i,j: S vertices not in the same blossom 

34 = min ( zk~2 ) 

Bk aT-blossom 

Note that u. 
~O 

= (max wk ,2.)/2 - 6 where io is any 
k,2. 

exposed vertex and ~ is the sum of the changes 0 so far. This 

is because initially u. = (max wk ,n)/2 
~ k,2. x.. 

for every vertex i, 

and the fact that the exposed vertices were always S-vertices 

and their u. 's were always decreased by o. Consequently, if 
~ 

6 = °1 , then after the change (2) is satisfied and we have a 

matching with maximal weight. 



20 

If 6 = 6
4

, we expand all T blossoms Bk on which 

the minimum was attained. (Their zk becomes 0.) Expanding 

a blossom B is described in Figure 2. B stops being a 

blossom and its subblossoms become blossoms. The label 

of B is [T, (p,q)] where (p,q) is the edge through which 

B received its T label. Assume q € B., where 
~ 

B
l

, ... ,Br are the subblossoms of B. The subblossoms on 

the odd length path from BO = Br to Bi (see Fact 1) except 

and B. become free. 
~ 

The ones 

on the even length path get alternating labels starting 

and ending with T. It is here where we need the split 

operation. For i = 1, ... ,r-l, we split each B. from 
1 

B according to its base which is its largest element. As 

a result of expanding a T-blossom some edges may become 

useful. If that is the case we resume the search. Other-

wise we make another change of the dual variables. 

If l = ~2 (e = ~3)' all edges (i,j) with i an 

S-vertex and j a free vertex (an S-vertex not in the 

same blossom) on which the minimum was attained become 

useful (their _ .. becomes 0) and we resume the search. The 
~J 

two cases correspond to the two cases in 4.2. 
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00 

a b 

Figure 2. Expanding a T-blossom: a before, and b after 

the expansion. 

B k 

At the end of each stage we also expand all S-blossoms 

with zk = O. Note that finding the alternating path 

within a blossom can be deferred to the time we expand it. 

This way we save the repeated changes within the same blossom. 

Keeping the blossoms with positive dual variables to the 

next stage is important. This makes sure that (3) always holds. 

This explains why T-blossoms can be generated. The latter are 

expanded whenever their dual variables become O. 
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5. The Known Algorithms 

Let us call a substage each change in the dual 

variables. Obviously, there are O(V) stages. There are 

O(V) different blossoms per stage: each S-blossom corres-

ponds to a unique node in ~ne of the structure trees at 

the end of a stage. Each T-blossom (free blossom) corres-

ponds to a unique node in one of the structure trees at 

the beginning of the stage. But, whenever 0 = O2 (0 = 6 3 ) 

a new T-blossom (S-blossom) is generated, and whenever 

6 = 54 a T-blossom is expanded. Hence, 0= 0., i = 2,3,4, at 
~ 

most O(V) times per stage. Finally, 6= °1 at most once. Con­

sequently, there are O(V) substages per stage. 

The most costly part in a substage is finding useful 

edges and computing 5. The obvious way to do it takes 

O(E) steps (in each substage we consider all the edges) and 

yields an O(EV
2

) algorithm. To maintain the sets one uses 

ordered lists for concatenate and split and an array for 

the find. The naive implementation costs O(V
3

). (There 

are O(V) concatenates and splits per stage, each costs 

O(V).) The cost of maintaining the dual variables is also 

O(V
3

) (O(V) per substage) . The resulting algorithm is 

essentially Edmonds' algorithm. The time bound that was 

given for it was O(V
4

) because E 
2 

was bounded above by V . 
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3 
The only parts which require more than O(V ) are 

maintaining ~2 and ~3 and finding useful edges. The 

latter is handled automatically because ~2 = 0 (03 = 0) 

iff ~~ere are useful edges of case 1 (case 2) and these 

are the edges on which the minimum (0) is attained. We 

show first how to take care of 02' For every free vertex 

min 'IT ••• (T-vertex) j let TT. = 
) . .) 1.) 

(1.,) €E 
Then °2= min T"'. 

j: fre~ vertex 
i: S-vertex 

Together with -. we record an edge (i,j), i an S-vertex, 
) 

such that" . = - For 
) . ij' each change of Q , we only change 

~j for free vertices j. Consequently, the changes of 

( i'1' • } and computing ~2 cost o (V3
) . Recall that free ver-

J 

tices may become T-vertices (when a blossom is labeled by 

T) and T-vertices may become free (when we expand a 

T-blossom). That is why we need -. 's for T-vertices as well. 
) 

To take care of e
3

, we define for every pair of 

min 
(i,j)€E 
i€Bk,j€Bl, 

(T"' .. /2). 
1.) 

We record the edge ek,~ 

on which the minimum is attained and maintain Ok = min Ok . 
I 

,1. 

We do not maintain Ok ' but any time we need it we compute 
, l 

it by using ~,l' Obviously ~3 = min Ok' The changes in the 
k 

dual variables and computing e3 
cost 0(V

3
) as for ~2 . We 

have to update (~} and (~, l} any time an S-blossom Bk is 



24 

constructed from B. , ... ,B .. Recall that (r+l)/2 of them 
1.1 lor 

are S-blossom and (r-l)/2 of them are T-blossoms. We first 

"make" each T-blossom B an S-blossom by scanning all its 
m 

edges and computing for it (M } and (e 1. Then we use .... m,1. m, 1. . 

the ~ '5 of B. , ... ,B. to compute ~,(a } for the 
m,t 1.1 lor ~K K,}. 

new blossom Bk , and to update (~j} for j ~ k. 

The total cost (per stage) to make T-blossoms S-blossoms 

is O(E). We now compute T(n), the rest of the cost of maintaining 

03' where n is the number of S-blossoms plus the number of non 

S-vertices in the graph. As above, assume that a new S-blossom 

is constructed from r subblossoms. It follows that T(n) ~ 

crn + T(n-r+l) because rn is a pound on the number of ~,~'s 

considered after making the T-blossoms S-blossoms. T(n) = O(n 2 ) 

(by induction on n), and the cost of computing 03 is O(V3). The 

resulting O(V3 ) algorithm is essentially a (more complete version 

of) Lawler's algorithm [8]. 

6. The O(EV log V) ~lgorithm. 

The most costly part of Edmonds' algorithm is the 

frequent updates of the dual variables, which cause changes 

in (TT. .). Note that all the elements that determine each 
1.,) 

~. are decreased by e for each change in the dual variables. 
'1. 

-the new algorithm is also an implementation of Edmonds' 

algorithm. The high level description of Section 4 (including 

the search, augmenting the matching, the change of dual variables 

and the resulting changes in the blossoms) is identical. The 

main difference is in maintaining the c. 's by generalized 
1. 
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priority queues that we describe next. 

We maintain 01 by a P.q'l' In this p.q. the elements are 

the S-vertices i and their priorities u .. 
~ 

We do not need this 

P.q'l for computing 01' since 01 = u. 
~o 

= (max w
k 

~)/2 - ~ where 
k,l ' 

iO is any exposed vertex and 6 is the sum of the 5'5 so far. 

We use a P.q'l because we need to 

maintain the u. '5 for computing ~ .. when the edge (i,j) 
~ ~J 

is considered. For the same reason we maintain another 

P,q'l for the ui's of the T-vertices. 

We maintain ~3 by a P,q'l' The p.q. contains all 

good edges (i,j) with i and j in different S-blossoms 

as well as some suoerfluous edges (i,j) with i and j 

in the same S-blossom. The reason for having 

superfluous edges is that we do not have time to locate 

them and delete them any time a new S-blossom is constructed. 

The priority of a good edge (i,j) is ~ .. /2, 
~J 

We maintain 3
4 

by a P.q'l' The elements in the p.q. 

are the T-blossoms Bk'and their priority zk/2. We have a 

similar P,q'l for the S-blossoms, because we need to 

maintain their ~, (At the end of a stage they become 

free and in the next stage they may become T-blossoms,) 

If we try to maintain ~2 by a P.q'l' we have a 

difficulty, Consider Figure 3. Initially there may be a 

large free blossom B
l

. At that time all edges in Figure 3 

should be considered for finding the value of 02' B1 may become 
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Figure 3, Edges from an exposed vertex to the innermost 

blossom that we may have to consider again and again if the 

blossoms Bl ", "B
k 

are eventually expanded. 

a T-blossom. Then these edges are not among those edges that 

determine 02. Later on Bl may be expanded and one of its 

subblossoms, B
2

, may become free. The latter may later 

become a T-blossom and so on. ~ simple implementation 

requires the consideration of each such edge an unbounded 

number of times (up to k in Figure 3), 

To maintain ~2 we have a P.Q'2' For every free 
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blossom (T-blossom) ~ we have an active (a nonactive) 

group of all the edges from S-vertices to vertices in B
k

. 

The priority of an edge (i,j) is 'I"!' ... Note that if (i,j) 
l.J 

is in a nonactive group (i is an S-vertex and j is a 

T-vertex), then ~ .. does not change when we make a change 
l.J 

in the dual variables. It is now easy to verify that the 

eight operations of P.q'2 suffice for our purposes. 

Consider a group g which corresponds to a blossom 

B. The elements of the group are the edges ((i,j) Ii an 

S-vertex, j E B}. The order on the elements is derived 

from the order on the vertices of B. The order between 

two edges (il,j) and (i2 ,j) is arbitrary. The order 

enables us to split the group corresponding to B to the 

groups corresponding to B
1

, ... ,Br when we expand B to 

its subblossoms. 

The search is similar to the one described in subsection 

4.2. The labeling p~ocess is identical. During the search, 

whenever we have a new S-vertex i we consider in turn all 

the edges (i,j). This requires a queue Q for new 

S-vertices, since we sometimes have many new S-vertices 

at once. When considering an edge (i,j) we distinguish 

between 3 cases depending on the type of B the blossom 

of j: 



28 

Case I (II): B is a free blossom (T-blossom). We insert 

(i,j) with priority ~ .. to the active (nonactive) group 
~J 

corresponding to B. 

Case III: B is an S-blossom. If the blossom of i is 

not B we insert (i,j) with priority ~ .. /2 to the P.q'l 
~J 

that maintains ~3' 

During the search we compute ~ = min(~1'~2'~3'~4)' If 

6 > 0, we make a change of ~ in the dual variables. This 

is accomplished by increasing ~ by ~,and results in a 

new value of c = O. 

If ~ = 0, we consider all ~l = O. If ~l = 0, then 

we are done. If ~2 = 0, this means that the minimum (0) is 

achieved on an edge (i,j) j in a free blossom Bi i.e. 

(i,j) is useful. We delete (i,j) from the corresponding 
p.q. and label as in Case 1 of subsection 4.2. 
In addition the group corresponding to B becomes nonactive 

(B is labeled by T) ,and the group corresponding to C 

is deleted and the vertices in C (that become S-vertices) 

are inserted into Q. We repeat the above as long as 6
2 

= O. 

If ~3 = 0 we delete one by one the elements (i,j) 

in this p.q. with priority ~ .. = O. If i and j are 
~J 

in the same blossom we do not do anything. Otherwise 

((i,j) is useful) we act as in Case 2 of subsection 4.2. 
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If a new S-blossom is generated, then for all the sub-

blossoms B, that were T-blossoms up till now we delete the 
1. 

group corresponding to Bi (from the P,q'2 Of~2) and 

insert all the vertices of B, to Q. 
1. 

If 04 = 0, we delete one by one the elements Bk in 

this p.q. with priority zk = O. For each such Bk' we 

expand it and label the new blossoms (the previous subblossoms 

of Bk ) as in 4.3 and Figure 2. We split the corresponding 

group in the P.q'2 of 02' The groups corresponding to the 

new free blossoms (T-blossoms) are inserted as active (nonactive) 

groups to the P.q'2' The vertices of the new S-blossoms 

are inserted to Q. 

"TO derive an O(EV log V) time bound we need to 

implement carefully two parts of the algorithm: 

1. We maintain the sets of vertices in each blossom 

(for finding the blossom of a given vertex) by concatenable 

queues [1]. Note that the number of finds, concatenates 

and splits is O(E) per stage. 

2. Assume we consider an edge (i,j) where both i 

and j are S-vertices not in the same blossom. If we 

execute the backtracking as described above, we may need 

up to O(V
3

)time. Instead, we make a careful backtrack by 

backtracking one blossom on both paths each time, marking 

the blossoms on the way. If there are r subblossoms in 
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the new blossom, then we will visit at most 2r blossoms 

before discovering the first common blossom on both paths 

(D). So the total number of blossoms that we traverse in 

one stage is O(V). (Charge 2 each one of the corresponding 

nodes in the corresponding structure tree.) 

The time bound is easily derived as follows. There 

are at most V augmentations. Between two augmentations 

we consider each edge at most twice and have O(E) 

operations on (generalized) p.q. 's. 

2 above.) 

(This includes 1 and 
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