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Abstract

This paper addresses the problem of approximating an eigenvector belonging to the largest
eigenvalue of a symmetric positive de�nite matrix by the power method� We assume that the
starting vector is randomly chosen with uniform distribution over the unit sphere�

This paper provides lower and upper as well as asymptotic bounds on the randomized error in
the Lp sense� p � ������� We prove that it is impossible to achieve bounds that are independent
of the ratio between the two largest eigenvalues� This should be contrasted to the problem of
approximating the largest eigenvalue for which Kuczy	nski and Wo	zniakowski in �

� proved that
it is possible to bound the randomized error at the k�th step with a quantity that depends only
on k and on the size of the matrix�

We prove that the rate of convergence depends on the ratio of the two largest eigenvalues� on
their multiplicities� and on the particular norm� The rate of convergence is at most linear in the
ratio of the two largest eigenvalues�

Key words� eigenvectors� power method� random start� randomized error�

� Introduction

In this paper we deal with the power method that is used to approximate a largest eigenvector
of an n � n symmetric matrix A� By the largest eigenvector we mean a normalized eigenvector
corresponding to the largest eigenvalue A� Our analysis holds for every matrix A for which the
power method is convergent� To simplify notation� we assume that A is positive de�nite�

It is well known that the convergence of the power method depends on the starting vector b� In
particular� the power method is not convergent if b is orthogonal to the eigenspace corresponding to
the largest eigenvalue of A� Since no a priori information about this eigenspace is in general available�
a random starting vector is usually chosen� This indicates the need of studying the convergence of
the power method with a random start�

It is easy to see that if b is randomly chosen according to the uniform distribution then the
power method approximates a largest eigenvector and the largest eigenvalue with probability �� The
problem of approximating the largest eigenvalue by the power method with a random start has
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been considered in ���� where sharp upper bounds on the randomized relative error at each step are
given� An important feature of these bounds is that they are independent of the distribution of the
eigenvalues�

The approach of our paper is similar to that of ���� We analyze the convergence of the power
method for approximating a largest eigenvector when the starting vector b is randomly chosen with
uniform distribution over the unit sphere of the n dimensional space�

In order to de�ne the randomized error� we consider the acute angle �k 	 �k
b� between the
vector computed by the power method at the k�th step and the eigenspace corresponding to the
largest eigenvalue� and we study the expectation of sin
�k
b�� over b in the Lp sense� p � ���
���

We �rst ask whether it is possible to get bounds on the randomized error that do not depend on
the distribution of the eigenvalues� We prove� see Section �� that for every k and p there are matrices
for which the randomized error is very close to �� This means that there are matrices for which
the power method fails after k steps even for a random starting vector� In contrast to the problem
of approximating the largest eigenvalue� this shows that the randomized error for the problem of
approximating a largest eigenvector must depend on the distribution of eigenvalues� In particular�
it must depend on the ratio between the two largest eigenvalues� So� the problem of approximating
a largest eigenvector is harder than the problem of approximating the largest eigenvalue and even a
random start does not help to obtain distribution�free bounds�

We show that the rate of convergence of the power method depends on the ratio of the two largest
eigenvalues� on their multiplicities� and on the particular norm p� Let �� be the largest eigenvalue
with multiplicity r� and let �r�� be the second largest eigenvalue with multiplicity s� Then the
randomized error after k steps is proportional to 
�r������

k if p � r� to k��p 
�r������
k if p 	 r�

and to 
�r������
kr�p if p � r� The multiplicative constants depend on p� r and s�

This means that the rate decreases with p� increases with the multiplicity r� decreases with
the multiplicity s� and it is at most linear in �r������ For p 	 
�� the power method has the
randomized error equal to one for all k�

We brie�y comment on related work on approximate computation of eigenvectors� The idea of
using random starting vectors for the power method can be found in the paper of Shub ���� Shub
applies the power method to the matrix e�A� and approximates an eigenvector of A which is not

necessarily a largest eigenvector� Although for this problem the power method is globally convergent�
the random start is used to improve e�ciency� Shub shows� however� that even for n 	 � there are
matrices for which this problem is very hard� In our paper we apply the power method to the matrix
A and we are only interested in approximating a largest eigenvector�

Wright ��� and Kostlan ��� analyzed the problem of approximating a largest eigenvector by the
power method in a di�erent setting� They considered the average case setting over a class of matrices�
whereas we consider the randomized setting� In particular� they estimate the average time needed
for computing a vector whose relative distance from the eigenspace of largest eigenvectors is less
than �� In our paper the matrix is �xed while the starting vector is chosen at random�

The paper is organized as follows� Section � contains the de�nition of the problem and some
general results that are used in the subsequent sections� In Section � we analyze the behavior of
the power method for worst case matrices� In Section � we �nd upper and lower bounds on the
randomized error� We show that these bounds are asymptotically optimal since� up to lower order
terms� they match the asymptotic bounds presented in Section �� Numerical tests are presented
in Section �� The tests show that the randomized error indeed depends on the distribution of the
eigenvalues� We compare the test results with the theoretical lower and upper bounds� Section �

�



contains the conclusions and �nal remarks�

� De�nition of the Problem

Let A be an n � n symmetric positive de�nite matrix with eigenvalues �� � �� � � � ��n � �
and corresponding orthonormal eigenvectors z�� z�� 	 	 	 � zn� We will denote by Z the eigenspace
corresponding to ���
We recall that the power method is de�ned as follows� see e�g� ���� Let u� 	 b be any nonzero
starting vector� Then� for every k 	 �� �� 	 	 	� we construct the following sequences of vectors�

yk 	 Auk���
uk 	 yk�jjykjj�

where jj � jj is the Euclidean vector norm�
Without loss of generality� we may assume that the starting vector b is normalized� so that

jjbjj 	 �� Observe that if we express b as a linear combination of the orthonormal eigenvectors�

b 	
nX
i��

bizi�

then uk becomes

uk 	

Pn
i�� bi�

k
i ziqPn

i�� b
�
i�

�k
i

	 
��

Let r be the multiplicity of the largest eigenvalue ��� Without loss of generality� we assume that
� � r � n� since r 	 n implies A 	 ��I � and in this case any nonzero vector is an eigenvector
corresponding to ���

In order to estimate the error at the k�th step� we consider the acute angle �k
b� between the
vector uk and the eigenspace Z � This angle is uniquely determined by the vector uk and by its
orthogonal projection on the subspace Z � The sine of �k
b� is the distance between the vector uk
and the subspace Z � �From 
�� we have

dist
uk�Z� �	 inf
z�Z

kuk � zk 	 sin
�k
b�� 	

vuut Pn
i�r�� b

�
i�

�k
iPr

i�� b
�
i�

�k
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Pn
i�r�� b

�
i�

�k
i

	 
��

It is straightforward to see that� if the vector b has zero components in the directions of the eigen�
vectors belonging to ��� i�e�� bi 	 � for i 	 �� � 	 	 	 � r� then �k 	 
�� for any k� Otherwise� uk
converges to a vector of Z and the angle �k goes to zero as k goes to in�nity� The analysis of the
power method for a �xed starting vector b may be found in many books� see for example ��� and ����
where in particular one �nds that� if the method converges� the rate convergence is �r������

As already mentioned� we study the randomized error of sin
�k
��� in the Lp sense� Using 
�� we
have

sin
�k
b�� 	

vuut Pn
i�r�� b

�
ix

�k
iPr

i�� b
�
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Pn
i�r�� b

�
ix

�k
i

� 
��

where
xi 	 �i��� for i 	 �� �� 	 	 	 � n� and � 	 x� 	 � � � 	 xr � xr�� � � � � xn � �	 
��

�



Let us formalize the notion of Lp norm� Let � be the uniform distribution over the unit sphere
Sn 	 fb � jjbjj 	 �g such that � 
Sn� 	 �� Then the Lp norm of the function sin
�k
���� de�ned as
in 
��� is given by

jj sin
�k
���jjp 	
�Z

Sn
jsin 
�k
b��jp �
db�

���p
	 
��

�From Remark ��� of ���� we haveZ
Sn
jsin 
�k
b��jp �
db� 	

�

cn

Z
Bn

jsin 
�k
b��jp db� 
��

where cn is the Lebesgue�s measure of the unit ball Bn 	 fb � jjbjj � �g� see 
��� for the de�nition
of cn�
Substituting 
�� into 
��� and using 
��� we have

jj sin
�k
���jjp 	
�
� �

cn

Z
Bn

� Pn
i�r�� b

�
ix

�k
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i�� b
�
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Pn
i�r�� b
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ix

�k
i

�p��

db

�
	��p	

In the same way we de�ne the norm of the space L� to be

jj sin
�k
���jj� 	 sup
b�Sn

jsin
�k
b��j

	 sup
jjbjj��

vuut Pn
i�r�� b
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It is easy to see that the supremum in 
�� is achieved by setting
Pr

i�� b
�
i 	 �� From 
��� we get

jj sin
�k�jj� 	 �	 
��

In the following we refer to sin
�k
b�� as the error of the power method after k steps for the
starting vector b� We denote jj sin
�k�jjp by erank 
A� p�� and we call it the randomized error in the

Lp sense of the power algorithm after k steps� Hence� we have

erank 
A� p� 	

�
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For p 	 
�� the power method fails to converge since its randomized error is one for all k�
see 
��� �From now on we therefore assume that p � 
�� As we shall see� the power method is then
convergent� erank 
A� p�� �� The speed of convergence is however poor for large p�

In the paper we will denote by ci the measure of the unit ball over IRi� We have

ci 	

i��

� 
i�� 
 ��
� 
���

see ��� for the de�nition of the gamma function � 
x��
We will also use the following relation between the beta and gamma functions

B 
i� j� 	 �

Z �

�
t�i��
�� t��j�� dt 	

� 
i� � 
j�

� 
i
 j�
	 
���

We will denote by F 
a� b� c� x� the hypergeometric function� see ��� for the de�nition and the properties
of this function�

�



� Worst Case Matrices

In ���� Kuczy�nski and Wo�zniakowski considered the power method for approximating the largest
eigenvalue ��� They proved that the randomized error after k steps is bounded by a quantity that
goes to zero as ln
n��k independently on the distribution of the eigenvalues� This means that� for
every matrix� it is possible to give an estimate of the number of steps that guarantees the randomized
error to be less than a positive value ��

Our �rst goal is to analyze the possibility of obtaining distribution�free bounds for the problem
of approximating a largest eigenvector� To this extent� we will deal with �worst case matrices �

Let us denote by s
k� p� the supremum of the randomized error in the Lp sense over all positive
de�nite matrices A� i�e��

s
k� p� 	 sup
A�A���

erank 
A� p�	

Since the randomized error increases with xi� see 
��� it is easy to show that the supremum is achieved
by setting xi 	 � for every i � � and for every p� � � p ��� Then we get

s
k� p� 	

�
� �

cn

Z
Bn

� Pn
i�� b

�
i

b�� 

Pn

i�� b
�
i

�p��

db

�
	��p

	

�
� �

cn

Z
Bn

�
�� b��Pn

i�� b
�
i

�p��

db

�
	
��p

	 
���

Hence� s
k� p� is independent of k and cannot go to zero� This shows that there are no distribution�
free bounds� In fact� s
k� p� are pretty close to �� We �rst consider the case p 	 �� Using 
����
symmetry arguments yield

s
k� �� 	



�� �

n

����

	 
���

We obtain estimates on s
k� p� by the following proposition�

Proposition ��� For every k and p� � � p ��� we have



�� �

n

����
� s
k� p� � �	

Proof� Note that �
�� b��Pn

i�� b
�
i

�p��

� �	

From 
��� it follows that s
k� p� � � for � � p ���
On the other hand� using H!older�s inequality� we get

Z
Bn

�
�� b��Pn

i�� b
�
i

�
db �

�
�Z

Bn

�
�� b��Pn

i�� b
�
i

�p��

db

�
	
��p �Z

Bn

db

���q
�

where p�� and q are conjugate exponents� i�e�� ��
p���
 ��q 	 ��

�



By rising both terms of the above inequality to the power p�� we obtain�Z
Bn

�
�� b��Pn

i�� b
�
i

�
db


p��
� cp���q�n

Z
Bn

�
�� b��Pn

i�� b
�
i

�p��

db	

Since p�
�q� 	 p��� �� multiplying by ��c
p��
n we get�
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Z
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db�
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Z
Bn
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�� b��Pn

i�� b
�
i

�p��

db

�
	��p 	

Due to 
���� we thus have 

�� �

n

����

� s
k� p�	

�

Proposition ��� states that for every k there are matrices for which the randomized error is
close to one� These matrices have the largest eigenvalue of multiplicity one� and the second largest
eigenvalue has multiplicity n � � and is pathologically close to ��� In this case� even if the starting
vector is random� the sequence fuig for i 	 �� � 	 	 	 � k does not approximate a largest eigenvector�

� Non Asymptotic Behavior

So far we have seen that if �r����� 	 � then the power method behaves badly even for a ran�
dom starting vector� We now analyze the relationship between the ratio �r����� and the rate of
convergence of the power method for approximating a largest eigenvector�

We �rst show upper and lower bounds on the randomized error erank 
A� p�� These bounds depend
on the distribution of the eigenvalues of the matrix A and on the particular norm used� In particular�
we prove that the rate of convergence is slower when the multiplicity of �� is smaller than the value
of the norm� What seems interesting about these results is that they hold for a class of norms� and
we are able to show how the norm a�ects the speed of convergence of the power method�

��� Upper Bounds

We now show how the rate of convergence depends on the multiplicity r of the largest eigenvalue
and on the value p of the norm�

We have three cases� and we notice that the rate of convergence of the method is lower when the
multiplicity r of the largest eigenvalue is small compared to p� In Section ��� we explain why the
rate of convergence decreases for r � p�

Theorem ��� Let A be a symmetric positive de�nite matrix� and let r� r � n� denote the multiplicity

of the largest eigenvalue �� of A� Let

� 	

�
� 
n���

� 
p���� 

n� p����
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�

n

����p
	

�



Then� for every p� � � p ��� and for every k we have

erank 
A� p� �

���������������
��������������

xkr��



� 

r � p����� 

n
 p� r����

� 
r���� 

n� r����

���p
for p � r�

xkr�� 
�k�
��p
�
ln



�

xr��

����p 
 � 
n���

� 
p���� 

n� p����

���p


 � xkr�� for p 	 r�

x
kr�p
r��



� 

p� r����� 
n���

� 
p���� 

n� r����

���p

for p � r	

Proof� We have

�erank 
A� p��p 	
�

cn

Z
Bn

� Pn
i�r�� b

�
ix

�k
iPr

i�� b
�
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Pn
i�r�� b

�
ix

�k
i

�p��

db	

Observe that the integrand is an increasing function of
Pn

i�r�� b
�
ix

�k
i � The upper bound is then

obtained by replacing xi by xr�� for i � r 
 ��

�erank 
A� p��p � x
kp
r��

cn

Z
Bn

� Pn
i�r�� b

�
iPr

i�� b
�
i 
 x�kr��

Pn
i�r�� b

�
i

�p��

db	 
���

Consider �rst the case p � r�
Let a 	 xkr��� jjbjj� 	

Pr
i�� b

�
i � and let ti 	 bi�
� � jjbjj����� for i 	 r 
 �� 	 	 	 � n with jjtjj� 	Pn

i�r�� t
�
i � If we rewrite the last integral as an integral over the balls Br and Bn�r � we get

�erank 
A� p��p � ap

cn

Z
Br

Z
Bn�r

jjtjjp 
�� jjbjj���n�p�r���

jjbjj�
 a�jjtjj�
�� jjbjj���p��

dt db	

Let 
 	 r
n � r�crcn�r�cn� We apply twice formula ������� of ��� to reduce the last integral to the
two dimensional integral and we get

�erank 
A� p��p � ap


Z �

�

Z �

�

tn�p�r�� br��
�� b���n�p�r���


b� 
 a�t�
�� b���p��
db dt	

Since b� 
 a�t�
�� b�� � b�� we have

�erank 
A� p��p � ap


Z �

�
tn�p�r�� dt

Z �

�

br��
�� b���n�p�r�����

bp
db

	 ap



n 
 p� r

Z �

�
br�p��
�� b���n�p�r��� db	 
���

�From the de�nition of the beta function and since p � r� 
��� becomes

�erank 
A� p��p � ap
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 p� r�
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 �
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n
 p� r����� 
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n� r����� 
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This proves the case p � r�
Let us now consider the case p 	 r� The integral in 
��� can be rewritten with respect to the

ball Bn�p and the p dimensional ball B�
p 	 fb � Pp

i�� b
�
i � ��Pn

i�p�� b
�
i g� We have

�erank 
A� p��p � ap

cn

Z
Bn�p

�
� nX

i�p��

b�i

�
Ap�� Z

B�
p

��Pp
i�� b

�
i 
 a�

Pn
i�p�� b

�
i

�p�� db	

Let jjbjj� 	Pn
i�p�� b

�
i � From formula ������� of ���� we get

�erank 
A� p��p � ap
p cp
cn

Z
Bn�p

jjbjjp
Z p��jjbjj�

�

tp��


t� 
 a�jjbjj��p�� dt db	 
���

We have two cases� p 	 r 	 � and p 	 r � �� If p 	 �� 
��� becomes

�erank 
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Z
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Z p��jjbjj�
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t� 
 a�jjbjj����� dt db
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Z
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�
db	

Using ������� of ���� and observing that
p
�� jjbjj� � p�� 
�� a��jjbjj�� we get
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n� ���cn���cn�
Hence� from 
��� we have
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This proves the case p 	 r 	 ��
Let us consider the case p � �� Notice that 
t�
a�jjbjj��p�� � tp

p���t��p�����a�jjbjj�
�
o 
���� Then
we can bound the denominator of the integrand of 
��� with the �rst two terms of this expansion�
We have
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Z
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Z p��jjbjj�
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t� 
 p�� a�jjbjj� dt db	

Solving the last integral� and using again ������� of ��� to reduce the �rst integral to a one�dimensional
integral� we obtain
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Let us consider the argument of the logarithm in the integral of 
���� Observe that if a� � ��p� then
ln
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�� p�� a��b�� � �� Hence� in this case� we can bound 
��� by
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Otherwise� if a� � ��p� then ln
�� 
�� p�� a��b�� � ln
p���� In this case we have
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Observing that ��n � 
� 
 ��n� and using 
��� and 
���� we have

�erank 
A� p��p � ap
� 
n���

� 
p���� 

n� p����
ln



�

a�

�

 ap

� 
n���

� 
p���� 

n� p����



� 


�

n

�
	

This proves the case p 	 r�
Finally� assume that p � r� From 
���� repeating the same reasoning that led to 
���� we have
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Changing variables by setting z 	 t�
ajjbjj�� we get
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We notice that d goes to in�nity when a goes to zero� Then we haveZ d�

�

yr����


y 
 ��p��
dy �

Z ��

�

yr����


y 
 ��p��
dy 	 B



r

�
�
p� r

�

�
�

due to formula ������� of ����
We apply ������� of ��� to reduce the integral over Bn�r to a one dimensional integral� and we get
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This concludes the proof� �

Note that� when p 	 r� the bound is composed of two terms� The �rst term depends on k through
xkr��k

��p� the second term depends on k through xkr��� We remark that for large k the in�uence of
the second term is negligible� Nevertheless� numerical tests show that this term can a�ect the bound
when the value of xr�� is close to ��

��� Lower Bounds

In this section we �nd lower bounds on the randomized error erank 
A� p�� As in Section ���� we show
that these lower bounds depend on the multiplicity of the largest eigenvalue and on the value of the
norm� Upper and lower bounds show the same dependence on the ratio between the two largest
eigenvalues and on the relation between p and r�

Below we de�ne some constants that are used in Theorem ����
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Theorem ��� Let A be a symmetric positive de�nite matrix� and let r� r � n� denote the multiplicity

of the largest eigenvalue �� of A� Then� for every p� � � p ��� and for every k we have
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Proof� We have
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Notice that the integrand is an increasing function of
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i � Hence� the lower bound is
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Let us denote a� b�r�� by �� and consider the integral
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We have three cases depending on the relation between p and r�
Consider �rst the case p � r� It is convenient to split f
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We consider two cases� p � � and p � ��
Let us start with p � �� Notice that 
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due to formula ������� �� of ��� 
see also ��� for the de�nition and the properties of the hypergeometric
function F 
a� b� c� x���
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Applying transformation formula to the hypergeometric function� see ������� �� of ���� we have
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Substituting it into 
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This concludes the proof of the case p � ��
Let p � �� Observe that� from Lagrange�s Theorem� there exists a value �� y � � � y 
 �� such that
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Proceeding exactly as before� we get
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Using this bound in 
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Solving the integral in 
��� as before� and applying the transformation formula ������� of ��� to the
hypergeometric function� we have
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This concludes the proof for p � r�
Let p 	 r� The integral denoted by f
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Since p 	 r� we have that p is an integer between � and n� We analyze separately the cases p 	 �
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This provides the proof for p 	 r 	 ��
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��� Discussion

Theorems ��� and ��� state that the randomized error erank 
A� p� must depend on the ratio �r������
In addition� these theorems describe the actual behavior of the rate of convergence for every k� p
and r� We notice that only when r � p� we have the same rate of convergence as in the asymptotic
deterministic case with

Pr
i�� b

�
i 
	 �� For the other two cases� r 	 p and r � p� the rate convergence

is slower� This is due to the fact that Theorems ��� and ��� deal with the randomized case� So� in
order to compute the randomized error we have to integrate over all possible starting vectors� even
those for which the power method does not converge or converges very slowly�

��



To give an intuitive idea about the di�erence in the rate of convergence between the asymptotic
deterministic case 
the rate is then proportional to 
�r������

k � and the randomized case� let us
analyze the error for p 	 �� In this case we have only two possibilities� r � p or r 	 p 	 �� AssumingPr

i�� b
�
i 
	 �� we have

sin
�k
b�� 	



�r��
��

�ksb�r�� 
 � � �
 b�r�s
b�� 
 � � �
 b�r


 o




�r��
��

��
�

where s is the multiplicity of the second largest eigenvalue�
If r 	 �� the expected value of sin
�k
b�� with respect to b cannot be proportional to 
������k since

Z
jjbjj��

s
b�� 
 � � �
 b�s��

b��
�
db� 	 
�	

A more careful analysis shows that we have to lose a factor proportional to ln
������
�k in order to

achieve the convergence of the integral�
For r � �� Z

jjbjj��

s
b�r�� 
 � � �
 b�r�s
b�� 
 � � �
 b�r

�
db� � 
��

so we have a rate of convergence proportional to 
�r������
k as in the deterministic case�

The explanation of the general case p � � is similar�

Analyzing together upper and lower bounds we have a complete behavior of the power method
for computing a largest eigenvector� In fact� for every p and r� upper and lower bounds exhibit the
same dependence on �r����� and on k�

� Asymptotic Behavior

In Section � we provide upper and lower bounds for the randomized error of the power method for
each step k� These bounds di�er only by multiplicative constants and by lower order terms� We
notice that only for upper bounds the constants depend on the size of the matrix� while for the lower
bounds they depend only on p and r� Moreover� if A is a large matrix� the constants of the upper
bound become huge� So� it is natural to ask if these constants are sharp� We answer this question
by analyzing the asymptotic behavior of the randomized error erank 
A� p��

Theorem ��� Let A be a symmetric positive de�nite matrix� and let r� r � n� and s denote the

multiplicities of the two largest eigenvalues �� and �r�� of A� Then for every p� � � p ��� we have

lim
k���

erank 
A� p�

xkr��
	



� 

r � p����� 

p
 s����

� 
r���� 
s���

���p

for p � r�

lim
k���

erank 
A� p�

xkr�� 
�k�
��r �ln 
��xr����

��r
	



� 

p
 s����

� 
p���� 
s���

���p
for p 	 r�

lim
k���

erank 
A� p�

x
kr�p
r��

	



� 

p� r����� 

r
 s����

� 
p���� 
s���

���p

for p � r	

��



Proof� From 
�� we have

�erank 
A� p��p 	
�

cn

Z
Bn

� Pn
i�r�� b

�
ix

�k
iPr

i�� b
�
i 


Pn
i�r�� b

�
i x

�k
i

�p��

db	

As k goes to in�nity� we write

�erank 
A� p��p 	
�

cn

Z
Bn

�
x�kr��

Pr�s
i�r�� b

�
iPr

i�� b
�
i 
 x�kr��

Pr�s
i�r�� b

�
i


� 
 o 
���

�p��

db	

Let a 	 xkr��� Integrating with respect to br�s��� 	 	 	 � bn� we have

�erank 
A� p��p

� 
 o 
��
	 ap

cn�r�s
cn

Z
Br�s

� Pr�s
i�r�� b

�
iPr

i�� b
�
i 
 a�

Pr�s
i�r�� b

�
i

�p�� �
��

r�sX
i��

b�i

��n�r�s���
db

Let jjbjj� 	Pr
i�� b

�
i and let ti 	 bi�
�� jjbjj����� for i 	 r
�� 	 	 	 � r
 s� and jjtjj� 	Pr�s

i�r�� t
�
i � If we

rewrite the last integral as an integral over the balls Br and Bs� we have

�erank 
A� p��p

� 
 o 
��
	 ap

cn�r�s
cn

Z
Br

Z
Bs

jjtjjp
�� jjbjj���n�p�r���
�� jjtjj���n�r�s���
�jjbjj�
 a�jjtjj�
�� jjbjj���p��

dt db	

Using ������� of ��� for both integrals� we get

�erank 
A� p��p

� 
 o 
��
	

	 ap


Z �

�

Z �

�

ts�� br�� tp
�� b���n�p�r��� 
�� t���n�r�s���

�b� 
 a�t�
�� b���p��
dt db

	 ap


Z �

�
tp�s��
�� t���n�r�s���

�Z �

�

br��
�� b���n�p�r���

�b� 
 a�t�
�� b���p��
db



dt� 
���

where 
 	 rscn�r�scrcs�cn�
We have now three cases depending on the relation between p and r�
Consider �rst the case p � r� Then the last integral of 
��� is �nite even for a 	 �� Substituting

a 	 �� we get

�erank 
A� p��p

� 
 o 
��
	 ap


Z �

�
tp�s��
�� t���n�r�s��� dt

Z �

�
br�p��
�� b���n�p�r��� db	

�From the de�nition of the beta function 
��� we have
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��
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�
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�
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�
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�
	

Using 
���� we can express ci in terms of the gamma function� We obtain

�erank 
A� p��p

� 
 o 
��
	 ap

� 

r � p����� 

p
 s����

� 
r���� 
s���
	

��



This proves that for p � r we have

lim
k���

erank 
A� p�

xkr��
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r � p����� 

p
 s����

� 
r���� 
s���

���p

	

Consider now the case p 	 r� From 
��� we have

�erank 
A� p��p

� 
 o 
��
	 ap


Z �

�
tp�s��
�� t���n�p�s���

�Z �

�

bp��
�� b��n��

�b� 
 a�t�
�� b���p��
db



dt� 
���

We expand bp��
�� b��n�� as bp�� � 
n���bp��
 O
�
bp��

�
� Since �b�
�� a�t�� 
 a�t��p�� behaves as

bp 
 o
�
a�t�

�
� it is su�cient to consider the �rst two terms of the expansion�

As a approaches zero� we have

Z �

�

bp��
�� b��n��

�b�
�� a�t�� 
 a�t��p��
db 	

	
Z �

�

bp��

�b�
�� a�t�� 
 a�t��p��
db
 O

�Z �

�

bp��

�b�
�� a�t�� 
 a�t��p��
db

�

	
Z �

�

bp��


b� 
 a�t��p��
db
O


Z �

�
b db

�

Observe that 
b�
a�t��p�� 	 bp

p���b��p�����a�t�
�
o 
��� as a� �� Then from the last equation
we have Z �

�

bp��


b� 
 a�t��p��
db
 O


Z �

�
b db

�
	

	

Z �

�

bp��

bp�� 
b� 
 p�� a�t��
db
O 
��

	
Z �

�

b

b� 
 p�� a�t�
db
 O 
��

	
�

�
ln



b� 


p

�
a�t�
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�

 O 
��

	 ln

�s
�

pa�t�

�

� 
 o 
���	

Substituting this equality into 
��� we get

�erank 
A� p��p
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��
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�� t���n�p�s��� ln

�s
�
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�
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O 
ap� 	

If we replace the expression for 
 in the last equation� we obtain
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k���

erank 
A� p�

xkr��
�k�
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The last case is p � r� We want to compute the limit

lim
x���

erank 
A� p�

x
kr�p
r��

	

�
lim

k���
�erank 
A� p��p

xkrr��


��p

From 
��� we get

lim
k���

�erank 
A� p��p

xkrr��
	 lim

a��

�erank 
A� p��p

ar
	

	 lim
a��

ap�r

Z �

�
tp�s��
�� t���n�r�s���

�Z �

�

br��
�� b���n�p�r���

�b� 
 a�t�
�� b���p��
db



dt	 
���

Observe that for a� � we haveZ �

�
ap�r

br��
�� b���n�p�r���

�b� 
 a�t�
�� b���p��
db 	

	

Z �

�
ap�r

br��
�� b���n�p�r���

�b� 
 a�t��p��
db

	
Z �

�
ap�r

br��
�� b���n�p�r���

aptp 
b��
a�t�� 
 ��p��
db	 
���

We change variables by setting y 	 b�
at�� Then the integral 
��� becomes

�

tp�r

Z ���at�

�

yr��
�� a�t�y���n�p�r���


y� 
 ��p��
dy	

If we set z 	 y�� this integral can be transformed into

�

�tp�r

Z ���a�t��

�

zr����
�� a�t�z��n�p�r���


z 
 ��p��
dz	

We substitute this integral into 
���� We get
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�
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�

z
r
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�� a�t�z�
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���

To �nd the limit of the last integral� we use the following bounds 
for a � ��

Z �
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�

z
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�
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�
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Since
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passing to the limit and then using ������� �� of ���� we get
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dz 	

Z ��

�

zr����


z 
 ��p��
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Hence� we also have
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From 
���� we get
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This concludes the proof� �

Theorem ��� shows that upper and lower bounds provided in Section � are asymptotically optimal�
In fact� the analysis of the asymptotic case indicates that the upper and lower bounds cannot be
improved since the constants coincide with those of the upper bound when we set the multiplicity of
the second largest eigenvalue to n� r� and with those of the lower bound for s 	 ��
The constants increase with s and ��r� This corresponds to the intuitive idea that the convergence
is fast if the eigenspace Z is large� and is slow if the eigenspace corresponding to the second largest
eigenvalue is large�

Note that if p approaches in�nity� the rate of convergence approaches � and even the constant
converges to �� This agrees with 
�� for p 	��

� Numerical Tests

We tested the power method for several matrices with many pseudorandom starting vectors b� The
matrix A can be chosen as follows� As before� let uk
A� b� be the vector computed by the power
method applied to the matrix A with starting vector b� Observe that for any orthogonal matrix Q�
we have uk
QTAQ� QTb� 	 uk
A� b�� Moreover� the uniform distribution on the unit sphere of the
vectors b implies the same distribution of vectors QTb� So� without loss of generality� we can restrict
ourselves only to consider diagonal matrices� see also ��� and ���� Vectors uniformly distributed over
the unit sphere can be generated as described in ��� and ����
The tests were performed on a Sun SPARCsystem �� using double precision� To compute the values
of the hypergeometric and the gamma functions we used the program Mathematica�

We tested many di�erent matrices of size ��� with the distributions of the eigenvalues chosen as
in ���� We tested the following distributions�

� Chebyshev distribution� �i 	 � 
 cos

 
�i� ��
�������

��



k �ran �worst �best �lb �ub p

�� �����e��� �����e��� �����e��� �����e��� �����e
�� �

��� �����e��� �����e��� �����e��� �����e��� �����e
�� �

���� �����e��� �����e��� �����e��� �����e��� �����e
�� �

�� �����e��� �����e��� �����e��� �����e��� �����e
�� �

��� �����e��� �����e��� �����e��� �����e��� �����e
�� �

���� �����e��� �����e��� �����e��� �����e��� �����e
�� �

�� �����e��� �����e
�� �����e��� �����e��� �����e
�� ��

��� �����e��� �����e��� �����e��� �����e��� �����e
�� ��

���� �����e��� �����e��� �����e��� �����e��� �����e
�� ��

Table �� Quadratic distribution � with the eigenvalues� �i 	 �
�� 
i��������

� quadratic distribution �� �i 	 � 
�� i�������

� quadratic distribution �� �i 	 �
�� 
i��������

� uniform distribution� �i 	 �
�� i������

� logarithmic distribution� �i 	 � log
���� i�� log
�����

� exponential distribution �� �i 	 � e�
�
p
i�

� exponential distribution �� �i 	 � 
 e�i�

�From the theoretical bounds� see Theorems ��� and ���� it turns out that the behavior of the
power method depends on the relation between r and p� We tested the power method for di�erent
values of p and r for a �xed ratio between the two largest eigenvalues�

The main goal of these tests was to verify the results proved in Theorems ��� and ���� and to
see how much upper and lower bounds di�er from the experimental values�

In order to approximate the randomized error erank 
A� p� we have used ����� pseudorandom
vectors b� So� the randomized error is replaced by �ran obtained as the mean value among the �����
pseudorandom vectors� i�e�

�ran 	

�
� �

�� ���

�����X
i��

sinp
�k
bi��

�
A��p

	

By �worst and �best we denote� respectively� the worst and best value of sin
�k
bi��� These values
give an indication about how much �ran di�ers from the values sin
�k
bi��� Let �lb and �ub denote
the lower and the upper bounds computed using formulas given by Theorems ��� and ���� Finally�
k and p are the number of iterations and the parameter of the norm� respectively�

In order to underline the dependence of the rate of convergence on the ratio between the two
largest eigenvalues we report the results obtained for the quadratic distribution �� see Table �� and
the exponential distribution �� see Table �� In fact� these distributions are those 
among the di�erent
distributions considered� for which we have the largest 
the smallest� ratio between �� and �� and
then the slowest 
the fastest� convergence� respectively�

��



k �ran �worst �best �lb �ub p

�� �����e��� �����e��� �����e��� �����e��� �����e
�� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� ��

�� �����e��� �����e��� �����e��� �����e��� �����e��� ��

Table �� Exponential distribution � with the eigenvalues� �i 	 � e�i��� �

k �ran �worst �best �lb �ub p

�� �����e��� �����e��� �����e��� �����e��� �����e
�� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� �

�� �����e��� �����e��� �����e��� �����e��� �����e
�� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� �

�� �����e��� �����e��� �����e��� �����e��� �����e��� ��

�� �����e��� �����e��� �����e��� �����e��� �����e��� ��

Table �� Modi�ed exponential distribution � with the eigenvalues� �� 	 �� 	 � 
 e��� and
�i 	 � 
 e��i���� for i 	 �� 	 	 	 � n�

�From Table � we see that for three di�erent values of p� even after ����� iterations the randomized
error is still very close to �� An important observation concerns the lower and upper bounds� We
notice that the lower bound is a good approximation of the expected value �ran while the upper
bound is clearly an overestimate� This is due to the following reasons �

�� The constants in the upper bounds� see Theorem ���� grow with the size of the matrix�

�� Since the ratio x� 	 ����� is very close to �� xk� goes very slowly to � with k� In this case� the
upper bound is more sensitive of the big multiplicative constants�

Table � is more interesting since it allows us to see the dependence of the speed of convergence
on p and r� The speed of convergence is now good� In fact� after only �� iterations we get an error
of the order of ���� when p 	 r 	 �� In this case� we have also that �lb and �ub are relatively close
to each other� and that the error �ran for k 	 �� is very close to the theoretical lower bound�

In general� it is possible to observe that the values of �ran computed with these tests are very
close to the theoretical lower bounds while they are more distant from the upper bounds even for
small �r������ This is due to the importance of the multiplicity s of �r��� as it turns out from the
asymptotic constants of Theorem ���� Experimental results prove that the power method behaves
di�erently for matrices with the same two largest eigenvalues but with di�erent multiplicities� In
particular� increasing s we get bounds closer to the upper bounds�

To understand the role of p and r� we have performed tests with matrices for which the multiplicity
of the largest eigenvalue is r � �� In Table � we report the results for the modi�ed exponential
distribution � with r 	 ��

An important observation concerns the comparison between the three cases� p � r� p 	 r and
p � r� From Table � it is easy to see that for the same value of k� the rates of convergence are

��



di�erent� For example� for k 	 �� we have an error of the order of ���� for p � r� and of order ����

for p � r�
We performed also tests with matrices with only two distinct eigenvalues� These tests indicate

the asymptotic dependence of the randomized error on the multiplicity s of the second eigenvalue�
In particular� they show that �ran is closer to �ub when s is big� This is an important consequence of
Theorem ����

� Conclusions

In this paper we have investigated the convergence of the power method for approximating an
eigenvector corresponding to the largest eigenvalue� As our error measure� we have taken the sine
of the acute angle �k
b� between the vector computed by the power method after k steps with the
starting vector b� and the eigenspace related to the largest eigenvalue� We have analyzed the Lp

norm of sin
�k
���� for p � ���
��� We have shown that� if the starting vector b is chosen according
to the uniform distribution over the unit sphere� the rate of convergence depends on the ratio between
the two largest eigenvalues� In particular� if r is the multiplicity of the largest eigenvalue ��� and the
Lp norm is used� then the randomized error is proportional to 
�r������

k if p � r� to 
�r������
kr�p

if p � r� and to k��p 
�r������
k if p 	 r�

For every p � ���
��� we have found asymptotic and non asymptotic bounds� and we have
shown that the asymptotic constants are equal to those obtained for the upper and lower bounds
when the multiplicity of the second largest eigenvalue is set to n � r and �� respectively� We stress
that our results hold for a class of norms and that they show how the speci�c norm a�ects the speed
of convergence�
Our bounds depend on the distribution of the eigenvalues� and we have proven that this is unavoid�
able� Comparing with results of ���� we conclude that approximating a largest eigenvector by the
power method is more di�cult than approximating the largest eigenvalue in the randomized setting�
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