
QoSME: QoS Management
Environment

Patrícia Gomes Soares Florissi

Technical Report CUCS-036-95

Submitted in partial fulfillment of the
requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 1996

Patrícia Gomes Soares Florissi
All Rights Reserved

ABSTRACT

QoSME: QoS Management Environment

Patrícia Gomes Soares Florissi

Distributed multimedia applications are sensitive to the Quality of Service (QoS) de-

livered by underlying communication networks. For example, a video conference exchange

can be very sensitive to the effective network throughput. Network jitter can greatly dis-

rupt a speech stream. The main question this thesis addresses is how to adapt multimedia

applications to the QoS delivered by the network and vice versa.

Such adaptation is especially important because current networks are unable to assure

the QoS required by applications and the latter is usually unprepared for periods of QoS

degradation. This work introduces the QoS Management Environment (QoSME) that

provides mechanisms for such adaptation.

The main contributions of this thesis are:

• Language level abstractions for QoS management. The Quality Assurance Lan-

guage (QuAL) in QoSME enables the specification of how to allocate, monitor,

analyze, and adapt to delivered QoS. Applications can express in QuAL their QoS

needs and how to handle potential violations.

• Automatic QoS monitoring. QoSME automatically generates the instrumentation

to monitor QoS when applications use QuAL constructs. The QoSME runtime

scrutinizes interactions among applications, transport protocols, and Operating

Systems (OS) and collects in QoS Management Information Bases (MIBs) statis-

tics on the QoS delivered.

• Integration of QoS and standard network management. A Simple Network Man-

agement Protocol (SNMP) agent embedded in QoSME provides QoS MIB access

to SNMP managers. The latter can use this feature to monitor end-to-end QoS de-

livery and adapt network resource allocation and operations accordingly.

A partial prototype of QoSME has been released for public access. It runs on SunOS

4.3 and Solaris 2.3 and supports communication on ATM adaptation layer, ST-II,

UDP/IP, TCP/IP, and Unix internal protocols.

i

Table of Contents _____________

1 INTRODUCTION..1

1.1 BACKGROUND..1
1.2 FUNDAMENTAL PRINCIPLES..5
1.3 THE QOS MANAGEMENT ENVIRONMENT (QOSME)..9
1.4 THESIS OVERVIEW ... 14

2 QUAL: QUALITY-OF-SERVICE ASSURANCE LANGUAGE... 16

2.1 INTRODUCTION .. 16
2.1.1 The Problem.. 16
2.1.2 Main Results ... 17
2.1.3 Chapter Organization.. 19

2.2 PROCESS ORIENTED LANGUAGES.. 19
2.3 HANDLING RESOURCE LEVEL QOS METRICS .. 20

2.3.1 How Should Applications Interact with QoS Delivery Mechanisms? 21
2.3.2 Specification of Resource Level QoS Metrics... 22
2.3.3 Negotiation of Resource Level QoS Constraints .. 27
2.3.4 Automatic Monitoring and Violation Detection of Resource Level QoS 33

2.4 MONITORING APPLICATION SPECIFIC QOS METRICS ... 37
2.4.1 Automating Monitoring of Application Specific QoS Metrics............................. 38
2.4.2 Automatic Notification of Application Specific QoS Violations.......................... 41

2.5 SPECIFYING FILTERS... 44
2.5.1 Specification of Filters .. 44
2.5.2 Filter Negotiation.. 49
2.5.3 Implementing Filters ... 52

2.6 ACCESS TO COMMUNICATION TEMPORAL PROPERTIES .. 54
2.7 DYNAMIC RE-NEGOTIATION OF QOS METRICS.. 57
2.8 QOS MANAGEMENT WITHIN THE SNMP FRAMEWORK .. 59

2.8.1 An Overview of the QoS MIB Design... 59
2.8.2 Application Access to QoS MIB Data in Real Time ... 61

2.9 CONCLUSIONS.. 64

3 QOSOCKETS: UNIFIED TRANSPORT INTERFACE FOR QOS HANDLING..................... 66

3.1 INTRODUCTION .. 66
3.1.1 The Problem.. 66
3.1.2 Main Results ... 67
3.1.3 Chapter Organization.. 69

3.2 SPECIFICATION OF QOS CONSTRAINTS IN QOSOCKETS .. 69
3.3 QOSOCKETS CONNECTION ESTABLISHMENT PROTOCOL .. 72
3.4 SELECTION OF TRANSPORT PROTOCOLS AND PORT ADDRESSES................................. 76

ii

3.5 HANDLING COMPUTING QOS CONSTRAINTS ... 78
3.5.1 Scheduleability Analysis.. 82
3.5.2 Scheduling Applications According to Their Timing Constraints....................... 86

3.6 CONCLUSIONS ... 87

4 MANAGING QOS DELIVERY ... 89

4.1 INTRODUCTION .. 89
4.1.1 The Problem ... 89
4.1.2 Main Results ... 90
4.1.3 Chapter Organization ... 91

4.2 OVERVIEW OF THE QOS MANAGEMENT ARCHITECTURE ... 91
4.3 AN OVERVIEW OF THE QOS MIB DESIGN... 96
4.4 QOS MIB DATA PER APPLICATION .. 99
4.5 QOS MIB DATA PER OUTPORT ...102

4.5.1 Configuration Outport Group Objects..103
4.5.2 Operational Behavior Statistics Outport Group Objects...................................104

4.6 QOS MIB DATA PER INPORT...105
4.7 QOS MIB DATA PER PROGRAMMABLE METRIC...108
4.8 CHALLENGES IN QOS MIB INSTRUMENTATION..108
4.9 CONCLUSIONS ..111

5 EXPERIMENTS WITH QOSOCKETS: APPLICATIONS AND PERFORMANCE112

5.1 INTRODUCTION ...112
5.1.1 The Problem ..112
5.1.2 Main Results ..112
5.1.3 Chapter Organization ..113

5.2 APPLICATIONS ..114
5.2.1 Audio Tool ...116
5.2.2 Video Tool ...119
5.2.3 Integrated Audio and Video Conference...120
5.2.4 QoS Monitoring Extension to the Mbone Net Video ...122

5.3 PERFORMANCE ...123
5.3.1 Overhead ...125
5.3.2 Throughput ..128

5.4 CONCLUSIONS ..129

6 CONCLUSIONS AND FUTURE WORK ...130

6.1 CONCLUSIONS ..130
6.2 FUTURE WORK ...132

6.2.1 High-level QoS Libraries ...132
6.2.2 Pricing...133
6.2.3 Integrated Network and Application Management..135
6.2.4 Formal QuAL Semantics ..136

A A MODEL FOR QOS SPECIFICATION ..137

A.1 DEFINITIONS ..137

iii

A.2 SOME QOS METRICS ARE UNIVERSAL ... 140
A.3 SOME QOS METRICS ARE APPLICATION SPECIFIC .. 143
A.4 WHAT IS A QOS VIOLATION?... 145
A.5 FILTERS CONTROL QOS PERFORMANCE ... 145
A.6 QUAL IMPLEMENTS THE MODEL.. 146

B AN OVERVIEW OF CONCERT/C .. 147

C SYNTAX AND INFORMAL SEMANTICS OF QUAL ... 151

C.1 HANDLING OF RESOURCE LEVEL QOS METRICS FOR COMMUNICATIONS................. 152
C.2 HANDLING OF RESOURCE LEVEL QOS METRICS FOR COMPUTATIONS 155
C.3 HANDLING OF APPLICATION SPECIFIC QOS METRICS.. 158
C.4 SPECIFYING FILTERS .. 161
C.5 ACCESSING COMMUNICATION TEMPORAL PROPERTIES... 165
C.6 RE-NEGOTIATING QOS METRICS DYNAMICALLY .. 166
C.7 ACCESSING QOS MIB OBJECTS ... 167

D QOS MIB DEFINITION ... 169

D.1 APPLICATION GROUP... 169
D.2 OUTPORT GROUP... 179
D.3 INPORT GROUP.. 188
D.4 PROGRAMMABLE GROUP... 200

E RELATED WORK ... 204

E.1 RELATED WORK ON QUAL .. 204
E.1.1 Distributed Computing.. 204
E.1.2 QoS Handling ... 208
E.1.3 Real Time Language Constructs.. 212

E.2 EXTENDING SOCKETS AND OSS TO SUPPORT QOS .. 216
E.3 QOS FRAMEWORKS ... 218

F QOSME 1.0 MANUAL PAGES.. 220

BIBLIOGRAPHY... 261

iv

List of Figures ________________
Figure 1.1: Architecture of QoSME... 10
Figure 1.2: Timing of Events in a QuAL Connection ... 13
Figure 1.3: QoSME Components Grouped by Thesis Chapters 15
Figure 2.1: Remote Analysis of a CAT/scan... 23
Figure 2.2: Detecting QoS Violations .. 41
Figure 2.3: Adding Filters to Manage QoS Performance .. 45
Figure 2.4: Remote Analysis of a CAT/scan with a CAT/scanner Technician 46
Figure 2.5: Overview of the Design of QoS MIBs ... 60
Figure 3.1: QoSockets Function Call Sequence to Establish a Communication............... 73
Figure 3.2: QoSockets API System Calls... 74
Figure 3.3: Identifying Inports by Names... 77
Figure 3.4: Identifying Inports by Transport Level Addresses .. 78
Figure 4.1: Overall Architecture for Instrumentation and Access of QoS MIBs.............. 93
Figure 4.2: Architecture for Instrumentation and Access of QoS MIBs.......................... 94
Figure 4.3: QoS MIB Object Groups... 97
Figure 4.4: Shared Memory Design for QoS MIB Data Collection................................109
Figure 5.1: Audio Tool from the Caller Side...114
Figure 5.2: Audio Tool from the Callee Side...115
Figure 5.3: Audio Tool from the Caller Side...118
Figure 5.4: Audio Tool from the Callee Side...118
Figure 5.5: Video Conference Tool (Callee or Caller) ...120
Figure 5.6: The nv Tool..121
Figure 5.7: Comparison of Sending Times over QoSockets and UDP/IP.......................124
Figure 5.8: Comparison of Sending Times over QoSockets and TCP/IP125
Figure 5.9: Comparison of Sending Times over QoSockets and ALL............................126
Figure 5.10: Comparison of Throughput over QoSockets and UDP/IP127
Figure 5.11: Comparison of Throughput over QoSockets and TCP/IP..........................127
Figure 5.12: Comparison of Throughput over QoSockets and AAL..............................128
Figure A.1: Sample communication stream...139
Figure A.2: Delay QoS measure ...142

v

List of Acronyms _____________
AAL..ATM Adaptation Layer

API... Application Program Interface

ATM ... Asynchronous Transfer Mode

CAT ...Computer Assisted Test

ECS... Equipment Control System

EDF ..Earliest Deadline First

FIFO ...First In First Out

HWP ..Heavy-Weigh Processes

IP ..Internet Protocol

IPC.. Inter-Process Communication

KLS...Kernel-Level Scheduler

LWP...Light-Weigh Processes

MCAM.. Movie Control, Access, and Management

MIB ... Management Information Bases

NSM MIB .. Network Service Monitoring MIB

NV ..Net Video

NVP..Network Voice Protocol

OS.. Operating Systems

PEARL......................................Process and Experiment Automation Real-time Language

PVP..Packet Video Protocol

RTL/2 .. Real Time Language/2

RPC .. Remote Procedure Call

SAP... Service Access Points

SMI...Structure of Management Information

SNMP ...Simple Network Management Protocol

SPS ..Stream Provider System

SRP..Session Reservation Protocol

ST-II ... Stream Transport Protocol Version II

vi

TCP ... Transmission Control Protocol

UDP...User Datagram Protocol

ULS... User-Level Scheduler

QoS ...Quality of Service

QoS-A ...Quality of Service Architecture

QoSME...QoS Management Environment

QoSockets ...QoS in Sockets

QoSOS ...QoS in OS

QuAL..Quality-of-service Assurance Language

XDR .. External Data Representation

XRM...Extended Integrated Reference Model

vii

Acknowledgments

I will always be in debt to the following:

• God, for His infinite love.

• Prof. Yechiam Yemini, my mentor, for making this thesis possible. His wisdom in-

spired me through all these years and his friendship made me survive the most dif-

ficult moments of my life. I can never thank him enough for giving me the privilege

of being his advisee.

• Danilo Florissi (my best under graduate, masters, and PhD. colleague, my office

mate, my best friend, and my husband), for inspiring and couching me in the last

ten years, for always helping me, and for showing me what love really is.

• My parents, for teaching me to never give up, for always being there for me, and

for their infinite love.

• My family, for their incredible support and love.

• Susan Tritto, for always being there to help and for her warm friendship.

• German Goldszmidt, for his friendship and for carefully reviewing this thesis.

• My friends in the DCC lab, for making me feel at home.

• Mikhail Kishelev, Robert Shteynfeld, Margarita Safonova, Sanjay Jha, and all the

students that worked in this research, for their dedication and for showing me that

together we can accomplish anything.

viii

1

Chapter 1 ___________________

Introduction

1.1 Background

Traditional network applications can operate under a broad range of network perform-

ance behaviors. They can tolerate very large end-to-end latency, accommodate greatly

varying bandwidth, recover from loss, and endure dynamic fluctuations in latency and

bandwidth. In contrast, distributed multimedia applications are very sensitive to the per-

formance behavior of networks. A multimedia conference can be very sensitive to signifi-

cant latency. Video streams require guaranteed bandwidth. Speech streams become in-

comprehensible under excessive jitter, i.e., dynamic fluctuations of latency.

It is therefore necessary to assure that the Quality of Service (QoS) performance1 de-

livered by the network matches the one required by the applications and vice versa. The

central question addressed by this thesis is how to develop mechanisms to accomplish this

assurance.

Guaranteeing that the expected and delivered QoS match is not a simple problem. To

start with, the relative sensitivity to QoS of multimedia applications often exceed by sev-

eral orders of magnitude current network applications. For example, typical database or

1 Appendix A formally defines QoS.

2

file server clients can tolerate jitter in packet arrivals ranging in many seconds. In contrast,

a speech stream cannot tolerate jitter of several scores of milliseconds. This means that

multimedia networks, in contrast with current networks, will need to assure delivery of the

QoS required by applications. It also means that multimedia applications, in contrast with

current network applications, will need to dynamically adapt to changes in the actual QoS

delivered by the network. For example, an application may adapt to excessive jitter in a

speech stream by increasing the play-out buffer size. An application may adapt to de-

creases in bandwidth available to a video stream by adjusting compression parameters.

Recent studies of QoS delivery have focused on the design of network mechanisms to

assure QoS. These studies range from the design of Asynchronous Transfer Mode

(ATM) [DePrycker 93] protocols and switching mechanisms to the design of multimedia

transport protocols. Mostly, these mechanisms have focused on regulating competition for

network resources among traffic sources. They involve resource allocation, flow, and

admission control techniques used by packet/cell and transport layers.

This thesis uniquely focuses on the design of application-layer mechanisms to support

effective adaptation to and control of QoS delivery. Specifically it addresses the following

questions:

1. How should applications adapt to the QoS delivered by the network? Adaptation

means first that applications can monitor the QoS delivery by the network trans-

port. How can such monitoring be independent of the transport stack, to permit

applications portability among different stacks? How can applications program the

QoS metrics and events of interest to them? How can the instrumentation to

3

monitor QoS be generated without rendering applications design and implementa-

tion more complex? How can monitoring be accomplished without significant

performance overheads?

 Adaptation also means that applications must dynamically handle failures of the

network to deliver the QoS that they require. How can applications incorporate

constructs to handle QoS failures? How can this be accomplished without render-

ing applications design and code too complex.

2. How can applications interact uniformly with a growing variety of network

mechanisms to support QoS? There is a growing variety of proposed techniques

for network mechanisms to assure QoS delivery. One approach [Stevens 90] is to

adapt the network delivery to specific applications needs. An application notifies

the network of its QoS needs and the network configures its mechanisms to sup-

port appropriate delivery. Another approach [Topolcic 90, Braden et al. 95] per-

mits applications to directly reserve network resources. Still another ap-

proach [DePrycker 93] is for the network to establish a small number of service

classes and for the application to select among these the type of services that it

wishes. Each of these models requires different interactions between applications

and the network. In the absence of a uniform interaction model, applications will

need to incorporate different code to interface with each of these mechanisms. This

results in substantial complexity of applications design and limited portability

across different networks. Furthermore, peer applications using different networks

will have great difficulty coordinating their QoS control. A unified mechanism is

4

thus needed to negotiate and coordinate QoS between applications and the net-

work.

3. How can network management mechanisms monitor and control QoS delivery?

Emerging network architectures leave most error detection and correction func-

tions to transport entities at end nodes. For example, loss or corruption of Internet

Protocol (IP) [Comer and Stevens 91] packets will typically be detected by

Transmission Control Protocol (TCP) [Comer and Stevens 91] entities at the end

points and have serious impact on TCP performance. Similarly, loss of ATM cells

will be primarily manifested in virtual circuit performance at the end points. Fur-

thermore, protocol mechanisms to control performance at transport end points

exhibit great sensitivity to such problems. For example, TCP dynamic window

control mechanisms reduce window size dramatically in response to loss. This re-

sults in significant increase of latency and decrease in TCP throughput. Network

management mechanisms must therefore monitor performance behavior of higher

layers at end points to detect network problems. They must also be able to control

the behavior of these end points. In contrast, current network management

mechanisms have focused on monitoring and controlling lower layer protocol enti-

ties at intermediate nodes. They monitor and control the physical and rout-

ing/switching layers. There is thus a need to establish complementary mechanisms

to monitor and control performance of transport delivery and applications at the

end nodes.

This thesis introduces a new solution to these challenges: the QoS Management Envi-

5

ronment (QoSME). QoSME introduces application-layer technologies to address the

questions above. These mechanisms permit applications to monitor and adapt effectively

to QoS delivery by the network. They support a uniform model of interactions and control

of QoS between peer applications and the broad variety of underlying network transport

mechanisms. They facilitate monitoring and control of QoS delivery by network manage-

ment systems. They hide the enormous complexity of QoS monitoring and control from

the applications and their designers. They accomplish these with very minimal overheads.

This chapter is organized as follows. Section 1.2 outlines the core novel concepts in-

troduced in this thesis. Section 1.3 overviews the QoSME architecture and places its com-

ponents in the context of existing software environment architectures. Section 1.4 pro-

vides an overview of the reminder of the thesis.

1.2 Fundamental Principles

The goal of this section is to identify the novel concepts behind QoSME. They are:

1. Language level abstractions for QoS management. QoSME introduces novel pro-

gramming language constructs to support applications monitoring, analysis and ad-

aptation to QoS delivery. It also provides constructs that permit applications to

convey their QoS needs to underlying computing and communication systems2.

The main contributions of a language level approach to QoS management are:

A. Language level abstractions shelter applications and their designers from

heterogeneity of the underlying systems. Underlying networks and Operating

2 From now on the expression underlying system will refer to the underlying network (with all the protocols up to

and including the transport layer) and operating system.

6

Systems (OSs) vary greatly in the QoS control they offer. For example, the

ATM Adaptation Layer (AAL) 3/43 allocates network resources to assure ap-

plication specified throughput rates, while TCP makes no provision for such

allocation. An application wishing to monitor and control its QoS will need to

incorporate very different mechanisms to handle these transport environments.

Application designers and their code will have to reflect the variety of possible

underlying network mechanisms.

 QoSME exposes application developers to a single set of abstractions for

QoS management, independent of underlying system configuration details. The

QoSME language compiler translates QoS specifications into specific service

requests. This feature simplifies application development and maintenance,

while increasing code portability and reusability.

B. Applications can customize handling of QoS violations that affect them. Ap-

plications differ on the type of QoS they are sensitive to. For example, an ap-

plication receiving samples measured by a radar can be very sensitive to high

transmission delays but insensitive to loss, since a radar typically sends several

notifications of an event. On the other hand, distributed database applications

may be very sensitive to loss but may tolerate high transmission delays. Adap-

tation to QoS delivery on a per application basis enables graceful, application

customized recovery from QoS degradation.

C. The language compiler checks many QoS specification inconsistencies. For

3 To simplify notation, AAL denotes AAL 3/4 in the reminder of this thesis.

7

example, the QoSME runtime reports on loss of video frames, as opposed to

loss of ATM cells that contain only part of a video frame. In addition, it dis-

cards the remaining ATM cells of the damaged video frames. This feature

simplifies QoS management by applications.

2. Automatic QoS monitoring. QoSME automatically generates instrumentation to

monitor QoS. The runtime scrutinizes interactions among applications, communi-

cation protocol stacks, and OS, and collects into QoS Management Information

Bases (QoS MIBs) [Rose 93, Stallings 93] statistics on the QoS delivered. It con-

tinuously checks the QoS constraints requested, detects QoS violations, and auto-

matically invokes application exception handlers upon QoS degradations. This

feature enables applications to dynamically adapt to the actual QoS delivered by

the network. The main contributions of automated QoS monitoring are:

A. QoSME frees application developers from QoS monitoring instrumentation.

Application developers do not implement QoS MIB data collection and are

thus sheltered from any complexity associated with this process. In addition,

automation of QoS monitoring eliminates QoS MIB data inaccuracy intro-

duced by programming errors in data collection procedures. This feature

automates the implementation of performance statistics collection procedures.

B. QoS MIBs keep applications informed about QoS delivery performance. Much

like execution traces provided by debuggers, QoS MIBs disclose the perform-

ance of QoS demanding activities. Applications use QoS MIB data to dynami-

cally adjust their execution according to the QoS being delivered, and to re-

8

quest additional QoS. For example, a video application can temporarily reduce

the display rate to cope with network congestion. Simultaneously, it can open

alternative connections that bypass congested routes. This feature simplifies the

implementation of QoS adaptation procedures.

3. Integration of QoS management within standard network management frame-

works. A QoS MIB Simple Network Management Protocol (SNMP) [Rose 93,

Stallings 93] agent embedded in QoSME provides QoS MIB access to SNMP

managers. The later can monitor end-to-end QoS delivery to applications and

adapt network resource allocation and operations accordingly. This approach in-

troduces the following contributions:

A. SNMP managers understand internal application QoS performance. QoS

MIB and SNMP agents inform SNMP managers about application QoS de-

mands and the QoS effectively received. This information is more specific than

generic performance statistics on network use. Resource managers use this

data to improve the overall match between end-to-end QoS delivered by the

network and each individual application needs. Also, they may identify prob-

lematic applications and terminate or isolate them. SNMP managers can thus

get a more detailed picture on the QoS behavior of the network.

B. SNMP managers can share control of QoS performance with applications.

QoS MIBs provide the means to coordinate QoS management between appli-

cations and SNMP managers. This prevents chaos scenarios where QoS viola-

tion recovery actions by applications interfere with QoS management activities

9

from SNMP managers. This feature allows the partition of QoS management

responsibilities between the network and the applications.

C. QoS management can focus on application level properties. QoS management

may concentrate on application level abstractions (such as number of video

frames delivered to an application) instead of system level objects (such as the

number of bytes routed through a switch). This feature stimulates management

of QoS independently of the underlying system operational details.

1.3 The QoS Management Environment (QoSME)

This section details the overall QoSME architecture depicted in Figure 1.1. The hori-

zontal lines divide the architecture layers: the application layer, the QoSME runtime layer,

and the underlying system layer. The superimposed squares represent applications and

their threads. The rounded rectangles and the triangle represent functional modules. The

tree shaped boxes represent QoS MIBs. The straight arrows represent interactions be-

tween modules. The dashed arrows represent QoS MIB accesses and updates by func-

tional modules.

At the application layer, the Quality-of-service Assurance Language (QuAL) includes

language level abstractions for QoS management (Item 1 in Section 1.2). Its constructs

provide the means for the specification and negotiation of QoS constraints, specification

of QoS violation handlers, customization of QoS monitoring, and access to QoS MIBs.

The QuAL compiler translates these abstractions into underlying system services and pro-

vides management of the QoS delivered.

10

����������	

���

�	�����	�
�	���	��	�

QoSME
 Application

Operating
System TCP/IP

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA

ST-II AAL

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA

...

QoSME
 Application

QuAL

�����

��	����

���

QoS SNMP
Agent

QoSMIB

QoSocketsQoSOS

Figure 1.1: Architecture of QoSME

At the runtime layer, QoS in OS (QoSOS) and QoS in Sockets (QoSockets) mitigate

the interactions between QuAL applications and the underlying system components that

deliver QoS demanding services. They provide a unified OS and transport layer Applica-

tion Program Interfaces (APIs), sheltering heterogeneity at the underlying system. The

same QoSockets interface is used for communication over any transport protocol. Exam-

ples of such protocols are TCP, Stream Transport Protocol Version II (ST-

II) [Topolcic 90], and AAL. Similarly, QoSOS offers the same set of services independent

of the underlying OS.

The instrumentation to monitor QoS is generated automatically when applications that

use QoSockets and QoSOS are compiled (Item 2 in Section 1.2). QoSockets and QoSOS

monitor interactions between applications and the underlying system to update QoS MIBs

with statistics on the QoS delivered to applications. They analyze QoS performance, de-

11

tecting QoS violations, and invoking application defined exception handlers when a viola-

tion occurs.

QoSME also integrates QoS management with standard network management frame-

works (Item 3 in Section 1.2). The QoS SNMP agent embedded in the QoSME runtime

provides QoS MIB access to SNMP managers.

In what follows, the major features provided by QoSME are identified in more detail.

QuAL provides a small set of language extensions (to the Concert/C [Auerbach 92] proc-

ess oriented [Hoare 78] language) that permits an application programmer to associate

QoS measures and constraints with computations and communication streams. QuAL

application developers are exposed to a single set of QoS abstractions that the compiler

maps into runtime specific system calls.

The QuAL compiler generates code to monitor and analyze QoS delivery and to in-

voke exception handlers when QoS violations are detected. For example, a video applica-

tion may use QoS constraints to specify the maximum acceptable jitter and an exception

handler to adjust the playout time of frames when a violation occurs.

Upon QoS violation notification, applications may need to further investigate QoS

performance to trace the cause of the event and control violations accordingly. QoS MIBs

store the information needed to analyze such events. QuAL offers a set of operators that

provide efficient local QoS MIB access by applications. For example, an application that is

displaying video frames with a very poor performance usually checks QoS MIB data to

analyze the cause of the service degradation.

QoSME abstracts in the QoSockets API the special transport services that support

12

communication QoS. QoSockets provide access to various transport protocols that sup-

port QoS, similar to the Berkeley socket [Stevens 90] mechanism. For example, a voice

application may specify a low jitter 64 Kbit/s transmission using QoSockets. The later is

translated in transport layer buffer and bandwidth allocation. QoSockets are a self con-

tained module that can be used as a library on top of which new abstractions can be built.

QoSOS bridges the gap between the services offered by the underlying OS and the

services required to implement QuAL abstractions for computing QoS. Consider, for ex-

ample, the implementation of QuAL on top of Solaris [Sun Microsystems 94]. The se-

mantics offered by QuAL abstractions is that processes are scheduled based on their dead-

lines. However, Solaris does not provide such scheduling mechanisms. In this case, the

QuAL runtime OS interface is responsible for mitigating the interactions between QuAL

applications and Solaris so that QuAL processes are properly scheduled.

QoSockets and QoSOS automate collection of application level QoS management in-

formation. These runtime components monitor the interactions between applications and

the underlying system and store in QoS MIBs statistics on the QoS effectively delivered to

applications. Examples of statistics collected are the number of messages delivered to a

particular application level connection and the average transmission delay of the messages

delivered.

Managers of underlying system resources interact with QoS SNMP agents to monitor

and analyze the delivery of QoS to applications, detect potential symptoms of QoS degra-

dation, and control QoS violations.

13

Connection request
rate 10 - 15msg/s

delay 15ms

Application QoSockets

Connection request:
10752 byte
bandwidth

ST-II

Connection
established

QoS MIB

Send data Send data
Update MIB

.

..
.
.
.

.

..
.
..

Analyze QoSNotify QoS
violation

Time

Update MIB
Set alarm

Alarm goes off

Triger QoS
analysis

Figure 1.2: Timing of Events in a QuAL Connection

Consider, for example, a high resolution video transmission. Figure 1.2 shows the flow

diagram of the interactions of QoSME components over time. An application first requests

a connection and attaches to it QoS constraints. QoS constraints are expressed in QuAL

by numerical intervals of tolerance. Example of such QoS constraints are a throughput of

10 to 15 messages/s and a 15 ms delay. The QuAL compiler translates this connection re-

quest into a call to the QoSockets services. QoSockets services are then responsible for

choosing a transport protocol that can best deliver the QoS needed and for performing the

QoS constraint mappings. In this example, QoSockets choose ST-II and translates

throughput constraints expressed in messages per second into bandwidth requests ex-

pressed in bytes per second. Every time the application sends data through the connection,

QoSockets deliver the data to the transport protocol and updates QoS MIB objects. The

updates indicate, for instance, the mean number of messages sent per second. QoSockets

also set alarms at application specified time intervals and blocks. Every time an alarm goes

14

off, QoSockets access the QoS MIB, analyzes the data retrieved, and sends a notification

to the application if a violation is detected.

A first prototype of QoSME [Florissi 95] (QoSME 1.0) has been developed and re-

leased for public access. It includes the QoSockets module, the QoS MIBs, and the em-

bedded SNMP agent. It runs on top of SunOS 4.1.3 [Sun Microsystems 92] and So-

laris 2.4, and supports communication on top of AAL, ST-II, TCP, User Datagram Pro-

tocol (UDP) [Comer and Stevens 91], and Unix internal protocols [Comer and Ste-

vens 91].

1.4 Thesis Overview

The focus of this thesis is on the design and use of QoSME. It is organized as illus-

trated in Figure 1.3, a derivative of Figure 1.1 where circles group QoSME components

per thesis chapter.

Chapter 2 describes QuAL. It gives the informal semantics of the main QuAL con-

structs and shows examples on how they can be used.

Chapter 3 details QoSockets and QoSOS.

Chapter 4 describes the structure of QoS MIBs. It discusses in detail the type of in-

formation they store and gives examples on how QoSME applications and SNMP manag-

ers can use this data to manage QoS.

Chapter 5 describes applications developed using QoSME 1.0. It shows how the use

of QoSME simplifies QoS handling in a few real applications and provides a preliminary

study of the overhead and throughput of QoSockets.

Chapter 6 summarizes the main contributions of this work and suggests future re-

15

search topics not addressed in this thesis.

����������	

���

�����

��	����

���

QoSocketsQoSOS

QoS SNMP
Agent

QoSMIB

4

3

QuAL 2

QoSME
 Application

QoSME
 Application 5

Figure 1.3: QoSME Components Grouped by Thesis Chapters

Appendixes A through F present a formal model for the definition of QoS metrics,

overview Concert/C (a process oriented language that inspired QuAL abstractions), sum-

marize the syntax and informal semantics of QuAL constructs, detail the specification of

QoS MIBs, present related work on QoS management, and provide the Unix manual

pages of QoSME 1.0.

16

Chapter 2 ___________________

QuAL: Quality-of-service
Assurance Language

2.1 Introduction

2.1.1 The Problem

The goal of the QuAL language is to enable application level management of QoS. It

provides language level abstractions for application control of and adaptation to QoS.

QuAL constructs address the following challenges:

• How to convey QoS requirements from applications to the underlying system?

Applications should be able to specify their QoS requirements in terms of abstrac-

tions that are independent of the underlying network and OS systems. For exam-

ple, they should specify required inter video frame delays as opposed to inter ATM

cell delays.

• How to enable applications to adapt to QoS violations? Applications need to

know when the underlying system is not capable of providing the requested QoS in

order to adapt their operations to the effective service received. They should spec-

ify the corrective measures that must take effect when QoS violations happen. For

17

example, if notified, applications may accept monophonic sound quality when the

bandwidth is not wide enough to carry stereophonic sound. The corrective meas-

ure in this case specifies how to downgrade the audio quality from stereophonic to

monophonic.

2.1.2 Main Results

QuAL views QoS as part of the data type associated with communication end points

(or ports). Violations are analogous to invalid operation on these data types and recovery

is similar to exception handling. QuAL provides constructs for the specification and man-

agement of QoS constraints. The main contributions of QuAL are:

• Mechanism for QoS specification that shelters applications from the heterogene-

ity of the underlying network and OS systems. QuAL provides a set of abstractions

for QoS specification and negotiation that is independent of the underlying system

details. The QuAL compiler and runtime system are responsible for mapping such

abstractions into specific requests to the underlying system. The abstractions

greatly simplify the development and maintenance of applications and promote

code portability and reusability.

• Mechanism to abstract QoS negotiation. QuAL captures QoS constraints as part

of the type of a port. The QuAL type checking performs QoS negotiations be-

tween peer applications by coercing port types to a common set of compatible

QoS constraints before they are bound. QoS negotiation between applications and

the underlying system happens when a connection is established. The QuAL type

checking mechanism hides from application developers the complexity associated

18

with transport specific QoS negotiation protocols. It also integrates in a single

mechanism QoS negotiation among peer applications, and between applications

and the underlying system.

• Support of application handling of QoS violations in real-time. QuAL enables

application developers to define QoS violation handlers. QuAL runtime automati-

cally monitors QoS delivery and calls such handlers upon violations. This mecha-

nism frees application developers from having to implement QoS monitoring while

enabling application customized handling of violations.

• Support of dynamic re-negotiation of QoS constraints. QuAL provides a set of

operators for QoS re-negotiation during run time. The QuAL runtime is responsi-

ble for handling re-negotiation details with the underlying system and for making

the transition to the new constraints smooth. This mechanism enables applications

to recover gracefully from QoS degradation, by gradually relaxing the negotiated

QoS constraints.

• Mechanism to integrate and coordinate QoS management between applications

and SNMP managers. QuAL applications are automatically instrumented at com-

pile time to store the information collected during QoS monitoring into QoS

MIBs. SNMP agents embedded in the QuAL runtime make QoS MIB data avail-

able to SNMP managers, disclosing application level QoS performance to the

managers. This mechanism provides information that enables SNMP managers to

adjust the allocation of system resources according to application needs.

19

2.1.3 Chapter Organization

The reminder of this chapter is organized as follows. Section 2.2 describes the main

concepts behind process oriented languages and overviews the Concert/C language used

in the design of QuAL. Section 2.3 and Section 2.4 discuss how QuAL supports the

specification, negotiation, automatic monitoring, and violation detection of pre-defined

and user-defined (or customized) QoS metrics. Section 2.5 explains how applications can

control QoS performance. Section 2.6 presents the QuAL operators for access to com-

munication temporal properties (e.g., sending and arriving time) of messages. Section 2.7

introduces abstractions for dynamic QoS re-negotiation. Section 2.8 overviews how

QuAL integrates QoS management within the SNMP framework. Section 2.9 summarizes

the main features of QuAL.

2.2 Process Oriented Languages

QuAL uses the process model [Hoare 78] to abstract the concept of distributed com-

putations. Processes are units of execution that communicate and synchronize with one

another through message passing. This section is an overview of the model. The reader

may consult Appendix B for a more detailed presentation.

QuAL abstractions can be incorporated into any process oriented language. Concert/C

was the choice for the first QuAL design. Concert/C extends the C language [Kernighan

and Ritchie 88] to incorporate distributed computing abstractions. In Concert/C, a Unix

thread [Sun Microsystems 94] in execution is a process and message exchange end-points

are objects of type port. Messages are received through input ports (inports for short) and

sent through output ports (outports for short). Outports are also known as bindings. An

20

inport is implemented as a queue of messages. A binding is implemented as a pointer to

(the address of) an inport. The type of a port is determined by the type of messages it can

exchange. Concert/C provides constructs for creating and terminating processes and for

sending and retrieving messages through ports. The exchange of messages can be syn-

chronous (implemented by Remote Procedure Calls (RPC) [Nelson 81, Soares 92]) or

asynchronous (implemented by message passing). The design of Concert/C follows the

Concert model [Yemini et al. 89, Auerbach et al. 91] for distributed computing.

The decision to prototype QuAL in Concert/C was motivated by its support for inter-

process communication in C and by its runtime system design. Concert/C is completely

compatible with ANSI C and adds to C a very concise set of data types and functions.

Thus, for C programmers, the overhead of learning Concert/C is small. The implementa-

tion design of the Concert/C runtime is based on sheltering heterogeneity at the transport

and OS layers, features shared by the QuAL runtime.

2.3 Handling Resource Level QoS Metrics

QuAL supports handling of two types of QoS metrics: resource level QoS metrics and

application specific QoS metrics. Resource level QoS metrics provide performance meas-

ures of the underlying system in which an application operates. These include universal

communication QoS metrics and QoS metrics related to computations. The universal QoS

metrics are loss, permutation, rate, end-to-end delay, jitter, and connection recovery time

(they are formally defined in Appendix A). QuAL runtime uses these metrics to allocate

and manage necessary underlying system resources. Application specific QoS metrics indi-

cate application dependent performance measures of communications. For example, a

21

video conference application may specify resource level QoS metrics such as rate and de-

lay (as defined in Appendix A) to indicate how the runtime should allocate communication

resources. In addition, it may define application specific metrics that indicate how syn-

chronized its audio and video streams should be, that is, if each video and corresponding

audio frames arrive at the same time.

Resource level and application specific QoS metrics differ also in purpose. Both spec-

ify how to perform QoS monitoring but only the first specifies allocation of system re-

sources. For example, the delay metric specifies indirectly the strategy to allocate band-

width and buffers while rate of late messages only specifies how to monitor the stream. It

is left for future work mapping of application specific QoS monitoring into resource allo-

cation strategies.

This section describes QuAL constructs for the specification, negotiation, monitoring,

and violation detection of resource level QoS metrics. Section 2.4 describes QuAL con-

structs for handling application specific QoS metrics.

2.3.1 How Should Applications Interact with QoS Delivery Mechanisms?

There are several interaction models the underlying network system may use to assure

resource level QoS delivery:

• Explicit Model. At one extreme, some networks [Topolcic 90, Braden et al. 95]

require that applications explicitly specify their QoS needs in order to configure

their resources. This is the approach used in ATM networks. For example, AAL

requires explicit allocation of peak and mean rate tolerance per connection.

• Implicit Model. At the other extreme, applications need not allocate QoS con-

22

straints. Networks [Stevens 90] monitor the execution of applications and adapt

resource allocations dynamically, based on application behaviors and resource

availability. This is the approach used in the Internet. For example, TCP uses dif-

ferent mechanisms that automatically adapt to various traffic types, such as inter-

active traffic versus bulk transfers.

• Intermediate Model. In an intermediate approach, networks [DePrycker 93] are

configured to provide multiple virtual protocol stacks and respective connectivity,

each guaranteeing different QoS. The end node management mechanism selects

the most suitable stack to route a communication stream. This design can be seen

as an extension of AAL that offers four classes of services.

QuAL aims at accommodating these three models through a single mechanism for

QoS specification and management. The decision of which approach a given application

should adopt or how to configure networks is beyond the scope of QuAL and of this the-

sis. QuAL leaves to network protocols the choice of how QoS will be provided, and de-

fers to application developers the selection of the model they want to employ. The re-

mainder of this section discusses how QuAL bridges the gap between the model selected

by applications and the one deployed by networks.

2.3.2 Specification of Resource Level QoS Metrics

QuAL provides a range of QoS attributes for the specification of network and OS re-

source level QoS metrics, following the Explicit Model. Consider, for instance, the sce-

nario depicted in Figure 2.1 which involves a Computer Assisted Test (CAT)/scan at a re-

mote hospital with real time analysis by physician A from a distant site. Application H at

23

the hospital samples images from the local CAT scanner and sends them to the display

application PA at the physician’s site.

Physician A

Application
PA

Hospital

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

AAA
AAA

AAAA
AAAA

AA
AA

AAAAAAAAAAAAAAAAAAAA

AAAAAAAA
AAAA
AAAA
AAAA

A
A
A
AAAA
AAAA

A
A

Application
H

CAT/SCANNER

Network

Figure 2.1: Remote Analysis of a CAT/scan

The following convention is used in the reminder of this chapter. Keywords and con-

structs in QuAL are written using bold face, in Concert/C are underlined, and in C are

written using plain text.

Example 2.1 shows fragments of the QuAL code that implements application H in

Figure 2.1. It defines the outport image_output (lines 3 through 14) that sends messages

of type image_t (line 13). The main body (lines 18 through 32) consists mainly of a loop

(lines 22 through 30) that periodically samples images from the scanner (line 27) and sends

them through image_output (line 28).

QuAL extends the declaration of a port with the realtm (real time) clause (lines 3

through 11) that contains the specification of the universal QoS measures of interest for

the port. For example, the delay QoS measure (line 9) indicates that the average delay of

24

messages sent through image_output must be lower than 40 ms. Using the model defined

in Appendix A, a QoS violation occurs on image_output if delay image output()_∏ > 40 ms.

The QoS metric loss is the losst defined in Appendix A, where t is the maximum delay

tolerated on a communication. Permutation tolerance on image_output (permt) means that

permutation image output()_∏ > 0 . QuAL runtime uses these metrics to allocate underlying

system resources in order to prevent violations. The QuAL runtime only detects these

violations at the end of the communication session. Section 2.3.4 discusses how applica-

tions can define time windows that force the QuAL runtime to monitor and detect viola-

tions over periods of time shorter than the duration of a session.

It is important to notice that the rate and peak metrics have the same semantics as far

as monitoring is concerned. That is, according to the semantic model in Appendix A, both

are evaluated over a window of time (in this case the duration of the connection) to check

that the mean rate of messages in the communication is within the specified value. The

difference in them is only apparent when allocating communications services. For example,

the AAL resource allocating strategy may use a blending of both values to decide the

buffer sizes to better accommodate eventual message bursts at the peak rate. Additionally,

as explained later, an application developer may specify a smaller window to check peak

rates and a larger one to check mean rates thus better approximating the correct semantics

of these QoS metrics for monitoring purposes as well.

The QoS constraints specified in a realtm clause define the QoS type of the port. Be-

cause QoS is part of the type, QoS violations are considered invalid operations on the

port. QoS violation handling will be further expanded in Section 2.3.4.

25

QuAL’s real time language constructs enable expression of computing QoS con-

straints, such as deadlines to process messages. The within real time loop consists of a

sequence of instructions (lines 26 through 29 in Example 2.1) and timing constraints as-

sociated with its execution (lines 23 through 25).

1 /* *** Application H *** */
2 /* Specification of QoS constraints on the transmission of CAT/scan images */
3 realtm { loss 6; /* The percentage of messages lost during

4 transmission must not be higher than 10-6 */
5 permt; /* Permutation is allowed in the transmission, i.e.,
6 messages need not to be delivered in order */
7 rate sec 10 - sec 30; /* Mean rate is 10 to 30 messages/s */
8 peak sec 35; /* Peak rate is 35 messages/s */
9 delay ms 40; /* Transmission delay must be less than 40 ms */
10 jitter ms 33; /* Jitter must be less than 33 ms */
11 recovery sec 4;} /* Any recovery must take less than 4 s */
12 receiveport /* Keyword that identifies a port declaration */
13 {image_t} /* Type of messages exchanged through the port */
14 *image_output; /* Port identifier */
15 /* “*” distinguishes an outport from an inport */
16 ...
17
18 main()
19 {...
20 /* Sampling and transmission of CAT/scan images */
21 /* Real-time loop */
22 within (/* Specification of timing constraints */
23 periodic; hard; /* Mode of execution */
24 period sec 25; /* Maximum number of activations */
25 after(machine_on)); /* Condition for first activation */
26 do {
27 read(scanner, &image); /* Sample scanner */
28 send(image_output, image); /* Transmit image */
29 }
30 until (machine_off); /* Termination condition of real time loop */
31 ...
32 }

Example 2.1: Specification of Resource Level QoS Metrics

26

Execution timing constraints [Halang and Stoyenko 91] determine if an activity must

be executed periodically, sporadically, or aperiodically, and can be either hard or soft.

Periodic activities are those which have to be processed at regular intervals, and must be

completed before the next one is due. Sporadic activities are asynchronous activities trig-

gered by events. These events occur separated in time by a minimum guard period. That

is, two event occurrence times are always separated by at least a guard interval. Aperiodic

activities are asynchronous and have no minimum guard period between occurrences.

Hard constraints must be met or else the application will deliver wrong results. Soft con-

straints indicate ideal targets which should be met when the system is not overloaded, but

that can be missed occasionally. In Example 2.1, image sampling must execute in hard real

time mode (line 23). The sampling must occur periodically (line 23) 25 times per second

(line 24), producing 25 images/s.

The do block contains the task that must be performed in real time. It is terminated

when the until condition is true. It executes for the first time only when the after expres-

sion is satisfied. In Example 2.1, sampling starts only after the patient is ready and the

scanner is turned on (line 25), which is indicated by the event variable machine_on. Sam-

pling continues until the scanner is turned off (line 30), which is indicated by the variable

machine_off.

The specification of QoS constraints in QuAL is independent of the communication

protocol, of the underlying OS, and of the nature of the data being transmitted (voice,

audio, or data). This approach is general and broadens the domain of applications in which

QuAL may be employed. Thus, it is more general than previous work that targeted spe-

27

cific application domains. For example, the Packet Video Protocol (PVP) [Cole 81] and

the Network Voice Protocol (NVP) [Cohen 81] consist of transport layers customized for

video and audio transmissions, respectively. PVP and NVP automatically negotiates with

the underlying system the QoS needed for their video and audio transmissions. However,

these protocols can only be used in the video and audio domains. Similarly, the Movie

Control, Access, and Management (MCAM) [Keller and Effelsberg 93] is an application

layer architecture customized for the handling of video streams in a distributed system.

Appendix E contains a more detailed overview of related work in this area.

2.3.3 Negotiation of Resource Level QoS Constraints

This section discusses QuAL approach to support QoS negotiation between peer ap-

plications and between applications and the underlying system. Existing transport and

application level protocols greatly differ on their mechanisms for negotiation. Some para-

digms [Braden et al. 95, DePrycker 93, Keller and Effelsberg 93] make no provision for

QoS negotiation between peer applications. One of the peer applications define desired

QoS constraints and the other must comply with them. Applications must use out of band

exchanges if they want to decide on a common QoS prior to connection establishment.

Another paradigm [Vogel et al. 94] suggests that receivers publish a set of QoS classes

that they can comply with and allow connecting applications to select one of the offered

classes. Heterogeneity of QoS negotiation mechanisms may make code portability difficult

because its logic becomes tailored to meet the particular mechanisms of the protocols

used.

Instead, QuAL promotes symmetric negotiation by both sender and receiver which can

28

use QuAL constructs to agree on a common set of QoS. QuAL runtime uses such con-

straints to allocate communication resources.

QuAL abstracts QoS negotiation between peer applications by type checking connect-

ing ports. The binding mechanism guarantees that only ports with compatible QoS attrib-

utes are connected. Two ports have compatible QoS measures if the compiler and runtime

are able to coarse all the QoS requirements of the sender into the QoS requirements of the

receiver, or vice versa.

Example 2.2 shows the fragment of application PA of Figure 2.1 that defines the QoS

constraints associated with the reception of images from application H. It describes the

specification of inport image_input (line 13) that has QoS constraints (lines 4 through 11)

compatible with the constraints of outport image_output in Example 2.1.

For all constraints but rate (in special cases), a coercion is possible when the QuAL

compiler (or runtime) can upgrade a less restrictive constraint until it matches a more re-

strictive one. For instance, the QuAL compiler can upgrade the recovery time of im-

age_output (4 s) into the recovery time of the image_input (3 s). The compiler can also

coarse the maximum delay tolerated by image_input (infinity, since it is not specified) into

the maximum delay required by the image_output (40 ms).

The QoS attribute rate cannot be coerced when an outport cannot deliver the mini-

mum rate required by an inport. For example, an outport with rate between 10 and

25 messages/s cannot be bound to an inport with rate between 15 and 30 messages/s be-

cause the outport cannot be forced to send more messages (15 per second) than its mini-

mum (10 per second). When two ports have compatible rate constraints, the resulting rate

29

interval for the communication is the intersection between the inport’s and the outport’s

rate intervals. For example, the resulting rate interval for the communication between im-

age_output and image_input is the interval between 10 and 25 messages/s.

Coercion of a QoS constraint is disabled by the keyword nocoercion in a QoS metric

specification. In this case, the inport and outport QoS constraints are compatible only if

they match exactly. Inport image_input does not allow coercion for jitter (line 10 in

Example 2.2), but it can still be bound to image_outport because both port types match

for this constraint.

Applications can comply to the Implicit Model by omitting QoS specifications. A

NULL value for a QoS measure (lines 4 and 5 in Example 2.2) or the omission of a QoS

measure all together (line 8) indicate that the application chooses not to specify that par-

ticular constraint. Chapter 3 explains how the QoSME runtime bridges the gap between

1 /* *** Application PA *** */
2 /* Specification of QoS constraints on the reception of CAT/scan images */
3 /* Inport image_input will receive data sent by image_output in Example 2.1 */

4 realtm { loss NULL;
5 permt NULL; /* No constraints regarding loss or permutation */
6 rate sec 10 - sec 25; /* Mean rate is 10 to 25 messages/s */
7 peak sec 30; /* Peak rate is 30 messages/s */
8 /* No constraints regarding delay */
9 jitter ms 33, /* Jitter must be less than 33 ms */
10 nocoercion; /* No coercion allowed in this QoS metric */
11 recovery sec 3;} /* Any recovery must take less than 3s */
12 receiveport {image_t}
13 image_input;

Example 2.2: Negotiation of Resource Level QoS Metrics

30

the model chosen by applications and the one used by the underlying network.

Inports may support multiple concurrent connections. Consider, for example, a geo-

logical seismic analysis application where a single inport needs to receive samples from

several senders, as illustrated in Example 2.3. By default, a QuAL inport supports only a

single connection. The keyword multiple (line 8) enables samples_in (line 13) to connect

to a maximum of 10 ports concurrently. The keyword combined (line 9) indicates that the

maximum rate (line 5) and peak (line 6) are measured over all connections combined. If

the keyword combined were not specified, each connection would have to individually

handle the specified QoS.

QuAL’s multiple port mechanism can be used to implement a multicast scenario, in

which a single outport is connected to several inports. A message sent through an outport

is received by all the inports connected to it. Multicast is enabled by the keyword mul-

ticast in an outport declaration.

1 /* *** Geological Seismic Analysis Application *** */
2 /* Specification of inport that will receive data from several outports concurrently */
3 realtm { loss 0; /* No loss is tolerated */
4 permt ; /* Permutation is allowed */
5 rate - sec 60; /* Mean rate is at most 60 messages/s */
6 peak sec 80; /* Peak rate is 80 messages/s */
7 delay ms 20; /* Transmission delay must be less than 20 ms */
8 multiple 10, /* Up to 10 outports can be connected to this inport */
9 combined; /* concurrently and the combined mean and peak rate */
10 /* of all the connections cannot exceed */
11 /* 60 and 80 messages/s, respectively */
12 receiveport {sample_t}
13 samples_in;

Example 2.3: Enabling Multiple Concurrent Connections to an Inport

31

QoS negotiation with the underlying network happens when a connection is estab-

lished and it is based on the result of the coercion of the QoS demands of the communicat-

ing ports. For example, the runtime maps transmission rate constraints into protocol spe-

cific requests to allocate bandwidth and buffers.

The QuAL runtime automatically chooses the transport protocol that can best deliver

the QoS needed. The choice of the communication protocol is delayed until run time,

when two ports are actually bound. In this manner, the choice can be based not only on

the static aspects of the communication (such as loss tolerance) but also on properties only

known at run time. For example, properties such as what protocols are supported by the

machines and network or whether communication will occur over a local or a wide area

network can only be determined at run time.

QuAL runtime manages the OS resources available on a system and guarantees that

applications engage real time execution only when their execution QoS demands can be

satisfied. QuAL compiler estimates the computational cost of within loops and QuAL

runtime performs a schedulability analysis of applications before they enter the real time

mode of execution. The computational cost is the maximum amount of processor time re-

quired to execute sequentially on a dedicated uniprocessor the do block of a within loop.

QuAL requires that the user provides a specification of a timeout period for every instruc-

tion or sequence of instructions whose computational cost cannot be estimated in advance,

at compile time. Examples of this type of instructions are some loops, recursive function

calls, and blocking instructions (such as reading and writing from a device). Timeout

blocks will be further discussed in Section 2.3.4.

32

The QuAL compiler calculates computational cost in terms of the number and type of

machine level instructions a QuAL block requires. The runtime then translates these costs

in terms of execution time based on the specification of the architecture (which tells how

long each machine level instruction takes to execute). The calculation of the computa-

tional costs provides an analysis of the worst case system load such that hard timing con-

straints are never missed.

The scheduleability analysis uses an heuristic procedure (discussed in Chapter 3) to

verify if there is a sequential scheduling of QuAL application executions in real time mode

such that they do not violate their timing worst case constraints given by the calculation of

the computational costs.

The within loop initiates execution only if there are enough processing resources

available to satisfy its constraints. In other words, only if it is scheduleable without disturb-

ing the execution of other within loops. Otherwise, the runtime passes control to the

statement following the until condition.

QuAL soft mode of execution permits to trade predictability for higher throughput. As

opposed to what happens for hard real time blocks, soft real time blocks start execution

even if it is known at compile time that timing constraints may not be met during overload

periods.

In summary, the QuAL runtime maps QoS constraint specifications into OS system

calls to allocate and manage the resources needed. For example, the runtime translates

deadline constraints to execute a within loop into OS calls to reserve processing re-

sources. The amount of resources requested and duration of the allocation are based on

33

the computational cost of the within loops and on its execution frequency.

2.3.4 Automatic Monitoring and Violation Detection of Resource Level QoS

QuAL runtime automatically monitors QoS delivery and invokes application custom-

ized exception handlers when QoS violations occur. It generates the performance profile

of streams and initiates QoS performance control. The performance profile of a stream

consists of the sending, arriving, and processing time of all messages in the stream

(formally defined in Appendix A). QuAL runtime controls QoS performance as follows.

First, the runtime uses performance profiles to calculate the value of communication QoS

metrics during application defined time windows. Second, it checks whether or not a vio-

lation has occurred, that is, it checks if the measured metrics comply with the values

specified for them. Finally, it calls the handlers when violations are detected. Similarly,

QuAL runtime monitors application processing activities and initiates QoS control when

application defined deadlines are missed.

Example 2.4 extends Example 2.2 to include specification of QoS management. It

shows the updated declaration of image_input (lines 5 through 16) and fragments of the

main body of application PA (lines 18 through 41). Application PA consists mainly of a

real time loop (lines 22 through 39) that receives the images arriving on image_input (line

29) and displays them (line 30). The timing constraints (lines 23 through 26) specify a spo-

radic soft mode of execution (line 23), with a maximum of 25 activations per second (line

24). In this particular application, the designer decided that some frames may be displayed

late and thus the soft execution mode suffices. Image displaying can be sporadically pre-

empted by other QuAL applications that need to execute in hard real time mode. The exe-

34

cution must be sporadic the execution of the do block can only happen after an image ar-

rives on image_input (lines 25 and 26). The after (line 25) expression causes the first exe-

cution of the do block to be suspended until the condition is true, that is, a message arrives

on image_input. Message arrival on image_input is checked using the Concert/C function

select. Similarly, subsequent executions of the do block are triggered by atEvent (line 26).

QoS performance on a communication is measured during application defined time

windows. The declaration of the inport image_input is extended to include the specifica-

tion of windows for the jitter and rate constraints (lines 5 and 7). The rate will be meas-

ured every 5 s and the jitter every 2 s. The default window size (used when it is not speci-

fied) is equal to the whole duration of the connection.

The QuAL runtime raises an exception every time a QoS violation is detected during

time windows. It sends exception messages to application defined exception handler ports

specified using the handlers clause (lines 10 through 15). An exception message indicates

the time when the violation occurred and the type of violation (e.g., rate or jitter). For ex-

ample, an exception message is sent to port manage_conn whenever the jitter is higher

than 33 ms over a period of 2 s, or the rate is lower than 10 messages/s over a period of

5 s. Application PA is responsible for checking manage_conn and for adapting message

display time upon violations.

35

1 /* *** Application PA (Extension of Example 2.2) *** */
2 /* Management of QoS on receiving CAT/scan images */
3 /* Inport image_input will receive data sent by image_output in Example 2.1 */

4
5 realtm { rate sec 10 - sec 25, window sec 5; /* Mean rate must be measured every */
6 /* interval of 5 s */
7 jitter ms 33, window sec 2; /* Jitter must be measured every */
8 /* interval of 2 s */
9 ... } /* Specification of other QoS constraints */
10 handlers { /* Keyword that declares handler for */
11 /* ports */
12 res_handler /* Keyword that declares a handler port for */
13 /* resource level QoS violations */
14 manage_conn; } /* Port that will receive notification of */
15 /* resource level QoS violations */
16 receiveport {image_t} image_input;
17 ...
18 main()
19 { ...
20 /* Reception and display of CAT/scan images */
21 /* Real-time loop */
22 within (/* Timing constraints */
23 sporadic; soft; /* Mode of execution */
24 period sec 25; /* Maximum number of activations */
25 after(select(image_input)); /* Condition for first activation */
26 atEvent(select(image_input));) /* Condition for subsequent activations */
27 do {
28 timeout(sec 1/40.0) { /* Timeout block */
29 receive(image_input, &m); /* Receive image */
30 ... /* Display image */
31 } /* End of timeout block */
32 expired { ...} /* Handle images that could not be displayed */
33 } /* End of do block */
34 miss_deadline {
35 receive(image_input, &m); /* Receive images that could not be displayed */
36 /* in time */
37 ... /* Handle images that could not be displayed */
38 }
39 until (false); /* Termination condition */
40 ...
41 }

Example 2.4: Detecting Resource Level QoS Violations

36

The QuAL runtime also raises exceptions when processing resources cannot deliver

the QoS requested to execute real time blocks. QuAL supports the notion of a frame as-

sociated with a within loop. A frame is the maximum duration allowed for a loop activa-

tion. For example, if the maximum number of activations of a within loop is 25 times/s, as

in Example 2.4 (line 24), the frame associated with this loop is 1/25 s. Assuming a worst

case scenario in which all activations do occur, QuAL assumes that each loop execution of

a within statement cannot take longer than the duration of a frame, otherwise an excep-

tion handler must be invoked. In Example 2.4, the execution of the do block (lines 27

through 33) is interrupted and control passed to the miss_deadline exception handler

(lines 34 through 38) whenever its execution does not reach completion within a frame

duration.

It is important to notice that the QuAL runtime starts counting the execution time of a

do block from the moment the block is eligible to start (e.g., upon message arrival on im-

age_input) and not from the moment the block actually starts executing. Thus, the

miss_deadline handler is invoked whenever the do block does not complete execution

within 1/25 s of a message arrival in image_input.

The timeout block can be used to specify explicit execution deadlines for instruction

blocks with computational cost that cannot be calculated at compile time. The main goal is

to assign a maximum execution time for the instruction block and to interrupt it if its exe-

cution takes longer than predicted. Assume that in this particular example, it cannot be

known at compile time how long the display operation will last. A timeout block (lines 28

through 31) is used to specify the maximum image processing duration. That is, either the

37

display is executed in 1/40 s or an exception is raised, interrupting the execution and

passing control to the expired block (line 32). The code in the expired block may decide

to handle the violation by discarding the offending frame.

QuAL contains a general purpose high level real time language suitable for hard and

soft real time programming with predictable behavior. QuAL schedulability analysis and

exception handling mechanisms are applicable for hard as well as soft activities. Most soft

real time languages do not support hard real time constraints and implement a more re-

strictive exception handling mechanism. Examples of this type of languages are Real Time

Language/2 (RTL/2) [Barnes 76], Process and Experiment Automation Real-time Lan-

guage (PEARL) [Kappatsch 77], ILIAD [Pickett 79], PORTAL [Nageli and Gorren-

gourt 79], and Ada [Ada 83]. Furthermore, with the introduction of the timeout block,

QuAL permits the use of traditional C constructs without sacrificing behavior predictabil-

ity.

Chapter 3 discusses the implementation of QuAL constructs and Appendix E includes

a more detailed account of related work in real time programming languages.

2.4 Monitoring Application Specific QoS Metrics

The QuAL runtime also automates monitoring of application specific QoS metrics. An

example of such QoS metric is the rate in which an application is sending messages

through an inport (which may differ from the rate metric defined in Section 2.3). This sec-

tion first discusses how applications can specify these QoS metrics. Then it shows the

mechanism in QuAL runtime to signal applications if they are violated.

38

Example 2.5: Monitoring Application Specific QoS Metrics

2.4.1 Automating Monitoring of Application Specific QoS Metrics

Example 2.5 illustrates how a video conference application can trigger monitoring of

application specific QoS metrics on its inport video. The inport video is receiving video

frames and the application needs to know how many times the difference between the ar-

riving time of consecutive messages was higher than a certain threshold. This metric will

be called inter_arrival_delay. Lines 4 through 15 illustrate the definition of a QoS metric

function in QuAL. A QoS metric function is any function that returns a value of type

1 In QuAL, variables that indicate time are of type double because they store values of the sysUpTime SNMP object

[stallings93] maintained by the local management system. This object measures the number of milliseconds since
the management system was last initialized.

1 /* Definition of a threshold for the difference between the arriving time of
2 consecutive messages. At 30 frames/s, the difference must not exceed 1/30 s. */
3 #define THOLD 1/30
4 /* Definition of a QoS Metric function */
5 double inter_arrival_delay(double1 start, double end, qos_ppp *profile)
6 {
7 double j = 0;
8 for(int i = 0; i < profile->size; ++i) {
9 /* Check if difference between arriving times exceeded threshold. */
10 /* Assume there is no permutation or loss. */
11 if(((profile->signatures[i+1].ta - profile->signatures[i].ta) * 1000)> THOLD)
12 ++j;
13 }
14 return j;
15 }
16 main()
17 {
18 ...
19 /* Trigger monitoring of inter_arrival_delay for inport video */
20 qual_monitor(inter_arrival_delay, 5, 1, video);
21 ...
22 }

39

double and takes as input the start and end times of a window and performance profile

vectors. Definition 2.1 shows the type definition of a performance profile vector of a

stream. It consists of a collection of the performance signature of the messages in a

stream. The performance signature of a message consists of the sending, arriving, and

processing time of the message (formally defined in Appendix A). Performance signatures

in a vector are ordered either by sending time or by arriving time, depending on whether

they are generated on the outport side or on the inport side of a communication. In the

example, the profile passed to inter_arrival_delay will be ordered by arriving time because

video is an inport.

/* Definition of a Performance Signature */
typedef struct pps {

double ts; /* Message sending time measured in ms */
double ta; /* Message arriving time measured in ms */
double tp; /* Message processing time measured in ms */

} qos_pps;

/* Definition of a Performance Profile */
typedef struct ppp {

int size; /* Number of performance signatures in this profile */
qos_pps* signatures[]; /* Array of performance signatures */

} qos_ppp;

Definition 2.1: Type Definition of a Performance Profile Vector

Applications call the function qual_monitor to initiate QoS monitoring. In the exam-

ple, the call to qual_monitor (line 20) indicates that the runtime must monitor the QoS

metric inter_arrival_delay arriving on video over windows of 5 s. The number 1 passed as

third argument indicates that only one port is involved in the monitoring. The runtime

40

automatically monitors the communication on video and generates a performance profile

for it. In addition, it calls the function inter_arrival_delay every 5 s passing the start and

end times of the last window and the performance profile collected during it as argument

to the function. The value returned by inter_arrival_delay is stored into QoS MIB entries.

Section 2.8 discusses the architecture of QoS MIBs, where these values are stored, and

how applications can retrieve them.

Example 2.6: Monitoring of Group Application Specific QoS Metrics

QuAL allows monitoring of group application QoS metrics. QoS metric functions can

take several profile vectors, one for each communication stream monitored. Consider, for

example, the case when the application in Example 2.5 needs to measure how synchro-

nized the streams arriving on video and audio are, as illustrated in Example 2.6. The call

to qual_monitor (line 11) now passes the number 2 as the third argument, indicating that

two streams need to be monitored. In addition, a fifth argument is added to the call indi-

cating that audio is the second port to be monitored. The QuAL runtime monitors both

1 /* Definition of QoS metric to measure audio and video stream synchronization */
2 double synchronization(double start, double end,
3 qos_ppp *video_profile, qos_ppp *audio_profile)
4 {
5 ...
6 }
7 main()
8 {
9 ...
10 /* Trigger monitoring of synchronization for inports video and audio */
11 qual_monitor(synchronization, 5, 2, video, audio);
12 ...
13 }

41

streams and generates a performance profile for each one. After each window, the runtime

calls the function synchronization and passes the start and end times of the window and

the performance profiles of the inports video and audio as the third and fourth arguments,

respectively. There are no design imposed limits to the number of ports that can be moni-

tored for a particular QoS metric.

2.4.2 Automatic Notification of Application Specific QoS Violations

QuAL supports automatic QoS violation monitoring. Applications inform the QuAL

runtime which conditions identify a QoS violation and, when a violation is detected, the

runtime notifies the applications. QuAL runtime sends notification messages to application

defined ports, similar to what happens with resource level QoS violation detection.

Application
Layer

QuAL Runtime
Layer

QuAL Runtime

QuAL
 Application

Register
QoS Violation

Monitoring
(1)

Return
QoS Violation Id

(2)

Notification of
QoS Violations

Measure QoS

Figure 2.2: Detecting QoS Violations

Figure 2.2 depicts the architecture of the mechanism used by the QuAL runtime to

42

provide QoS violation signaling. The narrow straight arrows indicate information flow

between applications and the runtime through system calls. The dashed arrow represents

the flow of messages from the runtime to application inports, notifying QoS violations.

The small full triangle represents an application inport. Applications register with the run-

time QoS violations that must be monitored. As a result of the call, the runtime returns a

QoS violation identifier. Upon registration, QuAL runtime sets clock alarms according to

the windows specified by the application and analyzes QoS performance every time an

alarm goes off (curved wide arrows).

Example 2.7: Signaling Application Specific QoS Violations

For example, QoS violation signaling is particularly suitable for play-out time control

of video images. An application displaying video at 30 frame/s may need to detect when

the video transmission jitter (as defined in Appendix A) is higher than 1/30.0 s over a

given window (e.g., half a minute). If the mean jitter is higher than 1/30.0 s, then not

enough frames will be available for a 30 frame/s display during the next window. The ap-

plication must then gracefully reduce the display rate by gradually increasing the inter mes-

1 /* Requesting notification of application specific QoS violations */
2 /* QoS metric inter_arrival_delay was defined in Example 2.5 */
3 main()
4 {
5 /* Trigger signaling of violations of inter_arrival_delay measured on inport video. */
6 /* Notification messages must be sent to inport handler whenever inter_arrival_delay
*/
7 /* is lower than 2 or higher than 4 */
8 id = qual_violation_signalling(inter_arrival_delay, 5, 2, 4, handler, 1, video);
9 ...
10 }

43

sage display interval and discarding late messages. The application registers the violation

event with the runtime. Execution is only interrupted when the runtime notifies the appli-

cation that the event has indeed occurred and not after every window.

Example 2.7 illustrates the use of the function qual_violation_signalling to trigger the

monitoring of violations to the QoS metric inter_arrival_delay defined in Example 2.5. As

a result of the call (line 8), QuAL runtime automatically creates a performance profile for

inport video, calls the QoS metric function inter_arrival_delay every interval of 5 s, and

sends a notification message to inport handler every time inter_arrival_delay returns a

value lower than 2 or higher than 4. The function call returns an identifier for the violation

registered.

Definition 2.2: Type of a Message Notifying a QoS Violation

Definition 2.2 shows the specification of a notification message which indicates which

QoS violation was detected, the type of the violation (i.e., minimum or maximum thresh-

old violation), the value of the QoS metric when the violation was detected, and the time

of the occurrence.

/* Definition of violation types */
enum {min, max} qual_vltn_ty; /* Violations either on min or max thresholds */

/* Definition of the type of a notification message */
typedef struct {

int id; /* Identifier of the QoS metric that was violated */
qual_vltn_ty vltn_ty; /* Type of the violation */
double sample; /* QoS metric value that triggered violation */
double time; /* Time when the violation was detected */
} qual_violation_ty;

44

2.5 Specifying Filters

This section describes QuAL constructs for the specification and negotiation of filters.

A filter is a function that modifies the performance profile of a stream (as defined in Ap-

pendix A). Filters allow applications to control QoS performance. For example, consider a

sender that is generating more messages than its receiver is capable of processing. These

applications can use filters to agree under which circumstances (e.g., sending time or cur-

rent system load) a message generated should be inserted in or discarded from the stream.

Filters provide protection similar to the one provided by a fuse when installed in an electri-

cal circuit. That is, it preserves applications from damaging whole systems when logical

glitches happen. In the example mentioned, control of the sender rate may prevent receiver

buffer overflow with consequent connection or application failures.

2.5.1 Specification of Filters

Filters are inspectors placed in ports to check the data flow, that is, to guarantee that

only complying messages are injected in the communication stream. They can analyze

flows generated for an outport or arriving on an inport, as illustrated in Figure 2.3. The

dashed horizontal lines divide the three layers depicted: the application layer, QuAL run-

time layer, and the underlying system. The arrows show the data communication path

between two remote applications, A and B. The two inspectors check each message as

they are about to leave or enter the application layer.

In the QuAL model of communication, messages that do not comply with the metrics

enforced by the filters (the dashed lines in Figure 2.3) are either discarded or forwarded to

exception handler ports, depending on how ports are specified. Alternatively, filtering can

45

simply trigger exception messages, without actually removing messages from the stream.

This feature will be further explored in Section 2.5.3.

Application
Layer

QuAL Runtime
Layer

Underlying
Environment

AA
AA
AA

AA

 Application
A

Messages that
comply with outport

QoS metrics

 Application
B

AAA
AAA

AA
AA

Messages that
comply with inport

QoS metrics

Messages that
violate outport QoS

metrics
Messages that

violate inport QoS
metrics

Network

Figure 2.3: Adding Filters to Manage QoS Performance

Figure 2.4 illustrates an extension of the CAT/scan application in Figure 2.1 for broad-

cast of images on an heterogeneous system. A technician joins the exam team to help to

operate the scanner. The technician verifies that the patient and the scanner are correctly

positioned and that the images are clear. Application T running on the technician’s com-

puter is responsible for processing the messages sent by application H. The technician is

using a mobile computer and has less computing and communication resources than Phy-

sician A. Therefore, she is not able to receive images at the same rate as the physician is.

In reality, the technician does not need to receive every single image in order to calibrate

the scanner. It is enough for the technician to only look at half of the images generated,

since patient positioning and image clarity are unlikely to change on a per image basis. In

46

this scenario, filters are used to guarantee that only half of the messages generated by

Application H are actually sent to Application T, tuning the interaction between applica-

tions H and T according to the resources available to them.

Physician A

Application
PA

Hospital

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA

A
A
A
A
A
A
A

A
A
A
A
A
A
A

AA
AA

AA
AA

AAAAAA

AAAAAAAAAAAAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

A
A
AAAAA

Application
H

CAT/SCANNER

Network

CAT/SCANNER
Technician

A

Application
T

Figure 2.4: Remote Analysis of a CAT/scan with a CAT/scanner Technician

QuAL uses a string type name to identify a filter. Example 2.8 extends the declaration

of the outport image_output (Example 2.1) of application H to include filtering (lines 4

through 9) on the multicast (line 10) of CAT/scan images. In the example, the multicast

streams must be filtered because members of exam team differ on the amount of resources

available for processing and displaying images. Thus, filtering is used to generate several

traffic flow patterns from a single sender according to application specific criteria.

The realtm clause may include two sets of filters: (1) the filters that the port can

comply with and (2) the filters that any other port must comply with to be bound to the

port being declared. The keyword cmpl (line 4) identifies the first set, whereas conn_cmpl

the second one. The binding mechanism in QuAL only binds ports that are able to comply

47

with each other’s filter requirements. Filter negotiation will be further discussed in Sec-

tion 2.5.

A filter identifier in QuAL denotes communication QoS management in the same way

a function name denotes the computation performed by a function. Identifiers are applica-

tion dependent and have meaning only in the context of a particular port. In Example 2.8,

the outport image_output can comply with the filters low_qual, med_qual, and high_qual

(lines 6 through 8). In this context, they represent filtering policies that assure, respec-

tively, transmission of one third, one half, and all images generated for the port. Section

2.5.2 explains how application T can select the filter med_qual for its communication with

image_input.

Filters can be applied on a single communication stream or on a group of streams.

Single-stream filters define constraints that are related only to a particular stream, such as

the ones defined for image_outport in Example 2.8. Multiple-stream filters (or group fil-

1 /* *** Application H (extension of Example 2.1) *** */
2 /* Specification of filters to control broadcast of CAT/scan images */
3 realtm { loss ... /* Specification of resource level QoS constraints */
4 cmpl { /* Keyword that declares the filters the */
5 /* port is able to comply with */
6 low_qual; /* List of filters the port is able to comply with */
7 med_qual;
8 high_qual;
9 }; /* End of cmpl clause */
10 multicast; /* Outport supports multicast */
11 } /* End of realtm clause */
12 receiveport {image_t} *image_output;

Example 2.8: Specification of Filters

48

ters) define management that depends on QoS properties of a group of streams such as

reducing both an audio and a video stream rates. One can view a group filter as having a

single inspector managing the aggregate flow on a group of streams.

Example 2.9 illustrates the specification of group filters. The example shows a frag-

ment of a multimedia conference application. The fragment includes the definition of the

outports through which audio and video will be broadcast to other conference partici-

pants. The outports defined, audio_output (lines 6 through 13) and video_output (lines 16

1 /* *** Multimedia Conference Application (Sender Part) *** */
2 /* Specification of group filters */
3 enum {audio, video} audio_video;
4
5 /* Port through which audio will be broadcast */
6 realtm { loss ... /* Specification of resource level QoS constraints */
7 grp_cmpl { /* Keyword that declares the group filters */
8 /* the port is able to comply with */
9 audio_video[audio]; /* List of contracts the port is able to comply with */
10 }; /* End of grp_cmpl clause */
11 multicast; /* Outport supports multicast */
12 } /* End of realtm clause */
13 receiveport {audio_msg_t} *audio_output;
14
15 /* Port through which video will be broadcast */
16 realtm { loss ... /* Specification of resource level QoS constraints */
17 grp_cmpl { /* Keyword that declares the group filters */
18 /* the port is able to comply with */
19 audio_video[video]; /* List of filters the port is able to comply with */
20 }; /* End of grp_cmpl clause */
21 multicast; /* Outport supports multicast */
22 } /* End of realtm clause */
23 receiveport {video_msg_t} *video_output;
24 ...

Example 2.9: Specification of Group Filters

49

through 23), are able to comply with the group filter audio_video (lines 9 and 19). The

keyword grp_cmpl (lines 7 and 17) identifies the declaration of group filters. The filter

audio_video manages rate reduction of audio and video messages.

Filter identifiers are enumerations where each element represents one of the ports that

are interrelated. When a port is capable of complying with a filter, its declaration must

identify which element of the enumeration that port represents. In the example, the enu-

meration audio_video contains audio and video (line 3). The outport video_output repre-

sents the video element, whereas audio_output represents the audio element. Their repre-

sentations are specified by the video (line 19) and audio (line 9) words inside the brackets

following the word audio_video in their declarations.

2.5.2 Filter Negotiation

The binding mechanism assures that ports are bound only when their types have com-

patible filters. Binding ports must be compatible at the sending and at the arriving end.

Two ports are compatible at the sending end if there is a non-null intersection of the set of

filters the outport is capable of complying with (specified after the keywords cmpl in

Example 2.8 or grp_cmpl in Example 2.9) and the one the inport demands. Similarly, two

ports are compatible at the arriving side if there is a non-null intersection between the fil-

ters the inport supports and the ones the outport demands.

Example 2.10 illustrates filter negotiation. It shows a fragment of Application T in

Figure 2.4 that includes the declaration of the inport med_image_input (lines 5 through

11) which will receive the images sent by application H defined in Example 2.8. Due to

restricted resources, application T can only handle half of the images generated by appli-

50

cation H. Therefore, the specification of med_image_input demands that an outport bound

to it applies the filter med_qual (line 8) discussed in Section 2.5.1. The keyword

conn_cmpl (line 6) identifies the list of filters a candidate connecting port must comply

with. At binding time, QuAL runtime calculates the intersection set between the filters

supported by image_output (low_qual, med_qual, and high_qual) and the ones demanded

by med_image_input (med_qual). It decides that the ports have compatible types since the

intersection set is med_qual and guarantees that med_qual will be enforced between im-

age_output and med_image_input.

Example 2.11 illustrates the negotiation of group filters. The code shows the declara-

tion of the inports audio_input (lines 7 through 13) and video_input (lines 16 through 22)

that will receive, respectively, audio and video messages from the ports audio_output and

video_output defined in Example 2.9. The keyword grp_conn_cmpl (lines 8 and 17) in a

port declaration identifies the list of group filters a candidate connecting port must comply

with. Similar to negotiation of single stream filters, QuAL runtime calculates the intersec-

1 /* *** Application T *** */
2 /* Specification of filters that an outport sending CAT/scan images to application T */
3 /* must comply with */
4 /* Inport med_image_input will receive data sent by image_output in Example 2.8 */
5 realtm { loss ... /* Specification of resource level QoS constraints */
6 conn_cmpl { /* Keyword that declares filters that other ports */
7 /* must comply with in order to connect to this one */
8 med_qual; /* Filter that the other port must enforce */
9 } /* End of conn_cmpl clause */
10 } /* End of realtm clause */
11 receiveport {image_t} med_image_input;

Example 2.10: Negotiation of Filters

51

tion set between the filters supported by video_output (audio_video[video]) and the ones

demanded by video_input (audio_video[video]). QuAL runtime finds the intersection set

to be non empty and assures that audio_video is enforced in the communication between

video_output and video_input. The binding between audio_output and audio_input pro-

ceeds similarly. It is important to notice that the binding mechanism requires that

video_output satisfies the filter audio_video[video], and not simply audio_video, in order

to be bound to video_input.

1 /* *** Multimedia Conference Application (Receiver Part) *** */
2 /* Specification of group filters outports sending video and audio must comply with */
3 /* Inports audio_input and video_input receive from outports defined in Example 2.8 */
4 enum {audio, video} audio_video;
5
6 /* Port through which audio will be received */
7 realtm { loss ... /* Specification of resource level QoS constraints */
8 grp_conn_cmpl { /* Keyword that declares the group filters */
9 /* another port must comply to connect to this one */
10 audio_video[audio]; /* Filter with which another port must comply */
11 }; /* End of grp_conn_cmpl clause */
12 } /* End of realtm clause */
13 receiveport {audio_msg_t} audio_input;
14
15 /* Port through which video will be broadcast */
16 realtm { loss ... /* Specification of resource level QoS constraints */
17 grp_conn_cmpl { /* Keyword that declares the group filters */
18 /* another port must comply to connect to this one */
19 audio_video[video]; /* Contract with which another port must comply */
20 }; /* End of grp_conn_cmpl clause */
21 } /* End of realtm clause */
22 receiveport {video_msg_t} video_input;
23 ...

Example 2.11: Group Filter Negotiation

52

2.5.3 Implementing Filters

Application developers must bind to each filter a filter function that will actually im-

plement the filtering. A filter function can be any function written in a subset of C

(discussed in Chapter 3). The subset has the property of allowing computation of worst

case execution time for scheduling purposes. Filter functions for outports (inports) are in-

voked every time a message is sent (received). Each filter function is executed on a sepa-

rate thread created by the runtime when a connection is established.

Filter functions return values that indicate whether a message complies with given

constraints. Filter functions return values of type mon_t in Definition 2.3. A positive value

in the field remove indicates that the message must be filtered, whereas a positive value in

the field exception indicates that an exception must be raised. Exception messages include

the contents of the filtered message as well as the value of the remove and exception fields

returned by the corresponding filter function.

Example 2.12 shows the definition of exception handler ports (lines 14 through 19) for

the filters defined in Example 2.8, and Example 2.13 shows the corresponding filter func-

tions (lines 27 through 54). Exception messages generated by the filters low_qual,

med_qual, and high_qual are sent, respectively, to ports appl (line 16), appm (line 17),

and apph (line 18).

Filter functions have no access to the contents of a message, only to its sending time,

its arriving time, and an index that identifies the order of the message in the stream.

Example 2.13 defines three filter functions: mon_low (lines 27 through 36) , mon_med

(lines 37 through 46), and mon_high (lines 47 through 54). The first argument of a filter

53

function for an outport (lines 27, 37, and 47) is a message index and the second one its

sending time. Filter functions for inports have an additional third argument that is the arriv-

ing time of a message. Appendix C describes signatures of filter functions.

The filter functions in the example illustrate how to implement media scaling. Media

scaling consists of sampling a message stream and transmitting only the fraction sampled.

It assumes that the sampled data represents a good enough approximation of the original

information. Media scaling can adjust the rate of messages in a stream according to the

resources available. The function mon_low monitors the rate in which messages are gen-

1 /* *** Application H (Extension to Example 2.8) *** */
2 /* Specification of handler ports for filters */
3 realtm { loss ... /* Specification of resource level QoS constraints */
4 cmpl { /* Keyword that declares the filters the */
5 /* port is able to comply with */
6 low_qual; /* List of filters the port is able to comply with */
7 med_qual;
8 high_qual;
9 }; /* End of cmpl clause */
10 multicast;
11 } /* End of realtm clause */
12 handlers { /* Keyword that declares handlers */
13 /* for the port */
14 fil_handler{ /* Keyword that declares handler */
15 /* for filters */
16 low_qual appl; /* Handler port for filter low_qual */
17 med_qual appm; /* Handler port for filter med_qual */
18 high_qual apph; /* Handler port for filter high_qual */
19 } /* End of fil_handler clause */
20 } /* End of handlers clause */
21 receiveport {image_t} *image_output;
22
23 ... /* It continues in Example 2.13 */

Example 2.12: Implementing Filters (Part 1)

54

erated at the outport and decides to uniformly drop messages to reduce the rate to one

third. The function mon_med behaves similarly, but reducing the rate to only half. The

function mon_high, on the other hand, does not drop any message. It just monitors the

generation rate and raises exceptions whenever it is not 25 messages/s.

The assg operator associates filter identifiers to their corresponding functions. In

Example 2.13, the functions mon_low, mon_med, and mon_high are associated to

low_qual (line 59), med_qual (line 60), and high_qual (line 61), respectively. The assg

operator enables applications to dynamically assign filter functions to filter identifiers.

2.6 Access to Communication Temporal Properties

For time sensitive applications, the semantics of the transmitted data depend on their

temporal properties, i.e., the time when the data was sent, arrived, or processed. QuAL

provides a set of functions to access such temporal properties.

QuAL runtime may prioritize message processing based on sending time. This is in

addition to prioritization based on order of arrival, as supported by Concert/C. For exam-

ple, this feature is useful for geology applications that process samples measured by re-

mote seismic sensors. When an abnormal phenomena is detected, such as an earthquake,

the analysis of data measured after the phenomena must have priority. All manipulations of

temporal properties are performed by the QuAL runtime layer. This is analogous to net-

work layer header processing being transparent to the transport layer.

55

22 /* Lines 1 through 21 in Example 2.12 */
23 #define RED_THIRD 1 /* Message removed to reduce rate to one third */
24 #define RED_HALF 2 /* Message removed to reduce rate to one half */
25 #define LOW_RATE 3 /* Exception caused by low rate */
26
27 mon_t mon_low (int index, double sending_time)
28 { /* Filter communication to provide low quality */
29 mon_t result;
30 if (index % 3 == 0) /* Transmit one message out of 3 */
31 result.remove = false; /* Do not filter it; transmit it */
32 else
33 result.remove = RED_THIRD; /* Filter message to reduce rate to one third */
34 result.exception = false; /* No exception messages needed */
35 return(result);
36 }
37 mon_t mon_med (int index, double sending_time)
38 { /* Filter communication to provide a medium quality communication stream */
39 mon_t result;
40 if (index % 2 == 0) /* Transmit every other message */
41 result.remove = false; /* Do not filter it; transmit it */
42 else
43 result.remove = RED_HALF; /* Filter message to reduce rate to half */
44 result.exception = false; /* No exception messages needed */
45 return(result);
46 }
47 mon_t mon_high (int index, double sending_time)
48 { /* Monitor communication to check the quality of the communication stream */
49 mon_t result;
50 result.remove = false; /* Transmit every message unconditionally */
51 if(...) /* If rate is not 25 messages/s */
52 result.exception = LOW_RATE; /* Generate an exception message */
53 return(result);
54 }
55 ...
56 main()
57 {
58 ...
59 assg(image_output, low_qual, mon_low); /* Associate mon_low to low_qual */
60 assg(image_output, med_qual, mon_med); /* Associate mon_med to med_qual */
61 assg(image_output, high_qual, mon_high); /* Associate mon_high to high_qual */
62 ...
63 }

Example 2.13: Implementing Filters (Part 2)

56

Example 2.14 illustrates the retrieval of temporal properties in QuAL. The example

shows the declaration of an inport, image_input (line 2), and a fragment of the message

reception portion of an application. The receive_tm (lines 7 and 8) call, similarly to the

Concert/C receive call, causes a message to be dequeued from image_input and stored in

the memory position designated by &m. Additionally, receive_tm causes the sending, ar-

riving, and processing times of the message retrieved to be stored in the memory positions

designated by &sendtm, &arrvtm, and &proctm, respectively.

The example also illustrates processing prioritization based on sending time. The call

rtm_receive_tm (lines 10 through 12) dequeues from image_input only messages sent

between t and the current time. The current time is retrieved by calling the function time.

Function rtm_receive_tm also returns the temporal properties of the message retrieved.

1 /* Access to Temporal Properties */
2 realtm { ... } receiveport {image_t} image_input; /* Declaration of image_input */
3 ...
4 main()
5 {
6 ...
7 receive_tm(image_input, &m, /* Retrieving an image frame and */
8 &sendtm, &arrvtm, &proctm); /* its sending, arriving, and processing times */
9 ...
10 rtm_receive_tm(t, time(), image_input, &m, /* Retrieving an image frame that */
11 /* arrived between t and time(), */
12 &sendt, &arrvt, &proct); /* and its temporal properties */
13 ...
14 }

Example 2.14: Access of Temporal Properties of Messages

57

Definition 2.3: Type of Value Returned by Filter Functions

Most language level communication abstractions [Hoare 78, Soares 92] do not capture

communication temporal properties. Application developers must incorporate the sending

time in the contents of the message with potential inaccuracies. Access to the arrival time

is more complicated. The receiving process must check the time soon after a message is

received, which may be difficult to guarantee in multi-process OSs due to potential

scheduling problems. The time-stamping user process may be awaken only long after the

message was received.

In QuAL, the manipulation of temporal properties is transparent to application devel-

opers. Furthermore, the time stamping process has high priority within the runtime with

respect to other processes.

QuAL communication abstractions are compatible with the ones in Concert/C. All

Concert/C operators can be used to access ports in which case the temporal properties are

simply discarded.

2.7 Dynamic Re-negotiation of QoS Metrics

Re-negotiation of QoS constraints and filters in QuAL can happen dynamically, i.e., at

any time during process execution and occurs concurrently with data transmission. This

feature enables real time recovery from degradation without interrupting communication

flow.

typedef struct {int exception; int remove;} mon_t;

58

Two operators enable dynamic QoS re-negotiation: qos_get allows retrieval of current

QoS metrics of a port and re_negotiate causes the re-negotiation to start. Example 2.15

illustrates dynamic re-negotiation. The qos_get operator (lines 9 through 12) is used to

access the value of the delay negotiated for the current connection serving image_input

(returned in &delay). The new delay is calculated (line 13) based on the value retrieved (it

is the current value minus 5 ms). Finally, the re-negotiation is requested through the

re_negotiate operator (lines 14 through 17). QuAL runtime uses a two phase commit

protocol [Elmasri and Navathe 94] to determine when the re-negotiation has terminated

and the communication can proceed according to the new constraints.

1 /* Dynamic Re-negotiation of QoS Constraints */
2 realtm {... delay ms 35; ...} /* Declaration of image_input */
3 receiveport {image_t} image_input;
4 ...
5 main()
6 {
7 ...
8 /* A message was received with very high transmission delay ... */
9 qos_get (image_input) /* Check current delay for image_input */
10 {
11 delay sec &delay;
12 }
13 delay -= (ms) 5; /* Calculated new delay */
14 re_negotiate (image_input) /* Start re-negotiation */
15 {
16 delay sec delay; /* Specify new value for transmission delay */
17 }
18 ...
19 }

Example 2.15: Dynamic Re-negotiation of QoS Constraints

59

2.8 QoS Management within the SNMP Framework

QuAL applications are automatically instrumented to generate, during execution, man-

agement information that captures the performance of the QoS delivered to them by the

underlying system. The instrumentation is performed by the QuAL compiler and does not

incur any implementation overhead to application developers. The information collected

enables QoS management that focus on applications properties. Examples of such proper-

ties are average transmission delay delivered and deadlines to execute tasks. These infor-

mations are collected in QoS MIBs that are specified and maintained according to the

SNMP standard.

The following sections provide a brief summary of the QoS MIB structure and focus

on its use by applications. Chapter 4 provides a more in depth account on the design of

QoS MIBs and their use by SNMP managers.

2.8.1 An Overview of the QoS MIB Design

A QoS MIB object is subdivided into the following groups (Figure 2.5):

• Application (qApp2, for short): consists of the table qAppTable that contains one

entry of type qAppEntry for each QuAL application. This group can be seen as an

extension of the Network Service Monitoring MIB (NSM MIB) [Freed and Kille

93] to include information about application QoS.

• Outport (qOut): consists of the table qOutTable which has one row of type

qOutEntry for each QuAL outport. Each entry indicates the value of all network

2 The name of QoS MIB objects starts with either qApp, qOut, qIn, or qProg depending on whether the object being

named belongs to the application group, outport group, inport group, or programmable group, respectively. The
prefix q indicates that they are related to QoS.

60

resource level QoS metrics (as defined in Section 2.3) negotiated for the outport

and how the outport is using the connection.

• Inport (qIn): consists of the qInTable which has one row of type qInEntry for each

QuAL inport. Similar to qOutTable, each entry in qInTable indicates the value of

the metrics negotiated for an inport. In addition, it maintains some statistics on the

QoS delivered by the network.

• Programmable (qProg): consists of the table qProgTable which has one row of

type qProgEntry for each programmable (application specific) QoS metric. Entries

are added to or removed from this group as applications trigger or cancel monitor-

ing of new QoS metrics. Applications trigger QoS monitoring through the opera-

tor qual_monitor discussed in Section 2.4.1.

qos

qApp

qAppTable

qAppEntry

qAppAcInCnn

qAppLInCnnFl

...

qOut

qOutTable

qOutEntry

qOutLstSent

qOutMsgSent

...

qIn

qInTable

qInEntry

qInAccDelay

qInMsgRecv

qInDelayNeg

...

qProg

qProgTable

qProgEntry

qProgMet

qProgVal

...

Figure 2.5: Overview of the Design of QoS MIBs

An entry in the application group captures the performance of its distributed activities

and real-time executions. It contains information such as the application identifier, its cur-

rent status (whether it is executing, blocked, or terminated), the last time when the OS

61

failed to schedule the application according to its timing constraints, the total number of

its inports that succeed to connect (qAppAcInCnn in the figure), the last time when the

application failed to establish a connection on an inport (qAppLInCnnFail), etc.

An entry in the outport group identifies an outport connection and the application that

is using it. It describes the QoS negotiated and captures the performance actually being

delivered. It contains information such as the identifier of the application that owns the

outport, the maximum delay in milliseconds negotiated, the time when the last message

was sent (qOutLstSent), the total number of messages sent (qOutMsgSent), etc.

Similar to an entry in the outport group, an entry in the inport group describes an in-

port connection, the QoS negotiated, and the QoS being delivered. It contains information

such as the sum of the transmission delay measured in milliseconds of all messages re-

ceived (qInAccDelay), the total number of messages received (qInMsgRecv), the delay

negotiated for the port (qInDelayNeg), the last time when a message was received, etc.

An entry in the programmable group contains information on a QoS metric defined by

an application developer. Examples of such information are the name of the metric being

measured (qProgMet) and its value (qProgVal).

2.8.2 Application Access to QoS MIB Data in Real Time

Applications need to adapt to QoS delivery in real time. Thus, QoS MIB access to

monitor and control QoS must be performed efficiently. In the SNMP framework, SNMP

agents mitigate accesses to MIB data. Once an application sends a request to an SNMP

agent, there are no real-time guarantees on when the request will be served.

In order to provide real time QoS MIB access, QuAL includes functions that enable

62

applications to access the QoS MIB instrumentation directly, bypassing the local SNMP

agents. From the application point of view, these functions have the same semantics as

SNMP get [Rose 93, Stallings 93] operations. However, these functions offer real time

response since they do not contend with an SNMP agent for processing resource. These

functions are SNMP compatible because they comply with SNMP access control rules.

That is, before accessing the instrumentation, they check whether or not the access com-

plies with the SNMP specification of the QoS MIBs. QoS MIB access control functions

have bounded computational cost.

Example 2.16 shows how application PA in Figure 2.1 accesses QoS performance sta-

tistics on the delivery of CAT/scan images. The example shows the declaration of the in-

port image_input (lines 3 and 4) that receives the CAT/scan images and fragments of the

code that access QoS performance statistics associated with it (lines 6 through 22).

QoS MIB objects can be referenced by using SNMP identification conventions or

QuAL constructs. The operator snmp_get is used to access QoS MIB data using SNMP

conventions. It retrieves (lines 10 through 12) from the QoS MIB the number of messages

already processed that arrived for image_input. The QoS MIB columnar object that con-

tains this type of information is qInAccMsgProc. According to the design of QoS MIBs

and the conventions established by SNMP, the instance of this object that stores the in-

formation for image_input is identified by the transport layer port address of image_input

(1234, in the example), by the IP address of the machine where application PA is running

(128.59.25.32), by the transport layer port address of the outport connected to image_input

(4321), and by the IP address where the application communication with PA is running

63

(128.59.25.26). Application PA can acquire this information using various Unix libraries or

using the operators to follow.

The QuAL constructs differ from the abstractions in SNMP to identify QoS MIB ob-

jects. In QuAL, a port descriptor identifies a communication stream. In SNMP, however,

lower level identifiers, such as transport layer addresses, are used to identify QoS MIB

objects. This difference makes it very difficult for applications to identify the objects that

store information on a QuAL port. For example, applications might need to find out the

transport address of a port only to locate the QoS MIB objects associated with it.

1 /* *** Application PA *** (Extended from Example 2.2) */
2 /* Accessing QoS performance statistics at an inport receiving CAT/scan images */
3 realtm {... delay ms 35; ...} /* Inport that will receive CAT/scan images */
4 receiveport {image_t} image_input;
5 ...
6 main()
7 {
8 int msgProc, openConn, accDelay,
9 ...
10 /* Retrieve the number of messages received on image_input already processed */
11 msgProc =
12 snmp_get(qInAccMsgProc.1234.128.59.25.32.4321.128.59.25.26);
13 ...
14 /* Retrieve number of inport connections this application opened successfully */
15 openConn =
16 qual_app_get(self, qAppAccInCnn);
17 ...
18 /* Retrieve sum in ms of delay of all messages that arrived for image_input */
19 accDelay =
20 qual_in_get(image_input, qInAccDelay);
21 ...
22 }

Example 2.16: Real Time QoS MIB Access

64

To overcome cumbersome transport layer addresses, QuAL provides three operators

to enable QoS MIB access using QuAL abstractions (one for each QoS MIB group). The

operator qual_app_get identifies QoS MIB instances in the application group by using

QuAL application abstractions. Similarly, the operators qual_in_get and qual_out_get use

the inport and outport QuAL abstractions to identify, respectively, QoS MIB instances on

the inport and outport QoS MIB groups. The call to qual_app_get (lines 14 through 16)

retrieves the number of inbound connections application PA opened with success. The

object that stores this type of information is qAppAccInConn, passed as the second argu-

ment. Its instance is the one associated with this application (self) identified by the first

argument (the application invoking qual_app_get is always identified by self). Similarly,

the call to qual_in_get (lines 18 through 20) retrieves the sum in milliseconds of the

transmission delays of all messages received. Object qInAccDelay stores this information

and image_input identifies its instance. The result is returned in accDelay.

2.9 Conclusions

This chapter has described the QuAL language that enables applications to specify and

manage (i.e., negotiate, monitor, analyze, and control) their communication and computa-

tion QoS. QoS management is pursued by applications and SNMP managers in coordina-

tion, based on QoS MIBs that contain effective statistics on the QoS delivered to applica-

tions by the underlying network and OS systems.

QuAL abstractions for QoS negotiation support multiple paradigms of interaction

between applications and network QoS assurance mechanisms. At one extreme, applica-

tions can convey explicitly their QoS constraints to the network. At the other, applications

65

might include no constraints and expect the underlying system to adjust QoS delivery to

match application behavior patterns. The QuAL runtime is responsible for bridging the gap

between the paradigm chosen by applications and the one deployed by a particular net-

work. Consequently, QuAL applications are portable across heterogeneous environments.

QuAL provides mechanisms for monitoring of QoS and for detection of QoS viola-

tions. Applications can specify the QoS to be monitored by the QuAL runtime which

automatically stores measurements into QoS MIBs. The latter are structured and allocated

as a result of the compilation process and can be queried by applications and SNMP man-

agers. When violations are detected by the runtime, applications are informed by the

QuAL runtime and can react accordingly.

QoS MIBs can be accessed by applications and SNMP managers to control QoS de-

livery. On the one hand, SNMP managers may monitor the QoS delivered to applications

and operate transport and OS resources to best meet application needs. On the other hand,

applications may evaluate their QoS performance and adapt their semantics accordingly.

QoS MIBs integrate application customized QoS management into the standard SNMP

network management framework.

66

Chapter 3 ___________________

QoSockets: Unified Transport
Interface for QoS Handling

3.1 Introduction

3.1.1 The Problem

Transport protocols very greatly in their support of QoS assurance. They range from

no QoS support (such as in UDP), to limited support (such as in TCP), and up to intricate

assistance (such as in ST-II). Even when providing considerable QoS support, they differ

on the metrics that can be negotiated and on the negotiation mechanism supported. The

lack of transport homogeneity renders development of portable applications difficult in

many ways:

• Application programmers need to be aware and handle the gap between the QoS

needed and the one effectively supported by a particular provider. For example,

TCP does not support bandwidth allocation. Thus, a video application that needs

to display 30 frames/s must explicitly allocate buffers.

• Applications must handle details of QoS negotiation protocols. For example, on

one hand, ST-II sends asynchronous QoS negotiation status messages. On the

67

other hand, AAL sends synchronous QoS negotiation status information after it

established connections. Applications need to incorporate all these negotiation

mechanisms to be able to operate over ST-II and AAL.

• Differences in the semantics of QoS assurance cause applications to work differ-

ently under different system configurations. For example, AAL guarantees that

transmission rate bounds are not violated whereas ST-II uses a best effort ap-

proach in delivering bandwidth. Thus, an application should deal with violations on

ST-II but not on AAL.

Similar complexities in assuring QoS result from OS heterogeneity. For example, if the

OS does not support real time computations, an application may miss the deadline to de-

code a video frame in time to display it. Such application needs to know about OS per-

formance behavior and react accordingly.

The problem addressed in this chapter is that of designing unified transport layer API

for QoS handling. It will also touch the problem of developing OS API for assuring QoS

constraints, but only as far as supporting computations associated with transmissions over

the transport API.

3.1.2 Main Results

This chapter presents QoSockets, a library of transport protocol API that abstracts and

unifies QoS negotiation and management at the transport layer. It briefly overviews

QoSOS, a similar library for OS functions. The functionality provided by QoSOS has been

the subject of related research [Coulson et al. 95, Stankvic 95, Feldmeier 93, Govindan

and Anderson 91] and thus this chapter focus primarily on QoSockets.

68

QoSockets add to existing communication APIs (such as Berkeley sock-

ets [Stevens 90]) the ability to specify QoS constraints (e.g., delay or jitter) of a transport

protocol. Similarly, QoSOS offers an API to negotiate QoS constraints with the underly-

ing OS (e.g., deadlines to execute a task). Both QoSockets and QoSOS automatically

monitor and gather QoS performance statistics.

The main contributions of QoSockets and QoSOS are:

• Support of single API for transport layer QoS negotiation, connection establish-

ment, and data transmission; and of single API for OS QoS negotiation. This

makes applications easy to port across different platforms because it hides the dif-

ferences among QoS metrics supported by current transport protocols and OSs.

• Support of a single QoS negotiation protocol. QoS negotiation between peer ap-

plications is integrated with QoS negotiation between applications and the underly-

ing system. Applications become part of the negotiation process according to each

other’s demands, regardless of the underlying transport or OS configurations. This

feature hides underlying negotiation details from applications.

• Generality across application QoS needs. Applications can use the same API to

request loss-less connections for voice communications or low bandwidth channel

for electronic mail delivery. This feature eases implementation of diverse QoS

needs and QoS upgrades or downgrades when porting to new environments.

• Automatic monitoring of the QoS delivered by the underlying system and auto-

matic detection of violations of QoS assurance. This frees application developers

from having to include tedious and error prone monitoring code.

69

• Support of a flexible mechanism to dynamically select most appropriate QoS

transport providers given specific application requirements. This feature eases

portability since the transports available are only know when migrating to new

systems.

3.1.3 Chapter Organization

The reminder of this chapter is organized as follows. Section 3.2 describes how an

application developer uses QoSockets to specify QoS constraints in a communication and

how QoSockets allocate underlying system resources. Section 3.3 discusses how the

QoSockets runtime hides from application developers the heterogeneity of transport pro-

tocols. Section 3.4 shows the QoSockets mechanisms that enable applications to dynami-

cally select the most appropriate transport protocols. Section 3.5 discusses how QoSOS

interacts with diverse OSs. Finally, Section 3.6 summarizes.

3.2 Specification of QoS Constraints in QoSockets

The Explicit Model in Chapter 2 suggests that applications should negotiate their QoS

needs. QoSockets support such negotiation. In fact, the QuAL design uses QoSockets to

implement its QoS negotiation portion. This section overviews QoSockets QoS specifica-

tion.

Definition 3.1 specifies the qos_ty data type that enables the declaration of universal

QoS metrics (as defined in Appendix A). For each universal metric, applications can spec-

ify a tolerable threshold value (field value), windows over which the metric should be

measured (field window), and if the threshold can be coerced (field coercion) when bind-

70

ing with other sockets. QoSockets use the same coercion mechanism described in Sec-

tion 2.3 of Chapter 2. The metrics in QoSockets are the same as the ones QuAL defines.

Applications specify constraints on a per port basis by associating a different qos_ty

object with each port. For example, values 3 and 5 in the fields value and window of delay

/* Definition of a QoS metric */
typedef struct qos_metric {

int value /* Tolerable threshold for QoS metric */
int window; /* How often (in seconds) the QoS metric must be measured */
int coercion; /* If the threshold can be coerced at binding time */

} qos_met_ty;

/* Definition of Universal QoS Metrics in QoSockets */
typedef struct qos {
qos_met_ty loss; /* Loss cannot be higher than

/* 10 to the power -loss.value */
qos_met_ty permt; /* A value higher than 0 in permt.value indicates */

/* that permutation is tolerated */
qos_met_ty min_rate; /* Mean rate measured in messages/s must be */

/* higher than min_rate.value */
qos_met_ty rate; /* Mean rate measured in messages/s */

/* must be lower than rate.value */
qos_met_ty peak; /* Peak transmission rate is not higher than */

/* peak.value */
qos_met_ty delay; /* End-to-end delay measured in ms must be */

/* lower than delay.value */
qos_met_ty jitter; /* Jitter measured in ms must be lower */

/* than jitter.value */
qos_met_ty recovery; /* Any recovery must take less than recovery.value */
int size; /* Maximum message size */
int multiple; /* Port supports a maximum of multiple connections */

/* concurrently */
int combined; /* QoS metrics measure the QoS on all */

/* connections combined */
} qos_ty;

Definition 3.1: Specification of QoS Metrics in QoSockets

71

for port p specifies that the average delay cannot assume a value higher than 3 ms over

intervals of 5 s on communications over p. The runtime uses size, when specified, to op-

timize resource allocation. Ports can support a maximum of multiple concurrent connec-

tions at a time. A positive value in combined indicates that the min_rate and rate QoS

constraints refer to the rate of all the connections combined. When combined is not speci-

fied, each connection generates the min_rate and rate specified. The following section dis-

cusses how constraints can be associated to ports.

It is important to notice that QoSockets applications may also adhere to the Implicit

and Intermediate Models in Chapter 2. The Implicit Model is implemented by omitting

QoS specification for a port. A NULL value for a qos_ty object field indicates that the

application chooses not to specify that particular constraint and leaves it up to the runtime.

The Intermediate Model is supported by having the application provide QoS constraints

and letting the QoSockets runtime choose the best service provided by the transport for

the request.

Similar to QuAL, QoSockets runtime bridges the gap between the QoS assurance

model (as in Chapter 2) chosen by applications and the one deployed by a network. In

addition, it automatically monitors the execution of applications and dynamically re-

negotiates QoS with the network to match application demands. Chapter 4 discusses how

data collected during monitoring permits clever network management policies to adjust

QoS delivery according to observed QoS behavior. For example, applications might

choose the Implicit Model and networks might follow the Explicit Model. The QoSockets

runtime will dynamically re-negotiate QoS with the network, according to application be-

72

havior.

QoSockets provide a single API for QoS specification that is independent of underly-

ing transport mechanism details. The runtime translates abstract QoS specifications into

transport specific service requests. Consider, for example, an application that chooses the

Explicit Model. If the underlying system uses ST-II, QoSockets runtime must map ab-

stract QoS rate and message size constraints into specific ST-II buffer size parameters. If

the underlying system uses the Intermediate Model, the QoSockets runtime maps the ap-

plication constraints into a service request for the class that best approximates application

needs.

The semantics offered by QoSockets are that (1) it negotiates QoS with the network

on a best effort basis and that (2) violations must be handled by applications. In a best ef-

fort QoS delivery, networks multiplex their resources in an effort to best fit the QoS re-

quested without wasting resources. Stochastic models are used to characterize data traffic

sources and predict when and where resources are needed. Nevertheless, there is no guar-

antee that violations will not occur during transient overload periods. As a consequence,

QoSockets applications must be designed to handle violations and to adapt accordingly.

When running on platforms that provide some support for QoS, however, these applica-

tions experience less violations than when running on platforms that make no such provi-

sions.

3.3 QoSockets Connection Establishment Protocol

QoSockets unify several connection establishment protocols in one, promoting code

portability and reuse. Figure 3.1 shows the time line for the typical communication sce-

73

nario using QoSockets and Figure 3.2 shows the QoSockets API system calls. In Figure

3.1, rectangles represent QoSockets function calls and the straight arrows represent exe-

cution flows. Time increases from top to bottom direction. Two execution flows are de-

picted: the Sender application and the Receiver application. The dashed arrows represent

events handled by the QoSockets runtime concurrently with the execution of other tasks.

These events are triggered by the system call where the arrow initiates. The balloon indi-

cates when QoS negotiation happens.

qos_alloc_inport(rp, "ma", rqos, family, type, protocol);

Receiver

qos_export(rp);

qos_connect(sp, add, len);

qos_import(sp, "ma", "mit.edu");

qos_send(sp, data, len);

qos_alloc_outport(sp, "ny", sqos, family, type, proto);

qos_receive(rp, &data, timeout);

Sender

connection
establishment

data
transfer

QoS
Negotiation

Figure 3.1: QoSockets Function Call Sequence to Establish a Communication

Ports in QoSockets can be identified by name (of type string) and do not need to be

bound to a specific transport level port number. This feature increases code portability by

preventing application failure due to conflicts on the allocation of transport level ad-

dresses. The name of a QoSockets port and its QoS requirements are defined at allocation

time. Inports and outports are allocated, respectively, through the qos_alloc_inport and

74

qos_alloc_outport operators calls. In Figure 3.1, Receiver calls qos_alloc_inport to allo-

cate inport ma (short for Massachusetts) with the QoS requirements expressed in the vari-

able rqos of type qos_ty (Definition 3.1). At the end of the call, variable rp points to a de-

scriptor for the allocated port. The last three arguments are optional and indicate the fam-

ily (Unix internal protocol, Internet protocol, etc.), type (stream socket, raw socket, etc.),

and protocol (if a specialized one like ICMP [Stevens 90], SPP [Stevens 90], etc., is

needed). These arguments can have a NULL value in which case the QoSockets runtime

automatically selects them based on the QoS requirements and on the protocols supported

by the communicating machines. Consider, for example, an application running on a dis-

tributed environment that supports AAL and TCP. QoSockets runtime selects AAL when

the application specifies QoS constraints and TCP when it does not.

qos_alloc_inport(inport_ty *port_ref, qos_ty qos_ref,
 int family, int type, int protocol);

Allocates an inport with the QoS constraints specified
in qos_ref for transmission over a given
communication family, type, and protocol. Returns in
port_ref a reference to the inport created.

qos_alloc_outport(outport_ty *port_ref, qos_ty qos_ref,
 int family, int type, int protocol);

Allocates an outport with the QoS constraints
specified in qos_ref for transmission over a given
communication family, type, and protocol. Returns in
port_ref a reference to the outport created.

qos_export(inport_ty *port_ref, char *external_name); Publishes the QoS constraints and protocol specific
addresses associated with port_ref. The information
published is identified by external_name.

qos_import(outport_ty *port_ref, char *external_name, char *machine_name); Connects port_ref to the port identified by
external_name available on machine_name.

qos_connect(outport_ty *port_ref, struct sockaddr *addr, int addrlen); Connects port_ref to the address specified in addr.
addrlen has the size of the addr data structure.

qos_send(outport_ty *port_ref, char *data_ref, int len); Sends len bytes of data stored in data_ref through
port_ref.

qos_receive(inport_ty *port_ref, char *data_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for data to
arrive in port_ref. Saves in data_ref the first message
that arrives before timeout expires.

qos_wait_inport_connected(inport port_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for a
connection to be established in port_ref.

qos_wait_outport_connected(outport port_ref, struct timeval *timeout); Blocks for a maximum of timeout waiting for a
connection to be established in port_ref.

qos_bind(port_ty *port_ref, struct sockaddr *addr, int addrlen); Assigns the protocol level address specified in addr
to port_ref. addrlen has the size of the addr data
structure.

Figure 3.2: QoSockets API System Calls

75

The binding mechanism in QoSockets incorporates QoS negotiation between peer

applications in the sockets mechanism. In Figure 5.1, the call to qos_export publishes to

other QoSockets applications all the information associated with inport rp, such as its

name and QoS requirements. QoSockets publish port related information by using name

servers [Halsall 92] to store and access the information published. On the sender side,

qos_import binds outport sp with the inport ma available on machine mit.edu. Operator

qos_import first accesses the name server to retrieve information on a particular inport. It

checks the QoS restrictions of sp with the ones retrieved from the name server and decides

whether or not they are compatible (as discussed in Section 2.3 of Chapter 2). If they are,

the ports are bound and connection can be established any time after that. Otherwise,

qos_import returns an error and indicates why they are not compatible.

QoSockets support several alternatives for QoS negotiation between peer applications.

If both choose to specify QoS constraints, QoSockets will coarse them to a compatible

intermediate QoS. If only one specifies QoS constraints, QoSockets runtime assumes that

the other side is able to comply with the constraints and allocates resources accordingly.

QoSockets establish connections as follows. Operator qos_connect triggers the con-

nection establishment at the sending side. It blocks until connection establishment has been

initiated. The last two optional arguments are used to identify the connecting inport by its

physical address, when necessary. The transport service provider for the communication

(if no transport was specified when the connecting ports were allocated) is allocated by

qos_connect.

At the receiver side, QoSockets runtime frees applications from servicing connection

76

requests and connection establishment details. The QoSockets runtime process incoming

requests, accepting or rejecting connections based on their QoS needs and on the QoS

offered by the transport service provider chosen for the communication. At the sender

side, QoSockets runtime manages connection establishment confirmations or rejections

without exposing applications to such details.

In synchronous protocols [Comer 91], connection might have already been established

by the time qos_connect returns. In asynchronous protocols [Topolcic 90], connection

establishment has only been initiated when qos_connect returns.

Operators qos_send and qos_receive are for data transmission. Operator qos_send

sends through sp a message that is up to len bytes long stored in add. Similarly,

qos_receive blocks for up to timeout milliseconds waiting for a message to arrive for rp. If

a message arrives within the time period specified, qos_receive retrieves it and stores it in

the memory designated by data.

Operator qos_send and qos_receive block until a connection is fully established on the

port transmitting data. Blocking may be avoided by using the operators

qos_wait_outport_connected and qos_wait_inport_connected before the first call to

qos_send and qos_receive, respectively. These operators block until connection has been

fully established, but do not transmit any data.

3.4 Selection of Transport Protocols and Port Addresses

QoSockets permit the selection of specific transport protocols as well as port ad-

dresses. Applications may need to select a protocol because of compatibility issues. For

example, they might need to use the TCP/IP stack to communicate with other modules

77

using the same protocol. They may also specify port numbers to publish their services

where other applications expect them to be. For example, the SNMP standard specifies

that agents communicate with managers through the UDP port 161.

A transport protocol is selected by specifying the last three arguments of the

qos_alloc_inport and qos_alloc_outport operators. The selected transport protocol is

used on any communication through the port. For example, an application selects ST-II by

passing PF_STIP, SOCK_RAW, and 0 as the last three arguments. The connection estab-

lishment fails when connecting applications select different protocols at each end.

qos_alloc_inport(rp, "ma", rqos, family, type, protocol);

Receiver

qos_export(rp);

qos_connect(sp, add, len);

qos_import(sp, "ma", "mit.edu");

qos_send(sp, data, len);

qos_alloc_outport(sp, "ny", sqos, family, type, proto);

qos_receive(rp, &data, timeout);

Sender

connection
establishment

data
transfer

qos_bind(rp, add, len);

Figure 3.3: Identifying Inports by Names

Inports are bound to specific transport layer addresses by using qos_bind. After a

physical address is selected, inports can be identified either by their names (Figure 3.3) or

by their addresses (Figure 3.4). As Figure 3.4 illustrates, when identifying inports by ad-

78

dress, the call to qos_import is omitted. Only in this case, the call to qos_connect requires

that the last two arguments be used to specify the address of the connecting inport.

qos_alloc_inport(rp, "ma", rqos, family, type, protocol);

Receiver

qos_export(rp);

qos_connect(sp, add, len);

qos_send(sp, data, len);

qos_alloc_outport(sp, "ny", sqos, family, type, proto);

qos_receive(rp, &data, timeout);

Sender

connection
establishment

data
transfer

qos_bind(rp, add,len);

Figure 3.4: Identifying Inports by Transport Level Addresses

3.5 Handling Computing QoS Constraints

QoSOS manages processing resources in order to guarantee that applications are exe-

cuted according to their computing QoS constraints. The main function of the QoSOS

runtime is to bridge the gap between the QoS processing requirements of applications and

the facilities provided by underlying OS. QoSOS can only guarantee real time constraints

when the OS complies with the POSIX standard [Posix 90] which assures bounded exe-

cution time for OS kernel calls. Otherwise, QoSOS may monitor and notify violations, but

not guarantee compliance to requested QoS. For example, some QoSOS applications need

to be scheduled according to their deadlines. In this scenario, QoSOS guarantees that

79

applications are scheduled on an earliest deadline first basis, even if the underlying POSIX

aware OS makes no provision for such scheduling mechanism.

In order to guarantee proper real time scheduling, QoSOS runtime must have preemp-

tive execution priority with respect to other processes. One easy way to approximate such

constraints is to run all user processes in the system using the QoSOS API. In this manner,

the underlying OS will see only one user process running: the QoSOS runtime. This will

be the assumption in the reminder of this chapter. Note that there are cases when such

guarantees must be violated. For example, if a major power failure occurs, it may be nec-

essary to backup the system immediately before the battery runs out. Such backup process

has absolute high priority. In such rare extreme cases, the QoSOS runtime will miss its

deadlines. Another example are system management processes such as accounting. These

may shift the deadline, but can be estimated and minimized by running a single user proc-

ess.

Additionally, QoSOS runtime must run during short and bound time intervals in order

to avoid starvation of other important processes (such as device drivers or the scheduler).

If this were not the case, for example, a network card could overflow its internal buffers

and lose data.

QoSOS recognizes two modes of execution for applications: real time mode and non

real time mode. Applications in the real time execution mode have to be scheduled accord-

ing to their QoS computing constraints, while the ones in the non real time execution

mode have no QoS constraints (and thus QoSOS makes no guarantees regarding when

they will be executed).

80

The QoSOS runtime can be functionally divided into two main components: the

scheduleability analyzer and the real time scheduler. The scheduleability analyzer man-

ages the allocation of processing resources in the system. It keeps track of the capacity of

the underlying processing system and the QoS constraints of each application executing in

real time mode. Applications can only engage the real time execution mode if the sched-

uleability analyzer finds that there are enough processing resources available for the exe-

cution of the application. The real time scheduler is responsible for scheduling applications

according to their QoS constraints. These two modules will be explained in Sections 3.5.1

and 3.5.2.

The QoSOS API provides the same functionality as the one provided by QuAL. It

consists of a single operator, qos_execute, that is equivalent to the QuAL within block de-

fined in Chapter 2. Initially, applications start execution in the non real time mode. They

then invoke qos_execute to specify their QoS constraints in order to engage in the real

time mode. A real time execution consists of the repetition of a task according to certain

timing constraints.

To quickly review the definitions in Chapter 2, timing constraints cannot be missed in

hard mode while they might be occasionally missed in soft mode. In the periodic case,

tasks are to be executed repeatedly the number of times indicated by period. In the spo-

radic and aperiodic cases, the execution is triggered by event. In the sporadic case, how-

ever, there is a maximum number of times the event can happen, indicated by period.

Definition 3.2 shows the prototype of qos_execute. The argument mode indicates the

real time execution mode. The argument condition indicates the condition to terminate the

81

real time execution. The argument deadline_handler is the handler invoked when soft

constraints are missed. The last two arguments describe the do block of the real time exe-

cution.

Definition 3.2: Definition of the Signature of qos_execute

As explained in Chapter 2, a do block contains timeout blocks and instructions with

predictable computational cost. A timeout block consists of a sequence instructions (with

/* Definition of the type of a block of instructions */
typedef void (*qos_fct)(void);

/* Definition of the execution mode type of applications */
typedef enum {

soft_periodic;
soft_aperiodic;
soft_sporadic;
hard_periodic;
hard_sporadic;
} qos_mode;

/* Definition of a timeout block */
typedef struct {

int duration, /* Maximum time period for the execution of the block */
qos_fct action, /* The sequence of instructions that constitutes the block */
qos_fct handler, /* Handler called when action takes longer */

/* than duration to execute */
} qos_tm;

/* Prototype of the operator qos_execute */
int qos_execute (/* Returns the number of do_block executions */

qos_mode mode, /* Execution mode */
int period, /* Maximum number of activations per second */
qos_fct event, /* Event that triggers executions */
qos_fct condition, /* Termination condition for real time execution */
qos_fct deadline_handler, /* Handler for execution deadline violations */
int size, /* Number of timeout blocks of do_block */
qos_tm **do_block) /* Sequence of timeout blocks */

82

computational cost that cannot be calculated statically), a timeout period for its execution,

and a handler that must be called if the execution does not finish before timeout expires.

For simplicity, qos_execute defines a do block as a sequence of only timeout blocks.

Instructions with predictable computational cost are replaced by timeout blocks with

NULL timeout. In Definition 3.2, the argument size indicates the number of timeout

blocks that constitute the do block and do_block contains pointers to each one of these

blocks.

The sixth argument indicates the number of timeout blocks (defined in Chapter 2) that

constitute the do block (also in Chapter 2).

The operator qos_execute performs two main tasks. First, it interacts with the QoSOS

scheduleability analyzer to check if the application can engage the real time execution

mode. If the scheduleability analyzer returns a positive answer, then qos_execute notifies

the real time scheduler of its timing constraints and waits to be scheduled accordingly.

Otherwise, it finishes executing indicating to the calling application that it cannot engage

real time mode at this moment.

The following sections will discuss the scheduleability analyzer and the real time

scheduler in greater detail.

3.5.1 Scheduleability Analysis

QoSOS allocates resources for applications executing in hard real time mode based on

the worst case execution performance analysis. A worst case performance analysis makes

two pessimistic assumptions. First, it assumes that applications will always follow the most

expensive execution path in their code. For example, consider an application that samples

83

a sensor placed in a volcano area. This application must sample data every interval of 1 s

to guarantee that abnormal conditions are promptly detected. Depending on seismic con-

ditions, the sensor can either provide 5 bytes of data (indicating a normal scenario) or

200 bytes of data (indicating an abnormal event). Even though in the majority of cases the

sensor will provide only 5 bytes of data, the worst case performance analysis assumes that

this application will always handle 200 bytes.

Second, the performance analysis considers that events that trigger sporadic applica-

tions always occur at the maximum possible rate. In this worst case scenario, sporadic

applications behave like periodic applications. For example, consider the case of an appli-

cation that handles alarms from devices in a distributed system. It must handle alarms as

soon as they occur. Suppose that during major system failures the maximum rate is

15 alarms/s, but that otherwise alarms will seldom occur. In order to guarantee QoS, the

scheduleability analyzer must allocate resources for 15 alarms/s.

The allocation of resources for applications executing in the soft real time mode is less

restrictive than the one for the hard mode. QoSOS relaxes both pessimistic assumptions. It

allows applications to engage real time execution mode even though they might have their

QoS constraints eventually violated.

Traditionally, pure real time languages do not support constructs that can take arbi-

trarily long to execute, preventing the calculation of computational costs. In these lan-

guages, a task is required to satisfy the following requirements:

• No recursion or cycles in the function call chain. The system is unable to calculate

an upper bound on the depth of recursions. This makes it impossible to determine

84

at compile time the worst execution time or the size of the heap needed to store all

the activation records.

• No hierarchical memory access. Remote memory access over the network may

take an unbounded amount of time due to underlying protocol issues or network

failures.

• No dynamic memory allocation. The system cannot guarantee, during compile

time, if there will be enough memory to execute the program or if a garbage col-

lection may be necessary. These operations can take an unpredictable amount of

time.

• No blocking or event-driven statements. The scheduler would have to reserve the

CPU for the entire period in which the event may happen. Blocking statements in-

clude I/O, and event-driven statements include the arrival of messages to a port.

• No contention for resources. The system cannot calculate how long it will take for

a shared resource to become available when multiple processes are trying to access

it.

• All loops must be bounded. That is, it must be possible to compute how many

times the loop will execute in the worst case. This feature allows a worst case exe-

cution time estimation for loops.

The QoSOS scheduleability analyzer adopts a different strategy to figure out applica-

tion computational costs. To avoid having to restrict the C constructs that can be used in

real time blocks, QoSOS supports a timeout mechanism similar to the one in QuAL. That

is, if the compiler cannot calculate statically the worst case cost of an instruction or se-

85

quence of instructions, the application developer specifies the maximum tolerable execu-

tion time. The QoSOS runtime raises an exception whenever the execution does not end

within the predicted time period. This mechanism is more flexible because computational

costs can be specified finely, even at the granularity of a single language level instruction.

The QoSOS scheduleability analyzer manages computing resources for hard real time

applications based on results described in [Jeffay 91] summarized in what follows. A task

is a sequence of instructions that is invoked by each occurrence of a particular event. In

QoSOS, a task is a do_block, specified as the last argument to qos_execute. An event is a

stimulus generated by a process that is either external to the system (e.g., interrupt from a

device) or internal to the system (e.g., clock ticks or the arrival of a message from another

process). It is assumed that events are generated repeatedly with some maximum fre-

quency; thus the time between successive invocations of a task will be of some minimal

length. Each invocation of a task results in a single execution of the task at a time speci-

fied by a scheduling algorithm. Formally, a task is a pair (c, p) where c is the computa-

tional cost, and p is the period, that is, the minimal interval between invocations of the

task. The clock ticks are discrete events and c and p are expressed as multiples of the in-

terval between clock ticks. For periodic tasks, p specifies the constant interval between

invocations while, for sporadic tasks, p specifies the minimum interval between invoca-

tions. Their results show that the scheduleability of a set of sporadic and periodic tasks can

be efficiently determined. More precisely, given that the cost and the period of the tasks

are known, the scheduleability can be determined in linear time and the system load can be

bound.

86

3.5.2 Scheduling Applications According to Their Timing Constraints

The main goal of the QoSOS real time scheduler is to bridge the gap between the

scheduling needed by applications and the one supported by the underlying OS. It sched-

ules applications based on a slight variation of the Earliest Deadline First (EDF) algo-

rithm [Liu 73], for executions in hard or soft mode. EDF chooses the task with the earliest

deadline. Ties are broken arbitrarily. The invocation of a task with an earlier deadline may

pre-empty the execution of another one with a later deadline. The scheduler uses EDF for

both hard and soft blocks, but soft applications are pre-emptied by hard ones. Applications

executing in non real time mode have the least priority, that is, only execute in the absence

of ready hard or soft ones.

The universality of the EDF algorithm for scheduling sporadic and periodic tasks

without preemption is shown in [Jeffay 91]. That is, if any non-preemptive algorithm can

schedule a set of sporadic tasks, then the EDF algorithm also can. The non-preemptive

scheduling is a more restrictive case of the preemptive scheduling, which is universal as a

result. QoSOS uses the later version of EDF.

The QoSOS real time scheduler design follows the split-level scheduler architecture

described in [Govindan and Anderson 91]. Split-level scheduling is a scheduler implemen-

tation technique that minimizes interactions between the scheduler and the processes being

scheduled, while correctly prioritizing Light-Weigh Processes (LWP) [Sun Microsys-

tems 94] of different Heavy-Weigh Processes (HWP) [Sun Microsystems 94]. Multiple

LWPs inside a HWP share a User-Level Scheduler (ULS). The ULS monitors the execu-

tion of its LWP and interacts with a Kernel-Level Scheduler (KLS), that monitors all of

87

the ULSs. KLS and ULSs share information about the LWP with highest priority (that

should execute next) using the Unix shared memory mechanism [Stevens 90]. The KLS

schedules the corresponding ULS and sleeps until another LWP (and its ULS) gets prior-

ity. The ULS schedules the respective LWP and performs any context switching needed.

This scheme is general enough to implement any priority and ordering among processes.

The QoSOS scheduler was designed to work on any OS that provides a real time

service access interface in accordance with the POSIX standard. The standard guarantees,

among other features, that the OS kernel calls have a bounded worst case execution time.

Therefore, even though the real time scheduler is running on top of another OS, it can

predict kernel response and better approximate real time requirements. This approach is

less efficient than leaving scheduling to the OS. However, in most cases, available tech-

nology provides enough processing power to make it feasible. Additionally, this design

choice allows the support for QoSOS applications on top of several heterogeneous gen-

eral-purpose platforms.

3.6 Conclusions

This chapter presents the QoSockets and QoSOS APIs that promote code portability

and reusability by sheltering heterogeneity in the QoS functions offered by several trans-

port protocols and OSs. The main contributions of such approach are:

• A single API that is independent of transport layer and OS specifics. The same

application can use services from several transport protocols without any modifi-

cation.

88

• The runtime offers a single QoS negotiation mechanism which automatically

bridges gaps among different transport protocol and OS providers.

• Upgrades to support new protocols or new OSs can be accomplished by extending

the runtime with the interface to the new architecture components.

• The QoSockets runtime can automatically select the most appropriate transport

given QoS requirements.

• The runtime can automatically monitor the QoS delivered with low overhead. The

collected data may be accessed by other local applications as well as external

SNMP managers.

QoSockets and QoSOS can be incorporated in languages or used as libraries. The

QuAL runtime uses QoSockets and QoSOS to implement its functionality (in a sense,

QuAL runtime is the first application to use QoSockets and QoSOS). Other languages

may be implemented in the same fashion. Finally, applications may use QoSockets and

QoSOS directly as a C library.

89

Chapter 4 ___________________

Managing QoS Delivery

4.1 Introduction

4.1.1 The Problem

The network management and the application QoS adaptation strategies will accom-

plish better results through coordination. Network management may improve the QoS in

application streams by allocating alternative routes. Applications may operate under QoS

degradation by adapting their streams to the QoS received. But, without coordination,

these activities may settle at unsatisfactory or unstable operational points. For example,

upon congestion at a switch, SNMP managers may decide to allocate alternative routes

and, concurrently, applications may reduce their transmission rates. Both applications and

managers need to understand requested and delivered QoS to coordinate their efforts.

The main challenges in providing this coordination are:

• How can QoSME disclose application level QoS performance to underlying sys-

tem managers without incurring extra application development overhead? The

goal is to automate as much as possible the process of providing application QoS

profiles.

90

• What is the information that underlying system managers need to manage QoS

performance according to application needs? The goal is to find a small informa-

tion set that will provide a picture of the application QoS behavior.

• How can coordination between underlying system managers and applications

happen? The goal is to effectively avoid overlapping of corrective actions from

applications and underlying system managers.

This chapter addresses these challenges.

4.1.2 Main Results

The main contribution of this chapter is an architecture for integrating application level

QoS management and underlying system management. The architecture proposed consists

of QoS MIBs and SNMP agents that provide QoS MIB access to SNMP managers. The

objects in these MIBs deal with application level information, such as video frame delays

and voice stream jitter. The information is partitioned among MIB groups according to

applications, outports, inports, and programmable (application specific) metrics. The pro-

posed architecture has the main novel advantages:

• It includes a mechanism to disclose application level QoS performance to under-

lying system managers. By accessing QoS MIBs, managers of transport layer con-

nections can identify, for example, the application that is using a particular con-

nection, the QoS the application requested, and the QoS that is being delivered to

it. This information may be used to decide alternative allocation policies or to pin

point applications that are overloading network resources.

91

• It contains the necessary information to characterize application QoS behavior.

QoS MIBs store the QoS requested by applications and measurements on the QoS

being delivered to them. These measurements include the value of universal met-

rics (such as end-end delay, jitter, loss, etc.) and application specific ones, as de-

fined in Chapter 2.

• It includes coordination of application and SNMP management activities. This is

useful when applications and managers detect violations and try to compensate for

them. They should coordinate their activities to avoid interfering with each other’s

decisions. For example, an SNMP manager may decide to allocate more through-

put in some network links to overcome congestion while applications may decide

not to decrease their transmission rates because they are aware of this management

decision.

4.1.3 Chapter Organization

The reminder of this chapter is organized as follows. Section 4.2 gives an overview of

QoS management through QoS MIBs. Section 4.3 overviews the design of QoS MIBs.

Sections 4.4, 4.5, 4.6, and 4.7 discuss the QoS MIB data stored per application, per out-

port, per inport, and per programmable metric, respectively. Section 4.8 presents the

challenges in instrumenting QoS MIBs. Finally, Section 4.9 summarizes.

4.2 Overview of the QoS Management Architecture

Figure 4.1 illustrates the architecture for QoS management through QoS MIBs using a

generic multimedia multi-application example. The applications sample input devices (such

92

as monitors, cameras, and microphones), broadcast them to other participants, and finally

display received samples locally. The runtime instances at each site support interactions

between applications and the underlying transport and OS, and store in QoS MIBs infor-

mation on the QoS effectively received. Examples of such information are the amount of

bandwidth allocated and received in the communication. SNMP agents embedded in the

architecture provide QoS MIB access to SNMP managers.

Applications read QoS MIB fields to detect QoS violations and update them to trigger

corrective actions. Consider, for example, an inport receiving video data that requires a

delay not higher than 5 ms over windows of 1 s. The QuAL runtime type checking

mechanism automatically monitors delay variations and signals the application when a

violation occurs. However, video play-out time may also require adjustment when the av-

erage delay is lower than a certain threshold (for example, 3 ms). Low average delays may

not violate the type of a port and therefore may not be automatically detected by the run-

time. Applications need to query QoS MIB objects to detect such situations.

SNMP managers use QoS MIB data to manage QoS delivery based on application

needs. These managers are exposed to the configuration of applications running on the

system and can customize their service management accordingly. For example, when the

delay on a communication is higher than the application expected, a manager1 can initiate

the establishment of an alternative connection. Managers can also use information on other

SNMP MIBs to aid the analysis and control of QoS violations. For example, by monitor-

1 If many SNMP managers try to update the same MIB object concurrently, the SNMP standard does not guarantee

transaction atomicity. Atomicity can be accommodated employing protocols that use special MIB objects as sema-
phores and forcing all managers to adhere to the protocol. This is, nevertheless, a limitation of the SNMP model
and not of the QoS MIB design.

93

ing ATM switch MIBs, a manager can force communication establishment to bypass con-

gested switches. The QuAL runtime includes an SNMP agent that provides QoS MIB ac-

cess to SNMP managers.

Network

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

SNMP Manager

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

Application

Runtime System

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

Application

Runtime System

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

SNMP
Agent

QoS MIB

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A

SNMP
Agent

QoS MIB

AAAAAA
AAAA
AAAA

AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAA
AAAA
AAAA

AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Figure 4.2 depicts in more details the interactions between the runtimes and the SNMP

entities. The lenses represent the instrumentation for QoS MIB data collection, the full

lines represent data flow, and the dashed arrows show management information flow. In-

strumentation is added at the interface between applications and the runtime components

that provide QoS demanding services. In QoSME, these components are QoSOS and

QoSockets. As discussed in Chapter 3, QoSOS schedules applications according to their

real time constraints, and QoSockets mitigate the flow of multimedia application streams

across network resources. It is important to notice that the main concepts of using QoS

MIBs and their automatic instrumentation to manage QoS is independent of QoSME and

can be implemented in other environments.

Figure 4.1: Overall Architecture for Instrumentation and Access of QoS MIBs

94

QoSockets

QoSOS

Network

Application

QoSMIB
Agent

ATM Switch
MIB

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

SNMP
Manager

The instrumentation snoops all QoS demanding interactions between applications and

runtime systems to collect management information, such as the last time when a protocol

stack established a connection for an application. The information collected by the instru-

mentation is stored in QoS MIBs. The overhead of such instrumentation is discussed in

Chapter 5.

SNMP managers use information on other SNMP MIBs to aid the analysis of QoS

violations. Figure 4.2 depicts an SNMP manager that also monitors an ATM switch MIB

values to understand the QoS in communications between applications. The SNMP man-

ager traces, for example, cases where unexpected transmission delays are caused by a

congestion in the switch. In such scenario, managers can automatically request the estab-

lishment of an alternative connection that bypasses the congested switch.

To understand how the several modules depicted in Figure 4.2 interact, consider, for

Figure 4.2: Architecture for Instrumentation and Access of QoS MIBs

95

example, the management of voice transmission quality. QuAL compilers automatically

generates instrumentation at the appropriate interfaces when applications use QoS con-

structs (in QuAL), or QoSOS and QoSockets (in C). Recall that QuAL QoS constructs

are implemented using QoSockets or QoSOS and thus it suffices to consider how the lat-

ter operates. QoSockets stores in the QoS MIBs the time when a voice connection was

requested, the time when it was established, the QoS negotiated with network (such as the

mean transmission delay and the mean rate), and the actual transmission delay experienced

by voice samples. QoSockets computes the latter information by using the time stamps it

adds to messages. Section 4.8 discusses the instrumentation of QoS MIBs in greater de-

tail.

QuAL provides constructs that provide direct instrumentation access to applications,

bypassing SNMP agents. These constructs were discussed in Section 2.8 of Chapter 2.

They check if the invoking application has the appropriate access rights for the requested

information, verify if the local instrumentation is indeed collecting the requested informa-

tion, and access the instrumentation directly. Such mechanism lowers the response time to

local MIB accesses without violating SNMP access constraints.

Other QuAL constructs can be used to handle QoS violations. For example, voice

applications need to quickly respond to degradation in the transmission quality. One pos-

sible approach is to adjust the play out time of voice samples according to the mean jitter

of the communication. A mean jitter higher than expected may be overcome temporarily

by smoothly delaying the play out time of voice packets.

Corrective measures can be initiated by an SNMP manager that oversees the voice

96

quality. The manager interacts periodically with the SNMP agents to retrieve the mean

jitter of the voice communications. Upon detection of poor transmission quality, it initiates

QoS performance control by re-configuring the allocation of network resources. In this

scenario, the response time of the manager control actions depends on the frequency at

which the manager is polling the agent and on the delay incurred by SNMP to access MIB

values. These issues are inherent in the SNMP design. Reference [Goldszmidt 95] dis-

cusses alternative designs for SNMP management applications that overcome these limita-

tions.

QoS MIBs integrate application management within general network management

frameworks. This feature is important because it may become inefficient or intractable to

manage distributed application activities using only lower layer information. This difficulty

comes from the increasing gap between application level abstractions and underlying sys-

tem entities providing services.

The architecture presented provides a framework for dividing management responsi-

bilities between SNMP managers and applications. On one hand, authorized SNMP man-

agers can access QoS MIBs and manage the underlying system according to application

needs. On the other hand, applications can manage themselves, according to the received

QoS.

4.3 An Overview of the QoS MIB Design

The QoS MIB data belongs to one of the following groups, as illustrated in Figure 4.3.

97

qos

qApp

qAppTable

qAppEntry

qAppLSchFl

qAppLInCnnFl

...

qOut

qOutTable

qOutEntry

qOutMaxRate

qOutMsgSent

qOutActTime

...

qIn

qInTable

qInEntry

qInAccDelay

qInMsgRecv

qInDelayNeg

...

qProg

qProgTable

qProgEntry

qProgMet

qProgVal

...

• Application (qApp2 for short): Consists of the table qAppTable that contains one

entry of type qAppEntry for each application running on the system. Each entry

indicates the QoS provided by the underlying OS and general information on the

response of the protocol stack to QoS demanding connection establishment re-

quests. For example, the application group object qAppLSchFl stores the last time

when the OS failed to schedule an application according to its timing constraints

and qAppLInCnnFl stores the last time when an application had a connection es-

tablishment request rejected. This group can be seen as an extension of the NSM

MIB to add information about application QoS.

• Outport (qOut): Consists of the table qOutTable which has one row of type

qOutEntry for each outport connection of applications in qApp. Each entry indi-

cates the QoS negotiated for the outport and how the outport is using the connec-

2 The name of QoS MIB objects starts with either qApp, qOut, qIn, or qProg depending on whether the object being

named belongs to the application group, outport group, inport group, or programmable group, respectively. The
prefix q indicates that they are related to QoS.

Figure 4.3: QoS MIB Object Groups

98

tion. For example, the object qOutMaxRate indicates the rate negotiated3 with the

network at connection establishment time, qOutMsgSent indicates how many mes-

sages have been sent so far, and qOutActTime indicates when the connection be-

came active. A manager4 can calculate the average transmission rate effectively re-

ceived by dividing qOutMsgSent by the time elapsed since qOutActTime. It can

then compare the result with qOutMaxRate which holds the negotiated rate.

• Inport (qIn): Consists of the table qInTable which has one row of type qInEntry

for each inport of applications in qApp, similar to qOutEntry. In addition, it main-

tains measures on the QoS effectively delivered by the network. For example, the

qInDelayNeg, qInAccDelay, and qInMsgRecv objects indicate the transmission

delay negotiated with the network, the sum of the transmission delays of all mes-

sages received, and the number of messages received, respectively. An SNMP

manager uses these data to establish alternative paths for connections that are ex-

periencing a mean transmission delay much higher than the one negotiated. The

mean transmission delay is calculated by dividing qInAccDelay by qInMsgRecv.

• Programmable (qProg): Consists of the table qProgTable which has one row of

type qProgEntry for each application programmed (application specific) QoS met-

ric. An entry in qProgTable indicates the metric that is being measured, the appli-

cation that requested the measurement, and the last value measured. For example,

the objects qProgMet identifies a metric and the object qProgVal indicates the last

3 In QoSME, QoS can be negotiated either through QuAL abstractions (Chapter 2) or through QoSockets API

(Chapter 3).

4 The term manager refers to any application managing QoS performance. It may be an SNMP manager controlling
underlying system resources or a QuAL application adapting to QoS delivery.

99

value measured. Entries in this group are added or removed as applications trigger

or cancel monitoring of new QoS metrics, as discussed in Chapter 2. Metrics that

use the window mechanism to specify the measurement frequency (discussed in

Chapter 2) are stored in this table.

The information stored by the columnar objects of the MIBs presented in the following

sections will be classified in one of the following categories:

• Identification: used to describe a particular instance of an object;

• Configuration: used to identify how resources were allocated for a service;

• Operational behavior statistics: used to analyze the actual performance delivered

by the underlying system, and

• Coordination: used to synchronize management actions between applications and

SNMP managers.

4.4 QoS MIB Data per Application

The application group stores QoS performance statistics of application real time com-

putations, as illustrated in Table 4.1. Object 1 is of type identification, objects 2 through 4

are of type configuration, objects 5 through 19 are of type operational behavior statistics,

and objects 20 and 21 are of type coordination. The ‘*’ in the object qAppId indicates that

it is an index object. Its instances uniquely identifies an entry in the qAppTable. Applica-

tion group objects also indicate the response time of the underlying transport to QoS de-

manding connection establishment requests, as illustrated in Table 4.2. All objects in this

table store statistics.

100

Object Syntax Description
01 qAppId* OBJECT IDENTI-

FIER
Process identification

02 qAppOperStatus “nrt” | “hp” | “hs” |
“sp” | “ss” | “sa” |
“down”

The operational status of the application, that can be
executing in the non real time mode (nrt), or in real
time. In the last case, the first letter indicates the
mode (hard or soft), and the second letter the behav-
ior (periodic, sporadic, or aperiodic). The value
“down” indicates that the application has terminated.

03 qAppPeriod INTEGER Number of times per second that the real time com-
putation should be scheduled

04 qAppCost INTEGER Estimated computational cost in milliseconds of the
real time computation in execution

05 qAppLstChng TimeStamp5 Time when the application entered current state
06 qAppUpTm TimeStamp Time when the application started
07 qAppAccSoft Counter32 Total number of times the application executed in

soft real time mode
08 qAppAccHard Counter32 Total number of times the application executed in

hard real time mode
09 qAppAccSoftTm INTEGER Total amount of time the application executed in soft

real time mode
10 qAppAccHardTm INTEGER Total amount of time the application executed in

hard real time mode
11 qAppLstSoft TimeStamp Last time when the application executed in soft real

time mode
12 qAppLstHard TimeStamp Last time when the application executed in hard real

time mode
13 qAppMissDead Counter32 Number of times the application missed a deadline
14 qAppLstSchdFail TimeStamp Last time when a deadline was missed
16 qAppExpTmout Counter32 Number of times the timeout for executing a real

time task expired
17 qAppLstExpTmout TimeStamp Last time when a timeout expired
18 qAppLstSoftFail TimeStamp Last time when a request to execute in soft real time

mode was rejected due to lack of processing re-
sources available

19 qAppLstHardFail TimeStamp Last time when a request to execute in hard real time
mode was rejected due to lack of processing re-
sources available

20 qAppManager DisplayString Entity currently managing QoS violations
21 qAppMgtStatus DisplayString QoS violation control request from an application to

an SNMP manager or vice versa

Table 4.1: Application Group Objects for Real Time Computations

A local SNMP manager functioning as a scheduler can use application group objects to

detect whether application performance degradation is caused by inadequate OS schedul-

5 TimeStamp values store the value of the sysUpTime object maintained by the local management system at the time

when the event being monitored last occurred. If the last occurrence of the event was prior to the last initialization
of the local management system, than the respective TimeStamp object contains a zero value.

101

ing policies or by poor transport layer resource allocation mechanisms. Consider, for ex-

ample, an application that samples an audio device, detects silence periods, and transmits

non silence samples. If such application is not scheduled during non silence periods, it will

fail to capture pieces of the speech. Speech data will also be lost if the connection is bro-

ken and the application has subsequent connection establishment requests rejected. An

SNMP manager can use qAppLstSchdFail and qAppLstInCnnFail to retrieve the type of

the last failure. If the OS failed to schedule the application on time, the scheduler might

decide to change the allocation of processing resources. If connections cannot be estab-

lished, it might decide to notify the problem to another manager capable of handling the

problem. At the same time, applications can use qAppLstSchdFail and qAppMissDead to

monitor the level of QoS they obtain from the OS. If the OS consistently fails to meet

scheduling deadlines, applications can trigger requests to allocate more processing re-

sources.

Object Syntax Description
01 qAppLstInCnnFail TimeStamp Time when the last connection to a QoS demanding

inport was rejected
02 qAppLstOutCnnFail TimeStamp Time when the last connection to a QoS demanding

outport was rejected
03 qAppLstInCnn TimeStamp Time when the last connection to a QoS demanding

inport was established
04 qAppLstOutCnn TimeStamp Time when the last connection to a QoS demanding

outport was established
05 qAppInCnn Counter32 Total number of open connections to QoS demand-

ing inports
06 qAppOutCnn Counter32 Total number of open connections to QoS demand-

ing outports

Table 4.2: Application Group Objects for Communication Activities

The application group includes coordination control objects between applications and

SNMP managers. An entity can only control a violation if another entity is not already

102

doing so. Such constraint avoids chaotic situations where several entities are trying to

solve the same problem in isolation. For example, an SNMP manager responsible for load

balancing updates qAppManager to indicate load re-distribution. During load balancing,

applications cannot change their deadline constraints.

SNMP managers responsible for scheduling use configuration data such as qAppPe-

riod and qAppCost to manage allocation of processing resources. In situations where sev-

eral deadlines are missed, an SNMP manager may choose to request applications to relax

their timing constraints. In such case, qAppManager indicates that an SNMP manager is

not currently controlling QoS violations and qAppMgtStatus informs the request from an

SNMP manager to the application to loosen its real time constraints.

4.5 QoS MIB Data per Outport

The goal of the outport group is to inform about outport connections, their QoS re-

quirements, how they are being utilized, and to coordinate management of their QoS per-

formance between applications and SNMP managers. This group also includes information

on connection problems and recovery performance.

Identification objects store the local and remote addresses of the communicating ma-

chines, identifiers of the applications involved, and the transport layer port numbers of the

connection. If a connection is currently presenting problems, managers use such objects to

identify the applications involved and properly notify them. Similarly, if an application

terminates abruptly, managers can look in the outport MIB for its connections and grace-

fully terminate them.

The following sections discuss in greater detail the configuration and operational be-

103

havior of outport group objects.

4.5.1 Configuration Outport Group Objects

Table 4.3 shows the configuration objects present in the outport group. SNMP man-

agers use configuration objects to guide the allocation of communication resources per

outport connection. The qOutMsgSize object indicates the maximum size of messages

transmitted on a connection. The qOutProtocol object identifies the transport protocol

serving the connection. The qOutLoss, qOutPermut, qOutMinRate, qOutMaxRate, qOut-

Peak, qOutDelay, qOutJitter, and qOutRecTime objects identify the QoS constraints ne-

gotiated for the outport, as discussed in Chapters 2 and 3. These data enable an accurate

analysis of the resources allocated per connection.

Object Syntax Description
01 qOutProtocol OBJECT IDENTI-

FIER
Identification of the protocol being used for this connec-
tion

02 qOutLoss INTEGER Probabilistic message loss rate (10(-qOutLoss))
03 qOutPermut “yes” | “no” Indication of tolerance to permutation
04 qOutMinRate INTEGER Minimum number of messages per second
05 qOutMaxRate INTEGER Maximum number of messages per second
06 qOutPeak INTEGER Peak number of messages per second
07 qOutDelay INTEGER Maximum propagation delay
08 qOutJitter INTEGER Maximum jitter
09 qOutRecTime INTEGER Maximum time tolerated for recovery
11 qOutMsgSize INTEGER Maximum message size in number of bytes
12 qOutManager OBJECT IDENTI-

FIER
Entity currently controlling communication QoS viola-
tions

Table 4.3: Configuration Outport Group Objects

Consider, for example, an application that receives radiology images and occupies

most of the communication resources on a machine. If other applications are unable to

open connections, a local SNMP manager can use qOutMaxRate, qOutPeak, and

qOutMsgSize object instances to calculate how buffering resources are currently distrib-

104

uted. The manager may then realize that the amount of bandwidth negotiated by the radi-

ology application corresponds to a great percentage of the resources the machine has

available. A manager might force the radiology application to downgrade the QoS nego-

tiated making possible for other applications to communicate concurrently.

The qOutManager object enables management coordination between applications and

SNMP managers. Consider, for example, the case where an application sending video

messages is experiencing a loss rate higher than expected. The video images being trans-

mitted are of very high density and the intermediate nodes in the transmission path drop

messages when there is not enough buffering space. In such case, the application may

choose to reduce the loss rate by transmitting lower density images. The object qOutMan-

ager will indicate that the application is controlling the loss rate violation, inhibiting other

SNMP managers from initiating any control action such as finding alternative paths for the

communication.

4.5.2 Operational Behavior Statistics Outport Group Objects

Table 4.4 illustrates operational behavior outport group objects. QoS managers use

qOutCnnFail and qOutAccRecTime object instances to estimate recovery time from con-

nection failures and manage QoS performance accordingly. For example, the average re-

covery time can be calculated by dividing qOutAccRecTime by qOutCnnFail. Thus, an

application unable to send data over a connection due to a failure can decide whether to

open an alternative connection or to wait for recovery based on the mean recovery time.

SNMP managers use operational behavior objects, such as qOutMsgSent, and qOut-

Volume, to evaluate how much of the resources allocated by an application are actually

105

being used, and to re-negotiate QoS if the utilization ratio is low. An SNMP manager re-

duce a communication allocation from 30 frame/s video to 15 frame/s if the application

has not sent more than 15 frames/s recently. By detecting under-utilization, managers can

allocate resources more efficiently.

Object Syntax Description
01 qOutCnnFail Counter32 Total number of connection failures
02 qOutAccRecTime INTEGER Total amount of time spent in recovering
03 qOutEstTime TimeStamp Time when the connection was established
04 qOutActTime TimeStamp Time when the traffic became active
05 qOutMsgSent Counter32 Total number of messages sent
06 qOutVolume Counter32 Total volume of data sent in kilobytes
07 qOutLstMsg TimeStamp Time when the last message was sent through

the connection
08 qOutLstFail TimeStamp Time when last connection problem occurred
09 qOutStatus “up” | “down” Status of the connection

Table 4.4: Operational Behavior Statistics Outport Group Objects

4.6 QoS MIB Data per Inport

The inport group contains identification and configuration objects similar to the ones

in the outport group objects and operational behavior statistics on the QoS delivered by

transport service providers. These statistics are stored on qInTables because they can be

calculated more efficiently on the receiving side than on the sending side of the communi-

cation.

A message arrives out of sequence when its order in the arriving stream is not the

same as in the sending stream or it is considered lost, that is, its transmission delay is

higher than the timeout (as discussed in Appendix A). In order to account for losses and

permutations, separate statistics are maintained for messages that arrive out of sequence

and those that arrive in sequence.

106

Messages that arrive out of sequence may or not consist a violation, depending on the

application semantics. Some applications (e.g., video transmission) discard messages that

arrive out of sequence, whereas others (e.g., management applications that perform com-

mutative operations on data samples) use messages that arrive out of sequence. By parti-

tioning the information, analysis can be performed on each flow in an application depend-

ent manner.

Inport group objects also store operational behavior statistics on the processed mes-

sages, enabling the study of how applications are processing the data received. Processed

messages are the ones received and processed by the respective application. For example,

possible bottlenecks are identified when the rate at which messages are processed by an

application is considerably lower than the one at which messages arrive. An SNMP man-

ager can analyze the QoS delivered by the OS and verify if the application has been

scheduled according to its execution deadlines. If so, the SNMP manager can request the

application to adjust its timing constraints to be scheduled more often and increase the

message processing rate.

Table 4.5 illustrates the operational behavior statistics objects that capture information

on the traffic of messages that arrive in sequence. Similar sets of objects capture informa-

tion on the traffic of messages that arrive out of sequence and on the traffic of processed

messages.

Inport MIB operational behavior statistics objects enable the analysis of the universal

QoS actually delivered to an application. The delay of messages that arrive in sequence

can be calculated by dividing qInAccDelay by qInMsgCounter. Similarly, the rate is

107

InMsgCounter divided by the time since qInActTime. In addition, one may use these ob-

jects to compute other statistics. For example, the mean bandwidth usage for messages in

sequence can be calculated by dividing qInMsgVolume by the difference between

qInLstMsg and qInActTime. These values are averages when the window size is equal to

the duration of the connection so far. For other window sizes, the QoS statistics are stored

by qProg group objects.

Object Syntax Description
01 qInActTime TimeStamp Time when the traffic became active, i.e., the first message

was received
02 qInLstMsg TimeStamp Time when the last message was received
03 qInMsgCounter Counter32 Total number of messages that arrived in sequence
04 qInMsgVolume Counter32 Total volume of data received in kilobytes
05 qInAccDelay Counter32 Total sum of the propagation delays of all messages that ar-

rived in sequence
06 qInAccJitter Counter32 Average jitter of messages that arrived in sequence

Table 4.5: Operational Behavior Statistics Objects for Messages that Arrive in Sequence

Object Syntax Description
01 qProgMet DisplayString Name of the QoS metric programmed by an applica-

tion.
02 qProgWindow INTEGER The size of the window over which the metric is

measured
03 qProgLstTime TimeStamp6 Last time when the metric was measured
04 qProgVal INTEGER The value of the QoS metric last time it was meas-

ured
05 qProgInOut “in” | “out” If the metric is being measured on the inport or in

the outport side of the communication
06 qProgTransPort INTEGER Transport layer address of the port in which the

metric is being measured
07 qProgLocalAddr OBJECT IDENTI-

FIER
Address of the machine where qProgTransPort is
located

08 qProgRemoteTrans
Port

INTEGER Transport layer addresses of the port connected to
qProgTransPort

09 qProgRemotetAddr OBJECT IDENTI-
FIER

Address of the machine where qProgRemoteTrans-
Port is located

Table 4.6: Programmable Group Objects

6 TimeStamp values store the value of the sysUpTime object maintained by the local management system at the time

when the event being monitored last occurred. If the last occurrence of the event was prior to the last initialization
of the local system, than the respective TimeStamp object contains a zero value.

108

4.7 QoS MIB Data per Programmable Metric

The goal of this group is to store QoS metrics programmed by applications. Table 4.6

illustrates the objects in this group. Notice that based on the group objects 6 through 9,

for example, QoS managers can trace the communication over which the QoS metric is

being measured and find out more information on the corresponding qOut and qIn group

objects.

4.8 Challenges in QoS MIB Instrumentation

In QoSME, QoSockets and QoSOS run time systems automatically monitor the QoS

delivered and update QoS MIBs accordingly. This section overviews the implementation

and real time characteristics of the QoS MIB instrumentation in QoSME.

The design of QoS MIBs instrumentation is aimed at fulfilling the following goals:

• Monitoring and collection should incur minimal runtime overhead to preserve real

time properties of QoS demanding activities.

• The information collected should be available concurrently to the application being

monitored and to other applications involved in managing QoS delivery.

QoSockets and QoSOS adopted a shared memory based design to fulfill the criteria

above, as illustrated in Figure 4.4. The superimposed squares represent application threads

of execution. The cubes represent portions of shared memory, one for each QoS MIB

group. The rectangular name tags indicate the QoS MIB group stored in the shared mem-

ory fragment. The names qApp, qIn and qOut identify, respectively, the application, the

inport, and the outport groups. The programmable group is omitted for simplicity, since

109

data collection in this group is similar. Inside a thread of execution, the rounded rectangles

represent classes of activities a thread can execute, such as initialization activities. The

curved arrows indicate the execution flow of a thread shifting from one class of activities

to another. The straight narrow arrows indicate the actions that a certain class of activities

executes on the shared memory blocks.

qApp MIB

Negotiation

Real-time Loop

Initialization

Update MIB
Re-negotiate QoS

Allocate qApp entry

qIn MIB

qOut MIB

Allocate
qOut entries

Allocate
qIn entries

Figure 4.4: Shared Memory Design for QoS MIB Data Collection

The memory allocation is based on a general characterization of the execution flow of

real time multimedia applications. The general characterization classifies activities of such

applications in three main groups:

• Initialization: includes start up activities, such as processing of initial arguments

passed to applications.

110

• Negotiation: includes allocation of resources, such as establishment of QoS de-

manding connections or allocation of processing resources.

• Real time loop: involves the actual real time processing and transmission of data,

such as sampling or sending of video frames.

Real time applications execute the real time loop until a task is completed or new QoS

constraints are desired. In the latter case, applications return to the negotiation phase, re-

quest new QoS, and engage the real time loop again.

It is important to emphasize that the only blocking activity performed for QoS moni-

toring is the allocation of entries in the shared memory space, which does not occur in the

real time loop. Allocation of memory is blocking because an inter-process synchronization

mechanism (that can cause unpredictable delays) must be used to coordinate book keeping

of available memory modules.

QoS MIB updates do not affect the execution flow of real time activities. Shared

memory updates do not require any synchronization among applications or between appli-

cations and QoS MIB SNMP agents. This is because QoS MIBs have no objects that can

be written by more than one entity. Each application updates only specific fields of its own

QoS MIB entries, which are only read by others. Similarly, QoS MIB SNMP agents have

permission to write only to objects that cannot be written by applications. MIB objects

may, however, be read or written concurrently. In summary, QoS MIB updates have

bounded computational cost (the cost of a write operation in a shared memory position).

Shared memory areas for QoS MIB data are accessible by all applications running on a

system. However, shared memories are not robust to system failures. It is the responsibil-

111

ity of the QoS MIB SNMP agent to make backups of QoS MIB data and to garbage col-

lect entries.

The shared memory based design for QoS MIB data collection is particularly suitable

for multi-processor architectures where shared memory blocks are visible to applications

running on all processors. Because QoS MIB updates do not require synchronization

mechanisms, applications can execute in real time simultaneously in distinct processors

without interfering with each other for QoS monitoring. In addition, one or more proces-

sors can be dedicated only for the QoS MIB SNMP agent when the number of SNMP re-

quests is very high.

4.9 Conclusions

This chapter presented an architecture for QoS management using QoS MIBs. QoS

MIB data identify how communication and processing resources are allocated and utilized

by applications. Applications use QoS MIB data to detect QoS violations and adapt ac-

cordingly. SNMP agents in the architecture provide QoS MIB access to SNMP managers

that may use this information to manage resources according to the QoS delivered to ap-

plications. QoS MIB objects also include control information to coordinate QoS manage-

ment between applications and SNMP managers.

QoS MIBs store statistics on universal and new application programmed metrics. They

store a fixed set of information for each application running, for their inport, and for their

outport connections. Additionally, applications can dynamically add QoS metrics to QoS

MIBs. QoS MIBs convey enough information to characterize all QoS metrics that can be

defined using the formalism in Appendix A.

112

Chapter 5 ___________________

Experiments with QoSockets:
Applications and Performance

5.1 Introduction

5.1.1 The Problem

This chapter addresses two questions:

1. What applications can gain by using QoSockets? The goal is to identify specific

features in QoSockets that ease the implementation of distributed multimedia ap-

plications.

2. What is the performance overhead in using QoSockets? The goal is to assess if

there is significant overhead or loss in performance due to QoSockets.

This study applies also to the QuAL communication constructs since the latter are im-

plemented using QoSockets.

5.1.2 Main Results

A team of students1 and researchers2 at Columbia has implemented four multimedia

1 Jian Ping Chen, Mikhail Kishlev, Anatoly Korolev, Judy Chih-Chi Su, Robert Shteynfeld, and Aruchunan Vas-

eekaran.

2 Sanjay Kumar Jha and Margarita Safonova.

113

applications using QoSockets. These applications use important features of QoSockets

such as protocol independence and automatic QoS monitoring. One of the tools is an ex-

tension of the Mbone [Kumar 95] net video (nv) tool [Frederick 94]. This latter experi-

ment demonstrated the ease of portability of an existing tool to QoSockets by simply re-

placing the sockets API in nv with the QoSockets API.

QoSockets performance was assessed in terms of overhead and throughput. The ex-

periments have been conducted over UDP/IP, TCP/IP, and AAL. The overhead per mes-

sage is constant for all transport protocols evaluated. This means that the cost of using

QoSockets is diluted as the message size increases. The throughput approaches the one of

the underlying protocols as the message size increases. The reason for that is that the cost

of generating messages (that is, of copying them from the user to the kernel spaces) is

much higher than the cost of executing the QoSockets API and protocol processing.

One should notice that the QoSockets overhead would have existed anyway in a typi-

cal multimedia application. The difference is that the functionality offered by QoSockets

would have been scattered through the multimedia application which can lead to further

inefficiencies, increased implementation overhead, and logic errors. QoSockets concen-

trate QoS negotiation and monitoring in a single location which may lower the incidence

of logic errors and improve the implementation efficiency (potentially with the help of

special hardware devices).

5.1.3 Chapter Organization

The reminder of this chapter is organized as follows. Section 5.2 describes applications

implemented using QoSockets, Section 5.3 measures QoSockets performance, and Sec-

114

tion 5.4 concludes.

Figure 5.1: Audio Tool from the Caller Side

5.2 Applications

This section reports on four applications developed to experiment with the QoSockets

library over the Internet. The applications are:

• An audio tool for telephone-like service.

• A video tool for video communications.

• An integrated video and audio conference tool.

115

• An extension of the Mbone nv tool for QoS monitoring.

The following sections explain each of these tools in more detail.

Figure 5.2: Audio Tool from the Callee Side

116

5.2.1 Audio Tool

The goal of the audio tool is to provide point-to-point voice communications over the

Internet. Figure 5.1 (Figure 5.2) depict the caller (callee) windows after the call has been

accepted. The protocol to initiate the call is the following. The caller starts with Win-

dow 1. It has two options: DIAL or EXIT.

When the user clicks DIAL, Window 2 starts to ask for the desired callee information,

monitoring option, and protocol to use. The user enables monitoring when s/he clicks the

box next to the Monitoring option.

The available protocol options are “any”, “TCP/IP”, “UDP/IP”, “ST-II”, and “AAL”.

When the user chooses “any”, the QoSockets runtime will automatically choose the best

fit protocol given the particular system configuration. In Figure 5.1, the caller decided to

operate on TCP/IP3 and to connect to callee “df” at machine “duffy”.

Once the data in Window 2 is complete, the user may CONNECT or CANCEL. When

connecting, Windows 3 and 4 start. Window 3 contains gauges that reflect the current

sending and receiving rates (in messages per second). It displays in the bottom the current

(Current value) and previous (Previous value) sampling window rates. The user may set

the gauge resolution (distance between marks) by setting the Calibration field. The cur-

rent message rate is 60 messages/s at the caller side and 68 messages/s at the callee side4.

Window 4 contains some sliding controls for the local audio device volume when re-

3 The TCP/IP option is reasonable in this case because the connection takes place in a local area network. In this

particular case, it is possible to wait for re-transmission within the inter-voice sample delay (125 µs). In metropoli-
tan or wide area networks it would be better to establish an UDP/IP connection and lose late voice samples.

4 Sometimes the receiving rate during a particular window may be higher than the sending rate due to messages left
over from the previous windows.

117

cording (Recording gain) and playing (Playing gain) or both (Monitoring gain).

The callee side contains similar windows, except for Window 2 that has mainly a dis-

play function. It displays the caller information and the protocol in use. The callee may

choose to ACCEPT or REFUSE the call. It may also enable monitoring at its side.

QoSockets simplified the following features of the audio application implementation:

• Protocol transparency. The code to implement the multiple supported protocols

uses the same QoSockets API. Each protocol chosen by the user becomes an ar-

gument of the API. This facilitates support of multiple protocols and portability to

new ones.

• Monitoring automation. The application code specifies the necessary QoS using

QoSockets API. The QoSockets runtime collects monitoring data in the QoS

MIBs which feed the gauges with the current sending and receiving rates. The

whole monitoring implementation becomes simple QoS MIB value retrievals.

There are many directions to extend the audio tool with little effort:

• Monitoring of other QoS parameters. Other QoS metrics collected in the QoS

MIBs may be displayed. Examples include jitter and loss.

• Interaction with SNMP managers. The simple fact that this tool runs on a particu-

lar system may enhance the knowledge of SNMP managers about current network

conditions from application perspective. They may adapt to QoS degradation by

allocating alternative paths or destroying interfering applications.

• Application adaptation. Applications may also access monitoring information and

adapt to QoS degradation. For example, they may re-negotiate the QoS or switch

118

to text interactions.

The same advantages can be observed for most of the applications in this chapter.

Figure 5.3: Audio Tool from the Caller Side

Figure 5.4: Audio Tool from the Callee Side

119

5.2.2 Video Tool

The video tool provides video point-to-point connection. The caller side is depicted in

Figure 5.3 while the callee one in Figure 5.4. The caller window and Window 1 at the

callee side are used for the connection establishment protocol. It is very similar to the one

in the audio tool (Windows 1 and 2 in Figure 5.1 and Figure 5.2) and is omitted in what

follows.

Once the callee accepts the call, monitoring starts at its side. The monitoring gauges in

Window 2 measure End-to-End Delay and Display Latency. The latter refers to the period

of time from message transmission until it is displayed at the destination. Using the nota-

tion in Appendix A, it is:

display T T R*: × × →Φ

[]
[]display b e

p s

b p e
w w S

k k
k b p e

S w w

S w w* (, ,)

()

Π
Π

Π
=

−

≤ ≤
∀ ≤ ≤

∑
 in

The transmission and reception rates in messages per second are displayed in the boxes

underneath the gauges.

Finally, Window 3 displays the video frames.

This application is similar to the audio tool and thus profits from the same QoSockets

features. One may observe, nevertheless, that both applications may decide to adapt to

QoS degradation using very different strategies. For example, the audio tool cannot oper-

ate if the bandwidth dedicated to the connection is lower than 64 Kbits/s or if there is

significant jitter between frames. It may need to switch to another media such as text when

it detects such situation. Nevertheless, the video tool may recur to other solutions such as

120

lowering the frame rate from 30 frames/s to 15 frames/s or switching to black-and-white

frames. The final quality of the video interaction decreases, but it is acceptable in many

situations. These two tools illustrate how the application semantics and the recovery strat-

egy are intertwined. QoSockets help to provide the necessary control on the recovery

strategy to the application developer.

Figure 5.5: Video Conference Tool (Callee or Caller)

5.2.3 Integrated Audio and Video Conference

The video conference application is a tool for audio and video exchange among par-

ticipants in a session. Figure 5.5 displays one of the sides in the communication (the other

one is similar). Window 1 provides controls to CREATE a conference or JOIN an existing

one. Additionally, one may INVITE other participants and ADD them when they accept

the invitation. The conference may be RECORDed and PLAYed back at a later time. Fi-

121

nally, there are controls to EXIT the conference or to read the MANUAL of the applica-

tion.

A participant will also have the controls in Window 2 available. Most control the

screen (Clarity and Brightness) or audio devices (Volume). But one of them can control

the sampling and transmission rates (Speed). The idea is that when the quality of the

transmission deteriorates in Window 3 (where the video is displayed), one may adapt by

sliding the Speed control. For example, when one notices too much loss, one may reduce

the message transmission rate.

Figure 5.6: The nv Tool

122

In addition to the features illustrated for the audio and video tools, this one illustrates

how an application developer may use QoSockets to change the QoS allocation to adapt

to network conditions. In this particular case, the application developer gave the user di-

rect control over the transmission rate adaptation to network conditions.

5.2.4 QoS Monitoring Extension to the Mbone Net Video

The goal of this experiment was to extend an existing distributed multimedia tool with

the functionality that QoSockets offer. The one chosen was the nv tool that implements

video conference on the Internet Mbone. The original nv was implemented using the

sockets API.

The extension work involved replacing the sockets API with the QoSockets APIs. As

a result, the extended nv can be ported among multiple platforms and can report on the

QoS in each of its connections.

The extended tool is depicted in Figure 5.6. Window 1 is the traditional nv screen (the

details can be found in [Frederick 94]) to open and view video sessions. Window 2 is a

QoS trace of the application. It reports on the many QoS parameters such as loss,

throughput, etc.

The next step is to implement an extended version of this tool where the user may

specify the QoS metric they want to monitor using a special equation editor. The specifi-

cation is translated into the QoSockets API. Finally, a performance window displays the

specified metric. The latter may be shaped as a graph or as a gauge similar to the one in

Figure 5.1.

123

5.3 Performance

QoSockets define a new layer of functionality on top of the sending and receiving

protocol API and thus increases its overhead. Such layer includes the following function-

ality:

• Time stamping. This step retrieves the time from the local clock and stores it in the

message. The time stamp has 8 bytes.

• Index generation. A unique index 4 bytes long based on the sending time is gener-

ated and stored in each message of a stream.

• Conversions from/to External Data Representation (XDR) [Sun Microsys-

tems 87]. The message header (index and time stamp) are encoded in the XDR

format for compatibility across different architectures.

• QoS MIB updates. Message transmissions spawn multiple QoS MIB updates. The

computational cost of such updates is bounded. The runtime updates the qOut

(qIn) table upon transmission (reception). It updates the qProg table only when the

windows end, but these events happen off-line with respect to transmissions or re-

ceptions.

The study of QoSockets performance has the following goals:

• Study QoSockets overhead. The goal was to understand the overhead per message

transmission.

• Study QoSockets throughput. The goal was to understand how many messages per

second could be sent using the QoSockets API.

One approach to find the exact throughput and overhead would have been to examine

124

the exact CPU time each instruction would incur in a typical machine. Such cost is con-

stant 200 μsec on a SPARC 20 workstations using Solaris 2.4. But, this measure depends

on the particular architecture and implementation technique. Additionally, it does not give

insight about operations in real situations where OS schedulers, background traffic, and

network loads may affect performance in a manner that is difficult to predict.

The approach chosen was to measure the sending5 time through the QoSockets APIs

and through the other stacks APIs. The UDP/IP and TCP/IP measurements were con-

ducted between SPARC 20 machines running Solaris 2.4, while the AAL measurements

were conducted between SPARC 10 machines.

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
en

d
T

im
e

(u
se

c)

Message Size (bytes)

QoSockets
Plain

Figure 5.7: Comparison of Sending Times over QoSockets and UDP/IP

The size of the message payloads vary from 0 to 9000 bytes. This range was chosen

5 The performance (overhead and throughput) of the receiving side is similar since the QoSockets API at both sides

have very similar execution flows.

125

because the maximum frame size that the FORE ATM SBA-200 network adapter (with

driver version 2.2.6) can handle is 9188 bytes and one of the goals was to compare the

overhead for all transport protocols tested using the same message sizes.

5.3.1 Overhead

The overhead computed per message is depicted in Figure 5.7 through Figure 5.9 for

many transport layers protocols and for QoSockets. The figures depict the sending time

for a range of message sizes. These results were derived by sending one message, comput-

ing its delay, and then waiting to send the next message. This technique avoids queueing

overheads for any protocol or card.

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
en

d
T

im
e

(u
se

c)

Message Size (bytes)

QoSockets
Plain

Figure 5.8: Comparison of Sending Times over QoSockets and TCP/IP

One can see that the overhead is almost constant throughout the message size spec-

trum. It dilutes as the message size increases, but is nonetheless significant. The reason is

126

that most transport protocols studied use very efficient code implementation (many times

in Assembly language).

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
en

d
T

im
e

(u
se

c)

Message Size (bytes)

QoSockets
Plain

Figure 5.9: Comparison of Sending Times over QoSockets and ALL

QoSockets were implemented in C as a first prototype and thus it suffers the ineffi-

ciencies of the compilation process. The potential for future performance improvement is

big because the instruction in QoSockets (like time stamping, index generation, function-

ality for MIB updates) are amenable for implementation using dedicated or customized

hardware. Finally, a significant amount of pipeline is possible between QoSockets and

message transmissions by processing timestamping, index generation, and MIB updates of

previous of new messages while older ones are being transmitted.

127

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

by
te

s/
s)

Message Size (bytes)

Plain
QoSockets

Figure 5.10: Comparison of Throughput over QoSockets and UDP/IP

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

by
te

s/
s)

Message Size (bytes)

Plain
QoSockets

Figure 5.11: Comparison of Throughput over QoSockets and TCP/IP

To conclude, it is important to understand that the functionality in QoSockets would

128

have to be implemented in distributed multimedia applications anyway and, as a conse-

quence, the overhead would exist in any case. The advantage of QoSockets is that future

implementations can fine tune the code to make it efficient and increase the overall per-

formance of QoSockets applications.

5.3.2 Throughput

The throughput is depicted in Figure 5.10 through Figure 5.12 for multiple message

sizes. These measurements were conducted by sending messages as fast as possible with

eventual queueing for protocols and outgoing cards.

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

by
te

s/
s)

Message Size (bytes)

QoSockets
Plain

Figure 5.12: Comparison of Throughput over QoSockets and AAL

One can see that, as the message sizes increase, the throughput quickly becomes com-

parable to the one of the underlying transport layer. The reason is that the time to copy

messages between user and kernel spaces is much larger than the time to time stamp,

129

process, and then send them through the protocol stack. Thus, the final throughput is dic-

tated by the message copy process rather than QoSockets processing.

5.4 Conclusions

Two sorts of experiments were conducted using QoSockets. The first was the imple-

mentation of multimedia applications using the library to evaluate its advantages. As ex-

pected, they simplified many aspects of the implementation of such applications, including

multiple protocol support, automatic QoS monitoring, and portability.

The second was the evaluation of the overhead and throughput of the QoSockets im-

plementation. It was shown that the overhead is not negligible (200 μsec in a SPARC 20)

but it is constant for any message size. The throughput is not considerably affected be-

cause the typical time to generate a message is much larger than the time to process

QoSockets API and protocols.

130

Chapter 6 ___________________

Conclusions and Future Work

6.1 Conclusions

Application level QoS management plays a central role in distributed multimedia appli-

cations. Current internetworks may offer strict QoS guarantees within particular domains,

but end-to-end guarantees may involve complicated re-engineering of the current state of

the art. On one hand, the semantics of multimedia applications running on such internet-

works require checking of the QoS effectively delivered by the network in order to adapt

to QoS failures. On the other hand, application QoS management can involve tedious, re-

petitive, and error-prone tasks. In addition, it is useful to integrate application manage-

ment with traditional network management standards such as SNMP. This integration

would facilitate coordination between SNMP managers and applications to resolve QoS

degradation issues.

This thesis proposed the QoS Management Environment (QoSME) that automates

application QoS management. It consists of the QuAL programming language, the

QoSockets and QoSOS APIs, and QoS MIB definitions with associated SNMP agents.

The main contributions of this work are:

1. Language level approach to QoS specification. The QoS required by applications

131

can be specified using QuAL language constructs that are later compiled into the

underlying transport protocol and OS services. In addition, QoS management

constructs can specify how to monitor, analyze, and control the requested QoS.

There are a few advantages to this approach: (1) it provides a unified API across

heterogeneous transport protocols and OSs; (2) it permits automatic compilation

of QoS specifications into transport protocol parameters; (3) it promotes applica-

tion-specific handling of QoS violations; and (4) it permits checking of inconsis-

tencies between QoS requests of communicating applications.

2. Automatic QoS monitoring. When QuAL applications are compiled, QoSME

automatically generates instrumentation to save application QoS performance sta-

tistics in QoS MIBs. Additionally, QoSME monitors the QoS effectively delivered

and invokes customized exception handlers upon violations. The main contribu-

tions are: (1) automatic generation of monitoring instrumentation; and (2) collec-

tion of QoS performance profiles into QoS MIBs.

3. Integration with standard network management. SNMP agents within QoSME

disclose the contents of QoS MIBs to external SNMP managers that may use them

in performing management tasks. This approach introduces the following contri-

butions: (1) SNMP managers can analyze application QoS performance; (2) appli-

cations and SNMP managers may coordinate their efforts in solving QoS viola-

tions; and (3) management can focus on application level properties.

132

6.2 Future Work

6.2.1 High-level QoS Libraries

How to build high-level libraries for QoS management? The goal is to associate new

high-level operators on streams of messages. For example, operator sync(s1,s2) synchro-

nizes streams s1 and s2. Operator half(s) reduces by half the number of messages in

stream s by dropping every other message. Given these operators, one can build new

streams from primitive ones that can entail completely new QoS characteristics. A prelimi-

nary classification of such operators follows:

• Filters. These operators eliminate messages from a stream based on certain crite-

rion. For example, drop(s, ta-ts<10 ns) eliminates all messages in stream s with

end-to-end delay of 10 ns or more.

• Combiners. These operators combine streams based on some criterion. For exam-

ple, interleave(s1, s2) generates a new stream that contains message with index i

of s1 immediately followed by message with index i of s2, for all indexes i.

• Permutators. These operators change the order of the messages in a stream ac-

cording to some criterion. For example, sort(s,ta) sorts all messages in s according

to their arrival times.

These operators can provide a high-level interface for the specification of how to generate

new streams from old ones.

QuAL, QoSockets, and QoSOS provide an infrastructure on which such libraries may

be built. One can program them using customized QoS metrics and exception handlers.

133

For example drop(s, ta-ts<10 ns) is implemented by specifying that the QoS metric end-to-

end delay should be smaller than 10 ns and that otherwise the exception handler should

drop them.

The challenges in this research are:

• How to define a more complete classification of the operators? The classification

proposed in this section is preliminary. More study is necessary to understand what

sort of operators the target applications would need.

• What are the primitive operators in each class? One interesting approach is to de-

fine a set of primitive operators for each class and constructors to build more

elaborate ones.

• How to build a library of useful operators in each class? The goal is to implement

the operators efficiently using the QuAL, QoSockets, and QoSOS constructs.

6.2.2 Pricing

How should network services be requested and charged? There are three preliminary

approaches that one can propose:

• Flat rates. In this case, the service provider offers a limited set of options that the

subscriber can use. For example, users interested only in sending e-mail may select

maximum allowed bandwidth per month without QoS guarantees while users that

need multimedia video and voice may select services with strict QoS guarantees on

pre-set bandwidth per month. The advantage of this system is that each user knows

what the bill will be at the end of the month. The disadvantage is the lack of flexi-

134

bility if services not anticipated become necessary.

• Charge on-demand. In this case, the service provider will charge for the services

used. For example, if a user decides to participate in a multimedia exchange, s/he

will be charged accordingly by the end of the month. The advantage of this system

is that all services are available as long as the user is willing to pay for them. The

disadvantage is that the final bill may be hard to predict.

• Special rates. This is a blending of the previous two approaches in which the user

specifies what its usage pattern normally is and the service provider may offer

special deals as long as the user stays within the initial arrangement. The user may

still use other services or violate the initial arrangements, but the prices for services

not pre-arranged are considerably higher.

For all these approaches there must be a mechanism that will collect QoS specifica-

tions by individual users. Such information will allow the billing infrastructure to: (1) vali-

date service usage according to pre-agreed arrangements, and (2) compute actual usage to

decide final charges. The QoS specification mechanism can be implemented in QoSME.

In addition, a billing infrastructure can use QoSME to collect usage statistics per ap-

plication. These statistics can be stored in QoS MIBs. Collection systems can use the

MIBs to decide how to charge each application according to its usage.

The challenges in this research are:

• What is the best MIB design to include all the necessary billing information? The

QoS MIBs may not contain all the information necessary for billing purposes. The

goal is to find the necessary supplementary fields that would yield such informa-

135

tion. QuAL contains operators that enable dynamic addition of new fields to QoS

MIBs.

• How can the user specify its QoS needs? QoSME QoS specification constructs

may be too detailed for usage specification. The goal is to create a higher-layer

specification mechanism that is then compiled into QuAL constructs.

• How to develop charging mechanisms on QoSME? Charging seems to be a direct

extension of the monitoring services QoSME intends to provide. One may develop

a charging system as an extension to QoSME.

6.2.3 Integrated Network and Application Management

How to develop tools and strategies that can profit from an integrated network and

application management framework? This dissertation has highlighted the importance of

integrated management. It would be useful to develop tools and strategies that could best

use such framework.

The challenges in this research are:

• What sort of tools would be useful for integrated network management? These

tools include monitoring, analysis, and control activities. For example, how should

the correlation between effective QoS delivered to applications and the current

network status be conveyed to a system administrator?

• What strategies can be automated? When violations occur, many different strate-

gies to overcome them could be automatically encoded in control tools. For ex-

ample, when QoS degradation on the bandwidth penalizes one specific application,

136

strategies can be included to allocate alternative connections for the application.

6.2.4 Formal QuAL Semantics

How to specify the semantics of QuAL? QuAL specification may need to extend the

process model as defined by Hoare [Hoare 78] because of the time-dependent characteris-

tics of QoS specifications.

The main challenges are:

• How to extend the process model to characterize time-related issues? The prob-

lem is to add the minimal constructs to the original process model by Hoare in or-

der to capture the semantics of time-dependent behaviors in QuAL.

• How to specify QuAL using the new model? The problem is to define every QuAL

construct and mechanism using the extended process model.

137

Appendix A __________________

A Model for QoS Specification

The goal of this appendix is to formally define a model for the communication QoS

metrics in QoSME. It defines each universal QoS metric and shows how to define appli-

cation specific ones using the model. Finally, it formalizes the concepts of violation and

filter in QoSME.

A.1 Definitions

A QoS metric, in general, measures the performance of a stream of messages. A

stream is a sequence { }S mk k I= ∈ , where I is the set of message indexes. With each mk ,

one can associate a performance signature πk k k ks a p= , , (s a pk k k< <), where the

three components are the message sending, arriving, and processing times respectively.

The arriving and processing times of lost messages are ∞ . The sequence { }ΠS k m Sk
= ∈π

is the performance profile of S. The expression k in ΠS is true if and only if πk S∈Π .

The expressions first(ΠS) and last(ΠS) denote, respectively, the index of the first and the

last messages in S. The message mk a+ 1 of stream S is the message consecutive to mk

according to arrival time.

138

A session is the union of non overlapping streams. That it, a session K Si
i

n
=

=1
� must

satisfy []s s s sfirst last first lastSi Si Sj Sj() () () (), ,Π Π Π Π∩ ⎡
⎣⎢

⎤
⎦⎥

= ∅ for all 1 ≤ ≤i j n, , i j≠ . The

performance profile of a session is the union of the performance profiles of the component

streams.

Most QoS measures in QuAL are defined in terms of performance signatures over

windows of time. The expression ΠS C[] denotes the set of performance signatures of ΠS

that satisfy condition C. For example, []ΠS b s e≤ ≤ denotes the performance signatures

of the messages mk of stream S with b s ek≤ ≤ .

Figure A.1 depicts a typical stream S between two communication end points. The in-

dex axis depicts the index of messages. The time axis depicts the time domain. Three time

curves are shown. The first one, s, plots the sending time of messages and it is inherently

monotonically increasing. The second one, a, plots the arriving time which is not neces-

sarily monotonically increasing. That is, it is possible that a ak k′ > even if s sk k′ < . This

is the case, for instance, if mk ′ follows a longer path than mk or if it is lost. This feature

is depicted in Figure A.1 when a decreases in value. The curve a is strictly larger than s,

that is, for any m S∈ , a sm m> . The third curve, p, plots the processing time of messages,

which is strictly larger than a, but not monotonically increasing either. This is the case, for

instance, if messages are not processed according to a First In First Out (FIFO) schedule.

A QoS metric consists of a measure computed on the performance profile of a stream.

That is, it is a function qos R:Φ → where Φ is the domain of performance profiles, and R

139

is the domain of real numbers. The value of qos()Π is the result of computing the QoS

metric qos on Π .

Index

Time Processing Time

Arriving Time

Sending Time

Figure A.1: Sample communication stream

One interesting issue is how to deal with QoS on multicast streams, that is, streams

from one source to multiple destinations. In the model defined here, such streams are

viewed as the union of multiple point-to-point (unicast) streams. The QoS of the multicast

stream is defined in terms of the QoS at each component unicast stream. For example,

consider a scenario where the multicast connection is distributing live video to multiple

recipients with different reception equipments. It may be appropriate to request large

bandwidth for users that enjoy multimedia color workstations with video capabilities while

relatively small pipes to users with older gray scale workstations. The signal distributed in

each stream is tailored according to the QoS supported by the end equipment (either gray

scale video at small rates or full-color video at higher rates).

140

A.2 Some QoS Metrics Are Universal

Certain QoS metrics are universal in that they are of interest to almost any QoS-

demanding application. These metrics include rate, loss, end-to-end delay, jitter, permuta-

tion, and connection recovery time. This section presents a formal definition for them.

The first universal QoS metric is rate that measures the mean number of messages per

second received during the duration of a stream. For this purpose, it is useful to define the

function :Π → N that counts the number of signatures (messages) in a profile (stream).

For example, []ΠS t a t1 2≤ ≤ is the number of messages in S that arrived within the time

interval []t t1 2, . The formal definition of rate is:

rate R:Φ →

rate S()Π =
[]

[] []

Π

Π Π

S

last a first a

a

a a
S S

≠ ∞
−≠∞ ≠∞() ()

.

There is an interesting practical difficulty in computing this measure. That is, it can only be

computed when the stream ends. Violations during the communication cannot be detected

and corrected. There is no proper solution to this problem other than defining a new met-

ric that approximates the behavior of rate for most practical purposes, even though it is

not exactly the same. For now on, all approximations are distinguished from their exact

counterparts by using the “*” symbol in their names.

The proposed solution is to use a window of time during which the rates are com-

puted. That is, once the window starts, all statistics are reset. When the window finishes,

the metrics are computed and analyzed. Immediately following the computations, the sta-

tistics are reset again and a new window starts. The process is repeated for the duration of

141

the stream. The same mechanism will be used for most QoS metrics. Given an interval of

time []b ew w, and a message time-stamp β (that is, β = a , β = s , or β = p), the qos

functions are approximated by qos T T R*: × × →Π , where T is the set of all possible

time values and qos b ew w*(, ,)π is the value of QoS metric qos * calculated on

[]Π b ew w≤ ≤β . The function rate* is:

rate T T R*: × × →Φ

rate b ew w S*(, ,)Π =
[]ΠS w w

w w

b a e

e b

≤ ≤
−

.

The same approach is used for most QoS metrics in what follows. The exact QoS defini-

tions are omitted because they can be inferred directly from the approximations.

The transmission_rate QoS metric measures the rate in which messages are sent or in-

serted in a stream. Its computation is very similar to the QoS metric rate and defined by:

transmission rate T T R_ *: × × →Φ

transmission rate b ew w S_ *(, ,)Π =
[]ΠS w w

w w

b s e

e b

≤ ≤
−

.

The next QoS metric is loss. A message is considered to be lost if and only if it is re-

ceived more than a given timeout t after its sending time. It is defined by:

loss T T Rt*: × × →Φ

[]
[]loss b e

a s t b s e

b s et w w S
S w w

S w w
*(, ,)

(()) ()
Π

Π
Π

=
− > ∧ ≤ ≤

≤ ≤
.

The delay measures the average end-to-end transmission time of messages on a

stream. Formally:

142

delay T T R*: × × →Φ

delay b ew w S*(, ,)Π = []
[]

()a s

b a e

k k
k b a e

S w w

S w w

−

≤ ≤
∀ ≤ ≤

∑
 in Π

Π

The sum of the delay function of all messages in a stream is plotted in Figure A.2.

Index

Time

Arriving Time

Sending Time

Figure A.2: Delay QoS measure

The jitter measures how far apart consecutive messages arrive:

jitter T T R*: × × →Φ

jitter b ew w S* (, ,)Π =
[]

[]

[() * (, ,)]a s delay b e

b a e

k k w w S
k b a e

S w w

S w w

− −

≤ ≤
∀ ≤ ≤

∑ Π

Π
Π

2

 in
.

The permutation measures how many messages arrive out of order in a stream. For-

mally:

permutation T T R*: × × →Φ

[]permutation b e Cw w S S*(, ,)Π Π= , where k in ΠS satisfies C if and only if:

k in []ΠS w wb a e≤ ≤ ,

143

[]∃ ′ ≤ ≤k b a eS w w in Π , and k k≠ ′ satisfy both:

s sk k′ > (′k was sent after k) and

a ak k′ < (′k arrived before k).

The recovery measures if the time between two streams of a session is above a pre-set

value t. The main idea is to capture the fact that several streams might need to be estab-

lished during the lifetime of a session. This is the case, for instance, if a switch serving a

session fails and an alternative stream is established that bypasses the damaged switch. The

metric recovery is the period of time between successive streams of the same session. It

may be formally defined using the model in similarity to the previous metrics:

recovery T T R*: × × →Φ

recovery b ew w K* (, ,)Π =
{ } { }()e b s e s bw w last w first w

S
S S

− − −
∈
∑ min , max ,() ()Π Π

Ω
Ω

,

where Ω is the set of streams S K⊆ such that [] []s s b efirst S last S w w() (), ,� ≠ ∅ .

One interesting observation in the definition of qos* is that the window size may ap-

proximate the mean or instantaneous QoS metric, depending on its size. For example,

rate b ew w S*(, ,)Π approximates the mean rate of the stream when

[] []b e a aw w fist S last S, ,() ()→ , whereas it approximates the instantaneous rate as

b ew w→ .

A.3 Some QoS Metrics Are Application Specific

Application developers can use the framework introduced in this section to define or

144

program the QoS metrics of importance to specific applications. Consider, for example, a

geology application that must receive the samples from a remote seismic sensor no later

than 5 ms after the value is sampled. That is, the transmission delay must never be higher

than 5 ms. In such case, the following QoS metric cannot exceed 0.005 for any window

[]b ew w, :

peak delay T T R_ *: × × →Φ

peak delay b e a sw w S k b s e k kS w w
_ * (, ,) max { }[]Π Π= −≤ ≤ in .

QoS metrics that involve more than one stream are an extension of the metrics for a

single stream. In this case, qos T T Rn*: × × →Φ where n is the number of streams in-

volved.

For example, to assure lip synchronization in a video conference, applications must

guarantee that the audio and the video streams are synchronized. In a scenario in which

five audio messages carry the sound for a single video message, the rate in the audio

channel must be five times the rate of the video channel. In addition, it would be desirable

to have precisely five audio messages coming between the arrival of two consecutive

video ones. Let ΠA and ΠV be the audio and video stream profiles, respectively. The

QoS metric to measure synchronization between these streams can be defined as:

audio rate sync T T R_ _ *: × × →Φ2

audio rate sync b e

k k

a a aw w A V

a

A k k a
_ _ * (, , ,)

, , ,

[]

,

Π Π

Π

Π=

∀ +

≤ ≤ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

+

1

5

0

1

if 1 in

otherwise.

V

Video and audio are synchronized if and only if audio rate sync b ew w A V_ _ *(, , ,)Π Π = 1.

145

A.4 What Is a QoS Violation?

A QoS violation occurs when a QoS metric is outside of a tolerance interval. A QoS

violation function defines in reality a class of functions, violation, where each function

measures violation of a specific metric. Given a QoS metric qos, violationqos indicates

whether a stream violates qos. Formally:

{ }violation R R T Fqos: ,Φ × × →

violation v v Fqos S(, ,)min maxΠ = , if and only if v qos vSmin max()≤ ≤Π .

Similarly to the study of QoS metrics, violations can be approximated and checked over

windows of time. Formally:

{ }violation T T R R T Fqos*: ,× × × × →Φ

violation b e v v Fqos w w S*(, , , ,)min maxΠ = , if and only if

v qos b e vw w Smin max*(, ,)≤ ≤Π .

Consider, for example, the monitoring of rate on a stream. QoS metric

violation b e v v Frate w w S* (, , , ,)min maxΠ = whenever the average rate delivered by the

network in the window []b ew w, is within the interval []v vmin max, .

A.5 Filters Control QoS Performance

Management mechanisms, whether activated by applications or by a network man-

agement system, need to control QoS delivery. It is desirable for such control to be ac-

complished through uniform mechanisms rather than ad-hoc tricks.

A filter is simply an operator on a message stream that modifies its performance pro-

146

file. A filter is defined as ϕ:Φ Φ→ . ϕ()Π is a transformation of Π .

For example, { } { }ϕ ϕ(, ,) . , , ()s a p s a p∪ = + ∪Π Π0 005 is a filter that delays the

messages of a stream by delaying the sending time of each message by 5 ms.

A.6 QuAL Implements the Model

The proposed model is implemented in the QuAL language, as explained in Chapter 2.

QuAL time-stamps individual messages mk with their sk , ak , and pk values. These can

be used to define any metric using the C language constructs. The universal metrics are

pre-defined in QuAL.

147

Appendix B __________________

An Overview of Concert/C

The first design of QuAL is an extension of the Concert/C language. This appendix

discusses Concert/C in greater details.

Concert [Yemini et al. 89, Auerbach et al. 91] is a family of language extensions to

support distributed computing using the process model [Hoare 78]. In the process model,

processes are units of execution that communicate and synchronize with one another

through message-passing.

In the approach used by Concert, the process model is supported directly within a new

language by adding extensions to the language. These extensions integrate in a language

the concepts of processes and ports, and a set of operations. A process is mapped into any

active entity that performs computations. Ports are communication end-points that can be

further classified as inports, or outports, depending on whether they are receiving or

sending messages, respectively. An inport contains a queue to store messages that arrive

and cannot be processed immediately (a process receives messages in their order of arri-

val). An outport contains a binding, that is, a capability of placing messages on an inport

queue. The type of a port is defined by the type of the messages it sends or receives, and

only ports of the same type can be bound.

The set of operations integrated in a language enables the creation and termination of

148

processes, creation and termination of bindings, and the actual communication between

processes. Any language in the Concert family will support these operators. Two forms of

Inter-Process Communication (IPC) are supported: asynchronous and synchronous mes-

sage passing. In the asynchronous mode, a process sends a message and continues execut-

ing. The receiving process can dequeue the message after it arrives. The synchronous

mode is equivalent to a RPC [Nelson 81, Soares 92]. RPCs in the Concert model are made

transparently through function pointers. The interface for performing procedure calls

through function pointers is the same for both local and remote calls. In the remote case,

however, the function pointer contains a binding that points to the remote function. The

process making the remote call blocks until the process receiving the call executes the

function and returns the results.

Concert/C [Auerbach 92] is a new language that extends C [Kernighan and Ritchie 88]

to support distributed computing according to the approach defined by Concert. A Con-

cert/C process is an executing C program. Concert/C introduces input ports as a new data

type. Ports can be declared as being functions that can be called from another process

(functionports), or simply as plain ports (receiveports). Functionports are defined by add-

ing the keyword port to a function declaration. Receiveports are declared as follows:

receiveport {<message_type>} <identifier>

The clause <message_type> identifies the type of messages received through the port

identified by <identifier>.

A binding is simply a pointer to an input port. A binding can reference any port of the

149

type it points to. When a process is created, the parent process obtains an initialized bind-

ing (pointer) to an input port in the child process that can be used by the parent to initiate

communications with the child. This input port of the child process is known as initial-

port. The keyword initial is used to identify the respective initial port in a child process.

Two operators are provided to check whether there are enqueued messages on a par-

ticular inport. Operator select accepts a list of ports as arguments and blocks until at least

one of the ports has a message. The value returned by this operator is the index (that is,

the position of the port in the argument list) of a busy port. Operator poll is a non-

blocking version of select, which returns the value 0 if all the queues are empty. The re-

ceive operator is used to dequeue a message from an inport. If the queue is empty, receive

blocks until a message is enqueued. A process that defines a functionport uses the opera-

tor accept to receive a message sent to this port, execute the function associated to it, and

return the results to the sender. accept accepts a list of functionports and waits until at

least one of them has a message. It then receives a message representing a function call

(called a callmessage) from a non-empty functionport, invokes the associated function

with parameters supplied from the message, and returns results from the function invoca-

tion to the calling process.

The operator send supports asynchronous message passing, returning as soon as the

underlying system supporting Concert/C has copied the message to its internal buffer.

Concert/C supports process management, that is, creation and termination. Suppose

that a program has been compiled by the Concert/C compiler and stored in the file

serv_sql4 on the machine cs.columbia.edu. Another process can create, and later termi-

150

nate this process as follows:

[[program server “serv_sql4”
newspace host “cs.columbia.edu”;]]

main()
{ ...

server_handle = create(server, &imit_port);
...
terminate(server_handle);

}

The declaration inside the double brackets consists of a distributed linking declara-

tion, that is, a declaration that controls the instantiation and linking of distributed pro-

grams. In the example, the declaration defines the variable server of type prog_t. The type

prog_t stores a program description that can be instantiated into a running process using

operator create. The variable will contain the object code from file serv_sq14. The create

operator stores in the memory position designated by its second argument (the address of

the variable init_port) the binding (pointer) to the initialport of the process created. The

create operator returns a reference to the child process created (stored in the variable

server_handle). The operator terminate terminates a process. It accepts as argument the

process reference returned by the create operator.

151

Appendix C _________________

Syntax and Informal Semantics
of QuAL

This appendix describes the syntax and informal semantics of QuAL language con-

structs. Chapter 2 presented examples of how these constructs can be used to manage

QoS performance.

This appendix is organized as follows. QuAL supports handling of two types of QoS

metrics: resource level and applications specific QoS metrics. Section C.1 and Section C.2

describe QuAL constructs for the specification of resource level QoS metrics and their

monitoring. Section C.1 concentrates on metrics associated with communications,

whereas Section C.2 concentrates on metrics associated with computations. Section C.3

describes constructs for the monitoring of application specific metrics. Section C.4 dis-

cusses the specification of filters, as defined in Appendix A. Section C.5 presents QuAL

operators to access communication temporal properties (e.g., sending and arriving time of

messages). Section C.6 discusses QuAL operators to dynamically re-negotiate QoS. Fi-

nally, Section C.7 presents QuAL operators to access QoS MIB objects.

When defining the syntax, the following convention is used. Keywords and constructs

from QuAL are written in bold face, from Concert/C are underlined, and from C are plain

text.

152

C.1 Handling of Resource Level QoS Metrics for Communica-

tions

In QuAL, QoS measures are part of the specification of the type of a port. QuAL ex-

tends the Concert/C port type into the real time port type. The general form for the speci-

fication of real time ports is as follows:

<real-time-port> ::= realtm [{<real-time-port-type-attributes>}]
<handlers> <concert-port-definition>;

<handlers> :: = [handlers {<list-of-handlers>}]

<concert-port-definition> ::= <concert-outport-definition>
<concert-inport-definition>

The keyword realtm (short for real time) classifies the port as a real time port and

causes the QuAL runtime to maintain the temporal properties (sending, arriving, and proc-

essing times) of the messages communicated through them. QoS metrics are specified in

the <real-time-port-type-attributes> clause. The <handlers> clause contains the specifi-

cation of the exception handler ports associated with the port being specified. While QoS

attributes are part of the type of a real time port, the declaration of exception handler ports

is only a specifier of the port being defined and are not part of its type. As defined in Con-

cert/C, the <concert-port-definition> clause specifies the type of the messages exchanged

through a port and indicates whether the port is an inport or an outport. Real time ports

are completely backwards compatible with Concert/C ports, supporting all access opera-

tions defined for them.

153

The general form for the specification of real time port attributes is as follows:

<real-time-port-type-attributes> ::= <res-qos> <list-of-filters>

The clause <res-qos> contains the specification of resource level QoS metrics, while

<list-of-filters> contains the specification of filters, as defined in Appendix A. Section C.4

discusses the specification of filters in greater detail.

The general form for the specification of <res-qos> attributes is as follows:

<res-qos> ::= [<loss>;] [<permutation>;]
[<rate> [, <window>];] [<peak> [, <window>];]
[<delay> [, <window>];] [<jitter> [, <window>];]
[<recovery> [, <window>];]
[multiple <integer> [, combined];]
[multicast;]

<loss> ::= noloss [, nocoercion] | loss NULL [, <window>] |
loss <constant-expression> [, <window>] [, nocoercion]

<permutation> ::= nopermt [, nocoercion] | permt NULL [, <window>] |
permt [, <window>] [, nocoercion]

<rate> ::= rate NULL | rate <range> [, nocoercion]
<peak> ::= peak NULL | rate <rate-expression> [, nocoercion]
<delay> ::= delay NULL | delay <time-expression> [, nocoercion]
<jitter> ::= jitter NULL | jitter <time-expression> [, nocoercion]
<recovery> ::= recovery NULL | recovery <time-expression> [, nocoercion]

<window> ::= window <time-expression>
<range> ::= <time-expression> - <time-expression> | <time-expression> - |

- <time-expression>
<rate-expression> ::= <time-expression>
<time-expression> ::= <unit> <constant-expression>
<unit> ::= ms | sec | min | hr

The specification of any of these attributes is optional. When an attribute is not speci-

154

fied, the port receives the respective QoS type of a communication in Concert/C. That is,

no tolerance for loss or permutation and unbounded rate, peak, delay, jitter, and recovery

time intervals. The keywords noloss and nopermt indicate that loss and permutation, re-

spectively, are not tolerated. The keyword NULL indicates that the attribute can assume

any value. The range of values for this attribute is coerced if a port is bound to another

one with more restrict constraints. The coercion mechanism used in QuAL was discussed

Chapter 2. The keyword nocoercion indicates that coercion is not allowed for a metric.

The clause <window> indicates how often QuAL runtime must measure a metric. The

keyword multiple indicates if an inport can be connected to more than one outport at a

time. In this case, the keyword combined indicates if the rate and peak QoS constraints

apply to all connections combined. When this keyword is omitted, the rate and peak con-

straints apply to each connection individually.

QuAL automatically monitors QoS performance on communications and signal appli-

cations when QoS violations are detected. QuAL signals violations by sending exception

messages to application specified exception handler ports, as explained in Chapter 2. Ex-

ception handler ports associated with a port are specified through the <handlers> clause

as shown below. The clause <filter-handler> is discussed in Section C.4.

<handlers> :: = [handlers {<list-of-handlers>}]

<list-of-handlers> ::= <res-handler> <filter-handler>

<res-handler> ::= res_handler <port-reference>;

155

C.2 Handling of Resource Level QoS Metrics for Computations

QuAL supports the specification of resource level QoS metrics associated with com-

putations through real time blocks. The general form for a real time block is defined as

follows:

<real-time-block> :: =
within (<timing-constraint-expression>)
do {<timed-block>}
[miss_deadline {<timed-instruction-list>}]
until(<condition>)

The semantics are as follows. The QuAL runtime analyzes the current system load

every time an application reaches a <real-time-block>. As a result of this analysis, the

runtime system decides whether there are enough processing resources available for the

execution of the <timed-block> without violating the timing constraints specified in

<timing-constraint-expression>. If there are not enough resources, control is passed to

the statement following the <real-time-block>. Otherwise, the application enters the real

time mode, in which the <timed-block> is executed according to <timing-constraint-

expression>, until <condition> evaluates to a positive value. If the timing constraints in

<timing-constraint-expression> are ever violated, control is passed to the <timed-

instruction-list> following the keyword miss_deadline. The clause <timed-instruction-

list> will be elaborated later in this section.

Whenever control reaches the statement following <real-time-block>, the global vari-

able qual_status indicates the reason for leaving the real time execution. It indicates if

156

there were not enough resources available (with a value less than zero), or if <condition>

evaluated to a positive value (with a value greater than or equal to zero). In the last case,

the value of qual_status indicates how many times the <timed-block> was executed to

completion before <condition> evaluated to a positive value.

The timing constraints of a <real-time-block> are defined as follows:

<timing-constraint-expression> ::= <behavior> [<start>]

<behavior> ::= hard; <hard-schedule> | soft; <soft-schedule>
<start> ::= after (<event-list>)

<event-list> ::= <event> [|| <at-event-list>]
<hard-schedule> ::= periodic; <period> | sporadic; <period>; <at-event-list>;
<soft-schedule> ::= <hard-schedule>; | aperiodic; <at-event-list>;

<event> ::= select(<port>) | <event-variable-identifier>
<at-event-list> ::= atEvent (<event-list>)
<period> ::= period <rate-expression>;

<event-variable-identifier> ::= <identifier>

When the <start> clause is specified, the first execution of the <timed-block> only hap-

pens after one of the events defined in this clause occurs. When not specified, the first

execution can happen at any time. The events recognized by QuAL are the arrival of a

message, which can be tested through the Concert/C select operator, or the change of

state of a condition variable. The execution pattern of applications with soft or hard con-

straints can be periodic or sporadic. In addition, application with soft constraints can also

have an aperiodic execution pattern. Periodic applications are those that must be proc-

essed at regular intervals, and must be completed before the next instance is due. These

157

regular intervals are defined by <period>. Sporadic applications are asynchronous activi-

ties triggered by one of the events in <at-event-list>. These events, however, do not occur

more often than the rate indicated in <period>. Aperiodic applications are also asynchro-

nous activities triggered by events. However, it can not be predicted how often these

events will occur. It is important to note the finer granularity for the expression of real

time constraints in QuAL, when compared to other real time languages [Halang and Stoy-

enko 91]. Constraints are expressed per set of instructions (blocks), rather than per appli-

cation. Therefore, a QuAL application may have several blocks of code each with a differ-

ent behavior.

The general form for a <timed-block> is as follows:

<timed-block> ::= <timed-instruction> [<timed-block>] |
<timeout-block> [<timed-block>]

<timeout-block> ::= timeout([<time-expression>]) {<list-of-instructions>}
<expired-handler>

<list-of-instructions> ::= <instruction> [<list-of-instructions >]
<expired-handler> ::= expired {<timed-instruction-list>}

<timed-instruction-list> ::= <timed-instruction > [<timed-instruction-list>]

A <timed-block> consists of a sequence of <timed-instruction>s and <timeout-

block>s. A <timed-instruction> is any instruction for which the computational cost can

be determined at compile time. The set of <timed-instruction>s supported depends on the

version of the QuAL compiler used and must be checked accordingly. An instruction or

sequence of instructions for which the computational cost cannot be estimated has to be

158

inside a <timeout-block>. At compile time, the computational cost of these instructions is

estimated to be equal to <time-expression>. During runtime time, if the execution lasts

longer than <time-expression>, control is passed to <expired-handler>. When <time-

expression> is not specified, the QuAL compiler estimates (infers) a time value for the

execution of the block.

C.3 Handling of Application Specific QoS Metrics

QuAL runtime automates monitoring of application specific QoS metrics. This section

first describes how application developers can trigger the monitoring of application spe-

cific metrics. It then shows how applications can instruct the QuAL runtime to signal vio-

lations to the metrics defined.

QuAL includes the operator qual_monitor to enable monitoring of application specific

metrics and the operator qual_terminate_monitoring to cancel it. The general form for

these operators is defined as follows:

<metric-id> qual_monitor (<qos-metric-function-identifier>, <window-time>,
<number-of-ports>, <list-port-values>)

<metric-id> ::= <integer>
<qos-metric-function-identifier> ::= <function-identifier>
<window-time> ::= <integer>
<number-of-ports> ::= <integer>
<list-port-values> ::= <port-value> [, <port-value>]

<qual-status> qual_terminate_monitoring (<metric-id>)

<qual-status> ::= <integer>

159

The operator qual_monitor causes the runtime to perform two main tasks. First, the run-

time will generate the performance profile (as defined in Appendix A) of all the ports listed

in <list-port-values>. The parameter <number-of-ports> indicates how many ports there

are in <list-port-values>. Second, the runtime will evaluate the function <qos-metric-

function-identifier> every interval of <window-time> seconds, passing the performance

profiles of the ports in <list-port-values> as its arguments. The operator <qos-metric-

function-identifier> is a function that given a set of performance profiles it returns the

value of an application specific QoS metric. Application developers are responsible for

designing these functions. The runtime stores the values returned by <qos-metric-

function-identifier> into QoS MIB objects, as explained in Chapter 4. The operator

qual_monitor returns a <metric-id> that can be used to cancel the monitoring.

The operator qual_terminate_monitoring causes the runtime to cancel monitoring of

a QoS metric. The argument <metric-id> identifies the monitoring to be canceled. The

operator qual_terminate_monitoring returns a <qual-status> value indicating if the

monitoring was successfully canceled.

The signature of functions in a <qos-metric-function-identifier> clause must be of the

following type:

double (*) (double, double, qos_ppp *, ...)

The function returns a value of type double that indicates the value of the QoS metric it

measures. The function accepts the time when the window started, the time when the win-

dow ended, and one performance profile pointer for each port being measured. The total

160

number of arguments the function takes depends on the number of ports being measured.

Performance profile pointers are defined as follows:

typedef struct pps {
double ts;
double ta;
double tp;

} qos_pps;

typedef struct ppp {
int size;
qos_pps* signatures[];

} qos_ppp;

A performance profile pointer (qos_ppp) contains the number of performance signatures in

the profile (field size) and a vector of performance signatures (signatures). Each perform-

ance signature is of type qos_pps. A signature indicates the connection the message be-

longs to (conn) and the time the message was sent (field ts), arrived (ta), and was proc-

essed (tp). A connection is identified by the port that is sending the messages (origin) and

by the port that is receiving them (target). In QuAL, variables that indicate time are of

type double because they store values of the sysUpTime object [Stallings 93] maintained

by the local management system. This object measure the number of milliseconds since the

system was last initialized.

QuAL introduces the operator qual_violation_signalling to trigger QoS violation

signaling and the operator qual_terminate_violation_signalling to cancel it. The general

for of these operators is as follows:

<metric-id> qual_violation_signalling (<qos-metric-function-identifier>,
<window-time>, <min-value>, <max-value>, <port-handler>,

161

<number-of-ports>, <list-port-values>)

<min-value> ::= <integer>
<max-value> ::= <integer>
<port-handler> ::= <port-value>

<qual-status> qual_terminate_violation_signalling (<metric-id>)

Similarly to the operator qual_monitor, the operator qual_violation_signalling causes

the runtime to generate the performance profile of the ports in <list-port-values> and to

evaluate <qos-metric-function-identifier> every interval of <window-time>. In addition,

however, it sends a message to the port <port-handler> if the value returned by <qos-

metric-function-identifier> is not greater than <min-value> or lower than <max-value>.

The message includes <metric-id>, the time the measure was done, and the value returned

by the function. Applications use qual_terminate_violation_signalling to cancel a QoS

violation signaling.

C.4 Specifying Filters

QuAL provides the means for the specification of filters, as defined in Appendix A.

Filters are defined per port and are part of the <real-time-port-type-attributes>, as dis-

cussed in Section C.1. The general form for the specification of filters is as follows. QuAL

supports two types of filters: single stream filters and multiple stream filters. Single stream

filters define constraints that are related to a single stream (specified in a <single-stream-

filter> clause), while multiple stream filters define constraints related to a group of

streams (specified in a <multiple-stream-filter> clause). For each type of filter, program-

162

mers can specify the filters a port is able to comply with and the filters a port demands that

connecting ports comply with. The first set of filters is specified after the keywords cmpl

and grp_cmpl. The second set is specified after the keywords conn_cmpl and

grp_conn_cmpl. It is important to notice that the filter identification for a group stream

filter is an enumeration identifier. Each element of the enumeration represents one of the

streams in the group. The declaration of a group filter for a port must specify which

stream that port represents. This is accomplished by specifying the <enum-element-

identifier> inside the brackets.

<real-time-port-type-attributes> ::= <res-qos> <list-of-filters>

<list-of-filters> ::= <single-stream-filter> [<list-of-filters >] |
<multiple-stream-filter> [<list-of-filters >]

<single-stream-filter> ::= cmpl {<list-of-single-filter-identifications>} |
conn_cmpl {<list-of-filter-identifications>}

<multiple-stream-filter> ::= grp_cmpl {<list-of-group-filter-identifications>} |
grp_conn_cmpl {<list-of-group-filter-identifications>}

<list-of-single-filter-identifications> ::= <single-filter-identifier>;
[<list-of-single-filter-identifications>]

<list-of-group-filter-identifications> ::=
<group-filter-member >; [<list-of-group-filter-identifications>]

<single-filter-identifier> ::= <identifier>
<group-filter-member > ::=

<group-filter-identifier>[<group-filter-member-identifier>]

<group-filter-identifier> ::= <enum-identifier>
<group-filter-member-identifier> ::= <enum-identifier>

Application developers must bind to each filter identifier a filter function that will ac-

tually implement the filtering. QuAL introduces the operator assg to associate a filter

163

identifier to a filter function. The general form for this operator is defined as follows:

<qual-status> assg (<port-value>, <filter-reference>,
<filter-function-identifier>)

<filter-reference> ::= <single-filter-identifier> | <group-filter-identifier>
<filter-function-identifier> ::= <function-identifier>

The operator assg associates the filter function <filter-function-identifier> to the filter

<filter-reference> for the port <port-value>. The signature of single stream filter func-

tions for outports must be of the following type:

mon_t (*) (int index, double sending_time)

The first argument is an index that identifies the order of the message in the communica-

tion according to its sending time. The second argument indicates the time in which the

message was sent. Filter functions return values that indicate whether a message complies

with the constraints defined by the filter. These functions return a value of type mon_t de-

fined as follows:

typedef struct {
int exception;
int remove;

} mon_t;

A positive value in the field remove indicates that the message must be filtered, whereas a

positive value in the field exception indicates that an exception must be raised.

164

The signature of single stream filter functions for inports must be of the following

type:

mon_t (*) (int index, double sending_time, double arriving_time)

The value returned and the first two arguments have semantics similar to filter functions

for inports. The third argument, however, indicates the time the message arrived.

The signature of multiple stream filter functions for inports must be of the following

type:

mon_t (*) (enum filter_member, int index, double sending_time)

The only difference between the signature of a single stream filter function and a multiple

stream function is the additional first argument that indicates the stream that generated the

message. Similarly, the signature for multiple stream filter functions for inports must be of

the following type:

mon_t (*) (enum filter_member, int index, double sending_time, double arriving_time)

Messages filtered from a communication and messages indicating exceptions are sent

to application specified exception handler ports. These handler ports are specified in the

<handlers> clause of a port declaration, defined as follows:

<handlers> :: = [handlers {<list-of-handlers>}]

<list-of-handlers> ::= <res-handler> <filter-handler>

165

<filter-handler> ::= fil_handler {<list-of-filter-port-references>};

<list-of-filter-port-references> ::=
<single-filter-identifier> <port-reference>; [<list-of-filter-port-references>] |
<group-filter-identifier> <port-reference>; [<list-of-filter-port-references>]

Each element in this clause indicates a filter and the respective handler port.

C.5 Accessing Communication Temporal Properties

QuAL introduces a set of operators that allow the retrieval of temporal properties of

messages, that is, their sending, arriving, and processing times. The general form of these

operators is as follows:

<qual-status> receive_tm (<port-value>, <message-ref>,
<time-ref>, <time-ref>, <time-ref>)

<qual-status> rtm_receive (<time>, <time>,
<port-value>, <message-ref>)

<qual-status> rtm_receive_tm (<time>, <time>,
<port-value>, <message-ref>,
<time-ref>, <time-ref>, <time-ref>)

<time-ref> ::= <assignment-expression>
<time> ::= <time-value>

The operator receive_tm causes a message to be dequeued from the port designated

by <port-value>, and be placed on the storage designated by <message-ref>. It also

places the message sending time, arrival time, and retrieval time on the storage designated

166

by the first, second, and third <time-ref> arguments, respectively. If no message is pres-

ent, it blocks waiting for the next message. The operator rtm_receive causes a message

that arrived in the time interval defined by the first and second arguments to be dequeued

from the port designated by <port-value> and be placed on the storage designated by

<message-ref>. The operator rtm_receive_tm operates similarly, but, in addition, they

place the message’s sending time, arrival time, and retrieval time on the storage designated

by the last three <time-ref> arguments, respectively. If there are no messages that arrived

in the time interval specified, all these operations will block until either a message arrives

or the time constraints are unreachable. In the last case, the operations will return an error

value, signaling the exception.

C.6 Re-negotiating QoS Metrics Dynamically

QuAL provides two operators to enable dynamic QoS re-negotiation. The operator

qos_get is used to retrieve the QoS negotiated for a communication. The operator

re_negotiate causes the runtime to re-negotiate QoS for a communication. These opera-

tors are defined as follows.

re_negotiate (<port-value>) {<res-qos>}

167

C.7 Accessing QoS MIB Objects

QuAL includes operators that enable applications to access QoS MIB instrumentation

directly, bypassing SNMP agents. The general form of these operators is as follows. These

operators return a pointer to the memory position where the value retrieved from the QoS

MIB is stored. The operator snmp_get retrieves the value of <object-identifier>. The ar-

qos_get (<port-value>) {<real-time-port-attribute-references>}

<real-time-port-attribute-references> ::=
<res-qos-reference> <list-of-filter-references>

<res-qos-reference> ::=
[loss <integer-reference> [; window <time-reference>];]
[permt <boolean-reference> [; window <time-reference>];]
[rate <range-reference> [; window <time-reference>];]
[peak <rate-expression-reference> [; window <time-reference>];]
[delay <>]
[jitter <integer-reference>]
[recovery <integer-reference>]
[multiple <integer-reference>]
[combined <boolean-reference>]

<rate> ::= rate NULL | rate <range> [, nocoercion]
<peak> ::= peak NULL | rate <rate-expression> [, nocoercion]
<delay> ::= delay NULL | delay <time-expression> [, nocoercion]
<jitter> ::= jitter NULL | jitter <time-expression> [, nocoercion]
<recovery> ::= recovery NULL | recovery <time-expression> [, nocoercion]

<window> ::= window <time-expression>
<range> ::= <time-expression> - <time-expression> | <time-expression> - |

- <time-expression>
<rate-expression> ::= <time-expression>
<time-expression> ::= <unit> <constant-expression>
<unit> ::= ms | sec | min | hr

168

gument <object-identifier> uniquely identifies a QoS MIB according to SNMP standards.

The operator qual_app_get returns the value of the instance of <application-table-object-

name> associated with the application <application-identifier>. Similarly, the operators

qual_in_get and qual_out_get return the values of the instances of <inport-table-object-

name> and <outport-table-object-name>, respectively, associated with the ports identi-

fied by their first argument.

(void *) snmp_get (<object-identifier>)
(void *) qual_app_get (<application-identifier>, <application-table-object-name>)
(void *) qual_in_get (<port-reference>, <inport-table-object-name>)
(void *) qual_out_get (<port-reference>, <outport-table-object-name>)

<object-identifier> ::= <identifier> | <identifier>.<identifier>
<application-identifier> ::= <process-id>
<inport-table-object-name>) ::= <identifier>
<outport-table-object-name>) ::= <identifier>

169

Appendix D _________________

QoS MIB Definition

This appendix contains the Structure of Management Information (SMI) [Case et

al. 93] definition of the QoS MIB. QoS MIB objects belong to one of the following

groups:

• Application (qApp for short), described in Section D.1,

• Outport (qOut), described in Section D.2,

• Inport (qIn), described in Section D.3 and

• Programmable (qProg), described in Section D.4.

D.1 Application Group

The application group consists of the qAppTable table which will have one row for

each QuAL application running on the system. The only static information held on the

application is its name. All other static information should be obtained from the directory

service supported by the system. The qAppDirectoryName is an external key, which al-

lows an qAppTable entry to be cleanly related to an X.500 Directory [Halsall 92] entry.

QuAL-MIB DEFINITIONS ::= BEGIN
IMPORTS

OBJECT-TYPE, Experimental, Counter32
FROM SNMPV2-SMI

DisplayString, TimeStamp
FROM SNMPV2-TC

170

-- This MIB Module uses the extended OBJECT-TYPE macro as
-- defined in RFC 1212.

qApplication MODULE-IDENTITY
LAST-UPDATED “9510170000Z”
ORGANIZATION “Columbia University - DCC Laboratory”
CONTACT-INFO

“ Patricia Florissi
 Postal: Columbia University

Computer Science Department
500 West 120th Street - Room 450
NYc, NY 10027
USA

E-Mail: pgsf@cs.columbia.edu”
DESCRIPTION

“The MIB module describing applications written in QuAL.”
::= {experimental 47}

-- The basic qAppTable contains a list of the application entities.
qAppTable OBJECT-TYPE

SYNTAX SEQUENCE OF QAppEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“The table holding objects which apply to all QuAL applications.”
::= {qApplication 1}

qAppEntry OBJECT-TYPE
SYNTAX QAppEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

“An entry associated with a QuAL application. A QuAL
application is a executing entity that was written in QuAL.
From an OS point of view, an OS-level process can consist
of a single heavy-weight QuAL application or several light-
weight QuAL applications.”

INDEX {qAppOSProcess, qAppIndex}
::= {qAppTable 1}

QAppEntry ::= SEQUENCE {
qAppOSProcess

INTEGER,
qAppId

171

INTEGER,
qAppName

DistinguishedName,
qAppDirectoryName

DistinguishedName,
qAppUpTm

TimeStamp,
qAppOperStatus

INTEGER,
qAppLstChng

TimeStamp,
qAppPeriod

INTEGER,
qAppCost

INTEGER,
qAppAccSoft

Counter32,
qAppAccHard

Counter32,
qAppAccSoftTm

INTEGER,
qAppAccHardTm

INTEGER
qAppLstSoft

TimeStamp,
qAppLstHard

TimeStamp,
qAppMissDead

Counter32,
qAppLstSchdFail

TimeStamp,
qAppExpTmout

Counter32,
qAppLstExpTmout

TimeStamp,
qAppLstSoftFail

TimeStamp,
qAppLstHardFail

TimeStamp,
qAppManager

DisplayString,
qAppMgtStatus

DisplayString
qAppInCnn

Counter32,

172

qAppOutCnn
Counter32,

qAppAccInCnn
Counter32,

qAppAccOutCnn
Counter32,

qAppLstInCnn
TimeStamp,

qAppLstOutCnn
TimeStamp,

qAppLstInCnnFail
TimeStamp,

qAppLstOutCnnFail
TimeStamp,

qAppInCnnFail
Counter32,

qAppOutCnnFail
Counter32

}

qAppOSProcess OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index (the OS process number) to uniquely identify the
OS-level process running on a host machine."

::= {qAppEntry 1}

qAppIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify a QuAL light weight process
inside an OS process running on a host machine."

::= {qAppEntry 2}

qAppName OBJECT-TYPE
SYNTAX DistinguishedName
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name the QuAL application chooses to be known by.
That is, the name of the file that contains the executable."

173

::= {qAppEntry 3}

qAppDirectoryName OBJECT-TYPE
SYNTAX DistinguishedName
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The Distinguished Name of the directory entry where static
information about this application is stored. An empty string
indicates that no information about the application is avail-
able in the directory."

::= {qAppEntry 4}

qAppUpTm OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the QuAL application
was initialized. If the application was initialized prior to the
last initialization of the network management subsystem,
then this object contains a zero value."

::= {qAppEntry 5}

qAppOperStatus OBJECT-TYPE
SYNTAX INTEGER {

“nrt” (1),
“hp” (2),
“hs” (3),
“sp” (4),
“ss” (5),
“sa” (6),
“down” (7)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Indicates the operational status of the QuAL application. A
QuAL application can be executing in non real time mode
(“nrt”), or in the real time mode. In the last case, the first
letter indicates the mode (hard or soft), and the second let-
ter the behavior (periodic, sporadic, or aperiodic). The value
“down” indicates that the application is not available (e.g., it
is in the zombie state) or has died.”

::= {qAppEntry 6}

174

qAppLstChng OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime at the time the QuAL application
entered its current operational state (e.g., nrt, hp, etc.). If
the current state was entered prior to the last initialization of
the local network management subsystem, then this object
contains a zero value."

::= {qAppEntry 7}

qAppPeriod OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of times per second that the real time computation
should be scheduled."

::= {qAppEntry 8}

qAppCost OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Estimated computational cost in milliseconds of the real
time compuation in execution, if any."

::= {qAppEntry 9}

qAppAccSoft OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total number of times the application executed in soft real
time mode."

::= {qAppEntry 10}

qAppAccHard OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total number of times the application executed in hard real

175

time mode."
::= {qAppEntry 11}

qAppAccSoftTm OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total amount of time the application executed in soft real
time mode."

::= {qAppEntry 12}

qAppAccHardTm OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total amount of time the application executed in hard real
time mode."

::= {qAppEntry 13}

qAppLstSoft OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time the application executed in soft real time mode."
::= {qAppEntry 14}

qAppLstHard OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time the application executed in hard real time mode."
::= {qAppEntry 15}

qAppMissDead OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of times the application missed a deadline."
::= {qAppEntry 16}

176

qAppLstSchdFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time when a deadline was missed."
::= {qAppEntry 17}

qAppExpTmout OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Number of times the timeout for executing a real time task
expired."

::= {qAppEntry 18}

qAppLstExpTmout OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time when a timeout expired."
::= {qAppEntry 19}

qAppLstSoftFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time when a request to execute in soft real time mode
was rejected due to lack of processing resources available."

::= {qAppEntry 20}

qAppLstHardFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Last time when a request to execute in hard real time mode
was rejected due to lack of processing resources available."

::= {qAppEntry 21}

qAppManager OBJECT-TYPE
SYNTAX DisplayString

177

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Entity currently managing QoS violations."
::= {qAppEntry 22}

qAppMgtStatus OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"QoS violation control request from an application to an
SNMP manager or vice versa."

::= {qAppEntry 23}

qAppInCnn OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of open connections to QoS demanding
inports.”

::= {qAppEntry 24}

qAppOutCnn OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of open connections to QoS demanding
outports.”

::= {qAppEntry 25}

qAppAccInCnn OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of connections opened to QoS demand-
ing inports, since the application initialized.”

::= {qAppEntry 26}

qAppAccOutCnn OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only

178

STATUS current
DESCRIPTION

"The total number of connections opened to QoS demand-
ing outports, since the application initialized.”

::= {qAppEntry 27}

qAppLstInCnn OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Time when the last connection to a QoS demanding inport
was established.”

::= {qAppEntry 28}

qAppLstOutCnn OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Time when the last connection to a QoS demanding out-
port was established.”

::= {qAppEntry 29}

qAppLstInCnnFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Time when the last connection to a QoS demanding inport
was rejected.”

::= {qAppEntry 30}

qAppLstOutCnnFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Time when the last connection to a QoS demanding out-
port was rejected.”

::= {qAppEntry 31}

-- The basic qOutTable contains a list of the outport entities.
-- It is defined in Section D.2.
qOutTable OBJECT-TYPE

179

...

-- The basic qInTable contains a list of the inport entities.
-- It is defined in Section D.3.
qInTable OBJECT-TYPE

...

-- The basic qProgTable contains a list of the application programmed QoS metrics.
-- It is defined in Section D.4.
qProgTable OBJECT-TYPE

...
END

D.2 Outport Group

The outport group consists of the qOutTable table which will have one row for each

outport of QuAL applications running on the system.

QuAL-MIB DEFINITIONS ::= BEGIN
-- . Definitions from Section D.1.
...
-- The basic qOutTable contains a list of the outport entities.
-- It augments the information in the qAppTable with information about
-- QoS demanding outports.
qOutTable OBJECT-TYPE

SYNTAX SEQUENCE OF QOutEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table holding information on QoS demanding outports
of applications in qAppTable.”

::= {qApplication 2}

qOutEntry OBJECT-TYPE
SYNTAX QOutEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry associated with a QoS demanding outport of a
QuAL application.”

INDEX {qOutLocalAdd, qOutTransPort, qRemoteAdd, qOutRemoteTransPort}
::= {qOutTable 1}

QOutEntry ::= SEQUENCE {

180

qOutOSProcessIndex
INTEGER,

qOutApplIndex
INTEGER,

qOutQuALPortId
INTEGER (1..2147483647),

qOutLocalAdd
OBJECT IDENTIFIER,

qOutTransPort
INTEGER,

qOutRemoteHost
DisplayString,

qOutRemoteOSProcessIndex
INTEGER (1..2147483647),

qOutRemoteAppIndex
INTEGER (1..2147483647),

qOutRemoteQuALPortId
INTEGER (1..2147483647),

qOutRemoteAdd
OBJECT IDENTIFIER,

qOutRemoteTransPort
INTEGER,

qOutStatus
INTEGER,

qOutEstTime
TimeStamp,

qOutActTime
TimeStamp,

qOutProtocol
OBJECT IDENTIFIER,

qOutLoss
INTEGER,

qOutPermut
INTEGER,

qOutMinRate
INTEGER,

qOutMaxRate
INTEGER,

qOutPeak
INTEGER,

qOutDelay
INTEGER,

qOutInterDelay
INTEGER,

qOutRecTime

181

INTEGER,
qOutMsgSize

INTEGER,
qOutManager

OBJECT IDENTIFIER,
qOutMsgSent

TimeStamp,
qOutCnnFail

Counter32,
qOutLstFail

TimeStamp,
qOutAccRecTime

INTEGER,
qOutVolume

Counter32,
qOutLstMsg

TimeStamp
}

qOutOSProcessIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index (the OS process number) to uniquely identify the
OS-level process that owns the outport."

::= {qOutEntry 1}

qOutApplIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify a QuAL light weight process
inside qOutOSProcessIndex.”

::= {qOutEntry 2}

qOutQuALPortId OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A number to uniquely identify a QuAL outport”.
::= {qOutEntry 3}

182

qOutLocalAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the network address of the
machine where qOutProcessIndex is executing. For IP
based environments, it consists of the IP address of the ma-
chine”.

::= {qOutEntry 4}

qOutTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the transport-layer port allo-
cated for qOutQuALPortId”.

::= {qOutEntry 5}

qOutRemoteHost OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name of the host system where the application con-
nected to qOutOSProcess is running. For an IP based envi-
ronment, this should be either a domain name or an IP ad-
dress. For an OSI application it should be the string en-
coded distinguished name of the managed object. For
X.400(84) MTAs which do not have a Distinguished Name,
the RFC1327 syntax 'mta in globalid' should be used."

::= {qOutEntry 6}

qOutRemoteOSProcessIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“A number (the OS process number) to uniquely identify the
OS-level process connected to qOutProcessIndex.”

::= {qOutEntry 7}

qOutRemoteAppIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)

183

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify a QuAL light weight process
inside qOutRemoteOSProcessIndex.”

::= {qOutEntry 8}

qOutRemoteQuALPortId OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A number to uniquely identify the remote QuAL inport
connected to qOutQuALPortId”.

::= {qOutEntry 9}

qOutRemoteAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the network address of the
machine where qOutRemoteOSProcessIndex is executing.
For IP based environments, it consists of the IP address of
the machine”.

::= {qOutEntry 10}

qOutRemoteTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the transport-layer port allo-
cated for qOutRemoteQuALPortId”.

::= {qOutEntry 11}

qOutStatus OBJECT-TYPE
SYNTAX INTEGER {

“up” (1),
“down” (2)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Indicates the operational status of the connection to

184

qOutQuALPortId. A connection can either be “up” or
“down”.”

::= {qOutEntry 12}

qOutEstTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

" The value of sysUpTime when the connection was estab-
lished.”

::= {qOutEntry 13}

qOutActTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

" The value of sysUpTime when the traffic became active,
that is, the first message was sent.”

::= {qOutEntry 14}

qOutProtocol OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An identification of the protocol being used for the com-
munication through qOutQuALPortId. Currently, the fol-
lowing protocols are supported: ST-II, ATM Transport,
TCP/IP, UDP/IP, Unix Local Protocols."

::= {qOutEntry 15}

qOutLoss OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The probabilistic message loss rate (10^(-qOutLoss)) tol-
erated for the communication.”

::= {qOutEntry 16}

qOutPermut OBJECT-TYPE
SYNTAX INTEGER {

“no” (1),

185

“yes” (2)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"It indicates if the communication tolerates permutation
(“yes”) or not (“no”).”

::= {qOutEntry 17}

qOutMinRate OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Minimum number of messages per second that must be de-
livered in the communication.”

::= {qOutEntry 18}

qOutMaxRate OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum average number of messages per second that
will be transmitted.”

::= {qOutEntry 19}

qOutPeak OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum number of messages per second that will be
transmitted during peak periods.”

::= {qOutEntry 20}

qOutDelay OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum propagation delay tolerated for the communica-
tion.”

::= {qOutEntry 21}

186

qOutInterDelay OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum delay variance tolerated for the communica-
tion.”

::= {qOutEntry 22}

qOutRecTime OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum time in milliseconds tolerated for recovery from
connection failures.”

::= {qOutEntry 23}

qOutMsgSize OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum message size in number of bytes.”
::= {qOutEntry 24}

qOutManager OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Identifier of the entity currently controlling communication
QoS violations.”

::= {qOutEntry 25}

qOutMsgSent OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total number of messages sent since the connection was
established.”

::= {qOutEntry 26}

qOutCnnFail OBJECT-TYPE

187

SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total number of connection failures since the connection
was first established.”

::= {qOutEntry 27}

qOutLstFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of the sysUpTime when the last connection
problem occurred.”

::= {qOutEntry 28}

qOutAccRecTime OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total amount of time in milliseconds spent in recovering
from failures.”

::= {qOutEntry 29}

qOutVolume OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total volume of data in kilobytes sent since the connection
became active.”

::= {qOutEntry 30}

qOutLstMsg OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Value of sysUpTime when the last message was sent.”
::= {qOutEntry 31}

-- The basic qInTable contains a list of the inport entities.
-- It is defined in Section D.3.

188

qInTable OBJECT-TYPE
...

-- The basic qProgTable contains a list of the application programmed QoS metrics.
-- It is defined in Section D.4.
qProgTable OBJECT-TYPE

...
END

D.3 Inport Group

The inport group consists of the qInTable table which will have one row for each in-

port of QuAL applications running on the system.

QuAL-MIB DEFINITIONS ::= BEGIN
-- . Definitions from Section D.1.
...
-- . Definitions from Section D.2.
...
-- The basic qInTable contains a list of the inport entities.
-- It augments the information in the qAppTable with information about
-- QoS demanding inports.
qInTable OBJECT-TYPE

SYNTAX SEQUENCE OF QInEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table holding information on QoS demanding inports
of applications in qAppTable.”

::= {qApplication 3}

qInEntry OBJECT-TYPE
SYNTAX QInEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry associated with a QoS demanding inport of a
QuAL application.”

INDEX {qInLocalAdd, qInTransPort, qRemoteAdd, qInRemoteTransPort}
::= {qInTable 1}

QInEntry ::= SEQUENCE {
qInOSProcessIndex

189

INTEGER,
qInApplIndex

INTEGER,
qInQuALPortId

INTEGER (1..2147483647),
qInLocalAdd

OBJECT IDENTIFIER,
qInTransPort

INTEGER,
qInRemoteHost

DisplayString,
qInRemoteOSProcessIndex

INTEGER (1..2147483647),
qInRemoteAppIndex

INTEGER (1..2147483647),
qInRemoteQuALPortId

INTEGER (1..2147483647),
qInRemoteAdd

OBJECT IDENTIFIER,
qInRemoteTransPort

INTEGER,
qInStatus

INTEGER,
qInEstTime

TimeStamp,
qInActTime

TimeStamp,
qInProtocol

OBJECT IDENTIFIER,
qInLoss

INTEGER,
qInPermut

INTEGER,
qInMinRate

INTEGER,
qInMaxRate

INTEGER,
qInPeak

INTEGER,
qInDelay

INTEGER,
qInInterDelay

INTEGER,
qInRecTime

INTEGER,

190

qInMsgSize
INTEGER,

qInManager
OBJECT IDENTIFIER,

qInCnnFail
Counter32,

qInLstFail
TimeStamp,

qInAccRecTime
INTEGER,

qInMsgIndex
INTEGER,

qInLstMsg
TimeStamp,

qInMsgCounter
INTEGER,

qInMsgVolume
Counter32,

qInAccDelay
Counter32,

qInAccJitter
Counter32,

qInMsgOutOrderIndex
INTEGER,

qInLstOutOrderMsg
TimeStamp,

qInMsgOutOrderCounter
INTEGER,

qInMsgOutOrderVolume
Counter32,

qInAccOutOrderDelay
Counter32,

qInAccOutOrderJitter
Counter32,

qInMsgProcIndex
INTEGER,

qInLstProcMsg
TimeStamp,

qInMsgProcCounter
INTEGER,

qInMsgProcVolume
Counter32

}

qInOSProcessIndex OBJECT-TYPE

191

SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index (the OS process number) to uniquely identify the
OS-level process that owns the inport."

::= {qInEntry 1}

qInApplIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify a QuAL light weight process
inside qInOSProcessIndex.”

::= {qInEntry 2}

qInQuALPortId OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A number to uniquely identify a QuAL inport”.
::= {qInEntry 3}

qInLocalAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the network address of the
machine where qInProcessIndex is executing. For IP based
environments, it consists of the IP address of the machine”.

::= {qInEntry 4}

qInTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the transport-layer port allo-
cated for qInQuALPortId”.

::= {qInEntry 5}

qInRemoteHost OBJECT-TYPE

192

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The name of the host system where the application con-
nected to qInOSProcess is running. For an IP based envi-
ronment, this should be either a domain name or an IP ad-
dress. For an OSI application it should be the string en-
coded distinguished name of the managed object. For
X.400(84) MTAs which do not have a Distinguished Name,
the RFC1327 syntax 'mta in globalid' should be used."

::= {qInEntry 6}

qInRemoteOSProcessIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

“A number (the OS process number) to uniquely identify the
OS-level process connected to qInProcessIndex.”

::= {qInEntry 7}

qInRemoteAppIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify a QuAL light weight process
inside qInRemoteOSProcessIndex.”

::= {qInEntry 8}

qInRemoteQuALPortId OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"A number to uniquely identify the remote QuAL outport
connected to qInQuALPortId”.

::= {qInEntry 9}

qInRemoteAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

193

"An index to uniquely identify the network address of the
machine where qInRemoteOSProcessIndex is executing.
For IP based environments, it consists of the IP address of
the machine”.

::= {qInEntry 10}

qInRemoteTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the transport-layer port allo-
cated for qInRemoteQuALPortId”.

::= {qInEntry 11}

qInStatus OBJECT-TYPE
SYNTAX INTEGER {

“up” (1),
“down” (2)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Indicates the operational status of the connection to qIn-
QuALPortId. A connection can either be “up” or “down”.”

::= {qInEntry 12}

qInEstTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

" The value of sysUpTime when the connection was estab-
lished.”

::= {qInEntry 13}

qInActTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

" The value of sysUpTime when the traffic became active,
that is, the first message was received.”

::= {qInEntry 14}

194

qInProtocol OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An identification of the protocol being used for the com-
munication through qInQuALPortId. Currently, the follow-
ing protocols are supported: ST-II, ATM Transport,
TCP/IP, UDP/IP, Unix Local Protocols."

::= {qInEntry 15}

qInLoss OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The probabilistic message loss rate (10^(-qInLoss)) toler-
ated for the communication.”

::= {qInEntry 16}

qInPermut OBJECT-TYPE
SYNTAX INTEGER {

“no” (1),
“yes” (2)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"It indicates if the communication tolerates permutation
(“yes”) or not (“no”).”

::= {qInEntry 17}

qInMinRate OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Minimum number of messages per second that must be de-
livered in the communication.”

::= {qInEntry 18}

qInMaxRate OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current

195

DESCRIPTION
"Maximum average number of messages per second that
will be transmitted.”

::= {qInEntry 19}

qInPeak OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum number of messages per second that will be
transmitted during peak periods.”

::= {qInEntry 20}

qInDelay OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum propagation delay tolerated for the communica-
tion.”

::= {qInEntry 21}

qInInterDelay OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum delay variance tolerated for the communica-
tion.”

::= {qInEntry 22}

qInRecTime OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Maximum time in milliseconds tolerated for recovery from
connection failures.”

::= {qInEntry 23}

qInMsgSize OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current

196

DESCRIPTION
"Maximum message size in number of bytes.”

::= {qInEntry 24}

qInManager OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Identifier of the entity currently controlling communication
QoS violations.”

::= {qInEntry 25}

qInCnnFail OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total number of connection failures since the connection
was first established.”

::= {qInEntry 26}

qInLstFail OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of the sysUpTime when the last connection
problem occurred.”

::= {qInEntry 27}

qInAccRecTime OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Total amount of time in milliseconds spent in recovering
from failures.”

::= {qInEntry 28}

qInMsgIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

197

"Index (according to sending time) of the last message that
arrive in sequence.”

::= {qInEntry 29}

qInLstMsg OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime when the last message in se-
quence arrived.”

::= {qInEntry 30}

qInMsgCounter OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of messages that arrived in sequence.”
::= {qInEntry 31}

qInMsgVolume OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total volume of data in kilobytes received in se-
quence.”

::= {qInEntry 32}

qInAccDelay OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The sum of the propagation delay of all messages that ar-
rived in sequence.”

::= {qInEntry 33}

qInAccJitter OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total sum of the inter message delay of all messages

198

that arrived in sequence.”
::= {qInEntry 34}

qInMsgOutOrderIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Index (according to sending time) of the last message that
arrive out of sequence.”

::= {qInEntry 35}

qInLstOutOrderMsg OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime when the last message arrived out
of sequence.”

::= {qInEntry 36}

qInMsgOutOrderCounter OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of messages that arrived out of se-
quence.”

::= {qInEntry 37}

qInMsgOutOrderVolume OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total volume of data in kilobytes received out of se-
quence.”

::= {qInEntry 38}

qInAccOutOrderDelay OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The sum of the propagation delay of all messages that ar-

199

rived out of sequence.”
::= {qInEntry 39}

qInAccOutOrderJitter OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total sum of the inter message delay of all messages
that arrived out of sequence.”

::= {qInEntry 40}

qInMsgProcIndex OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"Index (according to sending time) of the last message that
was processed.”

::= {qInEntry 41}

qInLstProcMsg OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime when the last was processed.”
::= {qInEntry 42}

qInMsgProcCounter OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total number of messages that was processed.”
::= {qInEntry 43}

qInMsgProcVolume OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The total volume of data in processed.”
::= {qInEntry 44}

200

-- The basic qProgTable contains a list of the application programmed QoS metrics.
-- It is defined in Section D.4.
qProgTable OBJECT-TYPE

...
END

D.4 Programmable Group

The programmable group consists of the qProgTable table which will have one row

for each QoS metric programmed by QuAL applications running on the system.

QuAL-MIB DEFINITIONS ::= BEGIN
-- . Definitions from Section D.1.
...
-- . Definitions from Section D.2.
...
-- . Definitions from Section D.3.
...
-- The basic qProgTable contains a list of the application programmed QoS metrics.
-- It augments the information in the qAppTable with information about
-- application programmed QoS metrics.
qProgTable OBJECT-TYPE

SYNTAX SEQUENCE OF QProgEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The table holding information on application programmed
QoS metrics.”

::= {qApplication 4}

qProgEntry OBJECT-TYPE
SYNTAX QProgEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"An entry associated with an application programmed QoS
metric.”

INDEX {qProgInOut, qProgLocalAdd, qProgTransPort, qProgMet}
-- Note that the values of qProgLocalAdd, qProgTransPort, qProgRemoteAdd,
-- and qProgRemoteTransPort uniquely identify an entry in the tables qOutTable
-- and qInTable. These entries contain more information on the communication
-- being measured.

::= {qProgTable 1}

201

QProgEntry ::= SEQUENCE {
qProgInOut

INTEGER,
qProgLocalAdd

OBJECT IDENTIFIER,
qProgTransPort

INTEGER,
qProgMet

DisplayString,
qProgWindow

INTEGER,
qProgLstTime

TimeStamp,
qProgVal

INTEGER,
qProgRemoteAdd

OBJECT IDENTIFIER,
qProgRemoteTransPort

INTEGER
}

qProgInOut OBJECT-TYPE
SYNTAX INTEGER {

“in” (1),
“out” (2)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to indicate if the metric is being measured on the
inport (“in”) or on the outport (“out”) side of the communi-
cation."

::= {qProgEntry 1}

qProgLocalAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the network address of the
machine where the application that owns the port being
measured is executing. For IP based environments, it con-
sists of the IP address of the machine."

::= {qProgEntry 2}

202

qProgTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to uniquely identify the transport-layer port allo-
cated for the inport being measured”.

::= {qProgEntry 3}

qProgMet OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"An index to identify the name of the QoS metric pro-
grammed by an application”.

::= {qProgEntry 4}

qProgWindow OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The size of window measured in milliseconds over which
the metric is being measured”.

::= {qProgEntry 5}

qProgLstTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of sysUpTime the last time the metric was meas-
ured”.

::= {qProgEntry 6}

qProgVal OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The value of the QoS metric the last time it was meas-
ured”.

::= {qProgEntry 7}

203

qProgRemoteAdd OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The network address of the machine where the application
connected to the port being measured is executing. For IP
based environments, it consists of the IP address of the ma-
chine."

::= {qProgEntry 8}

qProgRemoteTransPort OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The transport-layer port allocated for the port connected to
the one being measured”.

::= {qProgEntry 9}

END

204

Appendix E __________________

Related Work

This appendix reviews related work and positions QoSME and its components in this

context. Section E.1 presents related work in the areas addressed by QuAL: distributed

computing, characterization and handling of QoS metrics, and real time programming.

Section E.2 reviews existing designs to add QoS handling to sockets and OSs and relates

them to QoSockets and QoSOS. Finally, Section E.3 addresses how QoSME distinguishes

itself from existing QoS frameworks.

E.1 Related Work on QuAL

QuAL comprises work in three distinct areas: distributed computing, reviewed in Sec-

tion E.1.1, characterization and handling of QoS, reviewed in Section E.1.2, and real-time

programming, reviewed in Section E.1.3.

E.1.1 Distributed Computing

A distributed system is an application that must be executed on a distributed comput-

ing environment (possibly heterogeneous). The process model [Hoare 78] is an abstraction

that reflects main objects and their relationships in a distributed system. A computation is

performed by autonomous processing units which interact and collaborate to solve a par-

ticular task by exchanging messages. In this section, current approaches for programming

205

distributed systems in lieu of the process model are reviewed and arguments are made as

to why Concert/C was chosen as our basic engine.

From an application programmer perspective, communication facilities are provided at

levels as low as the transport layer [Stallings 94]. The most basic transport-layer service is

the socket [Stevens 90] abstraction. Sockets are Service Access Points (SAPs) that entail

transport-layer addresses used by processes to communicate. Sockets allow the specifica-

tion of low level communication details, such as connectionless or connection-oriented

service. No compile-time or run-time support is provided to verify more application-

oriented features such as the type of information being exchanged, flow of control issues,

etc. All these high-level features must be explicitly coded by the application developer.

This requires a considerable level of expertise on transport-layer issues and results in non-

reliable and complex codes. Furthermore, the topology of the processes in the application

must be explicitly specified by the programmer in terms of the location and address of

each process.

The RPC abstraction [Nelson 81, Soares 92] was created to convey these issues. RPC

extends the procedure call mechanism to a distributed environment, whereby a process can

call a procedure that belongs to another process. Interprocess communication is achieved

by using the syntax and semantics of a well accepted strongly typed language abstraction.

RPC also constitutes a sound basis to move existing applications to the distributed system

environment, thus supporting software reusability. RPC enables location transparency,

whereby a process can communicate with another process using language-level identifiers,

function references, without knowledge of transport-layer details. Also, the communica-

206

tion abstraction is simple: synchronous communication with the caller blocking until the

result of the RPC is returned from the callee. The type of the data being exchanged are the

procedure parameters and the compiler is able to type-check the communication.

A natural extension of this trend was to develop completely new languages that are

especially suitable for distributed computing. Examples include many programming para-

digms such as object-oriented (Emerald [Jul et al. 88]), logic for distributed computing

(Prolog [Schapiro 86]), functional (Concurrent ML [Reppy 91]), and process-oriented

(HERMES [Strom et al. 91] and Ada [Ada 83]). A complete survey of programming lan-

guages paradigms for distributed computing can be found in [Bal et al. 89], and an analysis

of several paradigms for process interaction in distributed programs in [Andrews 91].

A compromise was necessary between the conflicting goals of having a new distrib-

uted programming language and being compatible with existing environments. Thus, exist-

ing programming environments and languages have been extended in several dimensions

to support distributed computing at a higher-level. The most common approach is to pro-

vide RPC packages [Soares 92]. However, due to language details, the programmer is of-

ten exposed to a complex programming interface and has to perform several tasks in order

to bring the program to a state in which RPC can be directly used. Usually, the process

owning the remote procedure must register in the RPC runtime in the transport layer, and

in the associated name servers. Only then can it listen for arriving calls. The process calling

the procedure must invoke transport-layer services, name servers, and other RPC imple-

mentation services to locate the remote procedure and establish a remote binding. These

features undermine location, syntax and semantics transparency.

207

Concert [Yemini et al. 89, Auerbach et al. 91] was developed to overcome these

drawbacks. Concert is in reality a family of language extensions, being developed at IBM

T. J. Watson Research Laboratory, to support distributed computing. The approach taken

by Concert minimizes the learning overhead and does not incur the loss of location, syn-

tax, and semantics transparency. Languages are extended with a concise set of new types

and operators that support the process model while allowing reuse of existing code. The

process model is supported directly within new languages by these extensions. Thus, it

eliminates the multiple abstractions of language, OS, and add-on packages, and replaces

them with a single, higher-level abstraction. In such an integrated system, the application

developer uses a single programming interface, ignoring the details of how this interface is

supported. It is the responsibility of the language designer and implementer to transpar-

ently map the Concert interface into low-level services provided by the language run-time

system and underlying OS.

Concert also introduces the notion of interoperability whereby programs written in any

of the Concert family of languages interoperate with each other and also with services

written using conventional RPC packages. The interoperability is done by the language

run-time system, and it is transparent to the application developer. The Concert run-time

system shelters heterogeneity at machine-level, OS-level, and communication-protocol-

level. As a consequence, a program written in one language can communicate with an-

other program written in a different language, and running on a different OS through Con-

cert. A Concert program is also interoperable with non-Concert programs running other

inter-process communication protocols.

208

Concert/C is the language extension to C [Kernighan and Ritchie 88] to support the

Concert approach for distributed computing. Concert/C has been prototyped and it sup-

ports a strongly-typed message-passing mechanism and RPC to specify inter-process

communication integrated into the language.

Because of these features, the Concert approach was chosen as the approach for dis-

tributed computing and Concert/C selected as the platform over which our extensions for

the development of multimedia applications are built. A more detailed overview of Con-

cert and Concert/C was presented in Appendix B.

E.1.2 QoS Handling

Inter-process communication abstractions are appropriate for traditional applications

because they abstract communication delays that the programmer does not need to under-

stand in order to perform its job. This is not the case for distributed multimedia applica-

tions because QoS parameters must be negotiated with the network and the application

must be aware of periods in which the network is unable to provide them. Future commu-

nication abstractions must therefore explicitly enable specification, negotiation, and moni-

toring of such QoS parameters, while sheltering all communication details that are not

relevant for the application. This section reviews efforts that have been geared towards

providing QoS to applications.

Provision of QoS at the transport layer has been the subject of much effort recently.

References [Feldemeier 93, Doeringer et al. 90] include an extensive review on the state of

the art in this area. Protocols at the transport layer are developed to provide end-to-end

guaranteed service across a network. It is the responsibility of the application to exchange

209

information among its peers to set up the QoS parameters, sometimes via another inter-

process communication mechanism. The set up phase includes selecting the characteristics

of the data flow between origin and target(s), identifying the SAP relevant to the specific

transport protocol being used, and ensuring security, if necessary. Examples of parameters

that may be specified are bandwidth, delay, reliability, and error selection policy. Data is

transmitted as part of the point-to-point or point-to-multi-point connections. During con-

nection setup, paths to the destination are selected and the necessary network resources

are reserved. Mechanisms at the transport layer require extra effort from the application

developer to understand communication details, similar to what happens with the socket

abstraction.

An example of a transport-layer protocol for QoS provision is ST-II [Topolcic 90].

The motivation for this protocol was to enhance the Internet Protocol [Stevens 90] for the

establishment of QoS-dependable communication streams. Several works followed ST-II,

such as HeiTS [Hehmann et al. 91], CMTP [Wolfinger and Moran 91], TPX [Danthine et

al. 92], RTP [Schulzrinne and Casner 95].

Transport-layer protocols that use ST-II have been developed to ease the establish-

ment of communication streams in specific domains. For example, PVP [Cole 81] and

NVP [Cohen 81] can be used directly by applications transmitting video and audio, re-

spectively. PVP and NVP automatically choose the ST-II QoS parameters most appro-

priate for the transmission.

A more specialized transport protocol for audio and video digital communication

across interconnected packet switched networks is described in [Jeffay et al. 92]. This

210

transport protocol restricts the services provided. The QoS parameters that can be speci-

fied are synchronization type between audio and video, number of frames played out of

order, and end-to-end latency.

In addition to the complexity involved in the connection establishment and monitoring

of such communications, applications that use transport-layer inter-process communica-

tion facilities are directly restricted to nodes that support the respective protocol. The

Session Reservation Protocol (SRP) [Anderson et al. 90] is a step towards overcoming

this problem. SRP is a session-layer resource reservation protocol for guaranteed-

performance communication in the Internet and it works independently of any particular

transport protocol. SRP can be used with standard protocols, such as IP [Postel 81], or

with new protocols, such as ST-II. A host implementing SRP can use IP when communi-

cating with hosts not supporting SRP. SRP uses the DASH resource model [Anderson et

al. 90] to specify the reservation of resource (disk, CPU or network) capacity. SRP is di-

rectly responsible for reserving all network resources and can thus be viewed as a network

management protocol. Several other reservation protocols followed SRP, such as RSVP

[Braden et al. 95], RCAP [Benerjea and Mah 91], HieRAT [Volg et al. 95], and

UNI 3.0 [ATM Forum 93]. References [Keshav 93] and [Kurose 93] contain a detailed

overview of current efforts in this area.

Even session-layer protocols are low-level abstractions for application developers. The

application-developer still needs to handle issues such as data representation across het-

erogeneous environments and inter-process synchronization model. In order to cope with

these drawbacks, application-level support tools for specific domains were developed.

211

MCAM [Keller and Effelsberg 93] is an application-layer architecture for handling

video streams in a heterogeneous distributed environment. A source is any entity reading

from an input device and producing a stream and a sink is an entity consuming a stream.

Remote connections between sources and sinks in a heterogeneous environment are ac-

complished through a MCAM well-defined protocol. Information is passed between a

movie service user and a movie service provider using service primitives.

The functional model of the system consists of four parts. The directory system is used

to store and access distributed movie information. The Equipment Control System (ECS)

allows the integrated handling of remote devices, e.g., to perform a camera zoom, or to

adjust the volume of speakers. The Stream Provider System (SPS) provides to MCAM a

plain stream service. The MCAM system interacts with other systems to provide services

to an MCAM user. All services can be accessed at the SAP of the MCAM layer. Every

play operation creates a context that carries information about the current value of the

stream parameters supported. Such parameters are reliability (error-free or non-error-

free), speed (retrieval and transmission), mode (fast or slow motion), quality (compression

algorithm used), section (parts of the movie), and direction (forward or backward). All

these parameters except the quality parameter can be modified by the user, if the movie is

stored in a file. For live transmission, however, the user can only change the reliability,

mode and quality. SPS is limited to video-specific applications and parameters negotiation

is asymmetric. The service user specifies the stream parameters and the provider cannot

restrict or negotiate them.

QuAL provides an application-level abstraction for the negotiation, establishment and

212

management of QoS-dependable communications. The negotiation is completely symmet-

ric. Both sender and receiver specify the QoS values desirable for the communication. The

model guarantees that connections be opened only between senders and receivers that

have matching QoS communication requirements. This is in contrast with MCAM, for in-

stance, that the service user dictates the QoS parameters of the communication. Further-

more, QuAL provides an abstract model for the specification of QoS parameters that is

independent of the communication protocol used, and also independent of the nature of

the data being transmitted. This approach is general, it does not limit the domain of appli-

cations suitable to this framework, and it enables the bridging of heterogeneity at transport

and session layers.

E.1.3 Real Time Language Constructs

One of the key issues in distributed multimedia application development is how to

specify the QoS that should be delivered by the underlying runtime system. Many such

QoS requirements relate to temporal behaviors. It is thus necessary to use real time lan-

guage constructs to specify such QoS demands. This section presents a brief survey of real

time language constructs.

There has been a significant amount of research done in providing language level sup-

port for specifying real time constraints. In such languages, one specifies the constraints of

the tasks to be executed and the underlying system is responsible for reserving the re-

sources, and for scheduling the tasks accordingly.

Real-time constraints are classified as either hard or soft. Hard real-time constraints

have to be met, whereas soft real-time constraints may be eventually violated (some re-

213

covery mechanism to handle violations must be provided). To guarantee that hard real-

time constraints are met, a worst case performance analysis of the tasks to be executed

must be performed at compile time. The analysis determines each task workload and is

used for the allocation of resources. Based on workloads and constraints, the system must

find an execution schedule (scheduleability analysis). The fact that the execution time of all

program segments must be known at compile time imposes severe restrictions on the lan-

guage constructs that can be used as well as on the underlying OS. Examples of constructs

that make such an estimate impossible are while loops. The underlying system must also

provide an upper bound for OS calls, such as input and output operations. The schedule-

ability analysis problem is complex, and in some cases intractable [Garey and Johnson 75].

Real time systems differ on the real time constraints that can be specified, on the type

of scheduleability analysis they employ, and on recovery mechanisms they support. A de-

tailed survey of real time languages can be found in [Halang and Stoyenko 91].

Since real time system implementation imposes so many challenges, existing languages

are customized to solve specific problems, without stretching all real time language re-

quirements. Some examples of soft real time languages are RTL/2 [Barnes 76] for indus-

trial process control, PEARL [Kappatsch 77] designed by a group of German researchers

from research institutes and industrial firms, ILIAD [Pickett 79] designed by General

Motors' Research Laboratories, and PORTAL [Nageli and Gorrengourt 79] designed to

be used in system programming and real time process control. All these languages imple-

ment heuristic scheduleability analysis (thus causing deadlines to be missed) and weak ex-

ception-handling mechanism for the handling and recovery of such violations.

214

Ada [Ada 83], on the other hand, is a general purpose programming language that in-

cludes real-time capabilities. Ada was designed as the result of a procurement exercise by

the U.S. Department of Defense and it is expected to become the most used real time lan-

guage in the near future. Being a typical design-by-the-committee product, it includes just

about every feature conceivable in a modern language. Ada hardly makes any provisions

for scheduleability analysis and, as a result of its size and complexity, requires large

amounts of run time support. The only way for expressing time dependencies in Ada is to

delay the execution of tasks by specified periods. Thus, Ada programmers have to hand-

tune task timing dependencies. Furthermore, it does not prevent deadlocks during shared-

memory access and resources are allocated in a first-in-first-out basis. The multitasking

model in Ada does not deliver predictable execution.

None of the recently developed hard real-time languages is in wide use, and are classi-

fied as experimental. Examples include TOMAL [Kieburtz and Hennessy 76], DICON

[Lee 84, Lee and Gehlot 85], ORE [Donner and Jameson 88], FLEX [Lin and Natar-

jan 88], Real-time Mentat [Grimshaw et al. 89], RTC++ [Ishikawa et al. 90], and Real-

Time Euclid [Kligerman and Stoyenko 86]. Real-time Euclid was chosen as a representa-

tive example of such languages, since it meets all the standard requirements to support

hard real-time programming.

Real-time Euclid is a descendant of Concurrent Euclid [Cordy and Holt 81]. Programs

can always be analyzed for guaranteed scheduleability, and use a structured exception

handling mechanism. Inter-process synchronization mechanisms, such as monitors and sig-

nals, are analyzed to study the timing dependencies among processes and to prevent

215

deadlocks. Statements to wait on signals are extended to specify timeouts and correspond-

ing exception handlers. Default system level exception handlers are defined for standard

exceptions. Loops are restricted to iterate no more than a compile time known number of

iterations. There is no provision for dynamic data structures, since it may introduce un-

predictability in both time and storage requirements. No recursion is permitted, since it not

possible to calculate an upper-bound on the number of times the function will be called.

The scheduleability analysis is completely performed during compilation. Real-Time

Euclid processes can be either periodic, or aperiodic. Periodic processes are those which

have to execute at regular intervals, and must be completed before the next interval is due.

Aperiodic processes are asynchronous processes that have only soft deadlines and for

which no minimum inter-execution time interval is known. Aperiodic processes can be ac-

tivated by system interrupts, by other processes or by timers. This information is used by

the scheduleability analyzer to decide if the entire system of processes is scheduleable and

by the runtime system to properly schedule processes.

An extension of PEARL to support hard-real time programming has been proposed in

[Halang and Stoyenko 91]. The main goal is to bring the good programming practices of

Real-Time Euclid from the experimental to the industrial world. PEARL is still in the de-

sign phase, and it requires a specialized underlying OS to support its implementation. In

order to guarantee the compliance of real time constraints, resources are allocated to han-

dle the worst case scenario, that is, when the system has the highest work load. This pes-

simistic approach, although necessary, may lead to low system use, especially when the

system load fluctuates highly. To overcome this problem, PEARL uses the concept of im-

216

precise results [Lin et al. 87] to provide graceful system degradation. Imprecise results are

defined as the most recent partial results. This idea only works for monotonicaly improv-

ing computations. By making results of poorer quality available when the results of desir-

able quality cannot be obtained in time, real-time services of potentially inferior quality are

provided in a timely fashion.

QuAL builds a general purpose, high level, real time language suitable for hard and

soft real-time programming with predictable behavior. Similar to Real-time Euclid and

extended PEARL, it provides high-level language constructs for the specification of proc-

ess scheduling and control, and time constrained behavior. On the other hand, QuAL puts

less restrictions on the underlying supporting system without sacrificing behavior predict-

ability.

E.2 Extending Sockets and OSs to Support QoS

Several designs [Topolcic 90, Partridge 95, DePrycker 93] have been proposed to add

QoS negotiation to the sockets interface. In fact, each transport protocol that supports

QoS defines its own extension to the sockets interface. The main reason being that trans-

port protocols differ on the QoS parameters supported and on the units of measurement

used for certain parameters. For example, communication reservations in ST-II are made

in terms of the following parameters: smallest packet size measured in user data bytes

(LimitOnPDUBytes), lowest packet rate that can be tolerated by the sending side meas-

ured in tenths of a packet per second (LimitOnPDURate), and minimum bandwidth that

can be tolerated by the sending side expressed as a product of bytes and tenths of a packet

per second. On the other hand, communication resources in AAL are expressed in terms

217

of the following parameters: the desired and minimum peak bandwidth measured in kilo-

bits per second(peak_bandwidth.target and peak_bandwidth.minimum), the desired and

minimum bandwidth measured in kilobits per second (mean_bandwidth.target and

mean_bandwidth.minimum), and the desired and minimum burst traffic measured in kilo-

bits packet length (mean_burst.target and mean_burst.minimum). Thus, each protocol de-

fines its own set of parameters through which QoS can be specified.

QoSockets distinguishes itself from existing extensions in the following main features:

• It is transport protocol independent. The QoSockets runtime does the translation

between the QoS parameters supported by QoSockets and the parameters sup-

ported by the underlying protocol.

• It automatically generates SNMP QoS MIBs. These MIBs contain performance

statistics on the QoS delivered to applications. At one hand, applications access

these MIBs to analyze the QoS being delivered and to detect violations. On the

other hand, SNMP managers access these MIBs to evaluate and control the per-

formance of the delivered QoS.

Researchers [Govindan and Anderson 91, Feldmeier 93, Stankovic et al. 95, Coulson

et al. 95] have also focused on how OSs can be extended to support the real time capabili-

ties required by distributed multimedia applications. Reference [Aurrecoechea et al. 95]

classifies these efforts into the following main approaches:

• modifying existing UNIX kernel to provide more predictable behavior, such as the

work in [Hanko et al. 91], or

• completely re-implementing UNIX, such as the Chorus implementation described

218

in [Coulson et al. 95].

Chapter 3 describes how the functionality offered by QoSOS can be supported on OSs

that support the POSIX standard [Posix 79], putting QoSOS in the first approach. How-

ever, using the techniques similar to the ones described in Chapter 3, QoSOS runtime

could also be implemented to run on top of [Hanko et al. 91] and [Coulson et al. 95]. This

way QoSOS applications can be ported across different underlying OSs.

E.3 QoS Frameworks

Only recently, the research community started addressing QoS handling through QoS

architectures. A QoS architecture investigates how the communication network and the

end computation systems attached to it need to be extended to support QoS in an inte-

grated manner. This design is in contrast to previous research efforts that concentrated on

QoS provision by specific components, such as admission control mechanisms that assure

maximum transmission latency at the network.

Several architectures have been proposed, such as the Extended Integrated Reference

Model (XRM) [Lazar 94], the TINA QoS Framework [Nilison et al. 95], and the Quality

of Service Architecture (QoS-A) [Campbell et al. 94]. Reference [Aurrecoechea et al. 95]

includes a detailed overview of existing QoS architectures. This section discusses only

QoS-A, since it can be chosen as a representative example of such architectures.

QoS-A is a layered architecture that provides services and mechanisms for QoS assur-

ance. QoS-A consists of six layers. At the very top, the distributed systems platform pro-

vides mechanisms to specify QoS in an object based environment. Below this layer, the

orchestration layer provides jitter correction and multimedia synchronization services.

219

The transport layer, the network layer, the data link layer, and the physical layer support

the orchestration layer by providing a range of QoS configurable QoS services. Each layer

in this architecture includes three main functional components, called planes. The protocol

plane offers services to establish communication between peer layers. The QoS mainte-

nance plane monitors and maintains the services provided by the protocol plane on its

layer. Finally, the flow management plane is responsible for managing connection estab-

lishment and translating QoS constraints between neighbor layers. By defining the interac-

tions between layers, QoS-A defines a model for tight integration among the resources at

each layer. These resources include data devices, OS threads, communication protocols,

and networks.

QoSME distinguishes itself from these architectures in its generality. More specifically,

QoSME enables application level QoS management independent of the underlying archi-

tecture or transport protocol system being used. On the other hand, existing QoS architec-

tures impose specific constraints on the underlying architecture. For example, QoS-A ap-

plications require that the underlying system offers the services specified by the functional

planes. Thus, QoSME promotes code portability and reusability. Furthermore, QoSME

runtime can execute on top of QoS architectures and use the services provided by them.

This feature enables QoSME applications to execute and make use of the functionality

supported by QoS architectures in general, such as QoS-A.

220

Appendix F __________________

QoSME 1.0 Manual Pages

261

Bibliography _________________

[Ada 83] The Programming Language Ada Reference Manual.
Spring-Verlag, Berlin-Heidelberg, New York - Tokyo,
1983.

[Anderson et al. 90] D. P. Anderson, S. Tzou, R. Wahbe, R. Govindan, and M.
Andrews.
Support for Continuous Media in the DASH System.
In Proceedings of the Tenth International Conference on
Distributed Computing Systems, Paris, May 1990.

[Andrews 91] G. R. Andrews.
Paradigms for Process Interaction in Distributed Pro-
grams.
ACM Computing Surveys, vol. 23, no. 1, pp. 49-90,
March 1991.

[ATM Forum 93] ATM Forum.
ATM User-Network Interface Specifications, Version 3.
Prentice-Hall, 1993.

[Auerbach et al. 91] J. S. Auerbach, D. F. Bacon, A. P. Goldberg, G.
Goldszmidt, M. T. Kennedy, A. R. Lowry, J. R. Russel,
W. Silverman, R. E. Strom, D. M. Yellin, and S. A.
Yemini.
High-level language support for programming reliable dis-
tributed systems.
In Proceedings of the First CASCON International Con-
ference, Toronto, Canada, October 1991.

[Auerbach 92] J. S. Auerbach.
Concert/C Specification.
Technical Report, IBM T. J. Watson Research Center,
Yorktown Heights, NY, November 1992.

[Aurrecoechea et al. 95] C. Aurrecoechea, A. Campbell, and L. Hauw.
A Comparison of End to End QoS Architectures..
To appear in the Multimedia Systems ACM Journal,
Springer International, 1995.

262

[Bal et al. 89] H. E. Bal, J. G. Steiner, and A. S. Tanembaum.
Programming Languages for Distributed Computing Sys-
tems.
ACM Computing Surveys, vol. 21, no. 3, pp. 261-322,
September 1989.

[Barnes 76] J. Barnes.
RTL/2 Design and Philosophy.
Heyden, London, 1976.

[Benerjea and Mah 91] A. Benerjea and B. Math.
The Real-Time Channel Administration Protocol.
In Proceedings of the Second International Workshop on
Network and Operating System Support for Digital Audio
and Video, IBM ENC, Heidelberg, Germany, November
1991.

[Braden et al. 95] R. Braden, L. Zhang, D. Estrin, S. Herzog, and S Jamin.
Resource ReServation Protocol (RSVP) -- Version 1
Functional Specification.
Internet Draft, draft-ietf-rsvp-spec-07, Integrated Services
Working Group, 1995.

[Campbell et al. 94] A. Campbell, G. Coulson, and D. Hutchison.
ACM Computer Communications Review, April 1994.

[Case et al. 93] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser.
Structure of Management Information for Version 2 of the
Simple Network Management Protocol (SNMPv2).
Internet Requests for Comments (RFC) 1442, April 1993.

[Cohen 81] D. Cohen.
A Network Voice Protocol NVP-II.
Technical Report, USC/Information Sciences Institute,
April 1981.

[Cole 81] E. Cole.
PVP - A Packet Video Protocol.
Technical Report, W-Note 28, USC/Information Sciences
Institute, August 1981.

[Comer and Stevens 91] D. E. Comer and D. L. Stevens.
Internetworking with TCP/IP Volume 1.
Prentice Hall, NJ, 1991.

263

[Coulson et al. 95] G. Coulson, A. Campbell, and P. Robin.
Design of a QoS Controlled ATM Based Communication
System in Chorus.
IEEE Journal of Selected Areas in Communications
(JSAC), Special Issue on ATM LANs: Implementation and
Experiences with Emerging Technology, May 1995.

[Cordy and Holt 81] J. Cordy and R. Holt.
Specification of Concurrent Euclid.
Technical Report, CSRG-133, August 1981.

[Danthine et al. 92] A. Danthine, Y. Baguette, G. Leduc, and L. Leonard.
The OSI 95 Connection-Mode Transport Service - En-
hanced QoS.
In Proceedings of the 4th IFIP Conference on High Per-
formance Networking, Liege, Belgium, December 1992.

[DePrycker 93] M. De Prycker.
Asynchronous Transfer Mode: solution for Broadband
ISDN.
Ellis Horwood Limited, Hemel Hempstead, Hertfordshire,
England, Second Edition, 1993.

[Doeringer et al. 90] W. Doeringer, D. Dykeman, M. Kaiserwerth, B. Meister,
H. Rudin, and R. Williamson.
A Survey of Light-weight transport Protocols for High-
speed Networks.
IEEE Transactions on Communications, November 1990.

[Donner and Jameson 88] M. Donner and D. Jameson.
Language and operating systems features for real-time
programming.
Computing Systems, 1988.

[Elmasri and Navathe 94] R. Elmasri and S. Navathe.
Fundamentals of Database Systems - Second Edition.
The Benjamin/Cummings Publishing Company, Inc., 1994.

[Feldemeier 93] D. Feldmeier.
A Framework of Architectural Concepts for High Speed
Communication Systems.
Technical Report, Computer Communication Research
Group, Bellcore, Morristown, May 1993.

264

[Frederick 94] R. Frederick.
Video Conference Tool (NetVideo).
Available through ftp://parcftp.xerox.com/pub/net-
research/nvbin-3.3*.

[Florissi 95] P. Florissi.
QoSockets - Version 1.0.
Available through the World Wide Web at the address
http://www.cs.columbia.edu/dcc or through
ftp://ftp.cs.columbia.edu/pub/qual/qual.tar.Z, 1995.

[Freed and Kille 93] N. Freed and S. Kille.
Network Service Monitoring Management Information
Base.
Internet Draft, 1995.

[Garey and Johnson 75] M. Garey and D. Johnson.
Complexity results for multiprocessor scheduling under re-
source constraints.
SIAM Journal on Computing, vol. 4, no. 4, 397 - 411,
December 1975.

[Goldszmidt 95] G. Goldszmidt.
Distributed Management by Delegation.
PhD Thesis, Computer Science Department, Columbia
University, New York, New York, 1995.

[Govindan and Anderson 91] R. Govindan and D. P. Anderson.
Scheduling and IPC Mechanisms for Continuous Media.
In Proceedings of the Thirteenth ACM Symposium on Op-
erating Systems Principles, Pacific Grove, California,
USA, SIGOPS, vol. 25, pp 68-80, 1991.

[Grimshaw et al. 89] A. Grimshaw, A. Silberman, and J. Liu.
Real-Time Mentat programming language and architec-
ture.
In Proceedings of GLOBECOM 89, 1989, pp. 1-7.

[Halang and Stoyenko 91] W. A. Halang and A. D. Stoyenko.
Constructing Predictable Real Time Systems.
Boston/Dordrecht/London: Kluwer Academic Publishers,
1991.

265

[Halsall 92] F. Halsall.
Data Communications, Computer Networks and Open
Systems.
Addison Wesley, 1992.

[Hanko et al. 91] J. G. Hanko, E. M. Keurner, J. D. Northcutt, and A. G.
Wall.
Workstation Support for Time Critical Applications.
In Proceedings of the Second International Workshop on
Network and Operating System Support for Digital Audio
and Video, Heidelberg, Springer Verlag, 1991.

[Hehmann et al. 91] D. B. Hehmann, R. G. Herrtwich, W. Schulz, T. Schuett,
and R. Steinmetz.
Implementing HeiTS: Architecture and Implementation
Strategy of the Heidelberg High Speed Transport System.
In Proceedings of the Second International Workshop on
Network and Operating System Support for Digital Audio
and Video, IBM ENC, Heidelberg, Germany, November
1991.

[Hoare 78] C. A. R. Hoare.
Communicating Sequential Processes.
Communications of ACM, vol. 21, no. 8, pp. 666-677,
August 1978

[Hyman et al. 93] J. Hyman, A. Lazar, G. Pacifici.
A Separation Principle Between Scheduling and Admis-
sion Control for Broadband Switching.
IEEE Journal on Selected Areas in Communications, vol.
11, no. 4, pp. 605 - 616, May 1993.

[Ishikawa et al. 90] Y. Ishikawa, H. Tokuda, and C. Mercer.
Object-oriented real-time language design: Constructs for
timing constraints.
Technical Report CMU-CS-90-111, Computer Science
Department, Carnegie Mellon University, Pitsburgh,
Pensilvania, 1981.

[Jeffay et al. 92] K. Jeffay, D. L. Stone, and F. D. Smith.
Transport and Delay Mechanism for multimedia Confer-
ence Across Packet-switched networks.
Journal of Computer Networks and ISDN Systems, 1992.

266

[Jul et al. 88] E. Jul, H. Levy, N. Hutchinson, and A. Black.
Fine-Grained Mobility in the Emerald System.
ACM Transactions on Computer Systems, vol. 6, no. 1,
pp. 109-133, February 1988.

[Kappatsch 77] A. Kappatsch.
Full PEARL language description.
Technical Report, KFK-PDV 130, 1977.

[Kernighan and Ritchie 88] B. W. Kernighan and D. M. Ritchie.
The C Programming Language, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1988.

[Keller and Effelsberg 93] R. Keller and W. Effelsberg.
MCAM: An Application Layer Protocol for Movie Con-
trol, Access, and Management.
In Proceedings of the in First ACM International Confer-
ence on Multimedia, Anaheim, 1993.

[Keshav 93] S. Keshav.
Report on the Workshop on Quality of Service Issues in
High Speed Networks.
ACM Computer Communications Review, vol. 22, no. 1,
pp. 6–15, January 1993.

[Kieburtz and Hennessy 76] R. Kieburtz and J. Hennessy.
TOMAL – A high-level programming language for mi-
croprocessor process control applications.
ACM SIGPLAN Notices, vol. 11, no. 4, pp. 127-134, April
1976.

[Kligerman and Stoyenko 86] E. Kligerman and A. Stoyenko.
Real-Time Euclid: A language for reliable real-time sys-
tem.
IEEE Transactions on Software Engineering, vol. 12, no.
9, pp. 941 - 949, September 1986.

[Kumar 95] V. Kumar.
What is the MBONE.
Available through the World Wide Web at the address
http://www.best.com/~prince/techinfo/mbone.html.

267

[Kurose 93] J. F. Kurose.
Open Issues and Challenges in Providing Quality of Serv-
ice Guarantees in High Speed Networks.
ACM Computer Communications Review, vol. 23, no. 1,
pp. 6–15, January 1993.

[Lazar et al. 90] A. Lazar, A. Temple, and R. Gidron.
An Introduction for Integrated Networks that Guarantees
Quality of Service.
International Journal of Digital and Analog Communica-
tion Systems, vol 3, pp 229 - 238, April-June 1990.

[Lazar 94] A. Lazar.
Challenges in Multimedia Networking.
In Proceedings of the International Hi-Tech Forum,
Osaka, Japan, February 1994.

[Lee 84] I. Lee.
A programming system for distributed real-time applica-
tions.
In Proceedings of the IEEE Real-Time Systems Sympo-
sium, December 1984, pp. 18-27.

[Lee and Gehlot 85] I. Lee and V. Gehlot.
Language constructs for distributed real-time program-
ming.
In Proceedings of the IEEE Real-Time Systems Sympo-
sium, , 1985, pp. 57-66.

[Leinbaugh 80] D. Leinbaugh.
Guaranteed response times in hard-real-time environment.
IEEE Transactions on Software Engineering, vol. 6,
no. 1, pp. 85–91, January 1980.

[Lin et al. 87] K. Lin, S. Natarajan, and J. Liu.
Imprecise results: Utilizing partial computations in real-
time systems.
In Proceedings of the IEEE Real-Time Systems Sympo-
sium, December 1987.

[Lin and Natarjan 88] K. Lin and S. Natarajan.
Expressing and maintaining timing constraints in FLEX.
In Proceedings of the IEEE Real-Time Systems Sympo-
sium, December 1988.

268

[Liu and Layland 73] C. Liu and J. Layland.
Scheduling algorithms for multiprogramming in a hard-
real-time environment.
Journal of the ACM, vol. 20, 46 - 61, 1973.

[Nageli and Gorrengourt 79] H. Nageli and A. Gorrengourt.
Programming in PORTAL: An introduction.
Technical Report, 1979.

[Nelson 81] B. J. Nelson.
Remote Procedure Call.
PhD Thesis, Technical Report, Computer Science De-
partment, Carnegie Mellon University, Pitsburgh, Pensil-
vania, 1981.

[Nilison et al. 95] G. Nilison, F. Dupuy, and C. Chapman.
An Overview of the Telecommunications Information
Networking Architecture.
In Proceedings of TINA’95, Melbourne, Australia, 1995.

[O’Reilly 95] O’Reilly Publishing.
Internet User Survey.
Available through the World Wide Web at the address
http://www.ora.com.

[Partridge 94] C. Partridge.
Sockets and a Quality of Service Manager.
Slides presented at the 31st IETF Meeting - Integrated
Service Working Group (available through
ftp://mercury.lcs.mit.edu/pub/interserv), 1994.

[Pickett 79] M. Picket.
ILIAD Reference Manual.
Computer Science Department, General Motors Research
Laboratories, Warren, MI, April, 1979.

[Posix 79] Information technology - Portable Operating System Inter-
face (POSIX).
Technical Report, 1990.

[Postel 81] J. Postel.
Internet Protocol - DARPA Internet Program Protocol
Specification.
Internet Requests for Comments (RFC) 1014, September
1981.

269

[Reppy 91] J. H. Reppy.
CML: A higher order concurrent language.
In Proceedings of the ACM SIGPLAN'91 Conference on
Programming Language Design and Implementation,
pp. 293 - 305, June 1991.

[Rose 93] M. T. Rose.
The Simple Book.
Prentice-Hall, 1993.

[Schapiro 86] E. Schapiro.
Concurrent Prolog: a progress report.
IEEE Computer, 1986.

[Schulzrinne and Casner 95] H. Schulzrinne and S. Casner.
RTP: A Transport Protocol for Real-Time Applications.
Internet Draft, draft-ietf-avt-rtp-05, 1995.

[Soares 92] P. G. Soares.
On Remote Procedure Call.
In Proceedings of the Second CASCON International
Conference, Toronto, Canada, November 1992.

[Stallings 93] W. Stallings.
SNMP, SNMPv2, and CMIP.
Addison Wesley, 1993.

[Stankovic et al. 95] Stankovic.
Implications of Classical Scheduling Results for Real-Time
Systems.
IEEE Computer, Special Issue on Scheduling and Real-
Time Systems, June 1995.

[Stevens 90] W. R. Stevens.
UNIX Network Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[Strom et al. 91] R. E. Strom, D. F. Bacon, A P. Goldberg, A. Lowry, D.
M. Yellin, and S. A. Yemini.
Hermes — A Language for Distributed Computing.
Prentice-Hall, 1991.

270

[Sun Microsystems 87] Sun Microsystems.
XDR: External Data Representation Standard.
Internet Requests for Comments (RFC) 1014, June 1987.

[Sun Microsystems 92] Sun Microsystems.
SunOS 4.1.3 User’s Reference Manual.
Sun Microsystems, Inc., 1992.

[Sun Microsystems 93] Sun Microsystems.
SunOS 5.3 Reference Manual.
Sun Microsystems, Inc., 1993.

[Sun Microsystems 94] Sun Microsystems.
SunOS 5.3 Guide to Multi-Thread Programming.
Sun Microsystems, Inc., 1994.

[Topolcic 90] C. Topolcic.
Internet Stream Protocol, Version 2 (ST-II).
Internet Requests for Comments (RFC) 1190, October,
1990.

[Vogel et al 94] A. Vodel, G. Bochmann, and J. Gecsei.
Distributed Multimedia Applications and Quality of Serv-
ice - A Survey.
In Proceedings of the CASCON International Conference,
Toronto, Canada, October 1994.

[Volg et al. 95] C. Volg, L. Wolf, R. Herrtwich, and H. Wittig.
HeiRAT - Quality of Service Management for Distributed
Multimedia Systems.
Multimedia Systems Journal, November 1995.

[Wolfinger and Moran 91] B. Wolfinger and M. Moran.
A Continuous Media Data Transport Service and Protocol
for Real-time Communication in High Speed Networks.
In Proceedings of the Second International Workshop on
Network and Operating System Support for Digital Audio
and Video, IBM ENC, Heidelberg, Germany, November
1991.

[Ullman 73] J. Ullman.
Polynomial complete scheduling problems.
In Proceedings of the Fourth Symposium on OS Princi-
ples, 1973, pp. 96 - 101.

271

[Yemini et al. 89] S. A. Yemini, G. S. Goldszmidt, A. D. Stoyenko, and Y.
H. Wei.
Concert: A High Level Language Approach to Heteroge-
neous Distributed Systems.
In Proceedings of the 9th International Conference on
Distributed Computing Systems, Newport Beach, CA,
June 1989, pp. 162-171.

