
Tractable Reasoning in Knowledge Representation Systems�

Mukesh Dalal�

CUCS�������

Department of Computer Science

Columbia University

New York� NY �����

July ����

�This is an updated version of the Rutgers University Computer Science Technical Report DCS�TR���� published

in May ����� This material is partially based upon work supported by the National Science Foundation under Grant

No� IRI��	��
����
�Email� dalalcs�columbia�edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

� Introduction �

��� Overview �

��� Examples �

��� Plan �

� Fact Propagation �

��� Overview �

��� Mathematical Preliminaries �

��� PCE � Propositional Calculus with Equality and Generalized Connectives � � � � � � � � � � � �

����� Syntax �

����� Semantics ��

����� Alternative Syntax for Examples ��

����	 Directly Inferable Facts ��

����
 Discussion �

��	 Rewrite Systems for PCE �

��	�� Rewrite Systems �

��	�� Properties of Rewrite Systems ��

��	�� Proof Techniques ��

��
 BCP � Boolean Constraint Propagation ��

��
�� Horn Pebbling ��

��
�� Clausal BCP ��

��
�� Formula BCP and Prime BCP ��

��
�	 CNF�BCP ��

��
�
 Discussion ��

��� FPC � Extending Clausal BCP ��

����� Properties of FPC ��

�� FP � Extending CNF�BCP �

���� Properties of FP � 	�

���� Comparison with CNF�BCP � 	�

��� FPE � Handling Equality � 	�

����� Properties of FPE � 	�

�

��� Conclusions � 	�

� Algorithms for Fact Propagation ��

��� Overview �
�

��� Alternative Propagation Rules �
�

��� Basic Data Structures �
	

����� Tuple Encoding of Theories�
�

��	 AFPC� Simpli�cation and Propagation Rules Only �
�

��	�� Correctness of AFPC ��

��	�� Complexity of AFPC ��

��
 AFPL� Adding Lifting Rules �

��
�� Correctness of AFPL �

��
�� Complexity of AFPL �

��� AFP� Adding Factoring Rules �

����� Correctness of AFP �	

����� Complexity of AFP �

�� AFPE� Adding Equality Rules to AFP ��

��� Conclusions �	

� Deductions based on Fact Propagation ��

	�� Overview �

	�� Preliminaries ��

	���� A Consequence Relation �

	���� Basic Clauses ��

	���� Herbrand Bases ��

	���	 Lattices and Fixed�Points ���

	�� Admissible Rewrite Systems ���

	�	 A Fixed�point Construction for Viv ���

	�	�� The Fixed�Point Construction ���

	�	�� Properties of the Fixed�Point ���

	�	�� Vivid Theories and Intricacy ���

	�	�	 Computing the Least Fixed�Point ���

	�
 Consequence Relations for Limited Deduction ���

	�
�� A Complete Consequence Relation ���

	�
�� A Family of Tractable Consequence Relations ���

	�
�� Comparison with Earlier Approaches ���

	�� Conclusions ��

� Tractable Cases of Reasoning ��	

�� Overview ���

�� Tractable Satis�ability Classes ��

�

�� Tools for Proving Bounded Intricacy ���

�	 Constraint Satisfaction Problems ���

�	�� Overview ���

�	�� Tractable Constraint Networks ��	

�	�� Constraint Theories ���

�	�	 Induced Width and Intricacy ���

�	�
 Functional Constraints and Intricacy ���

�	�� A New Family of Tractable Classes ��

�
 Databases with Disjunctive Information �	�

�
�� Terminology and Notation �	�

�
�� Query Answering by Checking Satis�ability �	�

�
�� Tractable Algorithms for Querying �	�

�
�	 Describing Tractable Queries Using Intricacy �		

�� Disjunctive Logic Programming �	�

���� A Tractable Family of DLPs �	�

� Conclusions �
�

	 Conclusions ���

��� Contributions �
�

��� Directions for Future Research �
�

��� Summary �
	

A Axiomatic Proof Theory for PCE ���

B A Ptime CNF Transformation ��	

C Local Consistency in CSP ���

D Case Analysis for Proving Con
uence �	�

�

List of Tables

��� Values of �elds of nodes in the tree for ��P� ���P �Q� � P ���
�

D�� Summary of con�uence case ���

D�� Simpli�cation and propagation rules ���

D�� Simpli�cation� propagation� and lifting rules ���

D�	 Lifting and simpli�cation rules ��	

D�
 Lifting and propagation rules ��

D�� Propagation and lifting rules ���

D� Factoring and equality rules � m�m��m�� ��

D�� Factoring and simpli�cation rules� m�m��m�� ���

D�� Factoring and propagation rules I� m ���

D��� Factoring and propagation rules II� m ��

D��� Propagation and factoring rules ��

D��� Factoring and lifting rules ��

D��� Equality rules I ��

D��	 Equality rules II� m � � and a � b � c �	

	

List of Figures

��� Comparing FP and CNF�BCP �

��� FP on a constraint network �

��� Vivid transformation and Intricacy �

��� Logical term as a tree ��

��� Overlap� critical pair� common term� and con�uence ��

��� Variable overlap� v is a meta�variable in R��s schema �	

��	 A pebbling graph �

��
 A rewrite system� HP� for Horn Pebbling ��

��� A rewrite system� CBCP� for Clausal BCP ��

�� A rewrite system for CNF transformation ��

��� Simpli�cation rules ��

��� Propagation rules ��

���� Lifting rules ��

���� Factoring rules �

���� Rewrite system FP ��

���� Equality rules � 	�

���	 Rewrite system FPE used for fact propagation with equality � � � � � � � � � � � � � � � � � � 	

��� Nesting of procedures in algorithm AFP �
�

��� Alternative Propagation Rules �
�

��� Tree representation of ��P� ���P �Q� � P ���

��	 Occurs lists for the tree of ��P� ���P �Q� � P ���
�

��
 Collapse�N� �

��� Lift��N� 	

�� Lift��N� 	

��� Back pointers for occurs lists �

��� Glits lists �

���� Factoring ��

���� Initialization of Occurs arrays of the new nodes created by factoring � � � � � � � � � � � � � � ��

���� Increase in depth due to factoring ��

���� ChangeOccurs�M� ��

	�� Algorithm to compute lfp�TR���k� ���

�� An Algorithm to determine satis�ability ���

�� A constraint network ���

�� The simpli�ed network ���

�	 Induced Network ��

�
 A functional constraint network ��	

�� OR�database D� and query �	�

� Tr�D���� ��� �	�

�� Testing membership in DLP�k� �	�

�

Abstract

This document addresses some problems raised by the well�known intractability of deductive reasoning in
even moderately expressive knowledge representation systems�

Starting from boolean constraint propagation �BCP�� a previously known linear�time incomplete reasoner
for clausal propositional theories� we develop fact propagation �FP� to deal with non�clausal theories� after
motivating the need for such an extension� FP is speci�ed using a con�uent rewriting systems� for which
we present an algorithm that has quadratic�time complexity in general� but is still linear�time for clausal
theories� FP is the only known tractable extension of BCP to non�clausal theories� we prove that it performs
strictly more inferences than CNF�BCP� a previously�proposed extension of BCP to non�clausal theories�

We generalize a refutation reasoner based on FP to a family of sound and tractable reasoners that are
�increasingly complete� for propositional theories� These can be used for anytime reasoning� i�e�� they provide
partial answers even if they are stopped prematurely� and the �completeness� of the answer improves with
the time used in computing it� A �xpoint construction based on FP gives an alternate characterization of the
reasoners in this family� and is used to de�ne a transformation of arbitrary theories into logically�equivalent
�vivid� theories � ones for which our FP algorithm is complete�

Our �nal contribution is to the description of tractable classes of reasoning problems� Based on FP� we
develop a new property� called bounded intricacy� which is shared by a variety of tractable classes that were
previously presented� for example� in the areas of propositional satis�ability� constraint satisfaction� and OR�
databases� Although proving bounded intricacy for these classes requires domain�speci�c techniques �which
are based on the original tractability proofs�� bounded intricacy is one more tool available for showing that
a family of problems arising in some application is tractable� As we demonstrate in the case of constraint
satisfaction and disjunctive logic programs� bounded intricacy can also be used to uncover new tractable
classes�

Chapter �

Introduction

��� Overview

A fundamental principle underlying much of the research in Arti�cial Intelligence �AI� is that any intelligent
activity requires an explicit body of knowledge related to the task at hand� Such activities include natural
language understanding� problem solving� planning� and scene analysis� The �eld of Knowledge Representa�
tion and Reasoning �KR� deals with building and studying systems� known as KR systems� that represent
knowledge and draw conclusions from it�

KR systems are often used as embedded utilities or subsystems providing computational services� Levesque
�Lev�	a� has characterized a KR system as an abstract server supporting two kinds of operations� Telling
the system some additional information �in some restricted formal language LTell�� and Asking it queries
�in some� possibly di�erent� language LAsk�� Unlike simple �le systems� KR systems can use not just ex�
plicitly told information� but also inferred information� in answering questions� For example� if we tell the
information �huge�Mike��� then the query ���x�Huge�x��Hungry�x�� should be answered �true� in most
reasonable KR systems� including relational databases�

This relationship between the information told to the system and the answers to queries is usually
speci�ed by an entailment �logical consequence� relation in some formal logic� Thus� Tell and Ask operations
implement some form of deductive reasoning� The logics most commonly used are �rst�order logic and
propositional logic �Men�	� Yas�	�� since LTell and LAsk are usually subsets of their underlying languages�

It has been cogently argued �BFL��� that for the computational services of a KR system to be dependable�
their worst�case time requirements should be small enough to allow adequate response in all critical situations�
In other words� Tell and Ask operations should be tractable� which is usually taken to mean that they be
in PTIME �GJ�� Yas�	�� On the other hand� the language�s� of KR systems should be expressive enough
to represent the rich variety of knowledge used in any intelligent activity �DP���� Not unexpectedly� there
is a tradeo� between the expressiveness of a KR system and the tractability of its services � increasing
the expressiveness generally decreases the tractability �LB�
�� Studying ways to make this tradeo� between
expressiveness and tractability� also known as the intractability problem� is a central focus of research in KR�

There are several general approaches to the intractability problem �c�f� �Cra�����

�� Restrict the expressiveness of the KR system �i�e�� the language for telling it information and�or the
language of asking queries� so that the two operations are provably tractable� Typical examples of
this approach include the use of the Horn subset of propositional logic� which is tractable �DG�	�� and
work in relational databases �Ull���� where LTell is often just ground facts� but LAsk is function�free
�rst�order logic� The problem with this approach is that such KR systems are generally too weak to
deal with most applications �DP����

�� Provide a fast� but incomplete �or possibly even unsound�� reasoner for the KR system� An incomplete
reasoner may fail to infer some information warranted by the underlying logic� while an unsound

�

reasoner may infer information that is not warranted by the underlying logic� Typical examples of this
approach include Boolean Constraint Propagation �BCP� �McA��� McA��� �a variant of unit resolution
�CL��� and tautological entailment �Bel� Lev�	b� Fri��� both of which are sound but incomplete�
The general di�culty with this approach is in characterizing �preferably syntactically� the class of
queries that will be answered correctly� or the degree of error in the possibly�incorrect answer�

�� An extension to the incomplete�unsound approach employs a family of incomplete�unsound reasoners�
which di�er in their correctness and complexity of reasoning� For any given task� an appropriate rea�
soner is selected� based on the speci�c requirements of the task� Typical examples of this approach in�
clude the hierarchy of satis�ability problems �GS��� and the family of approximate entailments �CS��a��
In addition to the di�culty in characterizing queries that will be answered correctly by the various
reasoners in the family� this approach presents issues concerning the reuse of earlier computation when
di�erent reasoners from the family are used�

	� A variant of the incomplete�unsound approach is to explicitly approximate the knowledge told to the
KB� and�or the queries asked of it� into some other language for which the reasoning is tractable� As
in the work on null values in databases �IL���� domain abstraction �Imi��� and knowledge compilation
�SK��� BE���� the idea in this approach is to �bound� the error by reporting possibly more than
one answer� Note that this approach relies on �nding tractable languages to which the formulas are
approximated�

This work makes contributions to the �rst three approaches to the intractability problem�

We start with an widely used exemplar of the second approach� �Clausal� BCP is an e�cient �linear�
time� reasoning method �i�e�� reasoner� for answering clausal propositional queries posed to a KR system
that is told clausal propositional information� a problem which is known to be NP�Complete �GJ�� Yas�	��
BCP is sound �i�e�� logically correct� and incomplete �i�e�� does not answer all queries�� However� none of its
previously�proposed extensions to the non�clausal case are known to be tractable �i�e�� provably in PTIME��
There are many applications where reasoning with non�clausal theories is required� for example� in verifying
automatically generated update constraints �GTT��� and in the applications of logical �Truth Maintenance
Systems� �TMS� �de ��� McA��� Mar���� We develop fact propagation �FP�� which tractably extends BCP
to non�clausal theories� We present a quadratic�time algorithm for FP� which runs in linear time for clausal
theories� Moreover� FP is proved to be more complete than CNF�BCP� a previously�proposed extension of
BCP to non�clausal theories� We know of no other reasoner for arbitrary propositional theories� which is
tractable and at least as complete as FP�

A second contribution of this work is generalizing a refutation reasoner based on FP to a family of
increasingly�complete� sound� and tractable reasoners �the third approach to intractability�� Since we show
that each theory has a complete reasoner in the family� it can be used for specifying the partial answers of an
�anytime reasoner�� Anytime reasoners �BD��� are complete reasoners that provide partial answers even if
they are stopped prematurely� the completeness of the answer improves with the time used in computing the
answer� They could also be used for providing a quick ��rst cut� to a problem� which can be later improved�
Although families of increasingly�complete tractable reasoners were previously�known for the clausal case
�c�f� �GS��� CS��a��� we do not know of any other such family of reasoners for arbitrary propositional
theories� Our technique for generating these reasoners is based on restricting the length of the clauses used
in chaining �i�e�� Modus Ponens��

We provide an alternative characterization� based on a �xpoint construction using FP� of the reasoners
in our anytime family� This �xpoint characterization is then used to de�ne a transformation of arbitrary
propositional theories into logically equivalent theories for which the tractable reasoner FP is complete
�� what we will call �vivid theories�� Developing appropriate notions of vividness and techniques for
compiling theories into vivid theories has already generated considerable interest in the KR community �c�f�
�Lev��� Dav�����

Our �nal contribution is to the description of tractable cases of reasoning �the �rst approach to in�
tractability�� Based on FP� we develop a new property� called �bounded intricacy�� which is shared by a
variety of tractable classes that were previously known in the literature� for example� in the areas of �clausal�
propositional satis�ability� constraint satisfaction� and so�called �OR�databases�� Although proving bounded

�

���

¬

¬
¬

R

S
R

Q
Q

P true

B
C

D
E

A

Figure ���� Comparing FP and CNF�BCP

���

intricacy for these classes requires domain�speci�c techniques� which are based on the original tractability
proofs� bounded intricacy is one more tool available for showing that a family of problems arising in some ap�
plication is tractable� As we demonstrate in the case of constraint satisfaction problems and disjunctive logic
programs� bounded intricacy �for low values of intricacy� can be also used to uncover new tractable classes�
which can then be checked for applicability� Since there are tractable classes that do not have bounded in�
tricacy� bounded intricacy also seems to provide some new insights into the structure of tractable problems�
Filtering out classes with unbounded intricacy may be used as a ��rst cut� in eliminating intractable classes
of reasoning problems�

��� Examples

We present three examples that motivate and illustrate our approach to dealing with the intractability
problem� In the �rst example� we compare FP with CNF�BCP for reasoning with a simple digital circuit�
In the other examples� we illustrate FP� the family of reasoners� and intricacy using constraint satisfaction
problems�

Consider the simple digital circuit of Figure ���� where the gates marked � are AND gates and the gates
marked � are OR gates� A not atypical task in circuit fault diagnosis is to ask what else can be inferred
given that both the output A and the input P are true�

The formula that encodes the circuit is given by�

� � �P � �Q � ��Q � �R � ��R � S�����

CNF transformation of � produces the following logically equivalent formula�

�� � ��P �Q� � ��P � �Q �R� � ��P � �Q � �R � S��

If we are given the additional observation that P is true� BCP transforms �� as follows�

�� infer Q from P and �P �Q

�� infer R from P � Q� and �P � �Q �R

�� infer S from P � Q� R� and �P � �Q� �R � S�

In contrast� FP transforms � using P as follows�

�� since both A and P are true� B is also true

�� since B is true� both C and Q are also true

�� since both C and Q are true� D is also true

�

	� since D is true� both E and R are also true

� since both R and E are true� S is also true

Note that both FP and CNF�BCP produce the same results�

If this reasoning is to be explained to a novice� whose only knowledge of logic is the truth tables of AND
and OR gates� the steps of FP themselves would be su�ciently clear� However� in the case of CNF�BCP� we
should �rst explain the clauses that are obtained by the CNF transformation� and then explain the steps of
BCP� This explanation would be something along the following lines�

�� Since A is true� either B or �P is true�

�� If B is true then both C and Q are true�

�a� Thus� either Q or �P is true �this is how the �rst clause of �� is explained��
Since �P is false� it follows that Q is true�

�b� If C is true then either D or �Q is true�

�c� If D is true then both E and R are true�

i� Thus� either �P � �Q� or R is true �second clause of ����
Since P and Q are true� it follows that R is also true�

ii� If E is true then either �R or S is true�

iii� Thus� either �P � �Q� �R or S is true �third clause of ����
Since P � Q� and R are true� it follows that S is also true�

This explanation� based on CNF�BCP� is clearly more complex than the previous explanation� which is
based on FP� Moreover� the explanations based on CNF�BCP become more complex for longer circuits of
similar kind� while the explanations based on FP remain simple�

Our remaining examples concern constraint satisfaction problems �CSPs�� CSPs deal with assigning
values to variables so that some given constraints are satis�ed� Many important problems in AI and Computer
Science can be viewed as special cases of constraint satisfaction � for example� map�coloring� scheduling�
temporal reasoning� circuit design� and diagnostic reasoning �see �Kum��� for references and more examples��
A CSP �Mac� Fre�� is speci�ed by a �nite set of �variables� and a set of constraints on subsets of these
variables� A CSP is said to be consistent i� there is an assignment of a value to each variable such that all
the constraints are satis�ed� such an assignment is called a solution of the CSP� Determining consistency is
known to be CoNP�Complete �Fre�� even for constraint networks� a restricted class of CSPs in which all
the constraints are either unary or binary� and are explicitly provided as sets of tuples� Constraint networks
are often represented by a graph whose nodes represent variables and unary constraints� and whose arcs
represent binary constraints�

In the network C� given in Figure ��� �a�� for example� the value of the variable w could be either a or b�
and variables w and z can together take values a and j� a and k� or b and j� If we use atom u�v to stand for
�variable u has value v�� then one can translate the constraints of a CSP into formulas of propositional logic�
so that the resulting theory is consistent i� the original CSP is consistent� Starting with the translation of
C�� FP e�ectively removes b from the constraint on variable w and the constraint �b� j� from the edge �w� z��
and obtains the network given in Figure ��� �b��

Now consider the network C� of Figure ��� �a�� which is obtained by adding a new variable y and changing
some constraints in the network C� of Figure ��� �a�� If we explicitly assign value c to the variable x� then
FP obtains f from the new translated theory� thus� inferring that the resulting network is inconsistent� From
this� we obtain that�

� �� �x�c

where � is the translation of the network C�� and �� is the weakest member in the family of reasoners based
on FP� Based on this� we disallow the value c for the variable x as part of the transformation of � that makes
the result �more vivid��

	

���

w x

z

a,b c,d

j,k

(a,c)
(a,d)

(c,j)
(d,k)

(a,j)
(a,k)
(b,j)

�a� Network C�

w x

z

a c,d

j,k

(a,c)
(a,d)

(c,j)
(d,k)

(a,j)
(a,k)

�b� FP on C�

Figure ���� FP on a constraint network

���

���

w x

z

a,b c,d,e,g

j,k

(a,c)
(a,d)
(a,e)
(a,g)

(c,j)
(d,j)
(d,k)

(a,j)
(a,k)
(b,j)

y

h,i

(h,k)
(i,j)
(i,k)

(c,h)
(d,h)
(e,i)
(g,i)(e,k)

(g,k)

�a� Network C�

w x

z

a d,e,g

k

(a,d)
(a,e)
(a,g)

(d,k)
(a,k)

y

h,i

(h,k)
(i,k)

(d,h)
(e,i)
(g,i)(e,k)

(g,k)

�b� Vivid form of C�

Figure ���� Vivid transformation and Intricacy

���

After disallowing value c for variable x� if we assign value j to variable z then FP again obtains f from
the new translated theory� From this� we obtain that�

� �� �z�j

where �� is the second weakest member in the family of reasoners based on FP� Intuitively� the subscript �
indicates that only clauses of size at most � have been added to � before calling FP� Based on this� we also
disallow the value j for variable z as part of the vivid transformation of �� The resulting theory� obtained
by FP after disallowing the values c and j for the variables x and z respectively� corresponds to the network
given in Figure ��� �b�� This theory� which is obtained by the vivid transformation of the theory �� is
logically equivalent to � and is vivid� since FP is complete for reasoning with it� Alternatively� �� can be
said to be complete for reasoning with the original ��

Note that if we assign value j to variable z in the original network C�� then FP does not obtain f from
the translated theory� It follows that�

� ��� �z�j

which illustrates that �� can make more inferences than ��� Since �� is the weakest member in the family
of reasoners which is complete for reasoning with �� the intricacy of � is �� In contrast� the intricacy of the
translation of the network given in Figure ��� �b� is ��

��� Plan

Chapter � presents FP� which extends BCP to non�clausal theories� FP detects more unsatis�able theories
and infers more information for some theories than CNF�BCP� which is BCP applied after clausal trans�
formation� FP is also useful for transforming a theory into a logically equivalent theory which may be
�syntactically simpler�� FP is speci�ed using a term rewriting system� containing four kinds of rules� sim�
pli�cation� which eliminates truth constants� propagation� which replaces propositional symbols by logical
constants� lifting� which moves literals out of nested connectives� and factoring� which identi�es common
literals in subformulas� Using a term rewriting system has the advantage that it is easier to specify global
changes and that old formulas that are not needed are automatically discarded� This rewrite system was
also a very useful starting point for developing a tractable algorithm� We prove that the rewrite system for
FP is convergent � ensuring that each theory can be �nitely rewritten to a unique irreducible form � and
modular � ensuring that parts of a theory are independently rewritable before rewriting the entire theory�
Some alternative rewrite systems are discarded since they do not satisfy these useful properties�

Chapter � presents AFP� an algorithm for computing the irreducible form of a �nite theory under FP�
The algorithm runs in time quadratic in the size of the input theory� and is based upon e�ciently locating
the sites for rule applications in a tree representation of the theory� using several additional data structures�
We identify invariants for the data structures as a way of developing� and arguing the correctness of� the
algorithm� If we restrict theories to be clausal� the complexity of AFP is the same as that of �clausal� BCP�
linear time�

Chapter 	 presents the family �k of reasoners for inferring clauses from propositional theories� We �rst
de�ne �FP � a refutation reasoner based on FP� We identify some restricted cases in which it is complete�
for example� for reasoning with Horn clauses� Any theory for which �FP is complete for inferring clauses is
called vivid� a term inspired by �Lev���� where vivid theories are ones where an answer can be �read o��
quickly� By adding some inference rules� which allow chaining on previously inferred formulas� we extend
�FP to a sound and complete reasoner� By restricting this chaining� we obtain the family �k of reasoners�
for any number k� the reasoner �k allows chaining over clauses of size at most k� We also present a function
Viv� de�ned in terms of lattice�theoretic �xed�points� such that for every � there is a k for which Viv��� k�
is vivid� We show that the set of clauses inferable from Viv��� k� using �FP is exactly the set of clauses
inferable from � using �k� Since our results do not depend on the exact details of FP� we abstract out those
properties of rewrite systems that are required� thus providing some degree of generality�

Chapter
 presents our technique for describing tractable cases of satis�ability based on the notion of
intricacy� for any theory �� the least value k for which Viv��� k� is vivid is said to be the intricacy of ��

�

We show that satis�ability is tractable for any class of theories such that all the unsatis�able theories in
the class have intricacy at most k� for some �xed constant k� Although this �bounded intricacy� criterion
is a su�cient condition for tractability� we show that there are tractable classes that do not have bounded
intricacy �so the notion of �bounded intricacy� is not synonymous with �tractable��� We then show that
some tractable classes already presented in the literature do have bounded intricacy� These include tractable
classes of OR�databases �IMV�	� and CSPs �DP��� DH���� We also describe some new tractable classes
using the bounded intricacy criterion� These include the �rst non�obvious tractable class in disjunctive logic
programs �LJR���� and a new tractable family of classes in CSP�

Chapter � reviews the contributions of this thesis and presents some useful directions for future research�

Chapter �

Fact Propagation

��� Overview

Our main goal is to develop a tractable extension of Boolean Constraint Propagation �BCP� to knowledge
bases represented by non�clausal theories� For clausal theories� this extension should have the same time
complexity as BCP�

BCP �McA��� McA��� is an e�cient �linear time� but incomplete method for reasoning with �nite clausal
theories in propositional logic� For example� BCP transforms the theory fP��Q� ��P�Q�R�g to fP��Q�Rg�
In applications like truth�maintenance systems� BCP is used for inferring literals �i�e�� facts� entailed by a
given theory�

Some applications require reasoning with non�clausal theories� Two such examples are automatically
generated database update constraints and the propositional translation of a constraint satisfaction problem�
However� the standard extensions of BCP to non�clausal theories � Formula�BCP� Prime�BCP and CNF�
BCP � do not have known tractable algorithms� In addition� conjunctive normal form transformation of a
theory� the �rst step in CNF�BCP� has the disadvantage that the formulas in the theory lose their natural
form� so explanations become di�cult�

We present fact propagation �FP�� a technique that detects more unsatis�able theories and infers more
facts for some theories than CNF�BCP� FP is also useful for transforming a theory into a logically equivalent
theory which may be �syntactically simpler��� For example� FP simpli�es the theory f�P � �Q� ��Q�P ���g
to fPg� while CNF�BCP stops after transforming it to f�P �Q�� �P ��Q�g� We observe that BCP on clausal
theories can be viewed as a two step process � propagate and simplify� propagation replaces propositional
symbols by logical constants� e�g�� f�P � �Q � ��Q � P ���g becomes f�P � �Q � ��t � f ���g� simpli�cation
reduces this to P � FP generalizes these steps to non�clausal theories� and adds some new steps� FP itself is
incomplete� for example� it does not infer P from the theory f�P �Q�� �P � �Q�� �Q�R�g

FP is speci�ed in terms of a rewrite system� This has the advantage that it is easier to specify global
changes �as in propagation� and that old formulas that are not needed are automatically discarded �e�g��
after simpli�cation�� We were not able to specify FP using the standard techniques used in logic� namely
model theory or inference rules� This rewrite system was also a very useful starting point for developing a
tractable algorithm�

We prove that the rewrite system FP is con�uent� terminating� and modular� Con�uence� which ensures
that the �nal result does not depend on the particular ordering of rule applications� provides us a welcome
degree of freedom in developing the tractable deterministic algorithm and arguing for its correctness� Ter�
mination� which ensures that every sequence of rule applications terminates� allows us to prove con�uence
using the Knuth�Bendix approach �KB�� and helps us in developing the tractable algorithm� Modularity�
which ensures that parts of a theory are independently rewritable before rewriting the entire theory� is useful

�The actual measure of simplicity is formally presented in De�nition �����

�

for knowledge bases that are built incrementally� Some alternative rewrite systems are discarded since they
do not satisfy these useful properties�

In addition to propagation and simpli�cation� FP has two additional kinds of rules� lifting� which moves
literals out of nested connectives� and factoring� which identi�es common literals in subformulas� For exam�
ple� one kind of lifting rewrites �P � �Q � �R � S� � �R � T ��� to �P � Q � ��R � S� � �R � T ���� in turn�
this rewrites to �P �Q�R� �S � T �� by using factoring and some simpli�cation� These rules are needed to
make FP infer more facts than CNF�BCP� and to keep it con�uent�

��� Mathematical Preliminaries

We normally use N to denote the set f�� �� �� � � �g of natural numbers and n to denote any element of this
set� For any n� the set f�� � � � � ng contains at least the number �� while the set f�� � � � � ng is empty when
n � �� The empty set is denoted by 	�

For any binary relation
� we use ����
�� and
� to denote its inverse� symmetric closure� transitive
closure� and re�exive�transitive closure� respectively� Thus� �� denotes the equivalence closure of
�

A bag �also called multiset�� denoted by ��� � ���� is a �nite collection of elements in which elements can
occur more than once� Intuitively� it is a �nite set in which multiplicity of elements is considered signi�cant�
A bag can also be viewed as a function which assigns a number to each element� denoting the number of
occurrences of the element in the bag� The empty bag is denoted by ����� x B denotes that x is an element of
bag B� Bag A is a subbag of bag B� denoted by A � B� i� each occurrence of an element in A has a distinct
corresponding occurrence in B� The union of two bags A and B� denoted by A �B� is the bag in which the
number of occurrences of any element is the sum of number of occurrences of that element in A and B� The
intersection of two bags A and B� denoted by A �B� is the bag in which the number of occurrences of any
element is the minimum of number of occurrences of that element in A and B�

A tuple� denoted by h� � �i is a sequence of elements� Intuitively� it is a bag in which the ordering of
elements is considered signi�cant� For any tuples r and t� the tuple r � t is obtained by appending t to the
right of r�

A well�ordering on a set is any partial �irre�exive� ordering with no in�nite decreasing chains�

The cardinality jSj of any set� bag� or tuple S is the number of elements �including duplicates� in S�

��� PCE � Propositional Calculus with Equality and Generalized

Connectives

We present a variant� PCE� of propositional calculus� PC �Men�	�� which has equality as well as generalized
conjunction and disjunction� Generalized connectives� which allow any number of arguments �Fit���� are
used because facts inferred using FP will depend on the grouping of the formulas� which are always in
negation normal form� Bags� instead of sets� are used as arguments of these connectives and for constructing
theories� which are always �nite� since we do not want our algorithms to have to detect and eliminatemultiple
occurrences of formulas� We de�ne a simple truth functional semantics of PCE by extending that of PC to
deal with equality� We also de�ne a notion of facts that are directly inferable from a theory� i�e�� without
using complicated reasoning steps�

����� Syntax

We assume that we have a denumerable set P of symbols called predicates� each of which has a number
n N associated with it� If number n is associated with predicate P � we say P is an n�place predicate� n
is also called the arity of P � Set P is required to contain a special ��place predicate

�
� called equality� We

also assume that we have a denumerable set C of symbols called individual constants �or just constants��

�

along with some total well�ordering � among the elements of C �i�e�� there is no in�nite decreasing sequence
a� � a� � � � � of constants in C�� We require that sets P and C be disjoint and not contain the two special
symbols� t and f � called logical constants� We normally use symbols P � Q� etc� to denote predicates� and
symbols a� b� etc� to denote individual constants�

The atoms of PCE are the counterpart of propositions of PC� They are built from predicates and con�
stants� Literals are de�ned as usual�

De�nition ��� An atom� p� is an expression of the form P �a�� � � � � an� where n N � P is a n�place predicate
in P� and a�� � � � � an are constants in C� Each ai �i � � � �n� is called an argument of the atom p� and P is
called the predicate of p� If n�� then the atom P �� is abbreviated as P and is called a proposition� A literal�
�� is either an atom p� or its negation �p� atom p is called the atom of ��

Atoms are also called positive literals� while their negations are called negative literals� Some examples
of atoms are R� P��a� b� c�� Q�a� a�� and

�
��a� c�� where R is a ��place predicate� P� is a ��place predicate� Q

is a ��place predicate� and a� b and c are constants� We normally use symbols p� q� etc� to denote atoms�
and symbols �� �� etc� to denote literals�

Note The logical constants t and f are not considered to be literals�

Formulas are usually built from atoms using some �xed set of connectives� Our formulas are constructed
from literals using only the connectives conjunction ��� and disjunction ���� Following �Fit���� we allow
any number of arguments for these connectives� This allows more �exibility in specifying formulas� since
facts inferred from a formula using FP will depend on how its components are grouped with respect to these
connectives� For technical convenience� all the arguments of a connective are grouped together in a single
bag�

De�nition ��� Formulas are de�ned inductively as follows�

�� any literal � is a formula�

�� if B is a bag of formulas� then ��B� and ��B� are formulas�

The connectives � and � are called formula connectives� The formula��B� is a called a conjunctive formula
and each formula in B is called a conjunct� ��B� is a called a disjunctive formula and each formula in B is
called a disjunct� The formulas ������� and ������� are abbreviated by the special symbols t and f � respectively�

We use bags as arguments instead of plain sets since we do not want to detect and eliminate multiple
occurrences of formulas� an expensive operation� in our algorithms� Moreover� as we shall see later� retaining
multiple occurrences of formulas does not e�ect our results� Since negation symbols appear only in front
of atoms� formulas constructed in this manner are usually said to be in negation normal form �NNF�� Note
that ������� and ������� are also logical constants� We normally use symbols �� �� etc� to denote formulas�

Note Negation� �� is not considered to be a connective�

Some examples of formulas are given below�

P
�

�
��a� b�

����P������P�Q��������������
����P������P�Q���� t���

��������P�
�
��a� b����� R�a� c�� R�b� c����

where P and Q are ��place predicates� R is a ��place predicate� and a� b� and c are constants� The �rst two
formulas are literals� the third and fourth denote the same conjunctive formula with three conjuncts� and
the last is a disjunctive formula with three disjuncts�

��

Notational conventions� For the sake of readability� we normally omit the bag constructor ��� � ��� from
the argument of the connectives� For example� the formula ��������P� a

�
�b���� R�a� c�� R�b� c���� is rendered

as ����P� a
�
�b�� R�a� c�� R�b� c��� Moreover� when using typed expressions �e�g�� B�Bi have type �bag of

formula�� while �� �� ��� have type �formula�� we will overload the comma operator so that the following
pairs are considered equivalent�

����B� and ������� �B�
��B��� and ��B � ������
��B�� B�� and ��B� �B��
����� � � � � �n� and ������� � � � � �n���

Also� the special predicate
�
� is treated as an in�x operator� for any constants a and b� the atom

�
��a� b� and

the literal �
�
��a� b� are written as a

�
�b and a �

�
�b� respectively�

We need the notion of the complement of a formula� Since we keep formulas in negation normal form�
taking their complement requires moving the outer negation all the way inside to the front of atoms�

De�nition ��� The complement� ��� of a formula � is de�ned inductively as follows�

�� if p is an atom then �p � �p and ��p � p�

�� ������ � � � � �n� � ������ � � � ���n��

�� ������ � � � � �n� � ������ � � � ���n�

Some examples of complement are�

���P����P�Q���S� � ���P���P��Q�� S�
�����P� a

�
�b�� Q�a� c���Q�b� c�� � �����P� a �

�
�b���Q�a� c�� Q�b� c��

As special cases� we get �t � f and � f � t�

Theories are normally collections of formulas� Our theories are built from bags of formulas and the
connective �� which serves to distinguish theories from bags that are arguments of � and ��

De�nition ��� A theory is an expression of the form ��B� where B is a bag of formulas� The connective
� is called the theory connective�

Since bags are �nite� our theories are also �nite� We shall see later that the rewrite system FP treats
a theory di�erently from a conjunction built from the same arguments� although both are considered to be
terms that are rewritable� Thus� our syntax for theories is similar� but not identical� to conjunctive formulas�
Like formulas� theories constructed in this manner are also said to be in negation normal form� We normally
use symbols �� � etc� to denote theories�

We also de�ne some special formulas and theories in the usual way�

De�nition ��� A clause is a formula ��B� where B is a bag of literals or logical constants� A Horn clause
is a clause ��B� where B has at most one positive literal� A clausal theory is a theory ��B� where B is a
bag of clauses� A Horn theory is a theory ��B� where B is a bag of Horn clauses� For any number k� a
k�CNF theory is a clausal theory in which each clause has at most k literals� A positive theory is a theory in
which all the literals are positive� A negative theory is a theory in which all the literals are negative�

A clausal theory is also said to be in conjunctive normal form �CNF�� We will also use notions of subtheory
and subclause that refer to parts of theories and clauses� respectively�

��

De�nition ��	 Any subbag of a theory is called its subtheory� Clause ��B� is a subclause of clause ��B��
i� B � B�� Clause � is a proper subclause of clause � i� � is a subclause of � and � is not a subclause of
�� Clause � is an immediate subclause of clause � i� � is a proper subclause of � and there is no clause �
such that � is a proper subclause of � and � is a proper subclause of ��

����� Semantics

A model�theoretic semantics for the propositional language PCE is obtained in the usual way by mapping
the atoms to the truth values true and false �Men�	�� with the additional requirement that each mapping
be consistent with equality� Thus� we avoid the additional machinery of de�ning domains and mapping the
constants of PCE to objects in a domain�

De�nition ��� An interpretation is any mapping v from atoms to the set ftrue� falseg of truth values such
that�

�� v�a
�
�a� � true for any constant a�

�� for any n� any n�place predicate P �including
�
��� and any constants a�� � � � � an and b�� � � � � bn� if

v�ai
�
�bi� � true for each i � � � � �n and v�P �a�� � � � � an�� � true then v�P �b�� � � � � bn�� � true�

An interpretation is often compactly speci�ed by the subset of atoms that are mapped to true�

Any interpretation v on atoms can be extended to all formulas and theories as follows�

�� for any atom p� v��p� � true i� v�p� � false�

�� for any bag B of formulas� v���B�� � v���B�� � true i� v��� � true for each formula � in B�

�� for any bag B of formulas� v���B�� � true i� v��� � true for some formula � in B�

It follows that the truth values of conjunctions� disjunctions� and theories do not depend on the ordering
of the formulas in their bag argument� Also� v��������� � true and v��������� � false for any interpretation
v� thus� our decision to use the symbols t and f for ������� and �������� respectively� is semantically justi�ed�
The notion of complement is also semantically justi�ed� since for any interpretation v and any formula ��
v���� � true i� v��� � false�

As expected� equality
�
� behaves like an equivalence relation with respect to interpretations� i�e�� for any

constants a� b� and c and any interpretation v� v�a
�
� a� � true� v�a

�
� b� � v�b

�
� a�� and if v�a

�
� b� � v�b

�
�

c� � true then v�a
�
�c� � true� �The latter two identities follow from part ��� of the de�nition� when P is set

to
�
��� We will exploit this property in the syntax by considering the atoms a

�
� b and b

�
�a to be identical�

i�e�� a
�
�b � b

�
�a where � is the usual metalevel equality construct that relates identical or equal items�

Notions of satis�ability� model� entailment� and equivalence are de�ned as usual�

De�nition ��� A theory� �� is satis�able i� there is an interpretation v for which v��� � true� interpretation
v is then called a model of �� A formula � is logically entailed �or just entailed� by a theory � i� v��� � true
for all interpretations v such that v��� � true� we denote this by � j� �� Theories �or formulas� � and
are logically equivalent� denoted by � � � i� v��� � v� � for each interpretation v�

����� Alternative Syntax for Examples

Although we will develop the theory using the above notation� a more standard notation for predicate
calculus formulas and theories can be recovered using the following rules�

��

�� use t and f for ������� and ������� respectively�

�� use ��� for both �������� and ���������

�� use ��� � � � �� �n� for ������� � � � � �n��� where n � ��

	� use ��� � � � �� �n� for ������� � � � � �n��� where n � ��

� use ����� � � � � �n�� for ������� � � � � �n����

Note that ���� and ���� are semantically equivalent� so we are justi�ed in using the same alternative
notation for both of them� However� we will use the original notation for such formulas in cases where we
must make a distinction� Also� the context should distinguish whether a bag of formulas is used as a theory
or as an argument to a formula connective�

For example� some of the example formulas given earlier can be expressed in this modi�ed syntax as�

P
a �
�
�b

��P � a
�
�b� �R�a� c��R�b� c��

However� the following are not formulas in either notation�

P �Q �no parentheses�

���P �Q�� �improper negation�

Exploiting �
� above� we also extend the usual operations on bags to theories� For example� if � � ��B�
and �� � ��B�� where B and B� are any bags of formulas� then

� for any formula �� � � i� � B�

� � � �� � ��B�B���

� etc�

����� Directly Inferable Facts

We are interested in simple formulas that can be directly inferred from a theory� i�e�� inferred without any
complicated reasoning steps�

De�nition ��� Any literal or logical constant �t or f � is called a fact�

Facts are special in several ways� First� each of them force a de�nite� unambiguous constraint on the
interpretations that make the fact true� Second� they are the simplest such formulas� for example� although
the formula ��P�Q� unambiguously forces the truth values of both P and Q� it can be simpli�ed to the set
fP�Qg of facts� Third� facts inferred from a theory can be e�ciently used to simplify the theory� as we shall
see later in this paper�

In a clausal theory� a fact � �say� some literal� would be represented as the clause ����� Thus� we should
be able to infer � from the formula ����� Generalizing this observation� we de�ne the following notion of
facts that are directly inferable from a theory or a formula�

De�nition ���� For any formula �� the set facts���� called the set of facts directly inferable from �� is
de�ned inductively as follows�

�� facts�t� � ftg�

��

�� facts�f � � set of all facts�

�� facts��� � f�� tg� for any literal ��

	� facts������ � facts������ � facts���� for any fact ��

� facts��� � ftg� for any other formula ��

For any theory ��B�� the set facts���B��� called the set of facts directly inferable from ��B� is given by�

facts���B�� �
�
��B

facts���

For example� consider the theory � � ����Q������P ���� Since facts���Q�� � fQ� tg and facts�����P ��� �
ftg� we obtain that facts��� � fQ� tg�

It follows that� for any theory �� the truth values of formulas in the set facts��� in any model of � must be
set to true� These are the facts that can be directly�inferred from the theory� without any further reasoning�
Notice that the set degenerates to the set of all facts when f can be so inferred�

We could have used a more liberal de�nition� for example� allowing fact P to be inferable from the formula
��P� P �� However� we expect reasoning algorithms to simplify this formula to either ��P � or P � from which
fact P can be inferred� Also� no fact is directly inferable from the formula ����P ��� because of a technical
di�culty this would cause with a later proof �Lemma ������

In the presence of equality� the de�nition of facts is extended so that many additional facts can be inferred�
For example� the fact a

�
�a for any constant a is always inferable� even from an empty theory� Also� if �P �a�

and a
�
�b are inferable� then �P �b� can also be inferred�

De�nition ���� For any set A of facts� the equality closure� A
�
�� of A is the smallest set of facts such that�

�� for any constant a� a
�
� a A

�
��

�� A � A
�
��

�� for any n� any n�place predicate P � and any constants a�� � � � � an and b�� � � � � bn such that fai
�
� bi j

i � � � � �ng � A
�
�� if P �a�� � � � � an� A

�
� then P �b�� � � � � bn� A

�
�� and if �P �a�� � � � � an� A

�
� then

�P �b�� � � � � bn� A
�
��

The set of facts inferable using equality from a theory � is given by the set facts���
�
��

It follows directly from the above de�nition that for any bags A and B of facts� if A � B then A
�
� � B

�
��

Note that the equality closure does not produce all possible deductions based on equality� for example� a �
�
�b

is not in the equality closure of the set fP �a�� P �b�g�

Note the distinction between �infer� and �entail�� entailment relation between theories and formulas is
a semantic property of the logic� independent of any speci�c algorithm� while an inference relation between
theories and formulas is speci�ed by a particular algorithm �syntactic method�� An inference method is
considered to be sound i� each formula inferred from any theory is also entailed by it� it is considered to be
complete i� each formula entailed by a theory can be inferred from it� In this section� we presented a sound
and incomplete inference technique� In later sections� we will present other sound inference techniques�

�	

����� Discussion

Our calculus� PCE� di�ers from the standard propositional calculus� PC� �Men�	� in several ways�

�� PC requires atoms to be only propositions� while PCE allows atoms to be also built from predicates
and constants�

�� PCE allows the special equality predicate
�
� in atoms� while PC does not allow this predicate�

�� PC allows theories to be denumerable� while PCE restricts them to be �nite�

There are also some syntactic di�erences� First� PC restricts conjunctions and disjunctions to be binary�
while PCE allows them to have any �nite number of arguments �recall that these arguments are put together
in a single bag of formulas�� Second� PCE restricts the formulas to be in negation normal form� while PC
allows � as a unary connective that can appear in front of any formula �not just atoms��

We will use ��nite PC� to denote PC restricted to �nite theories� It follows that �nite PC is a syntactic
variant of PCE without equality�

��� Rewrite Systems for PCE

We present a variant notion of rewrite systems �DJ��� KB�� Hue��� Der��� applicable to theories in PCE�
in which groups of rewrite rules are represented by rule schemas that contain meta�variables� These rewrite
systems will be used to rewrite theories into logically equivalent theories that are syntactically simpler� based
on a measure of simplicity de�ned in this section� As is usual� convergence of a rewrite system ensures that
each theory rewrites to a unique irreducible theory using a �nite number of rewrite steps� We introduce some
additional properties� including modularity and monotonicity� which are desirable since our rewrite systems
will be used for logical reasoning with knowledge bases� Since these properties are global to a rewrite system�
we will develop some techniques to prove that a rewrite system satis�es them by considering only individual
rules or pairs of rule schemas�

����� Rewrite Systems

A rewrite system� also called a term�rewriting system� speci�es rewrite rules for manipulating terms� which
are symbolic structures de�ned inductively using constants� variables� and function symbols �also called
functors�� Since a rule is applied by replacing a part of a term� called a subterm� by a di�erent subterm� we
need a way to specify subterms of a term�

Our terms are constants� formulas� and theories of PCE�

De�nition ���� Constants in C� formulas� and theories are all terms� They are of three sorts� based on the
functors used to build them�

�� any constant in C is a C�term�

�� formula terms are constructed using n�ary functors P and �P for each n�place predicate P in P� and
logical connectives � and ��

�� theory terms are constructed using the functor ��

Formula and theory terms are also called logical terms�

We normally use symbols s� t� etc� to denote terms� Usually� terms are viewed as trees� with subtrees
being called subterms�

�

���

1 2

11 12 21 22 23

121 122

∨

a b

a c

∧

P =

¬R

b

Figure ���� Logical term as a tree

���

De�nition ���� Immediate subterms of terms are de�ned as follows�

�� each ti �i � � � �n� is an immediate subterm of P �t�� � � � � tn� and of �P �t�� � � � � tn��

�� any t B is an immediate subterm of ��B�� ��B�� and ��B��

For any term t� its proper subterms are de�ned as follows�

�� any immediate subterm of t is a proper subterm of t�

�� any proper subterm of any immediate subterm of t is a proper subterm of t�

Term s is a subterm of term t i� either s is the same as t or s is a proper subterm of t� A formula subterm
is also called a subformula�

Note that the notions of subtheory and subclause� as de�ned in Section ������ are a little bit di�erent from
the above notion of a subterm� Rather than being subtrees of the tree representing the term� subtheories
and subclauses are obtained by removing subtrees at some children of the root� Note also that P is not a
subterm of �P �

It is customary in rewriting systems to identify subterms by the their roots in a notation similar to the
Dewey�decimal notation� The term itself is at position !� which denotes the empty string� For example� if t
is ����P� a

�
�b���R�a� b� c��� shown as a tree in Figure ���� then the following are some of its subterms�

tj� is ����P� a
�
�b���R�a� b� c��

tj� is ��P� a
�
�b�

tj�� is P

tj�� is a
�
�b

tj��� is b

tj� is �R�a� b� c�

tj�� is a

There are some operations on terms which will be useful for our rewriting system�

��

De�nition ���� �Replacement� For any subterm s of term t and any term r� where s and r are of the same
sort �C� formula� or theory��

�� the term t��r�s� is obtained from t by replacing subterm s at position 	 by r�

�� the term t�r
�
�s� is obtained from t by replacing each occurrence of subterm s in t by r�

�� if s and r are formula terms� then the term t�r
��
�s� is obtained from t by replacing each occurrence of

subterm s in t by r and �s by �r�

Intuitively� the superscripts � and � denote �all occurrences� and �complement also�� respectively� For
example� if t � ����P� a

�
�b��P ���R�a� b� c�� then

t���c�a� � ����P� a
�
�b��P ���R�c� b� c��

t�c
�
�a� � ����P� c

�
�b��P ���R�c� b� c��

t�P
�
�Q� � ����Q� a

�
�b��P ���R�a� b� c��

t�P
��
�Q� � ����Q� a

�
�b��Q���R�a� b� c��

Since terms are replaced by terms of the same sort� all replacements in terms necessarily produce well�
de�ned terms� For example� t��P

��
�a� is not allowed since �P and a are not of the same sort�

Note also that since the order of elements in a bag is not signi�cant� the order of arguments for the
functors representing logical connectives is also not signi�cant when considering term equality �� Similar
observation holds for the order of arguments of the equality predicate

�
��

A rewrite �or term�rewriting� system is a collection of rewrite rules� where each rewrite rule is a directed
pair of logical terms of the same sort� Each rewrite rule speci�es how a term can be rewritten�

De�nition ���� A rewrite rule is of the form l� r� where l and r are both either theories or formulas� the
rule is called a theory rule or a formula rule� respectively� A rewrite system R is a set of rewrite rules� For
any rewrite system R� a term s rewrites to term t� denoted by s �R t� if there is a rewrite rule l � r in R
and a position 	 in s such that l is a subterm of s at 	 and t � s� �r� l��

In fact� we will represent groups of rewrite rules by rule schemas� containing meta�variables denoting
constants� atoms� literals� formulas� and bags of formulas� Each schema represents all rule instances that
are obtained by substituting for all its meta�variables by terms of the appropriate type� This assignment
of terms for meta variables is called a substitution� Occasionally� we will impose conditions on the kinds of
terms that can be substituted for some meta�variable �e�g�� �bag B cannot be empty��� in which case only
those instances of the rule schema satisfying these conditions are to be considered�

For example� if ��f � B�� ��B� is a rewrite rule in R� where meta�variable B denotes a bag of formulas�
then using its rule instance ��f � Q� S�� ��Q�S�� obtained using the substitution
 � f��Q�S���Bg� we get�

��Q���P���f � Q�S����R ��Q���p���Q�S���

Henceforth� we shall usually not deal explicitly with the substitution of meta�variables� treating instead rule
schemas as �prototypical� rule instances� for any rule schema l� r� our de�nition of t��r� l� presupposes a
particular rule instance such that the instantiation of the left hand side of the rule produces the subterm of
t at 	� In other words� if tj�� s and s � l
 for some substitution
� then t� �r� l� is obtained by replacing s
in t by r
�

When a rewrite system has a name� that name is used instead of the subscript R in �R� For nameless
systems� we continue to use the subscript R to distinguish �R from�� Note also that we are dealing with
three di�erent kinds of transformations�� substitution of meta�variables in a rule schema produces a rule

�

instance� a term rewrites to another using a rewrite rule� a rewrite rule is often expressed using replacement
of subterms�

We are often interested in terms that cannot be rewritten�

De�nition ���	 A term s is irreducible in a rewrite system R if there is no term t such that s �R t� If
s ��

R t and t is irreducible then we say that t is an R�normal form of s� or that s reduces to t� we denote

this by s��
R t where ��

R is called the reduction relation induced by the rewrite system R�

����� Properties of Rewrite Systems

To be suitable for tractable reasoning with knowledge bases� we argue that a rewrite system should satisfy
certain properties that are presented in this section� Since there are many possible rewrite systems� we
will also use these properties as informal heuristics for developing rewrite systems suitable for our reasoning
task� In the discussion below� recall that��

R and�
�
R denote the equivalence closure and re�exive�transitive

closure� respectively� of�R for any rewrite system R� Since ��
R is an equivalence relation� it partitions the

set of all logical terms into equivalence classes� �s�R � ft j s��
R tg� The properties of interest to us are�

Con
uence Reasoning using a con�uent rewrite system produces the same result for a speci�c theory�
irrespective of the order in which the rewrite rules are applied� This has two important consequences� An
algorithm computing the reduction relation induced by a rewrite system may order the rules using criteria
like computational e�ciency or ease of programming� Also� each equivalence class of terms has a unique
irreducible term to represent it� this irreducible term is considered to be the normal form of the equivalence
class �or each term in the equivalence class�� Formally� a rewrite system R is con�uent i� for all terms s and
t such that s��

R t� there is a term v for which s��
R v and t��

R v�

A weaker version of con�uence is local con�uence� a rewrite system R is locally con�uent i� for all terms
s� t� and u such that s�R t and s�R u� there is a term v for which t��

R v and u��
R v� Since s�R t and

s�R u implies t��
R u� it follows that a con�uent rewrite system is also locally con�uent�

Termination Every sequence of rule applications should terminate� Thus� each term can be reduced by
using a terminating rewrite system to a normal form in a �nite number of rewriting steps� Consequently�
any process based on a terminating rewrite system always terminates� Proving con�uence for terminating
systems� which is usually done using an approach �rst presented in �KB��� is easier than for non�terminating
systems� Formally� a rewrite system R is terminating if there is no in�nite chain t� �R t� �R � � � of terms�

A rewrite system R is convergent if it is both con�uent and terminating� For a convergent system� all
rewrite sequences terminate after a �nite number of steps producing a unique normal form� Thus� the
reduction relation ��

R induced by a convergent rewrite system R is a function� usually denoted by RF � on
the set of terms� Thus� for any terms s and t� RF �s� � t i� s��

R t�

Modularity Parts of a theory should be independently rewritable before rewriting the entire theory� Since
theories that represent knowledge bases are usually built incrementally� a modular rewrite system allows reuse
of the reduced form of the original theory for reasoning with the new knowledge base� Formally� a rewrite
system R is modular �with respect to �� i� for any bags B� B�� and B� of formulas� if ��B�� ��

R ��B��
then ��B�B����

R ��B�B���

Monotonicity Rewriting should not shrink the set of facts directly inferable from a theory� A rewrite
system that is not monotonic is not suitable for reasoning since fewer facts may be inferable after rewriting�
Formally� a rewrite system R is monotonic �with respect to facts� i� for any logical terms s and t� if s��

R t

then facts�s�
�
� � facts�t�

�
��

��

Preservation Since rewriting will be used for logical reasoning� it should not change the logical content
of a theory or formula� Formally� a rewrite system R is �content� preserving i� for any logical terms s and
t� if s ��

R t then s � t� Thus� if theory � rewrites to theory in possibly several steps then � and are
logically equivalent�

Tractability It should be computationally tractable to rewrite any theory to an irreducible form� since
this ensures that reasoning based on rewriting is tractable� Formally� a rewrite system R is tractable i� there
is a PTIME algorithm which given any logical term s as input� outputs a logical term t such that s��

R t�

The next lemma shows the e�ect of these properties on the reduction function induced by a convergent
rewrite system for theories�

Lemma ��� For the reduction function	 RF 	 induced by any convergent rewrite system R for PCE	 and
any theories � and

�� if R is content preserving	 then � � RF ���

�� if R is monotonic with respect to facts	 then facts��� � facts�RF ����

�� if R is modular with respect to � then RF ��� � � RF �RF ��� � �

�� if R is tractable	 then there is a PTIME algorithm which returns RF ��� for any input theory ��

Proof RF is de�ned since R is convergent� Since � ��
R RF ���� all the claims follows directly from the

de�nitions�

We will usually drop the su�xes �with respect to �� and �with respect to facts� when there is no
possibility of confusion�

We will propose some rewrite systems based on various desiderata� but will then modify them if they do
not satisfy the properties listed above� Typical modi�cations include adding a new rule� removing a rule� or
modifying a rule� As a trivial example� any rewrite system can be extended to a con�uent system by adding
to it the inverse of each rewrite rule in it� However� this will produce a non�terminating system as there
would be no irreducible terms and thus would not be of much interest to us� In general� we will seek rewrite
systems that satisfy all the above properties�

����� Proof Techniques

The properties presented in the previous section are global to the entire rewrite system� In this section� we
present some su�cient local conditions� which are de�ned in terms of individual rules or pairs of rules� for
proving these properties of a rewrite system� This subsection may be skimmed in a �rst reading� it becomes
relevant mostly when proofs of various properties are carried out�

The simplest properties to prove are content preservation� monotonicity� and modularity� The next three
lemmas show that these properties can be proved by verifying simple properties for individual rewrite rules�
Termination is usually proved by showing that there is a well�founded ordering � on terms such that l � r
for each rewrite rule l � r� For proving con�uence� we will show that each overlap term with respect to
each pair of rewrite rules reduces to the same term after either rule application� Tractability is proved by
presenting a tractable algorithm that outputs the irreducible form of the input term�

Lemma ��� A rewrite system R is content preserving if l � r for each rewrite rule �instance� l � r in R�

Proof For any interpretation� the truth value of a logical term is de�ned using the truth values of its
proper logical subterms� there is no other dependency on the subterms� Thus� replacing a subterm by a
logically equivalent term does not change the truth value of the term� i�e�� if s �R t then s � t� Since � is
an equivalence relation� the claim follows�

��

Lemma ��� A rewrite system R is monotonic with respect to facts if facts�l�
�
� � facts�r�

�
� for each rewrite

rule �instance� l� r in R�

Proof For any term s� facts�s� is monotonic in each of facts�l�� where l is any subterm of s� Thus� if t

is obtained by replacing a subterm l in s by r� i�e�� s �R t� and if facts�l�
�
� � facts�r�

�
�� then facts�s�

�
� �

facts�t�
�
�� Since � is transitive� the claim follows�

Note that facts�l� � facts�r� is a su�cient condition for ensuring that facts�l�
�
� � facts�r�

�
��

Lemma ��� A rewrite system R is modular with respect to � if ��B�B�� ��
R ��B�B�� for each rewrite

rule �instance� ��B�����B�� in R and each bag B of formulas�

Proof Modularity requires that for any bags B� B�� and B� of formulas� if ��B�� ��
R ��B�� then

��B�B�� ��
R ��B�B��� We will prove this by showing that each step in ��B�� ��

R ��B�� has a corre�
sponding step in ��B�B����

R ��B�B��

Suppose ��B�� �R ��B�� using some instance of rule Ri� If Ri is a formula rule then ��B�B�� �R

��B�B�� using the same rule instance of Ri� because ��B�B�� has as formula subterms all the formula
subterms of ��B��� Otherwise Ri is a theory rule schema� and since the constructor ��� cannot appear
nested� ��B�� � ��B�� is actually an instance of Ri� the result then follows from the hypothesis of the
lemma�

Proving Termination

Termination of a rewrite system is typically proved by de�ning a well�ordering on terms and then showing
that each rewrite step produces a �smaller� term with respect to this ordering� Since this can only happen a
�nite number of times� every sequence of rewriting terminates� However� the ordering should satisfy certain
properties� which are analogous to the notion of termination orderings �DJ����

De�nition ���� An ordering � on terms is closed under replacement i� for any terms s� t� p� q� if p � q and
s is a subterm of t at position 	 then t� �p�s�� t� �q�s�� An ordering � on terms is compatible with equality
i� for any terms s� t� s�� t�� if s � s� and t � t�� then s � t i� s� � t��

Intuitively� if an ordering � is closed under replacement and s �R t using a rewrite rule instance l � r
such that l � r then s � t� Also� if � is compatible with equality then a term can be replaced by a
syntactically equivalent term without e�ecting its order with respect to other terms� The next lemma shows
how these properties can be used for proving termination�

Lemma ��� �based on �DJ���� A rewrite system R is terminating if there is a well�ordering � on terms
such that � is closed under replacement	 � is compatible with equality	 and l � r for each rewrite rule
�instance� l � r in R�

Proof Suppose s�R t� i�e�� there is a rewrite rule l � r in R such that l is a subterm of s and t � s� �r� l��
Since � is closed under replacement and l � r� s� �l� l� � s� �r� l�� i�e�� s � s� �r� l�� Thus� s � t� since �
is compatible with equality� Since � is a well�ordering� there is no in�nite chain t� �R t� �R � � � of terms�
Thus� R is terminating�

We now present a speci�c ordering that will be used for proving the termination of FP and other rewrite
systems presented later� It extends the total well�ordering � on the set C of constants to a well�ordering on
all the terms�

As is usual� the ordering � among constants can be extended to the multiset ordering �mul among bags
of constants� B �mul B

� i� ��� B �� B�� and ��� whenever B��b� � B�b� for some constant b then there is a
constant a � b such that B�a� � B��a�� Recall that B�b� denotes the number of occurrences of the element

��

b in the bag B� For example� if a � b� then ��a� b� a�� �mul ��b� a� b� b��� Since � is a well�ordering� �mul is also
a well�ordering �DJ����

We now use this multiset ordering and the number of occurrences of literals and connectives to extend
the well�ordering � to the set of terms� For this� we �rst de�ne four functions on terms� w�� which counts
the number of occurrences of literals� w�� which counts the number of occurrences of connectives� w	� which
is a weighted sum of literals� and w
� which collects all constants in a bag�

De�nition ���� The functions w�� w�� w	� and w
 on the set of all terms are de�ned recursively as follows�

�� for any constant a� w��a� � w��a� � w	�a� � ��

�� for any literal �� w���� � �� w���� � �� and w	��� � ��

�� for any connective c and any bag B of formulas�

w��c�B�� �
X
��B

w����

w��c�B�� � � "
X
��B

w����

w	�c�B�� � ��
X
��B

w	���

	� for any term t� w
�t� is the bag of all the constants �including repetitions� that are subterms of t�

For any terms s and t� s � t i�

�� either w��s� � w��t��

�� or w��s� � w��t� and w��s� � w��t��

�� or w��s� � w��t�� w��s� � w��t�� and w	�s� � w	�t��

	� or w��s� � w��t�� w��s� � w��t�� w	�s� � w	�t�� and w
�s� �mul w
�t� �

For example� if term t � ����P� a
�
�b���R�a� b� c�� then w��t� � �� w��t� � �� w	�t� � �����"��"�� � ���

and w
�t� � ��a� a� b� b� c��� The next proposition shows that � is suitable for proving termination of a rewrite
system by using Lemma ��
�

Proposition ��	 The ordering � on terms is a well�ordering	 is closed under replacement	 and is compatible
with equality�

Proof Since � among terms is a lexicographic combination of four well�orderings� it follows that � among
terms is also a well�ordering �DJ����

For any �xed subterm s of term t� for each j � � � � ��� if wj�q� � wj�p� then wj�t� �q�s��� wj�t��p�s���
moreover� if w
�q� �mul w
�p� then w
�t��q�s�� �mul w
�t� �p�s��� Thus� � is closed under replacement�

If two terms are equal� i�e�� s � t� then one must be obtainable from the other by reordering its arguments�
Since the ordering � among terms does not depend on the ordering of arguments� � is compatiblewith respect
to equality�

��

Proving Con
uence

A terminating rewrite system can be proved con�uent using the approach �rst presented in �KB��� The
basic idea is to prove local con�uence� i�e�� if a term s can be rewritten to two distinct terms t� and t� in
one rewriting step then there is a common term t such that both t� and t� rewrite to t� possibly using many
rewriting steps� Local con�uence and termination guarantees con�uence� Further� it is not necessary to
show local con�uence for all such triples hs� t�� t�i� it is su�cient to consider only the cases where t� and t�
are obtained by using rules which are applied at �overlapping� positions �as explained below��

For example� consider the rewrite system R containing the following rule schemas�

R� � x
�
�x � t

R� � ������B�� � ����B�

R	 � ����B� � ����B�t
��
����

where the meta�variables x� �� and B can be instantiated by constants� literals� and bags of formulas�
respectively�

Consider the term s� � ��a
�
�a� b

�
�b�� where a and b are constants� Term s� rewrites to the term

��t� b
�
�b� using the instance a

�
� a � t of rule R�� and to the term ��a

�
�a� t� using another instance

b
�
�b � t of the same rule� Clearly� both of these rewrite to the term ��t� t�� Note that the left�hand sides
of these two rule instances match distinct� non�overlapping subterms of s�� As proved later in Lemma ���
the two rule applications in such cases can be performed in either order� and produce the same �nal result�

Now consider a di�erent term� s� � ����P� a
�
�a��� where P is an atom and a is a constant� Term s�

rewrites to the term t� � ����P� t�� using the instance a
�
� a � t of rule R� at position ��� Term s� also

rewrites to the term t� � ��P� a
�
�a� using the R��instance ����P� a

�
�a�� � ��P� a

�
�a� at position !� �In

this particular case� t� and t� both can be rewritten to t � ��P� t��� Note that subterms of s� that match
the left�hand sides of the two rule instances are not distinct� the position ! is a pre�x of ��� In the standard
terminology of rewrite systems� the term s� is called an overlap �at position ���� between the R��instance
and the R��instance� which are called the outer and the inner rules� respectively� The pair t� and t� of terms
is called a critical pair� and the term t is a common term to which the critical pair rewrites� In some cases�
rewriting the critical pair to a common term requires rules in R which are not instances of the two rules �R�

and R�� in this case� used to obtain the critical pair � these rules are called the extra rules�

By focussing only on overlaps� we now de�ne a notion of con�uence for pairs of rules in a rewrite system�

De�nition ���� �see Figure ���� In a rewrite systems R� a rule instance R� � �l� � r�� is con�uent with
rule instance R� � �l� � r��� if whenever l� is a subterm of l� at some position 	� then there is some r such
that r� ��

R r and l���r�� l����
R r��

The signi�cance of this de�nition becomes evident in the following result�

Lemma ��� �based on �KB���� A terminating rewrite system R is con�uent if each pair of rule instances
in R is con�uent�

Proof Any terminating rewrite system R is con�uent i� it is locally con�uent �New	��� Hence� it su�ces
to prove local con�uence�

Suppose t �R t� using rule R� � �l� � r�� and t �R t� using rule R� � �l� � r��� Thus� there are
positions 	� and 	� in t such that t� � t�� �r�� l��� and t� � t�� �r�� l��� We obtain the desired t# in all
possible cases�

distinct if neither 	� nor 	� is a pre�x of the other �i�e�� the terms matching l� and l� do not overlap in t�
which is a tree�like structure�� then each of t� and t� rewrite to t# � �t�� �r�� l����� �r�� l�� using rules
R� and R�� respectively�

�Note that the relation �con�uent with� is asymmetric�

��

���

π

R1

l2

l1

R2

r2

r1

 ←l1 [r2 l2]π

r

•

*

*

Figure ���� Overlap� critical pair� common term� and con�uence

���

overlapping If the subterms matching l� and l� overlap� then without loss of generality� assume that l�
is a subterm of l� �recall that these are rule instances� with no variables of any kind�� Since nothing
outside l� in t is changed in obtaining either t� or t�� we can also assume� without loss of generality�
that t � l�� Thus� t� � r�� and the result follows by the hypothesized con�uence of the rules�

Our general technique to prove the con�uence of a terminating rewrite system R is to take every pair of
rule schemas R� and R�� identify all the ways in which an instance l� � r� of R� has the property that l�
is a subterm of l�� for some instance l� � r� of R�� and show that l� � r� is con�uent with l� � r�� by
showing how the critical pairs rewrite to a common term� Since con�uence among rules is not symmetric�
we need to check both that instances of R� are con�uent with that of R�� and that instances of R� are
con�uent with that of R�� We also have to verify that instances of R� are con�uent with those of R� itself�
�The reader is cautioned that there are two di�erences from the approach in �KB��� we cannot ignore all
�variable overlaps�� and we will use various techniques to reduce the cases of non�variable overlap to be
considered��

We have been and will continue to treat rule schemas by taking prototypical instances of them� and
seeing how they can overlap �remembering the conditions imposed on the possible instantiations�� There is
one circumstance however where it will be useful to again distinguish rule schemas from instances�

De�nition ���� �see Figure ���� A variable overlap is an overlap in l� at position 	 between an R��instance
l� � r� and an R��instance l� � r� such that there is a meta�variable at some pre�x of position 	 in the
left�hand side of rule schema R��

Thus� a variable overlap means that l� is a subterm of the term used to instantiate the meta�variable
in the schema R� for obtaining the instance l� � r�� In the example given earlier� s� is indeed a variable
overlap� Typically� in rewrite systems �KB�� variable overlaps are ignored while proving con�uence� since the
two rules can be interchanged to obtain the same common term �as illustrated by s��� However� we cannot
ignore variable overlaps for two reasons� there are restrictions on how the meta�variables are instantiated in

��

���

v

π

l2

l1

lhs of R1
schema

•

•

Figure ���� Variable overlap� v is a meta�variable in R��s schema

���

obtaining rule instances� and the terms instantiated for the meta�variables in the left�hand side of the rule
may be modi�ed in the right�hand sides� For example

�� Consider the term t � ����a
�
�a���P ��� and the variable overlap at position ��� between an R��

instance ����a
�
�a���P ��� � ��a

�
�a���P �� and an R��instance a

�
� a � t� Although both the rule

instances apply to t� if the R� instance is �rst applied then the R� instance does not apply �since R�

requires that � be a literal and t is not a literal�� Such variable overlaps cannot be ignored�

�� Consider the term t � ��P�����P���q���� and the variable overlap at position � between an R	�
instance ��P�����P���q���� � ��P�����t���q���� and an R��instance ����P���q��� � ��P���q���
Although both the rule instances apply to t� if the R	�instance is applied �rst then the R��instance is
no longer applicable� Such variable overlaps also cannot be ignored�

Fortunately� as illustrated by s�� there are still a large number of variable overlaps that can be ignored
in our case as well� The next de�nition and proposition are motivated to identify the variable overlaps that
can be ignored�

De�nition ���� A variable overlap at position 	 between an R��instance l� � r� and an R��instance
l� � r� is non�con�icting if�

�� the meta�variable at a pre�x of position 	 in the left�hand side of rule schema R� is not modi�ed and
appears at most once in its right�hand side� and

�� l���r�� l�� is the left�hand side of an instance of rule R��

The next propositions shows that we can ignore non�con�icting variable overlaps in proving that a pair
of rules is con�uent�

Proposition ��� Any critical pair for a non�con�icting variable overlap is rewritable to a common term�

�	

Proof Suppose the variable overlap is at position 	 between an R��instance l� � r� and an R��instance
l� � r�� The critical pair is r� and l���r�� l��� Suppose V is the meta�variable at a pre�x of position 	 in
the left�hand side of rule schema R�� We know that V is not modi�ed in the right�hand side of schema R��
Now there are two cases�

�� V appears on the right�hand side of schema R�� say at position 	�� Since l� must be a subterm of r�j�� �
rule R� rewrites r� to r�� �r�� l��� which is the desired common term�

�� V does not appear in the right�hand side of schema R�� the desired common term is r��

Another way to reduce our work is to use a �symmetry� grouping of rules based on the notions of
�duality� and �cduality�� introduced next�

De�nition ���� The mapping dual� denoted by the superscript d� on constants and functors� is de�ned to

be identity everywhere except for �d � ���d � � and
�
�
d
� �
�
�� �

�
�
d
�
�
�� This mapping extends naturally to

a morphism over terms �hence to formulas� and theories�� as well as rules� with �l � r�d being equal to
ld � rd�

The mapping cdual� denoted by the superscript c� on terms is de�ned to be identity everywhere except
for ��B�c being equal to ��B�� where B is any bag of formulas� This mapping again extends to a morphism
over rules� with �l � r�c being equal to lc � rc�

Observe that for every term t� �td�d � t� and that td � f � fd � t� However� �tc�c � tc�

De�nition ���� A rewrite system R is closed with respect to duals i� the dual of each rule in R is in R� A
rewrite system R is closed with respect to cduals i� the cdual of each rule in R is in R�

The notions of dual and cdual will simplify the proofs for con�uence�

Proposition ��� For any rewrite system R closed with respect to duals	 if rule R� is con�uent with R�	
then Rd

� is con�uent with Rd
��

Proof The proof is based on the fact that every sequence of rewrites has a corresponding �dual�� which
follows from the fact that if s �R u using some rule l � r �i�e�� u � s� �r� l��� then sd �R ud using the
dual of the rule� because ld is a subterm of sd at position 	 i� l is a subterm of s at position 	� and because
�s� �r� l��d � sd��r

d� ld��

Hence� suppose that for some overlap td of Rd
� with R

d
�� the resulting critical pair is t

d
� and t

d
�� Then by

the de�nition of duality for terms� t is an overlap for R� with R�� having critical pair t� and t�� By the
con�uence of R� with R�� these can be both rewritten to some common term t	� Since all duals of rules are
rules in R� td� and t

d
� can also be rewritten to t

d
	� which is then the common term we are seeking�

Proposition ���� For any rewrite system	 if rule R� is con�uent with R� and if each extra rule used in
rewriting the critical pairs to common terms has a cdual in R	 then also
 R� is con�uent with Rc

�	 R
c
� is

con�uent with R�	 and Rc
� is con�uent with Rc

��

Proof The proof is similar to that of Proposition ���� Given that rule R� is con�uent with R�� we will
prove that Rc

� is con�uent with R
c
�� the other claims can be similarly proved�

Suppose that for some overlap tc of Rc
� with R

c
�� the resulting critical pair is t

c
� and t

c
�� By the de�nition

of cduality for terms� t is an overlap for R� with R�� having critical pair t� and t�� By the con�uence of R�

with R�� these can be both rewritten to some common term t	� Since all cduals of extra rules are rules in
R� tc� and t

c
� can also be rewritten to t

c
	� which is then the common term we are seeking�

It follows that for any rewrite system R closed with respect to cduals� if rule R� is con�uent with R�

then R�
� is con�uent with R

�
�� where each R

�
i is either Ri or Rc

i �

�

It is important to note that the above results require rule instances to have duals and cduals� not just
rule schemas� Therefore in specifying duals and cduals for rule schemas we must make sure that conditions
for instantiating meta�variables cannot be violated by the process of dualization and cdualization�

In order to prove con�uence� we will show that each pair of rules is con�uent �Lemma ���� The number
of pairs to be considered will be reduced using Propositions ���� ����� and ����

��� BCP � Boolean Constraint Propagation

We review variants of boolean constraint propagation �BCP� �McA��� McA��� that have been proposed in
the literature� We show that some of them can be speci�ed using simple rewrite systems� Recall that BCP
is an incomplete method for simplifying �nite clausal theories in propositional logic and for inferring facts
entailed by a given theory� As is usual in descriptions of BCP� we restrict our attention to the �nite PC�
a syntactic variant of PCE without equality� Thus� there is no equality predicate in formulas and theories�
and all the atoms are propositions�

We will �rst de�ne a measure of complexity on algorithms for inferring facts from a theory� We will then
discuss Horn pebbling� which is BCP restricted to Horn clauses� and clausal BCP� which allows arbitrary
clauses� We will also review three extensions of clausal BCP to non�clausal theories�

Given any algorithm A for inferring facts from a theory� we de�ne the following decision problem for
inferring facts using A�

De�nition ���� The Fact�inference problem for A is de�ned to be the following decision problem�

Input
 any theory � and any fact ��
Output
 �yes� i� Algorithm A infers fact � from theory ��

Note that there is a straight�forward algorithm for solving the fact�inference problem for A� namely� scan
the list of facts inferred by A and return �yes� i� � is in the list� However� an algorithm for solving the
fact�inference problem for A does not have to generate all the facts inferred by A from the theory� It can
also use the fact �� which is part of the input� to work in a goal�directed fashion� Thus� the time complexity
of the fact�inference problem for A could be lower than the time complexity of the algorithm A itself�

����� Horn Pebbling

Dowling and Gallier �DG�	� developed a linear�time algorithm for determining satis�ability of Horn theories
that also obtains all the positive literals that are logically entailed by the input theory� We will �rst present
this �Horn Pebbling� algorithm and then specify it using an inference system and a rewrite system�

Horn Pebbling works by pebbling a labeled directed graph whose nodes represent atoms and truth
constants� and whose arcs encode Horn clauses �named by integers�� The result of the pebbling is that node
f is pebbled i� the given theory is unsatis�able� otherwise� exactly those nodes are pebbled which represent
atoms that are logically entailed by the theory�

For each atom in the theory� there is a node in the pebbling graph labeled by that atom� there is also a
node labeled by t and a node labeled by f � Given any ordering of clauses in the theory� the edges of the
graph are as follows�

�� if the ith clause is ��P �� for some positive literal P � then there is an edge labeled by i from t to P �

�� if the ith clause is ���P�� � � � ��Pn�� then for each node labeled Pj� where � � j � n� there is an edge
from Pj to f labeled by i�

��

���

1
2

3

4

4
P

Q

R

t f

Figure ��	� A pebbling graph

���

�� if the ith clause is ��P��P�� � � � ��Pn�� then for each node labeled Pj� where � � j � n� there is an
edge from Pj to P labeled by i�

For any node u in the graph and any i� any node w such that there is an edge labeled i from w to u is
called an i�antecedent of u� The pebbling game� used for pebbling the nodes of the graph� proceeds as follows�

�� the node labeled by t can be pebbled any time�

�� if the node labeled by f is pebbled� then any other node can be pebbled�

�� if u is a node with an i�antecedent node such that all i�antecedent nodes of u are pebbled� then u can
be pebbled�

A pebbling sequence is a sequence of labels of nodes which are pebbled in some run of the pebbling game�
Each fact in a pebbling sequence is said to be inferred from the theory using Horn pebbling�

For example� consider the Horn theory � consisting of the following clauses�

�� �P �

�� ��P �Q�

�� ��P �R�

	� ��Q � �R�

The pebbling graph for � is given in Figure ��	� In the pebbling game� after pebbling the node labeled by t
and then the node labeled by P � the nodes labeled Q and R can be pebbled in any order� and then the node
labeled f is pebbled� Thus� there are two pebbling sequences � t� P�Q�R� f and t� P�R�Q� f � each ending
with a pebble on the node labeled by f � Intuitively� Horn Pebbling can determine that � is unsatis�able�

Consider the Horn theory consisting of the �rst three clauses of �� The pebbling graph for is
identical to that of �� without the edges labeled 	� Any run of the pebbling game pebbles exactly the nodes
labeled by t� P � and Q� Thus� Horn pebbling infers the facts t� P � and Q from the theory �

It turns out that each fact inferred from a theory using Horn pebbling is logically entailed by the theory�
However� Horn Pebbling cannot be used to obtain any negative literal that is logically entailed by a Horn
theory� for example� the literal �P that is entailed by the theory ����P �Q�� ��P �R�� ��Q� �R��� cannot
be inferred using Horn Pebbling� since the pebbling game stops after pebbling the node labeled by t�

An e�cient algorithm for implementing the pebbling game is presented in �DG�	�� If all the atoms that
appear in the theory are known a priori �say� in a list provided as part of the input�� then the algorithm
terminates in time O�n�� where n is the total number of occurrences of literals in the theory�

The following inference rule� adapted from �de ���� provides a deductive system for the facts that are
inferred from a theory using Horn Pebbling�

��p�� ���p� ��� � � � � �n�

����� � � � � �n�
� � � � � � � � � DHP

�

���

��f � B� � ��f �

����p�����p�B��� B�� � ����p����B��� B��

where p is an atom� Bi are bags of formulas� and B is a non�empty bag of formulas�

Figure ��
� A rewrite system� HP� for Horn Pebbling

���

���

��f � B� � ��f �

������������B��� B�� � ���������B��� B��

where � is a literal and B�s are bags of formulas� B must be non�empty�

Figure ���� A rewrite system� CBCP� for Clausal BCP

���

This rule is merely modus ponens with one antecedent restricted to an atom and the other to a clause �recall
that ��p� is a clausal representation of the atom p�� An atom p in a theory � is pebbled i� either ��p� or
f is inferable from � using the above inference rule� As observed by �de ���� the second antecedent clause�
which is a superclause of the consequence clause in the inference rule� may be removed from the theory after
this rule is applied� since its further use can be replaced by the consequence clause�

The rewrite system� HP� of Figure ��
 provides an alternative characterization of Horn Pebbling�

Proposition ���� For any Horn theory � and any clausal fact �	 � is inferable from � using DHP i� there
is a clause �� that is a subclause of � and a bag B of clauses such that ���

HP ���
�� B��

Proof By simple inductions on the length of proof using DHP and the length of the rewriting sequence�
Only the second rewrite rule is required for this proof� We need �subclause� since the antecedent clause of
the inference rule is explicitly discarded in the rewrite rule�

The �rst rewrite rule ensures that HP is convergent� Note that once f is pebbled� all facts are derivable�
It then follows that the set of facts inferable from a theory � using Horn Pebbling is exactly facts����� where
���

HP �
��

����� Clausal BCP

Clausal BCP �McA��� generalizes Horn Pebbling to any clausal theory� Its worst�case time complexity is the
same as Horn Pebbling� i�e�� O�n� when all the atoms are known a priori� However� it is strictly more powerful
than Horn Pebbling� i�e�� it obtains all the facts that are obtained by Horn Pebbling� and occasionally more
�e�g�� negative literals�� After de�ning Clausal BCP� we characterize it using an inference system and a
rewrite system�

Given any clausal theory �� Clausal BCP monotonically expands it by adding facts as follows� in each
step� if any single clause in � and all the facts in � taken together logically entail any other fact� then the
new fact is added to the theory �� This step is repeated until no new fact can be so obtained� The facts
in the resulting theory are said to be inferred from � using Clausal BCP� Each step of Clausal BCP can be
e�ciently carried out� since the only ways in which facts are entailed from a clause and other facts are�

��

�� clause �������� � � � ���n� and all the facts ���i� �where � � i � n� logically entail the fact ����� and

�� clause ������ � � � ���n� and all the facts ���i� �where � � i � n� logically entail any fact�

Consider the clausal theory � ����P �� �P � �Q�� �P � �R�� �Q�R���� Since clause �Q � R� contains
more than one positive literal� is not a Horn theory� A sequence of facts added to using Clausal BCP is
��P �� ��Q�� ��R�� f � Thus� Clausal BCP can determine that this theory is unsatis�able� Note that Horn Peb�
bling would not pebble any node� and thus� cannot determine this� However� Clausal BCP is incomplete even
for positive literals� for example� the literal R that is entailed by the theory ���P �Q�� ��P �R�� ��Q�R���
cannot be inferred using Clausal BCP�

Adapting from �de ��� again� the following inference rule provides a deductive system for facts inferred
by Clausal BCP�

����� ����� ��� � � � � �n�

����� � � � � �n�

This generalizes the inference rule for Horn Pebbling� since � is now allowed to be a negative literal also� As
in the case of Horn Pebbling� the second antecedent clause in the above inference rule can be removed from
the theory after this rule is applied� if all we care about are the facts deduced�

The rewrite system� CBCP� given in Figure ��� provides an alternative characterization of Clausal BCP�
the set of facts inferable from a theory � using Clausal BCP is exactly facts����� where � ��

CBCP �
�� As

with Horn Pebbling� CBCP is equivalent to the inference system in terms of inferable facts�

For example� using the rewrite system CBCP� the theory � ����P �� �P � �Q�� �P � �R�� �Q�R���� given
above� may be reduced in the following sequence�

�CBCP ����P �� ��Q�� �P � �R�� �Q �R��� ��nd rule �

�CBCP ����P �� ��Q�� ��R�� �Q�R��� ��nd rule �

�CBCP ����P �� ��Q�� ��R�� �R��� ��nd rule �

�CBCP ����P �� ��Q�� ��R�� f �� ��nd rule� �� � f �

�CBCP ��f �� ��st rule �

����� Formula BCP and Prime BCP

Formula BCP �McA��� McA��� extends Clausal BCP to any propositional theory� Given any theory ��
Formula BCP monotonically expands it by adding facts as follows� in each step� if any single formula in �
and all the facts in � taken together logically entail any other fact� then the new fact is added to the theory
�� This step is repeated until no new fact can be so obtained�

Since Formula BCP is identical to Clausal BCP for clausal theories� it is also incomplete� Moreover� the
satis�ability problem �SAT� can be trivially reduced to the general problem of determining whether a fact
is logically entailed by an arbitrary �possibly� non�clausal� formula� Thus� the fact�inference problem for
Formula BCP is CoNP�Hard� i�e�� intractable�

Prime BCP �de ��� has been proposed as an algorithm for implementing Formula BCP� The basic idea
is to �rst compute all the prime implicates	 of each formula in the given theory� and then use Clausal BCP
on the theory containing just these prime implicates� For any theory� Prime BCP infers the same facts as
Formula BCP �de ���� thus� Prime BCP is also incomplete� and the fact�inference problem for Prime BCP is
also CoNP�Hard� i�e�� intractable� Moreover� the number of prime implicates of a formula can be exponential
in the size of the formula�

�The prime implicates of a theory are the minimal clauses that are logically entailed by the theory 	BB
��

��

���

����B�� � ������� B��

����B��� B�� � ��B�� B��

����B��� B�� � ��B�� B��

���� ��B� � ����B�

������� ��B��� B�� � ��B��

������� � � � � �n�� B�� � ������� B��� � � � ����n� B���

where ��s are literals� ��s are formulas� and B�s are bags of formulas�

Figure ��� A rewrite system for CNF transformation

���

����� CNF�BCP

CNF�BCP �de ��� infers facts by �rst transforming the given theory into conjunctive normal form �CNF�
and then using Clausal BCP� We �rst provide a non�traditional de�nition of CNF transformation and then
discuss CNF�BCP�

Intuitively� the CNF transformation of a theory produces a logically equivalent clausal theory using simple
syntactic operations� For example� the CNF transformation of the theory ����P �Q� � �R�� produces the
theory ��������P��R��������Q��R������� The basic idea is to recursively combine the CNF transformations
of the formulas in the theory� where CNF transformation of a formula is a bag of sets of literals �which
intuitively represents a clausal theory� � the CNF transformation of a conjunctive formula is the union of
CNF transformations of its conjuncts� whereas the CNF transformation of a disjunctive formula requires a
kind of cross�product of CNF transformations of its disjuncts �in the base case� the CNF transformation of
a literal is a singleton bag with a singleton set containing the literal�� Representing CNF transformations
by the function CNF� we obtain the following for the above example�

CNF�P � � ��fPg��

CNF�Q� � ��fQg��

CNF�����P�Q���� � ��fPg� fQg��

CNF��R� � ��f�Rg��

CNF���������P�Q�����R���� � ��fP��Rg� fQ��Rg��

De�nition ���� The cross�product
U
� which maps bags of bags of sets of literals to bags of sets of literals�

is de�ned recursively as follows�

��
U
������ � ��	���

��
U
���R�� �B� � ��L � S j L R� b

U
�B����

where L and S are sets of literals� R is a bag of sets of literals� and B is a bag of bags of sets of literals�
The function CNF� which maps formulas to bags of sets of literals and theories to clausal theories� is de�ned
recursively as follows�

�� for any literal �� CNF��� � ��f�g���

�� for any bag B of formulas�

�a� CNF�B� � ��CNF��� j � B�� �hence CNF������ � ������

��

�b� CNF���B�� � ��CNF�B�� �hence CNF�t� � ������

�c� CNF���B�� � ��L
U
�CNF�B�� j L� �L � 	�� �hence CNF�f � � ��	����

�d� CNF���B�� � ������L� j L ��CNF�B�����
�hence CNF����� � ����� CNF���t�� � ����� and CNF���f �� � ��f ����

where �L � f�a j a Lg for any set L of literals�

Note that
U
���R��� � ��R�� for any bag R of sets of literals� Also� the condition L� �L � 	 in the de�nition

of CNF���B�� is used intuitively to �lter out sets containing complementary literals� for example� the set
fP��P�Rg� Further� CNF�B� for a bag B of formulas is used merely as a short�hand notation in de�ning
CNF���B��� CNF���B��� and CNF���B��� In the above example�

CNF���P�Q��� � ����fPg�� � ��fQg����

CNF�������P�Q�����R��� � ����fPg� fQg�� � ��f�Rg����

The de�nition of CNF���B�� is identical to that of CNF���B��� except that the result is a clausal theory�

Incidentally� CNF transformation can also be de�ned using the rewrite system of Figure �� �this result
is not used in this thesis�� Using this rewrite system� the theory � can be reduced to CNF��� in a single
rewrite using the last rule�

����P �Q� � �R����R ���P � �R�� �Q� �R���

CNF�BCP is strictly weaker than Formula BCP� For example� only Formula BCP obtains P from the
theory ����P �Q� � �P � �Q���� The algorithm CNF�BCP has exponential time complexity in the worst
case� since the CNF transformation itself may lead to an exponential increase in the size of the theory� CNF
transformations may also spoil the natural structure of theories �for example� locality �de ����� Since there
is no known PTIME algorithm for inferring the facts speci�ed by CNF�BCP� the fact�inference problem for
CNF�BCP is not known to be tractable�

����� Discussion

BCP algorithms perform two distinct tasks� inferring facts �literals� from a theory� and simplifying a theory�
The two tasks are related� simpli�cation proceeds by �rst inferring facts� and more facts may be inferred
after simpli�cation� However� the complexities of the two problems �not the BCP algorithms� may di�er�
For example� although the full simpli�ed theory in CNF�BCP may be exponential in the size of the input
theory� it is not known whether the fact�inference problem for CNF�BCP is either NP�Hard or CoNP�Hard�

Since the fact�inference problem for Formula BCP �and Prime BCP� is intractable �CoNP�Hard�� we
restrict our attention to CNF�BCP for the rest of this paper�

De�nition ���	 For any theory �� BCP��� is the unique irreducible theory such that CNF��� ��
CBCP

BCP���� Any clause in any theory such that CNF��� ��
CBCP is said to be produced by BCP from

theory ��

Note that all variants of BCP� except Horn Pebbling� that are discussed in this section produce the same
facts for clausal theories�

��� FPC � Extending Clausal BCP

Fact Propagation among Clauses �FPC� extends Clausal BCP to be applicable to every theory in PCE� The
basic idea is to split the second rewrite rule of Clausal BCP �Figure ���� into two distinct steps�

��

���

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ��t� B� � ��t� S�� ��f � B� � ��B�

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ���� � � S�� ���� � �

where � is a formula and B is a bag of formulas� B must be non�empty in S� rules�

Figure ���� Simpli�cation rules

���

�� replace �� in �����B� by f � and

�� replace ��f � B� by ��B��

The �rst step suggests that literals may be propagated through the rest of the theory by substituting logical
constants for them� The second step suggests that theories can be simpli�ed by eliminating these logical
constants� We observe that these steps are applicable in a more general setting� and construct general rules
out of them� After presenting the rewrite system FPC� we will prove that it is convergent� monotonic� content
preserving� and modular� We also show that FPC is at least as powerful as BCP for clausal theories� Later�
in Section ��	� we will present a tractable algorithm for FPC� while in Section ��� we will extend FPC by
adding more rules�

FPC is a rewrite system consisting of two kinds of rules�

Simpli�cation Rules These are the rules S� �S� � and S� of Figure ���� They simplify terms containing
t� f � and redundant connectives� For example� ����t� P �� �R ����t�� using the rule ��t� B� � ��t�
denoted by S��� To ensure termination� the bag B in S� rules must be non�empty� otherwise� we obtain
in�nite non�terminating sequences of rewriting� such as ��f ��R ��f ��R � � �

Propagation Rules These are the P� rules of Figure ���� They propagate a literal � by replacing each
occurrence of � and �� in B by some logical constant� Again� the atom of � must be a subterm of B to
ensure termination�

For example� the formula �Q � �P � ��P �Q��� can be reduced in the following sequence�

�Q � �P � ��P �Q��� �FPC �Q � �P � �f �Q��� �rule P���

�FPC �Q � �P � ��Q��� �rule S���

�FPC �Q � �P �Q�� �rule S���

�FPC �Q � �P � f �� �rule P���

�FPC �Q � ��f �� �rule S���

�FPC �Q � f � �rule S���

�FPC ��Q� �rule S���

�FPC Q �rule S���

Thus� we can reduce �Q � �P � ��P � Q��� to Q� Since no rule applies to Q� it is a normal form of
�Q � �P � ��P �Q���� A di�erent reduction sequence for the same formula is�

��

���

P�� ����B� � ����B�t
��
����

P�� ����B� � ����B�f
��
����

P�� ����B� � ����B�t
��
����

where � is a literal and B is a bag of formulas such that atom of � is a subterm of B�

Figure ���� Propagation rules

���

�Q � �P � ��P �Q��� �FPC �Q � �P � ��P � f ��� �rule P���

�FPC �Q � �P � ���P ��� �rule S���

�FPC �Q � �P � �P �� �rule S���

�FPC �Q � ��P � f �� �rule P���

�FPC �Q � ��f �� �rule S���

�FPC �Q � f � �rule S���

�FPC ��Q� �rule S���

�FPC Q �rule S���

Even with this di�erent sequence� we obtain the same irreducible formulaQ� Also� note that Q is logically
equivalent to �Q � �P � ��P �Q���

Note that the various rule schemas are grouped together using the following conventions �where Ri is
either S�� S�� S�� or P���

�� lhs of Ri� is a conjunctive formula� while rhs is a formula�

�� lhs of Ri� is a disjunctive formula� while rhs is a formula�

�� both lhs and rhs of Ri� are theories�

	� Ri� and Ri� are duals of each other�

� Ri� is the cdual of Ri��

We will follow this grouping convention for all rewrite systems for fact propagation�

����� Properties of FPC

If follows directly from the grouping of schemas that the rewrite system FPC is closed with respect to duals
and cduals� Theorem ��� proves that it is convergent� content preserving� monotonic� and modular� For
this� we use the results presented in Section ��	��� and the following lemmas�

Lemma ���� l � r for each rewrite rule l � r in FPC�

Proof We show that v�l� � v�r� for any interpretation v and any rule l � r in FPC�

S� both lhs and rhs of S�� and S�� are false in v� whereas both lhs and rhs of S�� are true in v�

��

S� For S���

v���t� B�� � true i� v��� � true for each � B
i� v���B�� � true

For S��� replace �� t� and true above by their respective duals� For S��� replace � by ��

S� v��� � true i� v������ � true i� v������ � true�

P� For P���

v�����B�� � true i� v��� � true and v���B�� � true

i� v��� � true and v���B�t
��
����� � true

i� v�����B�t
��
����� � true

For P��� replace �� t� and true above by their respective duals� For P��� replace � by ��

Lemma ���� l � r for each rewrite rule l � r in FPC�

Proof

S� Since B is not empty� r is obtained by removing at least one formula from l� Thus� w��l� � w��r� and
w��l� � w��r�� and at least one of them is a strict inequality� i�e�� l � r�

S� r is obtained by removing a single logical constant from l� Thus w��l� � w��r� and w��l� � w��r� " ��
i�e�� l � r�

S� r is obtained by removing a single connective from l� Thus w��l� � w��r� and w��l� � w��r� " �� i�e��
l � r�

P� w��l� � w��r� since r is obtained by removing at least one literal from l� Thus� l � r�

Lemma ���� facts�l� � facts�r� for each rewrite rule l� r in FPC�

Proof Note that ftg � facts�r� for any logical term �formula or theory� r� For each of the rules
S��� S��� S��� P��� P��� facts�l� � ftg� For each of the rules S��� S��� S��� S��� facts�l� � facts�r�� For
rule S��� if B � ���� then facts�l� � facts�r�� otherwise facts�l� � ftg� For rule P��� if � � facts���B��
then facts�r� is the set of all facts� otherwise facts�l� � facts�r��

Lemma ���� ��B�� B�� ��
FPC ��B

�� B�� for each rewrite rule ��B��� ��B�� in FPC and each bag B�

of formulas�

Proof We show that� in each case� both ��B�� B�� and ��B�� B�� rewrite to the same theory�

S�� If ��f � B����f � is an instance of S��� then both ��f � B�B�� and ��f � B�� reduce to ��f �� each using
at most one application of S���

S�� If ��t� B����B� is an instance of S��� then ��t� B�B�� rewrites to ��B�B�� using S���

P�� If ����B� � ����B�t
��
���� is an instance of P��� then B must contain at least one occur�

rence of � or its complement� hence the condition for rule P�� is satis�ed for ����B�B��� which

rewrites to ����B�t
��
���� B��t

��
���� using P��� On the other hand� ����B�t

��
���� B�� equals

����B�t
��
���� B��t

��
���� if B� does not contain �� or rewrites to the same theory using a second

application of P��� if B� does contain ��

�	

Lemma ���	 Each directed pair of rule schemas in FPC is con�uent�

Proof Appendix D shows this explicitly for certain pairs� The claim then follows from Propositions ����
���� and �����

Combining all these results� we obtain the main result of this section�

Theorem ���� The rewrite system FPC is convergent	 content preserving	 monotonic	 and modular�

Proof Termination of FPC follows from Lemmas ��
 and ���� and Proposition ���� Con�uence �and
hence� convergence� of FPC then follows from Lemmas ���� and ��� FPC is content preserving� using
Lemmas ��� and ����� Monotonicity of FPC follows from Lemmas ��� and ���	� Modularity of FPC follows
from Lemmas ��	 and ���
�

The next theorem shows that the irreducible form of any clausal theory with respect to FPC is the same
as that obtained by Clausal BCP�

Theorem ���� For any clausal theory �	 ���
FPC BCP����

Proof For any clausal theory �� we know that � ��
CBCP BCP���� where CBCP is the rewrite system

given in Figure ���� Since it can be easily veri�ed that BCP��� is irreducible with respect to FPC� it su�ces
to show that that l ��

FPC r for each rewrite rule l� r of CBCP� Since the �rst rule is already in FPC� we
need to show this only for the second rule�

l � ������������B��� B�� �FPC ���������B��� B�� �rule S���

�FPC ������f � B��t
��
����� B��t

��
���� �rule P���

�FPC ������B��t
��
����� B��t

��
���� �rule S���

r � ���������B��� B�� �FPC ������B��� B�� �rule S���

��
FPC ������B��t

��
����� B��t

��
���� �rule P���

Since both l and r reduce to the same formula� l��
FPC r�

Note that Clausal BCP is not de�ned for non�clausal theories� but FPC is also applicable to non�
clausal theories� However� FPC infers fewer facts than CNF�BCP for some theories� for example� the theory
�� � ����P �Q� � �P ��Q����� Since �� is irreducible with respect to to FPC� no facts are inferred using
FPC� On the other hand� the CNF transformation of �� produces the theory ��P� �P �Q�� �P � �Q���� from
which BCP infers the fact P � Intuitively� CNF transformation allows the atom P to be factored out� since
it occurs in all the disjuncts� In the next section� we present a rewrite system that has such factoring
capabilities�

��	 FP � Extending CNF
BCP

We now present a rewrite system FP that can be used to infer more facts than CNF�BCP� and prove that it
is convergent� modular� content preserving� and monotonic� FP is obtained by adding rewrite rules to FPC
that allow factoring of common literals from subformulas� as is possible using the CNF transformation �see
the discussion of �� at the end of the previous section�� In order to maintain con�uence and modularity
we need to add several additional� rather specialized� rules� Because of these restrictions� some rules that
apply to conjunctive formulas might not apply to theories� �A tractable algorithm for FP will be presented
in Section �����

�

���

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

where n N � ��s are literals� and B�s are bags of formulas�

Figure ����� Lifting rules

���

Recall from the previous section that while CNF�BCP factors out P from the theory ����P �Q� � �P � �Q�����
FPC does not infer P from this� In order to strengthen FPC to obtain this factoring� we can add the
following rewrite rule�

basic factoring � ������B��� � � � �����Bm�� � ��������B��� � � � ���Bm���

along with its dual and theory counterparts� where � is a literal and B�s are bags of formulas� �Here
we introduce our �nal notational convention for rule schemata� as with inference rule schemas in natural
deduction� dots � � � represent an arbitrary number of di�erent terms of the same kind as the �rst one� but
with all subscripted meta�variables distinct� Hence meta�rules are instantiated in two steps� �rst� a decision
is made about the �dots� replacement� and then meta�variables are instantiated by terms�� It is clear that
�� can be rewritten to ���P � �Q � �Q���� using the dual of the basic factoring rule� and can then be reduced
to ��P �� using FPC�

However� the resulting rewrite system is not con�uent� For example� in the following theory�

�� � ����P �Q �R� � �P �Q � S����

we get the following distinct irreducible forms depending on whether we �rst factor P or Q�

���P � �Q � �R � S�����
���Q � �P � �R � S�����

In order to make it con�uent again� we can add the following rewrite rule�

Collapsing� ����B��� B�� � ��B�� B��

along with its dual and theory counterparts� where B�s are bags of formulas� It is clear that both the above
theories can be reduced to the same theory

���P �Q � �R � S����

using the new rule� Another advantage of using this rule is that facts in B� can now be propagated in the
entire formula ��B�� B��� rather than just in ��B���

However� the resulting system is still not con�uent� For example� in the following theory�

�	 � �����P �Q� � �P �R�� � S���

we get the following distinct irreducible forms depending on whether we �rst use factoring or collapsing�

����P � �Q �R�� � S���
����P �Q� � �P �R� � S���

��

���

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

where n�m N �m � ��� ��s are literals� and B�s are bags of formulas�

Figure ����� Factoring rules

���

In other words� collapsing can block factoring�

In order to avoid such blocking� the collapsing rule can be replaced by the following weaker rule�

Lifting�� � ������B��� B�� � ������B��� B��

along with its dual and theory counterparts� where � is a literal and B�s are bags of formulas� The resulting
system contains rules of FPC� basic factoring� and lifting� It can be veri�ed that �� reduces to ��P �� and that
�� and �	 are reduced to the following normal forms� respectively�

���P �Q � �R � S����
����P � �Q �R�� � S���

However� the resulting system is still not con�uent because of the interaction with simpli�cation rules� For
example� in the following theory�

�
 � ����P � f � � �P � �Q �R� � �Q �R�����

we get the following distinct irreducible forms depending on whether we �rst use S� or factoring�

���P � �Q �R� � �Q �R����
���P � �Q �R����

In order to reduce the former theory to the latter� we need to generalize basic factoring to the following
rule �Factoring����

����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

along with its dual and theory counterparts� where ��s are literals� B�s are bags of formulas� and m � ��
The resulting system contains rules of FPC� factoring� and lifting� It can be veri�ed that �
 reduces to the
following normal form�

���P � �Q �R����

However� the resulting system is still not con�uent� For example� in the following formula�

����P�B��

where B is a bag containing at least two formulas such that ��B� is irreducible� we get the following distinct
irreducible forms depending on whether we �rst use S� or lifting�

��P�B�
��P���B��

For another example� in the following formula�

����P� f ����P�B��

�

where B is a bag containing at least two formulas such that ��B� is irreducible� we get the same two distinct
irreducible forms given above� depending on whether we �rst use S� or factoring�

In order to reduce the latter theory to the former� we need to add another lifting rule�

Lifting�� � ����� � � � � �n���B�� � ����� � � � � �n� B�

along with its dual and theory counterparts� The resulting system contains rules of FPC� factoring rules�
and both the lifting rules�

However� the resulting system is not modular� For example� while the theory

����P�B�����P�B����

can be reduced to
����P�����B�����B������

using the factoring rule� the following two theories are not reducible to the same theory�

��B���P�B�����P�B����
��B���P�����B�����B������

The problem is that factoring applicable to a subtheory may not be applicable to the entire theory� One
way to achieve modularity would be to detect all potential factorings that apply to any subtheory of a theory�
Since the number of di�erent sub�theories is exponential in the number of formulas in a theory� this will
cause intractability� So� we pursue another alternative for retaining modularity� restrict factoring so that
it does not apply at all to theories or sub�theories� As a consequence� although P would be inferable from
the theory ����P �Q� � �P �R���� because factoring applies to formulas� P is not inferable from the theory
���P �Q�� �P �R����

However� with this change� the resulting system is not con�uent� For example� in the following theory�

��P�����Q�B�����Q�B�����

we get the following distinct irreducible forms depending on whether we �rst use factoring or the second
lifting rule�

��P���Q�����B�����B������
��P���Q�B�����Q�B����

In order to retain con�uence� we should restrict the second lifting rule so that it does not apply to
theories� The resulting system contains rules of FPC� factoring rules� and both the lifting rules� We will
show that this system� which we will call Fact Propagation� FP � given in Figure ����� is convergent� content
preserving� monotonic� and modular� Note that there are no theory counterparts of L� and F� rules� thus�
theories are reduced di�erently from conjunctions involving the same formula�

The following is an example of a reduction sequence for the theory
������P�Q�R����P��Q�R�����R���S�Q��� using the rules in FP�

�FP ������P�Q�R����P��Q�R��� R�����S�Q��� �rule L���

�FP ������P�Q� t����P��Q� t��� R�����S�Q��� �rule P���

��
FP ������P�Q����P��Q��� R�����S�Q��� �rule S���

�FP ������P�Q����P��Q��� R���S�Q�� �rule S���

�FP ������P�����Q�����Q����� R���S�Q�� �rule F���

�FP ����P�����Q�����Q���� R���S�Q�� �rule S���

��
FP ����P���Q��Q��� R���S�Q�� �rule S���

��

Simpli�cation Rules

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ��t� B� � ��t� S�� ��f � B� � ��B�

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ���� � � S�� ���� � �

Propagation Rules

P�� ����B� � ����B�t
��
����

P�� ����B� � ����B�f
��
����

P�� ����B� � ����B�t
��
����

Lifting Rules

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

Factoring Rules

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

where n�m N � ��s are literals� � is a formula� and B�s are bags of formulas� To ensure termination� B
can�t be an empty bag in S� rules� the atom of � must be a subterm of B in P� rules� and m � � in F�

rules�

Figure ����� Rewrite system FP

��

�FP ����P���Q� t��� R���S�Q�� �rule P���

�FP ����P���t��� R���S�Q�� �rule S���

�FP ����P� t�� R���S�Q�� �rule S���

�FP ����P �� R���S�Q�� �rule S���

�FP ��P�R���S�Q�� �rule S���

The rewrite system FP doesn�t always produce the logically �simplest� formula� For example� consider
the formulas ��P �Q�� �P ��Q�� ��P �Q�� and �P �Q�� Although the two are logically equivalent� each
of them is irreducible� In fact� it is not possible to have a tractable rewrite system �unless P � NP� that
produces the logically �simplest� formula� since it can then be used to determine satis�ability�

��	�� Properties of FP

If follows directly from the grouping of schemas that the rewrite system FP is closed with respect to dual
and cdual� We now prove that it is convergent� content preserving� monotonic� and modular� For this� we
use the results presented in Section ��	���

First� we show that FP is identical to FPC for clausal theories�

Proposition ���� For any clausal theory � and any theory in PCE	 ���
FP i� ���

FPC �

Proof None of the rules of FP that is not in FPC can be used to rewrite a theory that does not have
either a conjunctive formula or a formula with nested disjunctions� Since a clausal theory never rewrites to
any such theory using a rule in FP� the claim follows�

Lemma ���� l � r for each rewrite rule l � r in FP �

Proof It follows from Lemma ���� that all we need to show is that l � r for any rewrite rule l � r of FP
that is not in FPC� The result is obvious for lifting rules� For factoring rules �see Figure ������

F�� For any interpretation v�
v�l� � true i� v���� � � � � � v��n� � true� and

for each i � � � � �m� either v��� � true or v���Bi�� � true
i� v���� � � � � � v��n� � true� and

either v��� � true or
for each i � � � � �m� v���Bi�� � true

i� v�r� � true

F�� Replace �� �� and true above by their respective duals�

Lemma ���� l � r for each rewrite rule l � r in FP �

Proof It follows from Lemma ���� that all we need to show is that l � r for each rewrite rule l � r of
FP that is not in FPC�

L� Since r is obtained by moving a literal out of a connective in l� w	�l� � w	�r�� Since� w��l� � w��r� and
w��l� � w��r�� it follows that l � r� Note that this holds even if the bag B� is empty�

L� Since r is obtained by removing a connective in l� w��l� � w��r�� Since w��l� � w��r�� it follows that
l � r� Note that this holds even if the bag B is empty or if n � ��

	�

F� Since m � �� r is obtained by removing at least one literal in l� Thus� w��l� � w��r�� i�e�� l � r�

If m � � were allowed in F� rules� then it would be possible to obtain a cycle of reductions�

������B�� �R ����������B���� �unrestricted rule F���

�R ��������B��� �rule S���

�R ������B�� �rule L���

Lemma ���� facts�l� � facts�r� for each rewrite rule l� r in FP �

Proof It follows from Lemma ���	 that all we need to show is that facts�l� � facts�r� for each rewrite
rule l � r of FP that is not in FPC� For either L�� or L��� or any of the factoring rules� facts�l� � ftg�
For rule L��� if B� � ���� then facts�l� � facts�r�� otherwise facts�l� � facts���B��� � facts�r�� For L� rules�
if n � � and B � ���� then facts�l� � facts�r�� otherwise facts�l� � ftg�

For the above proof to go through the L�� and L�� cases� it was important that facts�����P ��� � ftg�

Lemma ���� ��B�� B�� ��
FP ��B

�� B�� for any rewrite rule ��B�� � ��B�� in FP and any bag B� of
formulas�

Proof It follows from Lemma ���
 that we need to prove the claim only for the rule L��� This follows
directly since ������B��� B�� B

���FP ������B��� B�� B
�� using the rule L���

Lemma ���� Each directed pair of rule schemas in FP is con�uent�

Proof Appendix D shows this explicitly for certain pairs� The claim then follows from Lemma ���� and
Propositions ���� ���� and �����

Combining all these results� we obtain the main result of this section�

Theorem ���� The rewrite system FP is convergent	 content preserving	 monotonic	 and modular�

Proof Termination follows from Lemmas ��
 and ���� and Proposition ���� Con�uence �and hence�
convergence� then follows from Lemmas ���	 and ��� FP is content preserving� using Lemmas ��� and �����
Monotonicity follows from Lemmas ��� and ����� Modularity follows from Lemmas ��	 and �����

Since FP is convergent� it follows that the reduction relation ��
FP is a function� We will denote this

function by FPF� In other words� for any theory � in PCE without equality� FPF��� is the unique irreducible

theory such that ���
FP FPF���� In section ���� we will extend FPF to all the theories in PCE�

��	�� Comparison with CNF�BCP

For the purpose of this section� we restrict our attention to PCE without equality� a syntactic variant of
�nite PC� Thus� there is no equality predicate in formulas and theories� all the atoms are propositions� and
all theories are �nite�

We will prove that FP infers more facts than CNF�BCP� This will follow as a corollary of a theorem
which states that for any clause ����� � � � � �n� �n � �� produced by CNF�BCP on any theory �� the fact �n
is inferred by FP from the theory � � ������ � � � ���n����� The theorem is �rst proved for the case when �
is a clause in CNF��� itself� i�e�� even before Clausal BCP is used� This weaker result� which is proved by
induction on the construction of �� is based on two lemmas that show that a fact can be inferred by FP

	�

from a conjunctive �or a disjunctive� formula if it can be inferred by FP from some conjunct �each disjunct�
respectively� in the formula� Both of these lemmas are based on the result that if a fact � is inferred using
FP by propagating some literals through a formula � then FP produces the formula ����B� �for some bag
B of formulas� by rewriting the formula obtained from � by replacing each occurrence of those literals by t�
To prove these claims� we will extensively use the properties of FP given in Theorem ���
�

We �rst show some simple properties about FP that will be used later in the section� First� the terms
��f � and ���� for any literal � are irreducible with respect to FP � The next proposition shows that facts
directly inferable from any theory irreducible with respect to FP are present explicitly as formulas in the
theory�

Proposition ���	 For any theory � irreducible with respect to FP and any literal �	 � facts��� i� either
� � or � � ��f ��

Proof By de�nition of facts� if � � ��f � then � facts���� Now � facts��� and � �� ��f � i� either �
or ���� or ���� in � i� � � �since the other two formulas are reducible�� This proves the claim�

The next proposition shows some special properties of the theory ��f ���

Proposition ���� For any theory � irreducible with respect to FP and any atom p
 � � ��f � i� f facts���
i� fp��pg � facts����

Proof

�� if � � ��f � then f facts��� follows directly from the de�nition of facts�

�� if f facts��� then facts��� contains all facts �from the de�nition of facts�� Thus� fp��pg � facts����

�� suppose fp��pg � facts��� for some atom p� but � �� ��f �� There are only three possibilities� each of
which will lead to a contradiction since � is no longer irreducible�

�a� either ��f � or ��f � in �

�b� one of ��p�� ���p�� ��p�� or ���p� is in �

�c� both p and �p are in ��

The next proposition shows that more facts can be inferred using FP from larger theories�

Proposition ���� For any theories � and
 facts�FPF���� � facts�FPF�� � ���

Proof Since FP is modular� FPF�� � � � FPF�FPF��� � � using Lemma ���� By convergence of FP�
FPF��� � ��

FP FPF�� � �� The claim then follows from the monotonicity of FP�

We now prove that if a fact � is inferred using FP by propagating some literals through a formula � then
FP produces the formula ����B� �for some bag B of formulas� by rewriting the formula obtained from �
by replacing each occurrence of those literals by t� We also consider the special case when f is so inferred�
We �rst have to de�ne this notion of replacement�

De�nition ���� Any bag A of literals is consistent i� there is no atom p such that both p and �p are in
A� For any term t and any consistent bag A � ����� � � � � �n�� of literals� t�t�� A� is de�ned to be the term

t�t
��
���� � � � �t

��
��n��

Note that the term t�t�� A� does not depend on the ordering of literals in A� since A is consistent and
all literals in A are replaced by the same term t�

	�

Lemma ���� For any consistent bag A of literals	 any formula �	 and any literal � not in A

�� if FPF���A���� � ��f � then ��t��A���
FP f

�� if � FPF���A���� then either ��t��A���
FP � or there is a nonempty bag B of formulas such that

��t��A���
FP ����B��

Proof Using rule P��� we obtain ��A�����
FP ��A���t��A���

�� Suppose FPF���A���� � ��f �� Since FP is con�uent� ��A���t��A����
FP ��f �� Since A is consistent

and none of the atoms in A occurs in ��t��A�� the only way this rewriting can happen is when f is
obtainable as a formula by reducing ��t��A�� Thus� ��t��A���

FP f �

�� Suppose � FPF���A����� Since FP is con�uent� we obtain that � FPF���A���t��A��� � Since
� � A� arguing as above� � must be obtained by reducing ��t��A�� This can only happen when either
��t��A���

FP ����B� �for some non�empty bag B� or ��t��A��
�
FP �� In the former case� rule L��

can be then used for lifting � out of the conjunction�

The next two lemmas show that a fact can be inferred by FP from a conjunctive �or a disjunctive� formula
if it can be inferred by FP from each conjunct �some disjunct� respectively� in the formula�

Lemma ���� For any bag B of formulas	 any bag A of literals	 and any literal �
 if � facts�FPF���A�����
for each formula � B	 then � facts�FPF�����B�� A����

Proof Denote ����B�� A� by �� Note that A � facts�FPF���� follows from Lemma ���� since FPF is
monotonic with respect to facts� We consider various possibilities� Due to Proposition ���� in some cases it
is su�cient to show that FPF��� � ��f ��

�� if B � ���� then ��FP ��f � using rule S�� � since ��B� � f �

�� otherwise� if � A then the claim again follows by monotonicity� since A � facts�FPF�����

�� otherwise� if A is inconsistent then FPF ��� � ��f � from Proposition ���� since A � facts�FPF�����

	� otherwise� using Lemma ����� we can split B into the following pairwise disjoint bags B�� B�� and B	�

B� �
��
� B j ��t��A���

FP f
��

B� �
��
� B j ��t��A���

FP �
��

B	 �
��
� B j ��t��A���

FP ����B�� for some bag B�

��
Using rewrite rule P��� ���

FP ��A���B��t��A��� Thus� using the above split�

���
FP ��A�����f j � B��� � ��� j � B��� � ������B�� j � B	����

Since FP is convergent� the claim follows in each possible case�

�a� if B� is non�empty� then using simpli�cation rules and P��� we obtain that � �
�
FP ��A��� �

FPF���� Thus� � facts�FPF�����

�b� otherwise� if both B� and B	 are empty� then � ��
FP ��f � using simpli�cation rules� Thus� the

claim follows�

�c� otherwise� if B	 is a singleton� say ������ then using simpli�cation rules and L��� we obtain that
���

FP ��A�����B���� The claim follows from the monotonicity of FP with respect to facts�

	�

�d� otherwise� using simpli�cation rules� L��� and F��� we obtain�

���
FP ��A���������B� j � B	����

The claim again follows directly from the monotonicity of FP with respect to facts�

Lemma ���� For any bag B of formulas	 any bag A of literals	 and any literal �
 if � facts�FPF���A�����
for some formula � B	 then � facts�FPF�����B�� A����

Proof Denote ����B�� A� by �� Note that A � facts�FPF����� since FPF is monotonic with respect to
facts� We consider various possibilities� �Due to Proposition ���� in some cases it will be su�cient to show
that FPF��� � ��f ���

�� if A is inconsistent� then FPF ��� � ��f � from Proposition ���� since A � facts�FPF�����

�� otherwise� using rewrite rule P��� � ��
FP ��A���B��t��A��� Splitting B into B�� B�� and B	� as in

the proof of Lemma ����� we obtain�

���
FP ��A�����f j � B��� � ��� j � B��� � ������B�� j � B	����

If B� is non�empty then � ��
FP ��f � using rule S��� and the claim follows� Otherwise� either B�

or B	 is non�empty� since B contains a formula �� Using rule L�� �and possibly L���� we obtain
� ��

FP ��A���B�� for some bag B�� The claim then follows from the monotonicity of FP with
respect to facts�

The next lemma shows that propagating the complement of any immediate subclause of any clause in
CNF��� produces the remaining literal using FP�

Lemma ���� For any theory �	 any positive n	 and any literals ��� � � � � �n
 if ����� � � � � �n� CNF���
then �n facts�FPF�� � ������ � � � ���n������ if f CNF��� �the case when n � ��	 then facts�FPF���� �
facts���f ��

Proof �By induction on the structure of �� We will prove the claim by induction �outer� on the number
of formulas in �� A base case� when � � ����� is trivial since CNF��� � ����� Another base case� when � has
a single formula� will be proved by another induction �inner� on the structure of this formula� Denote the
theory � � ������ � � � ���n���� by ��� There are three base cases for the inner induction�

� � ��t�� trivial� since CNF��� � �����

� � ��f �� trivial� since CNF��� � FPF��� � ��f ��

� � ����� for some literal �� since cnf always returns disjunctions� CNF��� � ������� and FPF��� � �����

There are two inductive steps for the inner induction�

� � ����B��� where B is a non�empty bag of formulas� The inductive assumption is that the lemma holds
for any theory ����� where � B� Consider any A � ����� � � � � �n� CNF���� Thus� there must
be a � B such that A CNF�������� Using the inductive assumption� �n facts�FPF� ��� where
 � �������� � � � ���n����� Our claim follows directly from Lemma �����

		

� � ����B��� where B is a non�empty bag of formulas� The inductive assumption is that the lemma holds for
any theory ����� where � B� Consider any A � f��� � � � � �ng such that ��A� CNF���� Thus� for
each � B� there must be a set A� � A such that A� CNF����

Consider any � B and anyA� CNF��� such that A� � A� IfA� is empty� then ��� � f CNF���� so
�n facts�FPF�������� � facts�FPF� ��� Otherwise� let A� � f�� � � � � pg� � � ������� � � � ��p�����
and � �������� � � � ���n����� Using the inductive assumption� p facts�FPF� ���� Since � � �
p facts�FPF� ��� using Proposition ����� There are two subcases�

�n A� Without loss of any generality� assume p � �n�

otherwise Since �p � it follows from Proposition ��� that FPF� � � ��f ��

Thus� �n facts�FPF� �� is both cases�

Since this holds for each � B� our claim follows directly from Lemma �����

We now consider the inductive step for the outer induction� i�e�� � has at least two formulas� The
inductive assumption is that the lemma holds for any theory ����� where � �� Consider any A �
����� � � � � �n� CNF���� There must be a � � such that A CNF���� Using the inductive as�
sumption� �n facts�FPF� ��� where � �������� � � � ���n����� Since � ��� our claim follows from
Proposition �����

We are now ready to prove the main theorem of this section� which strengthens the above lemma for any
clause produced by BCP on CNF����

Theorem ���� For any theory �	 any n	 and any literals ��� � � � � �n
 if the clause ����� � � � � �n� is produced
by BCP on CNF��� then �n facts�FPF��� ������ � � � ���n������ if f is ever produced by BCP on CNF���
�the claim for n � ��	 then FPF�� � ������ � � � ���n����� � ��f ��

Proof Suppose A � ����� � � � � �n� is the �rst clause produced by BCP that violates the claim� Denote
the theory � � ������ � � � ���n���� by ��� Since it follows from Lemma ���� that A � CNF���� A must have
been produced by an application of the BCP inference rule� Thus� there is a literal � such that both �����
and ���� ��� � � � � �n� were earlier produced by BCP� and hence satisfy the claim� Thus� � facts�FPF����
and �n facts�FPF� ��� where � �� � f��g� Using Proposition ����� we obtain�

�� either FPF��� � ��f � or �� FPF���� and

�� either FPF� � � ��f � or �n FPF� ��

If FPF��� � ��f � then FPF���� � ��f � using Propositions ��� and ����� since � � ��� That is� A
satis�es the claim� a contradiction� Thus� FPF��� �� ��f ��

It follows from � that � � FPF���� Since � � ��� either FPF���� � ��f � or � � FPF����� using
Propositions ���� and ����� Using � and the modularity of FP� we obtain that either FPF���� � ��f � or
�n FPF����� i�e�� A satis�es the claim� a contradiction�

Thus� there is no clause A that violates the claim�

A direct corollary of Theorem ����� when n � �� shows that FP infers at least as many facts as CNF�BCP�

Corollary ���� For any theory �
 facts�BCP ���� � facts�FPF �����

Recall from Section ��
 that for any theory �� BCP��� denotes the theory obtained by CNF�BCP� i�e��
�rst converting � to CNF and then using Clausal BCP�

The next example shows that FP may indeed infer more facts than BCP� Consider the theory
� � ���P � �Q � ��Q � P ������ It can be veri�ed that CNF��� � BCP��� � ���P �Q�� �P ��Q���� thus
facts�BCP���� � ftg� However� ���

FP ��P ��� thus facts�BCP���� � fP� tg � facts�FPF �����

	

���

E�� a
�
�a � t E�� a �

�
�a � f

E�� ��a
�
�b� B� � ��a

�
�b� B�b

�
�a�� �if a � b�

where a and b are constants and B is a bag of formulas such that a is a subterm of B�

Figure ����� Equality rules

���

��� FPE � Handling Equality

We now extend FP to Fact Propagation with Equality� FPE� so as to be able to reason with simple cases of
equality� The rewrite system FPE is proved to be convergent� modular� monotonic� and content preserving�
As in the case of FP� we discard some alternative rewrite systems that do not satisfy these properties�

The simplest kind of equality reasoning is that the formula �a
�
� a � P � should be reducible to t� Also�

the formula �a �
�
�a �P � should be reducible to f � The rewrite rules that will allow such reduction are�

a
�
�a � t

a �
�
�a � f

We should also be able to reduce the theory ��a
�
�b� P �a���P �b��� to the theory ��f ��� The rewrite rule that

will allow this is�
��a

�
�b� B� � ��a

�
�b� B�b

�
�a�� �if a � b�

For this rule to be deterministic� we require that a � b� It is natural to also allow the counterparts of the
above rule for conjunctive and disjunctive theories�

��a
�
�b� B� � ��a

�
�b� B�b

�
�a��

��a �
�
�b� B� � ��a �

�
�b� B�b

�
�a��

However� these rules may block applications of propagation and factoring rules� as the following two formulas
demonstrate�

�P �a� b� � �a �
�
� b � P �a� b����R �P �a� b�� �a �

�
� b � P �b� b���

��a
�
�b � P �b�� � �b

�
�c � P �b����R ��a

�
�b � P �b��� �b

�
�c � P �c���

where a � b � c� In the former case� P �a� b� can no longer be propagated using rule P��� in the latter case�
P �b� can no longer be factored using rule F��� Con�uence is violated because of this blocking�

Thus� we allow only those equality rules that are given in Figure ����� The resulting rewrite system�
called FPE� is given in Figure ���	�

For an example� suppose a � b � c � d�

��P �a� d���P �c� b�� a
�
�c� b

�
�d�� �FPE ��P �c� d���P �c� b�� a

�
�c� b

�
�d�� �rule E���

�FPE ��P �c� d���P �c� d�� a
�
�c� b

�
�d�� �rule E���

�FPE ��P �c� d�� f � a
�
�c� b

�
�d�� �rule P���

�FPE ��f �� �rule S���

��
�� Properties of FPE

If follows directly from the grouping of schemas that the rewrite system FPE is closed with respect to duals�
Note that it is not closed with respect to cduals because of rule E��� We now prove that it is convergent�
content preserving� monotonic� and modular� For this� we use the results presented in Section ��	���

	�

Simpli�cation Rules

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ��t� B� � ��t� S�� ��f � B� � ��B�

S�� ��f � B� � ��f � S�� ��t� B� � ��B�

S�� ���� � � S�� ���� � �

Propagation Rules

P�� ����B� � ����B�t
��
����

P�� ����B� � ����B�f
��
����

P�� ����B� � ����B�t
��
����

Lifting Rules

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ������B��� B�� � ������B��� B��

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

L�� ����� � � � � �n���B�� � ����� � � � � �n� B�

Factoring Rules

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

F��
����� � � � � �n�����B��� � � � �����Bm�� � ����� � � � � �n���������B��� � � � ���Bm����

Equality Rules

E�� a
�
�a � t E�� a �

�
�a � f

E�� ��a
�
�b� B� � ��a

�
�b� B�b

�
�a�� �if a � b�

where n�m N � a and b are constants� ��s are literals� � is a formula� and B�s are bags of formulas� To
ensure termination� B can�t be an empty bag in S� rules� the atom of � must be a subterm of B in P�

rules� m � � in F� rules� and a must be a subterm of B in rule E��

Figure ���	� Rewrite system FPE used for fact propagation with equality

	

First� we observe that FPE is identical to FP for PCE without equality ��nite PC�� since no equality
rules apply at any stage of rewriting�

Lemma ���� l � r for each rewrite rule l � r in FPE�

Proof It follows from Lemma ���� that all we need to show is that l � r for any rewrite rule l � r of
FPE that is not in FP � In the following� v is any interpretation�

E�� v�l� � true � v�r��

E�� v�l� � false � v�r��

E�� Since interpretations must be consistent with equality�

v���a
�
�b� B�� � true i� v�a

�
�b� � true and v���B�� � true

i� v�a
�
�b� � true and v���B�b

�
�a��� � true

i� v���a
�
� b� B�b

�
�a��� � true�

Lemma ���	 l � r for each rewrite rule l � r in FPE�

Proof It follows from Lemma ���� that all we need to show is that l � r for each rewrite rule l � r of
FPE that is not in FP �

E� w��l� � w��r� since r is obtained by replacing a literal in l by a logical constant� Thus� l � r�

E� Since r is obtained by replacing at least one a in l by b and a � b�w
�l� �mul w
�r�� Since� w��l� � w��r��
w��l� � w��r�� and w	�l� � w	�r�� it follows that l � r�

Lemma ���� facts�l�
�
� � facts�r�

�
� for each rewrite rule l� r in FPE�

Proof It follows from Lemma ���� that all we need to show is that facts�l�
�
� � facts�r�

�
� for each rewrite

rule l � r of FPE that is not in FP � For rules E�� and E��� facts�l�
�
� � facts�r�

�
�� For rule E��� facts�r�

is the set of all facts�

Lemma ���� ��B�� B�� �
�
FPE ��B

�� B�� for each rewrite rule ��B�� � ��B�� in FPE and any bag B�

of formulas�

Proof It follows from Lemma ���� that we need to prove the claim only for the rule E��� This follows

directly� since both ��a
�
�b� B�B�� and ��a

�
�b� B�b

�
�a�� B�� rewrite to ��a

�
�b� B��b

�
�a�� B�b

�
�a�� using zero

or one application of rule E���

Lemma ���� Each directed pair of rule schemas in FPE is con�uent�

Proof Appendix D veri�es this explicitly for certain pairs� The claim then follows from Lemma ���	 and
Propositions ���� ���� and ����� Proposition ���� is applicable� since E��� the only theory rule that does not
have a cdual� is not an extra rule used in proving con�uence of any pair of rules�

Combining all these results� we obtain the main result of this section�

	�

Theorem ���� The rewrite system FPE is convergent	 content preserving	 monotonic	 and modular�

Proof Termination of FPE follows from Lemmas ��
 and ���� and Proposition ���� Con�uence of FP then
follows from Lemmas ���� and ��� FPE is content preserving� using Lemmas ��� and ���
� Monotonicity
of FPE follows from Lemmas ��� and ���� Modularity of FPE follows from Lemmas ��	 and �����

Since FPE is convergent� the reduction relation ��
FPE is a function� Since �

�
FPE agrees with �

�
FP on

theories without equality� we will use FPF to denote this function also� In other words� for any theory � in
PCE� FPF��� is the unique irreducible theory such that � ��

FPE FPF���� In this way� FPF is de�ned for
all theories in PCE�

��� Conclusions

We presented fact propagation� FP� a rewrite system for inferring facts from propositional theories� Though
FP is logically incomplete� it does not require theories to be transformed into clausal form� which is an
advantage in cases where such normalization causes an exponential increase in size or when explanations of
the inferences need to be given to users� FP infers at least as many facts as inferred by CNF�BCP� which is
an exponential time algorithm� For some theories� FP infers more facts than CNF�BCP�

We used rewrite systems� rather than inference systems� for de�ning fact propagation� There were several
reasons for this� First� global changes are expressed conveniently using rewrite systems �for example� see
propagation rules�� Second� we do not need the old formulas after they have been simpli�ed �for example�
compare the inference rules and the rewrite system for clausal CNF�� Third� as we shall see in Chapter ��
converting a rewrite system to an e�cient algorithm can sometimes be easier� since the task at hand is well
de�ned� �nd and maintain a list of remaining places where a rule can be applied�

Like other researchers dealing with rewrite systems� we found con�uence to be a very important property�
A con�uent system results in a unique irreducible form for every term� The terminating nature of the
rewriting system was helpful in proving the con�uence of the system �because we only had to consider �local
con�uence� using single�step applications of pairs of overlapping rules�� Con�uence and termination also
help in obtaining a tractable algorithm� as we shall see in the next chapter�

For these reasons� we used con�uence and termination of the rewriting system as a heuristic for choosing
some of the inferences our reasoner will perform �c�f� the section on FP�� This was helpful because developers
of incomplete reasoners traditionally face the di�cult question of which inferences to make and which to
avoid� and when to stop hunting for other inexpensive inferences to include�

Fact propagation does have limitations� First� it is quite weak in even some simple cases� For instance�
it does not infer the fact P from the theory ��P �Q� P � �Q� Q �R��� Second� it lacks a model theory that
provides an independent characterization of its reasoning�

	�

Chapter �

Algorithms for Fact Propagation

��� Overview

We present an algorithm� AFP� for computing the irreducible form of a �nite theory using the rewrite
system FP $ a form that contains the facts inferred by FP� We show that algorithm AFP has quadratic time
complexity in the number of propositional symbols and connectives in the input theory �the propositional
symbols are assumed to be integers from � to k� where there are k distinct propositional symbols in the
theory�� If we restrict our attention to clausal theories� the complexity of AFP is the same as that of
standard Clausal BCP� linear time�

AFP represents the input theory by a tree whose nodes are labeled by the subterms of the theory� It
works by repeatedly rewriting the theory using some rewrite rule that is applicable to it� Rather than naively
searching for an applicable rule in each step� which does not give a linear�time algorithm for clausal theories�
AFP has several re�nements�

� AFP uses data structures for e�ciently identifying potential rule applications as soon as they become
applicable� For example� instead of trying to apply a propagation rule by searching for each occurrence
of a literal� AFP uses additional data structures �arrays called Occurs� for e�ciently locating these
occurrences without explicitly searching for them each time� Similarly� factoring rules use arrays
Glits that keep count of the number of occurrences of the same literal nested in a speci�c way in the
subformulas�

� Instead of re�initializing data structures each time the theory is modi�ed �by replacing a subformula by
a truth constant� say�� some obsolete parts of the data structures are merely tagged and are modi�ed
only later when required �in a �lazy� fashion��

� Rather than applying a rule as soon as it becomes applicable� AFP keeps a record of potential rule
applications in various queues� Rules are then applied in the following order until all the queues
are emptied� propagation� lifting� and factoring� only simpli�cation rules are applied as soon as they
become applicable�

AFP uses the tree representation of a theory� as shown in Figure ���� where leaves are labeled by literals
and internal nodes� which represent subformulas� are labeled by connectives� For each internal node N� each
element N�Occurs�P� of an array called N�Occurs� indexed by literals� keeps a list of those nodes that provide
access to all leaves in the subtree rooted at the N which are labeled by the literal P� Occurs arrays are used
in e�ciently applying propagation rules� An additional array N�Glits� indexed by integers� has the property
that N�Glits�k� contains the list of literals that label k grandchildren of node N� Glits arrays are used to
identify e�ciently potential applications of factoring rules� Since initializing all entries of Occurs and Glits
arrays is potentially expensive �O�n	��� AFP initializes only those entries which correspond to the literals
that actually appear in the corresponding subtree�

�

���

AFP

AFPL Factor InitFactor

ReadArgs InitPropagate Propoagate Lift1 Lift2

InitOccurs SetOccurs IntGlits SetGlits

Figure ���� Nesting of procedures in algorithm AFP

���

Because of the complex data structures� the correctness of the AFP is not obvious� We therefore intro�
duce several invariants about the data structures and show that the correctness of AFP follows from these
invariants� Since the invariants are sometimes violated during the execution of the algorithm� we explicitly
list all violations along with the culprit step in the algorithm� and show that each of these is recti�ed in a
subsequent step�

To help the reader in understanding the AFP algorithm� we �rst present the algorithm AFPC which
reduces an input theory using the rewrite system FPC� i�e�� using only simpli�cation and propagation rules�
Without adding any new data structures �except for two queues of nodes�� we then extend AFPC to the
AFPL algorithm which also uses lifting rules� Finally� we present the algorithm AFP which also uses
factoring rules� Even in AFP� the theory is �rst reduced with respect to simpli�cation� propagation� and
lifting rules� There are two main reasons for delaying the application of factoring rules� which are also the
most complicated rules� factoring rules require additional data structures� whose initialization becomes much
easier if the theory is irreducible with respect to the other rules� they are also the only rules that require
adding new nodes to the tree� thus making it more di�cult to analyze the complexity of the algorithm�

The following quick overview of the procedures to be described refers to Figure ���� which shows the
nesting of procedures in the algorithm AFP� At the top level� AFP applies all possible rules except factoring
�AFPL�� initializes the data structures for factoring �InitFactor�� and then applies all possible factoring
rules and all other rules that become applicable� AFPL reads the input theory while applying all possible
simpli�cation rules and constructing its tree representation �ReadArgs�� initializes the data structures for
propagation and lifting rules �InitPropagate�� and then applies all possible rules except factoring� For
reducing the time�complexity� InitPropagate uses two passes over the entire tree� the �rst pass �InitOccurs�
initializes all the relevant entries of the Occurs arrays to Nil� while the second pass �SetOccurs� sets them
to the correct values� InitPropagate also creates a queue� PQ� of all nodes where propagation rule can be
applied� i�e�� the nodes that have at least one child labeled by a literal� Similarly� InitFactor uses two passes
�InitGlits and SetGlits� for respectively initializing and setting the Glits arrays� and creates a queue� FQ�
of all nodes where factoring rules can be applied� The queues PQ and FQ are updated whenever there are
new possibilities for applying propagation and factoring rules� respectively� The two queues� L�Q and L�Q�
for the two lifting rules are created from the nodes that are removed from the PQ list�

�

���

P�� ����B� � ����B�t
�
����

P�� ����B� � ����B�t
�
� ����

P�� ����B� � ����B�t
�
����

where � is a literal and B is a bag of formulas such that either � or �� is a subterm of B� Note that
B�t

�
��� is obtained from B by replacing some occurrence of � by t or �� by f �

Figure ���� Alternative Propagation Rules

���

Most of the rewriting of the input theory is done within the main loop of the algorithm� In each iteration�
if PQ is non�empty then propagation rules are attempted �Propagate� at its �rst node� otherwise� if L�Q is
non�empty then L� rules are attempted �Lift�� at its �rst node� otherwise� if L�Q is non�empty then L� rules
are attempted �Lift�� at its �rst node� otherwise� if FQ is non�empty then factoring rules are attempted
�Factor� at its �rst node� The algorithm terminates when either all the queues are empty or the theory
reduces to ffg or f g� In all cases� the output theory is irreducible� Thus� the actual rewriting is done
within procedures Propagate� Lift�� Lift�� and Factor� except for simpli�cation rules which are also applied
in ReadArgs� These procedures call several other procedures� for example� Collapse� which are explained
later�

Applying simpli�cation rules as soon as they become applicable causes a complication with propagation
rules� Any application of a propagation rule may replace many literals by truth constants� our algorithms do
these replacements in some arbitrary sequence� Since each of these replacements causes a new potential for
simpli�cation� many applications of simpli�cation rules are mixed with one application of a propagation rule�
Since this is not allowed in rewrite systems� we have to show that this mixing still gets the correct results�
We do so by introducing a variant of propagation rules that replaces only one literal in each rule application�
and proving that replacing the old propagation rule by this new one does not change the irreducible forms
of terms�

We also extend AFP for dealing with the equality rules� The resulting algorithm AFPE has time com�
plexity cubic in the size of the input theory� The increase in complexity is because of the need to change the
atoms themselves due to replacement of constants in them�

The plan of the rest of this chapter is as follows� we �rst present an alternative version of propagation
rules that is more easily implementable� We then present some basic data structures that are used throughout
in AFP� and a technique to encode theories using sequences of integers which facilitates reading the input
theory� This is followed by the four algorithms� AFPC� AFPL� AFP� and AFPE� for each of them� we
�rst present the algorithm� argue its correctness using invariants� and then present an upper bound on its
time complexity� These algorithms use several standard algorithmic �tricks� presented in the literature for
reducing the time complexity �c�f� �AHU	���

��� Alternative Propagation Rules

We introduce the new propagation rules that are implemented by our algorithms� We prove that they can
be substituted �without changing the irreducible forms of terms� for the original propagation rules in any
rewrite system whose termination is proved using the ordering � de�ned in Section ��	�� � For the purposes
of this section� we restrict our attention to only those rewrite systems that are terminating �see above� and
contain all the original propagation rules�

The basic idea is to split each application of an original propagation rule �P� rule� into a sequence of
smaller steps� each of which may be followed by applications of S rules� These rules� P�� are given in

�

Figure ���� Here� B�t
�
��� is obtained from B by replacing some occurrence of � by t or �� by f � The only

di�erence from the P� rules is that in the P� rules� only one occurrence of � or �� is replaced by a truth
constant� rather than all� Thus� there is a P� rule corresponding to each P� rule� and vice versa�

De�nition ��� For any rewrite system R� its P�alternative rewrite system� R�� is obtained by replacing each
occurence of

��
� by

�
� in the P� rules of R�

In order to show that a rewrite system R and its P�alternative system R� produce the same results� it
su�ces to prove the following claims� R� is terminating� R� is locally con�uent i� R is� and the irreducible
form of any term with respect to R is same as that with respect to R�� Recall that local con�uence and
termination guarantess con�uence�

Lemma ��� l � r for any P� rule l� r�

Proof Consider any P� rule l � r� w��l� � w��r� since r is obtained by removing exactly one literal from
l� Thus� l � r�

It follows directly from Lemmas ���� and ��� that the P�alternative system of any terminating rewrite
system is also terminating� Recall that we restrict our attention to rewrite systems whose termination is
proved using the ordering � de�ned in Section ��	���

The next lemma shows the relation between appplications of P� and P� rules� The subscript R there
does not denote any particular rewrite system� it merely indicates that the lemma refers to rewrite rule
applications� not the rules themselves � using our convention mentioned in Section ��	�

Lemma ��� For any terms s and t

�� if s�R t using a P� rule then s��
R� t using P� rules

�� if s �R� t using a P� rule then there is a term v such that t��
R� v using P� rules and s �R v using

P� rules�

Proof

�� Keep applying the corresponding P� rule until it can be no longer applied to the same subterm for the
same literal ��

�� v is obtained from t by repeatedly applying the same P� rule until it cannot be applied� A single
application of the corresponding P� rule rewrites s to v�

It follows directly from Claim � in Lemma ��� that for any rewrite system R and its P�alternative R��
and any terms s and t� if s��

R t then s��
R� t�

Lemma ��� For any locally con�uent rewrite system R	 its P�alternative R� is locally con�uent�

Proof For any terms s� t� x such that s �R� t and s �R� x� we have to show that there is a term w such
that t��

R� w and x�
�
R� w� There are three distinct cases�

�� Both t and x are obtained from s using a rule other than P�� Since R is locally con�uent� such a w
exists�

�� Either t or x �but not both� is obtained from s using a P� rule� Without loss of generality� assume that
it is t� From Claim � of Lemma ���� there is a term v such that t ��

R� v using P� rules and s �R v
using P� rules� Since R is locally con�uent and s �R x� there is a term w such that v ��

R w and
x��

R w� Thus� t��
R� w and x�

�
R� w�

�

�� Both t and x are obtained from s using P� rules� From Claim � of Lemma ���� there is a term y such
that x ��

R� y using P� rules and s �R y using P� rules� The argument given above� with x replaced
by y� works in this case�

It follows directly from the conditions on rules P� and P� that a P� rule applies to a term i� the
corresponding P� rule applies to that term� Thus� any term is irreducible with respect to a rewrite system i�
it is irreducible with respect to its P�alternative system� Since local con�uence and termination guarantees
con�uence� it follows directly from the above observation and Lemma ��� that the P�alternative rewrite
system of any convergent rewrite system is also convergent� This brings to the main result of this section�
which shows that the two rewrite systems also produce the same irreducible forms�

Theorem ��� For any convergent rewrite system R	 its P�alternative R�	 and any terms s and t
 s ��
R t

i� s��
R� t�

Proof �Only�if� Suppose s��
R t� i�e�� s��

R t and t is irreducible with respect to R� Thus� t is irreducible
with respect to R�� and it follows from Lemma ��� that s��

R� t� Thus� s�
�
R� t�

�If� Suppose s��
R� t� Since R is terminating� there is some term u such that s��

R u� It follows from the
only�if direction of the theorem �proved above� that s ��

R� u� Since R
� is convergent� u � t� Thus� s ��

R t�

Note that our goal in this chapter is to present a tractable algorithms for obtaining the irreducible forms
of any given term with respect to the rewrite systems FPC� FP� and FPE of Chapter �� It follows from
Theorem ��	 that our algorithms could be based instead on the P�alternatives of these rewrite systems� For
the rest of this chapter� we will use these P�alternatives instead of the rewrite systems FPC� FP� and FPE�
For simplicity� we continue to use the old names� for example� FP instead of FP��

��� Basic Data Structures

We present some basic data structures used to represent a theory using a tree� some basic operations on
those data structures� and some invariants that should hold at most times� Arguing that it is not necessary
to have Occurs arrays for all the internal nodes of the tree� we introduce the notion of A�nodes �for any atom
A� for which Occurs entries are required� We also de�ne an encoding used for input theories�

As mentioned in Section ��	� terms may be viewed as �nite trees� the leaves of which are labeled with
constants� ��place predicates� and the empty bag� and the internal nodes of which are labeled with functions
of positive arity� with out�degree equal to the arity of the label� For example� the theory ��P� ���P �Q� � P ���
is represented by the tree given in Figure ���� We will avoid representing f and t directly in trees � they
will be immediately eliminated using S rules� so that the only nodes with � children will be leaves labelled
by literals� and possibly the root�

A rewrite step using rule l � r changes the subtree that represents the term l� we say that the rule is
applicable to the root of the subtree� There is one exception to this� in case of L� rules �for example� L����
we say that the rule is applicable to the parent of the leaf labeled by �� The rewrite is also described by
�applying the rule� at such a node� In general� we will use �tree� instead of the �term represented by the
tree�� for example� �the tree is irreducible� rather than �the term represented by the tree is irreducible��

A tree is represented by maintaining the following information with each node �see Figures ���� ��	� and
���� which are described later��

label either a connective or a literal� note that after being created initially� the label of any node is never
assigned to� and thus remains unchanged�

childs �for any non�leaf node� list of children of the node� this list is composed of two disjoint parts� list
leafs containing the leaf children and list subs containing the non�leaf children�

	

���

•

P

P

Q

∨

∧

¬P

1

2 3

4

5 6

7

Figure ���� Tree representation of ��P� ���P �Q� � P ���

���

Conceptually� it is useful to associate unique names with di�erent nodes � any reference to �list of nodes�
is then understood as �list of names of nodes�� In practise� it is not necessary to have explicit names� since
there are other mechanisms �for example� pointers� for this purpose� Note that labels can not be used as
names� since many nodes can have the same label�

For e�cient processing� some additional �redundant� information is also explicitly maintained with each
node �some of this will be made more clear as we go along��

parent �for any non�root node N� parent of the node�

occurs �for any non�leaf node N� array indexed by atoms� such that for any atom A� if subtrees rooted at
at least two children of N have leaves labeled by A or �A� then N�occurs�A� is a list of descendents of
N for accessing �through the occurs lists of those nodes recursively� all the leaves labeled by A or �A
in the subtree rooted at N�

pp �for any leaf L�� pointer to the root of some subtree in which it is known that there are no other
occurrences of the same literal as that leaf �usually� the value of L�pp is L initially� and L�parent after
propagation��

The �pp� �eld of a leaf is set to a node i� the leaf has been propagated in the subtree rooted at the node�
This information is used in two ways�

�� a leaf is considered for propagation i� its �pp� �eld is not set to its parent�

�� the tree is irreducible with respect to propagation rules if the �pp� �eld of each leaf in the tree is set
to its parent�

PP is initially set to the leaf itself� since the leaf has not been propagated in the subtree rooted at its parent�

Intuitively� the occurs list for a node N and an atom A encodes a tree rooted at N whose leaves are
exactly those labeled by either A or �A� This list is used for e�ciently applying propagation rules� during
which the labels of these leaves are replaced by either t or f � Note that occurs lists are not required for
all nodes of the tree� and that sometimes nodes deleted from the tree �by rules such as S�� will continue to
appear in the occurs lists for the purposes of reaching appropriate leaf nodes�

De�nition ��� For any trees T� and T�� T� is a subset of T� if each node in T� is a node in T�� and the
ancestor relation in T� is a subset of that in T�� For any atom A� an A�leaf is a leaf node that is labeled by
either A or �A� For any atom A� an A�node is either the Root or a node that has at least two children whose

node label leafs subs parent occurs�P� occurs�Q� pp
� � � � ��� �

� P � �

� � 	 �
� Nil

	 �
�� Nil � Nil Nil

 �P 	

� Q 	 �

 P �

Table ���� Values of �elds of nodes in the tree for ��P� ���P �Q� � P ���

���

•

P

P

Q

∨

∧

¬P

P Q

P Q

Figure ��	� Occurs lists for the tree of ��P� ���P �Q� � P ���

���

trees have A�leaves� For any atom A� an A�tree is any subset of the tree rooted at Root which contains all
A�leaves and all A�nodes in the tree rooted at Root�

A propagation rule involving literal A or �A needs to be applied at some node N i� N has such a literal
as a child and N has at least one other occurrence of A or �A under it� Therefore such propagation rules
apply to node N i� it is an A�node� and hence we require occurs lists corresponding to A for only the
A�nodes in the tree� In addition� the occurs lists are nested to avoid duplication � N�occurs�A� may contain
internal nodes also� In such cases� occurs lists of these nodes need to be recursively traversed to access all
the A�leaves in the subtree�

Consider the tree given in Figure ��� that represents the theory ��P� ���P �Q� � P ���� The values of �elds
of the nodes in this tree are given in Table ���� where the nodes of the tree are numbered in preorder� The
only P �nodes are � and �� while there is no Q�node� The empty slots in the table indicate �elds that are
neither initialized nor used� note that since � is not a Q�node� its occurs�Q� list� though present� will never
be used� The elements in the various occurs lists are also shown in Figure ��	�

Some nodes and trees are considered special�

�

De�nition ��� Tnode� Fnode are exceptional values� representing t and f during computations� but not
appearing inside formula trees�

A Ttree is a tree containing a single node which is labeled by �� A Ftree is a tree whose root is labeled
by � and has some new� specially marked child� An exception tree is either Ttree or Ftree�

There is a single exception condition for all the algorithms� namely� when the tree becomes an exception
tree� In an exception� all computation stops and the corresponding exception tree is returned as the result�
since theories represented by exception trees are irreducible� To maintain clarity� we will not mention this
exception explicitly in the algorithms�

For proving the correctness of algorithms� we will establish and then maintain the following invariants in
all trees� except exception trees�

Tree Invariant For any node N� N is the root of the tree i� N�label � �� N is a leaf i� N�label is a literal�
N is an internal node �i�e�� neither root nor a leaf� i� N�label is either � or �� and N has at least two
children�

Parent Invariant For any pair of nodes N and P� N is in P�childs i� N�parent � P�

Occurs Invariant For an atom A and any node N� if a leaf L in the tree is reachable through N�occurs�A�
then L is an A�leaf in the subtree at N� Also� if N is an A�node then all A�leafs in the subtree at N are
reachable through N�occurs�A��

Pp Invariant For any atom A and any A�leaf L with parent P� if the subtree at P contains any other
A�leaf then L�pp �� P�

The Tree invariants characterize trees that represent theories� The other invariants ensure that the
corresponding �elds in the nodes have the correct values� Note that nothing is said about the nodes in the
occurs list being in the tree� or that all intermediate internal nodes in the tree are in the occurs list� The
occurs�invariant for non�A nodes ensure that trying to propagate A at those nodes does not change the tree�
Once established� these invariants continue to hold at all times� except for certain lines of the code � such
violations are mentioned explicitly�

In the description of a procedure� PRE are the assertions that hold when the procedure is called� POST
are the assertions that hold when the call is completed� and HOW is an informal description of the procedure�
Only those assertions are mentioned that are relevant to the procedure� Moreover� since all the invariants are
supposed to hold at all times� they are not explicitly mentioned in PRE and POST after being established for
the �rst time� �Also� in POST indicates that all assertions in PRE �except those explicitly noted� continue
to hold� The variables are subscripted by PRE or POST when it is not clear from the context whether the
value of interest is that of before or after the procedure call�

Wherever possible� we indicate the type information with input and output parameters of various proce�
dures� Some commonly used types �and the values they denote� are�

INT integers�

NODE nodes in a tree�

LABEL ������ and facts�

ATOM atoms �represented by integers��

BOOL either true �also t� or false �also f ��

LIT literals �represented by integers��

Since atoms are represented by integers� negative literals are denoted by negative integers and complement
of a literal is its negation� The type of a list of elements of type T is denoted by T LIST� for example� NODE
LIST is the type of lists that contain elements of type NODE�

The following functions� constants� and variables are used in the description of the algorithms�

�� Constant Nil denotes an empty �but initialized� structure of any type�

�� Global variable Root denotes the root node of the tree�

�� Function Read returns the next integer from the input�

	� Function abs�I� returns the absolute value of the integer I� We will be coding literals by integers in
such a way that if I denotes a literal then abs�I� is its atom�

� Function Leaf��N NODE� returns true i� N is a leaf node which is still active�

�� Function CreateNode�label LABEL� childs NODE LIST� creates and returns a new node
whose label and the childs �elds are set to the two arguments respectively�

� Procedure Delete�N NODE� removes the node N� which is guaranteed to have zero children� from
the tree by removing it from the childs list of its parent� and setting its parent to nil� It also makes
it disappear from its ancestors� occurs lists� �As we shall see later in the complexity section� N is not
explicitly removed from the occurs lists� but merely tagged as �invisible���

�� Procedure Deactivate�N NODE� is similar to Delete� except that N does not disappear from
ancestors� occurs lists and is tagged as �dummy�� �This will allow accessing leaf nodes for ancestors
of N without having to explicitly change their occurs lists to eliminate N��

�� Procedure ChangeParent�C�N�P NODE� changes the parent of C from N to P� It does this by
removing C from N�childs� pushing C to P�childs� setting C�parent to be P� At a conceptual level� the
occurs lists are also appropriately modi�ed� �As we shall see later in the complexity section� it is not
actually required to modify the occurs lists � tagging the nodes appropriately is su�cient��

The following operations are de�ned for lists�

Head�L� returns the �rst active element of List L if L is not empty� otherwise returns Nil�

Push�N�L� returns the list obtained by adding item N to the front of list L�

AddQ�N�L� returns the list obtained by adding item N to the end of list L�

Pop�N�L� returns Head�L�� which is removed from list L�

Count�L� returns the number of items in the list L�

We also allow iteration over elements of a list using the �for� construct� The operational semantics of
the construct �For N in Exp where Cond do S� is�

�� evaluate Exp� which returns a list� say M�

�� traverse M while creating a sublist L of items that staisfy the boolean predicate Cond�

�� execute statement S for each item N in L�

The �where Cond� part of the construct may be omitted� in which case L is the same as M� Note that the
list L is computed before the iteration starts�

As is usual� the no�op statement does nothing� the exit statement terminates the innermost loop or
iteration� and the return statement terminates the procedure call �functions return the value of the argument
of return�� We also abbreviate some combinations of statements � for example� the construct �i"" � n�
returns true if i � n and increments the value of i by �� the boolean construct ��P �� N�parent��label � X�
sets P to N�parent and returns true i� N�parent�label � X �if N does not have a parent then P is unde�ned
and �false� is returned��

We use �tree� to denote the entire tree �rooted at Root�� and �subtree at N� to denote the subtree that
is rooted at node N� The input theory is always denoted by �� and term�N � denotes the term represented
by the subtree at N �

�

����� Tuple Encoding of Theories�

We present a compact encoding of a theory based on a mapping of its atoms to the integers from � to
k� where there are k distinct atoms in the theory� This encoding facilitates the reading of input to the
algorithm AFP and creating the appropriate data structures� The complexity of AFP is measured in the
size of this encoding� Similar� though not identical� encodings have been used by various others researchers
�c�f� �DG�	� MSL����� A theory is encoded using a sequence of integers� by mapping each atom to a distinct
integer�

De�nition ��� �Tuple Encoding� For any theory � and any bijection

g � atoms���
 f�� � � � � jatoms���j" �g

the tuple encoding hhsii of any subterm s of � is inductively de�ned as�

�� hh�ii � h�i� hh�ii � h��i� hh�ii � hi �empty tuple��

�� hhP ii � hg�P �i and hh�P ii � h�g�P �i for any atom P�

�� hhc�s�� � � � � sn�ii � hhcii � hni � hhs�ii � � � �� hhsn�ii� where c is a connective �either �� �� or ��� and s�s are
formulas�

Since f and t abbreviates ��� and ��� respectively� it follows that hhf ii � h��� �i and hhtii � h�� �i�

For example� if the bijection g is given by

g�P � � � and g�Q� � �

then the theory
� � ������Q� f ����P����P�Q�����

is encoded as
hh�ii � h����� ����� �� ����� ���������������� �i

It is easy to verify that each theory and formula has a unique tuple encoding� Using the tuple encoding
makes it almost trivial to determine whether an atom has already been seen earlier in the input and to
allocate appropriate space for arrays that are indexed by atoms� These operations are more expensive if the
theory is used directly without any such encoding� Tuple encoding also provides a uniform representation of
terms� namely� using sequences of integers� The next proposition shows that tuple encoding is also compact�

Proposition ��� For any subterm s of any theory �	 the size of hhsii is at most the size of s�

Proof �by induction on the construction of �� In the base case� when s is a literal� hhsii consists of a single
integer� In the inductive case� hhsii consists of the code of its connective and the count and codes of its
immediate subterms � in terms of size� the pair of parentheses delimiting these subterms is replaced by the
count� Thus� there is no increase in size�

��� AFPC� Simplication and Propagation Rules Only

We present an algorithmAFPC �Algorithm for FPC� that reduces any given term to its irreducible form with
respect to the rewrite system FPC� In other words� AFPC implements the simpli�cation and propagation
rules� We also argue the correctness and provide an upper bound on time complexity of AFPC�

�

As we remarked earlier� simpli�cation rules �S rules� are easy to apply as soon as they become applicable�
even while reading the input theory� However� this is not the case with propagation rules �P rules�� since
their instances interact with each other� To deal with this� we will maintain a list PQ of all nodes where a
P rule may be applicable� To begin with� PQ contains all nodes that have leaf children� Afterwards� each
node is removed from the list PQ and the corresponding P rule is applied� if it is still applicable� Again� the
S rules are applied as soon as they become applicable� Since this may create more possibilities for applying
P rules� the corresponding nodes are also added to the list PQ� The algorithm terminates when either the
queue is empty or the theory reduces to ffg or f g�

AFPC calls ReadArgs for constructing the tree by reading the input theory� and InitPropagate for setting
the Occurs and PQ lists� and parent and pp �elds� it then keeps popping nodes from the PQ list and calling
Propagate to apply a P rule� until the list becomes empty and the execution terminates� Recall that the
algorithm also terminates as soon as the tree becomes an exception tree�

For correctness� we need an invariant that ensures that all potential sites for P rules are recorded in the
list PQ� In order to establish the Occurs invariant� we will �rst establish an intermediate assertion� which
does not hold after the occurs invariant is established�

PQ list containing nodes where P rules are applicable �new nodes are always added at the end��

PQ Invariant For any atom A and any A�leaf L with parent P� if L�pp �� P then P is in the list PQ�

Occurs intermediate�assertion For any atom A� any A�leaf L� and any proper ancestor P of L�
P�occurs�A� � Nil�

Note that PQ Invariant� together with PP invariant� ensure that once PQ list is empty� there are no more
applicable propagations�

Procedure AFPC
�� reads the input theory and rewrites it to an irreducible form

with respect to FPC

PRE� input I � hh�ii
POST� ���

FPC term�Root�
all invariants

HOW� read the theory� set data structures while recording all potential

sites of P rules in the list PQ� and then apply the P rules

until PQ becomes empty� S rules are applied on the fly� ��

�� Root �� ReadArgs	�
�
�� InitPropagate�

� while 	PQ �� Nil
 do f
�� Propagate	Head	PQ

�

�� Pop	PQ

�� g
end �AFPC��

Note that the node where P rules are applied �in line 	� is removed from list PQ �in line
�� since any
new node added to PQ goes at the end� The node is not removed before propagation because of the PQ
invariant� Also� nodes that are deactivated or deleted are ignored while iterating through the PQ queue �the
same will hold in queues for the other rules� as well��

For a connective c� ReadArgs�c� reads the arguments of c and constructs the tree that represents the
entire term� It reads each argument� which is a formula� by calling ReadFml� The subtrees representing
these formulas are collected in a list� except that S rules are used to eliminate the formulas t and f � In
general� the tree returned by ReadArgs is obtained by adding the root labeled by c to this forest of subtrees�
However� two cases are treated di�erently�

�� if the list contains only one subtree then that subtree is returned � this is justi�ed by Rule S��

��

�� either t of f may be obtained from using the S rules� even without reading all the arguments�

In the latter case� the rest of the arguments must be read and discarded�

Function ReadArgs �lab LABEL� NODE
�� reads the arguments for the connective lab and reduces using S rules

PRE� lab f�����g�
input has prefix I � hni � hh��ii � � � � � hh�nii�

POST� input I has been read�

the tree returned represents the logical term �� such that�

� is irreducible with respect to the S rules� and

� ��
R � using the S rules� where hh�ii � hhlabii � I�

HOW� reads each formula �i by calling function ReadFml�

discards t and f� and collects the rest in list childs�

applies S rules on the fly�

returns node P whose subtree is the simplified formula� ��

�� n �� Read�

�� i �� �� �� next input is hh�iii ��

� childs �� Nil� �� no child yet ��

�� P �� Nil� �� cannot return a value yet ��

�� while 	i�� � n
 and 	P � Nil
 do �� read and process �i ��

�� case 	M �� ReadFml
 of f
�� Tnode � if lab � � then P �� Tnode �� rules S��� S� ��

�� else No�op �� rule S�� ��

�� Fnode � if lab � � then P �� Fnode �� rules S��� S ��

��� elseif lab � � then P �� Ftree �� rules S�� ��

��� else No�op �� rule S�� ��

��� else � Push	M�childs
 �� new child ��

�� g
��� if 	P �� Nil
 then �� read and discard rest of the formulas ��

��� while 	i�� � n
 do ReadFml

��� elseif 	childs � Nil
 and 	lab �� �

��� thenif lab � � then P �� Fnode �� ��	� � f ��

��� else P �� Tnode �� ��	� � t ��

��� elseif 	Count	childs
 � �
 and 	lab �� �

��� then P �� Head	childs
 �� rule S ��

��� else P �� CreateNode	lab�childs
� �� no S rules apply ��

��� return P�

end �ReadArgs��

ReadFml reads a formula and constructs the tree that represents it� If the formula is a literal� then the
tree has a single node labeled by that literal� otherwise it reads the connective� calls ReadArgs to read its
arguments� and returns the same tree returned by ReadArgs�

Function ReadFml NODE
�� inputs a formula and simplifies using S rules

PRE� input has prefix I � hh�ii�
POST� input I has been read�

the tree returned represents the formula �� such that�

� is irreducible with respect to the S rules� and

� ��
R � using the S rules� ��

�� case 	x �� Read
 of f
�� � � return ReadArgs	�
 �� hh�ii � � ��

� �� � return ReadArgs	�
 �� hh�ii � �� ��

��

�� else � return CreateNode	x�Nil
 �� x is a literal ��

�� g
end �ReadFml��

Given a tree representing a theory� InitPropagate sets the PQ list and the parent� pp and occurs �elds
so that the corresponding invariants are established� It makes two passes over the tree� the �rst pass
�InitOccurs� is used to initialize all the relevant �elds of Occurs arrays to Nil� only these initialized �elds
are accessed in the second pass �SetOccurs�� As we shall see later� not requiring the initialization of all the
occurs arrays will be important in our analysis of the time complexity of AFPC� InitPropagate does not
change term�Root��

Procedure InitPropagate
�� initializes the data structure needed for propagation

PRE� Tree invariants

POST� also� parent� occurs� pp� and PQ invariants

HOW� two passes� from leaves to the root� are used to establish

the occurs invariant� first pass establishes the occurs

intermediate�assertion� ensuring that only the initialized

occurs fields are accessed in the second pass� ��

�� InitOccurs	Root
� �� first pass ��

�� PQ �� Nil�

� SetOccurs	Root
� �� second pass ��

end �InitPropagate��

InitOccurs recursively traverses the entire tree� For each A�leaf� it traverses the branch from the leaf to
the root setting the occurs�A� �elds of the nodes to Nil� It also sets the parent �elds of each non�root node
in the tree�

Procedure InitOccurs �N NODE�
�� recursive first pass before propagation starts

PRE� N is not a leaf�

subtree at N satisfies tree invariants

POST� subtree also satisfies parent invariant and

occurs intermediate�assertion� ��

�� for each M in N�childs do f
�� M�parent �� N� �� parent invariant established ��

� if Leaf�	M
 then f �� occurs intermediate�assertion for M ��

�� R �� M�

�� A �� abs	M�label
� �� M is an A�leaf ��

�� while 	R �� Root
 do f �� walk up to the root ��

�� R �� R�parent�

�� R�occurs�A� �� Nil�

�� g
��� g else InitOccurs	M
�

��� g
end �InitOccurs��

SetOccurs also recursively traverses the entire tree in preorder� For each A�leaf� it traverses the branch
from the leaf to the root ensuring that each non�root node is in the occurs�A� list of its parent �if not� the
node is added to the front of the list�� It also sets the pp �elds of each leaf to itself� and constructs the list
PQ containing all those nodes in the tree which have leaf children�

Procedure SetOccurs �N NODE�

��

�� recursive second pass before propagation starts

PRE� N is not a leaf�

subtree at N satisfies tree invariants�

and occurs intermediate�assertion

POST� subtree also satisfies occurs 	but not occurs intermediate
�

pp� and PQ invariants ��

�� for each M in N�childs do f
�� if Leaf�	M
 then f
� M�pp �� M� �� pp invariant established�

since M has not been propagated ��

�� R �� M�

�� A �� abs	M�label
� �� M is an A�leaf ��

�� while 	R �� Root
 do f �� P � R pair walks up to the root ��

�� P �� R�parent�

�� if 	R � Head	P�occurs�A�

�� then exit �� R is already in the occurs list of P ��

��� else Push	R� P�occurs�A�
�

��� R �� P�

��� g
�� g else SetOccurs	M
�

��� g
��� if N�leafs �� Nil then Push	N� PQ
 �� PQ invariant ��

end �SetOccurs��

Since the tree is traversed in preorder and Push adds elements at the front of a list� only the head node needs
to be checked in line �� Also� if the node is found in the list then there is no need to continue traversing
the branch since the remaining nodes already satisfy the required condition� Note that N�leafs is set in
ReadArgs� while reading the input theory�

For any node N� Propagate�N� propagates each leaf child M of N whose pp �eld is not set to N� After
propagation� the pp �eld of M is set to N� as there is no other node in the subtree at N having the same
atom in the label as that of M�

Procedure Propagate �N NODE�
�� propagate each leaf child of N and reduce using S rules

PRE� term	Root
 is irreducible with respect to S rules

POST� also� for each M in 	N�leafs
PRE � 	N�leafs
POST� M�pp � N�

term�RootPRE ���
R term�RootPOST � using S and P rules�

HOW� propagate each leaf of N� applying S rules on the fly ��

�� if Leaf�	N
 then return�

�� for each M in N�leafs where M�pp �� N do f
�� otherwise M has already been propagated�

next decide whether to substitute by t or by f� ��

� val �� 	N�label � �
�
�� if 	M�label � �
 then val �� not val�

�� A �� abs	M�label
�

�� PropAtom	A�val�N�M
� �� do the propagation ��

�� if Leaf�	M
 then

�� N�occurs�A� �� Push	M�Nil
� �� all other A�leaves are gone ��

�� M�pp �� N� �� M has been propagated in the subtree at N ��

��� g
��� g
end �Propagate��

The check in line is required since M may be deactivated by PropAtom� Line � re�establishes the Occurs

��

invariant which was possibly violated by PropAtom� which had set N�occurs�A� to nil� The juggling with
val in lines � and 	 ensures that the replacements by truth constants are done correctly� M�pp � N in the
postcondition does not apply to the leaves added to N during the call to the procedure� However� if any new
leaves are added then N is also again added to list PQ� and these leaves get propagated during the next call
of Propagate�N�� Since new leaves are always added to the front� the for loop in line � can be stopped when
the �rst node M with M�pp � N is found�

PropAtom�A�val�N�M� propagates the A�leaf M in the subtree at N� It recursively traverses all the
Occurs�A� lists in the subtree replacing each A�leaf �which is not equal to M� by a truth constant determined
by val and rewriting the tree using S rules� Since all A�leaves� except M� are deactivated by S rules� the
Occurs�A� lists are reset to Nil� As we saw above� the correction for M is made in Propagate�

Procedure PropAtom �A ATOM� val BOOL� N�M NODE�
�� substitute each occurrence of A in the subtree at N

by val and reduce using S rules�

don�t change M� which is the source of propagation

PRE� N is not a leaf�

term	Root
 is irreducible with respect to S rules

POST� also� occurs invariant may not hold for leaf M � node N pair�

term�RootPRE ���
R term�RootPOST � using S and P rules�

except for possibly M� there is no A�leaf in the subtree at N�

NOTE� N may be a deactivated node�

HOW� find occurrences of A using the occurs�A� lists recursively ��

�� for each R in N�occurs�A� where R �� M do

�� if 	R�label � A
 then Simplify	R�val
 �� R is a A�leaf ��

� elseif 	R�label � �A
 then Simplify	R� not val

�� R is a A�leaf ��

�� else PropAtom	A� val� R� M
� �� R is not a leaf ��

�� N�occurs�A� �� Nil� �� all leaves� except for M� are gone�

correction for M is done in Propagate ��

end �PropAtom��

Simplify�N�val� replaces the label of leaf N by the truth�constant val and then reduces the tree using S
rules� It does so by traversing all nodes in the branch from N to Root� while replacing by truth constants
those nodes where S rules apply� and deactivating all the nodes in their subtrees� Note that the �rst node
that is not so replaced has one less child than before� creating the possibility of applying rule S��

Procedure Simplify �N NODE� val BOOL�
�� change label of N to val 	using P rule
 and reduce using S rules

PRE� term	Root
 is irreducible with respect to S rules�

N is a leaf

POST� also� term�Root����
R term�RootPOST � using S rules alone�

where Root� is obtained from RootPRE by changing the label of

N to val�

HOW� find the highest node 	R
 that can be replaced by either t 	rule

S��
 or f	rule S��
� apply either S�� or S�� to remove node R from

its parent 	P
� if non�root P has a single child then apply S ��

�� if val then lab �� � else lab �� ��
�� select appropriate S� and S� rules ��

�� R �� N�

� while 	R�parent�label � lab
 do R �� R�parent�

�� R cannot be the root ��

�� P �� R�parent� �� R will be removed from the tree ��

�� DeleteTree	R
� �� use the selected rules and S ��

�� if P�Root and Count	P�childs
 � � then

�	

���

P

N

C

P

C

Figure ��
� Collapse�N�

���

�� rectify incorrect removal of R ��

�� if val then Root �� Ftree else Root �� Ttree

�� elseif 	Count	P�childs
 � �
 then Collapse	P
 �� rule S ��

end �Simplify��

In deactivating the nodes in line
 of Simplify� the Ftree may be erroneously changed to Ttree � this is
recti�ed in line � Also� term�RootPRE ��R term�Root�� using a single application of a P� rule�

Collapse�N�� called when node N has exactly one child� applies rule S� by replacing the node by the child
�see Figure ��
�� If this child is a leaf� then there is a possibility of using a P rule on its new parent�

Procedure Collapse �N NODE�
�� replace N by its only child

PRE� N is not the root and N has a single child

POST� node N is removed from the tree�

term�RootPRE ��R term�RootPOST � using a

single application of S ��

�� C �� Head	N�childs
� �� C is the only child of N ��

�� P �� N�parent�

� if Leaf�	C
 then AddQ	P� PQ

�� for PQ invariant� since C�pp �� P ��

�� ChangeParent	C�N�P
� �� make P the parent of C ��

�� Deactivate	N
� �� remove N from the tree ��

end �Collapse��

DeleteTree�N� recursively deletes all the nodes in the subtree at node N�

Procedure DeleteTree �N NODE�
�� remove the entire subtree at N

PRE� N is not the Root

POST� subtree at N is removed from the tree ��

�� if not Leaf�	N
 then

�� for each C in N�childs do DeleteTree	C
�

� Delete	N
�

end �DeleteTree��

�

����� Correctness of AFPC

We now prove the correctness of AFPC by stating and proving the correctness claims for the various proce�
dures that are called by AFPC� In general� these claims are more detailed forms of the corresponding PRE
and POST assertions� We will �rst prove the correctness of ReadArgs� then of InitPropagate� and then of
Propagate� We would assume that the precondition of AFPC holds� i�e�� the input is a correct encoding of
some theory� Recall that the algorithm terminates if the tree becomes an exception tree�

Since most procedures are �mutually� recursive� the proofs are usually based on induction using the
recursion tree� A recursion tree represents the nesting of recursive calls in any particular execution of the
algorithm � procedure call P is a child of procedure call Q i� P is called from Q� For proving a property
for each node in the recursion tree� we use induction in two ways�

�� Induction on the level of recursion
 the base case is for the root node�

�� Induction on the depth of recursion
 the base case is for the leaf nodes�

Lemma ��	 �Correctness of ReadFml and ReadArgs� During the execution of ReadArgs��� on any
input tuple that correctly encodes some theory

�� Each call of ReadFml reads a non�empty pre�x I � hh�ii of input for some formula �	 and returns a
tree that represents a formula	 say �	 such that

�a� � is irreducible with respect to the S rules	 and

�b� � ��
R � using the S rules

�� For any c f�����g	 each call of ReadArgs�c� reads a non�empty pre�x I � hni � hh��ii � � � � � hh�nii
of input for some n and some formulas ��� � � � � �n	 and returns a tree that represents a logical term	
say �	 such that

�a� � is a theory i� c � �	

�b� � is irreducible with respect to the S rules	 and

�c� � ��
R � using the S rules	 where hh�ii � hhcii � I�

Proof Since the two functions are mutually�recursive� we will prove both claims by simultaneous induc�
tion on the depth of recursion in any particular execution of ReadArgs���� Before that� we make some
observations�

�� The variable P in ReadArgs is assigned a value exactly once �after initialization in line 	�� which is
then returned by the function in line ���

�� The only rewrite rules that we need to consider in this proof are the S rules�

�Base case for ReadArgs� Since there is no call to ReadFml� n � � and � � � � c�	��

�Base case for ReadFml� Since there is no call to ReadArgs� x � hh�ii and � � � � � for some literal ��

�Inductive Case for ReadFml� Since there is exactly one call to ReadArgs� whose value is returned back�
the claim follows directly from the inductive assumption for ReadArgs�

�Inductive Case for ReadArgs� Since there is at least one call to ReadFml� n � �� The while loops of lines

 and �
 are executed exactly n times in total� where each iteration calls ReadFml once� By the inductive
assumption for ReadFml� hh�iii is read in the ith iteration� This proves the �rst claim� we now prove the
rest�

By the inductive assumption for ReadFml� the call to ReadFml that reads hh�iii returns the tree
representing the formula �i such that �i ��

R �i and �i is irreducible with respect to S rules� Thus�
� � c���� � � � � �n� ��

R c���� � � � � �n�� All we need to show is that c���� � � � � �n� ��
R � and that � is

irreducible �both with respect to S rules�� We do a case analysis on all the possibilities�

��

c � � and �i � f for some i c���� � � � � �n� ��
R ��f � �irreducible� using Rule S��� P gets the correct

value in line �� of the algorithm�

c � � and �i � f for some i c���� � � � � �n���
R f �irreducible� using Rules S�� and S�� P gets the correct

value in line ��

c � � and �i � t for some i c���� � � � � �n���
R t �irreducible� using Rules S�� and S�� P gets the correct

value in line �

Otherwise� let B � ���i j i �� � � � � n��i � ft� fg��� It follows from the inductive assumption that the childs
list contains exactly the trees that represent the formulas in B� Moreover� c���� � � � � �n� ��

R c�B� using
Rules S�� and S��� The various possibilities are�

c � � and B � 	 c�B� � t is irreducible� P gets the correct value in line ���

c � � and B � 	 c�B� � f is irreducible� P gets the correct value in line ��

c �� � and B � f�ig for some i c�B���
R �i �irreducible by the inductive assumption� using Rule S�� P

gets the correct value in line ���

otherwise c�B� is irreducible as no rule applies �note that each formula in B is irreducible� using the
inductive assumption�� P gets the correct value in line ���

Thus� in all cases� � ��
R � and � is irreducible� both with respect to S rules�

It follows directly from Lemma ��� that the function ReadArgs��� on input hh�ii �where � is any theory�
returns a tree representing a theory� say � such that

�� the tree satis�es Tree invariants�

�� is irreducible with respect to S rules�

�� ���
R using S rules�

The invariants established by ReadArgs��� are precisely the preconditions for InitPropagate and InitOc�
curs�

Proposition ��� �Correctness of InitOccurs� For each call to InitOccurs�N� during the execution of
InitPropagate	 N is non�leaf node	 and after the call is completed

�� for any parent�child pair P and C in the subtree at N	 C�parent � P

�� for any atom A	 any A�leaf L in the subtree at N	 and any proper ancestor P of L in the tree	 P�occurs�A�
� Nil�

Proof The �rst claim is proved by induction on the level of recursion� In the base case� when N � Root�
it is not a leaf since the tree is not exception� In the inductive case� any recursive call to InitOccurs is made
only for non�leaves�

The other claims are proved by induction on the depth of recursion� In the base case� since there is no
recursive call to InitOccurs� each node in N�childs is a leaf� Claim � follows from line � of the procedure�
while claim � follows from the while loop of line �� The same argument proves the inductive case as well�

Note that both the inductions above terminate� since the tree at node N is �nite�

It follows directly from Proposition �� that the parent invariant and occurs intermediate�assertion hold
after the call to InitOccurs�Root� is completed�

�

Proposition ��� �Correctness of SetOccurs� For each call to SetOccurs�N� during the execution of
InitPropagate	 N is a non�leaf node	 and after the call

�� for any parent�child pair P and C in the tree and any atom A	 if C is in P�occurs�A� then there is a
A�leaf in the subtree at C

�� for any atom A	 if N has a A�leaf child L then C is in P�occurs�A� for any parent�child pair P and C	
both of which are ancestors of L � if C is also an ancestor of N then C � Head�P�occurs�A��

�� for any leaf L with parent P	 both of which are in the subtree at N	 L�pp �� P and P is in the list PQ�

Proof The �rst claim is proved as in the previous proposition� The other claims are easily proved by
induction on the depth of recursion�

�� line �� is the only place where Occurs lists are modi�ed � the A�leaf in the subtree at C �R in the
procedure� is M�

�� follows from the while loop in line �� C is at the head� when it is also an ancestor of N� since the tree
is being traversed in preorder and Push�N�L� adds item N to the head of the list L� This does not hold
in general� since the subtree at N may have multiple A�leaves�

�� follows from lines � and �
� respectively�

The exit from the loop in line � is justi�ed by claims � and � above�

It follows from Proposition ��� that the Occurs� Pp� and PQ invariants hold after the call to SetOc�
curs�Root� is completed� The correctness of InitPropagate follows directly from Propositions �� and ����

Lemma ��� �Correctness of Collapse� For any call of Collapse�N�

�� N is not the root and has only one child

�� term�RootPRE ��R term�RootPOST � using a single application of S� rule to the subtree at N

�� no invariants are violated�

Proof Collapse is called only in line � of Simplify� which ensures claim �� Claim � is ensured by lines 	
and
 of the procedure� The only possible violation of an invariant� namely the PQ invariant� is pre�empted
in line ��

Lemma ���� �Correctness of Simplify� For any call of Simplify�N	val�

�� N is a leaf

�� term�Root� is irreducible with respect to S rules �before and after the call�

�� term�RootPRE ��R term�Root�� using a P rule and term�Root����
R term�RootPOST � using S rules	

where Root� is obtained from RootPRE by changing the label of N to val�

Proof

�� Simplify is called only in lines � and � of PropAtom � M is a leaf in both cases�

�� By induction on the number of calls of Simplify made before this call� For the base case� term�Root�
is irreducible with respect to S rules� since it is the output of ReadArgs���� For the inductive case�
the tree is irreducible with respect to S� and S� rules� since Simplify does not label any node by a
truth�constant� If P is not the root� then it must have at least two children before the call �otherwise
the tree was not irreducible with respect to S��� Thus� it has at least one child after line �� If it has
exactly one child then S� is applied in line �

��

�� Line
 of the algorithm ensures that term�RootPRE � �R term�Root�� using a P rule and
term�Root�� ��

R term�RootPOST � using S rules� except in the following case� when applying S rules
�line
� leaves only the child t or f of the root� If this child is t then it is correctly removed using rule
S��� otherwise� its removal is incorrect � this error is recti�ed in line �

Lemma ���� �Correctness of Propagate� For any call of Propagate�N�

�� term�Root� is irreducible with respect to S rules �before and after the call�

�� term�RootPRE ���
R term�RootPOST � using S and P rules

�� for each leaf M of N �which is a leaf both before and after the call�	 M�pp � N�

Proof For any leaf M of N �both before and after�� Propagate calls PropAtom which traverses the
occurs lists corresponding to A �which is the atom in the label of M� and calls Simplify on all leaves that it
encounters� It also removes these occurs lists after the traversal� The correctness of PropAtom follows from
the correctness of Simplify and the occurs invariant � the occurs invariant ensures that all the A�leaves in
the subtree at N are accessed� The correctness of Propagate follows directly from this� Note that M�pp is
set to N in line � of the procedure�

We are now ready to prove the correctness of AFPC�

Theorem ���� �Correctness of AFPC� For any theory �	 the procedure AFPC on input hh�ii terminates
with a tree representing a theory such that ���

FPC �

Proof Lemmas ��� and ���� and Propositions ��� and �� show the correctness of ReadArgs� Propagate�
and InitPropagate �procedures called by AFPC�� respectively� Thus� ���

R using S and P rules� and is
irreducible with respect to S rules� There are two cases�

�� is represented by an exception tree� it is trivially irreducible with respect to P rules�

�� otherwise� list PQ must be empty� It follows from PQ and pp invariants that is irreducible with
respect to P rules�

In both cases� is irreducible with respect to P rules� Thus� ���
FPC �

����� Complexity of AFPC

We show that the time complexity of AFPC is quadratic in the size of the input theory� More precisely� for
an input theory �� AFPC runs in time O�nk�� where n is the size of tuple hh�ii and k is the depth of ��
which is de�ned to be the depth of the tree representing �� Intuitively� the amount of time spent on each
node is at most the level of the node in the tree�

The basic idea in proving the complexity result is as follows� We will �rst give details of the various
data structures and show how various operations on them can be performed e�ciently� In particular� we will
de�ne two ways of marking deleted nodes� which are not immediately removed from the Occurs lists� We
then show that although the input theory is read in linear time� initializing the occurs arrays costs O�nk��
since the entire branch from the node to the root is traversed for each node in the tree� We then bound the
total number of nodes that are added to PQ� and the total cost of all calls to Simplify and PropAtom� which
gives us the bound on the running time of AFPC� Intuitively� the most amount of work spent on any node
is dominated by the number of times it has to be raised in the tree so as to become the root�

De�nition ��� The depth depth�t� of any logical term t is de�ned inductively as follows�

��

� if t is a literal then depth�t� � ��

� for any bag B of formulas and any connective c� depth�c�B�� � � "maxf�� depth��� j � Bg�

Note that depth k is at most the size n� We also use the parameter m to denote the number of distinct
atoms jatoms���j in the theory �� We use �initial tree� for referring to the tree returned by ReadArgs����

For any data structure� we assume that memory for it is allocated in the procedure where it is �rst used�
We do not require that memory be initialized when allocated� Such allocation of memory is a constant�time
operation� independent of the size of the memory being allocated� The disadvantage is that any location
in the allocated memory must be explicitly initialized before its use in the algorithm� In particular� while
O�m� space for the array N�occurs for any node N can be allocated in constant time� any particular array
entry must be initialized before its use� This initialization is explicitly done in InitOccurs�

The list PQ is a circular list so that both the ends can be accessed in constant time� The children of a
node are kept in the subs and leafs lists� both of which are doubly�linked lists that explicitly maintain count
of the number of items in them� The childs list is not explicitly maintained� but is implicitly viewed as a
union of these two lists� Thus� deleting a node from the tree and retrieving the count of leafs� subs� and
childs are each constant�time operations� Leaves and non�leaves are kept separate even while creating the
list of children �childs� in ReadArgs�

The occurs lists are singly�linked lists with no counts� The only operations on them are traversing �in
PropAtom�� making them Nil �in PropAtom and InitOccurs�� and adding an item at the front �in Propagate
and SetOccurs�� Nodes that are deactivated or deleted from the tree are not immediately removed from the
occurs lists� Such nodes are marked� as described below� to distinguish them from the �undeleted� nodes in
the tree�

Invisible A node is marked invisible when it is deleted from the tree in a call to DeleteTree�

Dummy A node is marked dummy when it is deleted from the tree in a call to Deactivate�

At any step of the algorithm� since all descendents �in the initial tree� of a invisible node are either invisible
or dummy� invisible nodes can be completely ignored while traversing all lists� However� a dummy node
cannot be ignored in an occurs list �though it can be skipped in other queues�� unless it is an original leaf�
since some of its descendents �in the initial tree� may still be in the tree� and we do not reset the occurs
arrays to by�pass these no longer active nodes� Nodes that are to be ignored in a list because of being marked
Invisible or Dummy are actually removed as encountered while traversing that list� this saves us the cost of
searching for them�

ChangeParent�C�N�P� is called at only one place � line 	 of Collapse� Since N is deactivated �and marked
as �dummy�� in the next line� ChangeParent can leave the node N in the occurs list of P so any occurrences
of leaf descendants of P can be accessed through its occurs list� just as before� Thus� there is no need to
modify occurs lists during this call to ChangeParent�

Thus� each of the following operations is performed in constant�time using the above data structures�

� Read� Abs

� Count �for childs� leafs� and subs�� Head� Push� Pop� AddQ

� Leaf%� CreateNode� Deactivate� Delete

� ChangeParent

Lemma ���� �ReadArgs� Any call to ReadArgs and ReadFml that reads input tuple I

�� takes O�p� time	 and

�

�� returns a tree of depth at most k containing at most p nodes

where p � jIj and k is the depth of the term encoded by I�

Proof Ignoring the while loops in ReadArgs and the recursive calls to ReadArgs in ReadFml� each of the
two functions takes constant time� consumes exactly one integer from the input� and creates at most one
new node� Each iteration of the while loops generates exactly one recursive call to ReadFml� if the cost of
this call is ignored then each such iteration takes constant time� Moreover� each nesting of a pair of mutually
recursive calls of the two functions increases the depth of the tree by at most �� The lemma then follows
from a straightforward induction on the depth of the mutual recursion in any particular execution�

Lemma ���� �InitPropagate� The call to InitPropagate

�� takes O�nk� time	 and

�� creates occurs lists such that the total number of items in all of them is at most nk�

Proof It follows from Lemma ���� that the input tree has at most n nodes and at most k depth�
InitPropagate makes two passes over the entire tree� each pass visits a node exactly once� The most costly
visit is for a leaf� for which the entire branch to the root may be traversed� taking O�k� time� Thus� the
total time is O�nk�� The second claims follows directly from this bound�

Now that the tree has been constructed and data structures initialized within the desired time limits� we
make some observations on the execution of the algorithm�

Observations

�� Once created by ReadArgs���� the size and the depth of the tree never increases� This holds because
no new node is ever created later�

�� The parent of any node at any time in the tree must be among its ancestors at all previous times �after
creation by ReadArgs����� This holds because the only way to change parents is by collapsing a node
in Collapse�

�� The procedure Collapse can be called at most n times� and each call takes constant time� This holds
because each call deletes a node from the tree� and there are at most n nodes to begin with� Note that
each of the operations Head� AddQ� Leaf%� ChangeParent� and Deactivate takes constant time�

	� The total number of items to be ever added in list PQ is at most �n� Initially� since any non�leaf node
can be in PQ� there can be at most n �a very liberal count&� of those� Later� the only addition of a
new item to PQ is in Collapse which� from the previous observation� can happen at most n times�

� For any node N� the set of its leaf children M such that M�pp �� N forms an initial segment of the list
N�leafs� This can be proved by induction on the number of call that have been made to Propagate�N�
so far� In the base case� no call was made� and M�pp � M for each leaf children of N� In the inductive
case� the last call to Propagate�N� ensured that M�pp � N for all leaf children at that time� Any new
child leaf added after that �by Collapse� is added at the front of the list Leafs and has M�pp �� N�
Thus� the claim follows�

Lemma ���� The procedure PropAtom is called at most O�nk� times from outside PropAtom�

Proof PropAtom is initially invoked in Propagate on node M i� M�pp �� N� the parent of M� After this
call is completed� M�pp is set to N and is never changed until M gets a di�erent parent �and PropAtom is
called again�� It follows from observation � that PropAtom on M can be thus called at most once for each of
its ancestor in the initial tree� Since there are at most n nodes and at most k ancestors of each of them in the
initial tree �which never grows� see observation ��� PropAtom is called at most O�nk� times from outside�

�

Lemma ���	 The total time over all calls of Simplify is O�n��

Proof Each call to DeleteTree removes at least one node from the tree� if it removes p nodes then it takes
O�p� time� Each node R traversed in the while loop in line � of Simplify is later removed by DeleteTree�
Using observation �� if a call to Simplify removes p nodes from the tree then it takes O�p� time� Since there
are at most n nodes to begin with� the total time over all calls of Simplify is O�n��

Observation 	� The total number of items ever added to all occurs lists is O�nk�� From Lemma ���	 �
there were at most O�nk� items in the occurs lists to begin with� A new item is added only in each
iteration of the while loop in Propagate� and nowhere else� It follows from Lemma ���
 that the total
number of such iterations is bounded by O�nk��

Lemma ���� The total time taken by all calls to PropAtom is O�nk��

Proof If follows from Lemma ���� that the total time over all calls of Simplify is O�n�� which is subsumed
by O�nk�� Thus� we can ignore these calls in computing the time taken by PropAtom� Apart from making
these calls� PropAtom only traverses the occurs lists� Any item in the occurs list ever traversed by PropAtom
is deleted and never traversed again� Thus� the total time taken by all calls to PropAtom is bounded by the
total number of items ever added to occurs lists� which is O�nk� using Observation �� Thus� the total time
taken by all calls to PropAtom is O�nk��

Theorem ���� �Time complexity of AFPC� For any input theory �	 algorithm AFPC takes O�nk�
time	 where n is the size of tuple hh�ii and k is the depth of �the tree representing� ��

Proof From Lemma ���� and ���	� ReadArgs��� and InitPropagate takes O�nk� time each� Since the
node N is removed from list PQ when Propagate�N� is called� it follows from observation 	 that Propagate
is called at most �n times� It follows from observation
 that the number of M�s examined in the list N�leafs
�during each call to Propagate� is at most � more than the number of times PropAtom is called� thus� the
time for Propagate is dominated by the time for the calls to PropAtom� Thus� it follows from Lemma ���
that AFPC takes O�nk� time�

��� AFPL� Adding Lifting Rules

We now extend algorithm AFPC for dealing with lifting rules� We also prove the correctness of the new
algorithm AFPL and provide a quadratic bound on its running time�

Lifting rules �L rules� are implemented similarly to the P rules� the basic idea is to use lists for recording
potential sites where L rules can be applied� and to continue rewriting until these lists and the list PQ are
all empty or the tree becomes an exception tree� Each L rule is implemented using a new procedure� which
is only called from the main algorithm� As before� S rules are applied as soon as they become applicable�

The two new global lists to keep track of nodes where the L rules may apply are�

L�Q list of nodes where rule L� may apply �Recall that the L� rule ������B��� B�� � ������B��� B��
is said to be applicable to the node at the root of the subtree ����B�����

L�Q list of nodes where rule L� may apply�

We also need two new invariants to ensure that all potential sites for applying L rules are considered�

L� invariant if rule L� applies to any node N then N is either in list PQ or in list L�Q�

L� invariant if rule L� applies to any node N then N is either in list PQ� in list L�Q� or in list L�Q�

�

These invariants are �rst established by InitPropagate� As the input theory is read� it is represented as
a tree� while recording each node with a leaf child in the list PQ� Since L� is applicable to a node only if it
has a leaf grandchild� this sets up the L� invariant as well� Finally� if L� is applicable to a node N� then N
has to have a leaf child �since N must have at least two children because of tree invariant�� and hence N is
in the PQ list� establishing L� invariant�

Thereafter� nodes are repeatedly removed from the lists PQ� L�Q� and L�Q �in that order� and the
corresponding rules are applied if they are still applicable� As suggested by the L� and L� invariants� each
node removed from PQ is added to list L�Q� and each node removed from L�Q is added to L�Q�

For moving leaves while applying rule L�� we need a variant� MoveLeaf� of ChangeParent that also
modi�es the occurs lists� Also� while applying rule L�� we need to merge the occurs lists of two nodes�

Procedure MoveLeaf�C�N�P NODE� moves the leaf C fromnode N to node P� It does this by removing
C from N�childs� pushing C to P�childs� setting C�parent to be P� N�occurs�A� is set to nil for the
atom A of the literal at C �i�e�� A � abs	C�label
��� Also� if N is in X�occurs�A� at some node X
for atom A then N there is replaced by C�

Procedure MergeOccurs�N�M NODE� merges �at the conceptual level� the lists in the Occurs array
of M to the corresponding lists in the Occurs array of N �as we show in the complexity section� the
two arrays are not explicitly merged�� The e�ect of merging is that for each atom A� if M is an A�node
then all the A�leaves in the subtree at M also become accessible through N�Occurs�A��

In the complexity section� we will show how to e�ciently modify occurs lists during MoveLeaf� and merge
them in MergeOccurs�

Procedure AFPL
�� reads the theory and rewrites it to an irreducible form using

S� P� and L rules

PRE� input I correctly encodes a theory� say �
POST� theory represented by the tree is irreducible with respect to S�

P� and L rules� ���
R using S� P� and L rules�

all invariants are satisfied ��

�� Root �� ReadArgs	�
�
�� InitPropagate�

� L�Q �� L�Q � � Nil�

�� loop f
�� if PQ �� Nil then f �� possible P rule ��

�� Propagate	Head	PQ

�

�� AddQ	Pop	PQ
�L�Q
�

�� g elseif L�Q �� Nil then f �� possible L� rule ��

�� Lift�	Head	L�Q

�

��� AddQ	Pop	L�Q
�L�Q
�

��� g elseif L�Q �� Nil then f �� possible L� rule ��

��� Lift�	Head	L�Q

�

�� Pop	L�Q
�

��� g else exit�

��� g
end �AFPL��

Lift��N� �rst tests whether L� rule is applicable to the node N� if yes� each leaf child of N is made a child
of N�s parent �see Figure ����� Since the list PQ was empty� the tree was irreducible with respect to P rules
when Lift� is called� This ensures that the occurs lists in N corresponding to its leaves are singletons� thus�

�This is safe because when MoveLeaf is invoked C would already have been propagated at N �since PQ is empty� so there
would only be at most one occurrence of A under N�

�

���

P

N

C

P

C

N

Figure ���� Lift��N�

���

���

C

C

N

M

N

x

x

Figure ��� Lift��N�

���

they are each set to Nil after the leaves are moved� If N is left with no child then it is removed from the
tree using S� and S� rules� if it is left with only one child� then it can be collapsed using Rule S�� Since N�s
parent get new leaves� it becomes a potential site for using P rules�

Procedure Lift� �N NODE�
�� check and apply rule L� and then reduce using S rules

PRE� term�Root� is irreducible with respect to S rules�

for each leaf child L of N� L�pp � N

POST� also� L� rule does not apply at N

term�RootPRE ���
R term�RootPOST � using L� and S rules ��

�� if N �� Root and N�leafs �� Nil and �		P �� N�parent
�label �

�� N�label or 	P � Root and N�label � �

� then f
� for each C in N�leafs do �� apply L� rule ��

�� MoveLeaf	C�N�P
�

�� N has no leaf childs left ��

�� if N�childs � Nil then Deactivate	N

�� N is ����� apply either rule S�� or S�� ��

�� elseif Count	N�childs
 � � then Collapse	N
� �� rule S ��

�� AddQ	P�PQ
� �� P got at least one new leaf child ��

�� g
end �Lift���

Lift��N� �rst tests whether L� rule is applicable at node N� if yes� the only non�leaf child of N is removed

	

from the tree by moving all its children to N �see Figure ����

Procedure Lift� �N NODE�
�� check and apply rule L� and then simplify

PRE� term�Root� is irreducible with respect to S rules

POST� also� L� rule does not apply at N

term�RootPRE ���
R term�RootPOST � using L� and S rules ��

�� if Count	N�subs
 � � and 	M �� Head	N�subs

�label � N�label then

f �� apply L� rule ��

�� if M�leafs �� Nil then AddQ	N�PQ
�

�� N will get M�s leaf children ��

� MergeOccurs	N�M
�

�� for each C in M�childs do ChangeParent	C�M�N
�

�� Deactivate	M
�

�� g
end �Lift���

The second test in line � ensures that N is not the root� It is possible that node N� which was not an A�node
for some atom A before the call to Lift�� becomes an A�node after the call� In that case� the occurs invariant
may be violated for N and A after Lift�� MergeOccurs�N�M� prevents this by setting N�Occurs�A� correctly�
For now �until we add the factoring rule in the next section�� it is guaranteed that both N�Occurs�A� and
M�Occurs�A� have been initialized since the A�leaf was a descendent of both N and M in the original tree�
Since Lift� is called only after no P rule applies� it follows that �just before the call��

�� none of the leaf children of N is an A�leaf�

�� M is an A�node �if it is not� then the Occurs invariant would not be violated� so the operations
performed here can be ignored� even though they are performed��

�� N�Occurs�A� is either M or Nil �since N has only M as a non�leaf child��

If N�Occurs�A� is M then all the A�leaves in the subtree at N are accessible through N�Occurs�A� even
before the call �and continue to be so after the call� because of the Occurs invariant for M and A� Otherwise�
these leaves become accessible after the call to MergeOccurs�N�M�� Thus� the occurs invariant is satis�ed in
both cases�

There are two more cases when the L� rule may become applicable� These occur at the end of procedures
Simplify and Collapse� when P is left with only one non�leaf child which has the same label as P� Thus� we
need to add the following lines at the end of Simplify�

elseif count	P�subs
 � � and Head	P�subs
�label � P�label then

AddQ	P�L�Q
�

and the following lines at the end of Collapse�

if count	P�subs
 � � and Head	P�subs
�label � P�label then

AddQ	P�L�Q
�

����� Correctness of AFPL

Our basic approach in proving the correctness remains the same as that for the algorithm AFPC� We need
to �rst prove the correctness of Lift� and Lift�� before proving the correctness of AFPL�

Lemma ���� �Correctness of Lift�� For any call of Lift��N�

�� term�Root� is irreducible with respect to S rules �before and after the call�

�� L�pp � N for each leaf child L of N

�� term�RootPRE ���
R term�RootPOST � using L� and S rules

�� L� rule does not apply at node N after the call�

Proof If the test in lines � and � fails then Lift� terminates without changing anything� since L� rule does
not apply at node N� Otherwise�

�� Since outputs of both Propagate and ReadArgs are irreducible with respect to S rules� term�Root� is
irreducible with respect to S rules before the call� The only way to obtain either t or f is by lifting
up all the children of N �i�e�� all of them are leaves�� in that case line
 removes the truth constant
by using rules S� and S�� Thus� the output is irreducible with respect to S� and S� rules� The only
potential for rule S� is tried in line �� thus the output is also irreducible with respect to to S��

�� Directly from invariant PQ since the list PQ is empty whenever Lift� is called�

�� All the changes made to the tree are by applying rules L�� S�� S�� and S��

	� Since all the leaf children of N are lifted to its parent� rule L� does not apply to node N �which may
have been even deactivated� after the call�

This proves the lemma�

Theorem ���� �Correctness of AFPL� For any theory �	 the procedure AFPL on input hh�ii terminates
with a tree representing a theory such that is irreducible with respect to S	 P	 and L rules and ���

R
using S	 P	 and L rules�

Proof Any instance of rule L� for which n � �� i�e�� there is no leaf child� is also an instance of rule S��
Since we are always keeping the tree irreducible with respect to S rules� rules L� and L� apply to a node
only if it has at least one leaf child� Thus� both L� and L� invariants are established by InitPropagate since
it adds all nodes with leaf children to the list PQ�

Lemmas ���� ����� ���� and Proposition ��� show the correctness of ReadArgs� Propagate� Lift�� and
InitPropagate �procedures called by AFPL�� respectively� The correctness of Lift� follows directly from its
code� Thus� � ��

R using S� P� and L rules� and is irreducible with respect to S rules� There are two
cases�

�� is represented by an exception tree� it is trivially irreducible with respect to P and L rules�

�� otherwise� lists PQ� L�Q� and L�Q must be empty� It follows from PQ and pp invariants that is
irreducible with respect to P rules� and from L�Q and L�Q invariants that is irreducible with respect
to L� and L� rules� respectively�

In both cases� is irreducible with respect to L and P rules� This proves the theorem�

����� Complexity of AFPL

We show that the complexity of AFPL is the same as that of AFPC� i�e�� O�nk�� where n is the size of the
input theory and k is its depth� We do this by looking at the extra work done in AFPL� as compared to
AFPC� and showing that it is still bounded by O�nk�� The most di�cult part is showing that the total cost
of all calls to Lift� has the correct bound� since each call requires merging two Occurs arrays� We resolve

�

���

•

P

P

Q

∨

∧

¬P

P Q

P Q

P Q

Figure ���� Back pointers for occurs lists

���

this by introducing back pointers for entries in the Occurs arrays� which are used for traversing the leaves
of a subtree and correctly linking the corresponding Occurs entries in the two arrays to be merged� We also
strengthen the Occurs invariant so that these back pointers are compactly represented�

We use the same data structures as in AFPC� except that nodes in occurs lists now also have back
pointers �see Figure ����� if node C is in N�occurs�A� for some node N and atom A� then the back pointer
C�occurs���A� allows directly accessing this list item �i�e�� in constant time� from C� An internal node keeps
its back pointers in an array indexed by atoms �for a leaf� the only atom of interest is that of its label�� To
further simplify the back pointers� we require that for any particular atom� any node should be in at most
one occurs list� This will ensure that� from any particular node� there is at most one occurs back pointer for
any particular atom� It can be veri�ed that this constraint is enforced by the procedures presented so far�
we will continue to enforce it for any new procedures that are presented� In e�ect� we add it explicitly to
the occurs invariant�

Addition to Occurs invariant For any atom A and any node C� there is at most one node N that is
accessible from the Root using Occurs�A� links such that C is in N�occurs�A��

Creating and maintaining these back pointers does not add to the asymptotic complexity of the algorithm�
since these operations are performed along with the operations on occurs lists with only a constant�factor
overhead� Since access of back pointers is always driven by some leaf and back pointers are initialized
whenever occurs links are set� we never access uninitialized back pointers� Because of these back pointers�
MoveLeaf is a constant�time operation� just like ChangeParent�

Procedure MergeOccurs�N�M � NODE� does not explicitly merge the occurs lists of N and M� because
this would take time proportional to the total number of propositional symbols� while the subtree at M
might be very small� Instead� it sets appropriate links from N�s Occurs array to M by traversing the entire
subtree at M� for each A�leaf in the subtree� if N�Occurs�A� does not point to anything �i�e�� is either Nil or
uninitialized �� and M�Occurs�A� points to something �i�e�� is both non�Nil and initialized�� then N is inserted

�We will show later how to detect whether an Occurs entry is uninitialized� This will be needed only when factoring rules
are introduced and can be ignored until then�

in M and M�Occurs���A� in the occurs�A� chain� inserting N requires changing two entries� M is replaced by
N in M�Occurs���A�� and N�Occurs�A� is set to the singleton list containing M� Note that if we had just set
N�Occurs�A� to be M�Occurs�A� in MergeOccurs then the above addition to the Occurs invariant could be
violated� MergeOccurs�N�M� calls the recursive procedure RMergeOccurs�N�M�M�� whose pseudo�code is�

Procedure RMergeOccurs�N�M�R NODE�
�� for each C in R�subs do RMergeOccurs	N�M�C
�

�� for each L in R�leafs do f
� A �� abs	L�label
�

�� if 	not initialized	N�occurs�A�
 or N�occurs�A� � Nil

�� and initialized	M�occurs�A�
 and M�occurs�A� �� Nil then f
�� P �� M�occurs���A��

�� replace M by N in P�occurs�A��

�� N�Occurs�A� �� Push	M�Nil
�

�� g
��� g

Note that M�Occurs���A� exists� since Root is an A�node for any atom A�

Apart from Collapse� ChangeParent is called only at one place � line � of Lift� with arguments �C�M�N��
Since M is deactivated in the next line� it is again not necessary to modify the occurs lists�

Theorem ���� �Time complexity of AFPL� For any input theory �	 algorithm AFPL takes O�nk�
time	 where n is the size of tuple hh�ii and k is the depth of �the tree representing� ��

Proof �sketch� Theorem ���� shows that AFPC takes O�nk� time� The only extra work in AFPL� as
compared to AFPC� is�

�� Some more nodes are pushed into occurs lists �in MoveLeaf at line 	 of Lift��� However� each time a
node is pushed into an occurs list� it is also lifted up in the tree� Since this can happen at most nk
times� the total number of nodes ever added to the occurs lists remain O�nk��

�� Some more nodes can be pushed into PQ list� during the call to Collapse in line �� of Lift�� Using the
same argument above� the total number of nodes ever added to list PQ remains O�nk��

�� Since L�Q is created from items removed from PQ� the total number of nodes ever added to L�Q is
also O�nk�� It follows that Lift� can be called at most O�nk� times�

	� Since L�Q is created from items removed from PQ and the new line added to Simplify� the total number
of nodes ever added to L�Q is also O�nk�� It follows that Lift� can be called at most O�nk� times�

� The call to MergeOccurs�N�M� in Lift� traverses the entire subtree at M� Since each of these nodes
moves one level up in the tree� the total cost of all calls to MergeOccurs�N�M� in Lift� is O�nk��

�� Each iteration of the for loop in Lift� lifts a child up the tree� So the total number of iterations across
all calls is at most nk�

� In addition to the costs mentioned above� each call to either Lift� or Lift� takes constant time�

Thus� the time complexity remains O�nk��

��� AFP� Adding Factoring Rules

We extend the algorithm AFPL for dealing with the factoring rules �F rules�� Since the basic idea remains
the same� we need a list to keep track of nodes where an F�rule may be applicable� We also need new data

�

���

∨

∧

∧ ∨

∨

P

R ¬ R R

S M

WS

N

N.glits[1] = {¬S,W}

N.glits[2] = {R}

Others are empty

Figure ���� Glits lists

���

structures� namely� the Glits arrays and operations on them� for quickly identifying such nodes� The new
algorithm AFP �rst reduces the theory with respect to all rules except factoring� initializes the new data
structures� and then executes the usual loop of applying all the rules� Note that factoring rules are the
only rules that require adding new nodes to the tree� We also prove the correctness of AFP and provide a
quadratic bound on its running time�

The following list keeps track of potential applications of the F rules�

FQ list of nodes where F rule may apply

For any node N� a literal � can be factored out of the children of N i�

�� N has at least two non�leaf children�

�� the label of each non�leaf child of N is the dual of N�label� and

�� � labels a child of each non�leaf child of N�

For quick identi�cation of such nodes� we maintain the following information with each internal node N
of the tree which has at least one non�leaf child�

Glits an array such that for any x �from � through the number of leaf grandchildren of N�� N�glits�x� is
the list of literals that label exactly x grandchildren of N whose parents are labeled with the dual of
N�label�

Glits lists keep track of literals that label the leaf grandchildren of a node� This information is also
maintained in nodes with only one non�leaf child since they can get more children by using Rule L�� Since
F rule never applies to the Root� we don�t need a glits array for the Root� Figure ��� shows an example of
glits lists�

The following invariants ensure that lists glits have the correct information and that list FQ has all the
nodes where F rules are applicable�

Glits Invariant For any internal node N� any literal �� and any positive integer x� � is in list N�glits�x� i�
N has x grandchildren labeled by � whose parents are labeled with the dual of N�label�

�

FQ Invariant For any internal node N� if Count�N�subs� � � and
N�glits�Count�N�subs�� �� Nil then N is in list FQ�

Since the queue FQ is accessed only when no more propagation steps can be applied �because PQ is
empty and the Occurs invariant holds�� there cannot be any node with two or more children labeled by the
same literal� N�glits�x� is therefore equal to the list of literals that label a leaf�child of exactly x children of
N labeled with the dual of N�label�

Once established� these invariants continue to hold at all times� except for certain lines of the code �
such violations are mentioned explicitly�

Some more procedures are used in the description of AFP�

�� Procedure SetGcount�N���x� adds literal � to the list N�glits�x�� if it is not already there�

�� Procedure IncGcount�N��� removes � from some glits list of N� say N�glits�x�� and adds it to to the
list with the next higher index� i�e�� N�glits�x"��� If � is not in any glits list of N then x is considered
to be �� Also� if Count�N�subs� � x"� � � then N is added to the list FQ�

�� Procedure DecGcount�N��� removes � from some glits list of N� say N�glits�x�� and adds it to the
list with the next lower index� i�e�� N�glits�x����

By using additional data structures� we will later show how each of the above procedures can be made
to run in constant�time�

AFP �rst calls AFPL for reading the input theory and reducing it to a normal form with respect to S�
P� and L rules� It then calls InitFactor to set the glits arrays and the list FQ� As before� nodes are then
removed from the lists PQ� L�Q� L�Q� and FQ �in that order� and the corresponding rules are applied if
they are still applicable�

Procedure AFP
�� reads the theory and rewrites it to an irreducible form

PRE� input I correctly encodes a theory� say �
POST� theory represented by the tree is irreducible

���
FP

all invariants are satisfied ��

�� AFPL� �� reads � and reduces it using S�P� and L rules ��

�� InitFactor� �� set glits and FQ ��

� loop f
�� if PQ �� Nil then f �� possible P rule ��

�� Propagate	Head	PQ

�

�� AddQ	Pop	PQ
�L�Q
�

�� g elseif L�Q �� Nil then f �� possible L� rule ��

�� Lift�	Head	L�Q

�

�� AddQ	Pop	L�Q
�L�Q
�

��� g elseif L�Q �� Nil then f �� possible L� rule ��

��� Lift�	Head	L�Q

�

��� Pop	L�Q
�

�� g elseif FQ �� Nil then f �� possible F� rule ��

��� Factor	Head	FQ

�

��� Pop	FQ
�

��� g else exit� �� got an irreducible form ��

��� g
end �FP��

InitFactor sets the glits arrays and FQ list so that the corresponding invariants are established� It makes
two passes over the tree� the �rst pass �InitGlits� is used to initialize all the relevant �elds of glits arrays�

��

only these initialized �elds are accessed in the second pass �SetGlits�� As we shall see later� not requiring
the initialization of all the glits arrays will be important in our analysis of the time complexity of AFP�

Procedure InitFactor
�� initializes and then sets the glits fields

PRE� list PQ is empty

POST� also� Glits and FQ Invariant ��

�� FQ �� Nil�

�� For each N in Root�subs do InitGlits	N
�

� For each N in Root�subs do SetGlits	N
�

end �InitGlits��

InitGlits�N� recursively traverses the subtree at N� setting the relevant glits �elds to Nil� It also collects
all the relevant literals in the glits��� �elds� More precisely� it establishes the following assertion that is used
by SetGlits�

Glits intermediate�assertion For any internal node N

�� if N has at least x � �� �� non�leaf children then N�glits�x� � Nil�

�� for any literal �� the subtree at N has a leaf labeled by � i� � is in list N�glits����

Procedure InitGlits �N NODE�
�� recursively initializes the glits fields

PRE� N is an internal node

POST� Glits intermediate�assertion for the subtree at N ��

�� for each L in N�leafs do f �� initialize glits��� for this leaf ��

�� P �� N�parent� �� P walks up to the Root ��

� while P �� Root do f
�� SetGcount	P�L�label��
� �� add L�label to P�glits��� ��

�� P �� P�parent�

�� g
�� g
�� x �� �� �� counter of non�leaf children ��

�� N�glits�x��� �� Nil�

��� for each C in N�subs do f
��� N�glits�x��� �� Nil�

��� InitGlits	C
�

�� g
end �InitGlits��

SetGlits�N� also recursively traverses the subtree at N� For each leaf with label� say �� encountered� it
increments the index of � in the glits array of its grandparent� Since the tree is irreducible with respect to
P rules� each node has at most one leaf labeled by �� If an F rule is applicable at node N then it is added
to the list FQ�

Procedure SetGlits �N NODE�
�� recursively sets the glits fields

PRE� N is an internal node�

list PQ is empty�

Tree satisfies Glits intermediate�assertion

POST� Glits and FQ Invariants for the subtree at N ��

�� for each C in N�subs do f
�� if N�label �� C�label then

��

� for each L in C�leafs do

�� IncGcount	N� L�label
�

�� SetGlits	C
�

�� g
�� if Count	N�subs
 � � and N�glits�Count	N�subs
� �� Nil then

�� AddQ	N� FQ
�

end �InitGlits��

We also make some changes to the algorithms of the previous section� for maintaining the Glits and FQ
invariants� These changes are applicable only after the call to AFPL is completed� a boolean tag can be
used to indicate this�

For any internal node N�

�� after a node is removed from N�subs� if Count�N�subs� � � and
N�glits�Count�N�subs�� is non�Nil then N is added to list FQ�

�� before a node is added to N�subs� N�glits�Count�N�subs�"�� is initialized to Nil�

Any non�recursive call to DeleteTree�N�� i�e�� a call from outside DeleteTree� is replaced by a call to
NewDeleteTree�N� for updating glits a�ected by the nodes that are removed�

Procedure NewDeleteTree �N NODE�
�� P �� N�parent�

�� if P �� Root then

� if Leaf�	N
 then

�� if 	G �� P�parent
 �� Root and P�label �� G�label then

�� DecGcount	G�N�label

�� elseif N�label �� P�label then

�� for each L in N�leafs do

�� DecGcount	P� L�label
�

�� body of DeleteTree	N
�

end �NewDeleteTree��

Procedures MoveLeaf and ChangeParent are also modi�ed� as shown below� so that glits arrays are
maintained correctly� The operations on glits inMoveLeaf�C�N�P� are�

�� if 	G �� P�parent
 �� Root and P�label �� G�label

�� then IncGcount	G� C�label
�

� if 	R �� N�parent
 �� Root and N�label �� R�label

�� then DecGcount	R� C�label
�

The corresponding operations on glits in ChangeParent�C�N�P� are�

�� if Leaf�	C
 then f
�� if 	G �� P�parent
 �� Root and P�label �� G�label

� then IncGcount	G� C�label
�

�� if 	R �� N�parent
 �� Root and N�label �� R�label

�� then DecGcount	R� C�label
�

�� g else f
�� if P �� Root and C�label �� P�label then

�� for each L in C�leafs do

�� IncGcount	P� L�label
�

��

���

P

N

C0 Cm Q

x

x x

P

M

R

L N

C0 Cm

Q

x

x

x x

⎯x
⎯x

α

⎯x

α

α

Figure ����� Factoring

���

��� if N �� Root and C�label �� N�label then

��� for each L in C�leafs do

��� DecGcount	N� L�label
�

�� g

Once a node is created� any change in its position in the tree is made by calling one of the above three
procedures �or by the procedure Factor which is described later�� Thus� the above modi�cations ensure that
the Glits invariant is satis�ed�

Factor�N� applies F rules as many times as possible to the subtree at node N �Figure ������ Two new
nodes� M and R� are created and inserted between N and its parent in the tree� All leaves of N are moved
to M and all factored literals are made the children of R� N is left with only non�leaf children from which
the factored leaves have been removed� These leaves are removed using calls to Simplify that change their
labels to appropriate truth�constants and reduce them with respect to S rules� If N did not have any leaf
child to begin with� then node M is deactivated by calling Collapse � it is possible to use an L rule after
this� As in the case of P rules� we will interleave S rules with an application of F rules�

Procedure Factor �N NODE�
�� checks and applies F rules at Node N

PRE� list PQ is empty

POST� either N is in Pop	FQ
 or F rule does not apply at N�

term�RootPRE ���
R term�RootPOST � using F and S rules ��

�� x �� Count	N�subs
�

�� if N �� Root and x � � and N�glits�x� �� Nil then f
�� apply factoring ��

� P �� N�parent�

�� val �� 	N�label �� �
� �� deleted leaves are substituted by val ��

�� M �� CreateNode	N�label�Nil
� SetParent	M�P
�

�� For each Q in N�leafs do f
�� MoveLeaf	Q�N�M
�

�� Q�pp �� M�

�� g �� RHS for factoring ��

��� R �� CreateNode	�N�label�Nil
� SetParent	R�M
�

��� ChangeParent	N�P�R
�

��� M�glits��� �� M�glits��� �� Nil�

��

�� R is the only non�leaf child of M ��

�� R�glits��� �� R�glits��� �� Nil�

��� while N�glits�x� �� Nil do f
�� apply factoring for each literal ��

��� � �� Pop	N�glits�x�
� �� literal to be factored ��

��� L �� CreateNode	��Nil
� L�parent �� R� L�pp �� R�

��� SetGcount	M����
�
��� Push	L�N�Occurs���abs	�
�
�
��� Push	L�R�leafs
�

��� PropAtom	�� val� N�L
�

��� g
��� g
�� if M�leafs � Nil then f
��� Collapse	M
�

��� if R�label � P�label or 	R�label � � and P�label � �

��� then AddQ	R�L�Q
�

��� g
��� g
end �Factor��

Here� Occurs�� in line �� refers to the occurs back pointer � for any node N and atom A� if N is in
S�Occurs�A� for any node S then N�Occurs���A� is S� This line ensures that the new leaf L is put in the
proper occurs list�

Note that calling Simplify may lead to new nodes being added to the list PQ� collapsing of nodes� etc�
Also� the node N may get deactivated during the factoring� or it may get added to the FQ list again� The
occurs invariant continues to hold since nodes M and R� which are newly created� are not A�nodes for any
atom A� However� these nodes may become A�node because of a subsequent call to Lift�� The relevant occurs
entries in these nodes are then set by the call to MergeOccurs�

����� Correctness of AFP

As before� we �rst prove the correctness of InitGlits� SetGlits� and Factor� before proving the correctness of
AFP�

Proposition ���� �Correctness of InitGlits� For any call of InitGlits�N� during the execution of Init�
Factor	 N is an internal node	 and after the call

�� if N has at least x � �� �� non�leaf children then N�glits�x� � Nil

�� for any literal �
 the subtree at N has a leaf labeled by � i� � is in the list N�glits����

Proof Since N is in the subs list for some node� it must be an internal node� Claim � follows directly from
line �� of the procedure� Claim � is easily proved by induction on the depth of recursion� The base case�
when all leaves in the subtree are children of N� follows from line 	 of the code� The inductive case follows
because line 	 adds the child leafs� while the recursive call in line �� adds the non�child leafs�

Thus� Glits intermediate�assertion is satis�ed after all the calls to InitGlits are completed� Also� since
AFPL has terminated and the tree is not an exception tree� the list PQ is empty�

Proposition ���� �Correctness of SetGlits� For any call of SetGlits�N� during the execution of Init�
Factor	 N is an internal node	 and after the call

�� for any literal �	 and any positive integer x
 � is in list N�glits�x� i� N has x children that are labeled
with dual of N�label and have a leaf�child labeled by �

�	

�� if Count�N�subs� � � and N�glits�Count�N�subs�� �� Nil then N is in list FQ�

Proof Since the list PQ is empty� it follows from PQ and pp invariants that for any literal �� each child
of N has at most one child labeled by �� Claim � is then established by line 	 of the code� while claim � is
established by line �� The check in line � ensures that C�label is a dual of N�label�

It follows that both the Glits and FP invariants are satis�ed after the call to InitFactor is completed�
Since DeleteTree� Collapse� Lift�� and Lift� are correct� we only need to show that the two new invariants
�Glits and FQ� are not violated by their modi�ed versions� Since the new lines of the code �in NewDeleteTree�
MoveLeaf� and ChangeParent� explicitly enforce these invariants� it follows that NewDeleteTree� Collapse�
Lift�� and Lift� are all correct�

Lemma ���� �Correctness of Factor� For any call to Factor�N� during the execution of AFP

�� term�Root� is irreducible with respect to S rules �before and after the call�	

�� list PQ is empty	

�� all invariants are satis�ed	

�� term�RootPRE ���
R term�RootPOST � using F and S rules	 and

�� either N is added to the FQ list during the call or the F rule is not applicable at N after the call�

Proof From the code of AFP� Factor is called only when PQ is empty� InitFactor establishes Glits and
FQ invariants� All other invariants continue to hold after being established by InitPropagate� Since only F
and S rules are applied during the call to factor� it follows that term�RootPRE ���

R term�RootPOST � using
F and S rules� If N is not added to the FQ list during the call then each literal in the list N�glits�x�� where x
is the number of non�leaf children of N �before the call�� has been factored in the while loop� thus� it follows
from the Glits invariant that the F rule is not applicable to N after the call�

We also have to ensure all invariants are satis�ed after the call� The only di�culty is with the Glits and
Occurs invariants� Glits for P does not change since all the leaf�children of N� the old child of P� are moved
to M� the new child of P� The only change in glits is for node N in line �
� the Glits invariant is satis�ed
since the corresponding leaves are removed in line ��� The new nodes M get a correct glits array in lines ��
and �� while each list in glits of R is correctly set to Nil in line ��� The occurs invariant is also satis�ed
since neither R nor M is an A�node for any atom A�

Theorem ���� �Correctness of AFP� For any theory �	 the procedure AFP on input hh�ii returns a tree
that represents a theory such that ���

FP �

Proof Follows directly from the correctness of AFPL� InitFactor� and Factor� and the observation that
either an exception tree is returned or all the lists PQ� L�Q� L�Q� and FQ are empty when the algorithm
terminates�

����� Complexity of AFP

We prove that the time complexity of AFPC is quadratic in the size of the input theory� Our approach
remains the same as that in proving the complexity of AFPC and AFPL� i�e�� bound the complexity by the
cost of moving each node up the tree all the way to the root� The main di�erence now is that the level of a
node may increase because factoring rules add new nodes to the tree� So� we de�ne factoring depth� which
also accounts for the increase due to factoring steps� and show that it is at most linear in the size of the
initial tree� We also give details of the new data structures and show how their operations can be performed
e�ciently�

�

���

N.occurs

N.sanity

? ? Nil ? ? Nil

7 2 1 ? ? 2

EXT

Size

A B C D E F

Figure ����� Initialization of Occurs arrays of the new nodes created by factoring

���

Since the new internal nodes introduced by Factor may become A�nodes �for some A� after a call to
Lift�� we need a way to initialize the relevant occurs entries in these nodes and distinguish them from the
uninitialized entries� This distinction is used in MergeOccurs� For keeping track of initialized occurs entries�
we use a global list� EXT� which will have pointers to all these initialized entries� and an array N�Sanity
�indexed by atoms� with each new internal node N created by Factor �see �AHU	��� The general idea is
that if for some atom A� location N�Occurs�A� is initialized then a new entry is created in EXT that will
point back to the initialized location� and N�Sanity�A� will be set to point to this new entry in EXT� To
determine whether N�Occurs�A� has been initialized� all we need to do is to verify these two pointers� �We
also need to keep track of the size of EXT� so that we do not access uninitialized entries in EXT&�

For example� Figure ���� shows the relevant entries after N�occurs�C� and N�Occurs�F� have been initial�
ized� The corresponding entries in N�Sanity refer to indices in the list EXT� whose entries point back to
N�Sanity� Uninitialized entries don�t have the correct setup of these pointers� N�Sanity�A� is greater than the
size of EXT� EXT�N�Sanity�B�� does not point back to N�Sanity�B�� and N�Sanity�D� and N�Sanity�E� may
not even have integer values� Note that there is only a constant�time overhead for doing this �sanity check�
for each access to N�Occurs�A�� Also� the arrays EXT and Sanity need not be initialized to begin with� they
get the correct values when the corresponding occurs entries are initialized� Thus� the complexity does not
increase because of this check� Note that we do not need this initialization technique for the nodes in the
original tree produced by the call to ReadArgs� since InitOccurs initializes all the relevant occurs entries�

For any internal node N� some literal � can be in at most one of the N�glits lists� we maintain an explicit
index� indGlits� from literals to this unique occurrence� The initialization issues for the index entries are
solved using the same technique that is used for Occurs entries� For example� setting this index would require
an additional pass over the tree produced by AFPL� This allows SetGcount� IncGcount� and DecGcount�
described in slightly more detail here� to be constant�time operations�

�� Procedure SetGcount�N NODE� � LIT� x INT�� if literal � is not in the list N�glits�x�� then
it is added there and N�indGlits��� is set to it� Also initialize N�indGlits���� if not already done�

�� Procedure IncGcount�N NODE� � LIT�� locate the index x such that � appears in N�glits�x��
this is done through another array� N�indGlits� whose entry N�indGlits��� would have value x� Remove
� from N�glits�x�� add it to N�glits�x"��� and update N�indGlits��� to x" �� Also� if Count�N�subs� �
x"� � � then N is added to the list FQ� The pseudo�code for IncGcount is�

�� if not initialized	N�indGlits���
 then SetGcount	N����
�

��

�� x �� N�indGlits����
� move � from N�glits�x� to N�glits�x����

�� N�indGlits��� �� x���

�� Procedure DecGcount�N NODE� � LIT� is just the reverse of IncGcount� though step � is
omitted�

Apart from Collapse and Lift�� ChangeParent is called at only one place � line �� of Factor with
argument �N�P�R�� Since both the nodes M and R added between P and N are not A�nodes for any atom
A� the occurs links from P to N do not need to go through M and R� Thus� as before� there is no need to
change any occurs lists� Recall that in contrast� MoveLeaf indeed has to change occurs lists�

Theorem ���� showed AFPL��� takes O�nk� time� where n is the size of tuple hh�ii and k is the depth
of �the tree representing� �� We now show that AFP��� takes more time� mainly because of the possible
increase in depth of the tree caused by factoring� We �rst de�ne a new measure of depth that also accounts
for the increase due to factoring steps�

De�nition ��	 Any call to Factor�N� is successful i� a factoring rule is applicable to the tree rooted at
node N� For any execution of AFP���� the factoring tree is the unique tree constructed as follows�

�� start from the tree representing ��

�� for each successful call to Factor�N� during the execution of AFP���� insert two new nodes between N
and its parent�

The factoring depth for any execution of AFP��� is the depth of the factoring tree for this execution�

Theorem ���� shows that the complexity of the algorithm AFP can be expressed in terms of the factoring
depth�

Theorem ���	 Any execution of AFP��� takes time O�nd�	 where n is the size of tuple hh�ii and d is the
factoring depth�

Proof �sketch� We have already seen that AFPL costs O�nk� time� We have to account for factor�
ing and the additional rewrite steps that are possible due to factoring� We have to also account for the
changes in ChangeParent� since it is no longer a constant�time operation� The additional work to be done
in NewDeleteTree is subsumed by the work that is already done in DeleteTree�

Each iteration of the while loop in Factor is one rewrite step using the F rule� Each factoring step can
increase the number of nodes by at most �� Since there can be at most n factoring steps� the total number
of nodes at any time is at most �n�

In the worst case of execution of AFP� each leaf is lifted all the way up to the Root before getting deleted
�note that the cost of each of these steps is already accounted for in the above analysis�� Even in the new
version of ChangeParent �which continues to take constant time� as before�� where there is an iteration over
the leaves� each of these leaves is moved up in the tree� Since there are at most O�n� leaves and the factoring
depth is d � O�n�� AFP takes O�nd� time�

Since factoring depth depends on the particular execution of the algorithm� we need some bound on
factoring depth in terms of the input size� Lemma ��� shows that the factoring depth for any execution
can be at most linear in the size of the input� This bound is tight� Figure ���� shows an example subtree of
size O�n�� where �n��� factoring steps lead to an increase in the depth of the subtree by ��n���� each A and
B shown is a distinct atom�

Lemma ���� For any execution of AFP���	 the factoring depth is at most �k��n�	 where n is the size of
tuple hh�ii and k is the depth of �the tree representing� ��

�

���

∨

∧ ∧

∧

∧

∨ ∨

∨

∨

A1 B1 A2 B2 An

B0

Bn

B0

A1

A1

B1

A1

An Bn

Bn-1(a)

(b)

Figure ����� Increase in depth due to factoring

���

Proof Each factoring step removes at least two leaves from the tree and creates at most one new leaf�
Since leaves are never created �outside Factor� after the initial tree is formed� and there are at most n leaves
to begin with� it follows that there could be at most n factoring steps� Each factoring step can increase the
depth of the tree by �� Since the initial tree has depth k� the maximum possible factoring depth is �k"�n��

It then follows from Lemma ��� and Theorem ���� that any execution of AFP��� takes O�n�� time�
where n is the size of input tuple hh�ii� Thus� the algorithm AFP has quadratic time complexity� Recall that
the atoms in � are assumed to be integers from � to k� where there are k distinct atoms in the theory�

Suppose we restrict our attention to only clausal theories� Since the depth of �the tree representing� any
clausal theory is at most � and no factoring rule will every apply� the factoring depth for any execution is
also at most �� i�e�� a constant� The following is then a corollary of Theorem �����

Corollary ���� For any clausal theory �	 any execution of AFP��� takes time O�n�	 where n is the size of
the tuple hh�ii�

��	 AFPE� Adding Equality Rules to AFP

We extend the algorithm AFP for dealing with the equality rules �E rules�� The E� rules are used just like
S rules� as soon as they become applicable� i�e�� whenever an atom of the form a

�
� a for some constant a

is encountered while reading the input theory� The E� rule is applied just like P rules� after queuing the
potential applications in a list called EQ� by using an array called Coccurs to locate all literals in which a
particular constant appears� There are however some di�erences�

�� Since the E� rule propagates an equality atom only if it labels a leaf of the Root� the array Coccurs is
needed only for the Root� Contrast this with Occurs arrays which are needed for all non�leaf nodes�

�� Since the E� rule changes atoms� it is no longer possible to abstract atoms by their codes given by
the bijection g of the tuple encoding �see Section ����� It will be necessary to keep the structure of an
atom around with its code� Note that the leaves are labeled not by atoms but by their codes�

�� Since the E� rule modi�es the atoms in the labels of the leaf nodes� we have to be specially careful in
enforcing the Occurs invariant which deals with these labels�

��

The E� rule is applied only when the theory is irreducible with respect to P rules� Because of this�
whenever an atom of the form a

�
�b is being propagated using the E� rule ��a

�
�b� B� � ��a

�
�b� B�b

�
�a���

there will not be any other occurrence of a
�
�b in the tree� Thus� E� rules never become applicable once the

theory has been read and made irreducible with respect to E� rules� since an atom of the form a
�
�a is never

generated thereafter�

The tuple encoding of any theory is extended by explicitly encoding the bijection g at the start� For
example� the theory � � ������Q� f ����P����P�Q����� is encoded as follows using the bijection g�P � � � and
g�Q� � ��

h�� P�Q� ����� ���������������� �� �����������i

where the �rst number indicates the number of distinct atoms in � which are then explicitly listed� followed
by the old encoding�

We have a new data type�

CONST �individual� constants

We need some new data structures�

Code a table accessed by atoms �strings�� such that Code�A� is the code of atom A�

Atom an array indexed by codes� such that Atom�n� is the atom whose code is number n�

Coccurs an array indexed by constants� such that Coccurs�a� is the list of all leaves L such that the constant
a appears in the atom Atom�abs�L�label���

EQ list of nodes where Rule E� may apply� i�e�� the leaves of Root which are labeled by an equality atom
of the form a

�
�b� where a and b are distinct constants� Since

�
� predicate is symmetric� our use of the

notation a
�
�b will implicitly imply that a � b�

We will use some more basic operations�

�� Function Equality��A ATOM� returns true i� A is an equality atom of the form a
�
� b� where a

and b are distinct constants�

�� Function IdEquality��A ATOM� returns true i� A is an equality atom of the form a
�
�a� where a

is a constant�

�� Function Ancestor�M�R NODE� NODE returns the closest common ancestor of nodes M and
R in the tree�

We will maintain some more invariants�

Id Invariant For any leaf L� IdEquality%�Atom�abs�L�label��� is false� This invariant ensures that the tree
is irreducible with respect to E� rules�

Code Invariant for any leaves L and M � if Atom�abs�L�label�� � Atom�abs�M�label�� then abs�L�label� �
abs�M�label�� This ensures that equality of atoms can be tested using equality of labels�

Coccurs Invariant For any constant a� Coccurs�a� has exactly all the leaves L such that the constant a
appears in the atom Atom�abs�L�label��� This ensures that all occurrences of a can be accesses through
Coccurs�a��

EQ Invariant If there is a leaf L of Root and constants a and b such that a � b� Atom�L�label� � a
�
�b� and

Coccurs�a� has more than one item then L is in the list EQ� This ensures that all potential applications
of E� rule are kept in list EQ�

��

Algorithm AFPE is obtained from AFP by adding some new lines and some new procedures� The
following lines are inserted just before Line � of procedure AFP� for reading the list of atoms and their codes�

for i �� � to read do f
A �� read�

Code�A� �� i���

Atom�i��� �� A�

g

The following lines are added between lines � and 	 of procedure ReadFml�

IdEquality�	Atom�x�
 � return Tnode�

IdEquality�	Atom��x�
 � return Fnode�

These lines apply the E� rewrite rules while the input theory is being read� Thus� the tree returned by
ReadFml is irreducible with respect to E� rules� and the Id invariant is satis�ed�

The following lines are added between lines � and � of procedure InitPropagate�

EQ �� Coccurs �� Nil�

SetCoccurs	Root
�

These lines establish the Coccurs invariant and also initialize the EQ list� The procedure SetCoccurs�N�
traverses the subtree rooted at node N and sets the entries in Coccurs for the leaves in the subtree� We do
not need two passes� which were required for setting occurs entries� since all slots in Coccurs are initialized
�to Nil� before calling SetCoccurs� Note that there is only one Coccurs array for the entire tree�

Procedure SetCoccurs�N NODE�
�� sets Coccurs array for leaves in the subtree at N

PRE� Tree and Parent invariants� N is not a leaf�

POST� also� Coccurs invariant for leaves under N ��

�� for each L in N�leafs do

�� for each constant a in Atom�abs	L�label
� do

� Push	L� Coccurs�a�
�

�� for each C in N�subs do

�� SetCoccurs	C
�

end �SetCoccurs��

The following line is added between lines �� and �� of procedure SetOccurs�

if N � Root and Equality�	M�label
 then Push	M� EQ

This line adds all potential sites for applying E� rule to the EQ list� Recall that the E� rule is said to be
applicable to the leaf that is labeled by the equality atom being propagated� Thus� the EQ invariant is
satis�ed when the call to SetOccurs is completed� Thereafter� whenever the Root acquires a new leaf labeled
by an equality atom� the new leaf is added to EQ list �this can happen only after applying S�� L�� or L�
rules��

The following line is added between lines � and of procedure AFP�

g elseif EQ �� Nil then f PropEq	Pop	EQ

�

This line� which is in a repeat loop� keeps on popping nodes from the EQ list while calling the procedure
PropEq� which applies the E� rule� if applicable� Note that rule E� is applied after the P rules� but before
the L�� L�� and F� rules�

��

When the atom of N is of the form a
�
�b where a � b� the procedure PropEq�N� uses the Coccurs array to

traverse through all other occurrences of constant a in the tree and replaces them by the constant b� Since
these substitutions may make some atoms in the tree equal to one another� the Code invariant requires the
same code for them� PropEq may also create some atoms which were not in the input tree� i�e� which do not
have any codes assigned to them� These complications are handled in function ChangeLabel� which does the
substitution and returns true i� the new atom becomes equal to some other atom in the tree� Various other
invariants� which may be violated whenever ChangeLabel returns true� are then re�established�

Procedure PropEq�N NODE�
�� propagate the equality atom of node N

PRE� N is a leaf child of Root�

Tree is irreducible with respect to P rules�

all invariants�

POST� E� rule does not apply at N�

also� term�RootPRE ��
�
R term�RootPOST � using the E� rule �

�� if Atom�N�label� � a
�
�b where a � b then

�� for each M in Coccurs�a� where M �� N do

� if ChangeLabel	M�a�b
 then f
�� M�pp �� M� �� pp invariant ��

�� Push	P �� M�parent� PQ
� �� PQ invariant ��

�� ChangeOccurs	M
� �� Occurs invariant ��

�� if P �� Root and 	G �� P�parent
 �� Root

and G�label �� P�label �� Glits� FQ invariants ��

�� then IncGcount	G�M�label
�

�� Push	M� Coccurs�b�
� �� Coccurs invariant ��

��� g
��� Coccurs�a� �� Push	N� Nil
�

end �PropEq��

Function ChangeLabel substitutes b for a� changing the atom in the label of the leaf M� If B is a new
atom then then it is assigned the code of A� which e�ectively replaces each occurrence of atom A in the tree
to B� and false is returned� If A and B are identical� which happens if B was generated earlier as a new
atom from A in the same application of the E� rule� then again false is returned� Otherwise� the code of B
becomes the new label of M� modulo the absolute values �which is handled by the variable Neg�� and the
function returns true�

Function ChangeLabel�M NODE� a�b CONST� BOOL
�� change the atom in label of leaf M using E� rule due to a

�
�b

returns true iff the code of the atom also changes and

the new atom is not b
�
�b�

PRE� M is a leaf� M is in Coccurs�a��

POST� constant a does not appear in Atom�abs	M�label
��

Code and Atom invariants�

term�RootPOST � is obtained from term�RootPRE �
using a partial application of the E� rule ��

�� if M�label � � then Neg �� true else Neg �� false�

�� A �� Atom�abs	M�label
��

� B �� A�a
�
�b��

�� if A � B the return false�

�� if Code�B� is undefined then f
�� Code�B� �� Code�A��

�� Atom�Code�B�� �� B�

�� return false�

�� g

��

���

N

G

P

M
R

A

N

G

P

M
RA

Occurs[A] Occurs[A]

Figure ����� ChangeOccurs�M�

���

��� M�label �� Code�B��

��� if Neg then M�label �� � M�label�

��� return true�

end �ChangeLabel��

For example� suppose there are �ve atoms a
�
� b� a

�
� c� P �a� a�� P �a� c�� and P �b� c�� which have codes

�� �� �� 	� and
� respectively� in the tree in which the constant a appears and that atom a
�
� b is being

propagated using the E� rule� Suppose PropEq processes leaves in the order M�� M�� M�� and M	� which
are labeled by �� �� �	� and �� respectively� ChangeLabel�M��a�b� assigns the code � to P �b� b�� which is a
new atom� ChangeLabel�M��a�b� does nothing� since A � B � P �b� b�� ChangeLabel�M��a�b� sets M��label
to be �
� ChangeLabel�M	�a�b� assigns the code � to the atom b

�
�c� which is a new atom� Of all these calls�

only ChangeLabel�M��a�b� returns true� which indicates that some invariants need to be �xed in PropEq�
Even if Root is the parent of M	� there is no need to add M	 to the EQ list� the node should already be in
the list� if so required by the EQ invariant�

Since changing constants may lead a non�A�node to become an A�node �for some atom A�� re�establishing
the occurs invariant needs to be done with care� in procedure ChangeOccurs� Procedure ChangeOccurs�M�
traverses up the branch from the leaf M� until it reaches the Root or �nds a node N for which occurs�A� is
not Nil� where A is the new atom whose code is the label of M� If there is no node between M and N whose
subtree has another leaf labeled by A� then M is simply pushed into N�occurs�A�� Otherwise� this node� say
P� which was not an A�node becomes an A�node� P�occurs�A� then needs to be properly initialized and set�
as shown in Figure �����

The back pointers for the occurs entries� �rst used in arguing the complexity of AFPL algorithm� are
used in searching for the node P� Let G be the child of N whose subtree contains the node M� This subtree
can be traversed to �nd the node R �which is unique because of the occurs invariant� whose back pointer
for occurs�A� is N� P is then the closest common ancestor of M and R� Note that P and G may be the same
node�

Procedure ChangeOccurs�M NODE�
�� fix Occurs invariant since the label of leaf M has changed

PRE� M is a leaf� Occurs invariant holds except for M

POST� Occurs invariant 	Figure ��
��

�� G �� M� N �� M�parent� A �� abs	M�label
�

�� while N�occurs�A� � Nil and N �� Root do f

��

� G �� N� N �� N�parent� g
�� find R in G�s subtree where R�occurs��A� � N�

�� if no such R then Push	M� N�occurs�A�
�

�� else f
�� P �� Ancestor	M�R
�

�� replace R by P in N�occurs�A��

�� P�occurs�A� � Push	M� Push	R� Nil

�

��� g
end �ChangeOccurs��

The next theorem shows that AFPE reduces any input theory with respect to the rewrite system FPE�
Theorem ���� the shows that AFPE is in PTIME�

Theorem ���� �Correctness of AFPE� For any theory �	 the procedure AFPE on input hh�ii returns a
tree that represents a theory such that ���

FPE �

Proof �sketch� The proof� which is based on the invariants� uses the correctness of various procedures and
functions called by AFPE� Because of the new lines added to ReadFml� the tree returned by either ReadFml
or ReadArgs represents a theory which is irreducible with respect to S and E� rules and which is obtained
from the input theory using these rules� Thus� Id and Code invariants hold when the call to ReadArgs is
completed� Because of the new lines added to InitPropagate and SetOccurs� Coccurs and EQ invariants hold
when the call to InitPropagate is completed�

After being established� the invariants are violated by the additions to the algorithm only after some call
to ChangeLabel completes and returns true� All the violated invariants are then re�established in PropEq�
The EQ invariant� which can be violated in the lines of the old algorithm� is also re�established� since any
new leaf of Root labeled by an equality atom is added to the list EQ�

The only modi�cation in a theory due to the additions to the algorithm� which happens in ChangeLabel�
is sanctioned by the E� rule� Thus� the output theory can be obtained from the input theory using FPE�
All we need to do is to show that the output theory is irreducible with respect to FPE�

If AFPE terminates because of exception� i�e�� producing the theory 	 or ffg� then the output is trivially
irreducible with respect to FPE� Otherwise also� the output is irreducible with respect to FPE� since all the
lists PQ� EQ� L�Q� L�Q� and FQ are empty when AFPE terminates� Irreducibility with respect to E� rule
is because of the EQ invariant�

Theorem ���� �Time complexity of AFPE� For any input theory �	 algorithm AFPL takes O�n� h�
time	 where n is the size of the tuple hh�ii and h is the cost of accessing an item in the table Code�

Proof �sketch� It follows from Lemma ��� and Theorem ���� that any execution of AFP��� takes O�n��
time� Since the cost for AFP was computed using the worst�case scenario� it already includes the cost of
applying the non�equality rules that become applicable due to some equality rule �think of having only a
single constant in the input theory�� Thus� we have to account only for the additional cost in implementing
the equality rules�

Reading the new entries in the tuple encoding takes O�n� time� The cost of SetCoccurs is dominated
by the cost of line �� which takes O�n� time� Since there can be O�n� leaves in the initial tree labeled with
equality atoms� the number of items ever added to list EQ and the number of times PropEQ is called in also
O�n�� Each call to ChangeLabel� which costs O�h�� changes at least one constant in one atom� Since there
can be O�n� distinct constants and O�n� atoms� ChangeLabel can be called O�n�� times� Thus� the total
cost over all calls to ChangeLabel is O�n� h�� Since there can be O�n� distinct atoms in the initial tree and
each call to ChangeOccurs merges at least two distinct atoms� the total number of calls to ChangeOccurs
can be O�n�� The cost of each call to ChangeOccurs is dominated by the costs of lines � and 	� each of which
can take O�n� time� Thus� the total cost of all class to ChangeOccurs is O�n���

��

It follows that the cost of AFPE is at most O�n� h��

Note that if Code is implemented as a hash table of size� say O�n�� then h is close to a constant�

��� Conclusions

We presented a quadratic time algorithm AFP for reducing theories with respect to FP� and a cubic time
algorithm AFPE for reducing theories with respect to FPE� AFP is the only PTIME algorithm we know
of� that infers at least as many facts as inferred by CNF�BCP� which is an exponential time algorithm� For
some theories� AFP infers more facts than CNF�BCP� Because FP was speci�ed using a rewrite system� we
found that converting it to an e�cient algorithm was a bit easier� since the task at hand is well de�ned� �nd
and maintain a list of remaining places where a rule can be applied�

The ability to reorder the application of rewrite rules� because FP is con�uent� without concern for
changing the results was important and helpful in developing the algorithm and the data structures� and for
arguing their correctness by using invariants �e�g�� being able to queue some rewrites� while �nishing others��
Termination also helped in obtaining the tractable algorithm�

�	

Chapter �

Deductions based on Fact Propagation

��� Overview

We have seen that FPE is a relatively e�cient �though incomplete� procedure for deducing facts from a
propositional theory� What if we were interested in deducing more complex formulas� say� clauses% Clearly�
FPE by itself provides an e�ective �though incomplete� way of testing whether a theory is unsatis�able�
We can therefore consider using it as a refutation technique to infer formulas from theories� by de�ning the
following consequence relation� For any theory � and any clause ��

� �FPE � i� � � ��������
FPE
��f ��

Recall that FPE is based on propagating facts through theories� since the negation of any clause results
in a set of facts� a refutation technique based on FPE might be particularly adept in determining whether a
clause can be inferred from a theory� For the rest of the section� we will therefore consider inferring clausal
formulas� Remember however� that theories can be in arbitrary form� subject to the usual restriction of
being �nite�

Although � �FPE � can be evaluated relatively quickly �time quadratic in the size of � and ��� it is
incomplete� There are however some restricted cases in which it is complete�

� When � is a Horn theory� Since � � f��g is a Horn theory� FPE on � � f��g is just BCP� and thus
is complete�

� When clause � mentions every atom in �� Since �� corresponds to an interpretation� FPE computes
the truth value of ��

Let us call vivid any theory for which �FPE is complete for inferring clauses� The term �vivid� is inspired
by �Lev���� where vivid theories are ones where an answer can be �read o�� quickly� For a knowledge base
that will be accessed frequently� it makes sense to consider some kind of a �compilation� process that �nds
a logically equivalent vivid theory� �In fact� even approximate vivid knowledge bases are of interest� as
illustrated in �SK����� It turns out that such a compilation is possible for our �FPE relation� we present a
function Viv� de�ned in terms of lattice�theoretic �xed�points� such that for every � there is a k for which
Viv��� k� is vivid� The obvious algorithm that computes Viv��� k� runs in time polynomial in the size of ��
but exponential in k��

Some theories require higher values of k to be made vivid� others lower� Since Viv turns out to be
monotonic in both its arguments� let us call the lowest value k for which Viv��� k� is vivid to be the intricacy

�A strict interpretation of �reading o�� quickly the answers of clausal queries would require a vivid knowledge base to
explicitly contain all the prime implicants 	Rd�
�� a clause is then entailed i� the knowledge base contains a subclause of the
clause� The problem with this approach is that vivifying even some Horn theories which are already vivid according to our
de�nition leads to an exponential blow�up in their sizes� Note however that any knowledge base that is vivid using the strict
interpretation is also vivid using our de�nition�

�

of �� As one would expect� the intricacy of some theories is proportional to the size of the theory� so making
them vivid takes time exponential in their size� There are� however� families of theories �e�g� the ��CNF
theories� for which intricacy can be proven to be bounded by a �xed constant�

We also develop an alternate characterization of Viv��� k� in terms of a family of increasingly complete
consequence relations for limited inferencing� This is based on the observation that a source of incompleteness
in �FPE is its inability to use previously inferred clauses for inferring new clauses� For example� for the theory
� � f�P �Q�� �P ��Q�� ��P �R � S�� ��P �R � �S�g� both � �FPE P and � � fPg �FPE R� but � ��FPE R�
In other words� while P can be inferred from �� and R can be inferred if P is added to �� R can�t be
inferred from � itself� The following inference system de�nes a consequence relation � obtained by adding
this capability to �FPE�

��
� �FPE �

� � �

��
� � �� �� � � �

� � �

The consequence relations � is indeed complete� Unfortunately� it is therefore also intractable�

We show that by restricting the size of � in Rule � of �� we obtain tractable consequence relations that
are more complete than �FPE� For example� restricting � to be a unit clause provides a tractable consequence
relation that is complete for ��CNF theories� which �FPE is not� The following inference system de�nes this
family �k of consequence relations� where k is any natural number�

��
� �FPE �

� �k �

��
� �k �� �� � �k �

� �k �
for j�j � k

We will show that for any number k� �k is a sound� monotonic� and tractable consequence relation� which
is incomplete� The completeness of �k increases with k� for any �� �� and k� if � �k � then � �k�� �� Note
that �� is identical to �FPE�

We will show the following relation between the function Viv and the consequence relation �k� the set
of clauses inferable from Viv��� k� using �FPE is exactly the set of clauses inferable from � using �k� Hence�
the intricacy of any theory � turns out to be the least k for which �k is complete�

For any ��nite� theory �� there is a natural class of clauses� called basic clauses� that are built from the
predicates and constants in � such that logical constants and repetition of atoms are not allowed in a clause�
We show that �FPE from any theory is complete for clauses i� it is complete for its basic clauses� For all
other clauses� either �FPE is trivial or it is equivalent to inferring some basic clause� Thus� we mostly restrict
our attention to basic clauses�

We have seen in Chapter � that the exact details of FPE itself are quite subtle� that the cost of the FPE
algorithm could be lower if we were willing to make it weaker than CNF�BCP� and that extensions of FPE
may be desired in some situations� To remove this direct dependency on the details of FPE� we will abstract
out those properties of rewrite systems that are needed to make our proofs go through into the concept of
admissible rewrite system� our results then hold for any admissible rewrite system�

��� Preliminaries

We continue to use PCE� propositional calculus with equality and generalized connectives� which was intro�
duced in Section ���� We will however use the alternative syntax presented in Section ����� whenever this
does not create any confusion� In this section� we give some de�nitions that will be used later in the chapter�
We �rst de�ne a consequence relation based on the rewrite system FPE� We then de�ne basic clauses that
do not allow either logical constants or repetition of atoms� and a way of merging them to produce new basic
clauses� We also de�ne collection of basic clauses built using the predicates and constants that appear in a
theory� We �nally review some de�nitions and results regarding lattices and �xed�points�

��

����� A Consequence Relation

Since the rewrite system FPE� introduced in Section ���� is content preserving� it can be used to rewrite a
theory into logically equivalent theories� If some rewriting produces an obviously unsatis�able theory� say
��f ��� then the initial theory must be unsatis�able� Thus� FPE can be used as a procedure for testing whether
a theory is unsatis�able� a theory is declared unsatis�able i� it rewrites to ��f ��� �Note that this procedure
is incomplete since there are unsatis�able theories that do not rewrite to ��f ���� One can therefore use FPE
as a refutation technique for inferring clauses from theories� since a clause � is entailed by a theory � i�
the theory � � ������ is unsatis�able� By generalizing this observation to any rewrite system R� we de�ne a
consequence relation �R that formalizes the notion of inferring clauses from theories using R�

De�nition ��� For any rewrite system R� any theory �� and any clause �� the consequence relation �R is
de�ned as follows�

� �R � i� � � ��������
R ��f ��

For example� consider the theories � � ���P �Q�� ��P �Q�� �P � �Q��� and � � � ����P � �Q���� and
clauses � � �P � and � � f �

� � ������ � ����P �� �P �Q�� ��P �Q�� �P � �Q���

�FPE ���P� �P �Q�� ��P �Q�� �P � �Q��� �rule S���

�FPE ���P� �f �Q�� �t�Q�� �f � �Q��� �rule P���

��
FPE ���P� �Q�� t� ��Q��� �rules S��� S��� and S���

��
FPE ���P�Q��Q�� �rules S�� and S���

�FPE ���P�Q� f �� �rule P���

�FPE ��f �� �rule S���

 � ������ � ���P �Q�� ��P �Q�� �P � �Q�� ��P � �Q�� t��

�FPE ���P �Q�� ��P �Q�� �P � �Q�� ��P � �Q��� �rule S���

�irreducible�

Thus� � �FPE � and ��FPE �� although both � j� � and j� �� It is also easy to verify that if the
literal S is added to each clause in � then the logically entailed clause �S� is not inferable using �FPE� The
second example above shows that �FPE is not complete� There are however some restricted cases in which it
is complete�

�� Inferring clauses from Horn theories� Consider any Horn theory � and any clause �� Since �� rewrites
to a set of facts� ��f��g rewrites to a Horn theory� Since Clausal BCP is identical to Horn Pebbling
for Horn theories �see Section ��
� and Horn theories do not have the

�
� predicate� it follows from

Theorem ���� and Proposition ���� that FPE on � � f��g is just Horn Pebbling� which is known to
be complete for Horn theories��DG�	�

�� Inferring clauses that mention every atom in the theory� Consider any theory � and any clause � such
that atoms��� � atoms���� In this case �� is either inconsistent or corresponds to an interpretation�
in which FPE computes the truth value of �� In the latter case� the completeness claim follows from
Theorem 	�� and Proposition 	��� which are stated and proved later�

�� Inferring clauses from positive theories� Consider any positive theory � and any clause �� Since ��
corresponds to a set of facts� FPE propagates these through the clauses of �� resulting in a theory

�

�� which contains only facts and positive formulas� with no common literals between facts and other
formulas� Such a theory is always satis�able unless it contains f � in which case �� � ffg� Therefore
�FPE is complete for inferring clauses from positive theories� A symmetric argument applies for theories
with only negative clauses�

	� Inferring clauses from satis�able ��CNF theories� Consider any satis�able ��CNF theory � and any
clause �� As above� FPE keeps propagating literals� so that every original ��clause is either unchanged
or reduces to a fact �a single literal or logical constant�� Therefore� once again � � f��g reduces to a
theory �� which contains only facts and some formulas having no common literals with facts� But these
formulas form a subset of �� and since � was originally satis�able� the subset of it is also satis�able�
Therefore � � f� �g is unsatis�able i� �� � ffg� Hence �FPE is complete for inferring clauses from
satis�able ��CNF theories�

Theories for which �R is sound and complete are called R�vivid�

De�nition ��� For any rewrite system R� a theory � is called R�vivid i� for any clause �� � j� � i� � �R ��

Since any theory can be reduced with respect to FPE in time cubic in the size of the theory �Theo�
rem ������ � �FPE � can also be tested in time cubic in the size of � and �� If � and � do not contain the

�
�

predicate� then � �FPE � can be tested in even quadratic time �Theorem ������ Thus� it is relatively e�cient
to determine whether a clause is entailed by a FPE�vivid theory�

����� Basic Clauses

We now de�ne a restriction on clauses� Recall that a clause is a disjunction of zero or more facts� i�e�� logical
constants and literals� Any occurrence of the fact t or occurrences of complementary literals in a clause
makes it logically equivalent to the fact t� Occurrence of the fact f or duplicate occurrences of literals in a
clause can be removed to produce a logically equivalent clause� These observations motivate the notion of
basic clauses which are clauses that do not allow either logical constants or repetition of atoms�

De�nition ��� A basic clause is a clause ��� � � � �� �n� �where n � �� such that

�� each �i �i � � � �n� is a literal�

�� for each i� j � � � �n� if i �� j then �i �� �j and �i �� ��j�

n is referred to as the size of the basic clause�

For example� while �P �Q� is a basic clause� neither �P � P � or �P � �P � are basic clauses� Note that
f is the only basic clause of size �� We use symbols �� 	�
� etc� to denote basic clauses and symbols '� (�
etc� to denote clausal theories containing only basic clauses�

We need some way to merge basic clauses to produce larger basic clauses� Informally� merging basic
clauses produces a logically weaker basic clause by taking a union of their literals� To avoid producing
non�basic clauses� basic clauses may be merged only if they do not contain complementary literals� Basic
clausal theories are merged by merging each combination of clauses selected from each theory�

De�nition ��� For any n � �� basic clauses ��� � � � � �n are compatible i� there is no atom p such that p
occurs in �i and �p occurs in �j for some i� j � � � �n� If ��� � � � � �n are compatible basic clauses then their

merger ��
�
� � � �

�
� �n is the unique �disregarding order of literals� basic clause � such that for any literal ��

� is a literal in � i� � is a literal in �i for some i � � � �n� For any n � � and any basic clausal theories

��� � � � ��n� the theory ��
�
� � � �

�
� �n is given byhh

��
�
� � � �

�
� �n j �i � � � �n� �i �i and ��� � � � � �n are compatible

ii

��

For example� consider the basic clauses �� � �P � Q� and �� � �P � �R�� Since the two clauses are

compatible� their merger ��
�
� �� is the basic clause �P � Q � �R�� Note that basic clauses �P � Q� and

��P �R� can�t be merged since they are not compatible�

����� Herbrand Bases

Given any theory� we will now de�ne the collection of atoms and basic clauses that can be constructed from
the symbols in the theory� The collection of atoms is called the Herbrand base and the collection of basic
clauses is called the extended Herbrand base of the theory� For de�ning these terms� we need some notation
for referring to the building blocks of formulas and theories�

De�nition ��� For any formula ��

�� atoms��� � fp j p is an atom and either p or �p is a subformula of �g�

�� lits��� � fp��p j p atoms���g�

�� consts��� � fa C j �p atoms��� s�t� a is an argument of pg�

	� preds��� � fP P j �p atoms��� s�t� P is the predicate of pg�

For any theory ��

�� atoms��� � �fatoms��� j � �g�

�� lits��� � �flits��� j � �g�

�� consts��� � �fconsts��� j � �g�

	� preds��� � �fpreds��� j � �g�

For example� if � � �P � ��P � Q� � �S� then atoms��� � preds��� � fP�Q� Sg� lits��� �
fP��P�Q��Q�S��Sg� and consts��� � 	� Notice that lits��� may contain literals that do not occur in ��
as illustrated by �Q in this example� For another example� if � � ��P � a

�
� b� � Q�a� c� � �Q�b� c�� then

atoms��� � fP� a
�
�b�Q�a� c�� Q�b� c�g� consts��� � fa� b� cg� and preds��� � f

�
�� P�Qg�

For any particular theory� its Herbrand base� as usual� is the set of all atoms that could be constructed
from the predicates and literals that appear in the theory�

De�nition ��	 For any theory �� the Herbrand base is de�ned to be the set HB��� � fP �a�� � � � � an� j n �
��P is an n�place predicate in preds���� a�� � � � � an consts���g�

For example� if � ��P �a� b�� Q�a��� then preds� � � fP�Qg� consts� � � fa� bg� and the Herbrand base
of is�

HB� � � fP �a� a�� P �a� b�� P �b� a�� P �b� b�� Q�a��Q�b�g

As this example shows� the special equality predicate
�
� is not used in constructing the Herbrand base if

the theory does not contain any formula involving
�
��

Note that if consts��� is empty then HB��� � atoms��� � preds���� Further� for any theories � and �
if � � then HB��� � HB� ��

The collection of all basic clauses built using the atoms in the Herbrand base of a theory will be called the
extended Herbrand base of the theory� The extended Herbrand base is constructed in layers� by restricting
the size of the basic clauses in each layer�

��

De�nition ��� For any set A of atoms and any k N � a basic clause � is called a k�clause over A i�
atoms��� � A and the size of � is at most k�

It follows that f is a ��clause over any set of atoms� Note that the size of a k�clause may be less than
k� for example� �P �Q� is a k�clause for each k � �� We now de�ne collections of k�clauses built using the
atoms in the Herbrand base of a given theory�

De�nition ��� For any theory � and any k N � the k�extended Herbrand base of � is the set�

E��� k� � f� j � is a k�clause over HB���g

For any theory �� the extended Herbrand base of � is the set�

E��� � �fE��� k� j k Ng

For example� if � � f�P �Q�� ��P �Q�� �P � �Q�g then�

HB��� � fP�Qg

E��� �� � ffg

E��� �� � E��� ��� f�P �� ��P �� �Q�� ��Q�g

E��� k� � E��� ��� f�P �Q�� ��P �Q�� �P � �Q�� ��P � �Q�g

�for any k � ��

� E���

It follows directly from the de�nition that E��� k� � E��� for any theory � and any number k� Also�
if k � jHB���j then E��� k� � E���� Further� for any theory and number p� if � � and k � p then
E��� k� � E� � p�� Since we are dealing with only �nite theories� E��� is always �nite�

����� Lattices and Fixed�Points

We now review some de�nitions and results regarding lattices and �xed�points �BB��� Consider any binary
relation de�ned on a �nite set S� If is a partial order� i�e�� re�exive� transitive� and antisymmetric� then
�S� � is called a partially ordered set �or poset�� For any � S and any B � S� � is called an upper bound
of B if � � for each � B� � is called an lower bound of B if � � for each � B� An upper bound � of
B is said to be a least upper bound �lub� of B if � � for all upper bounds � of B� Similarly� a lower bound
� of B is said to be a greatest lower bound �glb� of B if � � for all lower bounds � of B� Poset �S� �
is said to be a complete lattice if every subset B of S has both a glb and a lub� For example� the powerset
of any �nite set is a complete lattice with respect to the subset relation� The relation is usually dropped
when it is clear from the context�

For any complete lattice �S� �� a function S
 S is also called an operator on the lattice� An operator
T on a complete lattice S �recall that we usually drop the relation symbol� is monotonic if T �B� T �B��
for any subsets B and B� of S such that B B�� For any complete lattice S and any operator T on S� any
subset B � S is a �xpoint of T i� T �B� � B� The least �xpoint� lfp�T �� of T is a �xpoint of T such that
lfp�T � B for any �xpoint B of T � In general� an operator may have no �xpoint or no least �xpoint or may
have several �xpoints� However� it follows from Tarski �Tar

� that any monotonic operator over a complete
lattice has a �unique� least �xpoint�

��� Admissible Rewrite Systems

We abstract out those properties of FPE that will be needed for our proofs� and condense them into a set
of necessary conditions� This section serves therefore as a repository of results describing the behaviour of
admissible rewrite systems� and can be treated as an appendix�

���

De�nition ��� A rewrite system R is admissible i� R is convergent� content preserving� monotonic with
respect to facts� modular� and tractable�� and satis�es the following properties for any terms s and t� any
constants a and b� any literals ��s and ��s� any bag B of formulas� any clause �� any theory �� and any
number n � ��

Ay if s��
R t then preds�t� � preds�s� and consts�t� � consts�s��

By if s is irreducible with respect to R then either s � ��f �� or neither t nor f is a subterm of s�

Cy ����� � � � �� �n�����
R ����� � � � � �n�� �if n � � then this becomes ��t���

�
R �����

Dy ������ ���
R ����� � ��t

��
����

Ey ��f � B���
R f and ��t� B���

R t and ��t� B���
R ��B� and ��f � B��

�
R ��B��

Fy if the language has the
�
� predicate then ��a

�
�b�� � ���

R ��a
�
�b��� ��b

�
�a��

Gy if some clause in � is a subclause of � and � � �������
R ��f �� then ��

�
R ��f ���

Hy if � is irreducible with respect to R and B is any consistent bag of literals such that � �� ��f �� and
atoms�B� � atoms��� � 	 then � �B is irreducible with respect to R�

Iy if the bag of literals in � is inconsistent� then � � �������
R ��

Informally� property Ay ensures that rewriting a term does not introduce any new constants or predicate
symbols� Property By ensures that all occurrences of t and f can be removed by rewriting� except for the
theory ��f ��� Property Cy ensures that a formula which is a conjunction of literals is rewritten in the same
way as all those literals considered as individual formulas� As a special case of Cy� when n � �� we have
��t�� ��

R ����� Property Dy ensures that a literal formula can be propagated through the rest of the theory�
Property Ey ensures that t and f can be simpli�ed in the usual way� Property Fy ensures that rewriting does
substitute constants by equivalent constants� Property Gy ensures that adding to a theory those clauses
which have some subclause in the theory has no e�ect on whether the theory reduces to ffg� Property Hy
ensures that adding a consistent bag of new literals to an irreducible theory produces an irreducible theory�
Property Iy ensures that adding clauses with complementary literals to a theory produces an equivalent
theory with respect to an admissible rewrite system� Recall that since theories are considered as sets of
formulas� multiple occurrences of formulas in a theory are ignored while using the equivalence relation ��

R�

Theorem ��� The rewrite system FPE is admissible�

Proof �Sketch� It follows from Theorem ��	� that FPE is convergent� content preserving� monotonic with
respect to facts� and modular with respect to �� and from Theorem ���� that FPE is tractable� Property Ay
follows from the observation that preds�t� � preds�s� and consts�t� � consts�s� for each rewrite rule instance
s� t in FPE� Property By follows from the observation that some simpli�cation rule applies to any theory�
except ��f ��� that has either t or f as a subterm� Property Cy follows from repeated applications of the lifting
rule L�� when n � �� otherwise� it follows from a direct application of the simpli�cation rule S��� Property
Dy follows from a direct application of the propagation rule P��� Property Ey follows directly from the
formula simpli�cation rules S� and S�� Property Fy follows directly from the equality rule E���

For Property Gy� suppose � is a subclause of clause � in �� and suppose �� be the theory such that
� � �� � ������ and � � � ������ Given that ��

FPE
ffg� we will prove that ���

FPE
ffg�

�Note that tractability is conceptually di�erent from the other requirements for an admissible rewrite system� However we
have included tractability in the de�nition of admissibility because we will only be interested in �admissible� systems which are
also tractable� Thus rather than saying �tractable and admissible� each time we can just say �admissible�� The intuitions
behind the various properties are given after the de�nition�

���

If �� ��
FPE

ffg or ����� ��
FPE

ffg then it follows from modularity and Rule S�� that � ��
FPE

ffg�
Otherwise� suppose �� ��

FPE
���� We obtain from modularity that ���

FPE
��� � ����� and ��

FPE
��� � ���� ����

Since ��
FPE

ffg� we obtain from con�uence that ��� � ���� �����
FPE

ffg� The only way this can happen is
that either � or � �rst reduces to a single literal �say� ��� If that literal is from � then ���

FPE
ffg� since � is

not needed at all� So� suppose that � is obtained from �� i�e�� ���� �������
FPE
���� ������ Since � is a subclause

of �� we obtain using a subsequence of the same rule applications that either ��� � ����� ��
FPE

��� � ����� or
��� � ����� ��

FPE
��� � ffg� In the later case� we obtain from Rule S�� that � ��

FPE
ffg� In the former case�

we obtain that ��
FPE
��� � �������

FPE
ffg� Thus� ���

FPE
��� � �������

FPE
ffg�

For Property Iy� suppose the bag in clause � contains � and ��� We obtain that�

������� � � �� ��
FPE

���� t� � � �� �Rule P���

��
FPE

��t� �Rule S���

��
FPE

t �Rule S���

Using modularity and Rule S��� we then obtain that � � ��������� � � ������
FPE
��

Property Hy follows since no rules in FPE apply to � �B� Thus� FPE is admissible�

FPE is not the only admissible rewrite system� we can similarly prove that the rewrite systems HP�
CBCP� and FP for �nite PC �i�e�� PCE without

�
�� are also admissible�	 Property Fy is not relevant for

subsets of PCE that do not contain the
�
� predicate� for example� �nite PC� In fact� Section
�
 is the only

section in which proofs use Property Fy� this property can be ignored for the other sections� Since each of
these properties has been given a unique name� we will explicitly refer to precisely these names in the later
proofs� instead of referring to the general Theorem 	���

Admissible rewrite systems have several additional properties that are of interest to us� Here are some
that follow directly from the de�nitions� where R is any admissible rewrite system� �� ��� and are any
theories� and � is any clause�

�� The consequence relation �R is sound� i�e�� if � �R � then � j� �� This is because R is content
preserving�

�� The consequence relation �R is invariant under ��
R� i�e�� if � �

�
R then � �R � i� �R �� This

follows directly from the modularity of R�

We now present some other properties of admissible rewrite systems� Proposition 	�� shows that any
theory containing f as a formula �not as a subformula� reduces to the theory ��f ��� Proposition 	�� shows that
the consequence relation �R is monotonic�

Proposition ��� For any admissible rewrite system R and any theory �
 ��f �� � ���
R ��f ���

Proof Since R is convergent� there is a unique such that ��f �� � � ��
R � Since R is monotonic with

respect to facts� facts���f �� � �� � facts� �� i�e�� f facts� �� This is possible only if f is a subterm of �
which is irreducible� The result then follows directly from property By�

It follows from Proposition 	�� and modularity of R that for any theory � and any formula ��

�� if ���
R ��f �� then � �R �

�� if � � then ���
R ��f �� i� � � ������

�
R ��f ��

�Property Cy is not relevant for HP and CBCP because conjunctions of literals are not allowed as formulas� Regarding
Property Iy for HP and CBCP note that clauses containing complementary literals are simply ignored� Moreover Property Cy
can be ignored for HP and CBCP because conjunction of literals is not allowed in clausal formulas�

���

Since the consequence relation �R is de�ned in terms of whether a theory reduces to ��f ��� it follows
from Claim � above that multiple occurrences of formulas in a theory �a bag of formulas� can be removed
without changing the consequence relation� We will use this observation to simplify our notation for theories�
henceforth� they will be treated as sets of formulas in the rest of this chapter� For example� the theory ��f ��
will now be denoted by ffg� We will also abuse the symbol��

R by ignoring multiple occurrences of formulas�
For example� if � � then ���

R � � f�g�

Since the convergence of R is used in almost all steps of the remaining proofs in this section� we will not
explicitly mention it from now on�

Proposition ��� For any admissible rewrite system R	 any theories � and 	 and any clause �
 if � �R �
and � � then �R ��

Proof Let �� be any theory such that � � � ��� Since � �R �� we have � � f��g ��
R ffg� Since R

is modular� � f��g ��
R ffg � �

�� It then follows from Proposition 	�� that � f��g ��
R ffg� Thus�

 �R ��

There are several special settings under which �R is complete� Proposition 	�	 shows that if a theory has
no atomic subformulas� i�e�� it is constructed entirely from logical constants and connectives� then it rewrites
to either the trivially satis�able theory 	 or the trivially unsatis�able theory ffg� Proposition 	�
 shows that
any basic clause in a theory can be inferred using �R� Proposition 	�� shows that �R is complete for any
clause that contains all the atoms occurring in the theory �i�e�� admissible rewrite systems perform truth
evaluation�� Proposition 	� shows that some form of case analysis for literals is possible using �R�

Proposition ��� For any admissible rewrite system R and any theory �
 if atoms��� � 	 then either
���

R 	 or ��
�
R ffg�

Proof Suppose � ��
R and �� ffg� Since atoms��� � 	� we have consts��� � preds��� � 	� Using

property Ay� consts� � � preds� � � 	� Using property By� neither t nor f is a subformula of � This is
possible only if there is no formula in � i�e�� � 	�

Proposition ��� For any admissible rewrite system R	 any theory �	 and any basic clause �
 if � � then
� �R ��

Proof Suppose � � ��� � � � � � �n� for some n � �� and � � f�g � for some theory � We need
to show that � � f� �g ��

R ffg� Since � � � �� �� � � � �� � �n�� it follows from property Cy that
f��g ��

R f���� � � � ���ng� Thus�

f��� �g ��
R f���� � � � ���n� �g �R is modular�

��
R f���� � � � ���n� �f � � � �� f �g �property Dy�

��
R f���� � � � ���n� fg �property Ey�

It then follows directly from Proposition 	�� and the modularity of R that � � f��g ��
R ffg�

Proposition ��	 For any admissible rewrite system R	 any theory �	 and any basic clause �
 if atoms��� �
atoms��� and � j� � then � �R ��

Proof Suppose � � ��� � � � � � �n� for some n � �� A � f� ��� � � � �� �ng� and �� � ��t�� A�� Since
� � � ���� � � � �� ��n�� it follows from property Cy that f��g ��

R A� From modularity and property
Dy� we have � � f��g ��

R A � ���

Since atoms��� � atoms���� we have atoms���� � 	� From Proposition 	�	� we have either �� ��
R 	 or

�� ��
R ffg� Suppose �

� ��
R 	� Using modularity� � � f��g �

�
R A� Since A is satis�able and R is content

preserving� it follows that � � f��g is satis�able� i�e�� � �j� �� a contradiction� Thus� �� ��
R ffg�

Since R is modular� � � f��g ��
R A � ffg� Using Proposition 	��� we have � � f� �g ��

R ffg� Thus�
� �R ��

���

Proposition ��� For any admissible rewrite system R	 any basic clause �	 and any atom p such that

p � atoms��� 	 f�
�
� �p�� �

�
� ��p�g �R ��

Proof Since p � atoms���� both �
�
� �p� and �

�
� ��p� are basic clauses� Suppose � � f�

�
� �p�� �

�
�

��p����g� From property Cy� f��g ��
R f�� j � is a literal in �g � �say�� A�

� ��
R A � f�p � f � � �� f �� ��p� f � � �� f �g �modularity and Property Dy�

��
R A � f�p�� ��p�g �Property Ey�

��
R A � fp��pg �modularity and Property Cy�

��
R A � fp� fg �Property Dy�

��
R ffg �Proposition 	���

Thus� f�
�
� �p�� �

�
� ��p�g �R ��

Finally� we present two technical lemmas concerning equivalences with respect to admissible rewrite
systems� Proposition 	�� shows some cases in which a literal simpli�es a theory� Proposition 	�� shows the
use of a clause in simplifying other clauses� These two propositions will be used only in the next chapter�

Proposition ��� For any admissible rewrite system R	 any n � �	 and any literals �� ��� ��� � � � � �n� �n

�� f�� ���� �� � � � �� �n�g ��
R f�� ��� � � � �� �n�g

�� f��� ���� ��� � ��� � ��� � � � �� ��n � �n��g ��
R f��� ���� � ��� � � � �� ��n � �n��g

Proof For any i� suppose

��i �

��
�

t if �i � �
f if �i ���
�i otherwise

and ��i �

��
�

t if �i � �
f if �i ���
�i otherwise

Now�

f�� ���� �� � � � �� �n�g ��
R f�� �f � ��� � � � �� �

�
n�g �Property Dy�

��
R f�� ���� � � � �� �

�
n�g

�Property Ey and modularity�
��

R f�� ��� � � � �� �n�g �Property Dy�

f��� ���� ��� � � � �� ��n � �n��g ��
R f��� ��f � ���� � ��

�
� � �

�
�� � � � �� ��

�
n � �

�
n��g

�Property Dy�
��

R f��� ����� � �
�
�� � � � �� ��

�
n � �

�
n��g

�Property Ey and modularity�
��

R f��� ���� � ��� � � � �� ��n � �n��g
�Property Dy�

We claim that it follows from Proposition 	�� that for any basic clause � and any literals ��� � � � � �n such
that n � � and � is compatible with ���� � � � �� ��n�� we have

f��� � � � �� �n�� �
�
� ������ � � � � �

�
� ���n�g �R �

because when the literals of � � are added to the theory on the left� they are used to rewrite each clause

�
�
� ���i� to ��i� which is then used to obtain f from the clause ��� � � � ���n�� The next result is used in

Chapter
�

��	

Proposition ��� For any admissible rewrite system R	 any compatible basic clauses � and
	 and any basic
clausal theory '	

f����
g �'��
R f� �

�
� ��g � �'

�
� f�g�

Proof Using modularity and property Cy� we have f� ���
g ��
R f� �

�
� ��g� From property Cy�

f��g ��
R f�� j � is a literal in �g � �say�� A�

Consider any 	 ' such that 	 and � are not compatible� i�e�� there is a literal subformula � of � such
that �� is a subformula of 	�

f��� 	g ��
R A � f�t � � � ��g �Property Dy�

��
R A � ftg �Property Ey�

��
R A �Property Cy for n � ��

��
R f��g

Since this happens for any such 	 that is not compatible with �� we have f��g � ' ��
R f��g � f	 ' j

	 is compatible with �g�

Now� consider any
 ' such that
 and � are compatible�

f���

�
� �g ��

R f���

�
� �f � � � �� f �g �Property Dy�

��
R f���

�
� fg �Property Ey�

��
R f���
g

Combining the above two� we have f� �g � ' ��
R f� �g � �'

�
� f�g�� The result then follows from the

modularity of R�

We now show that inferring basic clauses using the extended Herbrand base of a theory is the only
interesting case� inferring any other clause is either trivial or is equivalent to inferring some basic clause�

Proposition ���� For any admissible rewrite system R	 any theory �	 any literal �	 and any bag B of
literals

�� if � B then � �R ��B� i� � �R ��B���

�� if B is inconsistent	 then � �R ��B�

�� otherwise	 � �R ��B� i� � �R ��B � �HB���� �HB����� �i�e�	 atoms not occurring in � can be
omitted from B��

Proof

�� The �if� direction follows directly from properties Cy and Gy� The �only if� direction follows directly
from Property Cy and Proposition 	���

�� if B is inconsistent then there is an atom p such that both p and �p are in B� Since fp��pg ��
R ffg

using Proposition 	�� it follows from Proposition 	�� that � � f���B�g ��
R ffg� Thus� � �R ��B��

�� The �if� direction follows directly from Proposition 	��� For the �only if� direction� let � denote the
basic clause ��B � �HB���� �HB����� and B� to denote the bag B � HB���� � HB���� Suppose
� �R �� i�e�� � � f� �g ��

R �� ffg� Since � � f� ��B�g � � � f� �� ���B��g and atoms�B�� �
atoms�� � f��g� � 	� it follows from Property Hy that � f���B��g is irreducible with respect to
R� Thus� � � f���B�g ��

R � f���B
��g �� ffg� i�e�� � �R ��B��

It follows from Proposition 	��� that duplicate literals and literals not appearing in a theory can be
removed from a clause without e�ecting the inferability �using �R� of the clause from the theory� and that a

��

clause containing any complimentary literals is inferable from any theory� Thus� all the interesting cases of
inferability are covered by considering only the basic clauses constructed from the extended Herbrand base
of a theory�

For the rest of the chapter� we will restrict our attention to the admissible rewrite systems only � we will
use R to refer to any admissible rewrite system� Moreover� we will use the speci�c admissible rewrite system
FPE for all the examples� Also� theories will be treated as sets of formulas� since multiple occurrences of
formulas do not e�ect the consequence relation �R based on any admissible rewrite system R�

��� A Fixed
point Construction for Viv

For any admissible rewrite system R� theory �� and number k� we use �R to de�ne an operator TR���k on
the powerset of the k�extended Herbrand base E��� k� of �� We show that this operator always has a least
�xpoint� denoted by lfp�TR���k� and called the kth �xpoint of � �with respect to R�� which has several nice
properties�

Soundness each clause in lfp�TR���k� is logically entailed by ��

Monotonicity lfp�TR���k� is monotonic in � and k�

Tractability �for small values of k� If �R is in PTIME then lfp�TR���k� can be obtained in time poly�
nomial in the size of � but exponential in k�

Eventual Completeness if � has n distinct atoms then lfp�TR���n� is exactly the set of basic clauses in
E��� that are entailed by ��

We de�ne Viv�R��� k� to be the theory � � lfp�TR���k�� and show that for each � there is a k for which
Viv�R��� k� is R�vivid� The least such value of k is de�ned to be the R�intricacy of �� We show that the
FPE�intricacy of any Horn� positive� negative� or satis�able ��CNF theory is �� and the FPE�intricacy of any
��CNF theory is at most ��

In the remainder of this section	 the symbol R will always refer to an arbitrary admissible
rewrite system	 which will be an implicit part of every de�nition and theorem	 unless otherwise
stated�

����� The Fixed�Point Construction

The operator TR���k on any set S of k�clauses produces the set of k�clauses that can be inferred from � � S
using the consequence relation �R�

De�nition ���� For any theory � and any k N � the operator �function� TR���k � �
E���k�
 �E���k� is

de�ned as�
TR���k�S� � f� E��� k� j � � S �R �g

where S is any subset of E��� k��

Since the powerset of any set is a complete lattice with respect to the subset relation� ��E���k���� is also
a complete lattice� Since E��� k� is always �nite� this complete lattice is also �nite� The next lemma shows
that the operator TR���k on this lattice is monotonic in its arguments and parameters�

Lemma ���� For any theories � and 	 any k� p N 	 and any subset M of E��� k� and S of E� � p�	 if
� � 	 k � p	 and M � S then TR���k�M � � TR��p�S��

���

Proof Since � � and k � p� it follows that E��� k� � E� � p�� Now consider any basic clause ��

� TR���k�M � � � E��� k� and � �M �R � �de�nition�

� � E� � p� and � S �R �

�E��� k� � E� � p�� � � � M � S� and Proposition 	���

� � TR��p�S� �de�nition�

Thus� TR���k�M � � TR��p�S��

Since TR���k is a monotonic operator over a �nite lattice� it has a least �xpoint �Tar

�� which can also
be characterized using the ordinal powers of TR���k� de�ned in the usual manner �c�f� �Llo����

De�nition ���� For any theory � and any k N � the ordinal powers of the operator TR���k are de�ned as
follows�

TR���k!� � 	

TR���k!n � TR���k�TR���k!�n� ��� �if n N �

TR���k!� � �fTR���k!n j n Ng

Using �Tar

�� it follows from Lemma 	��� that the least �xpoint lfp�TR���k� of TR���k is given by TR���k!��
We will refer to lfp�TR���k� as the kth �xpoint of �� k is said to be the index of this �xpoint� The least
�xpoint is used to de�ne a function Viv from the set of theories and natural numbers to the set of theories�

De�nition ���� For any theory � and any number k� Viv�R��� k� is de�ned to be the theory ��lfp�TR���k��

Intuitively TR���k!� is the set of all k�clauses that can be inferred from � alone using fact propagation�
TR���k ! � is the set of all k�clauses that can be inferred from � and the clauses in TR���k ! � using fact
propagation� and so on� Note that Viv�R��� k� augments the theory �� rather than replacing it� by the
theory lfp�TR���k�� since this allows more clauses to be inferred from it using �R�

For example� if � � f�P �Q�� ��P �Q�� �P � �Q�g �see Section 	����� then�

TFPE����!n � 	 �for all n � ��
TFPE����!n � f�P �� �Q�g �for all n � ��
TFPE���k!n � f�P �� �Q�g � � �for all n � � and all k � ��

For another example� consider the theory � � � f��P � �Q�g�

TFPE���!n � 	 �for all n � ��
TFPE���!� � f�P �� ��P �� �Q�� ��Q�g
TFPE���!� � ffg � TFPE���!� � E� � ��

The least �xpoints are given by�

lfp�TFPE����� � lfp�TFPE���� � 	
lfp�TFPE����� � f�P �� �Q�g� lfp�TFPE���� � E� � ��
lfp�TFPE����� � � � f�P �� �Q�g� lfp�TFPE���� � E� �

Note that f is a basic clause in lfp�TFPE���� but not in lfp�TFPE����� although it is in E� � ��� This is
possible� intuitively� since obtaining f from using �FPE requires that at least one of the basic clauses in
the set fP�Q��P��Qg be added to � this happens in lfp�TFPE���� but not in lfp�TFPE����� In general� for
a theory � higher values of k may lead to more clauses of sizes smaller than k to be in lfp�TR���k� due to
such �feedback� e�ects�

��

����� Properties of the Fixed�Point

We now show three signi�cant properties of the �xpoint lfp�TR���k�� monotonicity� soundness� and eventual
completeness� The fourth property� tractability� will be shown in Section 	�	�	� Note �rst that the �xpoint
contains only basic clauses�

Proposition ���� �Monotonicity� For any theories �	 ��	 and and any numbers k and p	 if E��� k� �
E� � p� and ���

R �
� � then lfp�TR���k� � lfp�TR��p��

Proof All we need to show is that for all n� TR���k!n � TR��p!n� We show this by induction on n�

�n � �� trivial since TR���k!� � 	�

�n � �� The inductive hypothesis is that TR���k!�n� �� � TR��p!�n� ��� For any basic clause ��

� TR���k!n � � TR���k�TR���k!�n� ��� �de�nition�
� � � TR���k!�n� �� �R � �de�nition�
� � TR���k!�n� �� �R � �modularity and Proposition 	���
� � TR��p!�n� �� �R � �modularity and inductive hyp��
� � TR��p�TR��p!�n� ��� �defn� and E��� k� � E� � p��
� � TR��p!n �de�nition�

Thus� TR���k!n � TR��p!n� Note the dependence on �
� in going from � to in the above sequence�

Thus� lfp�TR���k� � lfp�TR��p��

The following observations follow directly from Proposition 	���� for any theories � and and any
numbers k and p�

�� if k � p and � � then lfp�TR���k� � lfp�TR��p�� This follows since k � p and � � imply that
E��� k� � E� � p��

�� if k � jHB���j then lfp�TR���k� � lfp�TR���jHB���j�� since E��� k� � E��� � E��� jHB���j�� Thus� the

sequence of least �xpoints for increasing k�s converge by the time k � jHB���j� Since we are dealing
with only �nite theories� this value is also �nite�

�� if � ��
R and HB��� � HB� � then lfp�TR���k� � lfp�TR��k�� Thus� theories that have the same

Herbrand base and are equivalent with respect to FPE have the same least �xpoints�

The following example shows that claim � above may be violated if HB��� �� HB� �� Consider � �
fP��P�Qg and � fP��Pg� Since FPF��� � ffg � FPF� �� we have � ��

FPE
 � However� HB��� �

fP�Qg �� fPg � HB� �� Also� lfp�TFPE����� � f�P �� ��P �� �Q�� ��Q�� fg �� f�P �� ��P �� fg � lfp�TFPE�����
This idea can be used to create similar examples where the two theories are satis�able�

The next two theorems relate the basic clauses in the least �xpoint lfp�TR���k� to the logical content of
the theory �� Theorem 	��� shows that every basic clause in the least �xpoint is logically entailed by the
theory �� Theorem 	��	 shows that if we keep on increasing k� then eventually some �xpoint contains all the
basic clauses in E��� that are entailed by ��

Theorem ���� �Soundness� For any theory �	 any basic clause �	 and any k	 if � lfp�TR���k� then
� j� ��

Proof Directly� by the soundness of �R and by induction on n� where lfp�TR���k� is given by �fTR���k!n j
n Ng��

It follows from Theorem 	��� that the clauses added to a theory � for obtaining Viv�R��� k� for any
number k are logically entailed by �� Thus� we obtain the following corollary of Theorem 	����

���

Corollary Any theory � is logically equivalent to the theory Viv�R��� k� for any number k�

Theorem ���� �Eventual Completeness� For any theory �	 any m � jHB���j	 and any basic clause �
in E���	 if � j� � then � lfp�TR���m��

Proof �by contradiction� All we need to prove is that the theorem holds for m � jHB���j� other cases
would then follow directly from Proposition 	���� Assume now that the claim is false for m � jHB���j� i�e��
there is some theory �� some basic clause � E��� such that � j� � but � � lfp�TR���m�� For this �xed ��
let � be a maximal basic clause for which the theorem does not hold� Since � is a basic clause� size of � is
at most m�

Case � Size of � is m� i�e� atoms��� � HB��� " atoms���� Since � j� �� we obtain from Proposition 	��
that � �R �� i�e�� � lfp�TR���m��

Case � Size of � is less than m� i�e�� there is an atom p HB��� � atoms���� Thus� both �
�
� �p�

and �
�
� ��p� are in E���m�� Since � j� �� it follows that � j� �

�
� �p�� Since � is a maximal

clause that violates the theorem� �
�
� �p� lfp�TR���m�� Similarly� �

�
� ��p� lfp�TR���m�� From

Proposition 	� and Proposition 	��� we obtain that lfp�TR���m� �R �� Since this is a �xpoint� it
follows that � lfp�TR���m��

Since we arrive at a contradiction in all cases� the theorem is proved�

Note that eventual completeness does not follow directly from the ability of �R to evaluate interpretations
�Proposition 	���� It also depends crucially on the ability of �R to derive shorter clauses using case analysis
on longer clauses �Proposition 	��� The main result follows as a corollary of Theorem 	��	�

Corollary ���� For any theory �	 Viv�R���m� is R�vivid for m � jHB���j�

Proof It follows from Theorem 	��	 and Proposition 	�
 that �R is complete for inferring basic clauses
in E��� from Viv�R���m�� Since E��� � E�Viv�R���m��� it then follows from Proposition 	��� that �R is
complete for Viv�R���m�� i�e�� Viv�R���m� is R�vivid�

����� Vivid Theories and Intricacy

We have already seen in Section 	���� that Horn� positive� negative� and unsatis�able ��CNF theories are
FPE�vivid� We will now show that Viv�FPE��� �� is FPE�vivid for any satis�able ��CNF theory �� We �rst
give two examples and then a proposition from which the desired claim will follow� The crucial observation is
that a theory Viv�R��� k� is R�vivid for some k i� each clause in lfp�TR���i� for each value of i can be inferred
from Viv�R��� k� using �R� Moreover� if � is unsatis�able then Viv�R��� k� is R�vivid i� Viv�R��� k� �R f �

Consider the theory � � f�P�Q�� ��P�Q�� �P��Q�g that we saw earlier in this section� Since any clause
in lfp�TFPE���k�� for any k� is inferable from � using �FPE� it follows that � � Viv�FPE��� �� is FPE�vivid�
Note that jHB���j � ��

Consider the theory � � � f��P � �Q�g� also seen earlier in this section� Since f lfp�TFPE����
but ��FPE f � � Viv�FPE� � �� is not FPE�vivid� However� Viv�FPE� � �� is FPE�vivid� since
Viv�FPE� � �� �FPE f �

Proposition ���	 f Viv�FPE��� �� for any unsatis�able ��CNF theory ��

Proof Suppose � is a ��CNF theory and f � Viv�FPE��� ��� We will show that � is satis�able by
constructing a model as follows �recall that FPF is the reduction function for the rewrite system FPE��

 �� FPF �Viv�FPE��� ����

���

for each p in atoms��� do

if p � then

 �� FPF � � f�pg�gg

All we need to show is that �� ffg is an invariant maintained by the loop� We prove this by induction on
the number of iterations of the loop� The invariant holds before entering the loop because Viv�FPE��� �� ��FPE
f � Since is made irreducible with respect to FPE� it is the union of two sets with disjoint atoms� a set of
literals� and a subset� say �� of the binary clauses of �� If a literal �p is added to in any iteration then
p is not a literal in and Viv�FPE��� �� ��FPE p� Thus� FPF � � f�pg� �� ffg�

Since the �nal contains a literal for each atom and �� ffg� it follows from Proposition 	�� that is
satis�able� Hence� � is satis�able�

It follows from Proposition 	��� that any Viv�FPE��� �� is FPE�vivid for any unsatis�able ��CNF theory
�� We have already seen in Section 	���� that any satis�able ��CNF theory is FPE�vivid� Therefore�
Viv�FPE��� �� is FPE�vivid for any ��CNF theory ��

Thus� there are many theories � for which Viv�R��� k� is R�vivid even for values of k smaller than
jHB���j� Based on this observation� we de�ne a measure on theories that indicates the di�culty of obtaining
a logically equivalent R�vivid theory�

De�nition ���� The R�intricacy of any theory � is the least value of k for which Viv�R��� k� is R�vivid�

It follows that although the intricacy of any theory is at most the number of distinct atoms in the theory�
it can be much lower than that for speci�c theories� In particular� the FPE�intricacy of any Horn� positive�
negative� or satis�able ��CNF theory is �� and the FPE�intricacy of any ��CNF theory is at most ��

����� Computing the Least Fixed�Point

We now determine the cost of computing the least �xpoint used in obtaining R�vivid theories� A straight�
forward way for computing the least �xpoint lfp�TR���k� for any theory � and any number k is given in the
algorithmCompute�R�lfp of Figure 	��� After computing the Herbrand base and the k�extended Herbrand
base� the �xpoint is built incrementally� starting with an empty set� keep adding to it the basic clauses
in E��� k� that can be inferred from this set and � using �R� For any input theory � and any number k�
it is easy to verify that Compute�R�lfp returns lfp�TR���k�� Lemma 	�� shows the time complexity of
Compute�R�lfp�

Lemma ���� For any theory � of size n	 and any numbers k and p	 if each predicate in � has arity at
most p then Compute�R�lfp��	k� takes time at most m� � f�k �m�	 where m � k � ��n�kp�k and function f
provides the cost of computing �R�

Proof Consider any � and any �xed k and p� independent of the size of �� Suppose n is the size of ��
Since the number of distinct constants and predicates in � is at most n� HB��� has at most np�� distinct
atoms� thus� E��� k� has at most k � ��n�kp�k �say� m� distinct basic clauses� Since each basic clause in
E��� k� has at most k literals� the size of lfp�TR���k� is at most k �m� Since in the algorithm is always a
subset of lfp�TR���k�� we have that the size of is also bounded by k �m�

Since each iteration of the repeat loop adds at least one new clause to � there are at most m iterations�
Each iteration requires testing whether �� � �R � for each � in E��� k�� �� where � is the current value
of � Each such test requires at most f�k �m� time� where the function f represents the time complexity of
�R� the total time� then� for each iteration is at most m�f�k �m�� Thus� the total time for all the iterations
is at most m� � f�k �m��

Since the cost f of determining �FPE is quadratic� it follows that lfp�TFPE���k� can be computed in time
polynomial in the size of � but exponential in k�

���

���

Algorithm Compute�R�lfp
Input
 a theory � and a number k�
Output
 lfp�TR���k�

�� compute HB��� and E��� k��
�� �� 	�
� repeat

�� for each � E��� k�� do

�� if � � �R �
�� then �� � f�g�
�� until no more changes in �
�� return
End�

Figure 	��� Algorithm to compute lfp�TR���k�

���

��� Consequence Relations for Limited Deduction

We develop an alternate characterization of Viv�R��� k� in terms of a family of increasingly complete conse�
quence relations for limited deduction� For any admissible rewrite system R� we �rst extend �R by adding
a new inference rule to de�ne a logically complete consequence relation �R� We then restrict the new in�
ference rule to obtain the desired family �Rk of increasingly complete consequence relations� where k is any
natural number� We �nally show that for each theory � and each number k� the set of clauses inferable from
Viv�R��� k� using �R is exactly the set of clauses inferable from � using �Rk � Hence� the R�intricacy of any
theory � is the least k for which �Rk is complete�

Some other families of increasingly complete consequence relations have been previously proposed �c�f�
�CS��b� CK����� Another such family can also be directly obtained from the tractable satis�ability classes
proposed in �GS���� We will compare our family �FPEk with these� We continue to use R to refer to any
admissible rewrite system�

����� A Complete Consequence Relation

For any admissible rewrite system R� the consequence relation �R is sound but may be incomplete� A source
of incompleteness in �R is its inability to use previously inferred clauses for inferring new clauses�

For example� for the theory �� � f�P �Q�� �P � �Q�� ��P � S�g� both �� �FPE P and �� � fPg �FPE S�
but �� ��FPE S� In other words� while P can be inferred from �� and S can be inferred if P is added to ��� S
can�t be inferred from �� itself� Thus� �FPE was unable to use the previously inferred clause P to infer the
new clause S�

We can extend �R by adding an inference rule that provides this capability�

De�nition ���� The consequence relation �R is de�ned using the following two inference rules�

��
� �R �

� �R �

��
� �R �� �� � �R �

� �R �

���

It follows from the �rst inference rule that �R is at least as complete as �R� It is the second inference
rule that provides the capability of using previously inferred clauses to infer new clauses� Note that �� � in
the rule is the standard notation for denoting the theory � � f�g in presenting inference rules� Inferring a
clause from a theory using �R requires a proper derivation� i�e�� a sequence of steps� each of the form either
� �R � or � �R �� if it is of the latter form then it must have been obtained from one the above inference
rules using earlier steps� It is trivial to verify that �� �FPE S in the above example�

It directly follows from soundness and monotonicity of �R that �R is both sound and monotonic �a
detailed proof can use induction on the length of derivation�� It follows directly from Theorem 	���� which
is stated and proved below� and Theorem 	��	 that �R is also complete�

����� A Family of Tractable Consequence Relations

The consequence relation �R can be restricted to obtain consequence relations that are more complete than
�R� but are still tractable� For instance� if � in Rule � of �FPE is restricted to be a unit clause� then the
restricted �FPE is tractable� it is also refutation complete for ��CNF theories� which �FPE is not�

Thus� restricting the size of � in Rule � of �R seems to be a reasonable approach for obtaining tractable
consequence relations� The following inference system de�nes a family �Rk of consequence relations� where k
is any natural number�

De�nition ���� For any natural number k� the consequence relation �Rk is de�ned using the following two
inference rules�

��
� �R �

� �Rk �

��
� �Rk �� �� � �Rk �

� �Rk �
for j�j � k

The only di�erence from the inference rules for �R is that the size of the clause �� which is the number
of literals in �� in the second rule is now restricted� As for �R� it follows directly that for any k� �Rk is sound�
monotonic� and at least as complete as �R� In fact� it follows from Proposition 	�� that �R� is identical to
�R� since the only clause of size � is f � It also follows directly from the inference rules that completeness of
�Rk is non�decreasing with increase in k� for any theory �� clause �� and number k� if � �

R
k � then � �Rk�� ��

Although Rule � explicitly allows using only one previously inferred clause� the rules of constructing
proofs clearly allow for chaining� for any clauses ��� ��� � � � such that j�ij � k for each i� if � �Rk �n�
�� �n �Rk �n��� � � � � �� �n� � � � � �� �Rk �� then � �Rk ���

Theorem ���� For any theory �	 any clause �	 and any number k
 Viv�R��� k� �R � i� � �Rk ��

Proof It follows from Proposition 	��� that it is su�cient to prove the claim when � is a basic clause in
E���� Recall that Viv�R��� k� � � � lfp�TR���k��

�Only if� Suppose Viv�R��� k� �R �� Since �Rk is no less complete than �R� we have �� lfp�TR���k� �
R
k ��

For any � lfp�TR���k�� it follows from the de�nition and �niteness of the �xpoint that � �Rk �� since �Rk
allows chaining� Using chaining again� we obtain that � �Rk ��

�If� Suppose � �Rk �� We show that Viv�R��� k� �R � by induction on the length of the derivation for
� �Rk ��

In the base case� where � �R �� it follows from Proposition 	�� that Viv�R��� k� �R ��

For the inductive case� there is a clause � such that j�j � k� � �Rk �� and �� � �Rk �� Using the inductive
assumption� we have Viv�R��� k� �R � and Viv�R�� � f�g� k� �R �� There are two mutually�exclusive and
exhaustive cases�

���

�� The bag of literals in clause � is inconsistent� it follows from Property Iy that ���
R ��f�g� and then

from Lemma 	��� that Viv�R��� k� � Viv�R�� � f�g� k�� Thus� Viv�R��� k� �R ��

�� Otherwise� let � denote the clause ��B � �HB���� �HB������ where � � ��B�� It follows from
Proposition 	��� that Viv�R��� k� �R �� Thus� � Viv�R��� k�� since � is a basic clause in E����
Since � is a subclause of �� it then follows from Property Gy and Viv�R�� � f�g� k� �R � that
Viv�R��� k� �R ��

Thus� Viv�R��� k� �R � in all cases�

It follows that �Rk is complete for � i� �R is complete for Viv�R��� k�� Thus� R�intricacy of any theory
� is the least k for which �Rk is complete� Moreover� a theory is R�vivid i� �R for it is identical to �

R
k for

each k� This suggests a notion of partial R�vividness de�ned as follows� a theory is k�R�vivid i� �R for it is
identical to �Rk �

����� Comparison with Earlier Approaches

We compare our family �FPEk of tractable consequence relations with some other tractable consequence
relations presented in the literature�

Relevance Logic and RP�Entailment

Belnap �Bel� presented a 	�valued model�theory for PC� called relevance logic� whose entailment relation�
say j�B � is strictly weaker than j�� the entailment relation for classical ��valued model theory� Intuitively�
relevance logic allows equivalences based on the properties of logical operators such as commutativity� associa�
tivity� distributivity� De Morgan�s laws and double negation �AB
�� for example� f�����g j�B ���� for any
formula� and �� It also allows inferring clauses from their subclauses� for example� f�P�Q�g j�B �P�Q�R��
However� relevance logic blocks chaining� for example� fP��P �Qg �j�B Q�

Levesque �Lev�	b� presented a logic of implicit and explicit beliefs� where explicit beliefs are obtained
using the j�B entailment� and proved that � j�B � can be determined in O�j�j j�j� time� if the theory �
and the formula � are both in CNF� The entailment holds i� each clause in � is a superclause of some clause
in ��

Frisch �Fri�� presented a ��valued model�theory for PC� whose entailment relation� j�RP � is strictly
stronger than j�B but strictly weaker than j�� For the CNF case� he proved that � j�RP � can also be
determined in O�j�j j�j� time� He also argued that it is the strongest propositional logic that is sound but
allows no chaining� and proved that � j�RP � i� ��fP ��P j P is an atom in ��f�gg j�B �� For example�
j�RP �P � �P � but �j�B �P � �P ��

Since j�RP � i� � is a tautology i� �� is unsatis�able �Fri��� it then follows that j�RP is intractable�
in general �specially when � is in disjunctive normal form�� Since none of the entailment relations �FPEk is
complete� it follows that j�RP in not weaker than any of them� It then follows from the relation between
j�RP and j�B that j�B is also intractable and is not weaker than any �FPEk relation�

If we restrict our attention to CNF theories and formulas for which both j�B and j�RP are tractable� it
follows from the RP�decision theorem for facts �Fri�� and the semantics of conjunction that � j�RP � i�
each either clause in � is a superclause of some clause in � or � has complimentary literals� In either of
these cases� � �FPE �� because of properties C� D� and E of FP� Thus� �FPE� � which is identical to �FPE� is at
least as strong as j�RP � Since fP��P � Qg �j�RP Q and fP��P � Qg �FPE� Q� it then follows that �FPE� is
strictly stronger than both j�B and j�RP �

���

Approximate Entailment

Cadoli and Schaerf �CS��a� parameterized j�RP by sets of propositions� their entailment relation j�	
S is

de�ned using a ��valued model theory which restricts each atom in the set S to the traditional � values�

Intuitively� the logic allows chaining on the atoms in the set S� for example� if P S then fP��P�Qg j�	
S Q�

For the CNF case� they show that the entailment � j�	
S � can also be determined in O�j�j j�j �jSj� time�

For the general case� j�	
S is intractable�

For any set S of atoms� if P � S then fP��P �Qg �j�	
S Q� Thus� �

FPE

� is not weaker than any entailment
j�	
S � except when S contains all atoms in the language� For any number k� let S be the set fP�� � � � � Pk��g

and let � be the theory containing all �k " ���clauses built from the atoms in S� It follows that � j�	
S f and

� ��FPEk f � Thus� for each number k there is a set S of size k"� such that j�	
S is not weaker than �

FPE

k � Thus�
the two families of entailments are incomparable�

Bounded Resolution

Gallo and Scutell)a �GS��� built a hierarchy� � � ������ � � � � of classes of theories in PC� such that for each
�k� the satis�ability problem is solvable in O�nk��� time� where n is the size of the theory� B*uning �Bun���
de�ned k�resolution� a restriction on resolution that at least one parent must have at most k literals� and
showed that k�resolution is refutation complete for �k��� but refutation�incomplete for �k�

k�resolution can be used to de�ne a family of tractable entailment relations� � �Bk � i� � � f��g has a
refutation using k�resolution �note that B here is not a rewrite system�� Although the exact relation between
�FPEk and �Bk is still open� the following example shows that �

B
� is not stronger than �

FPE

� �

Consider the theory � containing the following clauses�

��P � �Q � S� ��R � �U � �P �Q � V �
��P � �Q � �S� ��R � �U � �P �Q � �V �
��R � U � P � ��R � U � �P �Q �W �
��R � �U � P � ��R � U � �P �Q � �W �

Since there is no clause in � with � literals� it follows that �R can not be obtained from � using ��
resolution� Now consider the least �xpoint lfp�TFPE������ Since � � fP�Qg �

�
FPE

ffg� the clause ��P � �Q�
is in the �xpoint� Since ��f��P ��Q�� R� Ug ��

FPE
ffg� the clause ��R��Q� is also in the �xpoint� Since

� � f��P � �Q�� R��Ug ��
FPE

ffg� the clause ��R � Q� is also in the �xpoint� Thus� ��R� is also in the
�xpoint�

Now� consider the theory �� obtained from � by switching R and �R� and by replacing all other atoms by
pairwise�distinct new atoms� Using the same argument given above� we obtain that R can not be obtained
from �� using ��resolution and that �R� is in the �xpoint lfp�TFPE������� It then follows that � � �� �FPE� f �
but � � �� ��B� f �

Access�Limited Logics �ALL�

Crawford and Kuipers �CK��� CK��� presents ALL� a logic that attempts to formalize the access limitations
that are inherent in a network�structured knowledge base� ALL allows retrieving only those assertions that
are reachable by following an available access path� It is shown that if the access paths are bounded then
reasoning is tractable� This system exhibits Socratic completeness in the sense that all facts that are logical
consequence of the knowledge base can be deduced after a sequence of preliminary queries� They de�ne a
family �k

ALL
of entailment relation such that only k nesting of preliminary queries are allowed for inference in

�k
ALL
� Although the exact relation between �FPEk and �k

ALL
is still open� the following example �Cra�	� shows

that ��
ALL

is not stronger than �FPE� �

Consider the theory � containing the following clauses�

�	CS��a� also de�nes a family of unsound but complete entailment relations using a similar idea�

��	

��P �Q � U � ��P � �Q � S �W �
��P �Q � �U � ��P � �Q � S � �W �
�P �R � V � �P � �R � S �X�
�P �R � �V � �P � �R � S � �X�

It can be veri�ed by an exhaustive case analysis that S can�t be inferred from � using ��
ALL
� However�

S is in the �xpoint lfp�TFPE������ since the following clauses are also in the �xpoint� ��P � Q�� �P � R��
��P � S�� and �P � S��

��� Conclusions

We used the rewrite system FPE to de�ne an incomplete but e�cient consequence relation �FPE for inferring
clauses from arbitrary theories in PCE� � �FPE � i� �� ��������

FPE
��f ��� We proved that �FPE is complete for

�inferring clauses from� Horn� positive� negative� and satis�able ��CNF theories� Theories for which �FPE is
complete are called vivid theories� We also proved that �FPE is complete for inferring clauses from a theory
i� it is complete for inferring its basic clauses that do not contain logical constants and repetition of atoms
and are constructed from the predicates and constants appearing in the theory�

We then used �FPE to de�ne a function Viv such that for every � there is a k for which Viv�FPE��� k� is
FPE�vivid� the least such k is called the FPE�intricacy of �� Viv�FPE��� k� augments the theory � by the
least �xpoint of the operator TFPE���k which is de�ned as TFPE���k�S� � f� E��� k� j � � S �FPE �g� where
S is any set of k�clauses� which are basic clauses of � with at most k literals� The least �xpoint lfp�TR���k��
also called the kth �xpoint of �� can be obtained in time polynomial in the size of �� but exponential in k�
Thus� it might be computationally advantageous to pre�process theories with low FPE�intricacy by making
them FPE�vivid� so that the relatively e�cient �FPE is sound and complete for deriving clauses from them�
Since Viv�FPE��� �� � �� the FPE�intricacy of any Horn� positive� negative� or satis�able ��CNF theory is ��
We also proved that the FPE�intricacy of any unsatis�able ��CNF theory is at most ��

We also presented an alternate characterization of Viv�FPE��� k� in terms of a family�FPEk of increasingly
complete consequence relations for limited inference� the set of clauses inferable from Viv�FPE��� k� using
�FPE is exactly the set of clauses inferable from � using �FPEk � For any number k� �FPEk extends �FPE by
allowing chaining on clauses of size at most k� if there is a clause � with at most k literals such that
� �FPEk � and � � f�g �FPEk � then � �FPEk �� Note that � here is not required to be a basic clause� Since
Viv�FPE��� k� is FPE�vivid for some k� the family �FPEk converges to a complete consequence relation for
every theory�

Our results did not depend on the exact details of FPE� they hold for any admissible rewrite system� a
notion developed by abstracting out some high�level properties of FPE�

��

Chapter �

Tractable Cases of Reasoning

��� Overview

In this chapter� we pursue the �rst approach to the intractability of reasoning� i�e�� identifying tractable cases
�see Section ����� The results of the previous chapter show that clauses can be inferred from a theory in time
polynomial in its size but exponential in its intricacy�� Thus� for any number k� if there is a class of theories
each of whose intricacy is less than k� then the problem of inferring clauses from these theories is tractable�
Suppose we are interested in the �more restricted� question of determining satis�ability of theories� Although
satis�ability is of course tractable for a class of theories that all have intricacy at most k� for some �xed
constant k� it is enough for tractability if all the unsatis�able theories in the class have intricacy at most
k� Although this �bounded intricacy� criterion is a su�cient condition for tractability� we show that there
are tractable classes that do not have bounded intricacy� We then show that some tractable classes already
proposed in the literature have bounded intricacy� We also describe some new tractable classes using the
bounded intricacy criterion� Although bounding the intricacy of satis�able theories also produces tractable
classes� we have not been able to use this result to describe any non�trivial tractable class that can not be
described by the bounded intricacy criterion�

The tractable classes we investigate arise from reasoning problems in the areas of constraint satisfaction�
disjunctive databases� and disjunctive logic programs� The problems we consider are all polynomially re�
ducible to the �un�satis�ability problem for PCE � each instance of the problem is translated to a theory
in PCE� whose satis�ability provides the answer for that instance� For constraint satisfaction problems� we
show that the induced width �DP��� of any inconsistent network is always greater than the intricacy of its
translated theory �within a di�erence of ��� and that the intricacy of the translation of any network with only
functional constraints �DH��� is �� We then present a new family of tractable networks based on bounded
intricacy that combines the intuitions behind bounded induced�width and functional constraints� For dis�
junctive databases� we show that the translations of each tractable class of querying identi�ed in �IMV�	�
have bounded intricacy� Our proofs of these results rely crucially on the results in �DP��� IMV�	�� For
disjunctive logic programming �LJR���� we identify a new family of tractable programs based on bounded
intricacy criterion�

We show bounded intricacy for a class C of theories by proving that there is a number k such that f
is in lfp�TR���k� for each unsatis�able theory � in C� A theory � for which f � lfp�TR���k� will be called
a k�consistent theory� Thus� the intricacy of an unsatis�able theory is the least k for which it is not k�
consistent� Our usual technique for proving the k�inconsistency of a theory will be to show that there is a
clausal subtheory of the theory such that each clause in the conjunctive normal form of the complement of
the subtheory is in the least �xpoint whose index �see Section 	�	��� is the number of clauses in the subtheory�

We continue to use PCE� using its alternative syntax as presented in Section ������ except for Section
�
�

�Since we will restrict to the particular rewrite system FPE in this chapter we will drop the pre�x �FPE�� from �FPE�
intricacy� and �FPE�vivid��

���

in which we also use a larger fragment of �rst�order logic that includes quanti�ers� However� we use the
speci�c rewrite system FPE presented in Section ��� for the notions of �xpoints� vividness� and intricacy�
Since we do not require the equality predicate

�
� in the sections on constraint satisfaction problems and

disjunctive logic programming� and FPE is identical to FP for PCE without equality� we use FP instead of
FPE in those sections�

��� Tractable Satisability Classes

We de�ne the satis�ability problem for a class of theories and present two independent criteria based on
intricacy that guarantee its tractability� We prove that these criteria are not necessary for tractability by
presenting a tractable class that violates both the criteria�

De�nition ��� The satis�ability problem for a class S of theories in PCE is the following decision problem�

Input
 any theory � S�
Output
 �yes� i� � is satis�able�

Satis�ability is tractable for S i� the satis�ability problem for S is in PTIME�

Theorem
�� below presents a criterion for tractable satis�ability� there is a number k such that all the
unsatis�able theories in the class have intricacy at most k� The basic idea is that the kth least �xpoint will
contain f for exactly all the unsatis�able theories in S� We will refer to this as the bounded intricacy criterion
� a class of theories is said to have bounded intricacy if there is a number k such that each unsatis�able
theory in the class has intricacy � k�

Theorem ��� �Unsatis�able intricacy� For any class S of theories and any number k	 if the intricacy
of each unsatis�able theory in S is at most k then satis�ability is tractable for S�

Proof Consider the algorithm Inc�sat� which� given a theory � in S and a number k as input� �rst
computes the �xpoint lfp�TR���k� by calling Compute�FPE�lfp� and then returns �no� if the �xpoint
contains the clause f � and �yes� otherwise� We show that Inc�sat is both tractable and correct�

Since the time complexity of Inc�sat is dominated by the call to Compute�FPE�lfp� it follows from
Lemma 	�� that Inc�sat runs in time polynomial in the size of � �but exponential in k�� Since k is �xed
for S� Inc�sat is in PTIME for S� i�e�� tractable�

For correctness� if f lfp�T��k� then it follows from Theorem 	��� that � is unsatis�able� For the other
direction� if � is unsatis�able then Viv��� k� is vivid� since the intricacy of � is at most k� It then follows
from � j� f that Viv��� k� �FPE f � and then from the �xpoint construction that f lfp�T��k�� Thus� Inc�sat
returns �yes� for a theory in S i� it is satis�able�

Theorem
�� below presents the counterpart of bounded intricacy criterion for the satis�able theories�
the existence of a number k such that all the satis�able theories in the class have intricacy at most k� The
basic idea is to make each satis�able theory vivid by adding to it the kth least �xpoint� Satis�ability can
then be tested by constructing a model of the vivid theory � this model is constructed by adding one literal
at a time and checking for inconsistency �using FPE� at each step� This process of model building succeeds
without leading to any dead ends exactly for the satis�able theories in S�

Theorem ��� �Satis�able intricacy� For any set S of theories and any number k	 if the intricacy of each
satis�able theory in S is at most k then satis�ability is tractable for S�

Proof Consider the algorithm Cons�sat of Figure
��� It can be easily veri�ed using Theorem ���� and
Lemma 	�� that Cons�sat has time complexity polynomial in the size of � �but exponential in k�� Since k
is �xed for S� Cons�sat is in PTIME for S� i�e�� tractable� All we need to show is that it is correct�

��

���

Algorithm Cons�sat�
Input
 any theory � and a number k s�t�

if � is satisfiable

then the intricacy of � is at most k�
Output
 ��yes�� iff � is satisfiable�

��no�� otherwise�

�� �� �� Compute�FPE�lfp	��k
� � �� f�
�� while 	atoms��� �� atoms���
 do f
� select any � in atoms��� � atoms����

�� if �FPE �
�
� �

�� then � �� �
�
� ��

�� else � �� �
�
� ��

g
�� if �FPE �
�� then return ��no��

�� else return ��yes���

end�

Figure
��� An Algorithm to determine satis�ability

���

Let �i be the value of � after the ith iteration of the while loop� and let m be the number of atoms in
atoms���� It follows from the corollary of Theorem 	��� that � � � Note that atoms��� � atoms��m��
because each of the m iterations of the loop adds a new atom from atoms��� to ��

Suppose Cons�sat returns �yes� for a theory �� Thus� ��FPE �m from which we obtain using Proposi�
tions 	�� and 	�� that �j� �m� i�e�� is satis�able� It follows from the corollary of Theorem 	��� that � is
also satis�able�

Now suppose that � is satis�able� i�e�� is vivid� We can show by induction on i that �j� �i for all i�
The base case� when i � �� is trivial since �� � f and is satis�able�There are two cases to consider for the
inductive case� when i � � and the inductive assumption is that �j� �i���

 �FPE �i��
�
� � it follows that �j� �i��

�
� �� � �i� otherwise j� �i��� a contradiction�

otherwise ��FPE �i��
�
� � � �i� Since is vivid� we then have �j� �i�

Thus� ��FPE �m� from which it follows that Cons�sat returns �yes��

The criteria in Theorems
�� and
�� are independent� since classes that satisfy any one criterion may
not satisfy the other� For example� consider the class C� containing all satis�able theories in PCE and all
unsatis�able Horn theories� and the class C� containing all unsatis�able theories in PCE and all satis�able
Horn theories� Since the intricacy of any Horn theory is �� class C� satis�es the criterion of Theorem
��
only �i�e�� C� has bounded intricacy but does not satisfy the criterion of Theorem
���� and class C� satis�es
the criterion of Theorem
�� only� In later sections� we will present some less trivial classes with bounded
intricacy� However� we have not yet found any non�trivial classes that satisfy the criterion of Theorem
��
alone�

The criteria given in Theorems
�� and
�� are only su�cient conditions for tractability� We now show
that these criteria are not necessary for tractability by presenting a tractable class� call it C	� of theories
which violate both the criteria�

���

Class C	 is obtained by encoding the pigeon�hole principle �c�f� �Coo�� CS����� according to which it is
not possible to assign n" � pigeons to n holes �for any number n� such that no two pigeons are in the same
hole� For each n� we construct a pigeon�hole theory P �n� that captures the relevant constraints and show
that the intricacy of P �n� is at least n� ��

Let x�y be an atom that is true i� pigeon x is assigned to hole y� The pigeon�hole theory P �n� for any
number n is de�ned as follows�

P �n� � f�i��� � � �� i�n� j i �� � � � � �n" ��g �

f��i�k � �j�k� j i� j �� � � � � �n" ��� i �� j� k �� � � � � ng

The positive formulas in P �n� ensure that each pigeon is assigned to at least one hole� while the negative
formulas ensure that no two pigeons are assigned to the same hole� For example� P ��� � ffg� P ��� � f���
��� ������ ������ �����g� and P ��� contains the following formulas�

����� ���� ����� ���� ����� ����
������ ����� ������ ����� ������ �����
������ ����� ������ ����� ������ �����

The class C	 contains all satis�able theories in PCE and all pigeon�hole theories P �n�� Since each P �n�
is unsatis�able and can be easily detected by its syntactic structure� C	 is a tractable class� Since there
is no number k which bounds the intricacy of all satis�able theories in C	� the criterion of Theorem
�� is
violated� We will now show that C	 does not have bounded intricacy�

Proposition ��� For any number n and any clause � E�P �n��	 if P �n� �FPE � then either � has a
subclause in P �n� or j�j � �n� ���

Proof We prove this by induction on n� For n � �� the claim is trivial since the size of each clause
in E�P �n�� is at least �n � ��� The claim is trivial also for n � � since the only clause in E�P �n�� of size
smaller than �n� �� is f and P ��� ��FPE f � For the inductive case� we only have to consider n � �� There are
two cases�

� is a positive clause it follows from Property Cy that �� reduces to a set� say A� of negative literals�
After propagating the literals in A through the binary clauses� some may disappear �by becoming
true�� but none generate new literals� Thus the only way f can be obtained is because of substitution
in one of the positive clauses� with n literals� If fewer than n � � variables are substituted in all of
these clauses� the result is a theory with only binary or higher clauses� which FPE cannot simplify to
f � Therefore� in some positive clause n� � or more literals are substituted� i�e�� j�j � �n � ���

Otherwise Without any loss of generality� assume that � has the negative literal ��n " ���n� i�e�� there is

a clause
 E�P �n� ��� such that � �

�
� ���n" ���n��

P �n� � f��g ��
FPE

P �n� � f�
g � f�n" ���ng �Property Cy�

��
FPE

P �n� �� � f�
g � f�n" ���ng � f�i�n j i �� � � � � ng

�f��n" ���k j k �� � � � � �n� ��g

�Properties Cy� Dy� and Ey�

There are several subcases�

Case �a� �n " ���n is a literal in
 � impossible� since � is a basic clause�

Case �b� for some k� ��n" ���k is a literal in
 � ���n" ���k � ��n" ���n� in P �n� is a subclause
of ��

���

Case �c� for some i� �i�n is a literal in
 � ��i�n � ��n" ���n� in P �n� is a subclause of ��

Otherwise Since atoms�P �n � �� � f�
g � f�n " ���ng� � atoms�f�i�n j i �� � � � � ng � f��n" ���
k j k �� � � � � �n � ��g� � 	� it follows from Property Hy that P �n� � f� �g ��

FPE
ffg i�

P �n� �� � f�
g ��
FPE

ffg� Thus� if P �n� �FPE � then P �n� �� �FPE
� The claim then follows
from the inductive assumption�

Thus� the claim follows in all cases�

It follows from the above proposition that all the basic clauses in the �n� ��nd �xpoint of P �n� �where
n � �� are superclauses of those in P �n�� Thus� Viv�P �n�� n��� is not vivid� since P �n� j� f but Viv�P �n�� n�
�� ��FPE f � It follows that the intricacy of P �n� is at least �n� ��� Thus� the class C	 does not have bounded
intricacy�

Note that the exact details of the satis�able theories in the class C	 is not important � the only
requirement is that the condition of Theorem
�� is violated� i�e�� there is no number k which bounds the
intricacy of all satis�able theories in C	�

McCarty �McC�
� observed that theories in class C	 can not be enumerated easily� since it contains all
satis�able theories and no unsatis�able theory other than pigeon�hole theories� He suggested two other
classes that are �better� examples for showing that the criteria of Theorems
�� and
�� are not necessary
for tractability�

�� Consider the class C
 of all theories in PCE� each of which is syntactically tagged correctly as satis�able
or unsatis�able� The tag may be as simple as presence or absence of a particular atom �new� as the
�rst clause� The tractable class C
 violates the criteria of Theorems
�� and
���

�� For each pigeon�hole theory P �n�� consider the theory P ��n� which restricts the number of pigeons to
n �instead of n"��� Consider the class C� of all theories P �n� and P ��n�� The class C� is tractable and
violates the criteria of Theorem
��� It is still open whether C� violates the criteria of Theorem
���

The class C
 is almost as di�cult to enumerate as the class C	� but is conceptually much simpler and does
not require a long proof� On the other hand� the class C� is very easy to enumerate but requires an additional
proof�

��� Tools for Proving Bounded Intricacy

We present some technical results that will be useful in later sections for proving that a class of theories has
bounded intricacy�

The bounded intricacy criterion requires the existence of a number k such that each unsatis�able theory
in the given class� say C� has intricacy at most k� This is identical to requiring Viv��� k� to be vivid for
each unsatis�able theory � in C� which in turn is identical to requiring that f be in lfp�TR���k� for each
unsatis�able theory � in C� Since we will use this condition very often� we introduce a convenient notation
to express this�

De�nition ��� For any number k� a theory � is k�consistent i� f � lfp�T��k��

Thus� our technique for proving bounded intricacy for a class C will be to show that there is a number k
such that no unsatis�able theory in C is k�consistent� For this� we will show that the least �xpoint contains
certain clauses which require that f also be in the least �xpoint� We �rst de�ne these product clauses� and
then prove the desired claim in Proposition
�	�

De�nition ��� For any basic clausal theory � � ����� � � � � �n�� where n � �� and ��� � � � � �n are compatible�

product��� �
hh
����

�
� � � �

�
���n� j fact �i is a subformula of �i for each i � � � �n

ii
If � � ���� then product��� is de�ned to be the theory ��f ���

���

For example� if � � ���a
�
�a� � a

�
�a� � a

�
�a	�� �b

�
�b� � b

�
�b���� then product��� is the theory given below�

��a �
�
�a� � b �

�
�b�� a �

�
�a� � b �

�
�b�� a �

�
�a	 � b �

�
�b��

a �
�
�a� � b �

�
�b�� a �

�
�a� � b �

�
�b�� a �

�
�a	 � b �

�
�b���

As a special case� if f � then product��� � ����� Since product��� is just the clausal form of the negation
of �� obtained by applying de Morgan�s laws and distributivity� it follows that ��product��� is unsatis�able
for any clausal theory �� The next proposition shows that if the product of some basic clauses in a theory is
contained in any least �xpoint of the theory� then f must be in that least �xpoint� Note that the product is
always a basic clausal theory� since �is are compatible and the use of �merger� �instead of regular disjunction�
de�ned in Section 	����� in the de�nition removes duplicate literals in the clauses� For example�

product����a � b�� �b � c���� � ����a � �b�� ��a� �c�� ��b���

Proposition ��� For any theories � and ' and any number k	 if ' � � � E���	 the clauses in ' are
compatible	 and product�'� � lfp�T��k�	 then � is not k�consistent�

Proof Suppose ' � � �E��� and product�'� � lfp�T��k��

Case I �' � 	�

' � 	 � product�'� � ffg �de�nition�
� f lfp�T��k� �product�'� � lfp�T��k��
� � is not k�consistent �de�nition�

Case II �f '� It follows from Propositions 	�
 and 	��� that f lfp�T��k� for each k�

Case III �otherwise� Suppose ' has p clauses� where p � �� Since f � '� product�'� is not empty� Also�
since each clause in product�'� has size p and product�'� � lfp�T��k�� it follows that p � k� Let '� be
the set of all subclauses of clauses in product�'�� We claim that '� � lfp�T��k�� If this claim is true
then f lfp�T��k� since f '�� thus� � is not k�consistent �as argued in Case II above�� Thus� we only
need to prove this claim�

Assume the claim is false� i�e�� '�� lfp�T��k� is not empty� Let 	 be a maximal clause in '�� lfp�T��k��
i�e�� there is no clause 	� in '� such that 	 is a proper subclause of 	� and 	� � lfp�T��k��

Since product�'� � lfp�T��k�� 	 � product�'�� Hence� 	 is a proper subclause of some clause in
product�'�� so size of 	 is less than p� Thus� there is at least one clause � � ���� � � ���n� ' which
does not contribute negated literals to 	� moreover� n � � and atoms�	� � atoms��� � 	� Thus� for

each i � � � �n� 	
�
���i is a basic clause in '

� which belongs to lfp�T��k�� since 	 was the maximal
clause not belonging to it� It follows that

f��� � � � �� �n�g � f	
�
���i j i � � � �ng � � � lfp�T��k�

Thus� �� lfp�T��k� �FPE 	 using Property Cy and Proposition 	��� From the de�nition of lfp�T��k�� we
then have 	 lfp�T��k�� which is a contradiction� Thus the claim is true�

Thus� in all cases � is not k�consistent�

Therefore� in order to show that a theory � is not k�consistent� it is su�cient to �nd a compatible clausal
subtheory ' of � such that product�'� � lfp�T��k�� In order to show that a basic clause is in a least �xpoint�
we will often use the following proposition�

Proposition ��� For any theory �	 any numbers k and p	 and any basic clause � E��� p�	 if ��f��g is
not k�consistent then � lfp�T��k�p��

���

Proof Since � is compatible with f �

� � f��g is not k�consistent � f lfp�T��f��g�k� �de�nition�

� f
�
� � lfp�T��k�p� �Lemma
��� proven below�

� � lfp�T��k�p� �� � f
�
� ��

Lemma ��	 For any theory �	 compatible basic clauses
 and �	 and any numbers k and p	 if � E��� p�

and
 lfp�T��f��g�k� then

�
� � lfp�T��k�p��

Proof Let � � � f��g� By de�nition

lfp�T��k�p� � �fT��k�p!n j n Ng

lfp�T�k� � �fT�k!n j n Ng

We will prove �by induction on n� that for every n and every basic clause
 compatible with �� if
 T�k!n

then

�
� � T��k�p!n�

�n � �� trivial since T�k!� � 	�

�n � �� Since
 T�k� it must be the case that
 E� � k�� It follows that

�
� � E��� k " p�� since

� E��� p� and � � � f��g�

The inductive hypothesis is that for every basic clause
 compatible with �� if
 T�k!�n� �� then

�
� � T��k�p!�n� ��� It follows that T�k!�n� ��

�
� f�g � T��k�p!�n� ���

 T�k!n � � T�k!�n� �� �FPE
 �de�nition�
� � � f�
���g � T�k!�n� ����

FPE
ffg �de�nition�

� � � �T�k!�n� ��
�
� f�g� � f� �

�
� ��g ��

FPE
ffg

�Proposition 	�� and modularity�

� � � �T�k!�n� ��
�
� f�g� �FPE

�
� � �de�nition�

� � � T��k�p!�n� �� �FPE

�
� �

�inductive hypothesis and Proposition 	���

�

�
� � T��k�p!n �de�nition�

This proves the lemma�

In the next three sections� we will use the above results in proving bounded intricacy for some reasoning
problems in the areas of constraint satisfaction� disjunctive databases� and disjunctive logic programs�

���

���

�
�
�
�

�
�
�
�

�
�
�
�

A
A

A
A
A
A
A
A
A
AA�

�
�
�

�
�
�

�
�
��

�����g

������

f�����

�����g

f���	��

�����g

�	����

�	����

f�	���

f����gf	��g

f���g

CB

A

Figure
��� A constraint network

�
�
�
�

�
�
�
�

�
�
�
�

A
A

A
A
A
A

A
A

A
AA�

�
�

�
�
�

�
�

�
��

�	���g

f�	���

�����g

f�����f���	�g

f��gf	g

f�g

CB

A

Figure
��� The simpli�ed network

���

��� Constraint Satisfaction Problems

����� Overview

A constraint satisfaction problem �CSP� �Mac� Fre�� is speci�ed by a �nite set of variables and a set of
constraints on subsets of these variables limiting the values they can take� For example� a constraint might
restrict the value of a variable to be greater than that of another variable� Recall from Chapter � that a
large number of problems in AI and other areas of computer science can be viewed as special cases of CSP� A
CSP is said to be consistent i� there is an assignment of a value to each variable such that all the constraints
are satis�ed� Determining consistency is known to be intractable �Fre�� even for constraint networks� a
restricted class of CSPs in which all the constraints are explicitly provided as sets of tuples� Identifying
classes of constraint networks for which consistency is provably tractable has generated considerable interest
�c�f� �Fre��� DP�� DH�����

In this section� we present a quadratic�time translation of constraint networks to a restricted class of
theories in PC �i�e�� PCE without equality�� called constraint theories� Apart from the formulas encoding
the constraints� these theories have formulas that encode the facts that each variable should be assigned
exactly one value in its speci�ed domain� It follows from the results of previous sections that the consistency
problem is tractable for classes of constraint theories with bounded intricacy� We show that some tractable
classes of constraint networks previously identi�ed� for example� in �Fre��� DP�� DH���� translate to classes
of constraint theories with bounded intricacy� We also use this criterion to describe a new� more inclusive
tractable class of constraint networks� Since the rewrite system FPE is identical to FP for PCE without
equality� we use FP in this section�

Our approach can be illustrated by the network given in Figure
��� where the constraints are speci�ed
with each node and edge� For example� the value of variable A could be either � or �� and variables A and
B can together take values � and 	� or � and �� respectively�

Consider the following line of reasoning� suppose variable A is assigned the value �� It follows from the
constraint on the edge AB that B�s value should be �� and from the constraint on the edge AC that C�s
value should be �� Since these values of B and C are inconsistent with the constraint on the edge BC� the
value of A cannot be �� perhaps it could be �� By propagating A�s value of � through the constraint on AB�
we obtain the value � for B� and by propagating A�s value through the constraint on AC� we obtain that C�s

���

value could be either or �� The results of these two cases of hypothetical reasoning can be recorded in a
�simpler� network� Figure
��� which has the same solutions as the original one� An important point is that
in obtaining the new network we never had to make more than one assumption�

This kind of reasoning can be captured using the �xpoint construction based on fact propagation �Sec�
tion 	�	� applied to a theory obtained from the above network� This theory contains formulas which are
built from atoms like A��� denoting the assignment of value � to node A � formulas that encode the various
constraints of the network� For example� the constraint on edge AB is encoded by the formula

��A�� �B�	�� �A���B����

while the restriction on node A is encode by �A��� � �A���� There is also a formula expressing the fact that
A can only be assigned one value� ��A���� ��A����

Assigning value � to variable A in the network corresponds to adding the formula A�� to the translated
theory� the resulting inconsistency in the network corresponds to obtaining ffg from the augmented theory
using fact propagation� Since the �xpoint construction works on the basis of refutation� it then follows that
the clause ��A��� is in the �xpoint� Fact propagation then �pushes� this through the constraint �A�����A����
yielding that A�� is in the �xpoint� Similarly� one argues that the clauses �B �	�� and ��C ��� are also in
the �xpoint� It turns out that the translated theory augmented by the �xpoint corresponds exactly to the
network of Figure
���

Note that we have considered only clauses of size � in constructing this �xpoint from the translated theory�
this corresponds to making only a single level of assumptions �i�e�� no nested assumptions� in reasoning with
the original network� The signi�cance of this is that if a network is inconsistent� and we can discover the
inconsistency by making assumptions of size at most �� then its theory has intricacy ��

����� Tractable Constraint Networks

This section provides formal de�nitions concerning constraint networks and reviews some previously�proposed
classes of tractable constraint networks� For a more detailed description� the interested reader is referred to
�Mac�� Dec��� DH����

Since we will be interested in families of constraint networks� we start with a denumerable set V of
values� and a denumerable set X of variables� sometimes called nodes� �Despite their name� these are not to
be confused with the variables of predicate calculus��

De�nition ��� A constraint network� C � �X�V�E� c�� consists of a �nite set X of variables from X � a
�nite subset V of values from V� a set E � X �X of edges� and a partial function c from the set of k�tuples
of variables in X to the powerset of k�tuples of values in V � for � � k � jXj� There are several restrictions
on the partial function c of constraints��

�� c�x� is de�ned and is non�empty for each variable x in X� c�x� is called the domain of x�

�� If �v�� � � � � vr� c�x�� � � � � xr� for variables x�� � � � � xr and values v�� � � � � vr� then vi c�xi� and all
variables in the set fx�� � � � � xrg are distinct�

�� If c�x�� � � � � xr� is de�ned then the graph �X�E� is complete on the nodes fx�� � � � � xrg �r is called the
arity of this constraint��

A valuation is a partial function � from the variables in X to values in V such that ��x� c�x� �i�e��
domain constraints are already satis�ed� for those x for which � is de�ned� A valuation � over the entire set
of variables X is a complete valuation� A solution is a complete valuation � such that all the constraints in c
are satis�ed� ���x��� � � � � ��xr�� c�x�� � � � � xr� for each tuple �x�� � � � � xr� of variables for which c is de�ned�

For any set Y of variables� the restriction C�Y is the network �X � Y� V�E � �Y � Y �� c�� where c� is c
restricted to the domain of tuples over X�Y � Any solution of a restricted network is called a partial solution
of the network�

�Since c is a unary function c��x�� � � � � xn�� is abbreviated as c�x�� � � � � xn� as in some functional programming languages�

��	

For example� consider a CSP network C� � �X�V�E� c� de�ned as follows�

X � fa� b� dg
E � f�a� d�� �b� d�g
V � f	�
� �� � ���g

c�a� � f	�
g� c�b� � f�� g� c�d� � f�� �g
c�a� d� � f�	� ��� �
� ��� �
� ��g
c�b� d� � f��� ��� �� ��� �� ��g

A valuation that assigns values 	� � and � to nodes a� b� and d respectively� is a solution of this network�
There are many other solutions� as well� However� a valuation that assigns values 	� �� and � to nodes a� b�
and d respectively� is not a solution� since it violates the constraint c�b� d��

The following three general observations may be useful to keep in mind�

�� In general� the topology of the graph �X�E� indicates the kinds of constraints allowed in the net�
work� but it does not completely capture this information� for example� the edges �d� e�� �e� g�� �g� h�
together could denote either a ternary constraint among the variables d� e� h� or three binary constraints
corresponding to the three edges� or both�

�� Each constraint is a set of values allowed for a particular tuple of variables� so the constraint
c�x�� � � � � xr� � f�vi�� � � � � v

i
r� j � � i � kg for some k corresponds to a collection of valuations

fsi j � � i � k� si�x�� � vi�� � � � � si�xr� � virg� Note that each constraint could also have been speci�ed
by listing its complement $ the valuations over the variables x�� � � � � xr that are not allowed � �ruled
out���

�� Traditionally� in CSP research� one starts with binary constraint networks � networks in which all
constraints are unary or binary� Unfortunately� as we shall see� the processing of such networks may
introduce constraints of higher arities�

Backtrack�free Networks

Algorithms for �nding solutions of constraint networks typically search through the space of all valuations
generated by the cross�product of the variable domains� The solutions are built incrementally by assigning
values to variables in some �xed order and verifying that all the constraints among the variables assigned
values so far are satis�ed� If some constraint is violated� then a new value is assigned to the current variable�
if all values allowed by the unary constraint of the current variable violate the constraints then the value
assigned to the previous variable is changed� causing backtracking�

For example� suppose the variables of the network C� are ordered a� b� d� Suppose a is �rst assigned the
value 	� and b is then assigned the value �� Since either value of d� together with the assigned values of a
and b� violates some constraint� the search backtracks to b� which is now assigned the value � Now d can
be assigned the value � without violating any constraint� leading to the solution mentioned above�

Now consider a new binary network C�� which is obtained from C� by adding the following constraint�

c�a� b� � f�	� �� �
� ��� �
��g�

and correspondingly changing the set of edges to�

E� � f�a� b�� �a� d�� �b� d�g�

Adding this constraint prevents the assignment of value � to variable b� after 	 has been assigned to a�
Thus� the above solution of C� is also obtained as a solution of C��� but without any backtracking� It can be
veri�ed that C� and C�� have identical solutions� which can be obtained in C�� without any backtracking�
when using the ordering a� b� d� Thus� C�� is said to be a backtrack�free network with respect to this ordering�

��

All backtrack�free networks are consistent by de�nition� and it is known that any consistent binary network
can be transformed into an equivalent �i�e�� having the same solutions� backtrack�free network with respect
to any given ordering by adding new constraints �Dec���� �The transformation from Figure
�� to Figure
��
is an example of such a transformation�� It is important to remember that� as illustrated later� these new
constraints may be of arbitrary arity even if we start with a binary constraint network�

The Consistency Problem

Instead of �nding the solutions of a constraint network� we are interested in a restricted problem� determining
whether the given network is consistent�

De�nition ��� The consistency problem for a class C of binary constraint networks is given by�

Input
 a network C C�
output
 �yes� i� there is a solution of C�

A class C of binary constraint networks is tractable i� the consistency problem for C is in PTIME�

Since the consistency problem for the class of all binary constraint networks is CoNP�Complete �Mac���
identifying classes of constraint networks for which consistency is provably tractable has generated consid�
erable interest �c�f� �Fre��� DP�� DH����� Most techniques to identify tractable families of CSP rely on
the topology of the underlying constraint network� For example� Freuder �Fre��� Fre�
� observed that CSPs
whose networks are trees can be solved in linear time�

Dechter and Pearl �DP�� de�ned a topological property of networks called induced width� and showed
that for any network for which there is a number k that bounds the induced width� it is possible to determine
the consistency of the network in time polynomial in its size but exponential in k� The family of �bounded
width� networks � ones whose induced width is bounded by some �xed constant k � is� so far� the largest
family of tractable constraint networks identi�ed by �topological criteria��

As part of the above� Dechter and Pearl proposed an algorithm called Adaptive�Consistency �described
below� which� among others� determines the inconsistency of binary constraint network�

Adaptive Consistency Algorithm

Given two arguments� a binary constraint network and an ordering of its variables� the Adaptive�Consistency
algorithm �DP����Page ��� reports failure i� the network is inconsistent� �Otherwise� it returns an equivalent
backtrack�free network� though this will not be of concern to us here� nor will the e�ciency of this algorithm��

As an illustration� given the network C� and the ordering a� b� d� Adaptive�Consistency �rst processes
the variable d and adds the constraint c�a� b� mentioned above� The algorithm generates this constraint
by considering all valuations over the nodes that precede d �i�e�� a and b�� and ruling out those which are
not consistent with any value of d� so in this example� the valuation assigning �	� �� to �a� b� is ruled out�	

The algorithm then processes b� and since this causes no further changes� the �backtrack�free� network C��

is returned as the output�

Essentially� Adaptive�Consistency processes the nodes in reverse order and rules out valuations �among
nodes ordered earlier than the current node� that cause backtracking� The time complexity of the algorithm
is exponential in the maximum arity� say� r� of the constraints that are found or generated� because jV jr

possible valuations over those r variables may be considered�

A key idea in the algorithm is to minimize this number r by using the observation that only a restricted
set of nodes needs to be considered in generating the new constraints� In particular� while processing any
node x only those nodes are considered that are ordered earlier than x and share an edge with x in the
current state of the network� therefore� any new constraint added while processing x involves no more nodes
than these�

�Note that adding such a constraint results in the graph of the new network having an additional edge �a� b��

���

���

a

b

c

d

e

f

�a� Network

a

b

c

d

e

f

�b� Induced Network

Figure
�	� Induced Network

���

Interestingly� a superset of the edges of the output network can be easily determined without even
executing the algorithm� by executing the following step for every node z in the reverse of the given ordering�
if there are edges �x� z� and �y� z� such that both x and y are ordered before z then add the edge �x� y�� The
rationale is that only constraints involving x and y might be generated by the algorithm while processing
the node z� The network obtained by adding edges in this way is called the induced network with respect to
the given ordering� For example� consider the network �X�V�E� c� whose graph is shown in Figure
�	 �a��
where X � fa� b� c� d� e� fg and E � f�a� b�� �a� c�� �a� d�� �b� e�� �b� c�� �d� e�� �e� f�g� The graph of the induced
network for the ordering a � b � c � d � e � f is given in Figure
�	 �b��

Formally� given any binary constraint network C � �X�V�E� c� and any total order � on the set X�
the induced network C� with respect to � is the network �X�V�E�� c�� where E� is the least superset of E
such that if �x� z�� �y� z� E� and x � z and y � z then �x� y� E�� For any variable x in X� parents�x�
in C is de�ned to be the set fy X j y � x� �x� y� Eg� Adaptive�Consistency processes the nodes in
decreasing order of �� For node x� the algorithm calls the procedure Consistency�x� parents�x��� which rules
out all valuations over all variables of parents�x� in C� that are not consistent with some value of x� and it
considers only those constraints all of whose variables are from the set parents�x��fxg� �Note that since only
constraints involving parents�x� are added to the new network� the sets parents�y� do not change for y � x
or nodes y examined before x�� �DP��� proves that the network C is unsatis�able i� there is a node x such
that all valuations over parents�x� are ruled out during the call to Consistency�x� parents�x��� Otherwise�
the output network is backtrack�free�

To provide insight into the Adaptive�Consistency algorithm and to illustrate the generation of non�unary
and non�binary constraints� we give two examples� �rst a consistent network and then an inconsistent one�
Consider a network C� � �X�V�E� c� de�ned as follows�

X � fp� q� r� sg
V � f�� �� �� 	�
��� � ������ �g

E � X �X
c�p� � dom�p� � f�� �g
c�q� � dom�q� � f�� 	�
g
c�r� � dom�r� � f�� � �g
c�s� � dom�s� � f�� �� �g
c�p� q� � f��� ��� ��� 	�g

c�p� r� � c�p� � c�r�� f��� �g
c�p� s� � c�p� � c�s� � f��� ��g

c�q� r� � c�q�� c�r�� f��� ��� �	� ��g
c�q� s� � c�q� � c�s� � f��� ��g
c�r� s� � c�r� � c�s� � f��� ��g

��

Suppose Adaptive�Consistency processes nodes in the order s� r� q� p �i�e�� the order � is the usual
lexicographic ordering�� Note that the induced network C�� is identical to C�� While processing s�
Consistency�s� fp� q� rg� rules out the valuation that assigns �� � and � to p� q� and r� respectively� be�
cause each extension of this valuation to node s is disallowed by a constraint among some parents of s
�c�p� s� disallows �� c�q� s� disallows �� and c�r� s� disallows ��� It also rules out many other valuations �such
as w where w�p� � �� w�q� � 	� w�r� � �� that violate the original constraints �c�p� q� in this case�� As a
result of these �rulings out�� the new constraint generated is c�p� q� r� � f��� 	� �� ��� 	� ��g� While processing
r� Consistency�r� fq� pg� rules out the valuation that assigns � and � to p and q� respectively� �Note that
while this valuation is also implicitly ruled out by the constraint c�p� q� r�� the constraint cannot be used
when only the variables p and q are being considered in the backtrack�free search�� It also rules out assign�
ments like � and
 to p and q� respectively� which are already ruled out by some original constraint� While
processing q� Consistency�q� fpg� rules out the valuation that assigns � to p� The resulting network� which
is returned by Adaptive�Consistency is backtrack�free with two solutions� �� 	� �� � and �� 	� �� � assigned to
p� q� r� s� respectively�

Consider another network C�� � �X�V�E� c��� which is identical to C� except that c��q� r� �
c�q� r� � f�	� ��g� Suppose Adaptive�Consistency processes the nodes again in the order s� r� q� p�
Consistency�s�fp�q�rg� rules out the same valuations as before� However� Consistency�r� fq� pg� now rules
out all valuations over fp� qg� Thus� C�� is declared inconsistent by Adaptive�Consistency�

The following is a summary of observations about Adaptive�Consistency that may be useful to keep in
mind�

�� The input consists of a binary network and a total ordering of its nodes�

�� In dealing with a constraint network� one can just as well think of a constraint in terms of the valuations
ruled out by it� as the valuations permitted by it�

�� However constraints are represented� the algorithm works by ruling out valuations� for a node x�
valuations involving parents�x��fxg are considered� and valuations involving only variables in the set
parents�x� are ruled out�

	� Although the input network is binary� the valuations ruled out may contain more than two variables�

� A network is inconsistent if and only if there is a node x for which the algorithm rules out all valuations
over the variables in parents�x��

Induced Width

Recall that while processing a node x in a binary network C � �X�V�E� c� with some total order � on
the set X� the Adaptive�Consistency algorithm calls Consistency�x� parents�x��� which considers at most
those valuations all of whose variables are among x and parents�x� in C�� Since the time complexity of the
algorithm is exponential in the maximum number of variables in the valuations that are considered by the
various calls to Consistency� we desire an ordering which minimizes the size k of the set parents�x� for any
x in C�� This number k is the �induced width� of the network� and is de�ned formally as follows�

De�nition ��	 For any network C � �X�V�E� c� and any total order � on X� the width of a variable x X
with respect to � is the cardinality of the set parents�x�� The width of C with respect to � is the maximum
of the widths of the variables in X with respect to � in C� The width of the network C is the minimum
width of C over all total orders on X� The induced width of C with respect to � is the width of C� with
respect to �� The induced width of C is the minimum of induced widths of C over all total orders on X�

For example� consider the network shown in Figure
�	�a� and the ordering a � b � c � d � e � f � Note
that parents�e� � fb� dg� since f � e� It can be veri�ed that the width with respect to � of a is �� b is ��
c is �� d is �� e is �� and f is �� Thus� the width of the network in �a� with respect to � is �� Recall that
the induced graph with respect to this ordering is given in Figure
�	�b�� Except for d� whose width is ��

���

the widths of various nodes in �b� is the same as in �a�� Thus� the induced width of the network in �a� with
respect to � is also ��

Our eventual goal is simply to prove that if the induced width of an inconsistent network C is k� then
the corresponding theory has intricacy bounded by k " �� For this reason� we will not be concerned with
�nding the ordering that minimizes the induced width� and will assume that it is given by hypothesis� for
the same reason� we will not be concerned with the time complexity of algorithms Consistency or Adaptive�
Consistency�

Although not relevant for the remainder of this section� we remark that the class of constraint networks
with induced width bounded by k was� of course� known to be tractable� Given some ordering of the nodes�
the total time taken by the calls to Consistency determines the worst�case time complexity of Adaptive�
Consistency� which then is polynomial in the size of the network� but exponential in its induced width with
respect to the given ordering� And� given a binary constraint network that is known to have induced width
bounded by k� �Arn�
� Dec��� provide tractable algorithms for �nding an ordering that achieves this bound�
and hence can be passed to Adaptive�Consistency� Also� we observe that Arnborg �Arn�
� showed that
determining the induced width of any speci�c graph is an NP�complete problem� so it is not practical to
determine it �at run time�� However� it has been argued in �Dec��� that the bounded induced width criterion
can be used as a theoretical tool for identifying tractable families of CSPs�

Functional Constraints

There have been other approaches for identifying tractable instances of CSP� Deville and Van Hentenryck
�DH��� use the �semantics� of the constraints to identify a new tractable class of CSPs� A constraint c�x� y�
is said to be functional i� for each value in c�x�� there is at most one value in c�y� �and vice versa� that
satis�es the constraint� �DH��� presents a quadratic�time algorithm for determining consistency of binary
networks where all the constraints are functional� �The algorithm also performs �arc�consistency� �Fre�
� for
consistent networks in this class�� An example of a network in this class can be obtained from the network
of Figure
�� by removing the tuple ��� �� from the constraint c�A�C�� and the tuples �	� � and �	� �� from
the constraint c�B�C��

����� Constraint Theories

As discussed in Section
�	��� we wish to prove results about the intricacy of certain logical theories that
�represent� constraint networks� In this section we will formally relate constraint networks to speci�c kinds
of propositional theories� and show how valuations of the constraint networks relate to interpretations of the
corresponding constraint theories� This prepares the way for the next section where we use these to show
the tight connection between the induced width of an inconsistent constraint network and the intricacy of
its corresponding propositional theory�

Recall that we have a denumerable set V of values� and a denumerable set X of variables� The only
atoms in our language are from the set fx�v j x X � v Vg� For any formula� in the PC language generated
using these atoms� the set of variables in � is given by�

vars��� � fx X j �v V s�t� x�v atoms���g

For any theory �� the set of variables in � is given by�

vars��� � �fvars��� j � �g

Recall from Section ����� that an interpretation of a theory is a mapping from its atoms to the set
ftrue� falseg� and that a model is an interpretation which maps the theory to true� Since our aim is to
relate constraint networks to theories� we wish to associate valuations that are solutions of constraint networks
with models of the corresponding theories� Intuitively� a complete valuation � over X can be associated with
an interpretation that maps x���x� to true for each x in X� and maps all other atoms to false� Thus� we
need to a priori rule out any interpretation that� for some variable x� either maps each x�v to false or maps

���

some x�v� and x�v� to true where v� �� v�� This is done by adding some special formulas to our theories� For
this� we associate from the beginning with each variable a �nite non�empty set of values called its domain�
formally� a domain function Dom � X
 �V has the property that for any variable x X� Dom�x� is �nite
and non�empty�

We now proceed to overload the term �solution� �and very slightly �valuation�� so it also applies to
certain logical theories�

De�nition ��� Given sets X and V and domain function Dom� the domain constraints for any variable
x X are the clauses �x�v� � � � � � x�vn� and ��x�vi � �x�vj�� where i� j � � � �n� i �� j� and Dom�x� �
fv�� � � � � vng� A constraint theory � over X�V and Dom is a theory whose formulas involve only literals of
the form x � v� for x X� v Dom�x�� and include all the domain constraints for all variables in the theory�

For any set Y � X� a valuation over Y is a function � from Y to V such that ��y� Dom�y� for each
y Y � Any valuation over vars��� is called a complete valuation of �� Any valuation whose domain is
vars��� is called a complete valuation of �� For any complete valuation � of �� the interpretation I� of � is
de�ned by�

I��x�v� �

�
true if v � ��x�
false if v Dom�x� � f��x�g

for each x X and each v Dom�x�� A solution of � is a complete valuation � such that I� is a model of
� �we also say that � solves ���

Note that� because of the presence of domain constraints� for any model M of a constraint theory � there
is exactly one valuation � over vars��� such that M maps an atom x�v to true i� ��x� � v� The atoms
mapped to false in M are x�w where x X and w Dom�x� � f��x�g�

These valuations� which correspond to models of a constraint theory� are the solutions of the constraint
theory�

We can also associate with every valuation � over variables Y a conjunctive formula b� � �x��v��� � ��xn�vn��
where Y � fx�� � � � � xng and ��xi� � vi for i � � � � �n� thus� � b� � ��x��v� � � � �� �xn�vn� is a basic clause�
called the constraint clause corresponding to valuation �� �If Y is empty then b� � t and � b� � f �� The

intuition� which we shall use later� is that such a constraint clause � b� rules out valuation � as a partial
solution� when added to a constraint theory�

It follows from the above de�nitions and observations that a complete valuation � is a solution of a
constraint theory � i� � � fb�g is satis�able i� � �j�� b�� We shall make repeated use of these equivalences
later�

Translation of Binary Networks to Theories

Note that valuations for a constraint theory are identical to valuations for a constraint network if the theory
and the network have identical sets of variables X and values V � and Dom is the unary constraint of the
network�

We now show that each binary constraint network can be translated into a constraint theory such that
the two have identical solutions�

De�nition ��� For any binary network C � �X�V�E� c�� its translation Tr�C� is the theory over X�V and
Dom �where Dom�x� � c�x� for every x X� containing exactly the following formulas�

�Type A� �x�v� � � � �� x�vn� for each x X such that c�x� � fv� � � � vng�

�Type B� ��x�vi � �x�vj� for each x X such that c�x� � fv� � � � vng� i� j � � � �n� and i �� j�

�Type D� ��x�v� � y�w�� � � � � � �x�vm � y�wm�� for each �x� y� E such that f�v�� w��� � � � � �vm� wm�g �
c�x� y��

�There are no �Type C� formulas so that there is no confusion with �C� used for a constraint network�

���

It follows that for any binary network C � �X�V�E� c�� Tr�C� is a constraint theory �over X�Y and Dom�
which we shall omit in such cases� since they are implicit in C�� Note that since Dom�x� � c�x�� valuations
of a constraint network are entirely identical to valuations of the corresponding constraint theory Tr�C��

For example� the translation Tr�C�� of the network given above contains the following formulas�

��a�	� d���� �a�
� d���� �a�
� d����
��b��� d���� �b�� d���� �b�� d����
�a�	� a�
� ��a�	� �a�
�
�b��� b�� ��b��� �b��
�d��� d��� ��d��� �d���

It can be veri�ed that the interpretation that assigns true to only a�	� b�� and d�� is a model of Tr�C���
and that the interpretation that assigns true to only a�	� b��� and d�� is not�

Lemma
� shows that� not surprisingly� the solutions of any binary constraint network are exactly the
solutions of the corresponding constraint theory�

Lemma ��� Any valuation � solves a binary constraint network C i� � solves Tr�C��

Proof

Consider any binary network C � �X�V�E� c� and any valuation � over X� Recall that Dom�x� � c�x�
for any x X�

� solves C i� � satis�es each constraint in C
i� ��� �x X� ��x� c�x�� and

��� ��x� y� E� ���x�� ��y�� c�x� y�
i��+� I� is a model of Tr�C�
i� � solves Tr�C��

We now argue for the only non�trivial step above� which is marked by �+�� For the �only if� direction� it can
be veri�ed that I� is a model of each formula in Tr�C� � for formulas of types �A� and �B� because of ����
and of type �D� because of ���� For the �if� direction� it can be veri�ed that � satis�es ��� because of type
A formulas and satis�es ��� because of type D formulas�

We now de�ne restrictions of a constraint theory� analogous to restrictions for constraint networks�

De�nition ��� The restriction ��Y of a constraint theory � to a set Y of variables is the theory f� � j
vars��� � Y g� A valuation � is a partial solution of a theory � i� � solves ��vars���� Valuation �� is an

extension of valuation � i� � b� is a subclause of � b���
It follows that a complete valuation is a solution i� it is a partial solution� Lemma
�� shows that

restrictions on constraint networks also correspond exactly to the restrictions on the constraint theories�

Lemma ��� For any binary constraint network C and any set Y of variables
 Tr�C�Y � � Tr�C��Y �

Proof Consider any binary network C � �X�V�E� c� and any set Y of variables� Recall thatDom�x� � c�x�
for any x X� and that C�Y � �X � Y� V�E � �Y � Y �� c��� where c� is c restricted to the domain of tuples
over X � Y � Any formula � in Tr�C�Y � has one of the following types�

Type A� � � �x�v� � � � �� x�vn� such that x X � Y and c�x� � fv� � � � vng�

Type B� � � ��x�v � �x�w� such that x X � Y � v� w c�x�� and v �� w�

���

Type D� � � ��x�v��y�w���� � ���x�vm�y�wm�� such that �x� y� E��Y �Y � and f�v�� w��� � � � � �vm� wm�g �
c�x� y��

In each of the above cases� � Tr�C�Y � i� �� Tr�C� and vars��� � Y � i� � Tr�C��Y � Thus�
Tr�C�Y � � Tr�C��Y �

It follows directly from the above two lemmas that partial solutions for networks and theories are also
identical� for any binary constraint network C� any valuation � over any set Y of variables solves the network
C�Y i� � is a partial solution of the theory Tr�C��

����� Induced Width and Intricacy

We now show that the induced width of any inconsistent binary network is always greater than m��� where
m is the intricacy of its translated theory�

To prove this� we will make use of the correctness of the Adaptive�Consistency algorithm� Recall that if
Adaptive�Consistency uses an ordering that realizes the induced width of a binary network� then the number
of variables in the largest valuation that is ever ruled out is no more than the induced width of the network�
An important result in this section will be Lemma
���� showing that if Adaptive�Consistency rules out a
valuation � over k variables then the constraint clause � b�� which is of size k� is in the �k"���th least �xpoint
for the translated theory� The main result will be Theorem
���� arguing that since Adaptive�Consistency
rules out all valuations over some set of variables for an inconsistent network� it follows that f is in the
�xpoint� thus� the intricacy is at most �k " ��� For this� we need the following lemma �
���� which shows
that �FP can be used to verify solutions of a constraint theory�

Lemma ��� For any constraint theory � and any complete valuation � for �	 � solves � i� � ��FP� b��
Proof Consider a constraint theory � over X�V�Dom� and a complete valuation � over �� Suppose S� is
the set of all literals assigned true in the interpretation I�� i�e�� the set fx���x� j x Xg � f�x�v j x X� v
Dom�x�� v �� ��x�g� and formula �� is obtained by taking the conjunction of all literals in S��

Consider the theory � � fb�g� It follows from modularity and Property Cy that � � fb�g ��
FP
� � fx �

��x� j x Xg� and then from properties Dy and Ey that � � fb�g ��
FP
� � S� �because � contains type B

formulas �x�v��x���x��� Thus� � �FP��� i� � �FP� b�� Since atoms��� � atoms������ it then follows from
Proposition 	�� and soundness of �FP that � j���� i� � �FP� b�� Therefore�

� ��FP� b� i� � �j����
i� � � f��g is satis�able
i� I� is a model of �
i� � solves �

Before presenting Lemma
���� we will show an example of the kind of argument that will be used in its
proof� Consider the network C� given above� whose induced width is � with respect to order p � q � r� and
the valuation � assigning �� �� � to p� q� r� which is ruled out by Adaptive�Consistency while processing node
s� We will now argue that the constraint clause � b� �� �p�� � q�� � r��� is in the �xpoint lfp�TTr�C���
��
Since no extension �� of � to node s is a partial solution� it follows from Lemma
�� that Tr�C�� �FP� b��
for each such ��� Since each � b�� is also a basic clause of size s� it is in the �xpoint� We then obtain from
Proposition 	�� that Tr�C�� �FP� b�� Thus� the constraint � b� is also in the �xpoint�
Since the induced width of the network C� with respect to the ordering � is �� Adaptive�Consistency

only needs to rule out valuations of size at most �� Thus� our �xpoint construction needs to consider only
valuations of size one larger� namely 	�

Lemma ���� For any binary constraint network C of induced width k	 if Adaptive�Consistency rules out a
valuation � then � b� lfp�TTr�C��k����

���

Proof Let C � �X�V�E� c� be any binary constraint network of induced width k� and suppose � is the
ordering on X that achieves it�

Let � be the theory Tr�C� and be the theory lfp�TTr�C��k���� We will prove the claim of the lemma

by contradiction�

Suppose the claim is false� let � be the �rst valuation ruled out by Adaptive�Consistency such that
� b� � � Let x X be the node being processed by Adaptive�Consistency while ruling out �� let � be the
constraint clause � b�� and let �� be the set of all constraint clauses � b�� such that the valuation �� is ruled
out by Adaptive�Consistency before processing x� It follows that �� � �

Since the ordering used by Adaptive�Consistency realizes the induced width k of C� valuation � is over k
nodes� Thus� the size of the constriant clause � is also k�

Since Adaptive�Consistency rules out the valuation � while processing node x� for no v Dom�x� is
the valuation ��� which extends � by assigning v to x a partial solution of the modi�ed network� i�e�� when

considering only the constraints on parents�x��fxg� Hence ���� must entail ��
�
� �x�v�� or more precisely

��������parents�x��fxg� j� ��
�
� �x�v�� Using Lemma
��� we obtain that ��������parents�x��fxg� �FP

��
�
� �x�v�� and then from Proposition 	�� that � � �FP ��

�
� �x�v�� That is� ��

�
� �x�v� T��k��� ��

Since is the least �xpoint of T��k��� we obtain that ��
�
� �x�v� �

As the above holds for each v Dom�x�� it follows from Proposition 	�� that �FP �� �Intuitively� ��

�cancels out� � in ��
�
� �x�v�� leaving �x�v for every v Dom�x�� which in turn contradicts the domain

assertion
�x�v� � � � �� x�vn� where c�x� � fv� � � � vng

for variable x in the theory Tr�C�� As a result� FP reduces � f��g to ffg��

Since is a �xpoint� �FP � entails � � which is a contradiction�

Theorem ���� For any inconsistent binary network C of induced width k	 the intricacy of Tr�C� is at most
k " ��

Proof Suppose C � �X�V�E� c� is an inconsistent binary constraint network of induced width k� realized
with ordering �� All we need to show is that f lfp�TTr�C��k���� i�e�� Tr�C� is not �k " ���consistent�

Since C is inconsistent� there is a variable x X such that each valuation � over parents�x� is ruled out by

Adaptive�Consistency� Since each such valuation is de�ned over at most k"� variables� � b� is a basic clause
of size at most k " �� and hence it follows from Lemma
��� that � b� lfp�TTr�C��k����
In other words�

product�f�y�v� � � � �� y�vp� j y parents�x�� Dom�y� � fv�� � � � � vpgg� � lfp�TTr�C��k���

It then follows from Proposition
�	 that Tr�C� is not �k " ���consistent�

����� Functional Constraints and Intricacy

We now consider functional networks� which include the networks in the tractable class of �DH���� and show
that the intricacy of any inconsistent functional network is at most �� Recall that a constraint c�x� y� between
variables x and y of a network is called functional i� for each value in c�x�� there is at most one value in
c�y� �and vice versa� that satis�es the constraint�

De�nition ���� A binary constraint network is called functional i� each connected component in the net�
work contains a spanning tree of edges representing functional constraints�

���

���

�
�
�
�

�
�
�
�

�
�
�
�

A
A

A
A
A

A
A
A
A

AA�
�
�

�
�

�
�

�
�
��

������g

f�����

�����g

f���	��

�����g

�	����

�	����

f�	���

f����gf	��g

f���g

cb

a

Figure
�
� A functional constraint network

���

For example� the network F� given in Figure
�
 is a functional network� since the edges �a�b� and
�a�c� form a spanning tree of functional constraints� The translated theory Tr�F�� consists of the following
formulas�

�Type A� �a��� a��� �b�	� b��� �c�� c��� c���
�Type B� ��a��� �a��� ��b�	� �b���

��c�� �c��� ��c�� �c��� ��c��� �c���
�Type D� ��a��� b�	�� �a��� b����

��a��� c��� �a��� c����
��b�	� c��� �b�	� c���� �b�	� d���� �b��� d����

If b�� is added to Tr�F��� then FP will simplify the Type B formula for b to �b�	� The Type D formula
on the functional edge �a�b� is then simpli�ed to a��� i�e�� the functional edge leads to a speci�c value being
assigned to a� Continuing further� the Type D formula on the functional edge �a�c� gets simpli�ed to c���
Finally� the Type D formula on the edge �b�c� gets simpli�ed to f � leading to inconsistency�

Alternatively� if b�	 is added to Tr�F��� the FP simpli�es the Type D formulas on the functional edges
�a�b� and �a�c� to a�� and c�� respectively� without leading to an inconsistency� However� if the tuple ��� �
is removed from the constraint on the edge �a�c�� then FP will obtain f even in this case from the resulting
network� which is functional and inconsistent�

Thus� FP seems well�suited for dealing with functional constraints� Lemma
��� generalizes this obser�
vation� if c�x� y� is functional and x is assigned a value a then FP either leads to inconsistency or assigns
a speci�c value b to y� For a functional network� it then follows using the spanning tree of functional con�
straints that assigning a value to any node causes FP to either deduce inconsistency or assign values to
all the connected nodes� Theorem
��� uses this argument to show that the intricacy of any inconsistent
functional network is at most ��

Lemma ���� For any theory �	 if there is a functional constraint between variables x and y in a constraint
network C � �X�V�E� c� then for any v c�x� such that Tr�C� � � � fx�vg ���

FP
ffg there exists w c�y�

such that Tr�C� � � � fx�v� y�wg ���
FP
ffg�

Proof Consider any v c�x� such that Tr�C����fx�vg ���
FP
ffg� Suppose c�x� y� � f�v�� w��� � � � � �vp� wp�g

for some p � � �such a p exists� otherwise c�x� y� will be empty and Tr�C���
FP
ffg� a contradiction�� Since

��	

c�x� y� is functional� vi �� vj and wi �� wj for any i and any j such that i �� j�

Suppose v �� vi for each i� By construction of Tr�C�� it contains the Type D clause ��x � v� � y �
w�� � � � �� � � � �x�vp � y�wp�� and Type B clauses ��x�v � �x�vi� for all i such that v �� vi� Thus� the theory�
say � containing just these two kinds of clauses is a subset of Tr�C�� It follows from Proposition 	�� that
 � fx�vg ��

FP
ffg� and then from Proposition 	�� that Tr�C� � fx�vg ��

FP
ffg� which is a contradiction�

Thus� v � vm for some m in �� � � � � p� Let wm � w�

ffg ���
FP

Tr�C� � � � fx�vg �given�

��
FP

Tr�C� � � � fx�v� �x�v� y�w�g � f�x�vi j i �� mg

�by Type B and D clauses and Proposition 	���

��
FP

Tr�C� � � � fx�v� y�wg� f�x�vi j i �� mg �Property Cy�

It then follows from Proposition 	�� that Tr�C� � � � fx�v� y�wg ���
FP
ffg�

If Tr�C� ��FP �x�v� it follows from Lemma
� that the valuation that just maps x to v is a partial solution
of C� Lemma
��� shows that if there is a functional constraint between x and y� then this partial solution
can be extended to another partial solution by also mapping y to some w such that Tr�C��fx�vg ��FP �y�w� If
there is a functional constraint between y and some other node� the partial solution can be similarly further
extended� Theorem
��� is proved by repeating this process over a tree of functional constraints�

Theorem ���� For any inconsistent functional network D	 the intricacy of Tr�D� is at most ��

Proof All we need to show is that Tr�D� is not ��consistent� i�e�� f lfp�TTr�D����� Since Tr�C� � Tr�D�

for each connected component C of D� it follows from Proposition 	��� that all we need to show is that
f lfp�TTr�C���� for some connected component C of D�

Consider any inconsistent connected component C � �X�V�E� c� of D �since D is inconsistent� there
must be such a C�� It follows from Proposition
�	 that all we need to show is that there is some x X
such that Tr�C� �FP �x�v for each v Dom�x�� We prove that this� in fact� holds for each x X�

Suppose� by way of contradiction� there is a x X and a v Dom�x� such that Tr�C� ��FP �x�v� i�e��
Tr�C� � fx �vg ���

FP
ffg� Since C has a spanning tree of edges representing functional constraints� there

is an ordering x�� � � � � xn �where n � �� of all nodes in X such that x� � x and for each i �� � � � � n
there is a ji � i for which the edge �xji� xi� represents a functional constraint� For each i �� � � � � n� let

Xi � fx�� � � � � xig and suppose there is a valuation �i over Xi such that Tr�C� � fb�ig ���
FP
ffg� Then it

follows from Lemma
��� �using the functional constraint on the edge �xji � xi�� and property Cy that there

is an extension �i�� of �i to Xi�� such that Tr�C�� fd�i��g ���
FP
ffg �note that the valuation �i without the

conjunct for variable xj corresponds to the theory � of Lemma
����� By considering �� to be the valuation
that maps x to v� we obtain from repeated use of the above statement that there is a valuation � over X
such that Tr�C� � fb�g ���

FP
ffg� i�e�� Tr�C� ��FP b�� It then follows from Lemma
� that � solves C� which

contradicts that C is inconsistent�

Note that the above proof relies on C being a functional network� However� we do not require that some
spanning trees of edges representing functional constraints be known�

����� A New Family of Tractable Classes

Let us combine the intuitions behind the two tractable classes of the previous sections�

�� As we saw in Lemma
���� the adaptive�consistency algorithm of �DP�� is �simulated� by our �xpoint
construction� with the induced width of a network bounded below by the intricacy of its translation�

��

�� Once a node is assigned a value� functional constraints allow fact propagation to obtain values that
must be assigned to other nodes�

Recall that intricacy corresponds to the size of the longest basic clauses that need to be considered to
obtain f � by combining the two previous intuitions� we can reduce the size of the needed clauses to be smaller
than the induced width� This yields a new family of tractable classes of binary networks� which includes the
tractable classes based on induced width and functional constraints� We will construct an example to show
that this inclusion is strict�

Consider the functional network of Figure
�
 augmented by a new node d and new edges connecting d
to each of the original nodes a� b� and c� The set of values allowed for d is f�� ��
g� and the set of tuples
allowed for the new edges are the cross�products of the values allowed for the incident nodes� except that
the following tuples are NOT allowed�

����� is not allowed for �a�d�� �	��� is not allowed for �b�d�� and ��
� is not allowed for �c�d��

Note that parents�d� � fa� b� cg and the induced width of the new network is �� Recall from Section
�	�	
that Adaptive�Consistency considers valuations over at most � variables� and� among others� while processing
node d� Adaptive�Consistency will rule out the valuation that maps a to �� b to 	� and c to � because there
is no value of d consistent with this valuation� This corresponds to the basic clause ��a����b�	��c�� being
in the �xpoint of index 	 which simulates the algorithm� On the other hand� recall from Section
�	�
 that
it is enough to map b to 	 � the other two assignments �a to � and c to � are then obtained by FP using
the formulas in the translation which correspond to the functional edges �b�a� and �b�c�� Thus� the shorter
basic clause ��b�	� is itself in the �xpoint with index �� This shows that even in non�functional networks�
function�like constraints may allow FP to rule out valuations by considering possibly fewer variables than
the number of parents�

We �rst generalize functional constraints to the case when the values of all nodes in a set are completely
determined by the values of a subset of the nodes called a seed� We then de�ne a notion of functional
width that is analogous to the notion of induced width� except that only the sizes of the parents� seeds
are considered� A class of binary networks with bounded functional width is then shown to have bounded
intricacy� and thus tractable� As with bounded induced width� the proof of this claim is also based on the
correctness of the Adaptive�Consistency algorithm �DP���� An important di�erence is that rather than using
all the variables of a valuation ruled out by Adaptive�Consistency in constructing the constraint clause in the
�xpoint� only the variables in its seed are needed� This is possible because any valuation over the variables
in a seed of a set of variables is extended by FP to the entire set�

De�nition ���� For any constraint theory � and any sets X and Y of variables in vars��� such that
X � Y � X is called a seed of Y for � i� each valuation � over X has an extension �� over Y such that
��Y � fb�g ��

FP
��Y � fb��g� A seed function for � is any function that maps each subset of variables in

vars��� to its seed for ��

For example� consider the binary network C� � �X�V�E� c� given below�

X � fp� q� rg
V � f�� �� �� 	�
��� g

E � X �X
c�p� � dom�p� � f�� �g
c�q� � dom�q� � f�� 	g
c�r� � dom�r� � f
� �� g

c�p� q� � f��� ��� ��� 	�� ���	�g
c�p� r� � c�p�� c�r�� f��� �� ��� ��g
c�q� r� � c�q�� c�r�� f��� ��� �	�
�g

The three consistent valuations over fp� qg are the ones allowed by c�p� q�� For each of these� there is exactly
one value of node r �
� � and respectively� Thus� fp� qg is a seed of fp� q� rg for the constraint theory

���

Tr�C��� Therefore� the function f � which maps every subset of fp� q� rg to itself� except f�fp� q� rg� � fp� qg�
is a seed function for C�� Another seed function just maps every subset of fp� q� rg to itself�

De�nition ���� Given a binary constraint network C � �X�V�E� c� and a seed function f for the theory
Tr�C�� the functional width of C with respect to f is de�ned identically to the induced width of C� except
that parents�x� in the de�nition is replaced by f�parents�x��� The functional width of C is de�ned to be the
minimum functional width of C with respect to any seed function for Tr�C��

In our simulation of Adaptive�Consistency in Section
�	�	� each valuation ruled out over parents�x� while
processing a node x corresponds to a constraint clause �in the �xpoint� that involves only the literals built
from the variables in parents�x�� Since each such valuation over parents�x� is completely determined by
its restriction on any seed of parents�x� using FP� it is possible to have smaller constraint clauses in the
�xpoint�

Lemma
��	� which is the counterpart of Lemma
���� shows that if Adaptive�Consistency rules out a
valuation � for a binary network C with functional width k then there is a subclause of � b� in the �xpoint
lfp�TTr�C��k���� Note that �

b� itself may not be in the �xpoint� since it may not be even in E��� k " ���
Actually� the subclause in the �xpoint corresponds to the valuation � restricted to a seed of the variables in
vars�b��� Theorem
��
� which is the counterpart of Theorem
���� then shows that if all valuations over
a set of nodes in a network C of functional width k are ruled out by adaptive�consistency� then Tr�C� has
intricacy at most k " ��

Lemma ���� Given any binary network C of functional width k � �	 if Adaptive�Consistency rules out a
valuation � then there is a subclause of � b� in lfp�TTr�C��k����

Proof The proof is based upon that of Lemma
���� Let C � �X�V�E� c� be any binary constraint
network of functional width k with respect to some ordering � and seed function f for the theory Tr�C�� let
us abbreviate the theory Tr�C� as �� and the theory lfp�TTr�C��k��� as � We will prove the claim of the

lemma by contradiction�

Suppose the claim is false� let � be the �rst valuation ruled out by Adaptive�Consistency such that no
subclause of � b� is in � Let x X be the node being processed by Adaptive�Consistency while ruling out

� and �� be the set of all the constraint clauses �c��� such that the valuation ��� is ruled out by Adaptive�
consistency before processing x� Since all constraint clauses in �� satisfy the claim of the lemma� we obtain
that each clause in �� has a subclause in � Let � be the constraint clause � b�� and let �f be the valuation
� restricted to the variables in f�parents�x���

Suppose we were able to prove that

��parents�x� � fb�g ��
FP
��parents�x� � fc�fg � �I�

Since Adaptive�Consistency rules out valuation � at node x� b� extended so it maps x to v is not a partial
solution of � � �� for any v Dom�x�� That is� �� � �����parents�x� � fxg� j� �� b� �

� �x �v�� Using

Lemma
��� we obtain that ��������parents�x��fxg� �FP �� b� �
� �x�v�� and then from Proposition 	�� that

� � �� �FP �� b� �
� �x�v�� and then from Property Gy and modularity that � � �FP �� b� �

� �x�v�� We then

obtain from modularity and �I� that �� �FP ��c�f �
� �x�v�� Since ��c�f �

� �x�v� is in E��� k" ��� we then

obtain from the �xpoint construction that ��c�f �
� �x�v� �

As the above holds for each v Dom�x�� it follows from Proposition 	�� that �FP�c�f � Using the
�xpoint argument again� we obtain that �c�f � which is a contradiction because �c�f is a subclause of
� b� � ��

Therefore� we are left to establish �I�� Since f�parents�x�� is a seed of parents�x�� we obtain by the
de�nition of seed that there is an extension �o of �f over parents�x� for which�

��parents�x� � f b�og ��
FP
��parents�x� � fc�fg � �II��

��

It remains to show that � is indeed this extension� i�e�� �o � �� We prove this by contradiction�

Suppose �o �� �� i�e�� there is at least one variable in parents�x� � f�parents�x�� which is assigned
di�erent values by �o and �� Let �� denote the restriction of the valuation � over the variables in parents�x� �
f�parents�x��� Hence

��parents�x� � fb�g ��
FP

��parents�x� � fc�fg � f b��g �� combines �f and ���
��

FP
��parents�x� � f b�og � f b��g �modularity of FP and �II��

��
FP

ffg�

since �o and �� di�er on some variable in parents�x� � f�parents�x��� It follows that � is not a partial
solution of the theory ��parents�x�� and therefore of the network C�parents�x�� Thus� � must violate some
binary constraint� say� c�y� z�� in C where y� z parents�x�� because it already satis�es each unary constraint

in C� Let �� be � restricted to the variables in fy� zg� Since � b�� is of the form ��y�a� �z�b� for some values
a and b� we obtain from the Type B and D formulas in � and the properties Cy� Dy� and Ey of FP that
� �FP� b��� Since � b�� E��� k " �� �because k � ��� we then obtain from the �xpoint construction that

� b�� � which is a contradiction because � b�� is a subclause of � b� � �� Thus� � must be a solution of
C�parents�x�� a contradiction�

Theorem ���� For any inconsistent binary network C of functional width k	 the intricacy of Tr�C� is at
most k " ��

Proof The proof is based on that of Theorem
���� Suppose C � �X�V�E� c� is an inconsistent binary
constraint network of functional width k using the seed function f � We will show that f lfp�TTr�C��k����

Since C is inconsistent� the functional width k is at least � �because E is not empty�� Since C is inconsistent�
there is a variable x X such that each valuation �� over parents�x� was ruled out by Adaptive�Consistency�

It follows from Lemma
��	 that there is a subclause � of � b�� such that � lfp�TTr�C��k���� Thus�

Viv�Tr�C�� k"���fb��g ��
FP
ffg follows from Viv�Tr�C�� k"�� � Tr�C�� lfp�TTr�C��k��� and the properties

Cy� Dy� and Ey of FP�

Consider any valuation � over f�parents�x��� Since f�parents�x�� is a seed of parents�x� for Viv�Tr�C�� k"

��� there must be some extension �� of � over parents�x� such that Viv�Tr�C�� k"���fb��g ��
FP
Viv�Tr�C�� k"

�� � fb�g� Since Viv�Tr�C�� k " �� � fb��g ��
FP
ffg for each valuation �� over parents�x�� we obtain that

Viv�Tr�C�� k"���fb�g ��
FP
ffg� i�e�� Viv�Tr�C�� k"�� �FP� b�� Since � b� E��� k"��� it then follows from

the �xpoint construction that � b� lfp�TTr�C��k���� Since this holds for all valuations over f�parents�x���
we obtain that

product�f�y�v� � � � �� y�vp� j y f�parents�x��� Dom�y� � fv�� � � � � vpgg� � lfp�TTr�C��k���

It then follows from Proposition
�	 that Tr�C� is not �k " ���consistent�

It then follows directly from Theorems
�� and
��
 that the consistency problem is tractable for any
class of binary constraint networks for which there is a k such that the functional width of any unsatis�able
network in the class is at most k� In other words� classes of binary networks with bounded functional width
are tractable�

As in the case of bounded induced width� our proofs were based upon the correctness of the Adaptive�
Consistency algorithm� However� we do not require that the algorithm be tractable for any class of networks�
nor that some seed function or some ordering that realizes the functional width be known�

In any functional network� it can be shown by using an argument similar to that in the proof of Theo�
rem
��� that each singleton subset of any non�empty set X of variables is a seed of X �the extension of any
consistent valuation over the seed grows similarly along the edges of the spanning tree which represent the
functional constraints� an inconsistent valuation can be extended in any way�� It follows that the functional

���

width of any functional network is �� Since induced width of any binary network is at least its functional
width� it then follows from Theorem
��
 that tractable classes based on bounded functional width include
those based on bounded induced width and those based on functional constraints� We now present a class of
non�functional binary networks with bounded functional width but unbounded induced width� Thus� it will
follow from from Theorem
��
 that this class is tractable� however� this tractability claim does not follow
from the results in �DP��� and �DH����

This class generalizes the example network C� given earlier in this section to more than � nodes� and
adds similar networks that are inconsistent� For each network with n nodes� where n � �� there will be
an ordering x�� � � � � xn of nodes such that for any i � �� � � � � n� the set fx�� x�g will be the seed of the set
fx�� � � � � xig� Thus� the functional width of each network in this class will be at most �� Since each network
will have a constraint between each pair of nodes� the induced width will be n � � for each network in the
class with n nodes� Since no constraints will be functional� none of the networks will be functional�

Consider the class of all networks Cn � �Xn� Vn� En� cn� for each n � � where

Xn � fx�� � � � � xng
Vn � f�� �� �� 	� v�� � � � � vng

En � Xn �Xn

cn�x�� � dom�x�� � f�� �g
cn�x�� � dom�x�� � f�� 	g

cn�xk� � dom�xk� � fv�� � � � � vkg for each k s�t� � � k � n
cn�x�� x�� � f��� ��� ��� 	�� ��� 	�g

cn�x�� xk� � f�� �g � cn�xk�� f��� v	�� ��� v��g for each k s�t� � � k � n
cn�x�� xk� � f�� 	g � cn�xk�� f��� v��� �	� v��g for each k s�t� � � k � n

cn�xi� xj� � cn�xi� � cn�xj� � f�v�� vi���� �v�� vi���� �v	� vi���g for each i and j s�t� � � i � j � n

For each k � �� � � � � n in the network Cn� the constraints cn�x�� xk� and cn�x�� xk� together ensure that
there is at most one value from the set fv�� v�� v	g which is consistent for node xk with each pair of values in
the constraint cn�x�� x��� Further� for any k � �� the constraints cn�xi� xk� for each i � �� � � � � k� � ensures
that the value vi�� cannot be consistently assigned to node xk� Thus� for each subset fx�� � � � � xkg of nodes�
there is exactly one partial solution corresponding to each pair in cn�x�� x�� � assign the values v�� v�� and
v	� respectively� to each node xi for i � �� � � � � k� It follows that the set fx�� x�g is a seed in the network Cn
for each set fx�� � � � � xkg of nodes� where � � k � n� Hence� the functional width of any network Cn in the
class is ��

The class given above in not interesting in itself� since each network in the class is consistent� It becomes
interesting when we add a network �say� Dn� for each n � � which is identical to Cn except that the values
v�� v�� and v	 are removed from the domain cn�xn� of node xn� making Dn inconsistent� We can show for
each n� using the same arguments as for Cn� that Dn is not functional� has induced width n � � and has
functional width �� This class� which contains binary networks Cn and Dn for each n � �� is the desired
tractable class of non�functional networks with bounded functional width but unbounded induced width�

Theorem
��
 and the above tractable class together show that the new tractable classes� which are based
on bounded functional width� strictly subsume those based on bounded induced width and those based on
functional constraints�

���

��� Databases with Disjunctive Information

OR�databases extend the relational data model by allowing explicit representation of disjunctive information
�IMV�	�� tuples in a relation contain either ordinary constants or so�called OR�objects� each of which is
associated with a set of constants� called its domain� an Or�object intuitively represents the potential values
that may appear in that position� Each OR�database therefore can be thought of as representing many
relational databases� obtained by replacing every OR�object by some value in its domain� In �IMV�	�� as
part of the database schema� one can impose some restrictions on the occurrence of OR�objects� for example
one can restrict attention to the repeated occurrences or the columns of the relations in which they can
appear�

A query is said to be true in an OR�database i� it is true in all the possible relational databases associated
with it� Although querying OR�databases is intractable in general� �IMV�	� identi�es maximal conditions
for tractable querying for several kinds of schemata� These conditions are based on syntactic features of the
queries� which can be tested e�ciently�

In this section� we �rst reduce the querying problem to the �un�satis�ability problem in PCE by translat�
ing each instance of querying to a theory in PCE� We then show that the translations of each tractable class
of querying identi�ed in �IMV�	� have bounded intricacy� Our proof for this relies crucially on the results
of �IMV�	�� Also� since intricacy is only a su�cient condition for tractability� we cannot use it to show that
these classes are maximal classes for tractable querying�

It turns out that the precise de�nitions of the tractable classes of queries given in �IMV�	� are not used
in our proofs� It su�ces for our purposes that the tractable algorithms of �IMV�	� are correct for these
classes� Since the precise de�nitions are also technically quite involved� we do not reproduce them here� The
interested reader may refer to �IMV�	��

����� Terminology and Notation

In this section� we start by using full �rst�order predicate calculus in order to describe the problem of
querying databases� The following notational conventions will be observed� We use symbols a� b� etc� to
denote constants� symbols o� p� etc� to denote OR�objects� symbols u� v� etc� to denote either OR�objects or
constants� and symbols x� y� etc� to denote variables� A symbol with an arrow �� � over it is used to denote
a tuple �i�e�� a possibly�empty �nite sequence� of objects� for example� �a denotes a tuple of constants� and
�a�x �also written as �a� �x� denotes a tuple of constants followed by a tuple of variables� Upper�case letters are
used to denote corresponding sets of objects� for example� O denotes a set of OR�objects�

The following de�nitions concerning OR�databases are mostly taken from �IMV�	�� An OR�database D
consists of a domain function Dom together with a �nite set of atoms of the form P ��u� where P is some
predicate symbol and �u is a �nite sequence of constants or OR�objects�� The constants are from a �xed
denumerable set U � OR�objects are from another �xed denumerable set V� and the domain function Dom
assigns each OR�object o occurring in D a �nite non�empty non�singleton set of constants from U � The
non�singleton assumption is not restrictive� since any occurrence of an OR�object with singleton domain in
a database can be replaced by the unique constant in its domain�

Three kinds of OR�databases are identi�ed� roughly corresponding to the following restrictions� in type III
databases� certain columns are restricted to contain no OR�objects� type II databases are type III databases
where no OR�object may appear in more than one column� and type I databases further require every OR�
object to occur at most once� Variables in a query which correspond to the columns in which OR�objects
are allowed are called the OR�arguments of the query�

A mapping � that assigns to each OR�object o in a database D a constant in Dom�o� is called a valuation
of D� The result� denoted by D�� of substituting ��o� for each occurrence of an OR�object o in D is known
as an instance of D�� Each such instance is a usual relational database�

�In using the tuple notation we always implicitly assume that the lengths are consistent� for example the number of symbols
in �u must be equal to the arity of predicate P in the expression P ��u��

�These are called models in 	IMV����

�	�

Similarly� �u� denotes the result of substituting ��o� for each occurrence of an OR�object o in the tuple �u
of constants and OR�objects� It follows that

D� � fP ��u�� j P ��u� Dg

A proper query is an existentially quanti�ed conjunctive formula ���x� whose atoms are built from the
predicate symbols in D� constants in U � and variables from a �xed denumerable set W� with the restriction
that no two literals in the query have the same predicate symbol� the query is said to be closed if �x� the free
variables in the query� is empty� A query is normal i� each literal has at most one OR�argument� We often
abbreviate the query ���x� by ��

A query with more that one literal is often written recursively as follows�

���x� � ��yP ��x� �y� �����x� �y�

where P ��x� �y� represents the �rst literal� in which all the variables are from the tuple �x�y and ����x� �y�
represents the rest of the query� If we want to be more careful about the variables shared by P and ��� we
would express such queries as�

���x�� �x�� �x	� � ��y�� �y�P ��x�� �x�� �y�� �y�� �����x�� �x	� �y��

An OR�database D entails a closed query �� denoted by D j#�� i� every instance of D satis�es ��� The
data complexity of a closed query � with respect to a schema S is the complexity of determining whether
any given database D that conforms to S belongs to the set fD j D j#�g� � is tractable with respect to S
i� its data complexity with respect to S is in PTIME�

The answer set� ��D� of a query ���x� to a database D is de�ned as the set

��D� � f�a j D j#���a�g

where �a denotes a tuple of constants�

We denote valuations by conjunctive formulas� For example� the valuation that assigns a� to o� and a�
to o� is denoted by the formula �o�

�
�a� � o�

�
�a��� The empty valuation is denoted by the formula t� The

set of all possible valuations of D can be conveniently represented as a product of the set de�ned using the
construct given below�

De�nition ���� For any �nite set O of OR�Objects� the set Or�O� is de�ned as�

Or�O� � f�o
�
�a� � � � �� o

�
�an� j o O and Dom�o� � fa�� � � � � angg

The valuations over a set O of OR�objects correspond to the clauses in the set product�Or�O�� in the
following way� for any �nite set O of OR�objects� a formula � is a valuation over O i� �� product�Or�O���
We have to be careful about the extreme case� ifO is empty then the only valuation is t and product�Or�O�� �
product�fg� � f �

Since a valuation � of a database D is a conjunction of equality atoms� it follows from property Fy that
D � f�g ��

FPE
D� � f�g for any database D and any valuation ��

����� Query Answering by Checking Satis�ability

We use the standard technique for mapping the problem of database query�answering to propositional sat�
is�ability� �rst expressing the problem using entailment in �rst�order logic� and then transforming it to
propositional satis�ability by considering ground instances of the quanti�ed formulas� We need an appro�
priate domain for generating the ground instances�

�	IMV��� denotes such a literal by lP ��x� �y��
�This relation is denoted by j� in 	IMV���� �Satis�es� here should be taken in the relational database sense� the database

yields a model for the query formula�

�	�

���

P R
� � � �
� � � �
� � � �

Dom��� � Dom��� � f�� �g

� � �x�y�P �x� y� �R�y� x��

Figure
��� OR�database D� and
query �

P ��� �� R��� ��
P ��� �� R��� ��
P ��� �� R��� ��

� � � � � � �
� � � � � � �

�P �I� J� ��R�I� J� for every
combination of values I� J f�� �� �g

Figure
�� Tr�D���� ���

���

De�nition ���� The domain Dom�D� of the database D is de�ned as the set of all constants that either
occur in D or are in Dom�o� for some OR�object o that occurs in D�

Transforming entailment to satis�ability requires considering the complement of the query� Since any
ground query �� i�e�� without any variables� is a formula in PCE� its complement �� is also a formula in
PCE� Recall that �� is the formula in negation normal form which is obtained by appropriately pushing
the negation in to the literals� For an arbitrary query� the set of ground instances are de�ned as follows�

De�nition ���� For any database D and any query �� the set G��� is de�ned inductively as follows�

�� if � has no quanti�ers then G��� � f��g�

�� if � � �x
�x� then
G��� � �fG�
�a�� j a Dom�D�g

It follows that for any database D and any query �� the set G��� consists of ground clausal formulas�
and thus is a theory in PCE� Given a query Q��x� posed to a database D� for every tuple �a we will use G to
construct a theory based on Q��a� and D� such that the theory is satis�able i� �a is not in the answer set� The
collection of all such theories for a �xed schema and a �xed query provides a class of satis�ability problems�

De�nition ���	 For any database D� any query ���x�� and any tuple �a of constants� the translation�
Tr�D����a�� is de�ned to be the theory

D �Or�Dor� �G����a��

The translation� Tr�S���� of a query ���x� with respect to a schema S is de�ned to be the set

fTr�D����a� j D conforms to S and �a is a tuple of constantsg

Since each component of Tr�D����a� is a theory in PCE� Tr�D����a� is also a theory in PCE� For an
example� consider the OR�database D� of Figure
��� where both the OR�objects � and � have the same
domain f�� �g� and the query � � �x�y�P �x� y� � R�y� x��� The translation Tr�D���� ��� contains exactly
the formulas given in Figure
�� where the last schema represents all formulas obtained by substituting each
of I and J by a value in f�� �� �g in all possible ways� In this example� D� entails the query � and the theory
Tr�D���� ��� is unsatis�able� More generally� it can be seen that a tuple �a of constants is an answer to query
���x� over database D i� Tr�D����a� is unsatis�able�

�	�

����� Tractable Algorithms for Querying

We now review the tractable algorithms presented in �IMV�	�� Our proofs will be based on the correctness
of these algorithms�

The recursive procedure EntailsI� is used for querying a Type I database D� EntailsI recursively evaluates
a tractable proper query� ���x�� by evaluating the subquery obtained by removing the �rst literal�

Procedure EntailsI����x�� D�
�� D is a Type I database�

���x� � ��yP ��x� �y� �����x� �y��
Returns the answer set ��D� ��

�� A �� EntailsI	����x� �y�� D
�

�� return	f�a j exists P ��u� D such that

for every valuation � of �u� there is a �b for which

P ��u�� � P ��a��b� and
D
�a��b
E
 Ag

end �EntailsI��

In the base case� when ���x� � ��yP ��x� �y� and �� is empty� A is considered to be the set of all tuples� The
same example which is given after the algorithm for type II databases �next� illustrates EntailsI�

The recursive procedure EntailsII is used for querying a Type II database D� EntailsII decomposes a
tractable normal proper query� ���x�� in two di�erent ways� depending on how the variables are shared among
the literals of the query� In principle� it is similar to EntailsI except that more than one tuple of the relation
corresponding to the �rst literal is combined with the answer to the recursive calls� this is because di�erent
tuples may share OR�objects� If the query contains no OR�arguments� then a standard query evaluation
method is used�

Procedure EntailsII����x�� D�
�� D is a Type II database�

���x� contains some OR�argument�

Returns the answer set ��D� ��

�� if �� �x�� �x�� � ��yz�P � �x�� �y� z� ���� �x�� �x�� �y� ����z�� then f
�� A� �� EntailsII	��� �x�� �x�� �y�� D
�

� A� �� EntailsII	���z�� D
�

�� return	fh�a�� �a�i j exists P � �a���b� o� D such that h �a�� �a�� bi A� and

o� A� for each valuation �g

�� g
�� �� ���x� is of the form ����x� � ��yz�P ��y� z� �����y� z�� ��
�� A� �� EntailsII	����x�D
�

�� A� �� EntailsII	����y� z�� D
�

�� if there exists o such that for each valuation �

there exists constants �b for which

P ��b� o� D and
D
�b� d
E
 A� then

��� return	A�

��� else return		

end �EntailsII��

Consider the type II database D� and query � of Figure
��� EntailsII decomposes the query with empty
�� and �� � R�y� x�� Thus� the set A� is not relevant� and the set A� � R �with arguments reversed�� If
o � �� then for each d in Dom�o� � f�� �g� there is a tuple h�� �i in P and constant b � � such that tuple

	The exact names of the algorithms and their exact steps di�er from those in 	IMV��� since they use the same name for
more than one algorithm and the notation is somewhat di�erent� The essential ideas however remain the same�

�	�

h�� di is in A�� Thus� the query is answered �yes�� Note that� even if we had removed the tuple h�� �i from
P to make D� a type I database� EntailsI would return �yes��

The recursive procedure EntailsIII� used for querying a Type III database D� is quite di�erent from
EntailsI and EntailsII� Although EntailsIII decomposes a tractable normal proper query� ���x�� as in Entails��
it attempts to remove those values which cause a �yes� answer from the domains of OR�objects� It iterates
this process� until either there is a de�nite �yes� answer� or no such reduction in domain is possible� This
iteration is necessary� since OR�objects can be shared across columns of the database�

Procedure EntailsIII��� D�
�� D is a Type III database�

� � ��xP ��x� �����x��
Returns ��yes�� iff ��D� �� 	 ��

�� V �� set of OR�objects in P relation of D�

�� D� �� D� Dom� � Dom� i �� ��

� L� �� f�a j EntailsIII	����a�� D
g�
�� repeat f
�� if there is o in V such that for each valuation �

there is �a for which P ��a� Di� and �a Li

then return	��yes��
�

�� for each o V � modify the domains as follows�

Domi���o� �� Domi�o� � fd j there is �a for which

P ��a� Di�o
�
�d� and �a Li g�

�� let Di�� be the database obtained from Di

by replacing Domi by Domi���

�� Li�� �� f�a j EntailsIII	����a�� Di��
g�
�� if Li�� � Li then return	��no��

��� else i �� i��

��� g
end �EntailsIII��

Since the conditions in lines
 and � are almost identical� it is possible to combine them� This is done by
removing line
� and adding the following line after line ��

return ��yes�� if Domi���o� � 	 for some o in V �

It follows directly that the modi�ed algorithm� say EntailsIII�� returns the same answers as EntailsIII�
EntailsIII� turns out to be more useful for our purposes� Intuitively� each iteration of the �repeat� loop
removes those values from the domain of OR�objects which will cause the query to be answered �yes�� The
algorithm returns �yes� i� the domain of some OR�object becomes empty in this process�

����� Describing Tractable Queries Using Intricacy

We will show that the translations of the tractable cases identi�ed in �IMV�	� produce classes of theories
with bounded intricacy� We will prove our claim for each of the three types of databases by induction on the
length of the queries� Our proofs will be based on the correctness of the algorithms presented in �IMV�	��
which are reviewed in Section
�
��� for answering the tractable queries� The basic idea is to show that
any tuple is in the answer set for a database i� the translated theory is not k�consistent� where k is a �xed
number determined by the query� Since the translated theory is unsatis�able i� the tuple is in the answer
set� we will obtain the desired result� i�e�� the intricacy of each unsatis�able theory is at most k�

Our proofs of non k�consistency will essentially �simulate� the algorithms of �IMV�	�� in the sense that
queries will be recursively decomposed in the same way as in the algorithms� There are two intermediate
lemmas� Lemma
��� will be used for proving the base cases of induction� where the query is a single literal�

�		

Lemma
�� will be a technical result about the translated theories� which will be used for extending the
inductive hypothesis to the full query containing an additional literal� This technical result will be used in
the inductive cases of our proofs�

We now illustrate the intuitions behind our proof for Type II databases using the database D� and the
query � given in Figure
��� Recall from Section
�
�� that �� � R�y� x�� A� � R �with arguments reversed��
and the OR�object contributing to the �yes� answer is �� whose domain is f�� �g� Suppose � denotes the
translated theory Tr�D���� ���� Consider the two valuations of �� �� which assigns �� and �� which assigns
�� The two relevant tuples� corresponding to these valuations� in A� are h�� �i and h�� �i� respectively�

For the base cases� we show that the translated theory for the query �� has intricacy �� for each of the
two valuations �and the corresponding tuple in A�� of �� Recall that a theory has intricacy � if the rewrite
system FPE reduces it to ffg� Consider the valuation �� and the tuple h�� �i in A�� The translated theory
for this case is

�� � Tr�R��� R�y� x�� h�� �i� � fR��� ��� R��� ��� R��� ����R��� ��g

Using Property Dy of FPE� we obtain that �� is equivalent �with respect to FPE� to the theory

ff � R��� ��� R��� ����R�����g

which is equivalent �with respect to FPE� to ffg� using Proposition 	��� Thus� �� is not ��consistent�
Similarly� �� � Tr�R��� R�y� x�� h�� �i� is also not ��consistent�

Now consider the inductive case� We will �rst show that both ��� � �� and ��� � �� are in the
�xpoint lfp�T����� Consider the theory � � f� � �g� some of whose formulas are P ��� ��� R��� ��� and
�P ��� �� � �R��� ��� Using property Dy� this subset of formulas is equivalent �with respect to FPE� to
fP ��� ��� R��� ��� f� fg� which is then equivalent �with respect to FPE� to ffg� It follows that ��� � �� is in
lfp�T����� We can similarly show that ��� � �� is in lfp�T����

Thus� some of the formulas in � � lfp�T���� are ��� � ��� ��� � ��� and �� � �� � �� � ��� Using
property Dy as above� we obtain that � � lfp�T���� is equivalent �with respect to FPE� to ffg� Thus� � is
not ��consistent�

The base case of the above argument is formalized in Lemma
���� Lemma
�� formalizes the argument
used in obtaining that ��� � �� and ��� � �� are in the �xpoint lfp�T����� Lemma
��� formalizes the
argument used in obtaining that � is not ��consistent� The proofs of both Lemmas
��� and
��� depend on
Proposition
�	 about products� given in Section
���

Lemma ���	 For any database D	 any query ���x� � ��yP ��x� �y�	 any tuple �a of constants	 and any tuple �u
of constants and OR�objects
 if P ��a� �u� D	 identical variables in �x�y correspond to identical entries in �a�u
�i�e�	 �x� �y uni�es with �a�u�	 and k is the number of OR�objects in �u then Tr�D����a� is not k�consistent�

Proof Abbreviate the theory Tr�D����a� by �� Given the conditions of the lemma� we need to show that
� is not k�consistent� We show this by a case analysis on k�

Suppose k � �� i�e�� �a�u is a sequence of constants� Since �P ��a� �u� G����a��� we have
fP ��a� �u���P ��a� �u�g � �� From property Dy using Propositions 	�� and 	��� we obtain that � �FPE f � i�e�� �
is not ��consistent�

Now consider the case when k � �� Suppose O � fo�� � � � � okg is the set of OR�objects in �u� Consider
any � product�Or�O�� and let � be � �� It follows that � is a valuation over O� P ��a� �u�� D�� and
�P ��a� �u�� G����a�� since �a� �u� is a sequence of constants� Thus� using the same reasoning as above� we
obtain that ��fD�g is not ��consistent� and then fromProposition 	��� that ��fD�g�f�g is not ��consistent�
Since D � � and D � f�g ��

FPE
D� � f�g� it follows from Proposition 	��� that � � f�g is not ��consistent�

and then from Proposition
�
 that � � � � lfp�T��k�� Since this is true for any � product�Or�O��� we
obtain that product�Or�O�� � lfp�T��k�� It then follows from Proposition
�	 that � is not k�consistent�

Lemma ���� For any database D	 any proper query ���x�� �x�� �x	� � ��y��y�P ��x�� �x�� �y�� �y�� � ����x�� �x	� �y��	
any tuples �a���a���a	 of constants	 any tuples �u�� �u� of constants and OR�objects	 any valuation � over the OR�
objects in �u��u�	 and any number k
 if P ��a���a�� �u��� �u��� D� and Tr�D������a��a	�u��� is not k�consistent
then �� lfp�T��k�m�	 where m is the number of OR�objects in �u��u� and � is the theory Tr�D����a��a��a	��

�	

Proof Denote the theory Tr�D������a��a	�u��� by � and the theory D�Or�Dor ��G�P ��a���a�� �u��� �u����
����a���a	� �u���� by ��� Note that �� � ��

 � f�g � f�g �D� �Or�Dor� �G�����a���a	� �u����

�de�nition�

��
FPE

f�g �D� �Or�Dor� �G�P ��a���a�� �u��� �u��� �����a���a	� �u����

�property Ey and modularity� since P ��a���a�� �u��� �u��� D��

��
FPE

f�g � �� �using modularity� since f�g �D� ��
FPE

f�g �D�

Since is not k�consistent� it follows from Proposition 	��� that � f�g is not k�consistent� and then
from Proposition 	��� that f�g � �� is not k�consistent� Since �� � �� it follows from Proposition 	��� that
f�g � � is not k�consistent� and then from Proposition
�
 that �� lfp�T��k�m��

The next three propositions prove our claim for type I� II� and III databases� respectively� As remarked
earlier� the precise de�nitions of the tractable classes of queries given in �IMV�	� are not used in our proofs�
It su�ces for our purposes that the tractable algorithms of �IMV�	� are correct for these classes�

Proposition ���� For any type I database D	 any tractable proper query ���x�	 and any tuple �a of constants

�a ��D� i� Tr�D����a� is not k�consistent	 where k is the number of OR�arguments in the query�

Proof If Tr�D����a� is not k�consistent� then f lfp�TTr�D����a��k�� It then follows from Theorem 	���

that Tr�D����a� is not satis�able� i�e�� �a ��D��

We will prove the only�if side of the claim by induction on the number of literals �say� n� in the query ��

�base case� n � ��� The query ���x� is of the form ��yP ��x� �y�� Suppose �a ��D�� We obtain from EntailsI
that there is a tuple �u of constants and OR�objects such that P ��a�u� D� and �x� �y uni�es with �a�u� Using
Lemma
���� we obtain Tr�D����a� is not p�consistent� where p is the number of OR�objects in �u� Since
p � k� we obtain from Proposition 	��� that Tr�D����a� is not k�consistent�

�inductive case� n � ��� It follows from Lemma 	�� of �IMV�	� that the query � is of the form
���x�� �x�� �x	� � ��y�� �y�P ��x�� �x�� �y�� �y�������x�� �x	� �y��� where the inductive conditions hold for the subquery
��� Suppose �a � �a��a��a	 ��D�� We obtain from EntailsI of �IMV�	� that there is a tuple �u��u� of constants
and OR�objects such that for any valuation � of OR�objects in �u��u�� we have P ��a���a�� �u��� �u��� D� and
�a��a	�u�� ���D���� Let O denote the set of OR�objects in �u��u��

Since �� has fewer than n literals� we can use the inductive hypothesis to obtain that Tr�D�����a��a	�u���
is not q�consistent� where q is the number of OR�arguments in ��� Using Proposition 	���� we obtain
Tr�D������a��a	�u��� is not q�consistent� Using Lemma
��� we then obtain that � � lfp�T��p�q� where
� � Tr�D����a� and p is the number of OR�objects in �u��u��

Since the above holds for each valuation �� we obtain that product�Or�O�� � lfp�T��p�q�� Using Proposi�
tion
�	� we obtain that � is not �p" q��consistent� Since q � �k� p�� we obtain from Proposition 	��� that
� is not k�consistent�

Proposition ���� For any type II database D	 any tractable normal proper query ���x�	 and any tuple �a
of constants
 �a ��D� i� Tr�D����a� is not k�consistent	 where k is the number of OR�arguments in the
query�

Proof The proof of Proposition
��� will work for this proposition as well� though it will use EntailsII
instead of EntailsI and Lemma
�	 instead of Lemma 	�� of �IMV�	�� In the base case� when the query ���x� is

�
Though EntailsI uses a stronger condition in which each P ��a���a�� �u��� �u��� should come from the same tuple in the
database D the weaker version su�ces for our proof� Also this weaker version is needed for the proof regarding Type II

databases�

�	�

of the form ��yP ��x� �y� and �a ��D�� it again follows �now from EntailsII� that there is a tuple �u of constants
and OR�objects such that P ��a�u� D� and �x� �y uni�es with �a�u� Note that both ways of decomposing the
query in EntailsII are covered by the same inductive case of that proof� we had used a weaker condition in
the inductive case in anticipation of this theorem� Also� since each literal in a normal query contains at most
one OR�argument� p is at most � in both the base and the inductive cases�

We now prove the claim for type III databases� based on the correctness of the algorithm EntailsIII�

�the modi�ed version of the algorithm given in Figure
 of �IMV�	�� of Section
�
��� The basic idea in our
proof is to show that each value removed from a domain forces the corresponding literal in the �xpoint�

Proposition ���� For any type III database D	 any tractable normal proper query ���x�	 and any tuple �a
of constants
 �a ��D� i� Tr�D����a� is not k�consistent	 where k is the number of OR�arguments in the
query�

Proof If Tr�D����a� is not k�consistent� then f lfp�TTr�D����a��k�� It then follows from Theorem 	���

that Tr�D����a� is not satis�able� i�e�� �a ��D��

We will prove the only�if side of the claim by induction on the number of literals �say� n� in the query�
Let�s use � to denote the theory Tr�D����a� and to denote the theory Viv��� k��

The base case �n � �� is exactly as in the proof of Proposition
���� Suppose the query ���x� is of the
form ��yP ��x� �y� and �a ��D�� We obtain from EntailsIII� that there is a tuple �u of constants and OR�objects
such that P ��a�u� D� and �x� �y uni�es with �a�u�

For the inductive case �n � ��� it follows from Lemma
�	 �IMV�	� that the query ���x� is of the form
���x�� �x�� �x	� � ��y�� �y�P ��x�� �x�� �y�� �y�������x�� �x	� �y��� where the inductive conditions hold for the subquery
��� Suppose �a � �a��a��a	 ��D�� Thus� for some r � �� the modi�ed algorithm returns �yes� answer in the
rth iteration of the �repeat� loop� Thus� for some OR�object� say o� Domr �o� � 	 in Dr � We will show by
induction on i that for any i � � � � r� any OR�object w in D�

�d � d Dom�w� �Domi�w�� �w �
�
�d� lfp�T��k�

If we succeed in showing this� then� since this should hold for w � o� we obtain �d Dom�o� � �o �
�
� d�

lfp�T��k�� In other words� product�Or�fug�� � lfp�T��k�� It then follows from Proposition
�	 that � is not
k�consistent�

All that is left is to prove the inductive claim mentioned above� The base case� when i � �� is trivial
since Dom�w� � Dom��w�� So consider the inductive case� when i � �� If Domi�w� � Domi���w� then the
result follows from the inductive hypothesis� Otherwise� consider any d Domi���w� �Domi�w� and let
� � �w

�
� d�� We obtain from EntailsIII� that there is a tuple �u��u� of constants and OR�objects such that

P ��a���a�� �u��� �u��� Di��� and �a��a	�u�� ���Di����� From the outer inductive hypothesis� we obtain that
Tr�Di��������a��a	�u��� is not p�consistent� where p is the number of OR�arguments in ��� Using Lemma
���
we obtain that �w �

�
�d� lfp�T�i�� � p" �� where �

i�� denotes the theory Tr�Di������a�� Since p" � � k� we
obtain fromProposition 	��� that �w �

�
�d� lfp�T�i���k�� Using the inner inductive hypothesis� we obtain from

modularity and property Ey that �w �
�
�d� lfp�T��k�� where � � ��f�w �

�
�d� j d Dom�w��Domi�� �w�g�

Thus� �w �
�
�d� lfp�T��k�� This proves the inner inductive claim�

It follows directly from the above three propositions that Tr��� S� for any closed proper query � and any
OR�database schema S has bounded intricacy in each of the following three cases�

�� � is tractable with respect to the type I schema S�

�� the normal query � is tractable with respect to the type II schema S� and

�� the normal query � is tractable with respect to the type III schema S�

The bound on the intricacy in each case is the number of OR�arguments in the query ��

�	

Since the syntactic criteria of �IMV�	� provide a complete characterization of tractable queries� it follows
that bounded intricacy also provides a complete characterization of these tractable queries� a proper closed
query � is tractable with respect to a schema S �� is also required to be normal if S is of type II or III� i�
there is a k N such that the intricacy of each unsatis�able theory in Tr��� S� is at most k�

Note that our proofs rely crucially on the results in �IMV�	�� Moreover� the characterization of tractable
queries in �IMV�	� is syntactic and can be checked very e�ciently� while determining intricacy of any given
theory is not known to be an easy problem� However� we have shown that our notion of �bounded intricacy�
does cover exactly all the tractable closed proper queries for the OR�databases considered in �IMV�	��

��� Disjunctive Logic Programming

For our purposes� a disjunctive logic program �DLP� �LJR��� is a basic clausal theory in PC� without the
equality predicate

�
�� A class of DLP is tractable i� the satis�ability problem for it is tractable� From our

previous results� we know that the family of DLP with intricacy k is tractable� but we have no e�cient
syntactic check to determine the intricacy of any particular DLP�

We present here a new family DLP����DLP���� � � � of tractable classes of DLP for which membership can
be tested in polynomial time� and which have the property that all unsatis�able DLP in class DLP�k� have
intricacy at most k�

In e�ect� the construction of class DLP�k� is inspired by the notion of intricacy� To determine that the
intricacy of a theory is less than k� we need to consider� according to the de�nition� all clauses of size k or
less� which is an exponential number� How could we limit the set of clauses that need to be looked at% One
idea is to consider only those clauses �of size k or less� which are immediate subclauses of existing clauses
in the theory� By also �xing an ordering on the clauses� we ensure that the number of clauses considered
is only polynomial in both k and the size of the DLP� To make things work� while constructing a �xpoint�
we simplify the DLP by removing any clause with a subclause in the �xpoint and by keeping the theory
irreducible with respect to FP�

Our main result is then that if the class of simpli�ed DLPs is known to have bounded intricacy� then the
original DLPs also have bounded intricacy� Thus� we obtain a family of tractable DLPs classes� one class
for each value of k� Since the rewrite system FPE is identical to FP for PCE without equality� we use FP in
this section�

����� A Tractable Family of DLPs

We present the details of the family DLP����DLP���� � � � of DLPs and prove that they are tractable� We
also present a polynomial time algorithm for testing membership in each of them� The classes are de�ned
inductively� the base class DLP��� consists of theories with intricacy � that are discussed in Section ���� For
each k � �� the class DLP�k� consists of theories where considering the immediate subclauses of only the
clauses of size at most k in the theory simpli�es it to a theory in DLP����

Let �� be any total ordering on all basic clauses of PC without equality� DLP���� the base class� is de�ned
to the class containing all Horn� ��CNF� positive� and negative theories� For any k � �� the class DLP�k� is
de�ned using the algorithm Member�dlp given in Figure
���

For any DLP � and number k � �� the algorithm Member�dlp iterates over each non�unit clause of � of
size at most k� It then iterates over each immediate subclause of the selected clause� If the selected subclause
is inferred using �FP from � then the subclause replaces the selected clause in �� This process continues
until either � is in DLP��� or no such subclause can be inferred� Note that in line 	 of the algorithm�
 is
the next clause in the ordering ��� some of whose immediate subclauses have not been selected �in line
�
since the last change to the theory �� In line
� � is the next immediate subclause of
 in the ordering ��
which has not been selected since the last change to the theory �� The repeat loop terminates when there
is no change to � for all possible choices of
 and ��

For example� consider k � � and theory �� � f�P � Q �R�� �P � Q� �R�g� For
 � �P � Q �R� and

�	�

���

Algorithm Member�dlp
Input
 a DLP �� a number k � ��
Output
 ��yes�� if � DLP�k�� ��no�� otherwise�

�� repeat

�� � �� FPF����
� if � DLP��� then return ��yes���

�� select next clause
 � where � � j
j � k�
�� select next immediate subclause � of
�
�� if � �FP � then

�� � �� �� f
g � f�g�
�� until no change in ��
�� return ��no���

end�

Figure
��� Testing membership in DLP�k�

���

� � �P �Q�� we have FPF��� � f��g� � ffg� Thus� the new theory� say ���� is f�P � Q�� �P � Q� �R�g�
Now� for
 � �P � Q � � R� and � � �P � Q�� we have FPF���� � f� �g� � ffg� Since the new theory
f�P �Q�� �P �Q�g is a ��CNF theory� �� DLP����

For another example� consider k � � and theory �� � f��P �Q�R�� ��P �Q� �S�� ��P� �R� S�g�
For
 � �� P � Q � R� and � � �� P � Q�� we have FPF��� � f� �g� � ffg� Since the new theory
f��P �Q�� ��P �Q� �S�� ��P� �R � S�g is a Horn theory� �� DLP����

Lemma ���� The intricacy of any unsatis�able clausal DLP in class DLP�k� is at most k�

Proof Consider any unsatis�able clausal DLP� '� in the class DLP�k�� All we need to show is that ' is
not k�consistent� For k � �� it follows from the observations in Section ��� that ' is not ��consistent� Now
we consider the case when k � ��

Let be a variable whose value at any step of the algorithm Member�dlp �with input ' and k� is the
theory obtained from ' by performing all additions and deletions of clauses that happened at line until
that step of the execution �i�e�� ignoring all calls to FPF�� It follows from the modularity and convergence
of FP that the assertion FPF� � � � is an invariant just after line �� Since algorithm Member�dlp returns
�yes� and any unsatis�able DLP in DLP��� is not ��consistent� FPF� � is also not ��consistent for the last
value of � just before termination�

We now show that if a clause � is added to � at line � then � lfp�T��k���� Note that any such � is
in E�'� k � ��� Assume the claim is false � let � be the �rst clause that violates this claim and let �� and
 � be the values of � and just before � is added to �� then � � ' � lfp�T��k���� From line � we have
that �� �FP �� and thence� from the invariant and the modularity of FP� that � �FP �� It then follows from
Proposition 	�� that '� lfp�T��k��� �FP �� and then from the de�nition of lfp�T��k��� that � lfp�T��k����
This contradiction proves our claim�

Thus� � ' � lfp�T��k��� every time through the loop� Since at the end FPF� � is not ��consistent
and k � �� it follows from Proposition 	��� that '� lfp�T��k��� is not �k� ���consistent� Using the �xpoint
construction� we then obtain that ' is not �k � ���consistent�

It follows from the above lemma and Theorem
�� that DLP�k� is tractable for each k� We now show that
even a naive implementation of algorithmMember�dlp runs in time O�n	�� where n is the size of �� For this�
we will require that the total ordering �� on clauses be e�ciently computable� for example� a lexicographic
ordering based on some total ordering on literals�

�	�

Lemma ���� If �� is a lexicographic ordering then for any DLP � of size n	 algorithm Member�dlp with
input � takes time O�n	��

Proof We assume that the atoms in each clause as well as the clauses in � are always kept sorted� This
is easy to enforce at the start by a preprocessing step that does the sorting� this can be done in O�n log n�
time� Later� we always add the new clause � in line in such a way that the sorting is preserved� this
can be done in O�n� time� With this ordering� the two selections in lines 	 and
 can be made by properly
maintaining counters to record the previous selections� this can be done in O�log n� time each�

Since each clause in � can be shortened to a unit clause� line can be executed at most O�n� times�
Since each addition takes O�n� time� the total cost of executing line is O�n��� We now compute the cost
of executing other lines�

The clause and the subclause that causes the change each time could be the last possible selections� causing
O�n� iterations of the repeat loop each time line is executed� The cost of each iteration is dominated by
the calls to FPF in lines � and � Since � is a clausal theory� each of these calls cost O�n� time� Thus� the
total time for executing the algorithm Member�dlp is O�n	��

We next sketch how the time complexity of determining membership in the class DLP�k� can be further
reduced to quadratic in the size of the input DLP� The idea is to exploit the modularity of FPF to always
incrementally compute the results of the two calls to FPF in lines � and � The incremental version of the
algorithm explicitly maintains �
� �� � FPF���f��g� for all immediate subclauses � of all clauses
 in ��
Each time a clause � is replaced by an immediate subclause
 which di�ers only in some literal �� the literal
� is removed from the clause obtained from � in each of the s so maintained� FPF is then incrementally
applied to each of the new s� The incremental algorithm also has to create new s corresponding to the
immediate subclauses of
 that are added to ��

As argued in the proof of the above lemma� the total cost of preprocessing �which does the sorting� and
executing line is O�n��� The incremental algorithm starts with n di�erent s� Each time a clause of size
m is replaced by a immediate subclause� m � � new s are created� Since each clause can be shortened to
a unit clause in the worst case� at most n�k � ���� new s are created� Thus� the total number of s ever
created is n�k " ����� Since the running time of the algorithm is dominated by executing FPF on each of
these s� costing O�n� time each� the total execution time is O�n�k�� Thus� for any �xed k� the incremental
algorithm runs is quadratic time�

��	 Conclusions

We presented the bounded intricacy criterion for tractability based on a �xpoint construction using the
rewrite system FP� given any class of theories in PCE and some �xed number k� if each unsatis�able theory
in the class has intricacy less than k then the satis�ability problem for the class is tractable� This criterion
seems potentially valuable� since several previously identi�ed non�trivial tractable classes have bounded
intricacy� �The criterion is not trivial as demonstrated by the class of theories encoding the pigeon hole
principle� which is tractable but does not bounded intricacy�� This criterion was useful for identifying new
non�trivial tractable classes� as demonstrated in the areas of constraint satisfaction and disjunctive logic
programming� We have not yet found any new non�trivial tractable class based on another criterion for
tractability which requires that the intricacy of satis�able theories in the class be bounded�

Note that the bounded intricacy criterion does not require theories to be in conjunctive normal form�
thus allowing us to use it for constraint satisfaction problems� for example�

Since we have no e�cient algorithm to determine the intricacy of �unsatis�able� theories� we propose to
use the bounded intricacy criterion only as a theoretical tool� not to be used at run�time� to analyze classes
of theories in PCE� Apart from discovering new tractable classes of satis�ability� it can be used for another
closely related task� given a class of theories� determine whether the satis�ability problem for this class is
tractable� All we need to do is to analyze the �xpoint construction for unsatis�able theories for detecting the
generation of the clause f � This obviates the need for discovering new algorithms for this class and proving

�
�

the correctness and tractability of at least one of them� Note that our approach is guaranteed to sometimes
fail� since bounded intricacy is not a necessary condition for tractability� Also� even if our approach works�
it does not necessarily provide the most e�cient algorithm for the given class of theories which has been
found to be tractable� Note that the various properties of least �xpoints and admissible rewrite systems are
useful in proving results about intricacy�

�
�

Chapter �

Conclusions

The goal of this research was to deal with the intractability of reasoning in KR systems� We made contri�
butions to three out of the four approaches listed in Chapter � for dealing with the intractability problem�
In this chapter� we review our contributions� discuss the limitations of our approach� and suggest directions
for future research

��� Contributions

Boolean Constraint Propagation �BCP� �McA��� McA��� is widely used for linear�time but incomplete
reasoning with clausal propositional theories� However� none of its extensions to the non�clausal case� that
have been proposed previously� are known to be tractable �i�e�� provably in PTIME�� We developed fact
propagation �FP�� which tractably extends BCP to non�clausal theories� We presented a quadratic�time
algorithm for FP� which runs in linear time for clausal theories� Moreover� FP is proved to be more complete
than CNF�BCP� a previously�proposed extension of BCP to non�clausal theories� We know of no other
reasoner for arbitrary propositional theories that is tractable and at least as complete as FP�

There is a considerable interest in developing anytime reasoners �BD���� which are complete reasoners
that provide partial answers even if they are stopped prematurely� the completeness of the answer improves
with the time used in computing the answer� Anytime reasoners could be also used for providing a quick
��rst�cut� to a problem� which can be improved later� Extending FP� we developed a family of increasingly�
complete tractable reasoners which could be used for specifying the partial answers of an anytime reasoner�
Although families of increasingly�complete tractable reasoners were previously known for the clausal case
�c�f� �GS��� CS��a��� we know of no other such family of reasoners for arbitrary propositional theories� Our
technique for generating these reasoners is based on restricting the length of the clauses used in chaining �i�e��
Modus Ponens�� We provided an alternative characterization� based on a �xpoint construction using FP� of
the reasoners in our anytime family� This �xpoint characterization was then used to de�ne a transformation of
arbitrary propositional theories into logically equivalent �vivid� theories� i�e�� theories for which the tractable
reasoner FP is complete �our de�nition of vividness��

Since reasoning problems in particular applications are often restricted cases of general reasoning� it is
important to identify tractable classes of reasoning problems� Based on FP� we developed a new property�
called bounded intricacy� which is shared by a variety of tractable classes that were presented previously�
for example� in the areas of propositional satis�ability �clausal�� constraint satisfaction� and OR�databases�
Although proving bounded intricacy for these classes required domain�speci�c techniques� which are based
on the original tractability proofs� bounded intricacy is one more tool available for showing that a family of
problems arising in some application is tractable� As we demonstrated in the case of constraint satisfaction
and disjunctive logic programs� bounded intricacy �for low values of intricacy� can be also used to uncover
new tractable classes� which can then be checked for applicability� Since there are tractable classes that do
not have bounded intricacy� bounded intricacy also seems to provide some new insights into the structure of

�
�

tractable problems� Filtering out classes with unbounded intricacy may be used as a ��rst cut� in eliminating
intractable classes of reasoning problems�

��� Directions for Future Research

We now suggest several directions for future research� which are mainly motivated by the limitations of our
current approach� Success in the directions for future research might remove some limitations�

Rewrite Systems for Tractable Reasoning We have used a rewrite system to specify FP� a sound and
tractable �but incomplete� reasoner for propositional logic� We believe that rewrite systems �with restrictions
such as convergence� etc�� can be used more generally� as a tool for describing �tractable� reasoners� To
support this hypothesis� numerous other issues need to be �rst resolved� Can we use rewrite systems for
specifying tractable reasoners for other logics� for example� �rst�order logic and intuitionistic logic% Will
the properties of convergence and modularity be useful for such rewrite systems% Would we need more
such properties for restricting the space of rewrite systems that are useful for tractable reasoning% Can we
axiomatize in a traditional way the logical consequence relations based on these rewrite systems% Can we
provide model�theoretic semantics for them% Positive answers to these questions would be very useful�

FP is an admissible rewrite system for incomplete reasoning� However� it seems possible to add some more
rewrite rules to FP� and yet retain admissibility� It seems unlikely that there are �maximally�admissible�
rewrite systems� in the sense that adding any new rule makes them inadmissible� It is more likely that there
are a number of admissible rewrite systems that are incomparable in completeness� possibly with di�erent
time complexities� For any task� ideally we should be able to select one or more of these depending on the
requirements of the speci�c task� It would be useful to develop a systematic approach for generating and
selecting among these admissible rewrite systems� possibly in a task�speci�c way� A possible approach might
be in the style of the automated completion algorithm of Knuth and Bendix �KB�� which systematically
adds rewrite rules for obtaining con�uent rewrite systems�

E�cient Vivi�cation and Reasoning We introduced a transformation �Viv� on theories that makes
them vivid� i�e�� converts them into logically equivalent theories for which an e�cient refutation�reasoner
based on FP is complete in inferring clauses� However� Viv is de�ned using a �xpoint construction which is
very ine�cient� In particular� there are many clauses that could be ignored during the construction of the
�xpoint� and yet the same vivid theory would be obtained� A direction for future research is to develop an
optimized version of Viv transformation that adds as few clauses as possible for obtaining a vivid theory�
This would increase the e�ciency of the various reasoners in the family presented in Chapter 	� since they
are characterized based on the Viv transformation� Of course� a lower bound complexity result on the time
needed to compute Viv would be useful to indicate the limits of such improvements� A related research issue
is to develop a model�theoretic semantics for these reasoners�

Proving Bounded Intricacy Although we used the notion of product �Section
��� several times in
proving the bounded intricacy of some class of theories� we needed to rely on several occasions on previous�
domain�speci�c proofs in order to prove that some classes of theories have bounded intricacy� It would be
useful to develop a more powerful and general proof technique for demonstrating bounded intricacy � one
that can be tried on any new class of theories that is encountered� This would advance the art of developing
tractable deduction algorithms for classes of theories that are found to be of interest�

All our tractability claims are based on bounding the intricacy of unsatis�able theories in a class� We
know that bounding the intricacy of satis�able theories also leads to tractability� Further research is needed
to determine whether this criterion leads to any new interesting tractability classes�

Experimental Evaluation and Applications The algorithms for rewriting with respect to FP and
for vivi�cation have not been implemented� We need to implement them and experiment with reasoning

�
�

problems in order to determine their e�cacy� These problems could be randomly generated or may be
obtained from some �real�world� application� Recently� there have been some interesting empirical results
regarding the di�culty of solving randomly�generated reasoning problems �c�f� see �CKT��� MSL����� It
would be useful to determine whether similar results hold for our algorithms�

Approximations This work contributes indirectly towards the fourth approach �mentioned in Section ����
to the intractability of reasoning� namely� explicitly approximating the information told to the KR system�
and�or the queries asked of it� In related work �DE��� �based on earlier work in �BE����� we restrict the
internal representation to a tractable subset of the highly expressive Ask and Tell languages� information and
queries in the expressive languages are then suitably approximated by the formulas in the tractable language�
An open problem is to apply intricacy to �nd tractable languages appropriate for these approximations�

To illustrate this approach� consider a KR system that maintains positive propositional information about
people and their occupations� Even if we restrict to information about a single person� it can be shown that
answering queries is intractable� essentially because indeterminate information� in the form of disjunctions�
is hard to reason with� Suppose however that we select a �small� subset of disjunctions which we choose to
represent accurately � this set is called the vocabulary of approximations� Now the KR system� when told
some sentence either represents it precisely� or if not possible� approximates it� in a principled way� using
some formula in the vocabulary� For example� the statement �Mary is either a lecturer or a teacher� may
be approximated to �Mary is an educator� where �educator� is a disjunction of �lecturer�� �teacher�� and
�professor�� �This of course may lead to some loss of information��

The KR system containing these approximations can then be used for answering queries posed to the
KR system� Some queries can be answered precisely� given what is stored in the KR system� For example�
the query �Is Mary an educator%� will be answered correctly� In other situations� answering the query is
itself too hard� in this case the query is also approximated� For example� while both the queries� �Is Mary
a teacher or a professor%� and �Is Mary a lecturer or a teacher%� are answered �yes� after approximating
them� this answer is correct only for the later query� In many cases� however� we can guarantee either the
soundness or completeness of the answers� The main payo� is that computing these approximate answers is
often tractable�

��� Summary

This document contributes some approaches to deal with the intractability of deductive reasoning in knowl�
edge representation systems� It presents the only known tractable extension of boolean constraint propaga�
tion to non�clausal theories� It presents a family of increasingly complete� sound� and tractable reasoners�
which can be used for anytime reasoning� It presents a new tool for proving that a family of problems arising
in some application is tractable�

�
	

Appendix A

Axiomatic Proof Theory for PCE

An axiomatization of PCE is obtained in the usual way by adding the propositional variants of re�exivity
and substitutivity axioms for equality �Fit��� to an axiomatization of PC �Men�	�� For the purpose of this
axiomatization alone� we use the abbreviation �
 � to denote the formula ����� ��� For any n� if P is
any n�place predicate� a� a�� � � � � an and b�� � � � � bn are any constants� and �� �� and � are any formulas of
PCE� then the following are axioms of PCE�

�� a
�
�a

�� �a�
�
�b� � � � �� an

�
�bn�
 �P �a�� � � � � an�
 P �b�� � � � � bn��

�� �
 ��
 ��

	� ��
 ��
 ���
 ���
 ��
 ��
 ���

� ���
���
 ����
 ��
 ��

The only rule of inference of PCE is modus ponens� � is a direct consequence of � and �
 ��

PCE can also be viewed as �rst�order predicate calculus� FOPC� with equality �Men�	� but without�

�� any variables and quanti�ers� and

�� any functions other than constants�

except in the axioms �including equality� and the rules of inference�

�

Appendix B

A Ptime CNF Transformation

Although there is a well�known �Coo�� clausal form transformation that does not cause exponential increase
in size of theories� it requires adding new atoms corresponding to their subformulas� We will show that the
clausal form of a disjunctive formula is always irreducible with respect to CBCP� that is� clausal BCP does
not do any simpli�cation of the clausal form of disjunctive formulas� Since this holds even for disjunctive
subformulas of conjunctive formulas� it follows that this clausal form transformation is not at all conducive
for reasoning with clausal BCP� We �rst formally de�ne this transformation�

De�nition B�� For any formula � in a theory �� the formula ,� is de�ned as follows�

�� if � is a fact then ,� � ��

�� otherwise� ,� is a new generated atom that does not occur in �� and has not been generated before�

The function PCNF� which maps formulas and theories to clausal theories� is de�ned recursively as follows�

�� for any fact �� PCNF��� � �����

�� for any formula �� PCNF������ � PCNF������ � PCNF����

�� for any formulas � � �� � � � �� �n �n � ���

PCNF��� �
S
fPCNF��i� j i � � � � �ng �

hh
� ,� � ,�� � � � �� ,�n

ii
�
hh
,�� � ,�i j i � � � � �n

ii
�

	� for any formulas � � �� � � � �� �n �n � ���

PCNF��� �
S
fPCNF��i� j i � � � � �ng �

hh
,�� � ,�� � � � �� � ,�n

ii
�
hh
� ,� � ,�i j i � � � � �n

ii
�

� for any bag B of formulas� PCNF���B�� �
S
fPCNF��� j � Bg �

hh
,� j � B

ii
�

For example� consider the theory � � ���Q � �P � ��P �Q���� and suppose the new atoms generated
are� A for ��P �Q�� D for �P � A�� and C for �Q �D�� The Ptime CNF transformation� PCNF��� is the
theory� say � consisting of the following formulas�

�A ��P �Q� A � P� A � �Q�

D ��P � �A� �D � P� �D �A�

�C �Q �D� C � �Q� C � �D�

C

�
�

Since is irreducible with respect to CBCP� clausal BCP fails to obtain Q from the clausal form of ��
In general� since the clausal form of a disjunctive formula does not contain any unit clause� the clausal form
is irreducible with respect to CBCP� Thus� this transformation is not at all conducive for reasoning with
clausal BCP�

�

Appendix C

Local Consistency in CSP

Approximate methods to determine all solutions of a constraint network strengthen the constraints to obtain
an equivalent network such that some local consistency criteria are satis�ed �Fre���� We show that this
processing of networks is closely related to our notion of vivi�cation of constraint theories� as de�ned in
Section 	�	�

De�nition C�� �from �Fre���� For any k N � a constraint network C is said to be k�consistent i� for any
set of k � � variables along with values for each that satisfy all the constraints among them� there exists a
value for any kth variable such that the the k values together satisfy all constraints among the k variables�
C is said to be strong k�consistent i� it is j�consistent for each j � k�

We now de�ne a parameterized notion of local consistency for constraint theories�

De�nition C�� A local consistency criterion� �� is a boolean function over the cross�product of the set
of constraint theories and the set of valuations� such that ���� �� for any complete valuation � over any
constraint theory ��

For any k N � a constraint theory � is k�consistent with respect to a local consistency criterion � i� for
any subset X of vars��� containing k � � variables� any variable x vars��� �X� any valuation � over X�
if ���� �� then there is a valuation �� over X � fxg such that �� is an extension of � and ���� ���� A theory
is strong k�consistent with respect to � i� it is j�consistent with respect to � for each j � k�

Notice that we are dealing with three �di�erent but related� notions of k�consistency in this section� First
is k�consistency for constraint networks as de�ned in �Fre���� second is k�consistency for logical theories� as
de�ned in Section
��� and the third is k�consistency of a constraint theory with respect to a local consistency
criterion� as de�ned above� We will be careful in avoiding any mix�up among them� the �rst applies to
networks� while the others to theories� the third will always be associated with some consistency criterion�

We will consider two speci�c local consistency criteria that are de�ned as follows�

� �S��� �� is true i� � is a partial solution of ��

� �D��� �� is true i� � ��FP� b��
It follows directly from the de�nitions that any constraint network C is k�consistent i� the translated

theory Tr�C� is k�consistent with respect to �S � Thus� techniques in the literature to achieve higher levels
of local consistency of constraint networks �Dec��� also achieve higher levels of local consistency of the
translated theory with respect to �S � We will show that� in a similar way� our technique of vivi�cation
achieves higher levels of local consistency of the translated theory with respect to �D� For this� we need to
restrict to a special class of constraint theories�

�
�

De�nition C�� A constraint theory � is propagatable i� � �FP�� for any valuation � that is not a partial
solution of ��

Since �FP is sound� the consistency criterion �D is at least as strong as the criterion �S for propagatable
theories� i�e�� given any propagatable theory � and any valuation �� if �D��� �� then �S��� ��� Lemma C��
shows that constraint theories obtained by translations of constraint networks are propagatable� Lemma C��
shows that making a propagatable theory vivid keeps it propagatable� Theorem C�� relates vividness and
strong k�consistency for propagatable theories�

Lemma C�� For any constraint network C	 Tr�C� is propagatable�

Proof First we will show that for any constraint network C and any complete valuation � that does not
solve Tr�C�� Tr�C� �FP� b�� then we will extend this to any valuation� possibly not complete�
Consider any network C � �X�V�E� c� and any complete valuation � that does not solve Tr�C�� We

obtain from Lemma
� that � does not solve C� Since � is a valuation� ��x� Dom�x� � c�x� for each
x X� i�e�� � satis�es all unary constraints in c� Thus� some binary constraint� say c�x� y�� is violated by ��

Using Proposition 	��� Tr�C��fx� yg � fb�g ��
FPE

ffg� i�e�� Tr�C��fx� yg �FP� b�� Using Proposition 	��� we
obtain that Tr�C� �FP� b��
Now suppose � be a valuation over X which is not a partial solution of Tr�C�� Since � does not solve

Tr�C��X� it follows from Lemma
�� that � does not solve Tr�C�X�� and then from the above result that

Tr�C�X� �FP� b�� Using Lemma
�� again� the observation Tr�C��X � Tr�C�� and Proposition 	��� we

obtain that Tr�C� �FP� b�� Thus� Tr�C� is propagatable�
Lemma C�� For any theory � and any number k	 if � is propagatable then Viv�FP��� k� is propagatable�

Proof Suppose � is any propagatable theory and k is any number�

Valuation � is not a partial solution of Viv�FP��� k�

� Viv�FP��� k�� fb�g is not satis�able
� � � fb�g is not satis�able �using Theorem 	����
� � is not a partial solution of �

� � �FP� b� �since � is propagatable�
� Viv�FP��� k� �FP� b� �using Proposition 	���
Thus� Viv�FP��� k� is propagatable�

Theorem C�� For any propagatable theory �	 if � is k�consistent then � is strong k�consistent with respect
to �D�

Proof Suppose � is not strong k�consistent with respect to �D� i�e�� there is a p � k such that � is not
p�consistent with respect to �D� Thus there is a valuation � over p � � variables in vars��� and a variable
x vars��� � vars��� such that �D��� �� and not �D��� � � fx�vg� for each v Dom�x� �because � is
propagatable�� Using Proposition
�	� where ' � �x�v� � � � �� x�vn� and Dom�x� � fv�� � � � � vng� we obtain

that � � fb�g is not ��consistent� We then obtain from Proposition
�
 that � b� lfp�T��p�� Since p � k and

� is k�vivid� we obtain that � �FP� b�� i�e�� not �D��� ��� which is a contradiction�
For any satis�able constraint network C and any number k� it follows from Lemmas C�� and C�� that

Viv�FP�Tr�C�� k� is propagatable� Since Viv�FP�Tr�C�� k� is k�consistent� it follows from Theorem C�� that
Viv�FP�Tr�C�� k� is strong k�consistent with respect to �D� Thus� vivi�cation is a technique for achieving
higher levels of local consistency of constraint theories with respect to �D�

�
�

Appendix D

Case Analysis for Proving Con�uence

We show various cases of overlap that are considered in proving the con�uence of the rewrite systems FPC�
FPL� FP� and FPE� Table D�� summarizes the cases that are considered� while the other tables provide the
details of the cases�

The rows of Table D�� indicate the outer rule schemas� while the columns indicate the inner rule schemas�
The �rst row for each outer rule schema considers inner rules of the same kind �for example� both and�rules��
while the second row considers inner rules of the opposite kind �for example� and�rules for or�rules�� However�
the three rows for E� corresponds to theory�theory� theory�or� and theory�and rules� respectively� The symbol
��� indicates variable overlap� ��� indicates that the case never arises� �s� indicates that the case is covered
by its symmetric counterpart �i�e�� by switching inner and outer rules�� and �x� indicates that the case is
not maningful� Wherever possible� theory connective is used instead of conjunction�

For example� the �rst row for the outer rule schema S� shows that only one case is explicitly covered�
namely� overlap between S�� and S��� Three other cases �namely� S� and S�� S� and L�� S� and L�� are
covered by symmetry� and the other cases of overlaps do not occur�

Details of the overlaps are shown in the rest of the tables� For each case� we list the outer and inner
rule schemas �in the �rst and the second rows� respectively�� the substitution which causes the overlap� the
overlap term� the two terms of the critical pair� the common term they rewrite to� and the extra rules used
in this rewriting� In case of same meta�variables used in both outer and inner rule schemas� su�xes � and
��� respectively� are added to di�erentiate them� The symbol �i abbreviates the literals ��� � � � � �n� Various
cases are indicated by conditions inside the braces f and g� �Extra� denotes the extra rules used in each
case� In Tables D�� to D��	� each row is split into two lines� so as to �t on the page� the two rows of each
case are then separated by dotted lines�

For example� the �rst case in Table D�� considers the overlap between S�� �outer rule� and S�� �inner
rule�� Since the two rules have the same meta�variable B� it is renamed to B� and B��� respectively� The two
rules then are�

S�� � ��f � B�� � ��f �

S�� � ��t� B�� � ��B����

The substitution B� � ftg � B and B�� � ffg � B for some B produces the overlap term ��f � t� B�� This
term rewrites to ��f � and ��f � B�� respectively� by the two rules� Since the second term of this critical pair
rewrites to ��f � using S��� the common term is ��f �� Note that no rule� other than S�� and S��� is used
in arriving at this common term�

���

outer S� S� S� P� L� L� F� E� E�� E�
inner
S� � �� � s s s � � � s

� � � � � � � � � �
S� s � �� � s s � � � �

� � � � � � � � � �
S� s s � � s s � � � �

� � � � � � � � � �
P� �� �� � �� s s s � x s

� � � � � � � � x �
P�� �� � � �� �� �� �� x �� s

�� � � �� �� �� �� x �� s
L� �� �� �� �� �� �� �� � �� �

� � � � � � � � �� �
L� �� �� �� �� s � � � �� �

� � � � � � � � �� �
F� � � � �� � � �� � �� �

�� �� �� �� �� �� �� � �� �
E� � � � �� � � � � � ��

�� � � �� � � � � �� �
�� � � �� � � � � �� ��

Table D��� Summary of con�uence case

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
term

ex
tra

S
�
�

B
�
�
t
�
B

�
�
f
�
t
�
B
�

�
�
f
�

�
�
f
�

S
�
�

B
��
�
f
�
B

�
�
f
�
B
�

S
�
�

B

�
����

	
�
f
�

f

f

S
	
�

�
�
f

f

P
�
�

B
�
�
	
���
B

�
�	
��
	
���
B
�

�
�	
��
f
�
B
�t
�
�

	
���

�
�
f
�

S
�
�

P
�
�

B
��
�
	
��
B

f
	
��
�
�
	
�g

�
��
	
��
f
�
B
�f
�
�

	
���

P
�
�

B
�
�
	
���
B

�
�	
��
	
���
B
�

�
�	
��
	
���
B
�t
�
�

	
���

�
�	
��
	
���
B
�t
�
�

	
���t
�
�

	
����

P
�
�

B
��
�
	
��
B

f
d
istin
ct
	
��
	
��g

�
�	
��
	
���
B
�t
�
�

	
���

P
�
�

B
�
�
�
�	
���
B
����
B

�
�	
��
�
�	
���
B
����
B
�

�
�	
��
�
�
t
�
B
���t
�
�

	
���
�
B
�t
�
�

	
���

�
�	
��
�
�
t
�
B
���t
�
�

	
���
�
B
�t
�
�

	
���

P
�
�

f
va
ria
b
le
g

f
	
��
�
	
�g

�
�	
��
�
�
t
�
B
���t
�
�

	
���
�
B
�t
�
�

	
���

P
�
�

B
�
�
�
�	
���
B
����
B

�
�	
��
�
�	
���
B
����
B
�

�
�	
��
�
�
f
�
B
���t
�
�

	
����
B
�t
�
�

	
���

�
�	
��
�
�
f
��
B
�t
�
�

	
���

S
�
�

P
�
�

f
va
ria
b
le
g

f
	
��
�
�
	
�g

�
�	
��
�
�	
���
B
���t
�
�

	
�����
B
�

P
�
�

B
�
�
�
�	
���
B
����
B

�
�	
��
�
�	
���
B
����
B
�

�
�	
��
�
�	
���
B
���t
�
�

	
����
B
�t
�
�

	
���

�
�	
��
�
�	
���
B
�
��t
�
�

	
���t
�
�

	
�
����
B
�t
�
�

	
���

P
�
�

f
va
ria
b
le
g

f
d
istin
ct
	
���
	
�g

�
�	
��
�
�	
���
B
���t
�
�

	
�����
B
�

P
�
�

B
�
�
	
�	
���
B
����
B

�
�	
��
	
�	
���
B
����
B
�

�
�	
��
	
�
t
�
B
���t
�
�

	
���
�
B
�t
�
�

	
���

�
�	
�
	
�
t��
B
�t
�
�

	
���

S
�
�

P
�
�

f
va
ria
b
le
g

f
	
��
�
	
�g

�
�	
��
	
�	
��
B
���f
�
�

	
���
B
��

P
�
�

B
�
�
	
�	
���
B
����
B

�
�	
��
	
�	
���
B
����
B
�

�
�	
��
	
�
f
�
B
���t
�
�

	
����
B
�t
�
�

	
���

�
�	
��
	
�
f
�
B
���t
�
�

	
����
B
�t
�
�

	
���

P
�
�

f
va
ria
b
le
g

f
	
��
�
�
	
�g

�
�	
��
	
�	
���
B
���f
�
�

	
����
�
B
�

P
�
�

B
�
�
	
�	
���
B
����
B

�
�	
��
	
�	
���
B
����
B
�

�
�	
��
	
�	
���
B
���t
�
�

	
���
B
�t
�
�

	
����

�
�	
��
	
�	
���
B
�
��t
�
�

	
���f
�
�

	
�
���
B
�t
�
�

	
����

P
�
�

f
va
ria
b
le
g

f
d
istin
ct
	
���
	
�g

�
�	
��
	
�	
���
B
���f
�
�

	
����
�
B
�

T
ab
le
D
���
S
im
p
li�
cation
an
d
p
rop
agation
ru
les

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
te
rm

ex
tra

P
�
�

B
�
�
f
�
B

�
�	
�
f
�
B
�

�
�	
�
f
�
B
�t
�
�

	
��

�
�
f
�

S
�
�

B
��
�
	
�
B

�
�f
�

P
�
�

B
�
�
�
�
f
�
B
����
B

�
�	
�
�
�
f
�
B
����
B
�

�
�	
�
�
�
f
�
B
���t
�
�

	
��
B
��

�
�	
�
�
�
f
��
B
�

S
�
�

f
va
ria
b
le
g

f
	
n
o
t
in
B
g

�
�	
�
�
�
f
��
B
�

P
�
�

B
�
�
	
�
t
�
B
����
B

�
�	
�
	
�
t
�
B
����
B
�

�
�	
�
	
�
t
�
B
�
��t
�
�

	
���
B
�

�
�	
�
	
�
t
��
B
�

S
�
�

f
va
ria
b
le
g

f
	
n
o
t
in
B
g

�
�	
�
	
�
t
��
B
�

P
�
�

B
�
�
t
�
B

�
�	
�
t
�
B
�

�
�	
�
t
�
B
�t
�
�

	
��

�
�	
�
B
�t
�
�

	
��

S
�
�

B
��
�
	
�
t

�
�	
�
B
�

L
�
�

B
��

�
	
���
B
�

�
��
�	
��
	
���
B
�
��
B
�
�

�
�	
��
�
�	
���
B
�
��
B
�
�

�
�	
��
	
�
��
�
�B
�
��
B
�
�

L
�
�

B
��

�

�
	
��
B
�

�
�	
���
�
�	
��
B
�
��
B
�
�

L
�
�

B
��

�
�
�	
���
B
��

�

��
B
�

�
��
�	
��
B
��
��
�
�	
���
B
�
�

�

��
B
�
�

�
�	
��
�
�B
�� ��
�
�	
���
B
��

�

��
B
�
�

�
�	
��
	
�
��
�
�B
��
��
�
�B
�
�

�

��
B
�
�

L
�
�

B
��

�

�
�
�	
��
B
��
��
B
�

�
��
�	
��
B
�� ��
	
���
�
�B
��

�

��
B
�
�

L
�
�

B
�

�
	
�
�

�
	
n

�
��
�	
�
B
�
��
	
�
�

�
	
n

�

�
�	
�
	
�
�

�
	
n

�
�
�B
�
��

�
�	
�
	
�
�

�
	
n

�
B
�
�

L
�
�

B

�
�
�	
�
B
�
�

sy
m
m
etric

�
�	
�
	
�
�

�
	
n

�
B
�
�

L
�
�

B
�

�
	
�
�

�
	
n

�
��
�	
�
�

�
	
n

�
�
�B
���
B
�
�

�
�	
�
�
�
�	
�
�

�
	
n

�
�
�B
���
B
�
�

�
�	
�
�
�
�	
�
�

�
	
n

�
B
��
B
�
�

L
�
�

f
	
�
	
�
g

�
��
�	
�
�

�
	
n

�
B
��
B
�
�

T
ab
le
D
���
S
im
p
li�
cation
�
p
rop
agation
�
an
d
liftin
g
ru
les

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
te
rm

ex
tra

L
�
�

B
�

�
f
�
B
�
B
�

�
��
�	
�
f
�
B
���
B
�
�

�
�	
�
�
�
f
�
B
���
B
�
�

�
�
f
�

S
	
�

S
�
�

B

�
	
�
B
�
�
B
�

�
��
�
f
��
B
�
�

L
�
�

B

�
�
�	
�
B
�
��
B
�

�
��
�	
�
B
�
��
f
�
B
��

�
�	
�
�
�B
�
��
f
�
B
��

�
�
f
�

S
�
�

B
�

�
f
�
B
�

�
�
f
�

L
�
�

B
�

�
f
�
B
�
B
�

	
�	
�	
�
f
�
B
���
B
�
�

	
�	
�
	
�
f
�
B
���
B
�
�

	
�	
�
	
�B
���
B
�
�

S
�
�

B

�
	
�
B
�
�
B
�

	
�	
�	
�
B
���
B
�
�

L
�
�

B

�
	
�	
�
B
�
��
B
�

	
�	
�	
�
B
�
��
f
�
B
��

	
�	
�
	
�B
�
��
f
�
B
��

	
�	
�
	
�B
�
��
B
��

S
�
�

B
�

�
f
�
B
�

	
�	
�	
�
B
�
��
B
��

L
�
�

�
�
�
�	
�
B
�
�

�
��
�	
�
B
�
��

�
�	
�
�
�B
�
��

�
�	
�
B
�
�

L
�
�

S
	
�

B
�

�
����

�
�	
�
B
�
�

L
�
�

B
�

�
����

�
��
�	
��
B
�
�

�
�	
�
t
�
B
�
�

�
�	
�
B
�
�

S
�
�

S
	
�

�
�
	

�
�	
�
B
�
�

L
�
�

B
�
�
f
�
B
��

�
�	
�
�

�
	
n

�
�
�
f
�
B
����

�
�	
�
�

�
	
n

�
f
�
B
�
��

�
�
f
�

S
	
�

S
�
�

�
�	
�
�

�
	
n

�
�
�
f
��

L
�
�

B
�
�
f
�
B
��

	
�	
�
�

�
	
n

�
	
�
f
�
B
����

	
�	
�
�

�
	
n

�
f
�
B
�
��

	
�	
�
�

�
	
n

�
B
�
��

S
�
�

	
�	
�
�

�
	
n

�
	
�B
����

L
�
�

B
�
�
����

	
�	
�
�

�
	
n

�
f
�

	
�	
�
�

�
	
n

�

	
�	
�
�

�
	
n

�

S
�
�

B
��
�
	
�
�

�
	
n

	
�	
�
�

�
	
n

�

L
�
�

�
�
�
�B
�

�
��
�B
��

�
�B
�

�
�B
�

S
	
�

n
�
�

�
�B
�

L
�
�

�
�
B

�
�	
�
�

�
	
n

�
�
��
��

�
�	
�
�

�
	
n

�
�
�

�
�	
�
�

�
	
n

�
�
�

S
	
�

�
�	
�
�

�
	
n

�
�
�

T
ab
le
D
�	�
L
iftin
g
an
d
sim
p
li�
cation
ru
les

��	

ru
les

su
b
stitu
tio
n

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
term

ex
tra

L
�
�

B
�

�
B

�
��
�	
�
B
�
�
B
�
�

�
�	
�
�
�B
�
�
B
�
�

�
�	
�
�
�B
�t
�
�

	
���
B
�
�t
�
�

	
��

P
�
�

�
��
�	
�
B
�t
�
�

	
���
B
�
�

L
�
�

B

�
�
�	
��
B
�
��
B
��

�
�	
���
�
�	
��
B
�
��
B
�� �

�
�	
���
	
��
�
�B
�
��
B
�� �

�
�	
��
�
�B
�
�t
�
�

	
����
B
�� �t
�
�

	
���

S
�
�

P
�
�

B
�

�
B
��
�
	
��

f
	
�
�
	
��g

�
�	
��
�
�
t
�
B
�
�t
�
�

	
����
B
�� �t
�
�

	
���

L
�
�

B

�
�
�	
��
B
�
��
B
��

�
�	
���
�
�	
��
B
�
��
B
�� �

�
�	
���
	
��
�
�B
�
��
B
�� �

f

S
�
�

P
�
�

B
�

�
B
��
�
	
��

f
	
�
�
�
	
��g

�
�	
���
�
�
f
�
B
�
�f
�
�

	
����
B
�� �f
�
�

	
���

S
	
�

L
�
�

B

�
�
�	
��
B
�
��
B
��

�
�	
���
�
�	
��
B
�
��
B
�� �

�
�	
���
	
��
�
�B
�
��
B
�� �

�
�	
���
	
��
�
�B
�
�t
�
�

	
����
�
B
��
�t
�
�

	
�
���

P
�
�

B
�

�
B
��
�
	
��

f
d
istin
ct
	
��
	
��g

�
�	
���
�
�	
��
B
�
�t
�
�

	
����
�
B
�� �t
�
�

	
����

P
�
�

B

�
�
��
�	
���
B
�
��
B
�
�

�
�	
�
�
��
�	
���
B
�
��
B
�
��

�
�	
�
�
��
�
t
�
B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

�
�	
�
�
��
�B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

S
�
�

L
�
�

f
va
ria
b
le
g

f
	
�
	
�
�
	
��g

�
�	
�
�
�	
���
�
�B
�
��
B
�
��

P
�
�

B

�
�
��
�	
���
B
�
��
B
�
�

�
�	
�
�
��
�	
���
B
�
��
B
�
��

�
�	
�
�
��
�
f
�
B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

�
�	
�
f
�

S
�
�

L
�
�

f
va
ria
b
le
g

f
	
�
	
�
�
�
	
��g

�
�	
�
�
�	
���
�
�B
�
��
B
�
��

S
	
�

P
�
�

B

�
	
�	
�	
���
B
�
��
B
�
�

�
�	
�
	
�	
�	
���
B
�
��
B
�
��

�
�	
�
	
�	
�
t
�
B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

�
�	
�
	
�
t��

S
�
�

L
�
�

f
va
ria
b
le
g

f
	
�
	
�
�
	
��g

�
�	
�
	
�	
���
	
�B
�
��
B
�
��

S
	
�

P
�
�

B

�
	
�	
�	
���
B
�
��
B
�
�

�
�	
�
	
�	
�	
���
B
�
��
B
�
��

�
�	
�
	
�	
�
f
�
B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

�
�	
�
	
�	
�B
�
�t
�
�

	
���
B
�
�t
�
�

	
���

S
�
�

L
�
�

f
va
ria
b
le
g

f
	
�
	
�
�
�
	
��g

�
�	
�
	
�	
���
	
�B
�
��
B
�
��

T
ab
le
D
�
�
L
iftin
g
an
d
p
rop
agation
ru
les

��

ru
le
s

su
b
stitu
tio
n

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
term

e
x
tra

L
�
�

	
�
	
�

�
�	
i
�
�
�B
��

�
�	
i �
B
�

�
�
f
�

S
�
�

P
�
�

B
��
�
	
�
�

�
	
n

�
�
�B
��

	
�

�
�
	

�
�	
�
	
� �t
�
�

	
��

�
	
n

�t
�
�

	
��
�
�B
��t
�
�

	
���

L
�
�

	
�
	
�

�
�	
i
�
�
�B
��

�
�	
i �
B
�

�
�	
�
f
	
i

j
	
�

��
	
g
�
�
�B
��t
�
�

	
���

S
�
�

P
�
�

B
��
�
	
�
�

�
	
n

�
�
�B
��

f
o
th
erw
ise
g

�
�	
�
	
� �t
�
�

	
��

�
	
n

�t
�
�

	
��
�
�B
��t
�
�

	
���

P
�
�

B
�
�
	
�	
i �
	
�B
�
����
B

�
�	
�
	
�	
i �
	
�B
�����
B
�

�
�	
�
	
�	
i �
	
�B
�����t
�
�

	
��
B
�t
�
�

	
��

�
�	
�
	
�
t��
B
�t
�
�

	
��

S
�
�

L
�
�

f
va
ria
b
le
g

	
�
	
�

�
�	
�
	
�	
i �
B
����
B
�

P
�
�

B
�
�
	
�	
i �
	
�B
�
����
B

�
�	
�
	
�	
i �
	
�B
�����
B
�

�
�	
�
	
�	
i �
	
�B
�����t
�
�

	
��
B
�t
�
�

	
��

�
�	
�
	
�f
	
i

j
	
�

��
	
g
�
B
�
��t
�
�

	
���
B
�t
�
�

	
��

S
�
�

L
�
�

f
va
ria
b
le
g

f
o
th
erw
ise
g

�
�	
�
	
�	
i �
B
����
B
�

P
�
�

B
�
�
�
�	
i �
�
�B
�
����
B

�
�	
�
�
�	
i �
�
�B
�����
B
�

�
�	
�
�
�	
i �
�
�B
����t
�
�

	
���
B
�t
�
�

	
��

�
�	
�
�
�
f
��
B
�t
�
�

	
��

S
�
�

L
�
�

f
va
ria
b
le
g

	
�
�
	
�

�
�	
�
�
�	
i �
B
����
B
�

P
�
�

B
�
�
�
�	
i �
�
�B
�
����
B

�
�	
�
�
�	
i �
�
�B
�����
B
�

�
�	
�
�
�	
i �
�
�B
����t
�
�

	
���
B
�t
�
�

	
��

�
�	
�
�
�f
	
i

j
	
�

��
	
g
�
B
�
��t
�
�

	
���
B
�t
�
�

	
��

S
�
�

L
�
�

f
va
ria
b
le
g

f
o
th
erw
ise
g

�
�	
�
�
�	
i �
B
����
B
�

T
ab
le
D
���
P
rop
agation
an
d
liftin
g
ru
les

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

critica
l
p
a
ir

co
m
m
o
n
term

F
�
�

f
su
b
stitu
tio
n
g

�
�	
i �
	
�	
��
	
���
B
�
��

�
	
�	
��
	
�
��
B
m

��
f
o
v
erla
p
g

S
	
�

�
�	
i �
	
�	
��
�
�	
�	
���
B
�
��

�
	
�	
���
B
m

����
f
C
P
��
g

�
�	
i �
	
�	
��
	
���
�
�	
�B
�
��

�
	
�B
m

����
f
co
m
m
o
n
g

F
�
�

L
�
�

�
�	
i �
	
�	
���
�
�	
�	
��
B
�
��

�
	
�	
��
B
m

����
f
C
P
��
g

F
�
�

�
�	
i
��
	
�	
i
���
	
��
�
�	
���
B
��

�

��

�
�
�	
�
��
B
�
�

m

�
� ���
	
�	
��
B
�� ��

�
	
�	
��
B
�m

� ��

�
�	
i
��
	
�	
��
�
�	
�	
i
���
�
�	
���
B
��

�

��

�
�
�	
�
��
B
��

m

�
� ���
	
�B
�� ��

�
	
�B
�m

� ����

�
�	
i
��
	
�	
��
�
�	
�	
i
���
�
�	
�
��
	
��
�B
��

�

��

�
�
�B
�
�

m

�
� ������
	
�B
��
��

�
	
�B
�m

� ���

F
�
�

�
�	
i
��
	
�	
i
���
	
��
�
�	
�
��
	
��
�B
�
�

�

��

�
�
�B
��

m

�� �����
	
�	
��
B
�� ��

�
	
�	
��
B
�m

� ��

F
�
�

	
�
a

�

a

	
�	
i �
�
�a

�

a
�
B
�
��

�
�
�a

�

a
�
B
m

��

S
�
�
�
S
	
�

	
�	
i �
�
�a

�

a
�
	
��
�B
�
��

�
�
�B
m

����

	
�	
i �
�
�B
�
��

�
�
�B
m

��

E
�
�

L
�
�

	
�	
i �
�
�
t
�
B
�
��

�
�
�
t
�
B
m

��

F
�
�

	
�
a
�
�
a

	
�	
i �
�
�a
�
�
a
�
B
�
��

�
�
�a
�
�
a
�
B
m

��

S
�
�
�
S
�
�

	
�	
i �
�
�a
�
�
a
�
	
��
�B
�
��

�
�
�B
m

����

	
�	
i �
f
�

E
�
�

S
	
�

	
�	
i �
�
�
f
�
B
�
��

�
�
�
f
�
B
m

��

T
ab
le
D
��
F
actorin
g
an
d
eq
u
ality
ru
les
�
m
�m
��m
��
�
�

��

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

critica
l
p
a
ir

co
m
m
o
n
term

F
�
�

	
�	
i �
�
�	
�
f
�
B
�
��
�
�	
�
B
�
��

S
�
�
�
S
	
�

	
�	
i �
�
�	
�
	
��
�
f
�
B
�
��
�
�B
�
����

	
�	
i �
�
�	
�
B
�
��

S
�
�

S
	
�
�
L
�
�

	
�	
i �
�
�
f
��
�
�	
�
B
�
��

F
�
�

	
�	
i �
�
�	
�
f
�
B
�
��
�
�	
�
B
�
��

�
�
�	
�
B
m

��

S
�
�

	
�	
i �
�
�	
�
	
��
�
f
�
B
�
��
�
�B
�
��

�
�
�B
m

����

	
�	
i �
�
�	
�
	
��
�B
�
��

�
�
�B
m

����

S
�
�

f
m

�

�
g

S
	
�

	
�	
i �
�
�
f
��
�
�	
�
B
�
��

�
�
�	
�
B
m

��

F
�
�

�
�	
i �
	
�	
�
f
�
B
�
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

�
�	
i �
	
�	
�
�
�	
�
f
�
B
�
��
	
�B
�
��

�
	
�B
m

����

�
�	
i �
	
�	
�
�
�	
�B
�
��
	
�B
�
��

�
	
�B
m

����

S
�
�

�
�	
i �
	
�	
�
B
�
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

F
�
�

�
�	
i �
	
�	
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

S
�
�
�
S
�
�

�
�	
i �
	
�	
�
�
�	
��
�
	
�B
�
��

�
	
�B
m

����

�
�	
i �t
�
�

	
��
	
�

S
	
�

S
�
�
�
P
�
�

�
�	
i �
	
�
	
�	
�
B
�
��

�
	
�	
�
B
m

��

T
ab
le
D
���
F
actorin
g
an
d
sim
p
li�
cation
ru
les�
m
�m
��m
��
�
�

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

critica
l
p
a
ir

co
m
m
o
n
term

F
�
�

	
�
	
�
�
	
�
�

�
�	
�
	
i �
	
�	
�
B
�
��

�
	
�	
�
B
m

��

S
�
�
�
S
�
�

�
�	
�
	
i �
	
�	
�
�
�	
�B
�
��

�
	
�B
m

����

�
�	
�
	
i �t
�
�

	
��

P
�
�

B

�
	
i �
	
�	
�
B
�
��

�
	
�	
�
B
m

�

S
	
�

�
�	
�
	
i �t
�
�

	
��
	
�
t
�
B
�
�t
�
�

	
���

�
	
�
t
�
B
m

�t
�
�

	
���

F
�
�

�
	
�
�
	
��

�
�	
���
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

��

S
�
�
�
S
	
�

�
�	
���
	
i �
	
�	
��
�
�	
�B
�
��

�
	
�B
m

����

�
�	
���
	
i �t
�
�

	
����
	
�B
�
�t
�
�

	
�
����

�
	
�B
m

�t
�
�

	
�����

P
�
�

B

�
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

�

L
�
�

�
�	
���
	
i �t
�
�

	
�
���
	
�
f
�
B
�
�t
�
�

	
�����

�
	
�
f
�
B
m

�t
�
�

	
�����

F
�
�

�
�	
���
�
	
���
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

��

S
�
�

�
�	
���
�
	
���
	
i �
	
�	
��
�
�	
�B
�
��

�
	
�B
m

����

�
�
f
�

P
�
�

�
�	
���
f
�
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

��

F
�
�

�
�	
���
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

��

S
�
�

�
�	
���
	
i �
	
�	
��
�
�	
�B
�
��

�
	
�B
m

����

�
�	
���
f
	
i

j
	
i

��
	
��g
�t
�
�

	
�
���
	
�	
��
�
�	
�B
�
��

�
	
�B
m

���t
�
�

	
�
����

P
�
�

f
d
istin
ct
	
��
	
�
�g

f
�
	
�
�
n
o
t
in
	
i g

�
�	
���
	
i �t
�
�

	
�
���
	
�	
��
B
�
��

�
	
�	
��
B
m

��t
�
�

	
����

T
ab
le
D
���
F
actorin
g
an
d
p
rop
agation
ru
les
I�
m
�
�

���

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

critica
l
p
a
ir

co
m
m
o
n
term

F
�
�

�
�	
i �
	
�	
�
B
�
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

�
�	
i �
	
�	
�
�
�	
�B
�
��
	
�B
�
��

�
	
�B
m

����

�
�	
�	
�
�
�	
�B
�
�f
�
�

	
���
	
�B
�
�f
�
�

	
���

�
	
�B
m

�f
�
�

	
�����

P
�
�

�
�	
i �
	
�	
�
B
�
�f
�
�

	
���
	
�	
�
B
�
��

�
	
�	
�
B
m

��

F
�
�

�
�	
i �
	
�	
�
�
	
�
B
�
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

S
�
�
�
S
�
�

�
�	
i �
	
�	
�
�
�	
��
	
�
B
�
��
	
�B
�
��

�
	
�B
m

����

�
�	
i �
	
�	
�
�
�	
�B
�
�f
�
�

	
���

�
	
�B
m

�f
�
�

	
�����

P
�
�

f
m

�

�
g

S
	
�

�
�	
i �
	
�
t
�
�
	
�
B
�
��
	
�	
�
B
�
��

�
	
�	
�
B
m

��

F
�
�

�
�	
i �
	
�	
�
�
	
�
B
�
��
	
�	
�
B
�
��

S
�
�
�
S
�
�
�
S
	
�

�
�	
i �
	
�	
�
�
�	
��
	
�
B
�
��
	
�B
�
����

�
�	
i �
	
�	
�
B
�
�f
�
�

	
���

P
�
�

S
	
�
�
L
�
�

�
�	
i �
	
�
t
�
�
	
�
B
�
��
	
�	
�
B
�
��

P
�
�

�
�	
�
�
�	
i �
	
�	
�
B
�
��

�
	
�	
�
B
m

���

S
�
�
�
S
�
�

�
�	
�
�
�	
i �t
�
�

	
��
	
�
t
�
B
�
�t
�
�

	
���

�
	
�
t
�
B
m

�t
�
�

	
����

�
�	
�
�
�	
i �t
�
�

	
���

F
�
�

S
	
�

�
�	
�
�
�	
i �
	
�	
�
�
�	
�B
�
��

�
	
�B
m

�����

T
ab
le
D
����
F
actorin
g
an
d
p
rop
agation
ru
les
II�
m
�
�

��

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

critica
l
p
a
ir

co
m
m
o
n
term

P
�
�

�
�	
�
�
�	
i �
	
��
a
�
B
�
��

�
	
��
a
�
B
m

���

S
�
�

�
�	
�
�
�	
i �t
�
�

	
��
	
�
f
�
B
�
�t
�
�

	
���

�
	
�
f
�
B
m

�t
�
�

	
����

�
�	
�
�
�	
i �t
�
�

	
��
	
�B
�
�t
�
�

	
���

�
	
�B
m

�t
�
�

	
����

F
�
�

L
�
�

�
�	
�
�
�	
i �
	
��
	
�
�
�	
�B
�
��

�
	
�B
m

�����

P
�
�

�
�	
�
�
��
	
�
	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

���

S
�
�

�
�	
�
�
�	
i �t
�
�

	
��
f
�
	
�	
��
B
�
��

�
	
�	
��
B
m

��t
�
�

	
���

�
�	
�
�
�
f
��

F
�
�

�
�	
�
�
�	
i �
�
	
�
	
�	
��
�
�	
�B
�
��

�
	
�B
m

�����

P
�
�

�
�	
�
�
�	
i �
	
�	
��
B
�
��

�
	
�	
��
B
m

���

S
�
�

�
�	
�
�
�	
i �t
�
�

	
��
	
�	
��
B
�
��

�
	
�	
��
B
m

��t
�
�

	
���

�
�	
�
f
	
i

j
	
i

��
	
g
�t
�
�

	
��
	
�	
��
�
�	
�B
�
��

�
	
�B
m

����t
�
�

	
��

F
�
�

�
�	
�
�
�	
i �
	
�	
��
�
�	
�B
�
��

�
	
�B
m

�����

T
ab
le
D
����
P
rop
agation
an
d
factorin
g
ru
les

��

ru
les

su
b
stitu
tio
n

o
v
erla
p

ex
tra

c
ritic
a
l
p
a
ir

co
m
m
o
n
term

F
�
�

B
��

�
	
�	
�
��
B
�
�

�

��
B
��

�

�
�	
i �
	
�	
��
	
�	
���
B
��

�

��
B
��

�

��
	
�	
��
B
��
��

�
	
�	
��
B
�m

��

�
�	
i �
	
�	
��
�
�	
�	
�	
���
B
��

�

��
B
��

�

��
	
�B
��
��

�
	
�B
�m

����

�
�	
i �
	
�	
��
�
�	
�	
���
	
�B
��

�

��
B
��

�

��
	
�B
��
��

�
	
�B
�m

����

L
�
�

�
�	
i �
	
�	
��
	
���
	
�B
��

�

��
B
��

�

��
	
�	
��
B
��
��

�
	
�	
��
B
�m

��

L
�
�

B
��

�
	
i �
	
�	
���
B
�
�

�

��

�
	
�	
���
B
��

m

�

�
��
�	
��
	
i �
	
�	
���
B
��

�

��

�
	
�	
�
��
B
�
�

m

���
B
��
�

�
��
�	
��
	
i �
	
�	
���
�
�	
�B
��

�

��

�
	
�B
��

m

�����
B
��
�

�
�	
��
�
�	
i �
	
�	
���
�
�	
�B
��

�

��

�
	
�B
��

m

�����
B
�� �

F
�
�

�
��
�	
��
	
i �
	
�	
���
�
�	
�B
��

�

��

�
	
�B
��

m

�����
B
��
�

F
�
�

�
�	
i
��
	
�	
��
	
i
���
	
�B
���
	
�	
��
B
�
��

�
	
�	
��
B
m

��

�
�	
i
��
	
�	
��
�
�	
�	
i
���
	
�B
���
	
�B
�
��

�
	
�B
m

����

�
�	
i
��
	
�	
��
�
�	
�	
i
���
B
��
	
�B
�
��

�
	
�B
m

����

L
�
�

�
�	
i
��
	
�	
��
	
i
���
B
��
	
�	
��
B
�
��

�
	
�	
��
B
m

��

T
ab
le
D
����
F
actorin
g
an
d
liftin
g
ru
les

��

ru
les

o
v
erla
p

critica
l
p
a
ir

co
m
m
o
n
term

ex
tra

E
�
�

�
�a

�

b
�
�
�
f
�
B
��

�
�a

�

b
�
�
�
f
�
B
�b
�

a
���

�
�a

�

b
�
�
�
f
��

S
�
�

�
�a

�

b
�
�
�
f
��

E
�
�

�
�a

�

b
�
	
�
t
�
B
��

�
�a

�

b
�
	
�
t
�
B
�b
�

a
���

�
�a

�

b
�
	
�
t��

S
�
�

�
�a

�

b
�
	
�
t��

E
�
�

�
�a

�
b
�
B
�

�
�a

�
b
�
B
�b
�

a
��

�
�a

�
b
�
B
�b
�

a
��t
�
�

b

�
b��

E
�
�

P
�
�

�
�a

�

b
�
B
�t
�
�

a

�

b��

E
�
�

�
�a

�

b
�
P
�a
�
b��
B
�

�
�a

�

b
�
P
�b
�
b
��
B
�b
�

a
��

�
�a

�

b
�
P
�b
�
b��
B
�b
�

a
��t
�
�

P
�b
�
b���

P
�
�

�
�a

�

b
�
P
�a
�
b��
B
�t
�
�

P
�a
�
b���

E
�
�

�
�a

�

b
�
	
�P
�a
�
b��
B
�
��
B
�
�

�
�a

�

b
�
	
�P
�b
�
b��
B
�
�b
�

a
���
B
�
�b
�

a
��

�
�a

�

b
�
	
�P
�b
�
b
��
B
�
�b
�

a
��f
�
�

P
�b
�
b
�����

P
�
�

�
�a

�

b
�
	
�P
�a
�
b��
B
�
�f
�
�

P
�a
�
b����
B
�
�

B
�
�b
�

a
�

P
�
�

	
�a

�

a
�
B
�

	
�
t
�
B
�

	
�
t�

S
�
�

E
�
�

a

�

a
�
B

	
�a

�

a
�
B
�f
�
�

a

�

a
��

P
�
�

�
�a

�

a
�
B
�

�
�
t
�
B
�

�
�
t
�
B
�t
�
�

a

�

a
��

E
�
�

a

�

a
�
B

�
�a

�

a
�
B
�t
�
�

a

�

a
��

T
ab
le
D
����
E
q
u
ality
ru
les
I

��

ru
les

o
v
erla
p

critica
l
p
a
ir

c
o
m
m
o
n
te
rm

ex
tra

L
�
�

	
�a

�

a
�
	
�
�

�
	
n

�
	
�B
��

	
�a

�

a
�
	
�
�

�
	
n

�
B
�

	
�
t�

S
�
�

E
�
�

	
�
t
�
	
�
�

�
	
n

�
	
�B
��

L
�
�

	
�a
�
�
a
�
	
�
�

�
	
n

�
	
�B
��

	
�a
�
�
a
�
	
�
�

�
	
n

�
B
�

	
�	
�
�

�
	
n

�
B
�

S
�
�

E
�
�

	
�
f
�
	
�
�

�
	
n

�
	
�B
��

L
�
�

	
�	
�a

�
a
�
B
�
��
B
�
�

	
�	
�
t
�
B
�
��
B
�
�

	
�
t�

S
�
�

E
�
�

	
�a

�
a
�
	
�B
�
��
B
�
�

S
�
�

L
�
�

�
��
�a

�

a
�
B
�
��
B
�
�

�
��
�
t
�
B
�
��
B
�
�

�
�
t
�
�
�B
�
��
B
�
�

	
�S
�
�

E
�
�

�
�a

�

a
�
�
�B
�
��
B
�
�

F
�
�

	
�	
�
�

	
n

�
�
�a

�
a
�
B
�
��

�
�
�a

�
a
�
B
m

��

	
�	
�
�

	
n

�
�
�
t
�
B
�
��
�
�a

�
a
�
B
�
��

�
�
�a

�
a
�
B
m

��

	
�	
�
�

	
n

�
�
�B
�
��

�
�
�B
m

��

S
�
�

E
�
�

	
�	
�
�

	
n

�
�
�a

�
a
�
	
��
�B
�
��

�
�
�B
m

����

S
�
�

F
�
�

	
�	
�
�

	
n

�
�
�a
�
�
a
�
B
�
��

�
�
�a
�
�
a
�
B
m

��

	
�	
�
�

	
n

�
�
�
f
�
B
�
��
�
�a
�
�
a
�
B
�
��

�
�
�a
�
�
a
�
B
m

��

	
�	
�
�

	
n

�
f
�

S
�
�
�
S
�
�

E
�
�

	
�	
�
�

	
n

�
�
�a
�
�
a
�
	
��
�B
�
��

�
�
�B
m

����

S
�
�

E
�
�

�
�a

�
b
�
a

�
a
�

�
�a

�
b
�
b

�
b�

�
�a

�
b
�
t
�

E
�
�

�
�a

�
b
�
t�

E
�
�

�
�a

�

b
�
a
�
�
a
�

�
�a

�

b
�
b
�
�
b�

�
�a

�

b
�
f
�

E
�
�

�
�a

�

b
�
f
�

E
�
�

�
�a

�

b
�
a

�

c
�
B
�

�
�a

�

b
�
b

�

c
�
B
�b
�

a
��

�
�a

�

c
�
b

�

c
�
B
�b
�

a
��c
�

b
��

E
�
�

�
�c

�

b
�
a

�

c
�
B
�c
�

a
��

T
ab
le
D
��	�
E
q
u
ality
ru
les
II�
m
�
�
an
d
a
�
b
�
c

�	

Bibliography

�AB
� A�R� Anderson and N�D Belnap� Entailment	 the logic of relevance and neccessity� Princeton
University Press� ��
�

�AHU	� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� The design and analysis of computer algorithms�
Addison�Wesley� Reading� MA� ��	�

�Arn�
� S� Arnborg� E�cient algorithms for combinatorial problems on graphs with bounded decompos�
ability � a survey� BIT� �
��$��� ���
�

�BB�� G� Birkho� and T�C� Bartee� Modern Applied Algebra� McGraw�Hill� New York� ����

�BD��� M� Boddy and T� Dean� Solving time dependent planning problems� Technical report� Dept� of
Computer Science� Brown University� �����

�BE��� A� Borgida and D�W� Etherington� Hierarchical knowledge bases and e�cient disjunctive reasoning�
In R�J� Brachman� H�J� Levesque� and R� Reiter� editors� Proceedings First International Conference
on Principles of Knowledge Representation and Reasoning� pages ��$	�� Morgan Kaufmann� �����

�Bel� N� D� Belnap� A useful four�valued logic� In G� Epstein and J� M� Dunn� editors� Modern Uses of
Multiple�Valued Logics� Reidel� ���

�BFL��� R�J� Brachman� R�E� Fikes� and H�J� Levesque� Krypton� A functional approach to knowledge
representation� IEEE Computer� ��������$�� �����

�Bun��� H�K� Buning� On generalized Horn formulas and k�resolution� Information Processing Letters� �����
To be published�

�CK��� J� Crawford and B� Kuipers� Towards a theory of access�limited logic for knowledge representa�
tion� In Proceedings First International Conference on Principles of Knowledge Representation and
Reasoning �KR����� pages �$�� �����

�CK��� J�M� Crawford and B�J� Kuipers� Negation and proof by contradiction in access�limited logic� In
Proceedings Ninth National Conference on Arti�cial Intelligence �AAAI����� pages ��$���� �����

�CKT��� P� Cheeseman� B� Kanefsky� and W�M� Taylor� Where the really hard problems are� In Proceedings
Twelveth International Joint Conference on Arti�cial Intelligence �IJCAI����� pages ���$	��� �����

�CL�� C� Chang and R�C� Lee� Symbolic Logic and Mechanical Theorem Proving� Academic Press� London�
����

�Coo�� S�A� Cook� The complexity of theorem proving procedures� In Proceedings Third Annual ACM
Symposium on the Theory of Computing� pages �
�$�
�� ����

�Coo�� S� A� Cook� A short proof of the pigeon hole principle using extended resolution� ACM SIGACT
News� ����$��� Oct��Dec� ����

�Cra��� J� Crawford� editor� Proceedings of the AAAI Workshop on Tractable Reasoning� American Asso�
ciation for Arti�cial Intelligence� San Jose� California� �����

�

�Cra�	� J� M� Crawford� Personal Communication� ���	�

�CS��� Chvatal and Szemeredi� Many hard examples for resolution� Journal of the ACM� �
�	��
�� oct�
�����

�CS��a� M� Cadoli and M� Schaerf� Approximation in concept description languages� In B� Nebel� C� Rich�
and W� Swartout� editors� Principles of Knowledge Representation and Reasoning
 Proceedings
of the Third International Conference �KR����� pages ���$�	�� Cambridge� Massachusetts� �����
Morgan Kaufmann Publishers�

�CS��b� M� Cadoli and M� Schaerf� Tractable reasoning via approximation� In �Cra���� pages ��$�
� �����

�Dav��� E� Davis� Lucid representations� Technical Report
�
� New York University� Dept� of Computer
Science� June �����

�de ��� J� de Kleer� A comparison of ATMS and CSP techniques� In Proceedings Eleventh International
Joint Conference on Arti�cial Intelligence �IJCAI����� pages ���$���� �����

�de ��� J� de Kleer� Exploiting locality in a TMS� In Proceedings Eight National Conference on Arti�cial
Intelligence �AAAI����� pages ��	$��� �����

�DE��� M� Dalal and D� W� Etherington� Tractable approximate deduction using limited vocabularies� In
Proceedings Ninth Canadian Conference on Arti�cial Intelligence �AI ����� pages ���$���� Vancou�
ver� Canada� �����

�Dec��� R� Dechter� Constraint satisfaction� In S�C� Shapiro� editor� Encyclopedia of AI ��nd Edition�� John
Wiley and Sons� �����

�Der��� N� Dershowitz� Completion and its applications� In H� Ait�Kaci and M� Nivat� editors� Resolution
of Equations in Algebraic Structures� volume �� chapter �� pages ��$�
� Academic Press� Inc�� �����

�DG�	� W�F� Dowling and J�H� Gallier� Linear�time algorithms for testing the satis�ability of propositional
Horn formulae� Journal of Logic Programming� �������$��	� ���	�

�DH��� Y� Deville and P�V� Hentenryck� An e�cient arc consistency algorithm for a class of CSP problems�
In Proceedings Twelveth International Joint Conference on Arti�cial Intelligence �IJCAI����� pages
��
$���� �����

�DJ��� N� Dershowitz and J��P� Jounnaud� Rewrite systems� In J� van Leeuwen� editor� Handbook of
Theoretical Computer Science� volume B� Formal Models and Semantics� chapter �� pages �	�$����
The MIT Press� �����

�DP�� R� Dechter and J� Pearl� Network�based heuristics for constraint satisfaction problems� Arti�cial
Intelligence� �	�����$��� ����

�DP��� R� Dechter and J� Pearl� Network�based heuristics for constraint satisfaction problems� Arti�cial
Intelligence� �	�����$��� �����

�DP��� J� Doyle and R� Patil� Two theses of knowledge representation� language restrictions� taxanomic
classi�cation� and the utility of representation services� Arti�cial Intelligence� 	��������$��� �����

�Fit��� M� Fitting� First�order logic and automated theorem proving� Texts and monographs in computer
science� Springer�Verlag� �����

�Fre�� E�C� Freuder� Synthesizing constraint expressions� Communications of the ACM� ��������
�$����
����

�Fre��� E�C� Freuder� A su�cient condition for backtract�free search� Journal of the ACM� �������	$���
January �����

��

�Fre�
� E�C� Freuder� A su�cient condition for backtract�bounded search� Journal of the ACM� ���	��

$
��� october ���
�

�Fri�� A�M� Frisch� Inference without chaining� In Proceedings Tenth International Joint Conference on
Arti�cial Intelligence �IJCAI����� pages
�
$
��� ����

�GJ�� M� Garey and D� Johnson� Computers and Intractability
 A Guide to the Theory of NP�
Completeness� Freeman� W� H�� NY� ����

�GS��� G� Gallo and M�G� Scutell)a� Polynomially solvable satis�ability problems� Information Processing
Letters� ������$��� �����

�GTT��� T� Gri�n� H� Trickey� and C� Tuckey� Update constraints for relational databases� unpublished
draft� �����

�Hue��� G� Huet� Con�uent reductions� abstract properties and applications to term rewriting systems�
Journal of the ACM� ��	���$���� �����

�IL��� T� Imielinski and W� Lipski� A systematic approach to relational database theory� In SIGMOD�
�����

�Imi�� T� Imielinski� Domain abstraction and limited reasoning� In Proceedings Tenth International Joint
Conference on Arti�cial Intelligence �IJCAI����� pages ��$����� Milan� ����

�IMV�	� T� Imielinski� R� v� d� Meyden� and K� V� Vadaparty� Complexity tailored design� A new design
methodology for databases with incomplete information� To appear in Journal of Computer and
System Sciences �A preliminary version appeared in PODS����� ���	�

�KB�� D�E� Knuth and P� E� Bendix� Simple word problems in universal algebras� In J� Leech� editor�
Computational problems in abstract algebra� pages ���$��� Pergamon Press� ����

�Kum��� V� Kumar� Algorithms for constraint satisfaction problems� A survey� AI Magazine� ��������$		�
�����

�LB�
� H�J� Levesque and R�J� Brachman� A fundamental tradeo� in knowledge representation and rea�
soning �revised version�� In R�J� Brachman and H�J� Levesque� editors� Readings in Knowledge
Representation� pages 	�$�� Morgan Kaufmann� Los Altos� California� ���
�

�Lev�	a� H�J� Levesque� Foundations of a functional approach to knowledge representation� Arti�cial Intel�
ligence� �������

$���� ���	�

�Lev�	b� H�J� Levesque� A logic of implicit and explicit belief� Proceedings National Conference on Arti�cial
Intelligence �AAAI����� pages ���$���� ���	�

�Lev��� H�J� Levesque� Making believers out of computers� Arti�cial Intelligence� �����$���� �����

�LJR��� J� Lobo� Minker J�� and A� Rajasekar� Foundations of disjunctive logic programming� MIT Press�
�����

�Llo�� J�W� Lloyd� Foundations of Logic Programming� Springer�Verlag� � edition� ����

�Mac� A� K� Macworth� Consistency in networks of relations� Arti�cial Intelligence� �������$���� ���

�Mac�� A�K� Mackworth� Constraint satisfaction� In S�C� Shapiro� editor� Encyclopedia of AI� pages ��
$
���� John Wiley and Sons� ����

�Mar��� J� P� Martins� The truth� the whole truth� and nothing but the truth� An indexed bibliography to
the literature of Truth Maintenance Systems� The AI Magazine� ���
��$�
� January �����

�McA��� D� McAllester� An outlook on truth maintenance� Memo

�� MIT AI Lab� August �����

�

�McA��� D� McAllester� Truth maintenance� In Proceedings Eight National Conference on Arti�cial Intelli�
gence �AAAI����� pages ����$����� �����

�McC�
� T� McCarty� Personal Communication� ���
�

�Men�	� E� Mendelson� Introduction to Mathematical Logic� Van Nostrand� Princeton� N�J�� ���	�

�MSL��� D� Mitchell� B� Selman� and L� Levesque� Hard and easy distribution of SAT problems� In Pro�
ceedings Tenth National Conference on Arti�cial Intelligence �AAAI����� pages 	
�$	�
� �����

�New	�� M� H� A� Newman� On theories with a combinatorial de�nition of equivalence� Annals of Mathe�
matics� 	��������$�	�� ��	��

�Rd�� R� Reiter and J� de Kleer� Foundations of assumption�based truth maintenance systems� Preliminary
report� In Proceedings Sixth National Conference on Arti�cial Intelligence �AAAI����� pages ���$
���� ����

�SK��� B� Selman and H� Kautz� Knowledge compilation using Horn approximations� In Proceedings Ninth
National Conference on Arti�cial Intelligence �AAAI����� pages ��	$���� �����

�Tar

� A� Tarski� A lattice�theoretical �xpoint theorem and its applications� Paci�c J� Math��
���
$����
��

�

�Ull��� J�D� Ullman� Principles of Database and Knowledge�Base Systems� volume �� computer science
press� Rockville� MD� �����

�Yas�	� A� Yasuhara� Logic� Computability and Complexity� Submitted for publication� ���	�

��

