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ABSTRACT. We are interested in the complexity of the Poisson problem with
homogeneous Dirichlet boundary conditions on the d-dimensional unit cube €.
Error is measured in the energy norm, and only standard information (con-
sisting of function evaluations) is available. In previous work on this problem,
the standard assumption has been that the class F' of problem elements has
been the unit ball of a Sobolev space of fixed smoothness r, in which case
the s-complexity is proportional to e=%/7. Given this exponential dependence
on d, the problem is intractable for such classes F'. In this paper, we seek to
overcome this intractability by allowing F' to be the unit ball of a space Iffp(Q)
of bounded mixed derivatives, with p a fixed multi-index with positive entries.
We find that the complexity is proportional to c(d)(l/s)l/prﬂin[ln(l/s)]b7 and
we give bounds on b = b, 4. Hence, the problem is tractable in 1/e, with
exponent at most 1/pmin. The upper bound on the complexity (which is close
to the lower bound) is attained by a modified finite element method (MFEM)
using discrete blending spline spaces; we obtain an explicit bound (with no hid-
den constants) on the cost of using this MFEM to compute s-approximations.
Finally, we show that for any positive multi-index p, the Poisson problem
is strongly tractable, and that the MFEM using discrete blended piecewise
polynomial splines of degree p is a strongly polynomial time algorithm. In
particular, for the case p = 1, the MFEM using discrete blended piecewise
linear splines produces an e-approximation with cost at most

1 5.07911
0.839262 (c(d) + 2) (—) )
=>4

1. Introduction

Second-order elliptic problems over d-dimensional domains arise often in sci-
entific computation. The most well-known examples of such problems occur in
engineering calculations, such as elasticity problems and steady-state heat flow.
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Note that for these examples, we have d = 2 or d = 3. However, high-dimensional
problems with large d occur in other areas of scientific computation. Common ex-
amples of such problems include high-dimensional random walks and simultaneous
Brownian motion of many non-interacting particles. Another example of a high-
dimensional problem is given by Schrodinger’s equation from quantum mechanics,
the solution of a p-particle problem in three dimensions being a function of d = 3p
variables. For instance, if we wanted to find the wave function of the electron cloud
in an uranium atom, we would have p = 92 electrons, so the dimension of the
problem is d = 276.

We wish to find the computational complexity of such problems, as well as
optimal algorithms for their solution. To make this more precise, let F' be a given
class of functions and let L be a given second-order elliptic operator. Then we wish
to calculate an e-approximation to the solution, i.e., for any f € F, we wish to
calculate an approximation U to the solution u of the problem Lu = f such that
[|u—U|| < ¢, the norm being the standard energy norm. Of course, algorithms that
produce approximations U are constrained to using only finitely many information
operations about the f. In this paper, we suppose that only standard information is
permissible, i.e., values of f at points in the domain. Then the e-complexity is the
minimal cost of calculating an e-approximation, and an algorithm that computes
an ¢-approximation with minimal cost 1s an optimal algorithm.

Let us review what is known about the complexity of such problems. Suppose
we first we make the standard assumption that F' is the unit ball of a standard
Sobolev space consisting of all functions having fixed smoothness r. If we let ¢(d)
denote the cost of any information operation, then we find that the e-complexity is
proportional to c(d)e_d/’“. Moreover, finite element methods of fixed degree using
refined meshes are nearly optimal. (See [14, Chapter 5] for details.)

Note that the complexity increases exponentially in d. This 1s well-known as
the hallmark of intractability (see [4]). Moreover, this effect can be seen even for
the engineering examples with d = 3. To be specific, let us only consider the case
of standard information with » = 1. Then the number of information operations
required to compute an e-approximation is proportional to e~3. If we need four-
place accuracy (¢ = 10~*%), this means that we must use roughly 10'? operations.
On a megaflop machine, this takes about a week and a half; on a gigaflop machine,
this takes around 15 minutes.

Note that cleverer algorithms won’t help defeat this “curse of dimensionality,”
since this is a result about the inherent problem complexity. If we are going to make
such problems tractable, we need to somehow change the problem formulation.

Since one of this paper’s main themes is to determine whether elliptic problems
can be made tractable, we should recall that there are several different kinds of
tractability.

1. If the complexity is at most (¢(d) + 2)K(d)(1/¢)P, then the problem is
tractable in 1/e, and the smallest p is called the 1/¢-exponent of the prob-
lem. An algorithm that computes an s-approximation at cost at most
(e(d) + 2)K(d)(1/e)? is said to be an 1/e-polynomial time algorithm.

2. If the complexity is at most (¢(d) + 2)K(£)d?, then the problem is tractable
i d, and the smallest ¢ is called the d-exponent of the problem. An algo-
rithm that computes an e-approximation at cost at most (¢(d) + 2) K (¢)d?
is said to be a d-polynomial time algorithm.
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3. If the complexity is at most (e(d) + 2)K(1/¢)P, then the problem is strongly
tractable, and the smallest p is called the strong exponent of the problem.
An algorithm that computes an e-approximation at cost at most (¢(d) +
2)K(1/2)F is said to be a strongly polynomial time algorithm.
This is discussed in [19]. Note that rather than having the cost ¢(d) of an informa-
tion operation appear in these definitions, it is more convenient to use ¢(d) + 2.

Recall that to make the problem tractable, we must reformulate it somehow.
There are two ways to do this. The first is to no longer require that the error be at
most € for all f € F'. In other words, we change the “setting.” One way of doing
this is to replace the worst case setting by an average case or probablistic setting;
another is to allow nondeterminism. There is some discussion of this approach in
[14, Chapters 7 and 8]; more recent results may be found in [17] and [18].

The only other way we can overcome intractability is to change the class F' of
problem elements. One idea is to note that the admissible problem elements f are
analytic or (even more often) piecewise analytic functions. We allowed F' to be a
class of analytic functions in [16], where we find that the complexity is proportional
to (¢(d) + 2)(log1/e)?. (Moreover, finite element methods with fixed mesh using
increasing degree of approximation are nearly optimal.) In the terminology of [12],
the problem is tractable in 1/e; with exponent 0. However, no d-tractability or
strong tractability results are known. Unfortunately, the results for piecewise an-
alytic functions are negative, unless we know the locations of the breaks; see [15]
for the details.

In this paper, we return to the idea of using problem elements having limited
smoothness, but in a different sense. Rather than assume that all Sobolev deriva-
tives of a given order are bounded, we assume that f has a given number p; of
derivatives in the ith coordinate direction for each 7 € {1,...,d}. In other words,
we follow the lead of [12] in using spaces of bounded mixed derivatives, such as
those studied by Temlyakov (see [8], [9], [10]).

Note that much of our previous work on elliptic problems dealt with the case of
arbitrary elliptic operators L. Of course, we did this so that the results would apply
to as wide a class of elliptic problems as possible. However, there is a downside to
this approach; most of the results involved constants whose explicit expressions are
hard to obtain. Since we are interested in what happens as the dimension d varies,
we need to know how these constants change with d. Hence, we only investigate a
specific model problem in this paper, namely, the Poisson problem —Awu = f on the
d-dimensional unit cube Q@ = I¢, with homogeneous Dirichlet boundary conditions.
Of course, there are other problems that we could have chosen instead (e.g., the
Helmholtz problem, or a Neumann problem); for many of them, the techniques for
their investigation should be similar to those contained in this paper.

We now outline the contents of this paper, section by section, describing the
main results.

In Section 2, we formally describe our problem. As in [12], the class of prob-
lem elements is the unit ball in a tensor product fofp(Q) = ®§l:1 ﬁ]"’([) of one-
dimensional spaces. However, the problem itself is not a tensor product problem,
1.e., the solution operator is not a tensor product of one-dimensional operators.
We note that as formulated, the solution to our problem always satisfies periodic
homogeneous boundary conditions; this means that singularities will not occur at
the corners.
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In Section 3, we determine complexity results for standard information. The
problem complexity is proportional to ¢(d)(1/e)Y#min[ln(1/¢)]%4. Here, we only
know that b,4 € [(k* — 1)/(2pmin),d — 1], where k™ is the number of times the
entry pmin appears in the multi-index p. This means that we know the problem
complexity to within a polylogarithmic factor. We also investigate a modified finite
element method (MFEM) using discrete blending spline spaces of degree p; in the
ith coordinate direction ([1], [2], [3]). We determine that this MFEM can compute
an ¢-approximation with cost at most

1 (1/ ) g—pmin;l'l. dtl 1 1/pmin
Bie(d) + 2) (ﬁz + fFs /e ) - (—) .

d—1 €

Moreover, we have explicit expressions for the constants 31, 82, and 3. For ex-
ample, in the case p = 1, we consider the MFEM using discrete blended piecewise
linear splines; the cost of using this algorithm to find an e-approximation is at most

In(1 2(d+1) 1
0.192705 (c(d) + 2) (—0.961691 + 2.05964%) (E) .

It now follows that the problem is tractable in 1/¢ with exponent 1/puin, and the
MFEM is a 1/e-polynomial time algorithm. Finally in Section 4, we show that the
problem is strongly tractable when standard information is permissible. The precise
form of our strong exponent for arbitrary p is somewhat complicated, requiring the
solution of a nonlinear equation. However, since the complexity decreases as p
increases, we can use explicit values for the case p = 1 to find that the problem
complexity is at most

1 507911
0.839262 (c¢(d)+ 2) (E)
for any p. Hence the Poisson problem is strongly tractable when standard infor-
mation is permissible, with a strong exponent of at most 5.07911. We are certain
that this estimate of the strong exponent is pessimistic, since the 1/¢ exponent is
1/pmin .

Finally, we note in closing that the results in this paper were obtained under
the assumption that only standard information is permissible. We could well ask
what happens if we allow arbitrary continuous linear information, i.e., allowing any
continuous linear functional of the problem element. Since standard information
is a proper subset of continuous linear information, one might expect the problem
complexity to be significantly less and the strong exponent of the problem to be
smaller, when continuous linear information is permissible. This is the subject of
ongoing research, and will be reported in a future paper.

Acknowledgements. 1 would like to thank Professor Henryk Wozniakowski for
his insights, comments, and suggestions.

2. Problem description

In what follows, we assume that the reader is familiar with the usual termi-
nology and notations arising in the variational study of elliptic boundary value
problems. See Chapter 5 and the Appendix of [14] for further details, as well as
the references cited therein. We use IN and IP to respectively denote the nonnegative
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and positive integers. Unless stated otherwise, Greek letters will be used to denote
multi-indices, i.e., vectors in ¢,

Our first step in the problem description will be to introduce some special
Sobolev spaces, which will be closed subspaces of the usual Sobolev spaces. The
main novelty in these spaces is that they satisfy certain boundary conditions. Our
reason for choosing them is that they have a convenient orthonormal basis. (See
also [13] for another example of using this technique, although in a different situa-
tion.)

First, we consider the spaces of functions defined over a one-dimensional inter-
val. Let I = (0,1), and set z;(t) = +/2sinjrt for j € P. Of course, {z;}jep is an
orthonormal basis in Lo(I). For r € R, we define

H"™(I) = {v € span{z }32, : loll ey < o0},

under the norm
(o)

ey = oD o2Vt
ji=1
It is easy to verify the following facts:

LEMMA 2.1.

1. ﬁ]T(I) is a Hilbc;rt space.

2. For any f,g € H"(I), we have (f,g)gr(l) ={(D"f, D’“g)LQ(I).

3. Let w;(t) = (mj) " 2;(t) for j € P. Then {w;}jer is an orthonormal basis
for fof’“(f). O

Next, we define the spaces over the d-dimensional hypercube § = I¢. For any
multi-index p € N¢ we let

H(Q) = QQ H(I),
under the tensor product norm
d
o1+ vall oy = [T villgoscry Yo € HP (D), 1< i< d.
i=1

The properties of the space fofp(Q) are given by the following

LEMMA 2.2

1. H*(Q) is a Hilbert space.

2. For any f,g € H(Q), we have (f,g)ﬁp(ﬂ) ={(D*f, ng>L2(Q).
3. For any multi-index o, let wy () = 7= 1Pla=" 2, (x), where

Za(®1, .. 2q) = Zay (1) .. 20y (2q).
Then {wq }oepe is an orthonormal basis for fofp(Q). O

In short, fofp(Q) is a space of mixed derivatives, analogous to those studied
in [9].

We are now ready to define our solution operator. Let p € IP? be a fixed
multi-index. Define

F={f €@ Il <1}
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i.e., I is the unit ball of fofp(Q). Then we let S: F — H}(Q) be given by
(2.1) (Sf,0)paay = (Fi0)a Yo e Hy(Q).
Thus u = Sf 1s the variational solution to
—Au=f in Q,
u=20 on 0f.

Note that we have the representation formula

f’wa A Wa) o) f,Za 2(n)
:7.‘-22 _|_a O‘_T‘-ZZ ZZO"

Next, we recall the usual concepts of information-based complexity, see, e.g.,
[11] for a fuller development. We assume that only standard information is per-
missible, i.e., for any problem element f, we only know information of the form

Nf =[f(z1),..., f(zn)] Vfer,

where z1,...,2, € . Note that if the sample points are distinct, then N is in-
formation of cardinality n, 1.e., card N = n. Note that the information used is
nonadaptive, i.e., the number and choice of evaluation points defining N is de-
termined in advance, independently of any particular f € F'. Since the solution
operator is linear and F' is a convex balanced set, there is no loss of generality in
doing this; see [11, Chapter 4.5] for further discussion.

Our model of computation is the standard one given in [11]. The evaluation
of f(z) for any x € Q and f € F has cost ¢(d), and the cost of basic combinatory
operations is 1. Typically, e(d) > 1.

In this paper, we consider the worst case setting. Hence, the error of any
algorithm ¢ using information N is given by

e(¢,N) = sup 1Sf — ¢(NH)| (-

The radius of information N is

r(N) =infe(¢, N).
¢

and the nth minimal radius is
r(n) =inf{r(N):card N < n}.
The cost of an algorithm ¢ using N is given by

cost(¢, N) = ;1612 cost(¢, N, f),

with cost(¢, N, f) denoting the cost of computing ¢ for a particular problem ele-
ment f. As always, the e-complexity

comp(g) = inf{ cost(¢, N):e(¢,N) < e}

of our problem is the minimal cost of computing an e-approximation, for € > 0. In
this paper, we make frequent use of the inequality

e(d)m(e) < comp(e) < (¢(d) + 2)m(e),
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where
m(e) =min{n €N :r(n)<c}
is the e-cardinality number.

In the sequel, we may sometimes wish to stress the dependence of various
quantities on parameters such as the dimension d of the region @ = I¢ or the
multi-index p defining the smoothness of the problem elements. We shall do this
by writing, e.g., comp(e, d, p) for the e-complexity of a problem on a d-dimensional
domain for which the problem elements have smoothness given by p.

3. Complexity results

In this section, we establish bounds on the nth minimal radius and the -
complexity of our problem. These bounds are fairly tight in €. We shall use these
results in the next section, where we will establish that our problem is strongly
tractable.

We first establish a lower bound on the nth minimal radius. In what follows,
we let

o = min p;
Pmin 193sz

be the minimal component of p, and let
k* :card{ie{l,...,d}:pi :pmin}
denote the number of times pni, appears in p.

THEOREM 3.1.
1. There exists a constant C', depending on d, such that

(lg n)(k*—l)/z

7 Pmin

r(n) > C

2. There exists a constant C, depending on d, such that

1 1/pmin 1 (k*_l)/(zpmin)
comp(e,d) > C - ¢(d) <g) (lg g) ,

where pyin ts the minimal component of p, appearing k* times.

Proor. To prove the first part of this Theorem, we will show that our problem
is no easier than the integration problem studied in [10]. Let

Nf = [f(x1), ., flan)]

for points @1, ..., z, € Q. Choose a fixed é for which 0 < é§ < 1; for instance, § = %
is a good choice. Let Q5 = [-146,1—6]%. In what follows, there is no essential loss
of generality if we assume that x1,..., ¢, € Qs. From [10], there exists a function

h € C§°(82s) such that
Nh =0,

1Al zreas) = 1

(k*—=1)/2
/ ha)de > 18 7
Qs 7 Pmin
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Here, C'is a constant that is independent of n. Now extend h to the whole region
by taking h = 0 outside €5. Then ||h||gp(ﬂ) = 1. Choose a nonnegative function

g € H(Q) such that ¢ =1 in Q. Using [11, Theorem 5.53] and (2.1), we find that

h, . 1
H(N) > [|Shlls iy > D@ IREL

Wollzrzcy — gllaca)
> c (g n)(k*._l)/z.
g1l £z ) nPmin

Since N is arbitrary standard information of cardinality n, the result follows im-
mediately.

To prove the second part of this Theorem, we need only observe that by the
first part, there exists C', independent of ¢, such that

1 1/pmin 1 (k*_l)/(zpmin)

We now seek an algorithm whose performance will be close to the lower bounds
established in Theorem 3.1. The main idea here is to use a discrete blending spline
approximation (see [1], [2], [3]). As [5] and [6] point out, this is the same as
Smolyak’s algorithm (see [7], [8], [9], [10], [12]).

For future reference, we recall the approximation properties of one-dimensional
polynomial spline spaces. Choose positive integers m and r; we assume (without
essential loss of generality) that 2" is a multiple of m. Let Sy, , denote the space of
continuous functions on 7, whose restriction to the interval [(i — 1)m2~",4m27"] is
a polynomial of degree at most m, for 1 < i < 2"/m. For any function v: I — R,
we let Uy, v be the unique element of S, , of degree m that interpolates v at the
points

X, = {27,
It will be convenient to let Uy, o = 0. The following standard result may be found

in (e.g.) [13, p. 309]:

LEMMA 3.1. Let £y < €y, with {; € {0,1}. There exists Cringm,e,—13 > 0 such
that

2—(min{22,m+1}—51)7‘ (€2

Nean

(v = Une0) o1y < Crninfm a—1) v

for any v € H%(I).

We now describe the construction of our multidimensional blending spline
spaces, as well as the sparse grid on which they are defined and interpolation
operators for these spaces. For & € P?, let

An,,r = Ug,r — Un,,r—l for 1 < i < d.
For ¢ > d, let

d
Sq,d,n — Z ®An,,ak~

lo|<g i=1
Note that this is is a mild variation of the approximation operator found in [12];
the novelty is that we allow different one-dimensional operators in the different
coordinate directions, whereas the same operator was used for each direction in [12].
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We can find a more explicit representation of this approximation operator by
using the ideas found in [6] and in [12, Section 3]. First, we find that

d

PR St AT Y

g—d+1<]a|<yq i=1

Moreover, for any function v defined on , the approximation S, 4 ,v depends on v
only through the values of v at the union

H(q,d) = U Xawxoox Xay = {21, (g}
g—d+1<]a|<q

Note that since the sets {X;}{2, are nested, the sets {H(q,d)};2; are also nested.
The points belonging to H(q,d) are called hyperbolic cross points, and the set
H(q,d) is called a sparse grid.
We let
n=n(q,d) = card H(q,d)
denote the number of points in the sparse grid H(q,d). We also let

d
Sgdn = U ®Range(Umyal)

g—d+1<|a|<g i=1

denote the resulting discrete blending spline space.

Now we are ready to describe our approximation algorithm, which will use the
particular blending spline space &, 4,. Note that this is the blending spline space
84,4« With & = p. In other words, we choose the polynomial degree of the blending
spline space 1n a given direction as the number of derivatives that a problem element
has in that direction.

Let ¢ and d be given. For f € F, let

Nq,df = [f($1)a cey f($n(q,d))]

denote hyperbolic cross point information about f. Note that since f € fofp(Q) and
p € P4 the Sobolev embedding theorem guarantees that the information Ny 4f is
well-defined for any f € F'. Then Lemma 7 of [12] states that

-1
(3.1) card Ny 4 = n(q,d) < 24— d+1 (Z 1).

For f € F', we calculate uy g € Sy,4,, such that

(3.2) <quyd, v5>L2(Q) = <qud7pf, 5>L2(Q) Vs€8q4,-

Note that this is a modified version of Galerkin’s method, with the test and trial
spaces both being &, 4,; the change is that we are not using inner products
with f, but with S, 4,f. It is easy to see that for any f € F, there exists a
unique uy q € Sy.4,, satisfying (3.2) and that u, 4 depends on f only through the
information N, 4f; see [11, p. 161] for further discussion. Hence we may write

Ug d = ¢q,d(Nq,df)a

where ¢, 4 is the modified finite element method (MFEM) based on S, 4.
We now give an abstract error estimate for our MFEM; a proof is contained in
the beginning of the proof of [14, Theorem 5.7.4].



10 ARTHUR G. WERSCHULZ

LEMMA 3.2. For any q and d, we have
e(¢g,a, Ng,a) < ;1612 |ISf = Sq,d,pSfHHg(ﬂ) + 15 - Sq,d,prHD—l(ﬂ) : O

We now develop Sobolev error bounds for using Smolyak’s algorithm to ap-
proximate the identity operator. Once we have such bounds, we can directly apply
Lemma 3.2. These bounds are given in

LEMMA 3.3. For k € P%, et

C, = max C},.
1<i<d

Let 3,0 € N¢, with 3 < 0. Define

8; = min{0;, k; + 1} forl1<i<d.

Let
= i 92_ 75
s 1212'1£d Jé/
t = min min{f;, k; + 1} — f;,
11;112'12d1rnln{ S+ 1 =0
2y’ (6-8)
H, = max -] , 142 max(Cfo 5
T
Then

q

1% = Sya)loaiey < ot

E D

ProoOF. We first establish some notation that we will need to prove this lemma.
In such cases where it will cause no confusion, we shall write S, 7 instead of S, 4,
in what follows. For any ¢ and d, we let

Qg d)y={aeP?: |a[<q}.

We also let idg denote the identity operator for functions that are defined on 9. If
L: X — Y is a linear transformation of normed linear spaces, we let ||L||z(x—v)
denote the usual operator norm. Finally, we let

eqa = ||D(idg — Sq,d)Hﬁ(ﬁIo(ﬂ)—»Lz(ﬂ))'

We seek bounds on ey 4.
Asin [12, p. 13], we have

d—1

Sq,d = Z (@A“waz) ®UI~€¢1,(]—|CY|'

a€Q(g—1,d=1) *i=1

Hence if & € Pt we find that

d
idgy1 — Sg41,a41 = Z <® An,,a,) @ (idy = Ugg1,941-|a|)+ (idg — S ,a) @id;.
a€Q(g,d) i=1
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Thus

O O (idags — Ser1,a41) =

d
Z <® 851An,,a,) ® agi*l—l (ldl - Ud+1,q+1—|oz|)

a€Q(g,d) i=1

+07 .90 (idg — Sy.q) ©id,.

From this we find that

d
(3.3) egrrap1 <D (HH@Z@’ARM,

a€Q(g,d) “i=1

L(H(I)—Ls(I))

X ||8§_‘|1_J{1(id1 - Ud+1,q+1—|a|)||£(ﬁ19d+1(I)-»LQ(I)))

Bat1
+ €q,dll 0241 ccmoass (1)— .01y

Using a Fourier series expansion, it is straightforward to check that

. 1 Oat1—Bat1
(3.4 10248 e 11—y = (2 .

T
Let E, = 200=Fmax, . Using (3.4) and Lemma 3.1 in (3.3), we find that

€1 dt1 < CREZ Z 2_[(61_ﬁ1)a1+“'+(5d_ﬁd)ad+(5d+1_ﬁd+1)(q+1—|a|)]
@€Q(g,d)

( 1) Oat1—Bat1
+ | = .
T

Since
card Q(q,d) = (Z) ,
the previous inequality implies that
q 1 Oat1—Bat1
eq.a < (Jij( )2—f<q+1> + (-) :
’ d T

As in [12, Lemma 2], we now find that

<o Y 1 Yot
6q,d = K (d— 1 ’

as required.

We can now give an error bound for the MFEM based on the space S, 4,
discrete blending splines:

THEOREM 3.2. Let

Cp, = max C),
1<i<d

Pmin
Hp:max{<z) ,(1+2pma")0p}.
T

and

11

of
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For any d € P and q > d, we have

e(¢g,a, Nya) < (147~ HC,HIT (dz 1)2—4ﬂmin.

ProoFr. Let f € F', and then let u = Sf. We need to find upper bounds for
[|u — Sq,d,pUHHg(Q) and for ||f — qudyprHD—l(Q). In what follows, we will make use

of the notation given in Lemma 3.3, letting x = p.
We first estimate ||f — qudyprH—l(Q). Choose =0 and § = p. Then é = p,
so that s =t = ppin. From Lemma 3.3, 1t follows that

(P Sq,d,prHD—l(n) <|If - Sq,d,prLz(ﬂ)

<o (,? )

We are now left with estimating ||u — Sy a,pul|g1(q). Choose i € {1,...,d}, and

(3.5)

D fllLacq)-

let 3 = e;, where ¢; is the 7th standard unit vector in R?%. Now set § = p+e;. Since
6 — [ = p, we find that { = ppi,. Moreover, § — 3 = p, so that s = pyi,. This gives
the estimate

||6 ( q d,p )||L2(Q) < C’ Hd 1 (dz 1) 9~ 4P min

D? 0|0,

so that

d 1/2
- q _ .
@36 =Syl < Gttt (1) ) | oo |

i=1

We must estimate the sum on the right-hand side of (3.6). Expanding

(3.7) f= Z CaZa,

agPd
we have
(3.8) u=Sf =x2 Z v B2t
E]Pd oy
Hence for any i € {1,...,d}, we have
2 42002
D ;u = 72Uel=1) ca—l
IOl = 0 3
so that
2p
(3.9 an oy = 70D B < S
E]Pd aglP?

On the other hand, we have

(3.10) 1D? 1170y = > 1D 2all7 ) = a2 atr

agcPd agcPd



POISSON PROBLEM FOR BOUNDED MIXED DERIVATIVES

Comparing (3.9) with (3.10), we see that

d 1/2
(3.11) [Z ||Df’aiu||L2<m] <D Pl
=1

Using this inequality in (3.6), we get

_ _ q _ .
(3.12) la = S pullma ey < 7 CpHY 1<d_1)2 o

The desired result now follows from (3.5), (3.12), and Lemma 3.2.

D? fllL, -

13

O

Using this result, we now find an upper bound on the error of using the MFEM

with n evaluations.

THEOREM 3.3. For any d, let

- (1+7T_1)C'pH;l_1
47 2rmin(d=2)((d — 1)l)pmint]
and
By =2%"1d- 1)
Let n be given. Choose
q=q(n,d) = [lg(Ban) — (d —1)1glg(Ban)].

Then
card N, , < n

and

[lg(Ban)](4= D rrint 1)

7 Pmin

e(¢q,da Nq,d) S Ad
Hence, there exists a, 4 € [%(k* — 1), (d = 1)(pmin + 1)] such that

=0 ({271

7 Pmin

ProoF. Use (3.1) to find that

card N, 4 < 29—d+1 (7 - 1)d_1 2qqd_1
g,d >

(d — 1)' - By
From the definition of ¢(n,d), we find that
Bdn
W
~ [lg(Ban)]*=t
and that
(3.13) ¢ < la(Ban).

We now find that
card Ny g < n.

On the other hand, we also see that there exists y € [0, 1) such that

qzlg(ngui%)‘y’
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and hence i
g-1 < ol8lBa) T
an
Using this inequality and (3.13) in Theorem 3.4, we immediately find the desired
bound on the error. O

REMARK. Note that there is a mild gap between the lower and upper bounds
on the nth minimal error as given (respectively) by Theorem 3.1 and Theorem 3.4.
That is, the exponents of n are the same, but the exponents of 1gn differ.

There are two reasons for this. The first is that we are using the integration
problem to establish our lower bound, whereas we are using a variant of the Lo-
approximation problem to find our upper bound. The difficulty here is that the
minimal error and complexity are different for these two problems, and so a gap is
unavoidable, unless we can find a different technique of establishing our lower and
upper bounds.

The second reason for the gap may be found in Lemma 3.3. If we consider
the bound on the Lg-error contained in (3.5) as a function of the cardinality n
of the information, we find an upper bound O(n=fmin(lgn)(d=(PmintD)y on the
error of using discrete blending splines to approximate fofp(Q)—functions in the Lo-
norm. But the nth minimal error for this approximation problem is proportional to
(g n)(k*_1)("mi“+ﬁ(”))n_pmi“, where k™ is the number of minimal components in p
and B(n) € [0,1]. This implies one of two possibilities: either discrete blending
spline approximation is not an optimal algorithm (even for the Ls-approximation
problem) or the estimate given in Lemma 3.3 is pessimistic. d

Hence we have found reasonably tight bounds on the nth minimal error. The
next task is to find an upper bound on the cost of using the MFEM to compute
an e-approximation, said upper bound being reasonably close (i.e., to within a
polylogarithmic factor of 1/¢) to the lower bound given in Theorem 3.1. Our
approach follows that of [12, Section 6].

THEOREM 3.4. Lete >0 and d € P be given.
1. Suppose that ¢ > w=UelHVd=1 " The error of the zero algorithm ¢jero = 0
(which uses the zero information Nyero = 0) is at most . Hence

comp(g, d) = cost(Pzeros Nzero) = 0 fore > el g=1
2. Suppose that d = 1. Then
e(¢g1, Ng1) < ¢
for

—In

— "1 (1+7T_1)CP1-‘
= P1 € .

Hence

(1 +w-1>cp1)”‘“

comp(e, 1) < cost(dg,1, Ng1) < 2(e(1) +2) ( -

3. Suppose that d > 2 and ¢ < 7= UPI¥a=1 Recall that
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Pmin
Hp:max{<z) ,(1+2pm"“‘)0p}.
T

H C,(1+ *)1“W”
h=hed) = ——° (ﬂ il ) .

pmin1n2 E\/27T(d—1)

Recursively define the sequence {t5}7°, as

and

Let

In(hty_r) ifk > 1,
tr=1< elnh
e—1

if k= 0.

Pick any k € N, and let

q:%ﬂ:[ﬁﬂg:i4~

Pmin In2
Define
(d) B 1 (Pmin+1)/(2pmin) 9
B CZTE prnin N2
eZH;/(Pmin‘Fl) 1 pmin/(Pmin+1)
@2 = (e = 1)pmin In2 (5) ’
H
o] = as-ln 67[).
Pmin In2
Then
e(¢q,da Nq,d) S €
and

comp(e, d) < cost(gg 4, Ny a) < (e(d) + 2)ag(d)

L (Pmint+1)(d—1
1 C,(1+71) Pmin
| In =£
"Woara—n T

X | a1+ as J—1

£

—1 1/Pmin
% (Cp(1+7" )) .

Hence, there exists b, 3 € [(k* —1)/(2pmin ), d — 1] such that

1 1/pmin 1 bp,d
comp(e,d) = O (—) (ln —) .
€ €
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Proor. To prove part 1, we recall that the error of the zero algorithm equals
the operator norm ||S||£(gp(ﬂ) () To calculate this, we expand an arbitrary
Alg

fe fofp(Q) as in (3.7), with v = Sf given by (3.8). We then have

2
C
15600y = 772 30 ey ST Y e
— g 2el+1D) g2 Z Ao = 7_2(|p|+1)d_2||f||ﬁ1p(n)a
agPd

see (3.10). Since this bound is sharp (choose f = z1), we find that

ISIlcie (), 0)) = n gt

Hence the zero algorithm yields an e-approximation for any ¢ < w~(ePl+1)g=1 " ag
claimed.
To prove part 2, we need only use Theorem 3.2 to see that

(g1, Ng1) < (1+ 77 H0,, 274,
It now follows that e(¢,1, Ng1) < ¢ with ¢ as given. Using (3.1), we see that
cost(Pq,a, Ng a) < (c(1) + 2)27.

We now turn to the proof of part 3, following the approach used in the proof
of [12, Theorem 1]. Let d > 2 and ¢ < 7~ (PIFDG=1 Tet x = ¢/(d — 1). Since

m! > (m/e)™/2mm, we have

q qd—l (l,e)d—l
(3:14) (d— 1) S o=y

From Theorem 3.2, we find that e(¢, 4, Ng q) < ¢ if

(ze)d=t €

< -1 :
2n(d—1) ~ (14+ 7 1)C,Hy~ 27 4/min

(3.15)

We change variables, letting ¢ = 2pmin In 2. Then (3.15) may be rewritten as
(3.16) t>Int+1Inh,

which is a sufficient condition for e(¢, 4, Vg 4) < ¢. From the definition of H,, we
know that €', > w~fmin. Hence we have

d—1 d—1
H eH 1
—(Pmind+1) -1 p -1 e
e<m <Cym <2pmin) <C,m <2pmin) 7271_@_1),

see [12, p. 29]. From this, it follows that
9P min
h> ——>e.
Pmin In2

Using this inequality, it is easy to prove (via induction) that ¢; > Inty + Inh for
all k¥ € N, with ¢;, monotonically decreasing (as k — o) to the unique solution t*
of the equation * = Int* +1In h. In what follows, we fix a choice for k. Let ¢ = ¢. 4,
with ¢. 4 as in the statement of the Theorem. Since (3.16) holds for ¢ = ¢, it now
follows that e(¢q 4, Nga) < ¢.
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To complete the proof of (3), we let

t d—1
q:(Je,dS 1+7k+1( )
Pmin In 2

and then we calculate an upper bound on n(q,d) = card Ny 4. Using (3.1), (3.14),
and (3.15), we see that

— — ¢(pmin+1)
n(q,d) < 2071 (q 1) s 1( ! ) T —
d—1 g \d—1) = (147 1)C,Hi 1241

Substituting the upper bound for ¢ into this inequality, we find (after some calcu-
lations) that

(pmin‘l'l)(d_l)

2d_1 eH tk Pmin
n(Qa d) S d—1 7p
Hp Pmin In 2

Pmint1

Since tp < tg, this inequality also holds when # is replaced by t3. After a few more
calculations, we find that

—1 1/Pmin
atay d) < ap(a) (LA
_1 (pmin‘l'l)(d_l)

In ! +In Col+77) prin

X |+ a2

Since ¢, 4 is a linear algorithm using information N, 4, we immediately get the
desired bound on cost(¢q 4, Ng ). O

Asin [12, p. 32], we can simplify the form of the upper bound in (3) of Theo-
rem 3.4.

THEOREM 3.5. Let
Br = ao(2)(Cp(1 + 77 1)) o,

-1
B2 = a1+ asln (%) ;

B3 = as.
Then
comp(e, d) < cost(¢g a4, Ng.a)
(1 (Pmint+1)(d+1 ) 1/ pomi
n £ Pmin mm
<Bi(e(d) +2) | B2+ 53M - :

d—1 €

Here ag(2), a1, aa, and q are as in Theorem 3.4. O

This is the bound given in the Introduction to this paper.
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REMARK: The case p = 1. Let us exhibit the bound given by Theorem 3.5
when p = 1. Note that for this special case, our MFEM uses discrete blended
spaces of piecewise linear splines. We find that

Cy = 0.318310,
Hy = 0.954930,
ao(2) = 0.459224,
ay = 2.71954,
g = 2.05964.

Hence the MFEM computes an ¢-approximation with cost at most

In(1/¢)\ 2%V /1
0.192705 (c(d) + 2) (—0.961691 + 2.05964%) (E) . O

4. Strong tractability results

In this section, we show that the Poisson problem is strongly tractable when
standard information is permissible. We use the notation (and techniques) in [12].

Recall the definition of ag(d), a1, and @z in Theorem 3.4. Using the result of
Theorem 3.4, we see that it is no loss of generality to restrict our attention to the
case of ¢ < 7~ eI+ and d > 2.

Let ¢** € (0,1) be the unique solution of the equation

go; = 1+ 1Ing.
Let
y1=a1+aslnw
and
g = m2Pmin,
Define
B i > s,
¢ =< Invy
g iy Iny; <lnwys.
Let

P = 1/pmin + aZ(pmin + 1)(]*
Finally, let
K = max{2[C(1 + 7~ H)]F=i= K},

where
1 PPmin
Ky = ap(2)[Co(1 + w_l)wpmi“]pmi“ (;)

_q az(pmint1)/71
x max< 1, (70[)(1—1_7 )mei“_l/z) )
V2
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THEOREM 4.1. Ford > 2 and 0 < ¢ < n~Url+D) define ¢ as in part (3) of
Theorem 3.4. Then

e(¢g,a, Nga) < ¢
and

14
comp(s, ) < cost (6,4, Ny.a) < (e(d) + 2)K G) .

ProoOF SKETCH. We merely follow the steps used in deriving [12, Theorem 2]
from [12, Theorem 1], except that we start with our own Theorem 3.4. Note that
this is possible since our Theorem 3.4 can be rewritten as a special form of [12,

Theorem 1]. That is, the error formula in (3) of our Theorem 3.4 has the form of
[12, Theorem 1], with appropriate changes in parameter values. |

Hence the algorithm ¢, 4, with ¢ as given, is a strongly polynomial time algo-
rithm, and the strong exponent of the problem is at most p.

REMARK: The case p =1 (continued). We now use the case p = 1 to illustrate
Theorem 4.1. We find that

v = 10.3268,
vs = 120.958,
¢* = 0.486867,
p=5.07911,

K1 = 2.50506 x 1073,
K = 0.839262.

Hence
1\ 507911
comp(g,d, 1) < 0.839262 (¢(d) + 2) (—) )
2
Hence the algorithm ¢, 4 is a strongly polynomial time algorithm, and our problem
is strongly tractable, with a strong exponent of at most 5.07911. d

We close this paper by noting that for any multi-index p € P4, we have p > 1.
Hence the class F' of problem elements is always a subset of the unit ball of H1({2).
Thus for any p € P4 we have

5.07911
comp(g, d, p) < comp(e,d, 1) < 0.839262 (¢(d) + 2) (g) .

Hence the problem is strongly tractable for any p.
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