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Abstract

This paper details our experiment interfacing Oz with the Object Management System (OMS) of
PCTE. Oz is a process-centered multi-user software development environment. PCTE is a specifi-
cation which defines a language independent interface providing support mechanisms for software
engineering environments (SEE) populated with CASE tools. Oz is, in theory, a SEE that can be
built (or extended) using the services provided by PCTE. Oz historically has had a native OMS
component whereas the PCTE OMS is an open data repository with an API for external software
tools. QOur experiment focused on changing Oz to use the PCTE OMS. This paper describes how
several Oz components were changed in order to make the Oz server interface with the PCTE OMS.
The resulting system of our experiment is an environment that has process control and integration
services provided by Oz, data integration services provided by PCTE, and tool integration services
provided by both. We discusses in depth the concurrency control problems that arise in such an en-
vironment and their solutions. The PCTE implementation used in our experiment is the Emeraude
PCTE V 12.5.1 supplied by Transtar Software Incorporation.
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1 Introduction

The goal of a software engineering environment is to provide support for software engineering activ-
ities. Support is more effective if the environment is integrated — if all its components function as a
single, consistent, coherent and integral unit [15]. There are several key aspects of integration: tool,
data and process. Tool integration provides a development tool set and an invocation mechanism
to control its use within an environment. Data integration normally is based on an object model
of software artifacts, it uses object management technologies to handle the repository, duplication,
sharing and consistency of the artifacts. Process integration normally uses a software process model
to explicitly represent the software development activities, it guides and coordinates development
activities and integrates tools and data in the environment. Process integration is at a higher level
than tool and data integration [11]. In fact, the invocation chain of tools to perform routine de-
velopment tasks in an environment implicitly defines the conditions and orders of tools. Similarly,
the production and consumption of software artifacts normally has a partial order during a software
life cycle. Therefore an important goal of many integrated software engineering environments is the
support for the definition, enforcement and automation of a software process.

A SEE that has built-in support for process integration is called a process-centered environment. Oz
i1s a process-centered, multi-user and multi-server environment. It supports process coordinations
among Oz subenvironments. The architecture of Oz [1] is founded on componentization, with the
emphasis that each Oz component provides distinct services (some of the major components are the
Rule Processor, the Transaction Manager, OMS and the Activity Manager), and with particular
concern for the capability to replace a component with minimal effects on other components while
still supporting integration. In other words, Oz should treat process integration as an orthogonal
issue to data management and integration, it should be able to use many different data repositories.
One of the motivation of this experiment was therefore to find out how difficult it is to replace the
OMS component of Oz with an “external” OMS, in this case, the PCTE OMS.

PCTE is a specification of an environment framework which provides support for environment
builders to write, assemble and customize integrated software development environments. The
PCTE OMS is open and standard, its services address many data integration problems. Thus,
Oz should be able to use the PCTE OMS to provide the necessary data integration services. On the
other hand, a commonly recognized limitation of PCTE is the lack for the sort of hight level control
integration capabilities (it only has low level ones similar to the basic Unix mechanisms) on which
much of process integration support is built [10]. Tt is very common that given any single framework
there is strong support for some forms of integration but also weak support for other forms. Thus
to remedy weak support for a certain form of integration, it is often necessary to add additional
support from another framework. Since Oz has strong support for process integration, it should be
a strong candidate to “fill in the gap” for PCTE. Therefore, the more important motivation of our
experiment was to build an Oz with PCTE hybrid system that provides strong support for tool,
data and process integration.

Our experiment tested both the easiness of replacing an Oz component and the feasibility of devel-
oping additional framework support, process integration, to PCTE. The rest of the papers details
our experience in both of these areas.

In a truly componentized system, the OMS component can be replaced by an arbitrary objectbase
management system without changes in other components of the system. However, the implemen-
tation of Oz had incorporated a large amount of legacy code from Marvel, the predecessor of Oz,
that made fixed syntactic and semantic assumptions on the underlying data model and data ma-
nipulation primitives of the native Oz OMS. The native OMS has evolved into a component called
Darkover. References to objects in Oz have been changed to function calls to the Darkover APT [9].
This change 1s intended to eliminate all fixed syntactic assumptions. Replacing the native OMS
(Darkover) with an arbitrary external OMS can in principle be done by implementing a translation
layer that maps the external OMS API to the Darkover API, and modifying the Darkover functions
that handle ad hoc queries and cache management. Identifying and removing the fixed semantic



assumptions are more subtle and difficult. This can be accomplished by interfacing the Oz server
with an external OMS (e.g., the PCTE OMS) and find out what can go wrong and what are the

causes.

In this experiment we did not try to replace the Oz OMS completely with the PCTE OMS. Instead,
we replaced the Storage Manager of Oz with the PCTE objectbase. We reused as many Oz OMS
functions as possible in order to minimize the code changes in Oz components. For example, the
data model validating functions and the cache management functions remain unchanged. There were
two main sets of Oz functions that were rewritten in our experiment. The first set of functions was
the object storage and retrieval functions, which were changed to use the PCTE OMS APT [3]. The
second set of functions was the concurrency control functions, which were expanded to incorporate
PCTE activities [5] into Pern transactions. Since these OMS functions were not isolated in a single
component, several Oz components [1], namely OMS, Rule Processor and Pern were modified.

It is our experience that the fixed semantic assumptions about the OMS are somewhat independent
of the fixed syntactic assumptions in that even if we have eliminated the fixed syntactic assumptions
in Oz, we may still find fixed semantic assumptions. On the other hand, we can identify the fixed
semantic assumptions while ignoring and tolerating the fixed syntactic assumptions by dynamically
translating the fixed native object format to the appropriate format suitable to the external OMS
in use. This is the approach we used in this experiment. Ideally, we should first eliminate the
fixed syntactic assumptions and then identify and remove the fixed semantic assumptions. We could
not follow this order at the time of this experiment because the Darkover API was not completely
specified and implemented, in other words, the Oz components still had all the fixed syntactic
assumptions about the OMS.

A better part of our experiment was spent on the concurrency control problems. These problems
arise due to, in part, some serious limitations of the current PCTE implementations (see section 6).

The rest of this paper is organized as the following: Section 2 describes briefly the services provided
by PCTE, with the PCTE OMS covered in details. Section 3 provides an overview of the Oz system
architecture, its concurrency control, data repository, and tool integration support mechanisms.
Section 4 compares the Oz OMS model and the PCTE OMS model, and discusses how to define the
Oz data model using the PCTE OMS. Section 5 describes the implementation of the Oz interface
to the PCTE OMS. This interface consists of object operations implemented using the PCTE OMS
primitives. Section 6 examines the concurrency control problems that arises when the PCTE OMS
is in use. Two different solutions are discussed in detailed. Section 7 describes an example Oz
environment which uses the PCTE OMS as the data repository. Section 8 compares our experiment
with other related work in this research area. Section 9 concludes this paper with a summary of our
experiences and a discussion of possible future work.

2 PCTE Overview

PCTE, for Portable Common Tool Environment, is a framework for CASE tool integration. Tool
integration not only means that all of the tools exhibit some measure of uniformity, but also that they
should be able to share the same data and communicate with each other. The commonly accepted
solution for the development of environments that facilitates CASE tools integration is to use an
Open Software Integration Platform, known as an Environment Framework. A widely supported
framework is based on the Reference Model for Software Engineering Frameworks developed by
ECMA and NIST [12]. This model suggests that a framework should support at least three main
sets of services, namely, User Interface Services, Communications Services and Object Management
Services, which correspond to these three dimensions of tool integration: presentation, control, and
data. The fourth important set of services of the framework, the Process Management Services, is
to support the development of an environment enforcing a particular software development process.
Note that a process should not be “built-in” for an software development environment. Instead, the



environment should provides facilities for users to define and tailor a particular process suitable for
the particular software development policies and activities.

PCTE is a framework that conforms to the ECMA/NIST Reference Model. For presentation inte-
gration, PCTE supports MOTIF-compliant tools. In the are of data integration, PCTE provides
a single, common data repository, open to all components of the environment. This data repos-
itory provides all the basic services necessary in an Object Management System (as described in
the ECMA/NIST Reference Model) for a high level of data integration between tools. For control
integration, PCTE provides message and notification facilities.

The Emeraude PCTE environment is a distributed software engineering development environ-
ment [5]. It typically consists of a network of hosts, which are workstations that allow users to
access the Emeraude PCTE environment.

2.1 The PCTE OMS Model

The main interest of this experiment is the OMS services provided by PCTE. These services include
data typing and data storage along with concurrency control. This subsection briefly explains the
key concepts and features of the PCTE OMS model.

The OMS model defines the static information about the data stored in the objectbase, which is
the repository of all persistent PCTE data. The objectbase is managed by the PCTE OMS, and
(in the Emeraude PCTE environment) is distributed over the environment on a number of logical
volumes corresponding to the physical distribution of storage devices over the network. A volume
i1s mounted on a Unix file system or device of a particular host so that the data held in the volume
is available transparently throughout the environment.

2.1.1 Objects, Links, Relationships, Attributes, and Types

The objectbase represents discrete items of data as typed objects connected in a logical network by
typed links and relationships.

e Objects represent the basic entities upon which operations are to be performed, and one
object exists for every distinct entity that is to be operated on by a tool. Examples of objects
are text files, documents, source and compiled modules.

e Links represent relations between objects. A link is directional, emanating from one source
object to the other destination object; it is always paired with a reverse link going in the
opposite direction, either as part of a relationship or created automatically as a system reverse
link. An example is a link writes from object user to object document, representing the fact
that document is created by user. The link in this example is called a reference link, which
models dependencies between objects. Another type of link is the composition link, which
models composite objects. A composition link is automatically created by PCTE when an
object is created. Tt links an existing object (the parent object) to the newly created object
(the child object). An example is the composition link contains from object book to chapter_1.
A link also has a cardinality, either one or many. This defines whether more than one link
of this link type can start from the same source object.

e Relationships are paired mutually dependent links that represent a two-way relationship
between pairs of objects, each half of the pair representing one direction of the relationship.
For example, a link is_written_by from object document to object user can be paired with
the link writes from user to document to form a relationship between theses two objects.
Depending on the cardinality of its links, a relationship can represent one-to-one, one-to-many
and many-to-many relations between (instances of) two object types.



e Objects and links can be qualified by OMS attributes, which have a particular value type
(for example, integer, string, boolean or date) and give more information about the object or
link. For example, document can have status and release_date attributes, of value type string
and date, respectively. A key attribute is associated with a cardinality many link so that its
value can be used to distinguish the possibly multiple links of the same type from the same
source object.

e Objects, links and their attributes in the objectbase are all typed, that is, they are created in
accordance with a specific type definition. A type definition defines the properties that all
instances of the type in the objectbase will have. When an object is created, it is created as an
instance of a given type. Object types, which can also be called object classes, are created as
specializations of existing types, and they inherit the properties of their ancestor types. Thus
an object also has all the properties of its ancestor types in addition to the properties that are
specifically appropriate to its type. The PCTE OMS model supports single inheritance only.

Which objects and links can be seen and created at any given time depends on the working schema
of the currently running PCTE process (on behalf of an external tool). A working schema contains
all the type information needed by the tools being executed. The use of working schema allows
different views of the objectbase to be presented to different tools so that only the appropriate types
are visible to a particular tool.

2.1.2 Objectbase Composition and Navigation

A composition link is automatically created when an object is created. It links an existing object,
the parent, to this new object, a component. An object has only one composition link leading to it,
and when this composition link is deleted, the object is no longer accessible and is implicitly deleted.

Direct reference to a particular object or link in the objectbase is through navigation. A pathname
needs to be specified in order to access an object or link. The pathname starts from the reference
object, and contains the names, in order, of all the links that must be traversed to get to the object
or link to be accessed. A reference object is like a pre-evaluated path, which is convenient to use
and allows short pathnames.

2.2 Communicating with the PCTE OMS

Tools communicate with the OMS through a number of tool interfaces provided by PCTE. These
interfaces include the C language interface, which is a set of C libraries that can be linked with
the object code of tools programmed in C; and the PCTE shell interface, which allows users to
communicate with OMS directly through a set of OMS commands. In addition, Emeraude PCTE
provides a tool called the OMS Browser. It has a graphical user interface that gives users a view of
the objectbase, and menus that contain the major OMS commands. It allows users to navigate the
objectbase by following links from object to object; see information about objects, attributes and
links; create, delete and modify objects, attributes and links; use the Emacs-like Emeraude PCTE
object editing tool to edit object contents; change the working schema; and start, abort or end a
transaction.

Tools that are integrated into or developed within a PCTE environment are stored in the PCTE
objectbase as objects (of type Sctz) and their executions are managed as PCTE “client” processes.
These processes are not objects because they are purely dynamic. PCTE provides facilities that are
similar to Unix to manage the start, stop, suspension, communication and synchronization of PCTE
processes [14]. Unix tools that are interfaced to a PCTE environment need to be linked with the
PCTE Unix libraries and their executions (standard Unix processes) are “alien” processes to PCTE.



Within an Emeraude PCTE environment, there is one object server process for each host that
has objectbase volumes (a physical partition of the objectbase). This object server process, which
is started by the PCTE host_start command, provides the PCTE OMS functions to other user
processes — alien processes or PCTE client processes. (A host that does not have any physical
volume of the PCTE objectbase has no object server. The user processes on that host actually
communicate with the object server on another host.)

3 Oz Overview

3.1 The Architecture of Oz

Oz is a process-centered software development environment that supports cooperation among groups
of engineers at different sites who follow a range of software development specific processes (work-
flows) [1]. Tt facilitates both data sharing and process coordination. The architecture of an Oz
environment is based on the client/server model. An Oz server can support multiple Oz clients
sharing the same process and accessing the same objectbase. It also communicates with other Oz
servers to share (distributed) data and coordinate different processes. A user interfaces directly with
an Oz client, which in turn communicates with one or more Oz servers.

The major components of the Oz server are

e The rule processing engine. Rules are the key elements of a process definition. Each rule
consists of a name; a list of typed parameters; a condition consisting of bindings of local
variables and a complex property clause that must hold on the actual parameters (instances
of control and product data) and bound variables for the rule to fire; an optional activity
that specifies a tool envelope and its arguments; and a set of mutually exclusive effects, each
consisting of assertions to the objectbase that reflect one of the possible results of executing
the activity. Rules are implicitly related to each other through matches between a predicate
in the condition of one rule and an assertion in the effect of another rule. Process enaction
is done through rule chaining. Backward chaining is attempted to satisfy the condition of a
rule. Forward chaining through “atomicity chains” is performed mandatorily to propagate data
changes to preserve the atomic nature of a transaction. Forward chaining through “automation
chains” is for the purpose of automating sequences of activities, not necessary atomically.

e The transaction manager is a separate component called Pern [8], which interfaces to the rest of
Oz (or another environment framework) through application-specific mediator code. Because
multiple clients can access the same objectbase, conflicts may arise among user activities and
concurrency control is thus in order. Oz follows the traditional solution of associating tasks
with transactions. A task consists of all rules executed during backward chaining, followed by
the user-invoked rule (which caused the backward chain), followed by all rules executed during
forward chaining. Pern supports a nested transaction model in which a task corresponds to
a series of top-level transactions. Each atomicity chain is a subtransaction of the triggering
transaction and each rule in an automation chain starts an independent top-level transaction.

e The object management system (OMS). In an Oz environment, all data, both process control
data and product data, are stored in and managed by the OMS. The Oz OMS contains an
Object Manager, a Storage Manager, and a File Manager. The Object Manager implements
the data model, provides persistence and performs all requests for access and modification
of both control and product data. It assumes an object-oriented data model, with a class
lattice, object composition hierarchy and arbitrary relationships between objects in the same
objectbase. The Storage Manager is responsible for low-level disk and buffer management
for control data. Since Oz integrates file-based external tools and maintains its product data
in ordinary files, the File Manager is responsible for accessing files requested by other Oz



components. Usually, the data model of a process encapsulates the product data within control
data and abstracts the file system as objects by providing typing and relationship information.
In this case, the File Manager is just a mapping function between objects’ file attributes and
their file contents. The Oz OMS also provides an ad hoc query processor and a set of object
manipulation functions.

3.2 Pern Transaction Model and Its Architecture

Pern, which is currently used as the transaction manager for Oz, supports a cooperative transaction
model [7]. Tt uses a project-specific lock compatibility matrix to check for lock conflicts. In the
case of a lock conflict, Pern checks the project-specific coordination model to take the appropriate
actions (for example, suspend or abort).

Pern may act as an external concurrency control (ECC) component in a variety of software engineer-
ing environments (SDEs) [8]. Pern has no fixed assumptions about how a task is structured (e.g.,
a task corresponds to a rule chain in Oz). Tt also uses external lock tables and a generic recovery
mechanism so that it does not require the knowledge of the OMS in use. And most importantly,
Pern uses mediator architecture where mediators establish the connections necessary to integrate
Pern with the task management services (TMS) component and the OMS of an SDE.

3.3 Communicating with the Oz OMS

All the major Oz components need to communicate with the OMS. The rule processor queries the
objectbase to obtain the actual parameters of a rule and evaluates its condition. The rule’s activity
accesses and modifies data in the objectbase. The rule processor also modifies data in the objectbase
when it asserts an effect of a rule. Pern locks objects accessed within a transaction and directs the
OMS to undo changes in the objectbase when a transaction is aborted.

At the time of this experiment, the Oz components were tightly coupled with the OMS. For example,
it 1s assumed that the whole objectbase is loaded into Oz buffers when the Oz server is started and
access to objects is then done by directly addressing into these buffers instead of function calls to the
OMS interface. Object modification is done by calling OMS functions that handle both updating the
in-memory buffer and the on-disk persistent data. But these functions only work with an assumed
data model where objects can have file attributes, which are files stored in the Unix file system,
and compostte attributes, which are component objects. In the following sections, we will see more
detailed examples of these fixed assumptions and how they should be changed.

3.4 Oz Tool Envelopes

A typical Oz process may utilize several external tools to carry out activities. Oz provides one or
more tool envelopes for each external tool so that the external tool can be used as a “black box”.
A tool envelope represents the implementation of an activity. Since the activity of a rule is always
executed by Oz client, tool envelopes are invoked by Oz clients. Tool envelopes are written in SEL,
an extended Unix shell language [6]. SEL allows the tool integrator to use a standard Unix shell
language to write code to wrap around the call to the tool. It also requires the explicit declaration
of all object attributes, along with the corresponding types, that are input or output variables of an
envelope. This requirement hides the details of object data model from the envelope writer. SEL also
handles multiple output (return) values so that it can not only report the status of tool execution
back to Oz, but also return the execution results. A tool envelope written in SEL is compiled using
the Oz make_envelope utility into a standard Unix shell script.



4 Implementation — Data Model Mapping

4.1 Comparison of Oz and PCTE OMS Models

Needless to say, most of the complications of using the PCTE OMS for the Oz server arise from
the differences in the PCTE OMS model and the Oz OMS model. However, since both of them are
intended to be generic object-based models, there are many similarities between the two.

4.1.1 Similarities

e Both Oz and PCTE support the concept of object, which can be uniquely identified in the
objectbase — in Oz via the unique object identifier (OID) and in PCTE via the navigational
pathname to the object.

e Both associate a type (class) with an object. Both support a type hierarchy and inheritance.
However, PCTE only allows single inheritance while Oz supports multiple inheritance.

e Both have a pre-defined root in the type hierarchy — in Oz the ENTITY class; in PCTE the
object type.

e Both apply attributes to objects. In Oz, primitive attributes can be of string, integer, boolean,
date, real, and user-defined enumerated types. In PCTE, only string, integer, boolean, and
date are allowed.

e Both use links to model relations between objects. Both have implicit reverse links to facilitate
objectbase navigation.

e Both support an object hierarchy through composite objects. The definition (and construction)
of the object hierarchy is identical. In Oz, an object can have composite attributes each of
which can be a component object or a set of component objects. In PCTE, a parent object
can have composition links to one or a set of component objects.

4.1.2 Differences

The following are the main differences between the two systems which we had to resolve.

e In PCTE, type definitions (classes) are stored in the objectbase as first class objects; in Oz,
class definitions are stored separately from the objectbase in a file and loaded into the Oz
server at startup.

e In Oz, the name space of attributes and links is within the class where the attributes and links
are defined and applied. In PCTE, all objects, links and attributes in a Schema Definition Set
(SDS) share a single name space.

e Oz objects may have file attributes whose values are the pathnames of files in a “hidden” file
system. It is therefore possible to associate an Oz object with one or many files. In PCTE,
objects that can have file contents are of type, or subtype, of the file object type predefined
in the PCTE OMS. A PCTE object can be associated with at most one file.

4.2 Data Modeling Using the PCTE OMS Model

In order for the Oz server to interface with the PCTE OMS, we need to first define the Oz data
model, which defines the schema of process data and product data in an Oz environment, in the



PCTE OMS. Since the two OMS models are not the same, we use the following approach to overcome
the differences.

e Fach link and attribute name in PCTE is prefixed with the object type (class) name. This
guarantees that links and attributes names are unique in a schema.

e Oz link attributes are modeled as relationships in PCTE. Although links are unidirectional
in Oz persistent storage, at run time the Oz OMS creates an in-memory reverse link for each
link to speed up in-memory object navigation and to support inverse queries. The original
motivation of using relationships is that Oz components may take advantage of the persistent
reverse links in PCTE for object navigation in the objectbase. However we found out later
that while a reverse link can be used to access an object, it can not be added or deleted
directly because it is always implicit in PCTE — its existence depends wholly on its paired
link. This implies that if we make the reverse implicit links visible to Oz components, Oz has
to distinguish whether a link is implicit or not when it tries to operate on it. Since we don’t
consider this requirement a general one, we decide not to read the reverse implicit links into Oz
at run time. In other words, we are currently not taking advantage of the persistence reverse

links in PCTE.
e A composite attribute for a component object in Oz is mapped to a composition link in PCTE.

e A file attribute for a file in Oz is mapped to a composition link to an object of type Oz_FILFE,
which is a subtype of file in PCTE. For example, if an Oz (object) class cfile has a file
attribute named contents, then in PCTE, c¢file will have a composition link named contents
to Oz_FILE.

e 0z 0ID and Oz_NAME become Oz system-attributes for all objects in PCTE. Since every
class in Oz 1s assumed to be a subclass of ENTITY | we extend the object type definition
ENTITY , which is a subtype of the PCTE root object type object, in PCTE with these two
attributes so that all (derived) object types automatically have the two as attributes. The only
exception to this is that Oz_FILFE is not a subtype of ENTITY (this is because Oz_FILE is
a subtype of file, which is in turn a subtype of object) so we also add these two attributes to
it. Each Oz_OID has a unique value in an objectbase; it is added to facilitate Oz components
in referencing objects. Oz_N AM E is needed mainly for the purpose of objectbase display in
Oz clients. Oz_OID and Oz_NAMF can therefore be regarded as the external identifiers of
an object, with the first used in the programming interface and the second used in the user
interface. The reference pathname of an object can then be regarded as the internal identifier.

e An attribute of a user-defined enumerated type is mapped to an attribute of type string in
PCTE. While the default value can be set, the list of the possible valid (enumerated) values
is not stored.

We limited our experiment to those Oz data models that do not use multiple inheritance in their class
hierarchies. Although one can always devise an algorithm which translates a multiple inheritance
class hierarchy into a single inheritance class hierarchy, it is neither the goal nor the interest of
this experiment to actually implement such an algorithm. We have found few significant fixed
assumptions about multiple inheritance in Oz components.

PCTE also provides a schema compiler that validates and then stores the type definitions (classes)
in the objectbase. Suppose we have an Oz class definition as shown in figure 1. Then the relevant
information in the PCTE schema definition file will be as shown in figure 2.

5 Implementation — Interface to the PCTE OMS

The legacy code in Oz components assume that the entire objectbase is loaded into memory when the
Oz server is started. While this assumption could potentially be changed, our experiment is mostly

10



MANUAL :: superclass ENTITY
title : string;
reformat : boolean = false;
format_status : (Initialized, Working, Done) = Initialized;
/* enumerated-type attribute */
submanuals : set of SUBMANUAL; /* composite attribute */
first_page: text /# file attribute */
first_sub : link SUBMANUAL;

Figure 1: An Oz Class Definition

0Z_0ID : string;

OZ_NAME : string;

MANUAL__title : string;

MANUAL__reformat : boolean := false;

MANUAL__format_status : string := ‘‘Initialized’’;

/* 0Z_0ID is the key attribute of this cardinality many link */
MANUAL__submanuals : composition link (0Z_0ID) to SUBMANUAL;

/* file attribute is mapped to a composition link to a file object */
MANUAL__first_page: composition link to 0z_FILE;

relationship (/* link mapped to relationship */
first_sub : reference link to SUBMANUAL;
first_sub_of : implicit link to MANUAL );

ENTITY : subtype of object;
MANUAL : subtype of ENTITY;
0z_FILE: subtype of file;

extend ENTITY

with
attribute 0Z_0ID;
0Z_NAVME;
end ENTITY;

extend 0z_FILE
with
attribute 0Z_0ID;
0Z_NAVME;
end Oz_FILE;

extend MANUAL
with
attribute MANUAL__title;
MANUAL__reformat;
MANUAL__format_status;
1link MANUAL__submanuals;
MANUAL__first_page;
end MANUAL;

Figure 2: Corresponding PCTE Schema Definition

11



interested in finding out how Rule Processor and Pern will need to be changed when an external
OMS is used. We wanted to minimize our efforts while achieving our goals. Therefore we tolerate as
many unrelated fixed assumptions as possible by loading the PCTE objectbase into the in-memory
buffers in the Oz server. To match the formats of the in-memory buffers of classes, objects, and
attributes, some run-time translations are required when the PCTE objectbase is loaded into Oz.
Since the Oz in-memory formats match the Oz OMS data model, translations are needed exactly at
the places where the PCTE OMS model mismatches the Oz OMS model. From the discussion in
the last section, it is clear that this kind of translation is straightforward and isolated.

Once the objectbase is loaded in Oz, objectbase navigation can be done in memory. On the other
hand, the effects of object update operations are written immediately in the PCTE objectbase. We
will again see that the PCTE-specific code is isolated to a handful of low level functions because
there is already some degree of abstraction in Oz — the components do not have knowledge of how
the objects are physically stored: low level functions (the Storage Manager) handle the details.

5.1 OMS Primitives in PCTE

The PCTE OMS C language interface contains a rich set of OMS primitives which are essential for
developing an access interface for an external system (such as the Oz server) to communicate with

the PCTE OMS:

e Data Definition Primitives

— Schema Definition Set Level Primitives — initialize, validate, or delete a schema definition
set.

— Definition Level Primitives — create, import, extend, or apply an object, attribute, link
or relationship type definition.

— Browsing Primitives — get all the type definitions in a schema definition set; get informa-
tion about a type definition.

e Data Manipulation Primitives

— Object Manipulation Primitives — create an object; get its type information; determine
its accessibility;

— Link and Relationship Manipulation Primitives — create or delete a link; get the name of
a link or its reverse link; get links starting from an object.

— Attribute Manipulation Primitives — get or set the value of an attribute.

o Establishing the Working Schema — establish a schema definition set as the working schema,
or get the list of schema definitions that constitute the current working schema.

5.2 Reading the Class and Object Hierarchy into the Oz Server

When the Oz server is started, it first reads the class hierarchy of the data model in use and then
reads the whole objectbase. We now describe our implementation of these two functions for the
PCTE interface.

Every Oz environment has an environment directory which contains environment specific process
definition files, tool envelope files, transaction coordination files, an objectbase file, and a subdi-
rectory of “hidden file system” which stores the file attributes of objects. Within the environment
directory, the strategy file contains the class hierarchy in an internal format. When an Oz server
is started for a specified Oz environment, it reads the class definition from the strategy file in the
environment directory. Thus Oz effectively employs a single (working) schema for each Oz server. In
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PCTE classes are first class objects that are actually stored in the objectbase, and type definitions
are visible within a specific working schema. We put the keyword PCTE| followed by the names of
the schemas that constitute the working schema, in the Oz strategy file. This information is used
by the Oz server to first set the working schema. Data definition browsing primitives are then used
to get all the type definitions in the PCTE objectbase. For each object type definition (class), its
parent type definition is used to build the class hierarchy. Also for each class, the definitions of its
attributes of type integer, string, boolean or date are read. The definitions of its composition links
are mapped to Oz composite attributes definitions; the definitions of its relationships are mapped
to Oz link attributes definitions.

Reading the objectbase from PCTE is achieved through navigation starting from a set of top level
objects. A list of absolute pathnames of PCTE top level objects are stored in the objectbase file
in the Oz environment directory. To read the object hierarchy from these top level objects, either
depth first search (DFS) or bread first search (BFS) can be used.

We use a modified DFS in our implementation. The modification is the following: when an object A
is read, if A has a reference link (as part of a relationship) to object B, then B is read (recursively
using DFS) if B has not been read already. This is done to facilitate the set up of reference link
and reverse link between A and B. If we used the standard DFS, B would not be read at this point
since B is not a child of A. The consequence is that the reference links of A can not be set up when
A 1s being processed, thus a second pass is needed to set up the reference links between objects. It
is thus clear that our modified DFS is more efficient.

For each object being read, its attributes are loaded into its in-memory copy; additionally, its
pathname composed strictly of composition links is stored in its ref_path field. The format of the
internal object representation in Oz, the instance structure for an Oz object, has been modified to
have this additional field. ref_path is used for direct access to an object in the PCTE objectbase.
If an object B is read the first time because of a reference link, the pathname that is used to access
B is not stored in ref_path because it contains a reference link, i.e., from A to B. Only when B is
visited later because of a composition link, is the pathname then stored in its ref_path. We make
this deliberate effort for two reasons: first, we want the pathname to an object to represent its
object hierarchy path, thus every sub-path within the pathname must represent object composition
(vs. object reference); second, the composition links are more stable than the reference links in the
sense that deleting a reference link does not affect the existence of the object being linked to, but
removing the composition link deletes the linked object.

5.3 Oz Built-in Operations

There are a number of built-in object operations in Oz, namely add, delete, copy, move, link, unlink,
and rename. These operations first update the in-memory copy of the objectbase and then write
the updates to the persistence storage. The functions for in-memory updates required few changes
but the functions to update had to be rewritten using PCTE OMS primitives.

e add: function do_add_operation handles the creation of an object. It passes the pathname of
the parent object, the name of the composition link, and the in-memory instance of the object
to be added to function OM S_write_object, which creates the persistent object in the PCTE
objectbase and links the parent object to it. OM S_write_object also sets attribute values for
this object in the objectbase. Its Oz_N AM FE is set using the user-entered name, and Oz_OID
is set using the Oz system-generated id. After an object is actually added, its pathname,
which is the parent object pathname plus the composition link name, is stored as ref_path in
its instance.

e delete: function do_delete_operation handles the deletion of an object. It passes the in-memory
instance of the object to be deleted to function oms_delete_object. The later function first
recursively calls oms_delete_object to delete all the descendant objects. Then it deletes all the
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links to/from this object. The actual deletion of this object is done by deleting the composition
link from its parent object. The pathname of this object is used to parse the pathname of its
parent object and the name of the composition link.

e copy: function do_copy_operation copies object from to object to so that fo has an exact copy
of from as its child object. The copy operation copies the whole object composition hierarchy
starting at from, as well as all the links in this object hierarchy. If an object A within from
links to object B (B could be anywhere in the object hierarchy), then A’s copy within to also
links to B.

e move: function do_move_operation moves object from to object to so that fo has an exact
copy of from as its child object and the original parent object of from no longer has it as a
child object. PCTE only provides primitives to move an object across physical storage volumes
(in PCTE, the objectbase can be partitioned into multiple volumes). Since we do not assume
to and from are in different physical volumes, the move operation has to be done in a number
of steps. In the first step, the whole from object hierarchy is copied and placed under to.
The links are not copied; instead, for each link, the object ids of the source object and the
destination object, along with the link name, are stored in a table called link_table, which has
entries of the form (from_id, to_id, link_name). For each object being copied in this step, ids
of the original object and the copied object are stored as (old_id, new_id) in table object_table.
In the second step, the original from object hierarchy is deleted. The links are also deleted as
a result. In the third step, object_table and link table are used to create links. For example, a
link recorded as (A, B, 1) is now created as link [ from A’ to B if (4, A’) is found in object_table.

e link: function do_link creates a link as the link_attribute from source to destination using
the corresponding PCTE primitive.

e unlink: function do_unlink deletes the link_attribute link from source to destination using
the corresponding PCTE primitive.

e rename: function do_rename change the name of instance to new_name. It calls
OM S _write_object to reset the Oz_N AM E of instance to new_name in the PCTE objectbase.
Note that the name used by Oz, the Oz_NAM E| is irrelevant to the object pathname in the
PCTE objectbase. Thus, renaming does not require moving the object in objectbase.

5.4 Accessing PCTE Objects in an Oz Rule

As discussed in earlier sections, the Oz rule processor needs to access objects during all phases of
rule processing, namely, bindings, condition, activity, and effects. Since the rule processor only calls
the high level built-in operations to modify the objectbase, there would be little to change here if
these built-in operations are interfaced to an external objectbase. However, in our experiment, we
have found some fixed semantic assumptions about how files are modeled.

In the Oz OMS, a file of an object i1s one of its file attributes, while in PCTE it is a component
object of subtype file. When reading the class hierarchy and objectbase from PCTE into Oz, file
objects are treated the same as other component objects, i.e., they are translated into Oz composite
attributes of their parent objects. As a result, the rule processor code that handles only the file
attribute have to be changed to also consider composite attributes. The attribute type definition,
in this case class Oz_FILF, is used to determine whether the composite attribute is a file object.

A more serious problem is when a rule is applied to an object that has a file attribute in 1ts object
type definition but has no such physical attribute in the object instance yet. In the Oz OMS, the
file attributes stored in the objectbase are just file paths to the host file system, which is known
and fixed once the object instance is created. In the original Oz implementation, when an object is
read into the Oz server (in server startup time) or when it is created in Oz, a file attribute pointer
is created for each of its file attributes, regardless of whether the file exists or not. This works
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fine because the file path for a file attribute is already known even if file 1s not physically created
vet, so long as the object instance exists. When a rule which requires access to a file attribute is
fired on an object, Oz just passes the file attribute (the file path) to the rule; it then relies on the
rule activity (e.g., invocation of the editor on the file path) to create/modify the file. For example,
suppose we have class C_F'ILF with file attribute C'_contents; an instance of C_FILE foo.c can be
created without having physical C'_contents due to, for example, that foo.c has never been edited.
When a rule, say ed:t, is applied to foo.c the first time, it requires access to its C'_contents. Oz
will pass the C'_contents attribute, which is just a file name (for an nonexisting file) in the host file
system, to the editor. After edit is completed, the C'_contents is now the (unchanged) file path to
an existing file. When the PCTE objectbase is in use, however, files are stored as first class objects
in the objectbase, and a file attribute of an object is modeled as a component object of object type
file of the object. Therefore, creating a pointer (in memory) to a nonexisting component object
is obviously not acceptable because it will seriously comprise the data integrity of the objectbase
in memory. Our solution to this problem is the following: the file component object is created
only when a rule which requires a file attribute parameter is applied to this object. This action of
creating the component is logged automatically by the governing Pern transaction; therefore it can
be undone in the case of a Pern transaction abort (see next section). Since most external tools that
access files require that files be in the host file system instead of in the objectbase, file copying in
both directions is also required. More details are discussed in section 6.3

6 Concurrency Control and Recovery

Since Oz is a multi-user system with multiple Oz clients sharing the same objectbase, concurrency
control is needed to prevent chaos. For the same reason, PCTE also provides concurrency control
mechanisms for concurrent foreign and PCTE tools to cooperate with each other. Note the Oz server
may be only one of these (foreign) tools, and multiple foreign and PCTE tools may be accessing the
PCTE objectbase at the same time as Oz.

Pern, the transaction manager used by Oz, is a more flexible, powerful and elaborate system. PCTE
provides only the basic primitives for concurrency control. In this experiment, we try to make Pern
and the PCTE OMS work together in such a way that Pern manages the high level transactions
and PCTE handles the lower level subtransactions. Data locking is done first in Pern (in memory)
and then in PCTE (in the objectbase). If a lock can not be acquired in PCTE, the current Pern
transaction will abort.

There are certainly other more desirable approaches that we wish we could have used to cooperate
Pern and PCTE. However, as the following detailed discussion will show, the current implementation
of PCTE has some serious limitations that make other alternatives very difficult to implement.

6.1 Concurrency and Integrity Control in PCTE

Concurrency and integrity controls in PCTE are enforced by means of activities (not to be confused
with the activity of an Oz rule). An activity in PCTE is a defined framework within which a set of
related operations takes place. These operations involve accesses to the objectbase. Each operation
is always carried out on behalf of a single activity.

An activity is characterized by its class. There are three classes of activity in PCTE:

e An unprotected activity does not require that its accesses to the objectbase be protected
from other concurrent activities.

e A protected activity requires that its accesses to the objectbase be protected from the effects
of other concurrent activities. The data it reads remain stable and the data it writes 1s not
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compatible read- write- read- write- write-
modes unprotected unprotected protected protected transaction
read-unprotected yes yes yes yes yes
write-unprotected yes yes no no no
read-protected yes no yes no no
write-protected yes no no no no
write-transaction yes no no no no

Table 1: Compatibilities of PCTE Lock Modes

overwritten by other concurrent activities. Changes to the objectbase made by the activity
are permanent even if the activity terminates prematurely.

e A tramnsaction requires the same protection as a protected activity, but in addition it must
be atomic; that is, all or none of its results should be applied to the objectbase. This corre-
sponds to traditional database transactions, with full rollback of the objectbase updates when
a transaction fails for any reason.

An activity can acquire locks on resources. Here a resource refers to: either an object with its
contents and its set of attributes, but not the links originating from the object; or a link and its
attributes. In other words, if an object 1s locked, all its attributes and contents are locked except
its outgoing links. A read mode lock is required for any access that does not intend to modify
the accessed resource. A write mode lock is required for any access that intends to modify the
objectbase. A write access implies a read access. The effect of a lock on a resource is the following:

¢ read-unprotected mode allows other activities to write to this resource concurrently.

e write-unprotected mode allows other activities to write to this resource concurrently. Any
modifications, from whatever source, are immediately applied.

e read-protected mode prevents other activities from writing to this resource concurrently.
This mode i1s applicable to both protected activities and transactions.

¢ write-protected mode prevents other activities from writing to this resource concurrently.
Any modifications, by the activity which holds the lock only, are applied immediately.

e write-transaction mode prevents other activities from writing to this resource concurrently.
Any modifications, by the activity which holds the lock only, are either applied or discarded
once the lock is released. This mode is applicable to transactions only.

Compatibilities of lock modes are shown Table 1.

A lock in PCTE also has a lock duration. A short lock can be released before the termination of
the associated activity, once the resource is no longer required. A long lock can only be released
when the activity finishes. Long locks are held by transactions, whereas short locks are held by
either unprotected or protected activities.

PCTE has a different implementation of nested transactions than many other DBMSs’ because of the
association of process and activity. A process (an executing program), which carries out operations
that access the objectbase, is always initiated in the context of an activity. A process can start and
control new activities, which are treated as nested (internal) to the one in which the process was
started. The outer-most activity (normally an unprotected one) is implicitly set up by the system
so that when a user program (process) is first started, it is within the context of this activity. In
the current implementation of PCTE in the Unix environment, the only way for a process to start
a new activity i1s for this process to spawn a child process and then let this child process start an
activity. Thus, within each Unix process, there can be only one (flat) PCTE activity.
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In the following sections, we will see the consequences and limitation of this implementation. Ba-
sically, since in the Oz environment there is a single Oz server per objectbase and Pern is part of
the Oz server, which is implemented as a single Unix process, there is only a single Unix process
on behalf of Pern with respect to a given objectbase at any given moment. A Pern transaction
corresponding to a rule often requires nested transactions, for example, because of an atomicity rule
chain. If we try to put a Pern transaction within a PCTE transaction, then the implementation
will require that a PCTE transaction is started before a Pern transaction is started. If the Pern
transaction happens to have nested subtransactions, then a PCTE transaction will also be started
before each Pern subtransaction is started. But this second PCTE transaction would be nested
within the first PCTE transaction, and they are both started by the same Unix process (Pern).
This is not allowed by the current implementation of PCTE. Therefore there is currently no simple
and direct way for Pern to take full advantage of the PCTE nested transactions facility. Instead, we
have devised mechanisms that enable low-level PCTE object operations to be controlled by PCTE
protected activities and transactions, while high level object manipulations (as in an Oz rule chain)
to be guarded by Oz’s Pern.

6.2 Built-in Operations as PCTE Protected Activities

The built-in object operations in Oz, namely add, delete, copy, move, link, unlink, and rename,
require write access to the PCTE objectbase and thus require protection from other concurrent
PCTE activities. These operations are normally done in isolation (i.e., have no dependencies on
other operations). Further, once such an operation succeeds in changing the objectbase, there is no
reason (within the same operation) to undo the effects. Therefore they can be implemented either
as protected activities or as transactions because either can provide the same protection against
other concurrent activities. Implementing them as PCTE transactions would probably leave the
full rollback functionalities unused. We decided to implement these operations as PCTE protected
activities in order to gain more experience with PCTE, since we implemented some other object
operations (discussed in the next section) as PCTE transactions.

Each of the built-in operations eventually calls a low level function that uses PCTE OMS prim-
itives to carry out the object operations in the PCTE objectbase. These low level functions can
be placed within PCTE protected activities. For example, do_add_operation calls the function
OM S _write_object to write objects in the PCTE objectbase. Before calling OM S _write_object, a
PCTE protected activity 1s started so that all object operations following this call are protected.
When OM S_write_object returns, this activity is ended. Within OM S_write_object, before writing
an object (changing its attributes or creating a child object), an attempt is made to lock this object
in write-protected mode. If the lock is obtained, then this object is written to PCTE’s OMS and
the lock is released. This sequence of actions ensures that no other concurrent PCTE activities can
write to this object if an Oz built-in operation is accessing it. These built-in object operations are
normally called upon by a rule’s effects and are therefore part of a Pern transaction. If the PCTE
protected activities on behalf of these Oz built-in operations have to be aborted, for example, if an
exclusive lock can not be obtained, the upper level Pern transaction also aborts. Say, a rule’s effect
has two update operations: add(a,b) and link(e,d). These two operations both have to succeed.
Suppose that the add succeeds but the link fails; Pern would then abort the transaction of this
rule. This requires that the result of the add to be undone in the PCTE objectbase. Pern maintains
an entry for each invocation of such operations in its log file so that the effects of these operations
can be undone when a Pern transaction aborts. The details of putting entries in the log file and
performing recovery for these PCTE object operations are discussed in section 6.4.

6.3 External Tools Wrapped in PCTE Transactions

The activity part of an Oz rule can invoke an external tool such as the default editor. These
external tools normally require access to the contents of objects (for example, the content of a C
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Figure 3: Transaction Envelope

file). Object contents, i.e. files, are of utmost importance in a (coarse-grained) software development
environment and thus demand vigorous protection. For this reason we decided to wrap the tools
that access PCTE object contents in PCTE transactions. This implementation ensures that the
updates of object contents are all-or-nothing, and no intermediate changes can be seen by other
concurrent PCTE activities (this is a given, since in Oz, a PCTE file object is always copied to the
host file system before an external tool can use it). Recall the PCTE limitation that a Unix process
can only have one PCTE transaction. If it did not have this limitation, we could easily implement
the top level Pern transaction as a PCTE transaction and the tool invocation as a nested PCTE
transaction.

We overcame this limitation by implementing a wrapper Unix program, a transaction envelope,
that runs as a separate Unix process. This transaction envelope takes the message regarding what
tool operates on what objects, along with some Oz environment-specific information (e.g., the id of
the Oz client that runs the rule activity), from the Oz client, starts a PCTE transaction, tries to lock
the required objects, and then calls a tool envelope. Figure 3 shows how the transaction envelope
interacts with the Oz client and the PCTE OMS. It also shows that the PCTE transaction carried
out by the transaction envelope is part of a Pern transaction. The tool envelope is a shell script that
invokes the actual tool in the system and reports the status to its caller. Normally the return code
from a tool envelope is used to choose one of the rule’s several effects. We have designated a return
code to indicate an aborted request. The transaction envelope then decides whether to commit or
to abort this PCTE transaction according to the return status from the tool envelope. The return
status of the transaction envelope is the same as that of the tool envelope so that in the case of a
PCTE abort, the abort request will be propagated to the Oz server and Pern; otherwise, this return
code is used to choose the effect as usual.

Some implementation details are worth discussing. When an external tool is called as a rule’s
activity, the rule processor of Oz marshals arguments (objects or attributes) required by this tool
in a command line arguments buffer and sends it to an external program, an envelope, normally via
the Oz client. The Oz client also creates a named pipe, a file in the host file system, and sends the
pipe name to the envelope as a command line argument. This named pipe is used by the envelope to
write the return values so that the Oz client can read them after the envelope terminates. When a
transaction envelope is called, the command line arguments are marshaled differently than for a tool
envelope. First, the name of the tool envelope (which the transaction envelope will call) is passed
in as an argument; second, for each external tool argument that is of a file type, the rule processor
translates it to “lock_mode x PC'TE_file > Uniz_file > backup_file”. If such an argument is a set
rather than a singleton, then a set of such strings (one for each instance), separated by a |, is used
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for this argument.

The lock_mode indicates the lock mode that Pern requires on this object. It is S for shared or X
for exclusive. At the point when the transaction envelope receives this message from the Oz server,
the in-memory copy (within the Oz server) of the object has already been locked in an appropriate
lock mode by Pern. The transaction envelope then tries to lock the persistent copy of the object
in PCTE accordingly: X as write-transaction and S as read-protected (if a lock mode other than
shared and exclusive is used in Oz, it also needs to be mapped to one of these two PCTE lock modes,
this would generally require the “promotion” of the Oz lock mode).

Pern has the notion of primary locks for an object and intention locks for all ancestors of the
object. PCTE does not support such flexible lock modes; instead, it has the notion of a concerned
domain. The concerned domain for an object is the object, the set of links leading to the object,
and the set of links originating from the object. The concerned domain for a link is the link and
the object from which it starts. If the link is the composition link leading to an object, the link’s
concerned domain also includes the concerned domain of the destination object. A lock can be
placed on an object (or link) only if this lock is compatible with all the locks held by other activities
on the objects and links in the concerned domain. Therefore if an object is locked exclusively (in
write-protected or write-transaction) by an activity, none of its ancestors can be locked exclusively
(for updates) by other activities. On the other hand, its sibling and descendant objects may still be
locked exclusively. To see this, suppose that an object module is locked exclusively by an activity
make. Implicitly, the composition link from module’s parent object system to module is also locked
by make. Now if another activity delete tries to lock system exclusively, it would fail since one link
(the composition link to module) in system’s concerned domain is locked exclusively by make. Now
that system can not be locked by other activities, it 1s implicitly locked by make, and as a result
system’s parent can not be locked by other activities either. It follows that none of module’s parent
can be locked by other activities. However, if an activity edit tries to lock module’s child ¢ file, it will
succeed since module 1s not in cfile’s concerned domain. It follows that all of module’s descendants
can be locked. Therefore we can see that in PCTE the use of concerned domain parallels Pern’s
intention lock strategy.

The PCTFE _file is the full path of the object contents in PCTE. The object contents are copied to
Unixz_file before the tool envelope and thus an external tool (a Unix such as Emacs) is invoked.
After the tool envelope execution, the contents of the Uniz_file is copied back to PCT E_file before
the transaction is committed. The backup_file is for the purpose of recovery; it is a Unix file that
contains a copy of the object contents from before the tool execution. The reason why we need this
backup file is the following: although the tool execution is performed within a PCTE transaction, it
is also part of a higher level Pern transaction, which may abort. But when this occurs, the changes
to the object contents in PCTE have been committed and need to be undone. Qur solution here is
to put an entry in Pern’s log file to indicate that the object contents have been updated and there is
a backup file that contains the original contents. In the event of a Pern abort, the recovery function
will use this log entry to copy the original contents back to PCTE, thus undoing the committed
changes in PCTE.

Since the transaction envelope calls the tool envelope to actually execute the external tool, it needs
to create a named pipe and pass the pipe name to the tool envelope so that the tool envelope can
write the return status and output values to the pipe. The transaction envelope can then read the
output after the external tool envelope terminates. After a PCTE commit or abort based on the
return status, the transaction envelope just writes the same output to the named pipe that was
passed from the Oz client, thus enabling the client to get the return status and output values.

Just as in the case of Oz built-in operations, if the PCTE transaction on behalf of an external tool
invocation aborts, for example, because of lock conflict or error in executing the external tool, the
upper level Pern transaction also aborts. Pern handles the recovery.

Since file (PCTE object) copying is required for most of the Unix tool invocations, the performance
of rule activities when the PCTE OMS 1s in use must be worse than the case when the Oz OMS 1s
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in use. Section 7.3 gives an example in tool performance comparison.

6.4 Recovery Using Pern Log and PCTE Transactions

In Oz, the Pern log file is used for the purpose of recovery. Each object operation has an entry in the
log file. In the event of recovery, the entries are used to undo the effects of these object operations.
Although Oz built-in operations are implemented as PCTE protected-activities and external tool
invocations as PCTE transactions, they are subtransactions of the upper level Pern transaction.
Therefore their results need to be undone if the Pern transaction aborts. We use the Pern log file
for recovery. This can be easily achieved since Pern puts entries in the log for all operations of a
transaction and its subtransactions automatically.

There are some complications here, however. For the delete object operation, the original Pern
implementation puts only one entry for the deletion of the top level object. It also stores in the
log file the ASCIT representation of the subtree objects (the descendents) that will be deleted. This
works fine with Oz’s OMS because all objects are stored in the Unix file system, so an undo of a
delete operation only requires rewriting in the file system using the stored ASCII representation.
But for PCTE, the actual deletion of an object involves a sequence of delete operations, from the
bottom up, one for each descendent of the object. If there is only one entry (for the top level object)
in the log file, 1t is impossible to recover from a partial delete. Storing the ASCII description of the
subtree objects is not practical in terms of efficiency because we need to traverse the objectbase in
PCTE to get this description. We have implemented a better solution to put an entry for each actual
PCTE object delete operation in the log file. Ideally PCTE should act as a lower level transaction
manager and provide an interface for Pern to use its log file to initiate recovery for PCTE object
operations. But the current implementation of PCTE does not provide such an interface.

To prevent a partial undo, we implemented each undo operation in a PCTE transaction. This
ensures that undo can be done idempotently in case of failures during a previous undo.

6.5 Discussion

Notice that the order of the data lockings and the fact that PCTE transactions are subtransactions
of the Pern transactions only guarantees serializability between Oz activities within the same Oz
environment, but not between an Oz activity and a PCTE activity that accesses the same PCTE
OMS through its own interface. To see this, suppose that we have two Oz clients A and B that
connect to the same Oz server, and they are firing rules rule_A and rule_B, respectively. Further,
the activities (or effects) of these two rules try to gain exclusive access to a PCTE object bar at
the same time. Since the execution of each Oz rule is done within a Pern transaction, and there is
a single Pern per Oz server, Pern can grant the exclusive lock on bar (locking done in memory) to
either rule_A or rule_B. Actually, Pern requires that all the objects that a rule intends to update
be locked before the rule’s activity and effect take place. When, say, rule_A gets the exclusive lock
from Pern and actually accesses bar in the PCTE objectbase, it first does the actual locking of
bar in the PCTE objectbase. This is done to prevent other external (outside the Oz environment)
activities from accessing bar after rule_A starts accessing bar. This mechanism (a strict two phase
locking scheme) guarantees serializability between rule_A and rule_Band is deadlock-free because:
1) rule_A and rule_B have to obtain all the locks at once from Pern; 2) when rule_A or rule_B locks
and accesses an object in the PCTE objectbase for which it has obtained the Pern lock, there can
not be any other Oz rule (within the same Oz server environment) that can access the same object.

The story 1s quite different if an external activity, say C'is accessing the PCTE objectbase through
the PCTE OMS interface directly (without going through Oz, and thus Pern). Unless C' locks all
the objects i1t intends to update at once before it actually writes to the PCTE objectbase, there
is no guarantee of serializability between C' and A (or C' and B). For example, C' can have an
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rule_A: rule_B: external activity C:

read(X); read(Y); lock(X);

X=X-N; Y=Y+X; read(X);

write(X); write(Y); X=X+N;
write(X);
unlock(X);

Figure 4: Concurrent Activities

old copy of bar (done by reading without first locking bar) before A locks it, and then after A has
committed the changes to bar and released the lock, C' writes its own update of bar, resulting in
a “lost update” problem (A’s update is gone). The point here is that, unless all PCTE activities
follow a transaction model in accessing the PCTE objectbase, for example, two phase locking, there
will be unpredictable results in the face of concurrent activities.

However, even if we are in a “perfect world” where all PCTE activities use the transaction model
in accessing the PCTE objectbase, there can still be a “Incorrect Summary Problem” (also known
as the “Inconsistent Analysis Problem”) [2]. To see how this can happen, suppose that we have
two rules rule_A and rule_B and they are chained together (from rule_A to rule_B by an atomicity
chain). The activities of rule_A and rule_B are shown in figure 4. The two rules are chained because,
for example, a consistency condition that “whenever X is updated, update Y accordingly”. In Oz,
rule_B will be in a Pern subtransaction of rule_A’s. X is locked in rule_A’s transaction, and the
lock is passed to rule_B’s transaction. But when the transaction envelope is used, the activities
of rule_A and rule_B will be in different PCTE transactions, and passing locks between the two
envelopes, which are two different Unix processes, is not possible under the current implementation
of transaction envelopes.

Imagine that after the transaction envelope for rule_A commits the corresponding PCTE transaction
which updates X (at which point the lock on X is released), but before the transaction envelope of
rule_B can lock X and Y, another external activity C' can start. The activity of C'is also shown in
figure 4. ' can finish quick enough so that the transaction envelope can successfully lock X and Y,
and then go on to do the update X. Since X has actually been changed by (' already when rule_B
uses it, this results in a “incorrect summary” on Y.

Figure 5 shows the inadequate protection against external activities when transaction envelopes are
used in a nested Pern transaction (for a rule chain). Here, a PCTE transaction (on behalf of an
external activity) that starts and finishes between the time of two Oz activities could potentially
cause the incorrect summary problem.

At the time of this writing, the authors are implementing a solution to this problem. The basic ideas
is to have a lock mediator process to lock all the objects needed for a Pern (nested) transaction.
As shown in figure 6, one instance of such a mediator process is needed for each top level Pern
transaction. One possible implementation of the lock mediator is the following: when the Oz server
is started, start the master lock mediator process and set up a predefined named pipe between it and
the Oz server process. Whenever a top level Pern transaction is started, Pern notifies the master
mediator process to fork and spawn a child mediator process for this new transaction. It also sets up
a named pipe, identified by the top level transaction id, between 1t and the child mediator process.
Whenever a Pern transaction needs to lock or unlock an object, it notifies the master mediator
process of its top level transaction id, the object id and the action (lock or unlock), using the named
pipe between the Oz server and the master mediator process. The latter then turns the lock /unlock
request into the corresponding child mediator process using the named pipe between theses two
process. The child mediator process does the actual lock/unlock objects in the PCTE objectbase. It
also starts a PCTE transaction when the top level Pern transaction starts, and commits the PCTE
transaction when the top level Pern transaction is to commit. Any failed lock request to PCTE will
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trigger the child mediator to abort the PCTE transaction. It then notifies Pern, through the master
mediator, to abort the top level Pern transaction.

Copying object contents from/to PCTE should also done by the child mediator when it locks/unlocks
an object. Otherwise, when an envelope, which is a Unix process other than the child mediator,
tries to copy the object contents from PCTE, it would fail because the object is locked by a different
process (the lock mediator). Note that when the lock mediator is in use, there is no longer a need
for the transaction envelope because by the time the tool envelope is executed, the object is already
locked in PCTE, with its contents copied to the local file system. Comparing to our transaction
envelope approach, the advantage of using a lock mediator is that it actually maps each top level
Pern transaction to a PCTE transaction and can therefore guarantee the integrity of the Pern
transactions. The disadvantage is that it may be relatively heavy weight since one child mediator
process is created for each top level Pern transaction. The choice between the two solutions may
depend on the actual application environment and the degree of protection that is required. If it can
be assumed that most of the objects used by Oz would not be accessible to other PCTE activities, for
example, by setting the proper group permissions on the objects, then using transaction envelopes
is probably adequate. Otherwise, if Oz intends to use the objects that are shared by other PCTE
activities, the lock mediator is in order.

Since the actual data locking is still required in the PCTE objectbase even if Pern has locked the
object, one might ask “Is locking in Pern really necessary?” The Pern transaction that governs a
rule would have to abort anyway if it fails to obtain the lock in the PCTE objectbase, for example,
because an external activity has already placed an exclusive lock on this object. We can see that
the locking done by Pern is just like a front door guard to the PCTE objectbase. It is actually
redundant since we can always skip the Pern locking and let the transaction envelope (or the lock
mediator) try to lock an object in the PCTE objectbase, and abort an transaction if the lock can not
be acquired. We keep the Pern locking for PCTE objects for several reasons: 1) In order to support
the Pern cooperative transaction mechanism, Pern utilizes its own flexible lock modes and makes
decisions as to whether a split or join transaction is possible when conflicts occur. 2) By performing
the Pern locking first, concurrency conflicts (among Oz activities) can be detected earlier since all
the objects are in memory. This will show a more obvious advantage in terms of performance if the
physical objectbase is on a remote host in the network (for example, due to geographical distribution
of the objectbase or multi-process interoperability of Oz subenvironments) and therefore requires
significantly more time in accessing and locking objects in the objectbase.

7 An Example: Oz/Doc with PCTE OMS

We now present an example of using Oz and the PCTE OMS together.

7.1 The Oz/Doc Environment

Oz/Doc is a document production environment implemented using Oz. The document composition
structure (for example, a manual is composed of a set of submanuals each of which consists of a
header, a set of chapters and figures ) is represented using the Oz object-oriented data model. A
set of Oz rules were employed to implement the process of document production (for example, first
reserve, then edit, format, deposit and print).

We chose this environment as a test case in our experiment because the data model of Oz/Doc
is relative simple and thus it can be mapped into the PCTE OMS easily. Another motivation is
that there may be many document production tools already implemented in PCTE, our plan was
to use Oz/Doc to experiment the process control and tool integration using the Oz with PCTE
hybrid system (for example, the activity of an Oz rule can be a PCTE tool instead of a Unix tool).
However, due to the resource limitation, we could not find any useful PCTE document development
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HISTORY :: superclass ENTITY;
history : text;
end

TIMESTAMPED :: superclass ENTITY;
time_stamp : time;
end

VERSIONABLE :: superclass ENTITY;
version_num : integer = 0;

state : integer = 0;

locker . user;

reservation_status : (CheckedOut,Available,None) = None;
version : text = ",v";

end

FILE :: superclass TIMESTAMPED, VERSIONABLE, HISTORY, ENTITY;
owner ! user;
contents : text;

end

Figure 7: Definition of the FILE class (with multiple inheritance) in Oz/Doc

tools to experiment with.

In our experiment, both the control data (Oz process data) and the product data are stored in the
PCTE OMS. However, end-users need not be aware that the PCTE OMS is in use. They normally
work in an Oz environment using the GUI of Oz clients, which are responsible for sending object and
rule requests to the Oz server. The Oz client interface includes an objectbase display which shows
the entire objectbase hierarchy. Users can “navigate” the objectbase (and thus “zoom in” to any
part of the objectbase) by clicking the objects in the display. Rules and Oz built-in commands can
be selected from the pulldown menus. Clicking an object identifies it as a parameter for a selected
rule. External tools (for example, emacs) are encapsulated as the activities of Oz rules. They are
invoked by the Oz clients and thus normally run on the same workstation where the Oz client was
started.

7.2 Implementing the Oz/Doc Environment with Oz and the PCTE OMS

To implement the Oz/Doc process, we first map the Oz/Doc data model onto the PCTE OMS model
using the approaches discussed in section 4. Most of the data definition mappings are straightfor-
ward. figure 1 and figure 2 gives an example on how to define an Oz object class in the PCTE
OMS. There 1s only one class definition, F'ILE that is derived from multiple super classes, namely,
TIMESTAMPED, VERSIONABLE, HISTORY , ENTITY | as shown in figure 7. The mul-
tiple inheritance only goes one level. Therefore, as shown in figure 8, we simply duplicated the
attribute definitions of the first three super classes in the class definition for FF'ILE and make it a
subclass of ENTITY .

In the Oz/Doc environment directory, there are two files that need to be set up specifically when the
PCTE objectbase is in use. Figure 9 shows the contents of these two files. For objectbase, the first
line gives the absolute path of the root of all objects in the PCTE objectbase; the second line gives
the root (top level) object for all Oz objects (of Oz/Doc) stored in the PCTE objectbase. Tt is from
this root Oz object that the read_objectbase function in Oz server starts the objectbase traversal.
For example, for the Oz/Doc environment, there are several M ANU AL objects manuall, manual2,
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FILE__time_stamp : integer := 0 ;
FILE__version_num : integer := 0 ;
FILE__state : integer := 0 ;
FILE__user : integer := 0 ;
:O’

FILE__locker : integer :
FILE__reservation_status : string := "None" ;
FILE__owner : integer := 0 ;

ENTITY : subtype of object ;
FILE : subtype of ENTITY ;

FILE__history : composition link to MARVEL_TEXT;
FILE__version : composition link to MARVEL_TEXT;
FILE__contents : composition link to MARVEL_TEXT;

extend FILE
with
attribute FILE__version_num ;
FILE__time_stamp ;
FILE__state ;
FILE__locker ;
FILE__reservation_status ;
FILE__owner ;
link FILE__history ;
FILE__version ;
FILE__contents ;
end FILE ;

Figure 8: Corresponding Definition of FILE in PCTE (using single inheritance)

objectbase: strategy:

-/ PCTE_BEGIN

_/sitel.sys sys|oz_doc|env
oz_doc
PCTE_END

Figure 9: Objectbase and Strategy Files
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etc. that are the component objects of siteA.sys. Their path names are “_/siteA.sys/manuall”,
“_/siteA.sys/manual2”, etc. These MANUAL objects and their descendants can be accessed once
the path for site A.sys is known.

The strategy file first gives the names of the schemas that make up the working schema set. Then
it gives the name of the schema, oz_doc, that defines the Oz/Doc data model (figure 8 is actually
part of the output of the PCTE command “sds_decompile oz_doc”, which lists the object, link and
attribute definitions in an PCTE schema). sys and env need to be in the working schema set because
oz_doc references object types defined in these two schemas. The read_strategy function in the Oz
server uses these schema names to set the working schema set, and then reads the class hierarchy
from the PCTE OMS according to oz_doc.

Once the data model for Oz/Doc and the object instances are loaded into the Oz server, users
can start working in this environment via the Oz clients. For example, say a user invokes the
edit rule on object chapterl (for example, by selecting the edit rule off the menu and identify-
ing chapterl by clicking it on the objectbase display). Assume that chapterl’s reference path is
“_/site A.sys/manaull [chapter]” and its object id is 59. The Oz server first constructs the Unix
file path for chapterl, which in this case would just be “59” within the Oz/Doc environment direc-
tory. If the Pern transaction id for edit is 4, then a backup file path is constructed as “4_59” (also
in the Oz/Doc environment directory). The Oz client passes these file paths to the transaction en-
velope which does the necessary file locking and copying before invoking, say emacs on “569”. After
the editing is ended, the file contents of “59” is copied back to “_/siteA.sys/manaull/chapterl”.
In the case of a later Pern rollback, the contents of “4.59” is copied to chapterl in PCTE. If the
top Pern transaction commits, then both “69” and “4.59” are removed because they are no longer
needed. Note that everything described here happens “behind the scene” in the sense that the users
are not aware at all that the PCTE OMS is in use.

7.3 Performance Analysis

To get some idea on how file copying has affected the performance of rule activities, we installed
a file_to rule with an activity that concatenates “hello world” to the end of a file. We then used
an Oz tty client, which can execute rules in batch mode, to fire this rule on the same file (a PCTE
object) for 100 times. The average time it took to finish all 100 rule invocations was 316 seconds.
Using the same rule in an identical Oz/Doc environment where the Oz OMS is in use, it took an
average 115 seconds to finish all 100 rule invocations. Tt is evident from this result that file I/O is
the bulk of tool execution time and this performance hit is inevitable when Unix tools operate on
PCTE objects.

8 Related Work

HyperWeb [4] is a framework that supports the construction of hypermedia-based software devel-
opment environments. In Hyperweb, software artifacts are stored in the PCTE OMS. Moreover,
the hypermedia linking of these software artifacts are also modeled and stored in the PCTE OMS
— each hypermdeia node 1s an object and each hyperlink is a relationship between two objects. The
(PCTE) working schema set is used to constrain the types of links that can leave or enter a node.
The architecture of HyperWeb is client/server. The HyperWeb server communicates with the PCTE
OMS which acts as a software object base, providing data integration. The server coordinates tool
activities among clients through message passing. HyperWeb is very similar to Oz in using the PCTE
OMS for data integration. Both have the client/server architecture where the server is responsible
for communicating with the PCTE OMS. Also inferred from the HyperWeb paper [4] is that the
server and clients run outside of the PCTE environment. There was no discussion on concurrency
control and process integration.
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The SoftBench with PCTE experiment [13] attempted to add the Broadcast Message Services (BMS)
on top of PCTE, thus providing a higher level of control integration than what was provided by
PCTE. SoftBench is an environment framework for integrated tools. The SoftBench environment
consists of a set of integration services and an extensible set of tools that communicate by sending
and receiving messages. The key components of SoftBench are the Broadcast Message Server (BMS)
and the Execution Manager (EM). An executing SoftBench tool can send a message to BMS when
it requests a service, completes a service that are relevant to others, or has a failure to report. BMS
then forwards the message to other SoftBench tools that have registered to this message. The EM
keeps track of the tools that are executing within a SoftBench environment. It coordinates with
BMS to determine whether a service request can be satisfied by an already running tool or that a
new tool needs to be started. Compared with the integration services provided by PCTE, which are
essentially low level, Unix-like mechanisms, BMS provides a high level control integration among
SoftBench tools. The SoftBench with PCTE experiment re-implemented the BMS on top of PCTE,
replacing the socket connections in the SoftBench BMS with the PCTE inter-process communication
mechanism of message queues. Tools are grouped into classes and each class has a class manager
which has the similar functionalities as the SoftBench EM. The BMS, the class managers and each
tool all run as PCTE processes. They each have an associated message queue to facilitate the
communication and coordination among them. This strategy of re-implementing the major parts
of environment in PCTE is very different from our approach of interfacing an environment with
PCTE. Tt best served the assumption that SoftBench tools can be modified to run within PCTE (as
PCTE processes). The SoftBench experiment had not used the PCTE support for concurrency and
integrity control and activities [13].

9 Conclusion

Our experiment has successfully enabled Oz to interface with the PCTE OMS. The resulting system
is an environment where software tools can be integrated by sharing the same Oz process and the
same PCTE objectbase. From the point of view of integration technology, we prove that Oz and
PCTE are complementary and add value to one another.

This is a light integration with PCTE because the Oz server, Oz client and external tools remain as
alien processes to PCTE. Although we could have put all the Oz code into the PCTE objectbase so
that Oz runs within the PCTE environment, we did not believe that we could import every potential
external tool used in an Oz process into PCTE because doing so requires code level knowledge of
these tools to make modifications. But if we just import Oz into PCTE but not the external tools,
it is still not clear how a PCTE process (say, Oz within PCTE) can invoke an alien (Unix) process,
say a tool envelope, and communicate with it to copy object contents in both directions.

This experiment not only shows that the Oz server can be modified to work with an external OMS
with a different data model. It also demonstrates that a process management service component, in
this case, Oz, can be added on top of PCTE. Therefore, our system can be used to enforce policies
(workflows) for tools that access the PCTE objectbase. A better part of this experiment was devoted
to the concurrency control problem, where we wanted to devise a mechanism to incorporate PCTE
transactions into the more flexible, cooperative Pern transactions. This is necessary to prevent the
tools written to use the PCTE interface directly from avoiding our policy enforcement mechanism.
The transaction envelope is a light-weight, clean but a bit simple-minded solution. The lock mediator
solution 1s more elaborate and sophisticated but heavy-weight.

9.1 Lessons Learned

The PCTE OMS provides only primitive object operations but does not support encapsulation of
methods with data. This could have made it very difficult to attach a software process model to
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PCTE. But in our experiment, this is not a big problem because Oz already had a fully functional
process engine and a certain degree of abstraction in terms of object access. Mapping the data
model and re-implementing the low level object access functions using the PCTE OMS were not
conceptually challenging at all.

The limitation that one Unix process can have only one PCTE transaction, coupled with the current
Oz architecture (one Pern process per Oz server), certainly made it difficult to elect a simple and
yvet complete solution to implement Pern nested transactions. However, since Pern uses a mediator
architecture, we can use the lock mediator solution to integrate Pern and PCTE transactions.

Finally, as mentioned throughout this paper, there were fixed assumptions about the OMS in the Oz
code. Work 1s under way to eliminate these fixed assumption in a separate Darkover project. At the
time of this writing, the Darkover project is just completed, all access to class, object and attribute
are now done through function calls to Darkover API. Had this interface in place when we started
our experiment, we could have just implemented a set of functions, within Darkover, that access the
PCTE objectbase. However major data model mismatch (for example, files are component objects
instead of object attributes) may still require changes outside of Darkover (for example, in the rule
processor if the code assumes only file attributes, it needs to be changed to also considers composite
attributes of Oz_FILE if the PCTE OMS is in use).

9.2 Future Work

Pern and the Oz Rule Processor are being separated from Oz to become independent service compo-
nents. Although re-implementing the entire Oz system in PCTE is not practical, it is now feasible
and would be interesting to experiment putting (re-implementing) these components into PCTE.
Putting Pern on top of PCTE would add support for flexible transaction models to PCTE. Fur-
ther, its mediator interface would enable PCTE environment builders to tailor Pern to suit their
environment-specific concurrency control policies. Similarly, putting the Oz Rule Processor on top
of PCTE would add process integration to PCTE. This rule processor component will also have a
mediator interface that enables environment developers to tailor it to support environment-specific
process enforcement and assistant models. Since our experiment is a light integration, it is difficult
for Oz to enforce controls to tools running in PCTE other than using data locking, which provides
only passive control. However if the Oz components are put into PCTE, they can take advantages
of the control integration services provided by PCTE, e.g. the message queue, the support for user
roles and security control, to provide active control and integration for the PCTE tools.
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