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ABSTRACT 

Multi-Input Multi-Output Repetitive Control Theory And  

Taylor Series Based Repetitive Control Design  

Kevin Xu 

Repetitive control (RC) systems aim to achieve zero tracking error when tracking a 

periodic command, or when tracking a constant command in the presence of a periodic 

disturbance, or both a periodic command and periodic disturbance. This dissertation presents a 

new approach using Taylor Series Expansion of the inverse system z-transfer function model to 

design Finite Impulse Response (FIR) repetitive controllers for single-input single-output (SISO) 

systems, and compares the designs obtained to those generated by optimization in the frequency 

domain. This approach is very simple, straightforward, and easy to use. It also supplies 

considerable insight, and gives understanding of the cause of the patterns for zero locations in the 

optimization based design. The approach forms a different and effective time domain design 

method, and it can also be used to guide the choice of parameters in performing in the frequency 

domain optimization design. 

Next, this dissertation presents the theoretical foundation for frequency based 

optimization design of repetitive control design for multi-input multi-output (MIMO) systems. A 

comprehensive stability theory for MIMO repetitive control is developed. A necessary and 

sufficient condition for asymptotic stability in MIMO RC is derived, and four sufficient 

conditions are created. One of these is the MIMO version of the approximate monotonic decay 

condition in SISO RC, and one is a necessary and sufficient condition for stability for all 

possible disturbance periods.  



An appropriate optimization criterion for direct MIMO is presented based on minimizing 

a Frobenius norm summed over frequencies from zero to Nyquist. This design process is very 

tractable, requiring only solution of a linear algebraic equation. An alternative approach reduces 

the problem to a set of SISO design problems, one for each input-output pair. The performances 

of the resulting designs are studied by extensive examples. Both approaches are seen to be able 

to create RC designs with fast monotonic decay of the tracking error.  

Finally, this dissertation presents an analysis of using an experiment design sequence for 

parameter identification based on the theory of iterative learning control (ILC), a sister field to 

repetitive control. This is suggested as an alternative to the results in optimal experiment design. 

Modified ILC laws that are intentionally non-robust to model errors are developed, as a way to 

fine tune the use of ILC for identification purposes. The non-robustness with respect to its ability 

to improve identification of system parameters when the model error is correct is studied. It is 

demonstrated that in many cases the approach makes the learning particularly sensitive to 

relatively small parameter errors in the model, but sensitivity is sometimes limited to parameter 

errors of a specific sign. 
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Chapter 1. Introduction 

 

1.1 Repetitive Control Design for Single-Input Single-Output Systems 

Repetitive control (RC) systems aim to achieve zero tracking error tracking a constant or 

periodic command in the presence of a periodic disturbance. For example, spacecraft often have 

vibration sources such as cryo pumps, momentum wheels, control moment gyros, etc. A slight 

imbalance in such rotating parts produces periodic vibrations of the vehicle that impair the 

capability of onboard scientific mission equipment, for example, fine pointing equipment such as 

a telescope, or experiments needing a good microgravity environment. Passive methods have 

limited ability to isolate the associated sensitive equipment from the vibrations of these internal 

moving parts. These considerations all push toward the use of active isolation methods. Active 

methods can use feedback control which again has limited performance. Feedback controllers 

have time constants for reaction to changes in the error and therefore do not keep up with a 

changing error signal. They also have phase lags that limit their response to a periodic 

disturbance even in steady state. The fundamental difficulty is that feedback control systems 

normally do not make use of knowledge that the error is a periodic function. They react to 

disturbances in the current period as if they have never seen them before. By taking advantage of 

this periodicity information, repetitive control can in theory completely eliminate the 

deterministic errors produced by periodic disturbances. At any time step, these methods look at 

the error in the last period of the disturbance and make adjustments to the command to a 

feedback control system in order to converge to zero error. 

 Early publications in repetitive control include [1-5]. The first of these was motivated to 

eliminate 60 Hz ripple in rectified AC voltage for particle accelerators. The simplest form of 

discrete time RC makes the equivalent of integral control action in classical control, with a 
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different integral for each phase of the disturbance period. This is used to adjust the command 

given to a feedback controller in order to eliminate the influence of the disturbance. In practice 

this repetitive control law is nearly always unstable, although it very often improves the error 

very substantially before the instability starts to appear. In order to make simple repetitive 

control work in practical applications, one needs to develop some kind of compensator design. 

Viewed from one perspective, an ideal compensator uses the inverse of the feedback transfer 

function in order to cancel the full system dynamics. Unfortunately, the inverses of discrete time 

transfer functions are almost always unstable which precludes using this approach. The process 

of producing a difference equation model from a differential equation fed by a zero order hold 

usually inserts zeros outside the unit circle making the inverse unstable [6]. The repetitive 

control design approach by Tomizuka, Tsao, and Chew [5] avoids this problem by aiming only 

to cancel the phase of the model, but does not aim to otherwise invert the model. 

Panomruttanarug and Longman [7] develop a method of designing FIR compensators that are 

optimized to match the steady state response of the system, aiming to invert the phase and the 

magnitude of the steady state frequency response. Thus the approach bypasses the instability 

issues by inverting the frequency transfer function instead of the transfer function itself. 

 The design approach in [7] minimizes a cost function in the frequency domain that aims 

to satisfy a sufficient condition for asymptotic stability of a repetitive control system as proved 

by Longman [8]. As suggested in the development in [8] and further investigated in [9], this 

frequency response condition is very close to being a necessary and sufficient condition for 

stability, and in fact it is a necessary and sufficient condition for stability if one asks that the 

repetitive control system be asymptotically stable for all possible disturbance periods [10], a 

result developed as part of the research for this dissertation (see Chapter 3). Reference [11] looks 
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at this condition from a different point of view showing how it is closely related to the settling 

time of the repetitive control system, and hence the cost function is approximately aiming to 

make the repetitive control transients decay quickly.  

 Implementation requires only taking a chosen number of error measurements from the 

previous period, multiplying by gains, and adding them up. It can be accomplished purely from 

input-output test data without the need for creating an analytical model [12]. The design method 

was seen to be very effective. And it produces various recognizable patterns of poles and zeros 

for the resulting compensator designs. For example, to handle the influence of zeros outside the 

unit circle, the design repeats the zero around a circle of roughly the same radial distance from 

the origin, with the zeros roughly evenly spaced around the circle. These patterns seemed 

somewhat mysterious, but the development in Chapter 2 of this dissertation explains their origin.  

 The approach in Chapter 2 (which is also published as [13]) is to develop a finite impulse 

response (FIR) compensator that mimics the inverse of the transfer function based on Taylor 

series. As an FIR compensator, it cannot be unstable. This creates a very simple approach that 

has considerable understanding and intuition associated with it. Each factor in the transfer 

function that cannot be cancelled by zeros introduced in the FIR compensator, are expanded in a 

Taylor series up to a chosen number of terms. A method is given to help decide how many terms 

to use. 

 When the method developed in Chapter 2 (also appearing in [13]), or the method of [7], 

is used in applications, one may need to introduce several extra aspects into the repetitive control 

design. In order to make the repetitive controller robust to unmodeled high frequency dynamics 

one introduces a zero-phase low-pass FIR filter [14, 15]. Robustness to model parameter 

uncertainty can be accomplished by use of a multiple model technique [16]. In order to better 
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handle the situation when the period is not an integer number of time steps one can introduce 

interpolation [17]. And various problems have multiple unrelated disturbances with different 

periods, as in a spacecraft with four control moment gyros. One can use the same compensator in 

a more complicated repetitive control structure as demonstrated in [18] and [19], which built 

upon the work of [20, 21]. In addition, the design approach in Chapter 2 is an alternative to that 

in Chapter 3 of this dissertation to address multiple-input, multiple-output problems, and this 

design approach may be substantially simpler.  

 

1.2 Repetitive Control Design for Multi-Input Multi-Output Systems 

1.2.1 Theory of Stability for Designing Repetitive Controllers in the Frequency Domain for 

Multi-Input Multi-Output Systems 

The repetitive control literature is mostly limited to single-input single-output systems, 

and normally aims to eliminate all error of a given period, i.e. a fundamental and all harmonics. 

But in the real world, many applications require MIMO design methods. References [22, 23] 

perform experiments testing various control methods, using a Stewart platform as an isolation 

mount. A repetitive control law applied to such hardware looks back at the error observed in the 

previous period of the periodic disturbance, and adjusts the command to each of the six legs of 

the platform in such a way as to cancel the influence of the disturbance on any fine pointing 

equipment mounted on the platform. It is the purpose of Chapter 3 (giving results that also 

appear as [10]) of this dissertation to develop appropriate underlying theory, and to develop 

several approaches to extend this design to MIMO systems. Such a generalization allows one to 

apply the approach to the Stewart platform example, which needs six inputs and six outputs, 

without needing to find a way to mathematically decouple the problem. Reference [24] also 
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presents the mathematics for minimizing the Frobenius norm criterion, and treats robustification 

to parameter uncertainty using multiple models.  

 The organization of Chapter 3 is as follows. First the structure of the MIMO repetitive 

control problem is presented. In order to make the paper self contained, the mathematics used in 

Chapter 3 is developed from first principles. Properties of singular value decomposition of 

complex matrices are presented, relationships between several norms of matrices are given, and 

frequency response of MIMO systems is reviewed. Then the approximate monotonic decay 

condition that underlies the optimization used in the SISO RC design methods in 

[7,12,14,15,16,18,19] is generalized to MIMO systems. Reference [8] proves that this condition 

for SISO is a sufficient condition for asymptotic stability of SISO repetitive control systems, and 

this proof is generalized in this chapter. First a necessary and sufficient condition for asymptotic 

stability of MIMO repetitive control systems is developed, in analogy to the SISO development 

of such a condition in [8]. Then a set of four sufficient conditions for asymptotic stability is 

derived, including the approximate monotonic decay condition as one sufficient condition. 

Another of these conditions is important as a necessary and sufficient condition for asymptotic 

stability of a repetitive control system for all possible arbitrarily specified periods. All of these 

results are generalized to include a zero-phase low-pass learning cutoff filter for robustification. 

Then a method of designing compensators for MIMO repetitive control systems is developed 

that uses the SISO design method multiple times. And, finally one of the sufficient conditions 

based on a Frobenius norm, is presented as an appropriate MIMO optimization criterion, 

analogous to that used in the SISO case. This cost function has a unique minimum which can be 

found by solving a linear equation, making the design approach very tractable. Examples of this 

design approach are given in Chapter 4. 



6 
 

 

 1.2.2 Repetitive Control Design Methods for Multi-Input Multi-Output Systems  

The usual RC problem has one periodic disturbance, of a given period. This can have a 

fundamental frequency and many harmonics up to Nyquist frequency. The Control Systems 

Research Group led by Professor Longman at Columbia University and his coworkers in a series 

of publications has aimed to extend the theory to handle all the characteristics of the spacecraft 

vibration isolation problem. One generalization is to handle multiple-input, multiple-output 

problems. Chapter 3 develops the underlying theory of MIMO RC in some detail, some of which 

is also in Reference [24], which presents some design results and some robustification results. 

Reference [25] is a long journal article by Longman that presents the methods of each of the 

aforementioned references in a unified presentation. Chapter 4 [26] builds on this framework, 

and compares several different methods of designing MIMO RC systems. One approach handles 

the full system using a cost function, as suggested in Chapter 3 and Reference [24]. Another 

approach is able to reduce the MIMO problem to a set of SISO problems as suggested in Chapter 

3. An important property of the design treated here is that they do not require one to have a 

mathematical model. Instead, it can directly use input-output data converted to frequency 

response information.  The SISO design when applied to MIMO systems is seen to produce 

perhaps unexpected pole-zero locations in the system. It preserves the ability to pick the number 

of gains and the number of non-causal gains in the RC compensator individually for each input-

output transfer function, and allows one to use inversion of the stably invertible part of the 

system as part of the compensator design. By comparison to SISO problems, the cost function 

when generalized to the MIMO problem loses some of its precision in addressing the actual 

stability boundary. Numerical investigation shows that both design methods are very effective in 
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producing asymptotically stable MIMO repetitive control systems that can learn fast and 

converge to zero tracking error. 

 

1.3 Improved Parameter Identification Using Iterative Learning Control Design 

The optimal experiment design field most often makes use of the Fisher information 

matrix, and develops methods to generate a sequence of inputs to experiments aiming to 

maximize a likelihood function [27-29]. This type of approach is based on stochastic modeling, 

and necessarily uses the current model in deciding how to optimize the next experiment. In 

Reference [30] a totally different approach is considered that also develops a sequence of 

experiments, each one based on the results of the previous one. But this time, use is made of 

iterative learning control (ILC) which is a relatively new field that develops iterative methods to 

adjust the input to a system aiming to converge to zero error in the system output following a 

desired trajectory [8, 31-35]. Both ILC and RC use methods of learning in repeating situations. 

In RC the command or disturbance is repeating in the sense that they are periodic functions. In 

ILC a control system is asked to perform the same operation repeatedly, each time starting from 

the same initial conditions. Much of the theory applies to both fields. A major objective in ILC is 

to find ways to make the decay of the errors robust to model errors. When using ILC for 

experiment design, one instead takes advantage of the lack of robustness to model errors, and lets 

the iterations progress, going unstable and creating larger and larger signals that are isolating and 

amplifying information concerning what is sufficiently wrong with the model to produce 

instability. Then system identification algorithms such as in [36-38] can be used on the data to 

correct the model.  

 There are very many approaches to designing iterative learning control laws. Since our 

experiment design objective is different than that of the ILC designer, we want a learning law 
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whose stability is particularly sensitive to model errors. The main purpose of Chapter 5 (also 

presented in [39]) is to develop ILC design approaches that deliberately make the stability of the 

iterations very sensitive to errors in the parameters of a model. Reference [30] uses an ILC 

design that is based on linear-quadratic optimal control theory, and this design is somewhat more 

robust to model errors than most. The approach used here starts from the phase cancellation ILC 

design method of Reference [34] and investigates several ways to modify it so that the stability 

robustness is small. The emphasis in Reference [30] was on model errors that relate to the order 

of the model, i.e. model errors that relate to missing dynamics such as parasitic poles or residual 

second order modes. In Chapter 5 we put the emphasis on model errors when the model order is 

correct but the model coefficients are inaccurate.  
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Chapter 2. Use of Taylor Series Expansion of the Inverse Model to Design FIR Single-Input 

Single-Output Repetitive Controllers 

 

2.1 Repetitive Control Background 

2.1.1 The Repetitive Control Problem Statement 

 The objective of a repetitive control system is to achieve zero error tracking a periodic 

command in the presence of a periodic disturbance when each has the same period, or zero error 

tracking a constant command in the presence of a periodic disturbance of known period, or zero 

error tracking a periodic command with no disturbance. Figure 2.1 shows the most common 

block diagram structure, where      is the repetitive controller,      is the closed loop feedback 

control system,       is the desired trajectory, which can be either a periodic command or a 

constant command, and       is the periodic disturbance.  

 

Figure 2.1 Repetitive control system 

The diagram looks routine. What is unusual is that      represents the closed loop dynamics of a 

feedback control system whose command is     , and the repetitive controller is adjusting this 

command with knowledge of the periodic nature of the desired trajectory       and the periodic 

disturbance      , aiming to converge to zero tracking error     . The periodic disturbance can 

enter the hardware anywhere in the feedback control system loop, but there is always an 
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equivalent periodic disturbance that one could add to the output of the feedback controller, and 

can be modeled as       here. The repetitive control law takes the form 

               
     

    
      (2-1) 

where p is the number of time steps in a period, and      is the repetitive control compensator 

that is to be designed. By block diagram manipulation one can write the equivalent of a 

difference equation whose solution is the error as a function of time step for any command, 

disturbance, and initial conditions 

                                              (2-2) 

Because     is a backward shift of one period, and       and       are both periodic with this 

period, the right hand side is zero, and the difference equation is homogeneous.  

                           (2-3) 

Therefore the error will converge to zero as the time steps tend to infinity for all initial 

conditions if and only if all roots of the characteristic polynomial have magnitude less than unity, 

where the characteristic polynomial is given by the numerator of the curly bracket term after one 

puts everything over a common denominator.  

 

2.1.2 The Model Inverse as a Compensator 

 In some respects the inverse of the system transfer function, )(1 zG  , is the ideal 

compensator     . To see this, let )(/)()( zGzGKzG DNG  and )(/)()( zFzFzF DN  where 

subscript N indicates numerator, subscript D indicates denominator, and GK  is a gain. 

Computing the numerator of the curly bracket produces 0 NNGDDDD

p FGKFGFGz . If the 
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compensator is the system inverse, then NGD GKF   and DN GF  , and this produces the 

following characteristic polynomial 

0)()( p

DN zzGzG                                                            (2-4) 

The number p is equal to the number of time steps in a period can be very large. A big advantage 

of the system inverse as a compensator is that all of these roots have been placed at the origin. 

The characteristic polynomial of the feedback control system is 0)( zGD
, and it is reasonable 

to assume that it is asymptotically stable with all roots inside the unit circle. The potentially 

serious problem is that the zeros of )(zG  are also roots of this repetitive control system 

characteristic polynomial, and the zeros can easily be outside the unit circle in which case this 

design approach fails.  

 

2.1.3 Zeros Introduced in Conversion to Discrete Time 

 When a continuous time differential equation is fed by a zero order hold, one can write a 

difference equation that gives exactly the same output at the sample times. The corresponding z-

transfer function has zeros introduced in this process. Provided the differential equation has 

fewer zeros than poles, then when a step input is applied for one time step, the output at the end 

of that step will be not zero (unless one is using a sample rate that is sufficiently low to have 

serious aliasing problems). This implies that the number of zeros in the z-transfer function will 

generically be one less than the number of poles, independent of how many zeros there were in 

the continuous time system (less than the number of poles). The number of zeros introduced is 

the pole excess minus one, where pole excess is the difference between the number of poles and 

the number of zeros in continuous time. Äström, Hagander, and Strenby [6] develop results 

showing where the zeros introduced by the discretization go as the sample time interval T tends 
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to zero. If one zero is introduced it approaches -1.00 (and one can show in various situations that 

it approaches from inside the unit circle). If two are introduced they approach -3.73 and -0. 278 

asymptotically. If three are introduced they approach -9.89, -1.00, and -0.101. And if four are 

introduced they approach -23.2, -2.32, -0.431, and -0.0431. Note that asymptotically there is 

always a zero outside the unit circle if the pole excess in continuous time is three or more, and 

for such systems one cannot use the system inverse as a repetitive control compensator. Note 

also that asymptotically, each zero outside the unit circle is accompanied by a companion zero 

inside the unit circle at the reciprocal location.  

 

2.1.4 The Frequency Response Optimization Criterion 

 One can rewrite equation (2-3) as  

)()]()(1[)( zEzFzGzEz p                                                  (2-5) 

The pz  is a shift forward in time by one period, which is suggestive of interpreting the left hand 

side of the equation as the error in the next period, and the square bracket term as a transfer 

function from one period to the next. One will want to substitute )exp( Tiz   in this term to 

make a frequency transfer function. This is heuristic thinking, since frequency response is a 

steady state phenomenon, and we hope that the steady state error is zero. Nevertheless if one 

makes a quasi static assumption that the error does not change much from period to period, then 

one could consider that the component of the error at frequency   will decay from one period to 

the next by the magnitude of the frequency transfer function, and that if all frequencies decay, 

the system will be stable 

      1)()(1  TiTi eFeG                                                 (2-6) 
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This is an approximate monotonic error decay condition. The quasi static assumption needed 

here to obtain this condition is actually not a serious issue for reasonable size values of p, and as 

shown in Reference [11] the condition actually gives a very good indication of the decay of 

transients during the repetitive control process. Reference [8] establishes that this heuristically 

obtained condition is actually a sufficient condition for stability of the repetitive control system. 

Furthermore, Reference [8] develops a condition for the actual stability boundary, i.e. the system 

is asymptotically stable if and only if this new condition is satisfied. Then Reference [9] shows 

that the set of systems that can be asymptotically stable without satisfying (2-6) is very small in 

practical applications, and therefore the distinction between the two conditions is not usually of 

practical importance. Any SISO repetitive control system satisfying stability condition (2-6) will 

converge to zero error tracking any command of period p time steps, and will learn to completely 

eliminate the influence on the output of any periodic disturbance of period p. If one wants a 

compensator that produces asymptotic stability for all possible periods p, Reference [10] 

establishes that this condition is both necessary and sufficient, which will be presented in 

Chapter 3.   

 The repetitive control design method developed by Panomruttanarug and Longman in [7] 

picks the compensator in the form of an FIR filter 
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                            (2-7) 

The implementation is simple, only requiring that one multiplies the measured errors from n time 

step in the previous period by a set of constants and add them up. The transfer function of the 

compensator has 1n  zeros that can be placed anywhere, and mn   poles, all of which must be 

at the origin. The n coefficients are chosen to minimize a cost function, aiming to satisfy (2-6)  
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                           (2-8) 

where the asterisk indicates complex conjugate and the j  form a suitably chosen set of 

frequencies from zero to the Nyquist frequency. Hence, the FIR compensator aims to mimic the 

behavior of the steady state frequency response of the inverse system, and does not try to invert 

the transfer function itself.  

 

Figure 2.2 Polar plot of )()( TiTi eFeG   for third order system using 5,8  mn  (left), and 

associated pole-zero map (right) 

  

The approach can work very well. Reference [7] looks at a third order differential 

equation system fed by a zero order hold 

)]2/()][/([)( 222

ooo ssasasG                                          (2-9) 

where 5.0 sec,rad/37 ,4.1  oa  and the sampling frequency in the zero order hold is 200 

Hz. Using weights 1jW , a compensator with 5 ,8  mn  produced a plot of the real and 

imaginary parts of the product )()( TiTi eFeG   as shown on the left in Figure 2.2. Thus the left 

hand side of (2-6) is the distance from +1 to the points on this plot and we see that this deviation 

from zero is small. Hence the FIR filter is a rather good approximation of the inverse of the 

frequency transfer function of the system using only 8 gains, and this makes a repetitive control 
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system that is both stable and learns very fast according to [11]. The right of Figure 2.2 shows 

the resulting pole-zero pattern. The zero order hold )(zG  has a zero outside the unit circle 

beyond -3, and a zero inside near the reciprocal location, and there are three poles that are the 

discrete time images of the poles in (2-9). The compensator puts zeros nearly on top of the three 

poles of the system. And it puts in two more zeros outside the unit circle very approximately 

evenly spaced around a circle of the radius of the system zero outside, and the same is done with 

the zero inside. One can change the value of m, and this will change the number of zeros 

introduced outside at the expense of the number introduced inside, or vice versa, and will result 

in a larger value for J. Increasing n produces better results with additional repeats of the original 

zeros around a curve that gets closer to being a true circle. Also, the cancellation of the system 

poles by zeros becomes more perfect.  

 To study how circularity is influenced by the distance from the origin to the zero, 

consider a system azzG )(  with a zero on the negative real axis, and allow the compensator 

to have one zero. When the system zero is located at -1.1, the compensator zero is at 2.01, far 

from being on a circle of radius 1.1. If the system zero is put at 2, or 3, 4, … , 12, the 

compensator zero is located at 2.51, 3.34, 4.26, 5.21, 6.17, 7.15, 8.13, 9.12, 10.1, 11.1, 12.1, 

getting closer to being at the same radius as the zero gets further from the origin. When the 

system zero is at 20 or 100, the compensator zero is at 20.1 or 100, respectively. The radial 

distance also gets more uniform as the number of zeros allowed in the compensator is increased.  

 The design approach developed in section 2.4 supplies understanding of why these zero 

patterns accomplish their goal of imitating a pole to cancel a zero, by instead putting more zeros 

around a circle of the radius of the one whose influence is to be cancelled.  
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2.2 The Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) Compensator 

Options 

 For purposes of this section, consider the case of a third order discrete time transfer 

function 

))()((

))((
)(

321 pzpzpz

zzzzK
zG OIG




                                               (2-10) 

which could have come from (2-9). The poles are assumed all inside the unit circle, and there are 

two zeros introduced in the discretization, 
Iz  inside the unit circle and Oz  outside the unit circle. 

It is obvious how to generalize the process to include more zeros inside, more zeros outside, and 

more poles as needed. We consider two design choices.  

 

2.2.1 Option A. )(zF  is an FIR Filter 

 The FIR filter (2-7) allows one to place zeros wherever one wants but all poles must be 

placed at the origin. The inverse of )(zG  can be written in the form 
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The first term can form some of the zeros of the FIR compensator (2-7). In order to handle the 

last two terms, Taylor series expansions are used which convert the terms with a denominator 

pole into an expansion in the numerator. The expansion is discussed in the following sections.  

 

2.2.2 Option B. )(zF  is an IIR Filter  

 An alternative is to modify the form of the compensator (2-7) allowing one to introduce a 

pole that is not at the origin. Then we write (2-11) in the form 
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The pole in the first bracket is designed to cancel the zero of the system that is inside the unit 

circle. This cannot be done for the zero outside the unit circle, and hence it is expanded in a 

Taylor series as before. Thus everything that is stably invertible has been inverted, and what 

remains will be handled by expansion. Note that in implementation, instead of simply taking a 

linear combination of errors in the previous period in the RC control law, one needs to run a 

difference equation in real time.  

 

2.3 A Basic Taylor Expansion Result 

 In order to address the Taylor series expansions desired in (2-11) and (2-12), consider the 

expansion 

k

k
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z
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
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                                           (2-13) 

The series is convergent provided 1ˆ z . Suppose that we approximate the right hand side by a 

finite series up through power r. Then the product of this approximation of a factor as on the 

right of (2-11) or (2-12) with the corresponding factor )ˆ1( z  in the )(zG  that )(zF  multiplies 

will be approximately one. What is actually produced by this product is 

132 )ˆ(1])ˆ(ˆˆˆ1][ˆ1[  rr zzzzzz                                 (2-14) 

So the error in canceling the zero is given by 1)ˆ(  rz . It is of interest to examine the roots of the 

polynomial on the right of (2-14), where it is clear that ẑ  is any of the values of 1r  root of 

+1, i.e. write )2exp(1   where   can be any integer. Then the roots are  

)]1/(2[ˆ  riez                                                              (2-15) 

Since one of the roots is 1ˆ z , the remaining roots are equally spaced around the unit circle 

with a separation angle of )1/(2 r  radians between successive roots.  
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2.4 Taylor Expansions for Repetitive Control Zeros 

 For IIR option B above, we only need to create Taylor series expansions for the 

reciprocal of the system zeros outside the unit circle. For the FIR option A above we do this also 

for zeros inside the unit circle. These zeros can be zeros introduced by the discretization in which 

case they are always on the negative real axis. In addition one can have images of any zeros of 

the continuous time transfer function. These could be on the positive real axis, or they could be 

in complex conjugate pairs. And they could be outside the unit circle in which case one says that 

the system is non-minimum phase. Since the zeros introduced by the discretization are usually 

the ones that prevent one from using the system inverse as a compensator, we examine these in 

detail first, and then consider the other types of zeros.  

 

2.4.1 Zeros on the Negative Real Axis Outside the Unit Circle 

 Consider azO   where 1a  to make a zero outside the unit circle on the negative real 

axis. Then  
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Thus we can use the expansion through power r as in (2-14) with azz /ˆ  . The series converges 

provided 1ˆ z , i.e. provided az  . Our interest is in representing the frequency response 

which uses z on the unit circle, and hence this is within the radius of convergence. The resulting 

compensator introduces r roots around a circle of radius a . When combined with the original 

system zero at a  gives 1r  roots evenly spaced around this circle.  
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2.4.2 Zeros on the Negative Real Axis Inside the Unit Circle 

 The FIR option A above wants to use the FIR filter structure to cancel the effects of a 

zero inside the unit circle on the negative real axis as usually occurs in discretization, 

10 ,  aaz I
. Then 
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Pick a power r and again make the expansion of the last square bracket term through rẑ , this 

time with zaz /ˆ  . The series converges provided az  , and hence converges for z on the unit 

circle as needed. Note however that this series supplies poles at the origin. To illustrate this, 

consider 



r 2, in which case the expansion becomes 
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There is one zero inside the unit circle, the one being addressed by the compensator, and the 

compensator introduced 2r  more in (2-18). It also puts two poles at the origin in (2-18) and 

one more from (2-17), making the number of zeros inside the unit circle match the number of 

poles inside the unit circle. This was established as a requirement in [7]. To find the phase angle 

in the frequency response one looks at z on the unit circle starting at the origin for DC and going 

to -1 for Nyquist frequency. Looking at )()( TiTi eFeG  , any zero on the real axis inside the unit 

circle 
Izz   starts with phase zero at DC and reaches a phase of +180° at Nyquist. And any 

complex conjugate pair of zeros inside will combine to create +360°. The stability condition (2-6) 

cannot be satisfied if the phase of )()( TiTi eFeG   goes beyond 



90 °. Hence, one needs to 

supply enough poles at the origin to match the number of zeros inside the unit circle.  
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2.4.3 Zeros on the Positive Real Axis 

 Zeros on the negative real axis were treated separately because they are ubiquitous in 

digital systems. Zeros on the positive real axis are handled totally analogously. This time zeros 

outside the unit circle give azzz O   where 1 ,  aazO , and the resulting azz /ˆ  . 

And for zeros inside 10  a  and ./ˆ zaz   

 Note that when the system zero is on the negative real axis, then that zero is on the circle, 

and the r introduced zeros are evenly spaced around this circle of radius a  at angle intervals of 

)1/(2 r  starting from the negative real axis. If the system zero is on the positive real axis one 

starts from the positive real axis. In the case of 1r  being even, both patterns will be identical, 

but when it is odd one is the mirror image of the other.  

 

2.4.4 Complex Conjugate Zero Pairs 

 The expansions are still valid when the zero is complex and we wish to create an FIR 

approximation of 
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or similarly for 
Iz . One expands each separately picking the same value for r, and obtains for 

each zeros that are evenly spaced with interval )1/(2 r  around a circle of radius Oz  

starting at the zero location in (2-19).  

 

2.5 Picking the Number of Compensator Zeros for Each System Zero 

 When there are multiple zeros at different radial distances from the origin, it is of interest 

to have some guidance in picking the number of repeats r for each zero. From equation (2-14) 

the error in cancellation of a zero using the Taylor expansion up through power r is given in 
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magnitude by 
1

ˆ
r

z . We are interested in z on the unit circle in satisfying (2-6). For real zeros 

outside the unit circle and inside the unit circle, respectively, this becomes 

1

1

1





r

r
Ti

aa

e 

                                                        (2-20) 

1
1





r

r

Ti
a

e

a


                                                         (2-21) 

and in the case of complex conjugate zeros one replaces a  by  . It is natural to aim for the same 

level of accuracy for canceling the effects of each zero by choice of the associated r. Suppose we 

set this accuracy level to some number  . For a zero outside, the number of repeats r should 

satisfy 1/1  ra , and for inside it is 1 ra . Solving for r in each case produces 
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where a  is greater than one in the first case, and less than one in the second. Of course r must be 

picked as an integer, but these formulas can be used to make the error for each zero cancellation 

be close. Note that as the zero location approaches the unit circle, the number of repeats r needed 

for a given level of accuracy tends to infinity, as shown in Figure 2.3 which plots   from 1.025 

to 5, and from 0.1 to 0.975.  

An interesting additional property applies to the asymptotic zero locations. As the sample 

time interval T tends to zero, for any zero introduced by discretization outside the unit circle, 

there is a corresponding zero introduced inside the unit circle at the reciprocal location [6]. 

Comparing (2-22) and (2-23) we see that the number of repeats necessary for a given error level 

is the same for zeros at reciprocal locations. It is noted by Panomruttanarug and Longman in [7] 



22 
 

 

that using the same number of repeats for each by adjusting the value of m in the FIR 

compensator (2-7) chosen to minimize the cost (2-8) seemed to produce the best results.  

  

Figure 2.3 Number of repeats vs. zero location   for given error levels 

 

2.6 Summary of the Design Process 

 Write the system transfer function in the form 
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)()(
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zGzGK
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D

NONIG                                                    (2-24) 

where GK  is the gain, )(zGD
 are the poles of )(zG , )(zGNI  is formed by the zeros inside the 

unit circle, and )(zGNO  is formed by the zeros outside the unit circle. Pick an error level   to use 

in deciding the number of repeats r to use for each factor. Then for the FIR compensator design 

approach 

GDAOIA KzGzFzFzFzFzF /)()(   ;   )()()()(                                (2-25) 

The )(),( zFzF OI  contain the compensator factors for the zeros inside and the zeros outside the 

unit circle, respectively, given by 

rzzzz )ˆ(ˆˆˆ1 32                                                    (2-26) 
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using the appropriate choice for ẑ  for the zero location, and using an appropriate choice for the 

value of r based on the chosen 



  according to (2-22) and (2-23). The IIR design is obtain from 
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2.7 Comments on Systems with Even Order Pole Excess in Continuous Time 

 Systems with even pole excess in continuous time that are fed by a zero order hold, when 

converted to discrete time introduce an odd number of zeros on the negative real axis, and 

asymptotically one of these zeros approaches -1 as the sample time interval T tends to zero. 

Under certain circumstances one can prove that the zero approaches -1 from inside the unit circle. 

Equations (2-22) and (2-23) indicate that as the zero approaches -1, the number of repeats needed 

for a given level of error in canceling the zeros effect, tends to infinity. Potentially, this can make 

it difficult to design compensators for even pole excess problems. One approach previously 

suggested is to introduce a first order continuous time filter into the system to produce an odd 

pole excess, eliminating any zero introduced near -1 [11]. Otherwise we have our choice of using 

the FIR design or the IIR design here. Each has its own potential advantages and disadvantages.  

 The IIR design is simple, it just introduces a pole underneath the zero near -1. As in 

equation (2-4), such a cancellation makes the root near -1 a root of the repetitive control system 

characteristic polynomial. And since it is near -1 it will have a solution to the homogeneous 

difference equation for the error (2-3) that is this root to the kth power at time step k. This part of 

the convergence will be slow. This may not be serious because this root is associated with 

Nyquist frequency, and it may be physically unlikely to have initial conditions that supply a 

sizable coefficient in front of this solution to the homogeneous equation. Of course this approach 

can only be applied if the zero near -1 is actually inside the unit circle. In the event that for the 
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non zero value of T being used, the zero is approaching -1 from outside, then one must use the 

FIR approach. 

 To help in the comparison, consider that the system of interest consists of nothing but a 

zero at the location   , 

     
   

   
 (2-28) 

Equating                           and solving for            gives the time 

constant associated with the envelope of decay of the solution associated with a compensator 

     equal to the inverse of     . 

 At first one might think that the FIR approach avoids this issue of introducing a root that 

is near the stability boundary, by instead introducing a number   of additional zeros around the 

unit circle at this same radius. The actual result is to introduce     poles that are even closer to 

the unit circle stability boundary. Hence, of the two choices, putting a pole underneath the zero is 

preferred. To see this consider the sensitivity transfer function  

     
 

          
 (2-29) 

where                 , and note that for the system in (2-28) and   less than unity, 

                    . The denominator of the sensitivity transfer function is the 

characteristic polynomial of the repetitive control systems, which is  

               (2-30) 

The magnitude of all roots are the same, and is equal to the               root of  , and 

this is always closer to one than   itself. The conclusion is that one should place a pole 

underneath the zero instead of repeating the zero around a circle, when one has a zero 

approaching -1 from inside the unit circle. 
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2.8 Comparison of Frequency Response Based Compensator (Minimum Cost), Taylor 

Series Based Compensator, and Tomizuka Designs 

It is of interest to examine the difference between the ways the frequency response based 

compensator design of [7] relates to the design produced here, and to the design method of [5]. 

Consider a system (2-28) consisting of just one zero located at -2, and no poles, and compare the 

resulting locations of the zeros introduced in the compensators by each method. The method of 

[5] introduces a zero at -1/2 and a pole at the origin, and normalizes for DC gain of unity.  

  

  

Figure 2.4 Zero locations of          when compensators are allowed to use one, three, 

seven, and fifteen zeros 
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Figure 2.5 Zero locations of          when the system zero is inside the unit circle and 

compensators are allowed to use three zeros 

 

Figure 2.4 examines the zero locations for the Taylor series and minimum cost methods. 

When the compensators are allowed to introduce only one extra zero, the results are in the upper 

left plot. Of course the Taylor series based design introduces its zero at +2, an example of evenly 

spaced around the circle of radius 2 about the origin. The zero introduced by the minimization in 

equation (2-8) with all weights equal to unity, is located at a larger radial distance as shown. The 

results when one allows the compensator to use 3 extra zeros are on the upper right. Again the 

radial distance to the frequency response based zeros are larger than 2, but this time we also see 

that the zeros are not quite evenly spaced, with the zeros near the imaginary axis being an angle 

somewhat less than 90°. The lower half of the figure shows what happens when one allows the 

compensators to use 7 and 15 zeros, and we see that as the number of zeros increases the 

difference between the two designs is converging to zero. Figure 2.5 shows that when the system 

zero is inside the unit circle the minimum cost design places zeros at smaller radial distance.  

Consider the magnitude of the frequency response of            given in Figure 2.6. 

According to [11] this is a good indicator of the amount of decay in each iteration for error 
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components at each frequency. We are again using the system in (2-28) with    . The Taylor 

approach produces a horizontal line with zero slope, learning at all frequencies equally fast. The 

minimum cost approach learns slightly faster at low frequencies, and slightly slower at high 

frequencies. The method of Tomizuka [5] only aims to invert the system phase, and learns fast at 

very low frequencies, but quite slowly at higher frequencies. It is also of interest to compare the 

performance in terms of sensitivity transfer function which indicates how each design responds 

to disturbance frequency components that do not have the period being addressed. 

 

Figure 2.6 Magnitude frequency response of             

Figure 2.7 shows this when     ,      as in (2-28), with three zeros allowed in the 

compensator, and when the   in (2-28) equals 1.33, 1.05, and 0.75. For the cases when   is larger 

than one, the approach of Tomizuka is also shown (the approach cancels with a pole otherwise). 

This approach has smaller amplification between addressed frequencies at high frequency from 

the waterbed effect, because the learning is slow at these frequencies. We note that when   is 

near one, the Taylor approach has some high peaks between addressed frequencies that are not 

there in the minimum cost approach. This suggests that the minimum cost approach be used in 

such cases for better performance. 
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Figure 2.7 Sensitivity transfer functions magnitude frequency response for three repeats 

with   given as 1.33 (top), 1.05 (middle), and 0.75 (bottom) 

 

2.9 Using Taylor Series Based Results to Guide Frequency Response Based Optimized 

Designs 

 The repetitive control design approach developed in this chapter has the advantage of 

being straightforward and simple. It also gives considerable insight. The design approach in [7] 

that picks the compensator (2-7) to optimize the cost function (2-8) could still produce better 

results because of the optimization involved. To use that method requires that one pick the values 

of n and m in (2-7) and this has been done by simply investigating a range of possibilities and 
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picking the one with the best behavior. In place of this process, one can make use of the results 

developed here to guide the choice.  

 For purposes of illustration, consider again the third order system (2-9). When fed by a 

zero order hold and sampled at any reasonable sampling rate, there is one zero introduced outside 

the unit circle and one introduced inside the unit circle, and the poles js  are mapped to poles 

)exp( Tsz jj   inside the unit circle in the equivalent z-transfer function. Using the FIR design 

method in this chapter, we can pick an error level 



  and use (2-22) and (2-23) to pick values for 

the number of repeats to use for the zero inside and the zero outside: OI rr , . The compensator 

needs three zeros to cancel the system poles, so the power 1n  in the numerator of (2-7) is then 

equal to OI rr 3 . We need the same number of zeros inside the unit circle as outside as noted 

above. The number of zeros inside the unit circle is 3 to cancel system poles, plus one system 

zero, plus the 
Ir  zeros used in the Taylor expansion. Equating says that the number of poles we 

must introduce at the origin, the 



nm in equation (2-7), must equal 1Ir . It is clear how to 

generalize this to handle higher order systems, more zeros inside, and more zeros outside.  
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Chapter 3. Design of Repetitive Controllers in the Frequency Domain for Multiple-Input 

Multiple-Output Systems 

 

3.1 The Structure of the MIMO Repetitive Control Problem 

Figure 3.1 shows the structure for repetitive control of a MIMO system. Normally, 



G(z)  

represents the closed loop transfer function of a feedback control system, and 



U(z)  represents the 

command given this system. Instead, it can be just a plant that one wants to control. In either 

case it is assumed to be asymptotically stable, and to have the same number of inputs as outputs, 

denoted by q, so that )(zG  is a qq  matrix of transfer functions from each input to each output. 

The )(),(),(),(),( zYzVzUzEzYD  are all q-dimensional column vectors, and )(),( zGzF  are both 

qq  transfer function matrices. The summation junctions in the diagram are element by element 

for each incoming vector. 

 

Figure 3.1 Block diagram of a MIMO repetitive control system 

 The )(zYD  is the desired output and )(zV  is any deterministic periodic disturbance 

whose influence is to be eliminated by the repetitive control action. Both desired output and the 

periodic disturbance are of period p time steps. Perhaps the predominant applications of RC are 

to the very important special case where the desired output is a constant, which is periodic with 

any period of interest, and the objective of the repetitive controller is to cancel the effects of a 
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periodic disturbance of known period. Periodic disturbances can appear anywhere in a feedback 

control loop. Wherever such disturbances appear, one can create a periodic disturbance to the 

output that produces the same influence on the output. This is done here, adding the disturbance 

to the output of )(zG  which usually represents a feedback control system.  

 The main objective of the repetitive control design process, is to create a compensator 

transfer function matrix )(zF  that stabilizes the repetitive control process so that it converges to 

zero error tracking the periodic command, in spite of the presence of the periodic disturbance. 

Since the compensator operates on old data, the design process has the opportunity to use non-

causal designs, something very unusual in control system synthesis. The compensator is created 

as a set of FIR filters formed as a linear combination of errors observed at n different time steps 

in the previous period. The update of the command to the feedback control system is then made 

by adding to the command used one period back, a repetitive control gain   times the filtered 

(i.e. compensated) error from the previous period: 

)]()()([)( zEzFzUzzU p  
                                                  (3-1) 
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                      (3-2) 

The filter coefficients naaa ,,, 21   are qq  gain matrices. The 0z  term in the filter multiplies 

the error one period back, )( pke  , and terms are included both forward and backward from this 

time step. This compensator structure is the MIMO version of the very successful SISO 

repetitive control design in [7], which is given in equation (2-7).  

It is the purpose of this chapter to do the following: 

(1) To generate the MIMO equivalent of the heuristic monotonic decay condition. 
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(2) To develop the necessary and sufficient condition for asymptotic stability of the 

MIMO repetitive control system.  

(3) To prove that the MIMO heuristic monotonic decay condition is a sufficient condition 

for asymptotic stability and hence convergence to zero error, and to establish additional 

sufficient conditions. 

Note that all of the results of this chapter relating to necessary and sufficient conditions 

for stability, or sufficient conditions for stability apply for more general compensator structures. 

The form in equation (3-2) is only used when design methods are being discussed (in Chapter 4). 

In order to present a complete self-contained development, we will start from first 

principles to develop all results.  

 

3.2 Singular Value Decomposition of a Complex Matrix 

We will need the singular value decomposition of a complex matrix which we review 

here. For simplicity, suppose that A is a square full rank matrix with complex valued entries. 

Consider the eigenvalue equation        , where   is the eigenvalue and   is the associated 

eigenvector,   indicates the complex conjugate transpose. Assume that all the eigenvalues are 

unique. The magnitude of the eigenvector can be scaled up and down according to this equation, 

so let it be scaled such that      . Premultiplying the eigenvalue equation by    establishes 

that                  
 , indicating that all eigenvalues   are real and non-negative. Since 

we assume that   is full rank, all eigenvalues are positive. Let    be the square root of the  -th 

eigenvalue of  ,       , and define                   . Also define matrix   to have the 

associated eigenvectors in the corresponding order. Packaging the eigenvalue equation for each 

eigenvalue into one matrix equation results in         .  
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Consider the eigenvectors associated with two different eigenvalues    and   . For the 

two corresponding eigenvalue equations, pre-multiply the first by   
  and the second by   

 . Note 

that   
       is a scalar and hence is equal to its transpose,   

      , and then take the 

difference of the two equations to obtain          
     . Since the eigenvalues are distinct, 

we conclude that the eigenvectors are orthogonal. They are also of unit magnitude and hence 

     , and       .  

Matrix   is defined such that   can be written as       , i.e.        . Take the 

product of      and solve for     to obtain               . Equate this to the value 

obtained from the equation         , and we conclude that      , and       . 

Examining     and post multiplying by   produces         . Comparing this to the 

equation         , one concludes that the columns of   are the eigenvectors of     and the 

  
 ’s on the diagonal of    are also the eigenvalues of this product. 

The result is that complex matrix   can be written as       , where the conjugate 

transpose of   and   produces their inverse, and   is the diagonal matrix of real non-negative 

singular values. The analysis can be generalized to obtain the same form when the matrix is 

singular and when it has repeated eigenvalues and when it is not square. 

  Now consider the linear equation     , and substitute        into the equation. 

Premultiply    to both sides gives         . It can be written as       , where        

and       . Note that      
      

 , and     
 

 
     

 . Then     
      

 

 
         

  
    

    
    

        
     

     
         

     
 , where         is the largest singular 

value of  . Thus we conclude that 

                 (3-3) 
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3.3 Frobenius Norm, Maximum Singular Value, and Spectral Radius 

 The maximum singular value can be called the matrix norm induced by using the 

Euclidean norm for vector quantities, call it )(max2
AA  . One can also define the Frobenius 

norm of a matrix 
F

A  as the square root of the sum of the magnitudes squared of all terms in the 

matrix. This can be written as  

)(
2

AAtrA H

F
                                                              (3-4) 

Here tr indicates the trace of a matrix. Substituting the singular value decomposition of A into 

this equation results in ]))([(
2 H

F
VVtrA  . Note that )()( CCtrCCtr HH   for any square 

matrix C. Therefore,  2

2

2

1

2
][ VVtrA H

F
 which is clearly greater than or equal to 

2

max . We conclude that  

2
AA

F
                                                                  (3-5) 

Hence, if 1
F

A  then 1
2
A .  

 Now consider the spectral radius, )(A , the largest magnitude of any eigenvalue of A. 

Apply equation (2-3) to the eigenvalue equation xAx   so that xb  . Then  

222max )( xxxA                                                    (3-6) 

This establishes the ordering 

)()(max AAA
F

                                                       (3-7) 

 

3.4 Frequency Response of a MIMO System 

Consider the MIMO system      written in state variable form 
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(3-8) 

which is related to the transfer function form according to 

                (3-9) 

Suppose that the input is a general input of frequency   given as  

      

              

              
 

              

  (3-10) 

where each component is a sinusoid of arbitrary amplitude and phase. The  -th entry can be 

written as  

               
 

 
    

         
 

 
    

           (3-11) 

Define  

   

 
 
 
 
 
    

   

    
   

 
    

    
 
 
 
 

                

   

   

 
   

  (3-12) 

so that 

     
 

 
        

 

 
          (3-13) 

Superposition allows us to find the steady state response of the system to input (3-10) by finding 

the response to the input            , taking the complex conjugate of the response, adding 

the two together, and dividing by 2. Note that          
           

 , which is the square of the 

Euclidean norm of the amplitudes of the input signal. Look for a solution of the form      

       ,              and obtain the equation 
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                                                      (3-14) 

and corresponding solution 

kTikTi eyeyky   *
2

1

2

1
)(                                                    (3-15) 

As in the case of the input amplitudes in 
I , we define an output amplitude column vector O  

and note that 
2

2OO

T

O

H yy   . Apply the result in equation (3-3) to equation (3-14) to 

obtain for any frequency   

                                                                       (3-16) 

This bounds the Euclidean norm of the amplitudes of the outputs in terms of the norm of the 

amplitudes of the inputs and the maximum singular value of the frequency transfer function 

matrix. To make a bound over all frequencies from zero to Nyquist frequency, we can also write 

                                                                     (3-17) 

 

3.5. Heuristic Monotonic Decay Condition for MIMO Repetitive Control Systems 

To obtain the MIMO approximate monotonic decay condition, we imitate the 

development of equations (2-3) and (2-5) for the MIMO case. This results in 

                                           (3-18) 

The right hand side is zero, since both       and      are periodic. Therefore, 

                         (3-19) 

Again we interpret the term in the square bracket               as a transfer function from 

one period to the next, and then look at its frequency response. Frequency response means steady 

state frequency response. Again, this is heuristic thinking since      on each side of the equation 

is actually the same function of time. If the system is stable, the error is zero when it gets to the 
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steady state. The thinking here assumes a quasi-static behavior in every period so that frequency 

response thinking can apply. The implication is that if we can make the amplitude of the 

frequency response of the transfer function matrix in the square bracket decrease at all 

frequencies, then all frequency components of the error will decrease every period, thus 

producing monotonic decay of error.  

Applying equation (3-17) gives the MIMO approximate monotonic decay condition 

analogous to equation (2-6) as 

                                    (3-20) 

where         denotes the largest singular value of a matrix  , which is also called the matrix 

norm induced by using the Euclidean norm for vector quantities, denoted as             .  

In the next section, we will prove that this is a sufficient condition for asymptotic stability. 

Therefore, the assumptions made to develop the result here do not limit the use of the condition 

as something to satisfy to obtain stability, but the assumptions can limit the interpretation of the 

condition as an indicator of the decay rate each period.  

 

3.6 Stability of MIMO repetitive control systems 

3.6.1 A Necessary and Sufficient Condition for Asymptotic Stability 

 This section generalizes to MIMO the development of a necessary and sufficient stability 

condition for SISO repetitive control systems presented in References [8] and [40]. That result 

addresses the serious difficulty in using Nyquist stability criterion on repetitive control systems 

presented by the fact that for a period of p time steps, the open loop transfer function has p poles 

on the unit circle. And this requires the use of a Nyquist contour that goes around each of these 

poles making the approach prohibitive for most applications.  
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 The words necessary and sufficient for asymptotic stability can be rephrased to say that 

the repetitive control system will converge to zero tracking error for a periodic command and 

periodic disturbance of period p time steps, for all initial conditions, if and only if the condition 

derived here is satisfied. We make the following assumptions about the repetitive control system: 

(1) It has the structure given in Figure 3-1. The compensator )(zF  does not need to have 

the form given in equation (3-2), and it need not be causal.  

(2) The denominator polynomial of )(zG  has all roots inside the unit circle. If it 

represents a feedback control system, this will automatically be satisfied. 

(3) The denominator polynomial of )(zF  has all roots inside the unit circle. It seems 

natural to design an asymptotically stable compensator, and this condition is automatically 

satisfied when using equation (3-2). But we note that there are design approaches that do not 

guarantee this property [41]. 

(4) In order to be able to apply a repetitive control law, the period p must be large enough 

to make the repetitive controller causal. The number of time steps in a period is assumed to be 

large enough that all transfer function entries in )]()([ zFzGIz p 
 have a higher degree 

polynomial in the denominator than the numerator.  If one wants to use so many different time 

steps of error in (3-2) that this condition is violated, then one can make 2p the period used by the 

repetitive control law.  

 To start the development, rewrite equation (3-18) in the following forms 

)]()()[1()(]))()(([ zVzYzzEIzFzGIz D

pp     

)]()([]))()(()[1()( 1 zVzYIzFzGIzzzE D

pp                         (3-21) 

and note that 
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where adj indicates the adjoint. Then (3-21) can be written as 

)]()()][([adj)1()()](det[ zVzYzPzzEzP D

p  
                               (3-22) 

]))()(([)( IzFzGIzzP p                                                   (3-23) 

The determinant in (3-22) has both a numerator polynomial and a denominator polynomial. The 

numerator polynomial is the characteristic equation of the repetitive control system. If all roots 

of this polynomial are inside the unit circle, then the repetitive control system is asymptotically 

stable.  

 

Figure 3.2 Nyquist contour for the digital control system 

 The principle of the argument that underlies the Nyquist stability criterion, examines the 

change in phase angle of the polynomial of interest as the value of z traverses a closed contour. 

Assume it is traversed once in a clockwise sense. Then each root of the polynomial inside the 

contour will cause the phase angle of the polynomial to have a net decrease in angle of 



2  once 

the contour is traversed one time, and roots outside will produce no net change in the phase angle 
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of the polynomial. We use the Nyquist contour shown in Figure 3.2, which goes around the unit 

circle, goes out to infinity along a branch cut on the negative real axis, circles at infinity and 

comes back in along the branch cut. This contour includes everything outside the unit circle, and 

if there are no roots inside this contour then the system is stable. The assumptions above ensure 

that there are no roots on the contour. Rather than working to find the numerator polynomial, 

consider applying the method to )](det[ zP . Under the assumptions above, all denominator roots 

are inside the unit circle, and hence outside the contour, and therefore they have no net effect on 

the phase change going around the contour.  

 Consider any z on the contour substituted into )(zP . This creates a matrix with complex 

numbers as entries, and any such matrix can either be diagonalized by a similarity transformation, 

or put into Jordan canonical form. Denote either of these forms by   as needed. Then  

11 )(  ;  )(   NNzPNzPN                                               (3-24) 

The determinant of a product of matrices is the product of the determinants when each is defined. 

Since INN 1 , this implies that NN det/1det 1  . Hence, 
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                                             (3-25) 

The repetitive control system is asymptotically stable if the angle 
q

  
21

 comes back 

to its original value when z goes once completely around the contour.  

 To simplify the process, define a new matrix 

IzPzFzGIzzP p   )()]()(([)(*                                           (3-26) 

and note the relationship between the two determinants 
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                           (3-27) 

In this new form, the repetitive control system is stable if the angle of the line from the 

point -1 to the complex number )](*det[ zP  relative to the positive real axis, comes back to its 

original value after z does one complete traversal of the contour. Making this shift assists in the 

evaluation of stability by allowing one to only consider the part of the contour that moves z 

around the unit circle. By the assumptions above, there are more poles than zeros in )(* zP , 

and therefore the part of the contour at infinity always maps to the origin. Also, the map from 

Nyquist frequency when 1z  out to infinity along the branch cut on the negative real axis, 

and then coming back, forms a line from the point plotted for 1z , which is on the real axis, 

to the origin and back. Hence, one does not need to expend effort to perform the mapping of 

these parts of the contour. What remains corresponds to plotting )exp( Tiz   which 

corresponds to using the frequency response. We state the result as a theorem. 

Theorem 1: The repetitive control system shown in Figure 3-1, and satisfying the assumptions 

listed above, converges for all initial conditions to zero tracking error following a periodic 

command )(zYD
 in the presence of a periodic disturbance )(zV , both of period p time steps, if 

and only if the plot of  

))]()((det[ zFzGIz p 
                                                   (3-28) 

for )exp( Tiz  , T  going from zero to 2 , does not encircle the point -1. Equivalently, the 

angle made between the positive real axis direction and the line from -1 to the complex number 

represented by the above determinant, must come back to its original value (not modulo 2 ) 

when z goes once around the unit circle.  



42 
 

 

3.6.2 Sufficient Conditions for Stability 

 The stability condition in Theorem 1 gives a stability boundary that is dependent on the 

period p of the command/disturbance in the repetitive control system. In most applications one 

would want the repetitive control system to work for all periods that might occur, so a sufficient 

stability condition that is independent of p would be desirable. The development of the SISO 

stability condition in Reference [8] that is paralleled to generate the above theorem, eliminated 

the need to have a contour that does an arc around p poles on the unit circle, but it leaves the 

factor )exp( pTiz p 
 whose phase spins very fast for typical periods. This can require very 

fine sampling and complicate the effort to determine if the point -1 is encircled or not. As noted 

in [40] and studied in [8] for the SISO case, the fast spin of the phase from this term means that 

if the term it multiplies in (3-28) has magnitude larger than unity for even a small frequency 

interval, the spin will make the plot encircle the point -1. 

 We can generate a series of sufficient conditions for stability. For z on the unit circle, the 

absolute value of the determinant in (3-28) satisfies 

))]()(det[())]()(det[())]()((det[ zFzGIzFzGIzzFzGIz pqp            (3-29) 

Hence, if the determinant on the right in (3-29) is less than one in magnitude for all frequencies 

up to Nyquist, then the point -1 cannot be encircled, and therefore this is a sufficient condition 

for stability.  

 When the determinant in the last expression is replaced by the product of the eigenvalues 

of the matrix, and one uses the property in equation (3-25) for this problem, the right hand side 

of (3-29) can be replaced by the product of the absolute values of the eigenvalues. If this product 

is less than one, the repetitive control system must be asymptotically stable. Therefore, if the 

maximum absolute value of any eigenvalue never exceeds unity, the system in asymptotically 
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stable, and this forms another, somewhat more restrictive sufficient condition. Using equation (3-

7) establishes two more sufficient conditions, each more restrictive than the previous one. We 

can summarize these results in the following theorem that considers the magnitude of a 

determinant, the spectral radius, the maximum singular value, and the Frobenius norm. 

Theorem 2: The repetitive control system shown in Figure 3.1, and satisfying the assumptions 

listed above, converges for all initial conditions to zero tracking error following a periodic 

command )(zYD
 in the presence of a periodic disturbance )(zV , both of period p time steps, if 

any one of the following conditions is satisfied 

     1))]()(det[(  TiTi eFeGI                                           (3-30) 

     1))()((  TiTi eFeGI                                             (3-31) 

     1))()((max  TiTi eFeGI                                           (3-32) 

     1)()( 
F

TiTi eFeGI                                                 (3-33) 
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]))()())(()([(





TiTiHTiTi

HTiTiTiTi

eFeGIeFeGItr

eFeGIeFeGItr

                 (3-34) 

Each condition is a sufficient condition for asymptotic stability, with each equation being 

more restrictive than the previous equation, except that (3-33) and (3-34) are equivalent. Note 

that equation (3-33) says that the approximate monotonic decay condition (3-20) is a sufficient 

condition for asymptotic stability. Condition equation (3-32) is one that is particularly important 

to satisfy, because it not only guarantees asymptotic stability and convergence to zero error, it is 

also an approximate condition to enforce monotonic decay of the error during the convergence 

based on Reference [42]. Based on the logic used to develop (3-30) we can make the following 

stronger statement.  
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Theorem 3: A repetitive control system satisfying Theorem 1 converges to zero error for all 

possible periods p, and for all possible initial conditions, if and only if condition (3-30) is 

satisfied.  

 

3.6.3 Robustification Using a Zero Phase Low Pass Filter 

 In designing a repetitive control system using a model, one would normally aim to create 

a compensator )(zF  that makes the system satisfy one of the above sufficient conditions for 

stability. In practice, it is difficult to have a model that maintains accuracy all the way to Nyquist 

frequency, while the repetitive control objective aims to converge to zero error for not only the 

fundamental frequency of period p, but also for all harmonics up to Nyquist frequency. As a 

result, parasitic poles or unmodeled high frequency dynamics can easily destabilize a repetitive 

control system in application to the real world [40]. References [14,15] develop methods of 

designing a scalar FIR filter of the same form as equation (3-2) that cuts off the learning process 

at high frequencies. In most applications, the cutoff frequency of the filter would be adjusted in 

hardware, since it is only by observing the behavior of the hardware that one knows what 

frequencies are too poorly represented in the design model to be learned.  

 Denote such a zero phase low pass filter by )(zH , which is a scalar function. When 

multiplied by a matrix, it signifies that all components are being filtered. Filtering all 

components of the signal to be applied to the system, creates the following repetitive control law, 

and repetitive control transfer function for Figure 3.1 

)(

)()(
)(

)]()()()()[()(

zHz

zFzH
zU

zEzFzGzUzHzzU

p

p




 





                                       (3-35) 
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In order to assess stability, we make this change and follow it through the development of the 

above theorems. Equation (3-22) is modified by having the factor )1( pz   on the right hand 

side replaced by ))(1( zHz p . This means that above the filter cutoff frequency, the right hand 

side of the difference equations is no longer zero. Hence, there can be a nonzero particular 

solution. If the repetitive control system is asymptotically stable, the transients will decay to zero 

leaving one with this solution.  The )(zP  in (3-22) is replaced by 

]))()()(([)( IzFzGIzHzzP p    

Equation (3-26) is modified to ))()()(()(* zFzGIzHzzP p   . Assumption (4) is modified to 

ask that p be large enough that all transfer functions in this matrix )(* zP  have more poles than 

zeros. Then we can state the following Theorem. 

Theorem 4: Under the above modified assumptions, Theorems 1, 2, and 3 apply to the repetitive 

control law (3-35) provided the term  

)]()([ zFzGIz p 
                                                      (3-36) 

is replaced by 

)]()()[( zFzGIzHz p 
                                                 (3-37) 

in equations (3-28), (3-30), (3-31), (3-32), (3-33), and (3-34), and convergence to zero error is 

replaced by asymptotic stability of the solution of the homogeneous equation (i.e. all solutions of 

the homogeneous difference equation governing the repetitive control system, converge to zero 

as the time steps tends to infinity). 

 

 

 

 



46 
 

 

Chapter 4. Multiple-Input Multiple-Output Repetitive Control Design Methods 

 

In this chapter, we develop a methodology to design the MIMO compensator using 

multiple SISO designs, and generalize the cost function (2-8) for SISO RC design to address 

MIMO problems [10, 26]. 

 

4.1 A SISO Approach to Designing MIMO Repetitive Control Systems 

4.1.1 Analytical Approach with a Transfer Function Model 

 From equation (3-28) and (3-30) it is clear that designing the compensator )(zF  so that 

its frequency response closely matches that of )(1 zG   will produce stability. Reference [7] 

shows that for a SISO system, it is not very effective to optimize the difference between the two 

functions (optimization function 
1J  of that reference) by adjusting the coefficients in equation 

(3-2). Instead, one should try to make the product )()( zFzG  look as much like one as possible, 

according to the optimization criterion equation (2-8). This section offers a method of using the 

SISO design process from equation (2-8) to handle the MIMO problem.  

 For simplicity, consider the case of two inputs, two outputs so that 



q  2. There are    

transfer functions in     , and we can design    compensators for     . Our interest is to make 

)(zF  look like )(1 zG   in terms of frequency response, where  
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Hence we would like to design the 1,1 component of )(zF , call it )(11 zf , to imitate  
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11

zgzgzgzg

zg
zh


                                                   (4-2) 

and analogously for the three other components. This makes four separate SISO design 

objectives, one for each component. Of course, as explained above, we do not want to directly 

match )(11 zf  with (4-2), but instead we want to make the product of )(11 zf  and the reciprocal of 

equation (4-2) look as close as possible to unity at all frequencies. Therefore, we make the 

following optimization criterion for design of )(zf ij  of the form of the scalar version of equation 

(3-2) 

      


 




1

0 )exp(

*11
)()(1)()(1

N

k Tiz
ijijkijijij

k

zfzhWzfzhJ


                   (4-3) 

where          ,           .  

 In the design process, one adjusts the values of n and m in equation (3-2) to find a design 

that makes these costs small. Each optimization problem simply requires the solution of a linear 

set of equations giving the compensator gains minimizing the cost. For this part of the design 

process, there is no requirement that the function multiplying the compensator component 

functions in the cost be stable. Note that each element of )(zG  will normally have a pole excess 

of one if it comes from feeding a differential equation with a zero order hold. And using this 

means that the reciprocal of (4-2) used in (4-3) is causal. After making a design for each entry in 

the compensator matrix, one then tests for stability of the design. One could of course use 

Theorem 1, but more likely one would want a design that works for all periods, and then one can 

check stability by Theorem 3. Of course, one can check the approximate monotonic decay 

condition (3-32), and if it is satisfied, then the system is stable. And the size of the maximum 

singular value is an approximate bound on the decay from one period to the next, according to 

the quasi-static thinking used in developing equation (3-20). 
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4.1.2 Computational Methods from Frequency Response Information 

 Equation (4-3) made use of some analytically developed expressions. When creating a 

program to perform the optimization, the process can be simplified. If one has an analytical 

expression for )(zG , for each of the round bracket entries in the jth term of the sum in cost 

functions like (4-3), one can numerically compute the matrix )(
Ti jeG


, take its inverse, and then 

take the reciprocal of each entry to use in the cost. This simplification becomes increasingly 

important if q is not small.  

 One might not have an analytical expression. Reference [12] shows how one can use 

input-output data to generate the frequency response, as magnitude and phase change 

information. The same method can be used for a MIMO system. One can have the values of 

)(
Ti jeG


 for each frequency, computed directly from input-output test data, and use this in 

equations like (4-3) to design the MIMO compensator, without ever developing a transfer 

function or differential equation model.  

 

4.2 An Optimization Based Design Approach for MIMO Repetitive Control 

 The previous section performed a separate SISO repetitive control design for each 

component of the MIMO compensator. Now consider how one can formulate an appropriate cost 

function to deal directly with the MIMO problem. One might first ask to minimize the maximum 

value of the determinant in equation (3-28), since getting this value below unity ensures stability. 

Of course, it is perhaps better to use equation (3-30) to make the design independent of the value 

of the period p. And we could replace the maximum value, which creates difficult numerical 

minimization problems, by the sum of the magnitudes at a chosen set of frequencies from zero to 

Nyquist, producing  
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Derivative information for minimizing this cost is obtainable. Taking the derivative with respect 

to any chosen scalar parameter in the coefficients in the )(zF  of equation (3-2), requires the 

derivative of the first determinant times the second, plus the first times the derivative of the 

second. And the derivative of a determinant with respect to a parameter 



  can be computed 

using  













2221

1211

2221

1211

2221

1211

cc

cc

cc

cc

cc

cc
                                    (4-5) 

However, setting the derivative to zero would produce a set of equations that are polynomial in 

the many coefficients of the compensator, and is likely to have many local minima.  

 In place of minimizing (3-30) over the range of frequencies, one could consider using the 

spectral radius in (3-31). However, minimizing the magnitude of the largest eigenvalue of a 

general complex matrix is not an easy problem numerically, with particular difficulties in 

differentiability when decreasing the maximum eigenvalue makes it into a repeated eigenvalue. 

Minimizing the left hand side of (3-32) averaged over frequencies is a somewhat more tractable 

problem numerically. The 
2

max  is again a maximum eigenvalue, but it is automatically real and 

positive, and it is associated with a matrix that is Hermitian, so that the eigenvector matrix 

always exists and has orthogonal rows and columns, even when there are repeated eigenvalues. 

Nevertheless, this is still a difficult problem numerically.  

 Using equation (3-34) as the basis for an optimization function, however, creates a 

quadratic cost whose unique minimum can be found by solving a linear algebraic equation, 

making this approach very tractable. This cost function maintains the simplicity of the SISO cost 
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(2-8) which also produces a set of linear equations to solve. To obtain this property in the MIMO 

case we have moved further from the criterion defining the necessary and sufficient stability 

boundary. In the SISO case, the cost used could be justified as optimizing not only for stability, 

but also for good transients, aiming to increase the learning speed of the repetitive controller. 

When shifting to using (3-34) instead of (3-32) we no longer have the interpretation of 

optimizing the speed of learning. But from equation (3-7), 0)()( 22

max

2
 AAA

F
 , by 

decreasing the Frobenius norm we are squeezing a bound on the approximate monotonic decay 

condition. Note that in the design process, we pick the number of gains used and which errors to 

include in the RC design when we pick n and m in equation (3-2). If the design that is 

minimizing the average of the square of the Frobenius norm succeeds in satisfying (3-34) then 

the design is table. But even if this condition is not satisfied, conditions (3-32), (3-31), or (3-30) 

might be satisfied, and this would imply stability. Hence, in creating the design one adjusts the 

parameters to get stability in one of these senses. And to aim for good learning transients, one 

can put extra emphasis on how small the left hand side of (3-32) becomes. Note that the left hand 

side of (3-32) for any frequency is an indicator of how fast that frequency decreases with periods. 

A design can still be practical if the left hand side gets larger than unity at high frequencies, in 

which case one needs to introduce a zero phase filter cutoff of the learning as discussed above, in 

order to stabilize the process.  

 The minimization problem using (3-34) can be formulated as follows. Write the 

compensator equation in the form 



F(z) M(z)                                                              (4-6) 

where 
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

M (z)  z m1I z m2I z(nm )I 
 a1

T a2
T an

T 
                                            (4-7) 

Then the cost function is written as  

  )(])()([])()([
)(
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jjj
Tji

j
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          (4-8) 

The last term is a penalty introduced to limit the size of the gains used in the compensator as 

discussed in [7]. Taking the derivative of the cost function with respect to the gain matrix 



 and 

setting the result to zero creates a linear set of equations to solve for these gains.  

 In order to conveniently find the derivative of J with respect to 



 we make use of some 

properties of the trace, and the derivative with respect to a matrix: 

(i) First, 



tr(AB)  tr(B
T

A
T
)  for any matrices A and B. To see this, let the 



i, j  components 

of these matrices be 



aij  and 



bij. Then using the Einstein summation convention that sums over 

repeated subscripts, the 



i,k  component of the product 



AB  is given by 



aijb jk , and the trace of the 

product is 



aijb ji. Doing the analogous steps for 



tr(B
T

A
T
)  establishes the equality. 

(ii) Define the derivative of a scalar 



J  with respect to a matrix B as a matrix whose 



 ,  

component is 



J /b . 

(iii) Then 



[tr(AB)] /B A
T . To see this note that 



[tr(AB)] /b (aijbji) /b  a  

since the derivative is zero except when 



i    and 



j  .  

(iv) Also, 



[tr(BT
AB) /B (A A

T
)B. The trace can be written as 



bikaijbjk . Differentiating 

with respect to 



b  obeys the product rule, so that we can take the derivative of the first 



bik term 

times the rest, plus the first two terms times the derivative of 



b jk . This produces 



ajb j aibi . 

When put back into matrix form one gets the result.  
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Let  



J  tr[(I GM)
H
(I GM)]

 tr{I [(GM) (M HG H )T ]T (M HG HGM)}
                             (4-9) 

then 



dJ /d[(GM )
T
 (M

H
G

H
)][(M

H
G

H
GM ) (M

H
G

H
GM)

T
]                  (4-10) 

Introduce the summation in equation (4-8), the weight factor 



W j , and the extra penalty term on 

large gains, and recognize that the result must be real so that imaginary parts must sum to zero, 

and one can produce the following solution to the optimization problem  



 A1B                                                                  (4-11)  

where this time A and B are given by 
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jjj zGzMzMzGWB                                 (4-13) 

Reference [24] developed this result, and it discusses how to robustify the resulting design to 

model inaccuracies by picking the gains to minimize the cost function (4-8) written for a 

distribution of possible models or model parameters, and summed over this distribution.  

 

4.3 An Example MIMO System 

In order to study the comparison between the MIMO RC design approach of equation (3-

33), and the multiple SISO design approach of the previous section, we consider the three mass 

system give in Figure 4.1. It is a two-input two-output system,    . The system has three 

masses and three springs.  



53 
 

 

 

Figure 4.1 A three mass, two input, two output dynamic system 

The continuous time differential equation for the system is 

                                                                       (4-14) 

where 

   
    
    
    

     
         
           

      

     
 
 
 
                            (4-15) 

and the damping is taken to be proportional damping, which can be written in the form   

     . The square root can be taken by diagonalizing matrix  , and taking the positive square 

root of each eigenvalue and converting back to original coordinates. The state variable form of 

the equation is 

                                                                            (4-16)  

   
 
           

  
          

           
 
 
         

  

  
   

   
   

   
   

    (4-17)                                                                 

The masses are all taken as unity,           . The spring constants are          

         , going from the spring connected to the wall, to the spring connected to the free 

mass at the end. For the proportional damping we consider three damping ratios  , given by 0.2, 

0.1, and 0.01. Consider two input forces    and    at the first and the third mass as indicated 

(positive sense to the right), and the two outputs are the positions of the same two masses,    and 

   (positive sense to the right). The inputs are considered coming through zero order holds 
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sampling with a sample time interval of        s. From this we generate the discrete time state 

space model. 

The desired trajectory for mass 1 next to the wall, and for mass 3 at the free end are given 

respectively as   

     
 

      
         

 
         

 

      
 
                                   (4-18) 

 

4.4 Numerical Results Designing RC Using the Multiple SISO Method 

Results are generated using the multiple SISO design method of equation (4-3) with the 

weight factor set to unity, and using     , a number chosen rather arbitrarily. The values of   

were adjusted for best value, which was     for the diagonal elements of     , and     for 

the off diagonal elements. Much smaller values of   also worked. And with          does 

not produce singular values below unity for all frequencies,    , 3, and 4 all worked, but in 

the latter case the maximum singular value approached unity in two places. With     , both  

    and      made good designs. We comment that the inverse of a discrete time system 

transfer function with one time step delay from input to output (as one obtains from discretizing 

a differential equation fed by a zero order hold) is non-causal by one time step. And this 

corresponds to    . If one uses a large value for  , then one is looking at a large number of 

time steps into the future of the present phase but during the previous period. The best values of 

  here do not do this.  

The period of the periodic desired output is      time steps wit sample time interval 

      s, and this corresponds to 7.5 seconds. The control being picked at time step   is the 

control used one period back at     plus a linear combination of the errors at time steps from 

        back to time step          . Before one can start up the repetitive 
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controller, one needs data for all of these time steps. For the case studied in this section, for one 

of the values of   one can start at time step 88 and for the other, one must wait for time step 89. 

We turn the RC system on at time step 89, and this is time 11.125 seconds. 

Figure 4.2 shows poles and zeros of 1,1 component of the continuous time transfer 

function matrix     , corresponding to the transfer function from input on the first mass to the 

resulting output of that mass. The plot is for      , or 20% of critical damping. There are of 

course, three vibration modes corresponding to the poles, and then there are two complex 

conjugate sets of zeros. The corresponding plot for the 2,2 component is very similar with the 

same poles, but the zeros with the real part near -3 have moved to real part near -2.6, and the 

other pair with real part near -0.8 have moved the real part near -1.2. Figure 4.3 shows the poles 

and zeros of the 1,2 component of     , and we notice that there are two non-minimum phase 

zeros and a real zero on the negative real axis. The 2,1 component is the same. 

We consider that the inputs to this transfer function matrix come through a zero order 

hold, and there is a  -transfer function equivalent matrix     . What the multiple SISO approach 

uses for design is the inverse of this matrix              . Figure 4.4 shows the poles and 

zeros of the 1,1 component, and Figure 4.5 shows the same for the 1,2 component. Performing 

the operations one notes that one often encounters analytical cancellation of poles and zeros in 

the resulting  -transfer function matrix. The poles and zeros shown are those obtained by Matlab 

without performing these cancellations. In Figure 4.4 there seems to be 7 pole-zero cancellations, 

leaving one with 4 zeros and 3 poles. The poles and zeros are inside the unit circle. For the 2,2 

element the pole-zero pattern is similar but again the real parts of the zeros have changed. The 

pair with real part near 0.6 has moved this value to roughly 0.75, and the pair near real part -0.1 

has moved it to about -0.25. The plot for the 2,1 component is the same as for the 1,2 component.  
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Figure 4.2 Poles and zeros of    Figure 4.3 Poles and zeros of 

G11(s)  for 20% damping     G12 (s)  for 20% damping 

 

 

Figure 4.4. Poles and zeros of the 1,1   Figure 4.5 Poles and zeros of the 1,2 

component of G1(z)  for 20% damping  component of G1(z)  for 20% damping 

 

Note that what are used in the SISO designs are not these components, but their 

reciprocals. Hence,         
  

 used in the cost functions equation (4-3) have the zeros turned 

into poles, and the poles turned into zeros from Figures 4.4 and 4.5. Note that this creates a very 

non-standard SISO design problem for         
   from Figure 4.5, because it has poles outside 

the unit circle. One expects that the optimization will approximately place zeros on top of these 

poles. And this possibility needs to be added to the procedure for setting   and   described 
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above for SISO problems. None of these examples here encounter zeros outside the unit circle 

during the design process. 

The cost functions equation (4-3) aim to make       
     

  
      

      as close to one as 

possible over all frequencies from zero to Nyquist. Figure 4.6 and 4.7 plot these complex 

numbers for the 1,1 component (the 2,2 component is very similar) and for the 1,2 component. 

These show that the RC design is making the frequency response of each component of 

         match the corresponding component of the identity matrix to within about 0.05 unit. 

Figure 4.8 plots the maximum singular value of the matrix                 . With the 

maximum singular value being about 0.05 the system is guaranteed to be asymptotically stable. 

Figure 4.9 shows the error in each output and we observe that it has good performance. Figure 

4.10 shows the root mean square of the error (RMS) for each period (repetition, or iteration) 

versus repetition, and we observe convergence to a numerical zero error in 20 repetitions. 

Corresponding results were obtained for 10% damping and for 1% damping. Note that a 

system with 1% damping is not very stable, and its phase frequency response changes very fast 

with frequency going past a resonance, making it more difficult to capture the behavior of the 

inverse of the frequency response in an FIR filter. The plot corresponding to Figure 4.2 look 

identical to Figure 4.2 except that the horizontal axis that ends at -3.5 for 20% damping, ends at 

about -1.6 for 10% damping, and at -0.16 for 1% damping. Figure 4.3 changes in the following 

way: the poles must change their angle   made with the negative real axis to correspond to 

      ; the zeros for 20% damping roughly located at -16 and 2.5±19i, move to -23 and 

14±33i for 10%, and to -60 and 30±60i for 1%. Figure 4.4 looks similar for all three cases, 

except that all poles and zeros get much closer to the unit circle. The main change seen in Figure 
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4.5 is that zero locations roughly at -1.5, -7.5 move to -2.5, -12.5, and then to -4, -32, going very 

far outside the unit circle. 

 

    Figure 4.6 Plot of [h11(e
iT )]1 f11(e

iT ) from           Figure 4.7 Plot of [h12(e
iT )]1 f12(e

iT )  from 

        zero to Nyquist for 20% damping              zero to Nyquist for 20% damping 

 

 

    Figure 4.8 Plot of the maximum singular   Figure 4.9 Plot of output error versus  

       value of I  [H (eiT )]1F(eiT )  from zero to       time, RC turned on at 11.125s,  period 

       Nyquist for 20% damping        is 7.5s, 20% damping 

 

Figure 4.7 gives a range of error in matching unity over all frequencies, and the error is 

the radial distance from +1 to any point on the plot corresponding to a certain frequency. The 

real part of ranges from about 0.95 up to about 1.03, differing from +1 by only 5%. For 10% 

damping this range is roughly from 0.68 to 1.13. Cost functions in equation (4-3) still did a good 

job, producing asymptotic stability with the maximum singular value for each frequency given 
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by Figure 4.11. This still produces fast learning, heuristically estimated as having the error decay 

by a factor of 1/3 each period according to Reference [42].  

                     

      Figure 4.10 Plot of the RMS of the                Figure 4.11 Plot of the maximum singular 

        output error each iteration versus             value of                      from 

        iteration number, 20% damping             zero to Nyquist for 10% damping 

            

Figures 4.12, 4.13, and 4.14 give 1% damping plots corresponding to Figures 4.6 and 4.7. 

The FIR filters with      no longer giving a good approximation of the MIMO inverse 

frequency response. Figure 4.15 shows the corresponding singular value plot for sufficient 

stability condition equation (3-32). To obtain an effective design, one might consider using 

     as is done in the next section with asymptotically stable results. Because a very lightly 

damped resonant peak has very fast phase change in a short frequency range, one might also 

modify the number and distribution of the discrete frequencies used in the cost functional 

summations. And of course one could consider using the weighting factor    to force a better fit 

in the region of importance. Note that each cost function individually keeps the RC design within 

what would be the stability boundary for real SISO systems, but the combination of the SISO 

designs does not have the same monotonic decay property for MIMO. This points out the 

difference between aiming to minimize the equation errors in            and aiming to 

satisfy the sufficient stability condition equation (3-22). 
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   Figure 4.12 Plot of       
            

           Figure 4.13 Plot of       
            

     

      from zero to Nyquist for 1% damping    from zero to Nyquist for 1% damping 

 

  

Figure 4.14 Plot of       
            

     or  

of       
            

     from zero to  

Nyquist for 1% damping 

 

Figure 4.15 Plot the maximum 

singular value of 

                     from zero to 

Nyquist for 1% damping 

 

4.5 Numerical Results Designing RC Using the Frobenius Norm Cost Functional 

When designing a MIMO RC system using the cost functional equation (4-4) one 

specifies the choice of   that specifies the number of gain matrices, and m specifies the range of 

these gain matrices associated with the tracking error from time step         to time step 

       , when   is the current time step. In this design approach the same choice applies 

to all input-output pairs in     . In the following simulation, the period of the desired trajectory 

is 60 time steps, hence     . First, we consider the simplest design possible with just 2 gain 



61 
 

 

matrices,    . We also choose the best value of   which comes very close to satisfying 

sufficient stability condition equation (3-32), which is    . The repetitive controller in this 

case has the form                                 . Each    or    is a 2-by-2 

matrix. Figure 4.16 shows these gain values. The diagonal gains correspond to the first-input-to-

first-output, and the second-input-to-second-output pairs. The off-diagonal gains correspond to 

the first-input-to-second-output, and second-input-to-first-output pairs. Equation (3-32) is a 

condition for quasi-steady-state monotonic convergence of the norm of the tracking error from 

period to period, and it is a sufficient condition guaranteeing convergence to zero error. A plot of 

the left hand side of equation (3-32), i.e. the maximum singular value versus    from zero to 

Nyquist at      is shown in Figure 4.17. Except for a small frequency range this maximum 

singular value is less than one, suggesting that monotonic convergence is expected. The result of 

this test does not guarantee convergence to zero tracking error, but the tracking error from period 

to period is shown in Figure 4.18 and is seen to converge monotonically. Finally, Figure 4.19 

shows the zeros of the controller transfer functions. Because this is a two-input two-output 

system, there are four such controller transfer functions. Each controller transfer function has   

poles at the origin. 

Next, we consider the case where we use a total of        gains while keeping 

   . Figure 4.20 reveals that although 60 gain matrices are allowed, the optimization 

produces about 30-40 gains that are “significant”, the magnitudes of the remaining gains are 

relatively small in comparison. Each plot contains two curves, but they are indistinguishable to 

plot accuracy. The maximum singular value is well below one as shown in Figure 4.21, 

suggesting monotonic convergence of all frequencies from period to period, and guaranteeing 

asymptotic stability and convergence to zero tracking error. Based on the speed of decay of the 
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error, the design is close to inverting the dynamic system. The rapid convergence of tracking 

error is indeed observed in Figure 4.22. There are now a large number of controller zeros, and 

they are all “stable” as shown in Figure 4.23, i.e. inside the unit circle. 

Finally, we consider the case where       , but   is increased to 30. Our 

preliminary observation suggest that there is no obvious benefit with using a large value for  . 

There are no significant changes in the controller gain magnitudes (Figure 4.24). The controller 

still approximates an inverse of the dynamic model (Figure 4.25). The convergence of the 

tracking error is therefore rapid (Figure 4.26). This time, however, we observe that there are a 

large number of “unstable” zeros associated with these controller transfer functions as shown in 

Figure 4.27. We observe that unlike the case of designing a repetitive controller for a single-

input single-output system with a relatively small number of gains, the choice of the value of   

appears to not be at all critical in these MIMO designs when   is large. We can understand this 

in terms of the following observation. If   is large enough that the gains taper off to essentially 

zero, then any change needed in the value of   is accomplished by just shifting all the gains one 

or more time steps in the needed direction. This is illustrated by comparing Figure 4.20 using 

     with    , to Figure 4.24 with      with     . The plots of the gains in each 

case look the same, but have been shifted an appropriate number of time steps to account for the 

different value of   used. The fact that there can be more nonzero but small gains in the     

case allows the singular value plot to be better for this case (Figures 4.21 and 4.25), but the 

performance of the decay with repetitions does not seem to be affected (Figures 4.22 and 4.26). 

These observations suggest that the ability to individually adjust   for each entry in matrix      

or the multiple SISO approach is only an important advantage if one keeps the value of   

sufficiently small that the gains do not taper off to near zero. 
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     Figure 4.16 Repetitive control gains             Figure 4.17 Maximum singular values 

                          (n = 2, m = 2)                                               (n = 2, m = 2) 

 

 

Figure 4.18 Convergence of RMS tracking       Figure 4.19 Controller TF zeros 

                    error  (n = 2, m = 2)                                       (n = 2, m = 2) 

 

 

  Figure 4.20 Repetitive control gains           Figure 4.21 Maximum singular values 

                       (n = 60, m = 2)                                                  (n = 60, m = 2) 
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 Figure 4.22 Convergence of RMS tracking            Figure 4.23 Controller TF zeros 

                  error (n = 60, m = 2)                                                (n = 60, m = 2) 

 

 

       Figure 4.24 Repetitive control gains                Figure 4.25 Maximum singular values 

                       (n = 60, m = 30)                                                (n = 60, m = 30) 

 

 

Figure 4.26 Convergence of RMS tracking                Figure 4.27 Controller TF zeros 

                    error  (n = 60, m = 30)                                            (n = 60, m = 30) 
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Chapter 5. Designing Learning Control that Is Close to Instability for Improved  

Parameter Identification 

 

5.1 A Condition for Decay or Growth of Error with ILC Iterations  

This section presents the basic formulation and certain important properties of ILC. See 

reference [8] for more detail using the same approach. Let )(* ky  be a chosen desired system 

output that is p time steps long. In the first run or iteration, one applies a chosen p step input and 

records the response. After each iteration the system is reset to the same initial starting 

conditions, and the input is updated according to an ILC law and applied to the system. The 

usual objective of ILC is to obtain zero tracking error for every time step of this desired 

trajectory that is p time steps long. Thus ILC is asking for zero error during initial transients at 

the start of each run, not just in steady state as in RC. Also, there may be a disturbance function 

that appears every time one runs the trajectory, and the ILC should eliminate error from this 

source as well as the usual tracking error of a feedback control system.   

Let subscript j denote the run number or iteration number, and write the real world 

dynamics as a single input, single output difference equation  

)()(  ;  )()()1( kCxkykBukAxkx jjjjj                                          (5-1) 

Define the output error as )()(*)( kykyke jj  . The actual dynamics may be governed by a 

linear differential equation, and the input is applied through a zero order hold, holding )(ku j
 

constant throughout time step k. Then (5-1) can represent this differential equation without 

approximation, and the original differential equation can be recovered uniquely provided the 

sample rate is high enough to avoid aliasing. Use underbars to indicate a column vector of the 

history of a variable for iteration j. Then ju  is a column vector of inputs )(ku  for time steps 0 
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through p - 1, and 
j

y , je  are similar except that they start and end one time step later. This one 

time step shift is incorporated into the definitions to account for the usual one time step delay 

between a change in the input and the first time step a change is seen in the sampled output. A 

general linear ILC law takes the form jjj eLuu 1  where L is a p by p matrix of learning 

control gains. One can write the solution to (5-1) for p time steps in terms of the convolution sum, 

making use of the lower triangular Toeplitz matrix P of Markov parameters, whose diagonal 

elements are all CB, all elements in the first subdiagonal are CAB, and continuing in this manner 

to the element BCA p 1  in the lower left corner. Then one can give the error history evolution 

with iterations as  

jj ePLIe )(1     ;   1)(max  PLIi
i

                                                (5-2) 

where I is the p by p identity matrix, and the second equation in (5-2) gives the stability 

boundary, i.e. satisfying it guarantees convergence to zero tracking error for all possible initial 

inputs.  

  Suppose that the matrix learning law L has a Toeplitz structure so that all entries along 

any given diagonal are the same. Then L is a finite time version of a transfer function which we 

denote as )(zL . Let )(zG  be the z-transfer function of system (5-1). Then one can take 

transforms of the system and the learning law to obtain  

)()]()(1[)(1 zEzLzGzE jj 
                                                          (5-3) 

The square brackets represent a transfer function from the error in one iteration to that in the next. 

Set )exp( Tiz   in this expression to form the frequency transfer function, where T is the 

sample time and   is the radian frequency. If inequality 

    1)()( TiTi eLeGI                                                               (5-4) 
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is satisfied for all frequencies, then every steady state frequency component of the error will 

decay monotonically with iterations. This does not guarantee stability because of the transient 

parts of the trajectory. But if one makes p large enough compared to the time constants of the 

system and picks an appropriate *y , the behavior described by (5-4) will dominate the responses 

for the early iterations, even if the learning process is actually unstable [35]. We will often study 

the learning behavior of (5-4) by plotting )()( zLzG  for )exp( Tiz   for 



T  from zero to  , i.e. 

from zero frequency to Nyquist frequency.  

 

Figure 5.1 Definitions of circles and points for polar plots of frequency response of  

learning law times system 

 

When plotted as in Figure 5.1, if the curve stays inside the unit circle centered at +1, (5-4) 

is satisfied at all frequencies. The radial distance from +1 to a point on the curve for a specific 

frequency indicates the factor by which the amplitude of a component of the error at that 

frequency will be multiplied every iteration. If that number is greater than one, that frequency 

component is amplified every iteration. The design problem for ILC requires producing a 

compensator that moves the curve inside the unit circle for all frequencies in order to produce 
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decaying error. Our objective is to make an ILC law that is deliberately non robust, so that small 

errors in the parameters of the model used for the ILC design will make the ILC iterations 

become unstable. We will do this by designing a learning law that moves all frequencies to 

points that are inside the unit circle based on the current model. But the points are chosen to be 

very near the stability boundary so that small model errors are likely to put the learning process 

outside the unit circle. Then the error components for those frequencies for which the model was 

inaccurate enough to make the ILC unstable, will grow with iterations. With enough iterations 

the errors will be arbitrarily amplified so that system identification will be able to see and correct 

the parameter error.  

 

5.2 Creating a Deliberately Non Robust ILC Law 

Reference [34] develops a phase cancellation ILC law. The error is decomposed into its 

frequency components, a phase lead (or lag) is introduced in each component such that when it 

goes through the system, the system supplies the opposite phase lag (or lead). In this way every 

component of the error after going through the ILC law and then the system will be real and 

positive. This means that the plot of )()( zLzG  for )exp( Tiz   is on the positive real axis in 

Figure 5.1. And an appropriately chosen gain will keep it smaller than 2 so that (5-4) is satisfied. 

Experiments in [34] on a robot performing a high speed maneuver decreased the root mean 

square of the tracking error by a factor of nearly 1000 in about 15 to 20 iterations. Note that 

numerical studies suggest that this learning law is actually unstable, i.e. it does not satisfy 

inequality (5-2). Simulations will be documented elsewhere that show small wiggles near the end 

of the trajectory start to become evident by iteration 1000. The onset of these wiggles can be 

delayed by including a constant section of trajectory at the end. In any case the instability takes 

many iterations to appear, and it appears starting from the end of the trajectory, while lack of 
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satisfying (5-4) creates growth of error for all time steps after a settling time of the system, i.e. 

once steady state frequency response thinking applies. These different signatures make the two 

sources of growth easily distinguishable if the trajectory is chosen substantially longer than one 

settling time of the system.  

  It is this phase cancellation law that we seek to alter: instead of placing the plot of 

)()( zLzG  on the positive real axis, we seek to place it on a circle of chosen radius 1r  (length DF 

in Figure 5.1) which is inside the unit circle. This is done using our current model which we 

denote by )(zGn  (with corresponding magnitude )(nr  and phase angle )( n  made with the 

positive real axis, for )exp( Tiz  ) creating the learning law )(zLn . When we study how it 

behaves when applied to a real world that is different than our current model, we denote the real 

world behavior by )(zGr  (with corresponding rrr , ). Since circle 1r  is inside the unit circle, 

inequality (5-4) is satisfied for the nominal model, but if radius 1r  is near unity, then one expects 

that small model errors will send the learning process unstable. A question to be addressed is, 

how do we choose what frequency between zero and Nyquist should be placed at each point on 

this circle. Two methods will be suggested and studied.  

  The most common source of instability in ILC comes from phase inaccuracy of the model 

at high frequency, often due to missing high frequency dynamics. A missing high frequency pole 

introduces more phase lag at high frequency than in the nominal model. This suggests that one 

place all frequencies on the lower half of the circle. Here we are interested in parameter errors, 

and one expects that parameter errors of one sign will produce a positive phase error, and of the 

opposite sign will produce a negative phase error. For this reason, we investigate using two ILC 

iterations, one mapping points to the lower half of the circle, and the other mapping to the upper 

half. The degree to which this is effective will be investigated.  
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  The learning law is developed as follows. Given the p time step history of the error, one 

can see approximately p/2 discrete frequencies. These frequencies are related to jpT)/2(   for 

1,...,2,1,0  pj , corresponding to these numbers up through Nyquist frequency and then 

folding onto existing frequencies below Nyquist. Define )/2exp(0 piz   and construct matrix 

H whose ,  component is given by 
)1)(1(

0

 

 zH . Then eH  produces the discrete Fourier 

transform (DFT) of the error vector, where the first element is related to DC, the next element 

and the last element combine to form the frequency component related to discrete frequency 

)/(2 pT , etc. In the frequency domain, our objective is to create 



Ln (z)  to satisfy 

)(

2
2)()()(
  iTi

n

Ti

n ereGeL     ;    
))()((

2
2)](/)([)(

  ni

n

Ti

n erreL


            (5-5) 

Here, the chosen location for frequency   is point F in Figure 5.1 with AF being of length 



r2 () , 

and the angle DAF being 



2 ()  except that we wish to measure this angle in a manner consistent 

with the associated phase lag and hence make it measured positive in the counterclockwise 

direction (the angle is negative for the point F as pictured). In matrix form we can produce this 

change in magnitude and phase for each of the elements related to its discrete frequency, by pre-

multiplying eH  by a diagonal matrix given by  


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e
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jn

j jj





 
                      (5-6) 

Note that 1j  and 1j  that are associated with the same frequency, have opposite signs in 

the exponential. And the frequencies in (5-6) go up to two Nyquist, doing so in such a way as to 

accomplish the desired phase change with the right sign in both terms. Then one must convert 

back to the time domain using THpH *))(/1(1   where the asterisk denotes the complex 

conjugate, and T is the transpose.  The resulting learning law is  
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j

T

jjnjj eHHpueLuu  *))(/1(1                                                (5-7) 

 

5.2.1 Mapping Linearly with Central Angle 

One choice for the mapping onto the circle of radius 1r  is to map these points linearly 

with frequency to the angle 1  corresponding to 



EDF, measured positive clockwise for 

placement on the lower half of the circle and positive counterclockwise on the upper half, 

starting at zero frequency at angle zero, and ending at Nyquist at angle 180º. This produces 

T )(1 . In order to use this statement to produce the control law (5-7) we need to compute 

for each frequency what the polar coordinates 22 ,r  are for the chosen point F. We will need the 

law of cosines for general triangles which says that the square of the length of one side is equal 

to the sum of the squares of the other two sides minus two times the product of these two sides 

times the cosine of the angle between them. Use triangle ADF to compute 2r  which is AF, and 

AD is one, DF is 1r , and ADF  is 1  . To find 2  which is DAF  (but adjusted for the sign 

convention), again use triangle DAF, but this time adjust the choice of sides in the law of cosines 

so that the angle involved is DAF , and then solve for this angle. The results are 

)]2/()-acos[(1  ;  )]cos(21[ 2

2

2

2

1211

2

12 rrrrrsqrtr                   (5-8) 

The negative sign is used for mapping to the bottom half of the circle, and the plus used for 

mapping to the top half. 

 

5.2.2 Mapping Linearly with Horizontal Component 

Consider a second choice that maps frequencies onto the chosen circle starting with zero 

frequency at point E, and progressing to Nyquist at point B, and doing so with the frequency 

made linear in the horizontal component x of point F, i.e. 11 rx   corresponds to 



T  0 and 
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11 rx   corresponds to  T . Given this x which is the horizontal component of point F, we 

can compute the vertical component y, by using 2

1

22)1( ryx  , picking y as negative for 

mapping to the bottom half, and positive for the top half. Then the needed polar coordinates are 

)( 22

2 yxsqrtr   and x)atan2(y,2  , where the arc tangent function of two arguments is used 

in order to have the right quadrant for the result.   

 

5.2.3 Computing Stability Limits on Phase and Gain Error 

Consider that we have designed )(zLn  based on our current system model )(zGn  

according to equation (5-5) (and in matrix form (5-6, 5-7)), and we apply it to the real world 

hardware whose transfer function is )(zGr . The intended point for frequency   is point F given 

by )](exp[)( 22  ir . The actual point produced is given by  
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                   (5-9) 

It is of interest to determine what the limits are on the phase angle error nr    before inequality 

(5-4) is violating and the iteration makes certain frequency components of the error grow. 

Similarly we are interested in the maximum value of nr rr /  before magnitude error produces 

growth. Two limits on phase error for point F are an additional phase lag corresponding to 

FAI  and a phase lead corresponding to HAF . Of course, if we are interested in the limits 

when mapping to the upper half of the circle, the same limits will apply but with reversed sign, 

so we only consider mapping to the lower half. We need to find DAI , and then knowing 

DAF  from the 2  computation above, allows one to sum the angles for the positive tolerance 

FAH  and difference them for the negative tolerance FAI .  
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 First we find the horizontal component Ix  of point I (or H), by noting that this point is 

on two circles: 2

2

22 ryx II   and 1)1( 22  II yx . Substituting the left hand side of the first 

into the second produces 2/2

2rx I  , and substituting this into the first produces 

)4/1( 2

22 rsqrtry I  . Then DAI  is given by the arc tangent of II xy / . Figure 5.2 plots the 

results. The solid lines are the upper and lower limits for phase error using 95.01 r , and the 

dashed lines are for 9.01 r . The top left plot uses linear in central angle, and the top right uses 

linear in horizontal component. Figure 5.3 gives a detailed view. This time the solid lines are for 

linear in horizontal component with the upper plot of the two being for radius 0.95. The dashed 

lines are corresponding curves for 0.90. We see that linear in horizontal component is much 

more uniform in its sensitivity to phase lag, and hence is to be preferred. Both approaches have a 

minimum tolerance of -2.865º for radius 0.95, and of 5.732º for radius 0.90. One would expect 

that such a tight robustness limit would make ILC very effective at producing data that is 

amplified where the model is wrong even by a small amount. Figure 5.3 shows the detail of 

stability limit on phase error using linear in horizontal component law. 

 To study the magnitude tolerance, we need to find point J. Triangle DAJ is an isosceles 

triangle and we know DAJ . Bisecting ADJ  forms a right triangle whose base is half the 

maximum rr  allowed, and whose hypotenuse is unity. Hence, 2cos2 rr . The bottom left plot 

in Figure 5.2 gives nr rr /  versus percent Nyquist frequency for linear in central angle, and the 

bottom right plot gives the corresponding plot for linear in horizontal component. Note the only 

possibility for going unstable is an increase in the amplitude of the output.  
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Figure 5.2 Stability limits on phase error (top) and magnitude error (bottom) for linear in 

central angle (left) and linear in horizontal component (right) 

 

 

 

Figure 5.3 Detail of stability limit on phase error using linear in horizontal component law 
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5.3 Numerical Investigation of Sensitivity to Parameter Error 

  A simple but rather good model of the input to output transfer function for the feedback 

control systems for each link of the robot used in experiments in [34] is given in Laplace transfer 

function form as  

)2)((
)(

22 


ssas

K
sG


                                              (5-10) 

where 8.8a , 5.0 , 37 , and 2)37(*8.8K . We choose to discretize this as fed by a 

zero order hold sampling every T=0.01 seconds, and then regard the resulting transfer function 

as the current model )(zGn . Consider the linear in horizontal component ILC law above with 

95.01 r . Then Figure 5.4 plots equation (5-9), applying this learning law to real world models 

)(zGr  that corresponds to having the parameters ,,a  individually changed by +10% and by 

-10%. The lower half of each plot corresponds to mapping onto the lower half of the circle of 

radius 1r , and the upper half of the figures gives the corresponding results for mapping onto the 

upper half of the circle. Any frequency component that plots outside the unit circle centered at 

+1 will grow with iterations by an amplification factor equal to the radial distance to that point 

on the curve. Letting it grow for enough iterations, will make arbitrarily large this part of the 

system response that is not properly predicted by the nominal model. Hence, it can pull the 

errors out of the noise level and produce data that is rich in information about the model error. 

For the case of the actual frequency 



 being 10% smaller than in the current model, i.e. the 

lower right plot in Figure 5.4, the curve reaches a radial distance from +1 of 1.47 at frequency 

3.5 Hz and hence will grow large within a few iterations.  

  The original objective of doing one iteration with the ILC mapping to the lower half of 

the circle and one ILC mapping to the upper half of the circle, was to have one of the two be sent 
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unstable when there is a relatively small phase error. Examining Figure 5.4 we see that when a  

or   is increased by 10%, both mappings send the plot in the stable direction so that neither one 

produces data that helps identify errors in this direction for these parameters. In the case of 

increasing  , using both mappings has the intended effect: when using the upper mapping the 

ILC becomes unstable while it stays stable with the lower mapping. When the parameters are 

decreased by 10% all cases result in instability whether mapping to the lower half or the upper 

half. 

  The behavior for parameter a  can be understood by considering that it is not only the 

phase that changes, but also the magnitude. When a  is increased, the phase angle is less than 

expected at all frequencies which should send the plot in the stable direction when mapping to 

the lower half, and toward the unstable direction when mapping to the upper half.  However, 

when a  is increased by 10% for the real world compared to the model, the learning law has 

placed the DC gain smaller than anticipated, which pulls both plots in the stable direction. The 

same effect is happening at other frequencies as well. Based on the top left plot in Figure 5.4, it 

appears that the second effect overpowers the first and prevents the mapping to the upper half 

from producing instability.    
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Figure 5.4 Polar plots with  ,  ,   changed 
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Chapter 6. Conclusions 

 

6.1 Taylor Series Expansion RC Design 

Chapter 2 presents a new method to design repetitive controllers based on creating a non-

causal FIR filter that approximates the frequency response of the system inverse using Taylor 

series expansions. Repetitive control would like to use the inverse of the system transfer function 

as a compensator, but since discrete time systems usually have zeros outside the unit circle this 

inverse in unstable. Here the inverse of a zero outside, i.e. a pole outside, is mimicked by a 

Taylor series using a chosen number of terms, which can also be thought of as introducing a new 

set of zeros. The approximate inverse can be good in terms of approximating the frequency 

response of the system, and a sufficiently good approximation of the inverse of the frequency 

response of the system is sufficient to produce stability. The approach is simple and gives 

considerable insight. Methods are developed to help pick the order of the compensator in order to 

reach desired error levels in the approximation of the inverse system frequency response. It is 

also shown how the insight gained by this approach can guide the choice of parameter values 

when using the repetitive controller design method that optimizes the compensator based on 

frequency response. 

 

6.2 Stability of MIMO Repetitive Control Systems 

In Chapter 3, the MIMO equivalent of the heuristic monotonic decay condition was 

generated, and developed the necessary and sufficient condition for asymptotic stability of the 

MIMO repetitive control system was developed. We also proved that the MIMO heuristic 

monotonic decay condition is a sufficient condition for asymptotic stability and hence 

convergence to zero error. This result started from first principles, and made use of an approach 
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similar to the Nyquist stability criterion. But the approach succeeds in avoiding the need to use a 

contour that goes around each of the p poles on the unit circle in the open loop transfer function, 

something that makes direct application of Nyquist condition intractable in many problems. This 

result is stated in Theorem 1. 

Another stability condition is derived that is also a necessary and sufficient stability 

condition, but for repetitive control systems that are required to be asymptotically stable for all 

possible specified periods p of the periodic command or periodic disturbance. This result is 

presented in Theorem 2. 

  Next, a set of four sufficient conditions for asymptotic stability of repetitive control 

systems is generated. This includes the expected condition on the maximum singular value of the 

repetition update, but includes two conditions that are closer to the necessary and sufficient 

stability boundary. Each can be used to test the stability of a candidate design. These are 

summarized in Theorem 3. 

The MIMO design is generalized to allow use of an FIR zero-phase low-pass filter to 

robustify the repetitive control process to parasitic poles or unmodeled high frequency dynamics, 

making use of the filter design process in [14,15]. This is stated in Theorem 4. 

  

6.3 MIMO RC Design Methods 

Based on the theoretical stability conditions of Chapter 3, Chapter 4 creates two MIMO 

RC design methods. One method is to design MIMO repetitive control systems using separate 

SISO repetitive control system designs for each component. One can apply this approach using a 

MIMO system model, or one can directly use input-output data to create frequency response 

information, without needing a model. Another method uses an optimization criterion based on a 

Frobenius norm to design RC controllers for MIMO systems based on optimization in the 
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frequency domain. This criterion has an analytical formula for the optimal design. The criterion 

is the MIMO analog of the FIR compensator design method in [7], also discussed in section 4.2. 

This method can also be applied directly to experimental frequency response data without 

needing to obtain an analytical model. 

 Chapter 4 studies and compares these two competing methods. It is seen that each 

approach can be effective. And each approach aims to minimize the equation error in   

                 for all frequencies, but they aim to do so in different ways. One design 

aims to minimize the square of the Frobenius norm of the left hand side of this equation summed 

over frequencies from zero to Nyquist. This is the MIMO generalization of the SISO design 

method of Reference [7], but it is shown that in the latter case the approach is directly addressing 

the stability boundary, whereas in the MIMO case what it aims to minimize is a sufficient 

condition somewhat removed from the actual stability boundary. The approach based on making 

a set of SISO designs tries to make a design in which each component of the compensator looks 

as much as possible like the corresponding component of the inverse of the system transfer 

function, for all frequencies between zero and Nyquist. And this indirectly minimizes the 

equation error. There is considerable understanding and insight in picking the values of   and   

in the FIR filters in      when done separately as in this SISO approach, and the approach 

allows one to use different values for each of the transfer functions of the input-output pairs. This 

intuition is lost when using the Frobenius norm cost functional, and the same choices for    and 

  apply to all input-output pairs, but numerical experience suggests that the selection of   is not 

critical at least for reasonably large values of  , the size of the FIR filter. Hence, what appeared 

to be a significant advantage of the multiple SISO approach did not appear to be particularly 

important in the numerical examples studied in this chapter. Both methods can also be adapted to 
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make use of a compensator that includes, besides the FIR design, an IIR compensator that inverts 

all invertible poles and zeros inside the unit circle. Both methods are capable of designing an 

MIMO repetitive controller that has quite fast, well behaved monotonic convergence to zero 

tracking error.  

 

6.4 Experiment Design Using ILC for Parameter Identification 

  The use of iterative learning control was suggested in reference [30] as a method of 

experiment design for purposes of system identification. A phase cancellation ILC design was 

studied as a method to pull unmodeled residual modes or parasitic poles out of the noise in the 

data as ILC iterations progress, and then using the resulting data for identification. Normally one 

picks ILC laws that are intentionally made as robust as possible to model error. But in Chapter 5 

we create ILC laws that are intentionally non-robust to model error, and then study their ability 

to identify parameter errors such as pole locations and damping factors. It is seen that the ILC 

law is very sensitive to phase errors in the model. But this sensitivity is often offset by a 

correlated change in the magnitude response, with the result that often the sensitivity is limited to 

model errors of a given sign. Hence, direct application of the methods can be very effective, but 

are not guaranteed to produce data that helps with the parameter identification. One can address 

this issue by modifying the nominal model parameters of interest, going both up and down in 

value, when designing the learning laws so that one of the two ILC iterations will result in the 

desired data. Of course the method will maintain the sensitivity to missing residual modes or 

poles that was demonstrated in the previous work.  
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