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Leaf area index (LAI) and actual evapotranspiration (ETa) from satellite obser-
vations were used to estimate simultaneously the soil hydraulic parameters of
four soil layers down to 60 cm depth using the combined soil water atmosphere
plant and genetic algorithm (SWAP–GA) model. This inverse model assimilates
the remotely sensed LAI and/or ETa by searching for the most appropriate sets of
soil hydraulic parameters that could minimize the difference between the observed
and simulated LAI (LAIsim) or simulated ETa (ETasim). The simulated soil mois-
ture estimates derived from soil hydraulic parameters were validated using values
obtained from soil moisture sensors installed in the field. Results showed that the
soil hydraulic parameters derived from LAI alone yielded good estimations of soil
moisture at 3 cm depth; LAI and ETa in combination at 12 cm depth, and ETa

alone at 28 cm depth. There appeared to be no match with measurement at 60 cm
depth. Additional information would therefore be needed to better estimate soil
hydraulic parameters at greater depths. Despite this inability of satellite data alone
to provide reliable estimates of soil moisture at the lowest depth, derivation of soil
hydraulic parameters using remote sensing methods remains a promising area for
research with significant application potential. This is especially the case in areas
of water management for agriculture and in forecasting of floods or drought on the
regional scale.

1. Introduction

Soil moisture is an important state variable in the critical zone (Brantley et al.
2006) that provides linkage to the lithosphere, hydrosphere and atmosphere. It con-
trols the partitioning of energy and mass in the vadose zone hence also determines
the rate of plant transpiration, soil evaporation, runoff and recharge (Georgakakos
1996). Therefore, an understanding of the spatio-temporal properties of soil mois-
ture and its physical control is essential for a wide range of applications, for example,
in the areas of meteorology, agriculture and hydrology, especially for early warning
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systems (e.g. flood or drought) as well as in forecasting agriculture production. Spatio-
temporal attributes of soil moisture depend greatly on variations in precipitation, soil
properties, topographic features and vegetation characteristics (Das and Mohanty
2006). Soil hydraulic properties are important physical characteristics of soil that
determine its ability to transport and retain water. Hence, quantification of these
properties is crucial for modelling the surface/subsurface hydrological processes.

Remote sensing systems using both active and passive sensors are able to observe
soil moisture at a regional scale but could not provide data at greater depths below
the soil surface (Jackson et al. 1995). As a result, it has not been possible to pro-
vide soil moisture information in the root zone, knowledge of which is needed for
agricultural and water management applications. Agro-hydrological and hydrologi-
cal models, on the other hand, can simulate soil moisture in the root zone, including
spatio-temporal variations, but these models require site-specific parameters (physical
and empirical) describing the soil and vegetation properties in order to simulate soil
moisture. Likewise, model parameters (e.g. soil hydraulic parameters) are difficult to
measure in the field, restricting their application at the regional level. If the necessary
parameters could be obtained from remote sensing data, it would be an important
contribution to the simulation of soil moisture for numerous large scale applications
in agriculture and water management.

Data assimilation is a technique of data integration between a model and exter-
nal sources (e.g. remote sensing data) for estimating parameters and/or improving the
state of the model variables used for simulations (Swinbank et al. 2003). Quantification
of soil hydraulic properties can be accomplished by integrating easily observable vari-
ables into a simulation model using data assimilation techniques (Vrugt et al. 2003,
Mertens et al. 2006, Ines and Mohanty 2008). The advantage with data assimilation is
that it reduces the problems that arise from incorporating measurement data that are
inadequate, insufficient or unclear.

Several studies have attempted to optimize the land surface model’s soil parameters
through data assimilation by using different reference data sources to adjust the rel-
evant model parameters. Many researchers (e.g. Enthekabi et al. 1994, Georgakakos
1996, Gupta et al. 1999, Heathman et al. 2003, Moran et al. 2004, Hogue et al. 2005,
Liu et al. 2005, Ines and Mohanty 2008) have used near-surface soil moisture or soil
temperature from remote sensing data and/or direct measurements from the field to
optimize soil parameters. Ines and Droogers (2002) found that the soil moisture pro-
file is a more stable indicator for quantifying the effective soil hydraulic parameters
of the root zone because the two are directly related. However, the estimated soil
hydraulic parameters inferred from such field observations may be difficult to apply in
large scale situations, while remotely sensed vegetation indices or fluxes could be more
effective.

This study aims to quantify effective soil hydraulic parameters in the soil profile
for soil moisture simulation using the time series of remote sensing data, namely the
actual evapotranspiration (ETa) and leaf area index (LAI), based on the inversion of
a physically based soil water atmosphere plant (SWAP) model (Van Dam 2000) with
a genetic algorithm (GA, Goldberg 1989). For the inverse estimation, the information
contained in the remote sensing data was tested in order to derive the subsurface
soil hydraulic properties using, independently or in combination, the satellite-derived
data. This method was applied in a rice cropping area in Ubon Ratchathani Province
of Thailand.
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Soil parameters estimated from satellite information 8035

2. Study area

Ubon Ratchathani Province covers an area of 16 113 square kilometers and is located
in the lower part of the north-east region of Thailand (see figure 1). Rice is the main
crop in this area. The study site is located in the upper part of Ubon Ratchathani
Province in Trakan Phutphon District (15◦ 42′ 22′′ N, 105◦ 00′ 21′′ E). Most of
the farmers in this area can grow rice in only one cropping per year because their
fields are mostly rainfed. The cropping cycle starts with growing of the seedlings at
the beginning of the rainy season from late April to late May. Transplanting of rice
seedlings into the flooded fields occurs one month later, typically in late June. Rice
is usually harvested around late October to mid November, after the fields have been
drained.
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Figure 1. Study site in Trakan Phutphon District, Ubon Ratchathani Province, Thailand.
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8036 S. Charoenhirunyingyos et al.

3. Materials

3.1 The soil water atmosphere plant–genetic algorithm

The SWAP model is a physically based agro-hydrological model for simulating the
relationships among soil, water, atmosphere and plants (Van Dam 2000). The model
uses the Richards equation to simulate the vertical soil water movement. Soil hydraulic
functions in the model are defined by the Mualem–Van Genuchten (MVG) equations
(Mualem 1976, Van Genuchten 1980), that describe the capacity of the soil to store,
release and transmit water under different environmental and boundary conditions
(see equations (1) and (2)):

Se = θ (h) − θres

θsat − θres
=

[
1

1 + |αh|n
]m

, and (1)

K(h) = KsatSλ
e

[
1 −

(
1 − S

1/m
e

)m]2
, (2)

where Se is the relative saturation (–); θ res and θ sat are the residual and saturated soil
water contents (cm3 cm−3); α (cm−1), n (–), m (–) and λ (–) are the shape parameters of
the retention and the conductivity functions; K sat is the saturated hydraulic conductiv-
ity (cm day−1); m = 1 − n–1. The values of these parameters are distinct among the soil
(textural) types and have to be defined as inputs for the simulation model. They are
considered as unknown parameters for this study. Potential evapotranspiration (ETp)
in the SWAP model is calculated using the Penman–Monteith equation. Considering
actual environmental conditions, the actual evapotranspriation (ETa) is calculated by
applying the root water uptake reduction factor due to water and/or salinity stress
to the ETp, if present. To simulate crop growth, SWAP uses the world food studies
(WOFOST) model. Leaf area index (LAI), calculated on a daily basis, is determined
by the fraction of carbon assimilates that are partitioned into the leaves, as a result of
photosynthetic activity (Van Dam 2000).

A genetic algorithm (GA) is a mathematical model based on natural genetics, where
the mechanics of nature have been abstracted to be used in search and optimization
problems. GA techniques are different from other optimization techniques in a num-
ber of significant ways. A GA consists of three basic operators, selection, crossover and
mutation, which are iteratively processed over many generations to produce the best
individual(s) that can represent the optimal solution to a problem (Goldberg 1989).
The genetic algorithm used in this study is the modified microGA, which is considered
to be powerful in a wide range of situations for solving optimization problems (Ines
and Droogers 2002, Ines and Mohanty 2008).

SWAP–GA is a combination of soil water atmosphere plant (SWAP) and genetic
algorithm (GA) models taking advantage of the strength of the genetic algorithm to
determine the unknown model parameters by using the information from satellite data
to optimize an objective function. Usually, the difference between a simulated and
observed variable is considered as a function of the unknown parameters. Difficult
input parameters in the SWAP, such as soil hydraulic parameters, are estimated by
assimilating the remote sensing data (LAI and ETa) into the model. In turn, SWAP
was used to provide continuous estimates of soil moisture at a high temporal resolu-
tion and validated using field observations. The SWAP–GA model was then run until
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Soil parameters estimated from satellite information 8037

the best fit between the model simulations (ETa and LAI, independently or combi-
nation) and observations (Satellite ETa and LAI, independently or combination) was
obtained. Details of the field observation system where SWAP–GA was applied are
given below.

3.2 Instruments and devices

A near real-time weather station and flux observation system were installed in a
paddy field at Trakan Phutphon District in Ubon Ratchathani Province with finan-
cial support from the Thailand Research Fund (TRF). The instruments used at the
meteorological stations in the study area are shown in figure 2. Different sensors
were set up to measure the general weather, energy flux and soil moisture. A General
Weather Station–Davis Vantage Pro (ExploraTrack.com, Cannon Beach, OR, USA)
was installed at 2 m, along with two Bowen thermocouple instruments to measure the
Bowen ratio at the heights of 2 and 10 m, in order to determine the actual evapo-
transpiration (ETa). Data from the different sensors were stored in a database in the
control box, which could be remotely accessed via an IPStar satellite link. A sensor
control box for the whole system, built on a Linux server, was also installed. A data
acquisition system (DAQs) from National Instrument (NI) was set up to record the
data from the sensors. A net radiometer was set up at a height of 2.5 m for recording
the net radiation. In addition to the Davis automatic weather station, another wind
speed sensor and rain gauge were also installed at a height of 10 m. Underground soil
moisture sensors were installed at 3, 12, 28 and 60 cm soil depths.

3.3 Meteorological data

Meteorological data, comprising the daily average minimum and maximum tempera-
tures, humidity, solar radiation, wind speed and rainfall, were required for the SWAP
model. The meteorological data for the study area were obtained from the weather

Observation instrument

1. Davis weather station

2. Bowen ratio instrument (2 m, 10 m)

3. IPStar (internet connection)

4. Net radiometer (2.5 m)

5. Wind speed and rain gauge
    (2 m, 10 m) and wind direction (2 m)

7. Soil moisture sensors (EC-5)

6. Control box (computer server)

Figure 2. Observation system and configurations.
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8038 S. Charoenhirunyingyos et al.

station installed in the paddy field. However, there were certain periods when the
need for system maintenance meant that data were unavailable from these systems. At
those times, meteorological data from the Thai Meteorological Department (TMD)
Agro-meteorological station in Ubon Ratchathani Province were used.

3.4 Soil data and soil moisture measurement

Site soil texture data were required as input for the model, but the information
needed was site specific. Global soil data are available from the Food and Agriculture
Organization (FAO) map (FAO 1991), and at the provincial level from the Thailand
soil map provided by the Land Development Department. In this study, soil texture
was analysed in the laboratory, the results of which are shown in table 1.

Observed site soil moisture data were used for the validation purposes. The soil
moisture profile was observed using EC-5 soil moisture sensors (Decagon Devices
Incorporated, Pullman, WA, USA) at four vertical locations covering the rooting zone
of crops (3, 12, 28 and 60 cm). These devices measure the dielectric constant or per-
mittivity of a material by finding the rate of change of voltage in the sensor that is
embedded in the porous medium. The equations to convert the voltage into volumet-
ric water content at the four different soil depths, which were determined from the soil
samples at each level, were based on Singh-Gill (2007). The equations obtained for the
different soil depths are as follows:

at 3 cm y = 1.6444x − 0.6292, with R2 = 0.99, (3)

at 12 cm y = 1.4306x − 0.559, with R2 = 0.98, (4)

at 28 cm y = 1.3462x − 0.4967, with R2 = 0.97 (5)

and at 60 cm y = 1.666x − 0.6573, with R2 = 0.98, (6)

where x is the raw voltage (mV) and y is the volumetric water content (cm3 cm–3).

3.5 Crop data

Crop data collected in the paddy field covered the whole period of the cropping sea-
son (July–November), from land preparation, transplanting and flowering, up to the
ripening stage of the rice. LAI was measured in the field once or twice per week using
the LAI meter (LAI-2000) from LI-COR Company (Lincoln, NE, USA). An LAI
meter is a tool for measuring the extent of the plant canopy, as it directly affects
the interception and absorption of light for plant growth. LAI is computed using a

Table 1. Soil texture analysis of Trakan Phutphon rice field.

Soil layer Sand (%) Silt (%) Clay (%) Textural class Organic matter (g cm–3)

3 cm 39 49 12 Loam 1.14
12 cm 32 44 24 Loam 0.93
28 cm 32 36 32 Clay loam 0.66
60 cm 16 31 53 Clay 0.31
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Soil parameters estimated from satellite information 8039

model of radiative transfer in vegetative canopies. Measurements of LAI were col-
lected within the paddy field from 20 to 30 locations around the weather station, and
then averaged to represent the LAI on the day of measurement. Crop information,
such as crop height (measured in the field every week), planting and harvesting dates,
and yields, was also recorded.

3.6 Satellite data

Satellite remote sensing is widely accepted as one of the most promising sources of
data for agriculture research and land surface studies. Satellite imaging allows the
land surface to be monitored (temporally), and information derived on a regional
scale at much lower cost than manually collecting field measurements. The moderate
resolution imaging spectroradiometer (MODIS) was chosen for this study because it
provides high temporal resolution, 36 multispectral bands and can deliver a range of
derived products (leaf area index, surface reflectance, surface temperature and surface
emissivity) suitable for data assimilation in this study. In addition, MODIS is available
free of charge through the internet.

3.6.1 Leaf area index. The leaf area index (LAI) and fraction of photosynthetically
active radiation (FPAR) MODIS 8 day composite (MOD15A2) with spatial resolu-
tion of 1 km was used in this study. The satellite LAI is retrieved by multiplying the
MOD15A2 product by the factor 0.1. Equation (7) is the general equation that was
used to convert MOD15A2 into LAI values:

LAI(x,y) = MOD15A2(x,y) × 0.1, (7)

where LAI(x,y) is the leaf area index, MOD15A2(x,y) is the original digital number, and
0.1the multiplication factor for LAI.

A time series of LAI covering the whole period of the cropping season was retrieved
based on the pixel at the same location as the weather station in the field. The
LAI derived from MODIS showed slightly lower values than the observed LAI
(see figure 3), but a comparison between the two sets of values showed a similar
increasing trend. At the beginning of the growing period, LAI from the satellite and
ground measurements were nearly the same. After mid July 2007, LAI from ground
measurements showed higher values than the satellite-derived LAI. This mismatch in
data could be due to the difference in spatial resolution (field vs pixel) of the LAI
measurements. Nevertheless, the satellite and field measurements showed strong lin-
ear correspondence with a coefficient of determination R2 = 0.89 and with root mean
squared error (RMSE) = 0.19. Since the LAI output of SWAP was calibrated at the
field level, the conversion of the MODIS LAI product to this level was also neces-
sary for the assimilation process. Without this conversion, the resulting soil hydraulic
parameters may not be representative of the actual field data. LAI from Satellite
(LAIsat) was calibrated with field observations using a hand-held LAI meter. The con-
version equation of LAI from MODIS (LAIsat) to LAI from Site (LAIsite) is given in
equation (8):

LAIsite = 1.2384(LAIsat) × 0.1859. (8)
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Figure 3. Comparison between LAIsat and LAIsite.
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Figure 4. Comparison between LAIsite and LAIcalibrated.

After applying equation (8), the LAI values from the satellite after calibration
(LAIcalibrated) were found to be a close match with the LAI values measured from the
site (see figure 4). The time series of LAI values were then used as conditioning data
in the assimilation process.

3.6.2 Actual evapotranspiration (ETa) calculated by the surface energy balance
algorithm for land (SEBAL). The surface energy balance algorithm for land
(SEBAL) (Bastiaanssen et al. 1998a, b) is a remote sensing model for estimating daily
actual evapotranspiration (ETa) of land surfaces. SEBAL calculates the instantaneous
and 24 h surface heat flux. SEBAL is based on the well-known surface energy balance
equations: Rn = K↓ – K↑ + L↓ – L↑ and Rn = H + G + λET, where Rn is net radiation,
K↓ and K↑ are incoming and outgoing shortwave radiation, L↓ and L↑ are incoming
and outgoing longwave radiation, H is sensible heat flux, G is soil heat flux, and λET

is latent heat flux; all units in Wm−2.
Remotely sensed estimates of surface albedo, surface temperature and surface emis-

sivity are used to compute reflected shortwave and emitted longwave radiation away
from the land surface. The soil heat flux is computed as an empirical fraction of
the net radiation using surface temperature, surface albedo and the Normalized
Difference Vegetation Index (NDVI). The sensible heat flux is computed first for
two specific land surfaces: one pixel with high surface temperature where latent heat
flux is negligible (dry pixel) and one cold pixel where sensible heat flux is negligible
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Soil parameters estimated from satellite information 8041

(wet pixel). The aerodynamic resistance is the transfer coefficient for heat transport
and is calculated from the logarithmic wind profile between the blending height,
where the wind speed is constant, and the surface roughness length for momen-
tum transfer. Combining the aerodynamic resistance with the extremes of sensible
heat flux allows the assessment of the range of near-surface vertical air tempera-
ture differences in the specially selected land surfaces. The near-surface temperature
is used to interpret the vertical air temperature differences over the region of inter-
est, assuming linearity between the surface temperature and the vertical thermal
gradients in the air layer adjacent to the land–atmosphere interface. The resulting
evaporative fraction describes the energy partitioning of the surface energy balance
as the latent heat flux or net available energy fraction, with the net available energy
being defined as the difference in net radiation and soil heat flux. The instantaneous
evaporative fraction has been shown in the literature to be similar to the 24 h evap-
orative fraction (Brutsaert and Chen 1996), thus allows the estimate of the daily
latent heat flux. Detailed description of SEBAL can be found in Bastiaanssen et al.
(1998a).

SEBAL has been widely used and validated in many regions of the world for estima-
tion of daily ETa from remotely sensed data (Bastiaanssen et al. 1998a, b, Bastiaanssen
1999). C code for SEBAL (Aung and Honda 2008) was developed for this study
by building upon a flexible and powerful C image handling library (Honda 2008).
The MODIS products that were used to estimate ETa comprised the daily surface
reflectance products (MOD09GA) with a spatial resolution of 500 m from bands 1 to
7, solar zenith angle, quality control band, and land surface temperature and emis-
sivity from the MODIS daily land surface temperature product (MOD11A1) with a
spatial resolution of 1 km. Julian day, wind speed, height of vegetation, altitude of
the target area, and the locations of hot and cold pixels were also used as inputs in
SEBAL.

The quality of ETa computations in SEBAL depends on the careful selection of
two anchor points, that is, hot and cold pixels. The NDVI, albedo and temperature
image outputs from the preliminary SEBAL processing were used for the manual
selection of hot and cold pixels. A pixel that had low NDVI, high temperature and
high albedo was considered as a hot pixel (e.g. bare agricultural field or dry land),
while a pixel having high NDVI, low temperature and low albedo was denoted
as the cold pixel (e.g. well-irrigated crop surface with the ground fully covered by
vegetation).

The comparison between the ETa derived from the satellite (ETasat) through the
SEBAL model and ETa derived from field measurements using Bowen’s ratio method
(ETaBowen) is shown in figure 5. At the beginning of the cropping season, during the
second week of July, ETaBowen already showed high values, with ETa measurements
ranging from 0.6 to 0.7 cm day–1, while the ETasat was between 0.3 and 0.4 cm day–1.
The high values of ETa during this period may have resulted from the condition of
the field, which was flooded. After the harvesting period, during in the third week of
November, the ETaBowen values were lower, between 0.3 and 0.5 cm day–1, while ETasat

was between 0.1 and 0.2 cm day–1. The ETaBowen was generally higher than the ETasat

calculated by SEBAL (with 500 m resolution), which may have been affected by the
difference in the scale of measurements used.

The growing period for rice in the study area is during the peak of the rainy season.
The study area was nearly covered by clouds for most of the duration of the study,
resulting in limited satellite data being available to estimate the ETa. As for Bowen’s
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Figure 5. Comparison between ETasat and ETaBowen: (a) the scatter plot and (b) the time series
of ETa.

method, there were frequent power cuts in the field in the rainy season, thus fewer
Bowen data could be obtained during this period as well. Nevertheless, the compar-
ison of available ETasat and ETaBowen showed a good correlation, with R2 = 0.79 and
RMSE = 0.19 (see figure 5(a)).

4. SWAP input data for assimilation

4.1 Input data

The required input for assimilation is weather, crop and soil data. The relevant data,
taken from the observation station, were converted into the units supported by the
SWAP model. The data comprised humidity (kPa), maximum and minimum temper-
ature (◦C), solar radiation (kJ m–2), rainfall (mm) and wind speed (m sec–1). The soil
data included soil texture (% sand, silt, clay) and organic matter, which were taken
from the field. Crop data comprised the height of rice measured in the field every
week, together with planting and harvesting dates recorded from the field.
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Soil parameters estimated from satellite information 8043

4.2 Assimilation of the unknowns

Soil hydraulic parameters are among the main factors that affect the simulation of soil
moisture, but are difficult to measure by field or laboratory methods. Soil hydraulic
parameters were therefore set as unknown parameters in the assimilation procedure. In
this study, five Mualem–Van Genuchten soil hydraulic parameters were estimated for
each soil layer, which were considered simultaneously. For all layers, these unknown
parameters were θ res, the residual water content (cm3 cm–3); θ sat, the saturated water
content (cm3 cm–3); K sat, the saturated hydraulic conductivity (cm day–1); α, the main
drying curve (cm–1) and n, the parameter that accounts for the pore size distribution.
The exponent of the hydraulic conductivity that accounts for tortuous soil (λ) was
fixed at 0.5 (Mualem 1976).

4.3 Reference data used for assimilation

In this study, the LAI and ETa from the satellite were used as reference data for the
assimilation process. Plants affect the soil moisture dynamics owing to water uptake
by their roots during the transpiration process. The LAI makes good reference data
for assimilation as it directly controls for plant transpiration. ETa is the loss of water
to the atmosphere by the combined processes of soil evaporation and plant transpi-
ration, thus also good reference data for assimilation as it does not only involve soil
but plant processes as well. These two variables are therefore expected to indirectly
provide information on the properties of the soil surface and its subsurface.

5. Methodology

The SWAP–GA data assimilation technique was used to estimate the soil hydraulic
parameters at four different soil depths (3, 12, 28 and 60 cm) in the soil profile, which
were further used to simulate soil moisture at each of the soil depths. The schematic
diagram of this study is shown in figure 6. The leaf area index (LAI) retrieved from
the MODIS satellite, calibrated with LAI from field measurement, and the actual
evapotranspiration (ETa) derived from SEBAL, were used as reference inputs to
the SWAP–GA model to find the set of soil hydraulic parameters. The SWAP–GA
estimated five Mualem–Van Genuchten soil hydraulic parameters for each soil layer
simultaneously, thus 20 unknown soil hydraulic parameters were estimated at once.

The initial values of the unknown parameters were generated randomly by the GA
between their given minimum and maximum values (Ines and Mohanty 2008). By
selection, crossover and mutation, the GA determined a set of parameters that could
explain the pattern of the satellite observations (ETasat and LAIsat), and matched the
LAIsat with simulated LAI (LAIsim), or ETa from satellite (ETasat) with simulated ETa

(ETasim), until the difference between the simulated (ETa or LAI from SWAP) and
observed data (ETasat or LAIsat) was minimized using an objective function. This eval-
uation was repeated until the GA arrived at a set of parameters that gave the best
solution. The objective function used in this study could be categorized into three
cases: using LAI alone, using ETa alone, and combined use of ETa and LAI together
(see equations (9)–(11)).

Case one (input is ETa):

objective function = 1
N

N∑
t=1

| ETaobs,t − ETasim,t | , (9)
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Figure 6. Framework of the study.

case two (input is LAI):

objective function = 1
N

N∑
t=1

| LAIobs,t − LAIsim,t | , (10)

case three (inputs are ETa and LAI):

objective function = 1
N

N∑
t=1

| 0.5
[
LAIobs,t − LAIsim,t

] + 0.5
[
ETaobs,t − ETasim,t

] | ,

(11)

where N is the time domain, ‘sim’ signifies simulated data, ‘obs’ signifies observed data
and t = time.
The ETa and LAI values have been normalized based on the maximum and mini-
mum observed values, allowing them to be added regardless of differences in terms
of their units or range of measurements. Values for unknown parameters were found
when assimilation was completed or when a matching model was reached for ETa and
LAI values from the satellite (ETasat/LAIsat) and simulated data (ETasim/LAIsim). The
resulting parameters could then be applied separately to the SWAP along with the
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Soil parameters estimated from satellite information 8045

meteorological data, soil and crop parameters, to simulate the soil moisture in the soil
profile.

6. Results

The results of the assimilation of LAI and ETa into the SWAP model were generally
promising. Assimilated LAI from the model showed a very strong correlation with
LAIsat (see figure 7), with R2 = 0.93, while simulated ETa (ETasim) also showed a good
match with ETasat, with R2 = 0.52 (see figure 8). Despite the limited availability of satel-
lite data to estimate the ETasat during the rainy season due to cloud contamination,
still a certain level of correspondence between the observed (satellite) and simulated
was achieved.

Soil hydraulic parameters obtained either from LAI, ETa, or their combination at
four soil depths are shown in table 2. These parameters were applied separately to
the SWAP model to simulate soil moisture. The comparison between observed and
simulated soil moisture at each soil depth using different reference inputs is shown
in figure 9. Results show that soil moisture was highly sensitive to the occurrence of
rainfall, especially in the upper layers of the soil, which showed the largest fluctuation.
However, during heavy rainfall, the loss of electricity supply in the field meant that no
data could be obtained.

Generally, the simulated soil moisture and that observed from the field showed a
very good correspondence up to depths of 28 cm. However, soil hydraulic parameters
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Table 2. Soil hydraulic parameters estimated from various reference data sources.

Soil layer Variable

3 cm ETa LAI ETa + LAI
θ res (cm3 cm–3) 0.08 0.08 0.06
θ sat (cm3 cm–3) 0.57 0.39 0.47
K sat (cm day–1) 45.22 53.75 21.69
α (cm–1) 0.03 0.02 0.03
n (unitless) 1.48 1.56 1.54
12 cm ETa LAI ETa + LAI
θ res (cm3 cm–3) 0.15 0.10 0.08
θ sat (cm3 cm–3) 0.45 0.52 0.51
K sat (cm day–1) 38.54 10.84 35.48
α (cm–1) 0.01 0.02 0.01
n (unitless) 1.25 1.40 1.23
28 cm ETa LAI ETa + LAI
θ res (cm3 cm–3) 0.08 0.10 0.15
θ sat (cm3 cm–3) 0.41 0.38 0.39
K sat (cm day–1) 42.54 4.26 3.10
α (cm–1) 0.01 0.02 0.01
n (unitless) 1.32 1.20 1.34
60 cm ETa LAI ETa + LAI
θ res (cm3 cm–3) 0.10 0.12 0.10
θ sat (cm3 cm–3) 0.54 0.47 0.52
K sat (cm day–1) 20.48 8.00 26.48
α (cm–1) 0.01 0.03 0.03
n (unitless) 1.45 1.42 1.53

retrieved from satellite data could not represent the actual value of soil moisture at
the lowest depth (60 cm), although the general pattern of soil moisture changes or
movements was exhibited.

7. Model evaluation

The soil moisture simulated at each soil depth was evaluated with the soil moisture
observations from the field, to measure the accuracy and reliability of the model.
Although the simulation period was one year, the model evaluation was done between
23 March and 15 May 2007, except at the 12 cm depth where it was done between 23
March and 20 April 2007. Based on the observations, a sudden change of the soil
moisture was found on 21 April 2007, when the value jumped suddenly and then
remained static until harvesting time in November. Since it was suspected that the
sensor was broken during that period, the data after 20 April 2007 were excluded from
the evaluation.

One of the most common statistical methods used to evaluate the accuracy of a
model is the root mean square error (RMSE) (cm3 cm–3), as it evaluates the model
performance and measures the total error of the model’s results. A lower value of the
RMSE indicates better performance of the model (see equation (12)).

In addition, the Pearson correlation coefficient (r) at 0.01 level of significance was
used to measure the random error and the correspondence between the simulated and
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Figure 9. Comparison between soil moisture (SM) from different reference inputs and soil
moisture from field observations.

observed soil moisture. A higher value of the correlation coefficient denotes higher
efficiency (see equation (13)).

The mean bias error (MBE) (cm3 cm–3) was also computed as it provides informa-
tion of the bias of linear correlation, by allowing a comparison of the actual deviation
between the simulated and observed values, term by term. A negative MBE means an
underestimation while a positive MBE means an overestimation. The ideal value of
MBE should be zero, and the unit is the same as the source data, which in this case is
cm3 cm–3 (see equation (14)).
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RMSE =

√√√√√
n∑

i=1
(θsim,i − θ̄obs,i)

2

n
, (12)

r =

n∑
i=1

(
θsim,i − θ̄sim

) (
θobs,i − θ̄obs

)
√

n∑
i=1

(
θsim,i − θ̄sim

)2 n∑
i=1

(
θobs,i − θ̄obs

)2

, (13)

MBE = 1
n

n∑
i=1

(
θsim,i − θobs,i

)
, (14)

where θsim= simulated data, θobs= observed data, θ̄sim= average of simulated data,
θ̄obs= average of observed data, n = the number of data and i = the data index.

As shown in table 3, the model performance using ETa and LAI as conditioning
data was good at soil depths of 3 to 28 cm. At 3 cm, LAI showed a good match
between the observed and simulated soil moisture values with RMSE = 0.06, r = 0.73
and MBE = –0.01. At 12 cm, the combination of ETa and LAI showed a good per-
formance with RMSE = 0.04, r = 0.81 and MBE = –0.04. At 28 cm, using ETa gave
RMSE = 0.05, r = 0.43 and MBE = 0.03. At this soil depth, r was quite low, which
could have been because the soil was mixed with gravel and stone, which the SWAP
model could not handle. On the other hand, although the model performance at 60
cm showed the lowest accuracy with RMSE = 0.15 and MBE = –0.15, the linear cor-
relation between the observed and simulated soil moisture appeared promising, with
r = 0.78.

Table 3. Model evaluation results.

Soil layer Variable

3 cm ETa LAI ETa+ LAI
RMSE (cm3 cm–3) 0.08 0.06 0.07
r (unitless) 0.64 0.73 0.78
MBE (cm3 cm–3) −0.05 −0.01 −0.03

12 cm ETa LAI ETa+ LAI
RMSE (unitless) 0.06 0.11 0.04
r (unitless) 0.70 0.87 0.81
MBE (cm3 cm–3) −0.05 −0.10 −0.04

28 cm ETa LAI ETa+ LAI
RMSE (cm3 cm–3) 0.05 0.07 0.08
r (unitless) 0.43 0.35 0.34
MBE (cm3 cm–3) 0.03 0.05 0.06

60 cm ETa LAI ETa+ LAI
RMSE (cm3 cm–3) 0.15 0.20 0.26
r (unitless) 0.75 0.78 0.76
MBE (cm3 cm–3) −0.15 −0.20 −0.26
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Soil parameters estimated from satellite information 8049

8. Discussion

The MODIS satellite imagery, although free of charge, provides the advantages of
high temporal resolution and access to several derived information products, but has
limitations in tropical areas. When data were acquired on cloudy and smoggy days, the
optical sensor provided poor quality of images. The estimation of ETa using MODIS
through the SEBAL model was also affected by cloud cover during the rainy season,
imposing certain limits on both availability and accuracy. Satellite images needed to
cover dry land where the latent heat flux is assumed to be zero and wet land where
the sensible heat flux is assumed to be zero. Unfortunately, the study site is a rainfed
rice area located in the tropical region, and it was impossible to get cloud-free images
every day throughout the cropping season.

The selection of the hot and cold pixels is the most critical part of the SEBAL model
because such selections could result in over- or underestimation of the ETa. If too high
a temperature of hot pixel is selected, it could result in an overestimation of the ETa,
and if too low a temperature of cold pixel is selected it will result in underestimation
of ETa. A complication also arises from the fact that the hot and cold pixels are liable
to change between images acquired throughout the growing season. In the dry season,
when harvesting is completed in an area, such area could be chosen as a hot pixel since
the land is bare. Whereas during the rainy season, the same area may have crops or
plants and may be waterlogged, and thus could be chosen as a cold pixel. Therefore, a
good area to select a cold pixel should be irrigated fields, which have crops or plants
all year round. The selection of the hot pixels is even trickier in the rainy season,
as it is difficult to find a pixel which is satisfactory. When clouds cover bare land,
temperatures could be low, with the result that a hot pixel may not be selected. Also,
bare land can sometimes be covered with grass, and selection of a pixel using the
multiple criteria of temperature, NDVI and albedo might become difficult. In such
cases, more priority is given to temperature than to albedo or NDVI, as the selection
of the hot pixel determines the upper limit of the energy balance.

In the case of model assimilation, LAI derived from the MODIS LAI product can-
not be used directly because it underestimates the results. In this study, it was therefore
necessary to calibrate the LAI from ground measurements, to adjust the satellite LAI
to reflect the field conditions, before the data could be used in the assimilation process.

This research work has effectively shown that soil moisture data up to the depth
of 28 cm can be inferred from satellite information. Furthermore, a new concept
of coupling ETa with LAI from satellite data in the assimilation process, to obtain
soil hydraulic parameters for further soil moisture simulation, has been suggested.
However, in this research, equal weights were given to LAI and ETa in the objective
function. Giving different weights according to the quality of the satellite data at each
crop growth stage may further improve the results.

9. Conclusions

The movement of water in the soil varies in space and time with the complex and
dynamic interactions between climate, soil and vegetation. LAI and ETa derived from
satellite data can be used as reference inputs for data assimilation in order to obtain
reliable soil hydraulic parameters to simulate soil moisture. The SWAP–GA model
could be used to estimate and develop reliable soil hydraulic parameters from satel-
lite information in various input domains. The estimation of soil moisture in the top
surface layers (3 cm) was found to be accurate using LAI to obtain the soil hydraulic
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8050 S. Charoenhirunyingyos et al.

parameters. Since the moisture movement in the soil surface is directed to fulfill the
transpiration demand at the canopy, LAI can be used as conditioning data. At 12 cm,
a combination of LAI and ETa was found to be a strong predictor of soil hydraulic
parameters. At this depth, the LAI still influenced the soil moisture dynamics in the
soil profile through plant transpiration via the upper rooting system. When coupled
with ETa, which is the main parameter that accounts for water loss through plant
transpiration and evaporation from the soil, a good determination of the soil mois-
ture characteristics at this layer could be observed. At 28 cm, ETa was also found
to be a good predictor of soil hydraulic parameters for simulating soil moisture. The
impact of LAI was reduced at greater depths. At 60 cm, the soil hydraulic parame-
ters derived by ETa compared well with the other variables, however the response was
not enough to obtain a match between the observed and simulated soil moisture. This
may be due to the fact that the information from satellite LAI and ETa has limita-
tions inferring the characteristics of soil moisture at deeper layers. Moreover, at 60
cm the soil was saturated, and this may have contributed to some difficulty in simu-
lating the characteristics at such depth. Finally, it is concluded that satellite remote
sensing, coupled with SWAP–GA, is a promising tool for determining the effective
soil hydraulic parameters for soil moisture simulation, and is amenable to scaling up
to regional or large scale applications. This technique could reduce the need for costly
and complex field measurements (albeit they are still important in model validation)
and also could overcome the problem of data availability in the optical remote sensing
for soil moisture simulation. Furthermore, as reliability of soil moisture simulation
plays a significant role in agricultural management and yield estimation, early detec-
tion of dry soil conditions is not only very useful for agricultural activities but also for
reliable flood and drought prediction.
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