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� Introduction

Merging large databases acquired from di�erent sources with heterogenous representations
of information has become an increasingly di�cult problem for many organizations� In�
stances of this problem appearing in the literature have been called the semantic integration
problem �ACM� �

�� or the instance identi�cation problem �Wang and Madnick� �
�
�� In
this thesis we consider the problem over very large databases of information that need to
be processed as quickly� e�ciently� and accurately as possible� For instance� one month is
a typical business cycle in certain direct marketing operations� This means that sources of
data need to be identi	ed� acquired� conditioned� and then correlated or merged within a
small portion of a month in order to prepare mailings and response analyses� It is common
that many magazine subscription databases are purchased for the speci	c purpose of identi�
fying characteristic interests of people for directed marketing purposes� It is not uncommon
for large businesses to acquire scores of databases each month� with a total size of hundreds
of millions to over a billion records� that need to be analyzed within a few days�

The problem of merging two relations can be solved by a simple sort followed by a
duplicate elimination phase� However� when both relations are heterogeneous� meaning
they do not share the same schema� or that the same real�world entities are represented
di�erently in both relations� the problem of merging becomes more di�cult� The 	rst issue�
where relations have di�erent schema� has been addressed extensively in the literature and
is known as the schema integration problem �Batini et al�� �
���� This problem is outside the
scope of this thesis and is not discussed further� We are primarily interested in the second
problem� heterogeneous representations of data and its implication when merging or joining
relations�

Another simple way to 	nd duplicates among two relations R and S is to compute
the equijoin R � S� The naive means of implementing joins is to compute the Cartesian
product� a quadratic time process� followed by the selection of relevant tuples� The obvious
optimizations as well as parallel variants for join computation are well known� sort�merge
and hash partitioning� These strategies assume a total ordering over the domain of the
join attributes �an index is thus easily computable� or a �near perfect� hash function that
provides the means of inspecting small partitions of tuples when computing the join� In
the case we study here� we cannot assume there exists a total ordering� nor a perfect hash
distribution that would lead to a completely accurate result� meaning even slight errors in
the data imply all possible �matches� of common data about the same entity may not be
found� However� the techniques we study and have partially implemented are based upon
these two strategies for fast execution� with the particular desire to improve their accuracy�

When these �errors� in the data are not severe� we might ideally expect to 	nd the
matching instance of a tuple in R within a �band� of tuples in S� This type of non�
equijoin joins are called band�joins and have been studied by �DeWitt et al�� �

��� A
band�join is a join between two relations R and S where the join�predicate� �� has the form
R�A � c� � S�B � R�A � c�� where R�A and S�B represent the join attributes of R and
S� respectively� and c� � �� c� � � are numeric constants� In this thesis we generalize the
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de	nition of band joins by allowing � to be a more complex function than just a simple
arithmetic predicate de	ned over a totally ordered numeric domain�

For correctness� let R and S be two relations and Attrs�R� and Attrs�S� represent the
sets of attributes of each respective relation� We study the e�cient execution of queries of
the form

M � �A ��� �R � S��

where A � fAttrs�R��Attrs�S�g and � is a boolean function F�X �� X � fB � Attrs�R��
C � Attrs�S�g �B and C are both nonempty�� The function F could be a simple arithmetic
predicate or a complex inference procedure de	ned over a mixture of domains of the chosen
attributes�

There are several application problems in which the generalization of band�joins is used�
One example is intersection spatial�joins �Brinkho� et al�� �

��� where a possible set of
spatial objects are 	rst identi	ed and then a more complex geometric 	lter is applied to
determine which objects satisfy the spatial join predicate� Another example is the strategy
used in ALEXSYS �Stolfo et al�� �

��� an expert system for allocating mortgage pools�
where pools that can be successfully allocated can be found �close� to one another if an
initial �order� is given to the data� Determining if two or more pools can be allocated to
a contract is determined by the rules in the expert system� We will discuss both of these
applications as part of the Research Plan in section �� A third and more common example
of an application problem is merge�purge� The merge�purge problem is probably the best
known example of the instance identi	cation problem and will be the main case study in the
proposed thesis�

Merge�purge is ubiquitous in modern commercial organizations� and is typically solved
today by expensive mainframe computing solutions� Here we consider the opportunity to
solve merge�purge on low cost shared�nothing multiprocessor architectures� Such approaches
are expected to grow in importance with the coming age of very large network computing
architectures where many more distributed databases containing information on a variety of
topics will be generally available for public and commercial scrutiny�

The fundamental problem in merge�purge is that the data supplied by various sources
typically include identi	ers or string data� that are either di�erent among di�erent datasets
or simply erroneous due to a variety of reasons �including typographical or transcription
errors� or purposeful fraudulent activity �aliases� in the case of names�� Hence� the equality
of two values over the domain of the common join attribute is not speci	ed as a �simple�
arithmetic predicate� but rather by a set of equational axioms that de	ne equivalence� i�e�� by
an equational theory� Determining that two records from two databases provide information
about the same entity can be highly complex� We use a rule�based knowledge base to
implement an equational theory� as detailed in section ����

Since we are dealing with large databases� we seek to reduce the complexity of the problem
by partitioning the database into partitions or clusters in such a way that the potentially
matching records are assigned to the same cluster� �Here we use the term cluster in line
with the common terminology of statistical pattern recognition�� In this thesis proposal we
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	rst discuss two related solutions to merge�purge in which sorting of the entire data�set is
used to bring the matching records close together in a bounded neighborhood in a linear
list� We then explore the approach of partitioning the data into meaningful clusters and
then bringing the matching records on each individual cluster close together by sorting� In
this second algorithm we need not compute an entire sort of the full data�set� but rather a
number of substantially smaller� independent and concurrent sorts that can be performed
more e�ciently on reduced datasets� However� we demonstrate that� as one may expect�
neither of these basic approaches alone can guarantee high accuracy�

The contributions of this thesis are as follows� We detail a system we have partially
implemented that performs a generic merge�purge process that includes a declarative rule
language for specifying an equational theory making it easier to experiment and modify the
criteria for equivalence� Alternative algorithms that were implemented for the fundamental
merge process are comparatively evaluated and demonstrate that no single pass over the data
using one particular scheme as a key performs as well as computing the transitive closure over
several independent runs each using a di�erent key for ordering data� We show� for example�
that multiple passes followed by the computation of the closure consistently dominates in
accuracy for only a modest performance penalty� Finally� we discuss the computational
costs of these alternative approaches and demonstrate fully implemented parallel solutions
to speed up the process over a serial solution� The moral is simply that several distinct
�cheap� passes over the data produces more accurate results than one �expensive� pass over
the data� �Our preliminary results detailing this approach has been accepted for publication
at the �

� ACM�SIGMOD Conference �Hern�andez and Stolfo� �

����

This thesis work is far from complete� The experimental results provided in this proposal
veri	es our core ideas for the solution method we propose� Additional work is needed in
the purge phase of the merge�purge procedure� Like the merge phase� the implementation
of the purge phase requires a large amount of domain�speci	c knowledge� The particular
application we explore in this proposal� duplicate elimination from a list of names� is just
one of the many other applications where the use of a general band join process could be of
bene	t� The design of a tool to elicit this knowledge from a user will be presented at the
end of this proposal� Also� to demonstrate the general utility of the methods proposed in
this thesis� we will explore two other applications of our facility� one an expert system for
	nancial applications and the other a spatial�join over geometric features�

The rest of this proposal is organized as follows� In the next section� we provide a
description of several lines of research that are related to our work� Then� in section �� we
describe the speci	c details of the merge�purge problem we study� and three solutions based
upon sorted�neighborhood searching and clustering� Section � presents experimental results
for our solution method and section � brie�y explores parallel processing of these solutions�
Finally� we detail in section � the work that remains to conclude our thesis�
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� Previous Work

Several lines of work have baring on e�cient solutions for the merge�purge problem� The
semantic integration problem �Kent� �

�� seeks to identifying a multiplicity of database
objects that represent the same or related real�world entity� even though their database
representations are di�erent� This problem has been studied by the heterogenous multi�
database community� The solutions we present for the merge�purge problem are mainly
based on sorting the database to bring the �matching� tuples to a close neighborhood in the
resulting sorted database� Sorting data is probably the most studied problem in Computer
Science and many di�erent algorithms have been presented over the years �Knuth� �

��� We
are however only interested in sorting algorithms in which duplicates are removed from the
	nal sorted database� To date� the most relevant work in this area is �Bitton and DeWitt�
�
���� Finally� the proposed solution to the merge�purge problem resembles a sort�merge
join �Gotlieb� �

�� in which the join condition is a user�de	ned equivalence function� Of
particular relevance to the merge�purge solution proposed here is the work on �band�joins�
by �DeWitt et al�� �

��� We brie�y describe each one of these lines of work in the following
sections�

��� Heterogenous Multi�Databases

A database system consists of a software component called a database management system
and a set of databases it manages� Centralized database systems dominated the research
scene during the �

��s� As network technology decentralized most computing facilities� the
need for distributed repositories and management of distributed data became necessary� Dis�
tributed database systems �DDBS� through their distributed database management system�
provide consistent access to the data making the partition of the data invisible to end�users�
But with the creation of multiple and possibly heterogenous DDBS managing a diversity of
information sources� the problem of providing consistent access to data managed by di�erent
DBMS has become increasingly di�cult �Thomas et al�� �

��� Those systems that attempt
to provide an unambiguous schema for a collection of heterogeneous databases are known as
Federated database systems �Sheth and Larson� �

�� or Heterogeneous database systems� A
more loosely�coupled collection of databases for which no DBMS provides consistent schemas
among them are called Multidatabase Systems �MDBS� �Elmagarmid and Pu� �

���

Semantic Heterogeneity has been recognized as a di�cult problem in MDBS� Recently�
ACM SIGMOD dedicated a special issue to this problem �ACM� �

��� In that issue� �Kent�
�

�� explains how many assumptions in centralized database systems cannot be taken for
granted when using a multidatabase system� Some of his examples are�

�� Identity and Naming� The principal assumption on which modeling with databases
rests is a one�to�one correspondence between proxy objects in the database and the
entity objects in the real world the proxies are supposed to represent� This assumption
works 	ne on a centralized � one copy of the relation� system� But in a multidatabase
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system� the same entity object might be represented di�erently at several databases�
Kent describes the problem as follows�

�How should we know that two proxies represent the same entity� that x � y

even though x �� y� That�s the  ������ question��

�� Constraints� Enforcing the constraint that two employees cannot have the same em�
ployee identi	cation number is rather easy and well understood on a centralized system�
This is� however� not necessarily true in a multidatabase system� where independent
agents can create di�erent identi	cation numbers for the same employee�

�� Certitude� Simple databases look very certain about their information� Asked about
the birthday of an employee� the DBS will return one date� On multidatabase systems�
because of data entry errors or heterogeneous representations� di�erent strings might
be returned for the same query�

Of particular interest for us in this thesis proposal is the identity and naming problem�
This problem has been also called the inter�database identi�cation problem by �Wang and
Madnick� �
�
�� �Kent� �

�� proposes the use of spheres of knowledge to address this
problem� Spheres of knowledge create views of the underlying multidatabases to integrate
data from diverse sources and attempt to provide a consistent view of that data to the
end�user� The database administrator �DBA� supplies the meta�data necessary to integrate
con�icting instances into the view� but sometimes the system can only notify the user of a
discrepancy when not enough knowledge or information is available for the integration to
occur automatically�

The work of �Wang and Madnick� �
�
� also proposes a solution to the problem� Their
principal contribution is the idea of letting the user write a set of knowledge�based rules
that de	ne when two instances from di�erent databases represent the same entity object�
The rules are also used to infer new information about separate instances� In this thesis
proposal� we take the same approach� we let the user de	ne an equational theory� which will
be represented in a rule�based language� to identify instances from several databases that
are deemed equivalent� �Wang and Madnick� �
�
� apply the user�de	ned rules to the all the
input databases to 	nd the desired instances� Since the time complexity of a typical rule�
based inference process is at least O�jWM jc�� where c is the maximum number of relations
considered on the left�hand side of any rule� and jWM j is the total number of tuples the
rule must consider� this idea will only work with small databases� possibly memory�based
databases only� In this thesis proposal� we extend this line of work to address the problem
of executing this kind of inference with very large databases as input where quadratic time
comparison operations are infeasible�

The use of equational theories or knowledge�intensive matching procedures is not a new
idea� The 	rst reference to this idea comes from the context of theorem proving by resolution
in �Harrison and Rubin� �

��� In that paper� Harrison and Rubin generalize the usual
uni	cation procedure allowing the speci	cation of �equality predicates�� In a more recent
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example� �Tsur� �

�� introduced this idea in the context of deductive database� In particular�
he points out that in Scienti�c Databases the data accumulated can contain imprecisions�
These uncertainties must be taken into account when data is used for query evaluation and
therefore he postulates the need of a domain�speci	c theory of equality� expressed as a rule
set over the stored data� In both of these cases the basic idea is that two complementary
	rst�order literals are uni	able if their constituent terms are provably equivalent even though
they are not syntactically equivalent or uni	able�

��� Sorting with Duplicate Elimination

Removing duplicates from a sequence of data is an important problem for the database com�
munity� Take for example the standard de	nition of a relation under Relational Databases
�Codd� �

��� A relation is de	ned as a set of tuples� Tuples� which can be considered a
set of �attri� valuei� pairs� where valuei is a value from the de	ned domain of the relation
attribute identi	ed by attri� are therefore unique within a relation� Moreover� in the classic
de	nition of the project relational operator� duplicates in the projected relation are expected
to be removed from the resulting relation to be valid�

Lower bounds for sorting multisets where studied by �Munro and Spira� �

��� They
showed that the multiplicities �i�e�� duplicates� of a set can only be obtained by comparisons
if the total order is discovered in the process�

Later �Bitton and DeWitt� �
��� studied the problem of duplicate elimination in the
context of large data 	les� They 	rst present the �traditional� algorithm for duplicate elim�
ination consisting of a complete sort of the 	le followed by a scan to remove duplicates�
Our initial approach for solving merge�purge will resemble this �traditional� approach� We
will sort the data 	rst� and then search �duplicates� in one scan over the resulting sorted
data� The main di�erences between �Bitton and DeWitt� �
����s approach and the approach
we propose here are the use of a �window of records� to limit the number of possible du�
plicates we will consider� and the use of a user�speci	ed� knowledge�based� equality theory
to determine if tuples are indeed �duplicates�� �Bitton and DeWitt� �
��� then modify
the traditional approach to allow duplicate elimination during di�erent stages of the sort�
ing procedure� Through some cost�analysis and models� they show the modi	ed duplicate
elimination algorithm to be superior than the �traditional� approach� We will also mod�
ify our initial algorithm to allow �duplicate detection� during several phases of the sorting
algorithms� A complete description of these algorithms is presented in section ����

��� Band�Joins

In the previous subsection we described the merge�purge problem and a solution based upon
sorting with duplicate elimination� We can also describe the merge�purge problem as a Join
operation as follows� Without loss of generality� assume we are interested in identifying
�similar� tuples from two relations R and S� Both relations do not need to have the same
schema� Let Attrs�R� represent the set of attributes from relation R and Attrs�S� represent
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the set of attributes from relation S� Depending on the real�world entities represented in the
relations� an equivalence function� �� must be supplied� In the introduction we de	ned � as
a boolean function a boolean function F�X �� where X � fB � Attrs�R� � C � Attrs�S�g�
The function F could be a simple arithmetic predicate or a complex inference procedure�
Then� to identify similar instances� we execute the query R �� S� The resulting relation will
pair every tuple in R with all tuples in S that satisfy ��

The fast execution of complex select�project�join �S�P�J� queries has received considerable
attention from many researchers over the past �� years� As a result of this e�ort� a number of
algorithms to perform the costly Join operation have been proposed �see �Mishra and Eich�
�

���� Currently� three basic algorithms dominate commercial database implementations�
nested�loop�joins �the �naive� algorithm�� sort�merge�joins� and hash�joins �Bratbergsengen�
�
���� with many variants of each�

More recently� attention has shifted towards the e�cient parallel execution of S�P�J
queries �e�g�� �Schneider and DeWitt� �
�
��� Over the past � years� researchers have ad�
dressed various problems related to the parallel execution of S�P�J queries like� data parti�
tion among participating processors �Copeland et al�� �
��! Kitsuregawa and Ogawa� �

�!
Ghandeharizadeh� �

��� skew handling �Schneider and DeWitt� �

�! Wolf et al�� �

�!
DeWitt et al�� �

��� and load�balancing �Hua and Lee� �

��� All previous mentioned works
assume a homogeneous set of processing sites� Recent work by ourselves �Dewan et al�� �

��

and by others �Lu and Tan� �

�� have addressed these problems in the context of load bal�
ancing protocols to deal with possible heterogeneity among processing sites� However� almost
all work in the parallel execution of S�P�J queries has concentrated on hash�join algorithms�
and only one type of join queries� namely� equijoins� The hard problem of non�equijoin
queries has been virtually ignored�

As we mentioned above� merge�purge can be thought as a relational join among two or
more tables using a special function that determines equality� In section ��� we will show
these equality functions can be very complex and may require a knowledge�intensive inference
to return an answer� Consider the following very simple example� relations R and S contain
laboratory results and we want to 	nd those results for which the �temperature� 	elds are
�about the same� �	� degrees�� Thus� we can de	ne � as �S�temp�� � R�temp and R�temp�
S�temp���� Algorithms for executing this kind of non�equijoin predicate have been presented
by �DeWitt et al�� �

��� �DeWitt et al�� �

�� call joins in which the join�predicate has the
form R�A�c� � S�B � R�A�c�� band�joins� Their paper presents a new algorithm termed a
partitioned band join to evaluate these special type of joins� The partitioned band join works
by 	rst range partitioning one of the relations �R� into partitions such that every partition
Ri 	ts entirely on a memory bu�er� The second relation is also range partitioned using the
same elements as in R and replicating some tuples among �neighboring� partitions� For
example� if value xi�� divides buckets Ri from Ri��� then values within �xi��� c�� xi�� � c��
are put in both partitions� Si and Si��� of S� To compute the band join� each partition Ri

is brought into memory in turn� For each partition Ri� a window of pages of partition Si is
read into memory� The join is then computed among the pages of Ri and Si currently in
memory� If the last tuple in the current window of pages of Si is used� the next page of Si






is read into the window and the 	rst page of the window is discarded� Similarly� when the
last tuple of Ri is used� the next partition� Ri��� is read into memory� It is assumed that
the range of the �band� will never exceed the range of values in the window of pages of Si�

The initial solution we propose for the merge�purge problem uses a similar idea behind
the partitioned band join to identify �matching� tuples� The main di�erences are�

�� As mentioned above and discussed in section ���� we provide the use of a more complex
equational theory to determine equivalence among the items being considered� When
this equational theory is a simple mathematical predicate like the one discussed above�
our solution reduces to DeWitt�s partitioned band join�

�� DeWitt�s band join assumes that data is easily compared by numeric predicates and
the outcome of the comparison is categorical� We cannot assume this to be true in all
cases when equivalence is a complex inference process� As we will discuss in section ���
and demonstrate through experimental results� the equational theory cannot always
capture all tuples that are indeed equivalent� and can in some instances incorrectly
identify tuples as equivalent �false positives�� Thus� we aim to 	nd algorithms that are
not only e�cient� but also provides us with accurate results�

�� Comparing tuples x� y� and z may result in the determination that x � y and y � z�
but x�s relationship to z remains unknown if x and z do not concurrently occupy the
same �band�� We therefore provide a multipass approach followed by the use of a
transitive closure phase to increase accuracy�

�� We propose an approach whereby the original relations are 	rst partitioned into a
number of disjoint subsets by a variety of clustering methods �not exclusively by range
partitioning� to which the solution methods can be applied as independent parallel
processes� Note� each disjoint subset has reduced the complexity simply because the
size of the data set is reduced�

Since the sorted�neighborhood method reduces to a partitioned band join� the sorted�
neighborhood method is a generalization of band joins� Later we discuss the paralleliza�
tion of this technique and the tradeo�s of the alternative methods of partitioning data that
participates in the comparison operations�

� The Merge�Purge Problem

Here we detail the problem we study using a familiar case of name matching in multiple
databases� Since we are faced with the task of merging very large databases� we presume a
pure quadratic time process �i�e�� comparing each pair of records� is infeasible under strict
time constraints and limited capital budgets for hardware� For pedagogical reasons we
assume that each record of the database represents information about �employees� and thus
contains 	elds for a social security number� a name� and an address and other signi	cant
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SSN Name �First� Initial� Last� Address

��������� Lisa Boardman 	�� Wars St

��������� Lisa Brown 	�� Ward St

��������	 Ramon Bonilla �
 Ward St

��������	 Raymond Bonilla �
 Ward St


� Diana D
 Ambrosion �� Brik Church Av

� Diana A
 Dambrosion �� Brick Church Av

� Colette Johnen ��� 		�th St
 apt
 �a�
� John Colette ��� 		�th St
 ap
 �
�


���
��	� Ivette A Keegan �� Florida Av

����
��	� Yvette A Kegan �� Florida St


Table �� Example of matching records detected by our equational theory rule base�

information that may be utilized in determining equivalence� Numerous errors in the contents
of the records are possible� and frequently encountered� For example� names are routinely
misspelled� parts are missing� salutations are at times included as well as nicknames in the
same 	eld� In addition� our employees may move or marry thus increasing the variability
of their associated records� Table � displays records with such errors that may commonly
be found in mailing lists for junk mail� for example� �Indeed� poor implementations of
the merge�purge task by commercial organizations typically lead to several pieces of the
same junk mail being mailed at obviously greater expense to the same household� as nearly
everyone has experienced��

There are two fundamental problems with performing merge�purge� First� the size of the
data sets involved may be so large that only a relatively small portion of the total available
data can reside in main memory at any point in time� Thus� the total database primarily
resides on external store and any algorithm employed must be e�cient� requiring as few
passes over the data set as possible�

Second� the incoming new data is corrupted� either purposefully or accidentally� and thus
the identi	cation of matching data requires complex tests to identify matching data� The
inference that two data items represent the same domain entity may depend upon consid�
erable statistical� logical and empirical knowledge of the task domain� �Faulty� inferences
can be in some cases worse than missing some matching data� The �accuracy� of the result
�maximizing the number of correct matches while minimizing the number of false positives�
is therefore of paramount importance�� It is common that much of the engineering of a
merge�purge process is devoted to experiment and comparative evaluation of the accuracy
of the overall process� and in particular alternative criteria for matching records�

�In credit scoring applications� numerous complaints from many individuals who have been incorrectly
identi�ed as other persons with similar identities but with poor credit histories have lead to Congressional
hearings forcing credit bureaus to signi�cantly re�architect their credit reporting systems







��� The Sorted Neighborhood Method

We consider two approaches to obtaining e�cient execution of any solution� partition the
data to reduce the combinatorics of matching large data sets� and utilize parallel processing�
We require a means of e�ectively partitioning the data set in such a way as to restrict our
attention to a number of small sets of candidates for matching� Consequently� we can process
the candidate sets in parallel� Furthermore� if the candidate sets can be restricted to a very
small subset of the data� quadratic time algorithms applied to each candidate set may indeed
be feasible in the allotted time frame for processing� leading to perhaps better accuracy of
the merge task� The rest of this section will concentrate on algorithms for partitioning the
data set� The parallel execution of the algorithms will be discussed later in section ��

One obvious method for bringing matching records close together is sorting the records
over the most important discriminating key attribute of the data� After the sort� the com�
parison of records is then restricted to a small neighborhood within the sorted list� We call
this method the sorted�neighborhood method� The e�ectiveness of this approach is based on
the quality of the chosen keys used in the sort� Poorly chosen keys will result in a poor
quality merge� i�e�� data that should be merged will be spread out far apart after the sort
and hence will not be discovered� Keys should be chosen so that the attributes with the most
discriminatory power should be the principal 	eld inspected during the sort� This means
that similar and matching records should have nearly equal key values� However� since we
assume the data is corrupted and keys are extracted directly from the data� then the keys
will also be corrupted� Thus� we may expect that a substantial number of matching records
will not be caught� Our experimental results� presented in section �� demonstrate this to be
the case�

The sorted�neighborhood method resembles a merge�sort in which we are interested in
removing duplicates� Two approaches for duplicate elimination using merge�sort were de�
scribed in �Bitton and DeWitt� �
���� The 	rst approach� called the �traditional� approach
�which we will call the �naive� approach�� is the following� 	rst� the 	le is sorted using an
external merge�sort algorithm� Then duplicate records are removed in one sequential scan
of the sorted database�

To understand the second approach for duplicate elimination� we must 	rst remember
how an external merge�sort works� An external merge�sort is a two phase process� a sorting
phase and a merging phase� During the sorting phase� the database is read in pieces that 	t
into memory� Each piece is sorted in memory using a fast algorithm like� for e�g�� quicksort�
and then stored on disk as a sorted run� During the merging phase� the 	rst pages of n
sorted runs are read into memory and an n�way merge of their tuples is performed� The next
page of a sorted run is read into memory every time its last tuple is consumed� The sorted
result is stored in disk as one more �sorted run�� This procedure is repeated until there is
only one sorted run remaining� the resulting sorted 	le� The second approach for duplicate
elimination takes advantage of the fact that duplicate records will come together during the
sort and the merge phases and thus can be eliminated at each phase� During the sorting
phase� after a piece of the input database is sorted in memory� duplicates can be removed as
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Figure �� Window Scan during the Merge Phase

the sorted run is written to disk� Then� duplicates occurring in di�erent sorted runs can be
eliminated during the n�way merge phase�

Although sorting the data may not be the dominant cost of merge�purge� we consider
here an alternative to sorting based upon 	rst partitioning the dataset into independent
clusters using a key extracted from the data� Observe that we do not need a completely
sorted database� but rather we desire a means of partitioning the data into independent
subsets of data in such a fashion that we are assured as much as possible that matching
records appear in each cluster� We then apply the sorted�neighborhood method to each
individual cluster independently and in parallel ideally as a main�memory based process�
We call this approach the clustering method�

In the rest of this section we describe in detail the three approaches of the sorted�
neighborhood method we have introduced� We 	rst describe the �naive� version of the
sorted�neighborhood method followed by a description of its �duplicate elimination� coun�
terpart� We then describe how data could be clustered before the application of any of the
two sorted�neighborhood versions�

����� The Naive Sorted�Neighborhood Method

Given a collection of two or more databases� we 	rst concatenate them into one sequential
list of N records �after conditioning the records� and then apply the sorted�neighborhood
method� The sorted�neighborhood method for solving the merge�purge problem can be
summarized in three phases�

�� Create Keys � Compute a key for each record in the list by extracting relevant 	elds
or portions of 	elds� The choice of the key may be viewed as knowledge intensive and
the e�ectiveness of the sorted�neighborhood method highly depends on it� We discuss
the e�ect of the choice of the key in section ����

�� Sort Data � Sort the records in the data list using the key of step ��

��



�� Merge � Move a 	xed size window through the sequential list of records limiting the
comparisons for matching records to those records in the window� If the size of the
window is w records� then every new record entering the window is compared with the
previous w � � records to 	nd �matching� records� The 	rst record in the window
slides out of the window �See 	gure ���

When this procedure is executed serially as a main�memory based process� the create
keys phase is an O�N� operation� the sorting phase is O�N logN�� and the merging phase is
O�wN�� where N is the number of records in the database� Thus� the total time complexity
of this method is O�N logN� if w � dlogNe� O�wN� otherwise� However� the constants in
the equations di�er greatly� It could be relatively expensive to extract relevant key values
from a record during the create key phase� Sorting requires a few machine instructions to
compare the keys� The merge phase requires the application of a potentially large number
of rules to compare two records� and thus has the potential for the largest constant factor�

Note� however� that for very large databases the dominant cost could be disk I�O� i�e��
the number of passes over the data set� In this case� at least three passes would be needed�
one pass for conditioning the data and preparing keys� at least a second pass� likely more� for
a high speed sort like� for example� the AlphaSort �Nyberg et al�� �

��� and a 	nal pass for
window processing and application of the rule program for each record entering the sliding
window� Depending upon the complexity of the rule program� the last pass may indeed
be the dominant cost� Later we consider the means of improving this phase by processing
�parallel windows� in the sorted list�

We note with interest that the sorts of optimizations detailed in the AlphaSort paper �Ny�
berg et al�� �

�� may of course be fruitfully applied here� In this proposal we are more con�
cerned with alternative process architectures that lead to higher accuracies in the computed
results while also reducing time complexity� Thus� in this proposal we consider alternative
metrics for the purposes of merge�purge to include how accurately can you merge�purge for a
	xed dollar and given time constraint� rather than the speci	c cost� and time�based metrics
proposed in �Nyberg et al�� �

���

����� The Duplicate Elimination Sorted�Neighborhood Method

Similar to the �naive� algorithm� given a collection of two or more databases� we 	rst con�
catenate them into one sequential list of N records� The �duplicate elimination� sorted�
neighborhood method for solving the merge�purge problem works as follows �see 	gure ���

�� Create Keys� Compute a key for each record in the list by extracting relevant 	elds
or portions of 	elds�

�� Sort Data Eliminating Duplicates � Merge�Sort the records in the data list using
the key of step � and dividing the sorted output into two lists� In the 	rst list� deposit
all records for which duplicate keys are detected� All other records participate in the
merge�sort and end in the 	nal sorted list which we will call the �no�duplicates sorted
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Figure �� Duplicate Elimination Sorted Neighborhood Method

list�� More formally� if I is the multiset of all tuples in the input database� and D is
the multiset of all tuples put in the �duplicates list�� and N is the multiset of all tuples
put in the �no�duplicates list�� then I � D �N and D 
 N � ��

�� Sort the duplicate list � Notice that even though the �duplicates list� is generated
incrementally during the merge�sort� it is not completely sorted� Since duplicates of
a record can be found during the sort and the merge phases of the merge�sort� these
duplicates may not be in order� Thus� before proceeding to the next step� we sort the
duplicate list using the key�

�� First Window Scan� Move a �small� window through the sequential list of duplicate
records limiting the comparisons to those records in the window having the same key�
Let � be the size of the small window used in this step� Every record that is about to
enter this window either has the same key as all other records already in the window
or its key is di�erent than the key of all records in the window� If the key of the
new record is equal to the key of the records in the window� then this new record is
compared with the � � � previous records in the window to 	nd �matching� records�
As with the Merge phase in the naive method� �matching� records are determined by
the equational theory� The 	rst record in the window slides out of the window� On
the other hand� if the key of the current record is not equal to the key of the records
already in the window� then the following steps are followed�

�a� Append to the �returned list� of records� those records in the window that where
not �matched� with any other record�

�b� Also append to the �returned list� the record that was matched the most �and at
least once� with other records in the window� This record will become the �prime
representative� of its key in the following step�

�c� The window is moved � � � positions making the new record the 	rst one in the
window�

�� Merge� Merge the �returned list� of records with the records in the �no�duplicates
sorted list�� Since both list are already sorted� a simple ��way merge is su�cient�
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Figure �� Example of the Duplicate Elimination Sorted Neighborhood Method

However� an extra bit�	eld is added to the resulting sorted data to indicate whether a
record came from the �returned list� or the �no�duplicates� list�

�� Second Window Scan� Move a 	xed sized window through the sequential list of
records produced in the previous step limiting the comparisons for matching records
to those records in the window� If the size of the window is w records� then every
new record entering the window is compared with the previous w � � records to 	nd
�matching� records� Notice that if the record entering the window came from the
�returned list� �detected using the extra bit�	eld�� then it should only be compared
with records that did not come from the �returned list�� The reason for this is that
those records were already compared �via the equational theory� during the 
rst win�
dow scan step of this procedure and were found to be �non�matching�� On the other
hand a record coming from the �no�duplicates� list should be compared with all w� �
previous records for it has not been compared to any record before� Similarly to the
naive sorted�neighborhood method� the 	rst record in the window slides out when a
new record enters the window�

Figure � shows a simple example of how the �duplicate elimination� version of the sorted�
neighborhood method works� The left�hand side of the 	gure shows a sequence of tuples after
being sorted by the name 	eld� The arrows to the right of the sequence show the tuples that
should be merged� If this sequence of tuples were sorted with the algorithm described on
step � of the �duplicate elimination� algorithm� tuples f���� ���� ���� ���� ���� ���� ��
� ���g
would end up in the �duplicates list� while tuples f������
g would end in the �no�duplicates
list�� After the 
rst window scan �step ��� assuming a perfect implementation of the
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equational theory� pairs ����� ����� ����� ����� ����� ����� ����� ��
�� and ����� ���� would be
detected as �similar� and reported as merged� At the same time� a representative of each
key on the �duplicates list� would be put in the �returned list�� In the case of this example
tuples ���� ���� ��� are placed in the �returned list�� The right�hand side of 	gure � shows
the sorted sequence of tuples after the tuples in the �returned list� are merged with the
tuples in �no�duplicates� list �step ��� Now the second window scan is applied to this
sequence� detecting the two pair of tuples that should be merged not captured during the

rst window scan� namely� pairs ����� ���� and ����� ��
�� Notice how the size of the
window needed to detect the similar records on the second window scan is smaller than
the window needed if we use the �naive� sorted�neighborhood method on the original sorted
sequence of tuples� In particular� to merge tuples ��� and ��
 using the �naive� version�
we would need to slide a 
 record wide window down the sorted sequence� To merge the
same tuples using the �duplicate elimination� version of the algorithm� a window of size �
is needed over the sorted sequence in the right�hand side of 	gure ��

When this procedure is executed serially� initially sorting and removing the duplicates
is an O�N logN� operation and the 	rst window scan is O��fN�� where f is the ratio of
records with duplicates in the input database� � � f � �� During this step� a number of
tuples in the �duplicates list� are put into the �returned list�� Assuming g is the ratio of
tuples in the �duplicates list� put into the �returned list�� � � g � �� then the cost of the
merge step is O�gfN � �� � f�N�� where �� � f�N is the size of the �no�duplicates list��
The cost of the second window scan is then O�wgfN � w��� f�N��

Using this simple time analysis� we can try to predict under what conditions will the
�duplicate elimination� version of the sorted�neighborhood method be better than its �naive�
counterpart� We can approximate the time to execute the �naive� version as follows�

Tnaive � csN logN � cwswN

where cs and cws are the computational constants for the sort and window scan phases
respectively� Similarly� the time to execute the �duplicates elimination� version is�

Tde � csN logN � csfN log fN � cws�fN � cm�gfN � ��� f�N� � cwsw�gfN � ��� f�N�

where� cs and cws have the same meaning as in the �naive� formula� and cm represents
the constant for the merge in step � of the �duplicate elimination� algorithm� Solving the
equation Tnaive � Tde� we found

w �

�
f

f � gf

�
� �

�
cs

cws

�
f log fN �

�
cm

cws

��
�� f � gf

f � gf

�

We expect cws � cs � cm� Thus we can assume cs
cws

� � and cm
cws

� �� The factor
�

f

f�gf

�
is

close to � if g is closer to � than it is to �� In fact� as g � �� meaning that most of the work in
the 
rst window scan phase was useless since most of the tuples from the �duplicate list�
were put into the �returned list�� this factor tends to in	nity� In the same vein� the factor
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also tends to in	nity as f � �� meaning the number of duplicates in the data is small� Thus�
the �duplicate elimination� should work 	ne if there is a considerable number of duplicates
in the data� We expect g � �

�
and f � �

�
� Thus� we can assume this factor to be close to ��

The last factor�
�
��f�gf
f�gf

�
� behaves similarly to the previous one as g � � and f � �� But

under the assumption g � �
�
� f � �

�
� the value of this factor is also close to � �or at most a

small integer�� Taken all together� we can then say that the �duplicate elimination� version
of the sorted�neighborhood method should do better in time than the �naive� version when�

w � � � C

where C � � is a small integer number� We show this model to be close to reality with some
experiments in section ����

��� Clustering the data �rst

Given a group of two or more databases� we 	rst concatenate them into one sequential list
of N records� The clustering method can be summarized as the following two phase process�

�� Cluster Data� We scan the records in sequence and for each record we extract an
n�attribute key and map it into an n�dimensional cluster space� For instance� the
	rst three letters of the last name could be mapped into a �D cluster space from our
employee database example�

�� Sorted�Neighborhood Method� We now apply the sorted�neighborhood method
independently on each cluster� We do not need� however� to recompute a key �step �
of the sorted�neighborhood method�� We can use the key extracted above for sorting�

When this procedure is executed serially� the cluster data phase is an O�N� operation�
and assuming we partition the data into C equal sized clusters� the sorted�neighborhood
phase is O�N log N

C
��

Clustering data as described above raises the issue of how well partitioned the data is
after clustering� We use an approach that closely resembles the multidimensional parti�
tioning strategy of �Ghandeharizadeh� �

��� If the data from which the n�attribute key is
extracted is distributed uniformly over its domain� then we can expect all clusters to have
approximately the same number of records in them� But real�world data is very unlikely to
be uniformly distributed� i�e� skew elements and other hot spots will be prevalent� and thus�
we must expect to compute very large clusters and some empty clusters�

Sometimes the distribution of some 	elds in the data is known� or can be computed
as the data is inserted into the database� For instance� consider a database containing a
	eld for names� We can 	nd lists of person names from which we can compute� say� the
distribution of the 	rst three letters of every name�� If we do not have access to such a list�
we can randomly sample the name 	eld of our database tables to have an approximation of

�That is� we have a cluster space of ��� ��� �� bins ��� letters plus the space�
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the distribution of the 	rst three letters� This information can be gathered o��line before
applying the clustering method�

Now let us assume we want to divide our data into C clusters using a key extracted
from a particular 	eld� Given a frequency distribution histogram with B bins for that 	eld
�C � B�� we want to divide those B bins �each bin represents a particular range of the 	eld
domain� into C subranges� Let bi be the normalized frequency for bin i of the histogram
�
PB

i�� bi � ��� Then for each of the C subranges we must expect the sum of the frequencies
over the subrange to be close to �

C
�e�g�� if bins s to e� � � s � e � B� are assigned to

one cluster then we expect
Pe

i�s bi 

�
C
�� Each subrange will become one of our clusters

and� given a record� we extract the key from the selected 	eld� and map the key into the
corresponding subrange of the histogram� The complexity of this mapping is� at worst� logB�

����� Alternative Clustering Strategies

In the previous section we discussed a clustering strategy based on partitioning by the range
values of a key� In general� this technique can be applied to several attributes of a relation and
is known as multidimensional partition strategy �e�g�� �Ghandeharizadeh� �

���� There are�
however� other partitioning strategies we might want to provide in a generic merge�purge
facility we plan to implement� namely� constant partitioning� uniform partitioning� hash
partitioning� and classi	cation�

Constant partitioning is a special case of range partitioning and is used when the range
of values of an attribute is a small number of constant values� For example� in a relation
containing information about persons physical characteristics� we might want to partition
the data by gender or color of the hair�

Uniform partitioning divides the input relation into equal�sized fragments regardless of
the value of any attribute� This might be useful when� for example� the equational theory
can be applied to a random set of tuples� or when the input relation is already sorted� In
section � we will discuss the implementation of ALEXSYS� an expert system for mortgage
allocation� using our generic merge�purge facility� The implementation of ALEXSYS would
bene	t if an option for constant partitioning is given�

Hash partitioning uses a hash function to divide the input into P partitions or buckets�
This partitioning scheme could be useful in cases where the input relation has a key attribute
which is known not to be noisy�

Discovery algorithms have been described by �Frawley et al�� �

�� as procedures to ex�
tract knowledge from data� Two processes are involved in these procedures� interesting
patterns must be identi	ed� and a meaningful description of each pattern must be provided�
Discovery algorithms can start their identi	cation process by classifying records into classes
�or clusters� that re�ect patterns inherent in the data�� The creation of clusters can involve
traditional cluster analysis methods �Dubes and Jain� �

�� or more recent conceptual clus�
tering methods which� as the former� use attribute similarity to form clusters� but also take
into consideration background knowledge� such as knowledge about likely cluster shapes�

�These processes are sometimes referred to as unsupervised and supervised learning
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Some recent examples of this approach include the two Bayesian classi	ers in �Cheeseman et
al�� �
��� and �Anderson and Matessa� �

��� The output of these classi	cations algorithms
can be thought as a set of selection predicates that divide the data into disjoint clusters�

We can generalize some of these clustering approaches using the following model� Let
d�t�� t�� de	ne the distance between two tuples t�� t� as follows�

d�t�� t�� �j f�t��x�� f�t��x� j

where f is some function de	ned on the domain of attribute x of the underlying relation�
The behavior of this clustering scheme is determined by the choice of the function f and a
threshold �� such that d�t�� t�� � �� If f is a hash function� and � � �� then this reduces
to simple hash partitioning� If f is the identity function and � � �� then this reduces
to restricting by constant values� If f is the identity function and � � c� for some non�
zero constant c� then this reduces to range partitioning �under appropriate de	nition of the
�end points� ti�� Finally� when f is the �classi	er� and � � �� this reduces to conceptual
classi	cation�

��� Equational theory

The comparison of records� during the merge phase� to determine their equivalence is a
complex inferential process that considers much more information in the compared records
than the keys used for sorting� For example� suppose two person names are spelled nearly
�but not� identically� and have the exact same address� We might infer they are the same
person� On the other hand� suppose two records have exactly the same social security
numbers� but the names and addresses are completely di�erent� We could either assume
the records represent the same person who changed his name and moved� or the records
represent di�erent persons� and the social security number 	eld is incorrect for one of them�
Without any further information� we may perhaps assume the later� The more information
there is in the records� the better inferences can be made� For example� Michael Smith

and Michele Smith could have the same address� and their names are �reasonably close��
If gender and age information is available in some 	eld of the data� we could perhaps infer
that Michael and Michele are either married or siblings�

What we need to specify for these inferences is an equational theory that dictates the logic
of domain equivalence� not simply value or string equivalence� Users of a general purpose
merge�purge facility bene	t from higher level formalisms and languages permitting ease of
experimentation and modi	cation� For these reasons� a natural approach to specifying an
equational theory and making it practical would be the use of a declarative rule language�
Rule languages have been e�ectively used in a wide range of applications requiring inference
over large data sets� Much research has been conducted to provide e�cient means for their
compilation and evaluation� and this technology can be exploited here for purposes of solving
merge�purge e�ciently�

As an example� here is a simpli	ed rule in English that exempli	es one axiom of our
equational theory relevant to merge�purge applied to our idealized employee database�
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Given two records� r� and r��

IF the last name of r� equals the last name of r��

AND the first names differ slightly�

AND the address of r� equals the address of r�

THEN

r� is equivalent to r��

The implementation of �differ slightly� speci	ed here in English is based upon the
computation of a distance function applied to the 	rst name 	elds of two records� and
the comparison of its results to a threshold to capture obvious typographical errors that
may occur in the data� The selection of a distance function and a proper threshold is
also a knowledge intensive activity that demands experimental evaluation� An improperly
chosen threshold will lead to either an increase in the number of falsely matched records
or to a decrease in the number of matching records that should be merged� A number of
alternative distance functions for typographical mistakes were implemented and tested in the
experiments reported below including distances based upon edit distance� phonetic distance
and �typewriter� distance� The results displayed in section � are based upon edit distance
computation since the outcome of the program did not vary much among the di�erent
distance functions for the particular databases used in our study�

For the purpose of experimental study� we wrote an OPS� �Forgy� �
��� rule program
consisting of �� rules for this particular domain of employee records and was tested repeatedly
over relatively small databases of records� Once we were satis	ed with the performance of
our rules� distance functions� and thresholds� we recoded the rules directly in C to obtain
speed�up over the OPS� implementation��

Appendix A shows the OPS� version of the equational theory implemented for this work�
Only those rules used encoding the knowledge of the equational theory are shown in the
appendix� The actual rule program uses a couple more rules to initialize the system� detect
termination� and computes the transitive closure of the results for the purposes we explain
in the next section�

The inference process encoded in the rules is divided into three stages� In the 	rst stage�
all records within a window are compared to see if they have �similar� 	elds� namely� the
social security 	eld� the name 	eld� and the street address 	eld� In the second stage� the
information gathered during the 	rst stage is joined to see if can merge pairs of records�
For example� if a pair of records have �similar� social security numbers and �similar� names
then the rule similar�ssn�and�names declares them �merged�� For those pair of records
that could not be merged because not enough information was gathered on the 	rst stage�
the rule program takes a closer look at other 	elds like the city name� state and zipcode

�At the time the system was built� the public domain OPS� compiler was simply too slow for our
experimental purposes
 Another compiler� the OPS�C compiler �Miranker et al�� 	���� was not available to
us in time for these studies
 The OPS�C compiler produces code that is reportedly many times faster than
previous compilers
 We captured this speed advantage for our study here by hand recoding our rules in C
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to see if a merge can be done� Otherwise� in the third stage� more precise �edit�distance�
functions are used over some 	elds as a last attempt for merging a pair of records� Table �
demonstrates a number of actual records the rule�program correctly deems equivalent�

Appendix B shows the C version of the equational theory� The appendix only shows the
subroutine rule program�� which is the main code for the rule implementation in C� The
comments in the code show where each rule of the OPS� version is implemented�

It is important to note that the essence of the approach proposed here permits a wide
range of �equational theories� on various data types� We chose to use string data in this
study �e�g�� names� addresses� for pedagogical reasons �after all everyone gets �faulty� junk
mail�� We could equally as well demonstrate the concepts using alternative databases of
di�erent typed objects and correspondingly di�erent rule sets�

��� Computing the transitive closure over the results of inde�
pendent runs

The e�ectiveness of the sorted�neighborhood method highly depends on the key selected
to sort the records� A key is de	ned to be a sequence of a subset of attributes� or substrings
within the attributes� chosen from the record� For example� we may choose a key as the
last name of the employee record� followed by the 	rst non blank character of the 	rst name
sub�	eld followed by the 	rst six digits of the social security 	eld� and so forth�

In general� no single key will be su�cient to catch all matching records� Attributes that
appear 	rst in the key have a higher priority than those appearing after them� If the error
in a record occurs in the particular 	eld or portion of the 	eld that is the most important
part of the key� there may be little chance a record will end up close to a matching record
after sorting� For instance� if an employee has two records in the database� one with social
security number ����	
��
 and another with social security number ����	
��
 �the 	rst
two numbers were transposed�� and if the social security number is used as the principal
	eld of the key� then it is very unlikely both records will fall under the same window� i�e�
the two records with transposed social security numbers will be far apart in the sorted list
and hence they may not be merged� As we will show in the next section� the number of
matching records missed by one run of the sorted�neighborhood method can be large unless
the neighborhood grows very large�

To increase the number of similar records merged� two options were explored� The 	rst is
simply widening the scanning window size by increasing w� Clearly this increases the com�
putational complexity� and� as discussed in the next section� does not increase dramatically
the number of similar records merged in the test cases we ran �unless of course the window
spans the entire database which we have presumed is infeasible under strict time and cost
constraints��

The alternative strategy we implemented is to execute several independent runs of the
sorted�neighborhood method� each time using a di�erent key and a relatively small window�
We call this strategy the multi�pass approach� For instance� in one run� we use the address
as the principal part of the key while in another run we use the last name of the employee
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as the principal part of the key� Each independent run will produce a set of pairs of records
which can be merged� We then apply the transitive closure to those pairs of records� The
results will be a union of all pairs discovered by all independent runs� with no duplicates�
plus all those pairs that can be inferred by transitivity of equality�

The reason this approach works for the test cases explored here has much to do with the
nature of the errors in the data� Transposing the 	rst two digits of the social security number
leads to non�mergeable records as we noted� However� in such records� the variability or error
appearing in another 	eld of the records may indeed not be so large� Therefore� although
the social security numbers in two records are grossly in error� the name 	elds may not be�
Hence� 	rst sorting on the name 	elds as the primary key will bring these two records closer
together lessening the negative e�ects of a gross error in the social security 	eld�

Notice that the use of a transitive closure step is not limited to the multi�pass approach�
We can improve the accuracy of a single pass by computing the transitive closure of the
results� If records a and b are found to be �similar� and� at the same time� records b and
c are also found to be �similar�� the transitive closure step can mark a and c to be similar
if this relation was not detected by the equational theory� Moreover� records a and b must
be within w records to be marked as �similar� by the equational theory� The same is true
for records b and c� But� if the transitive closure step is used� a and c need not be within w

records to be detected as similar� The use of a transitive closure at the end of any single�pass
run of the sorted�neighborhood method should allow us to reduce the size of the scanning
window w and still detect a comparable number of �similar� pairs as we would 	nd without a
	nal closure phase and a larger w� All single run results reported in the next section include
a 	nal closure phase�

It is clear that the utility of this approach is therefore driven by the nature and occur�
rences of the errors appearing in the data� Once again� the choice of keys for sorting� their
order� and the extraction of relevant information from a key 	eld is a knowledge intensive
activity that must be explored prior to running a merge�purge process�

In the next section we will show how the multi�pass approach can drastically improve
the accuracy of the results of only one run of the sorted�neighborhood method with varying
large windows� Of particular interest is the observation that only a small search window
was needed for the multi�pass approach to obtain high accuracy while no individual run with
a single key for sorting produced comparable accuracy results with a large window �other
than window sizes approaching the size of the full database�� These results were found
consistently over a variety of generated databases with variable errors introduced in all 	elds
in a systematic fashion�
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� Experimental Results

��� Generating the databases

All databases used to test the sorted�neighborhood method and the clustering method were
generated automatically by a database generator that allows us to perform controlled studies
and to establish the accuracy of the solution method� This database generator provides a
large number of parameters including� the size of the database� the percentage of duplicate
records in the database� and the amount of error to be introduced in the duplicated records
in any of the attribute 	elds� Each record generated consists of the following 	elds� some
of which can be empty� social security number� 	rst name� initial� last name� address�
apartment� city� state� and zip code� The names were chosen randomly from a list of �����
real names� The cities� states� and zip codes �all from the U�S�A� come from publicly available
lists�

The errors introduced in the duplicate records range from small typographical changes�
to complete change of last names and addresses� When setting the parameters for the
kind of typographical errors� we used known frequencies from studies in spelling correction
algorithms �Pollock and Zamora� �
�
! Church and Gale� �

�! Kukich� �

��� For this
study� the generator selected from ��" to ��" of the generated records for duplication with
errors� where the error was controlled according to published statistics found for common
real world datasets�

��� Pre�processing the generated database

Pre�processing and conditioning the records in the database prior to the merge�purge oper�
ation might increase the chance of 	nding two duplicate records �Pu� �

��� For example�
names like Joseph and Giuseppe match in only three characters� but are the same name
in two di�erent languages� English and Italian� A nicknames database or name equivalence
database is used to assign a common name to records containing identi	ed nicknames� �Al�
ternatively the nicknames database can be included as one of the merged databases from the
start� permitting two records with alternative names to be found by the transitive closure
step��

Since misspellings are introduced by the database generator� we explored the possibility
of improving the results by running a spelling correction program over some 	elds� Spelling
correction algorithms have received a large amount of attention for decades �Kukich� �

���
Most of the spelling correction algorithms we considered use a corpus of correctly spelled
words from which the correct spelling is selected� Since we only have a corpus for the names
of the cities in the U�S�A� ����
� di�erent names�� we only attempted correcting the spelling
of the city 	eld� We chose the algorithm described by Bickel in �Bickel� �
�
� for its simplicity
and speed� Although not shown in the results presented in this proposal� the use of spell
corrector over the city 	eld improved the percent of correctly found duplicated records by
only ���" � ���"� Most of the e�ort in matching resides in the equational theory rule base�
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Figure �� Accuracy results for a ��������� records database

��� Initial results on accuracy

The purpose of this 	rst experiment was to determine baseline accuracy of the sorted�
neighborhood method� We ran three independent runs of the sorted�neighborhood method
over each database� and used a di�erent key during the sorting phase of each independent
run� On the 	rst run the last name was the principal 	eld of the key �i�e�� the last name
was the 	rst attribute in the key�� On the second run� the last name was the principal 	eld�
while� in the last run� the street address was the principal 	eld� Our selection of the attribute
ordering of the keys was purely arbitrary� We could have used the social�security number
instead of� say� the street address� We assume all 	elds are noisy �and under the control of
our data generator to be made so� and therefore it does not matter what 	eld ordering we
select for purposes of this study�

Figure ��a� shows the e�ect of varying the window size from � to �� records in a database
with ��������� records and with an additional ������ duplicate records with varying errors�
A record may be duplicated more than once� Notice that each independent run found from
��" to 
�" of the duplicated pairs� Notice also that increasing the window size does not
help much and taking in consideration that the time complexity of the procedure goes up as
the window size increases� it is obviously fruitless at some point to use a large window�

The line marked as Multi�pass over � keys in 	gure ��a� shows our results when the
program computes the transitive closure over the pairs found by the three independent runs�
The percent of duplicates found goes up to almost 
�"� A manual inspection of those
records not found as equivalent revealed that most of them are pairs that would be hard
for a human to identify without further information� Table � shows a sample of actual
record�pairs that represent the same real�world entity� but were not detected by the multi�
pass approach� In most of these cases the records were not deemed �similar� because the
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SSN Name Street Address City� State� Zip

None Brottier Grawey PO gBox ��	� Clovis NM 

���
None B baermel O Box ��	� Clovis NM 

���
None Chipman H Jianqi �
� Backencamp Rd �h� Ukiah OR ��

�
None Jianqi H casperston ��� ackencamp Rd �h� Ukiqah OR ��

�
None Bruin U Hochstetlfer ��� Hennrich Lane �m� San German PR ���
�
None Bruin U jamamn ��� Hennrich Lane �m� Ssan German PR ���
�
None Leitem Z Je�ords �

 Benaz St �x	 Culebra PR ��	�

None keite Z vasriya �

 Bnez Street �x	 Cukebra PR ��	�

None Avra N Dadas PO Box ��	
 Hillsboro NM 

���
None Bavra N ada �
� Ladeau St �q	 nillsboro NM 

���
�
������
 Bahadir T Bihsya ��� Jubin 
s� Toledo OH ��	��
�
������� Bishya T ulik ��
 Arpin St �p� Toledo OH ��	��

Table �� Example of record�pairs missed

error introduced into the key 	elds �	rst name� last name� and street address� will place the
records too far apart in the sorted databases to ever be considered during window�scanning
phase� The only case where this observation is not true is the third example in table �� Here
our equational theory did not make the decision of marking the records similar even though
the 	rst names and addresses are the same� Our equational theory needed at least one more
small hint to actually make the positive decision� for example� a valid social security number
or some similarity in the last name� This last decision is application dependent� Relaxing
the equational theory to admit this particular record as �similar� would probably increase
the number of false�positives detected�

As mentioned above� our equational theory is not completely trustworthy� It can mark
two records as similar when they are not the same real�world entity �false�positives�� Fig�
ure ��b� shows the percent of those records incorrectly marked as duplicates as a function
of the window size� The percent of false positives is almost insigni	cant for each indepen�
dent run and grows slowly as the window size increases� The percent of false positives after

SSN Name Street Address City� State� Zip

����

��� Frankie Y Gittler PO Box �	�
 Gresham� OR ���
�
�	���

�� Erland W Giudici PO Box �		� Walton� OR �����
��
������ Langham Inukai 

� Boecke St �o
 San Juan� PR ����	
�
��
���� Drobnik B Cuschera ��
 Boedecker St �p� Sweetwater� OK ��			
�	�	
�	�� Arseneau N Brought ��� Corson Ave 
l
 Blanco� NM 
����
�	
	�
	�� Bogner A Kuxhausen ��� Corson Road �o� Raton� NM 
����
�
���
��� Ballard Anspach PO Box ��
 Custer City� OK ��	��
��
���
�� Lemmo L Lesway PO Box ��
� Konawa� OK ��
��
�
�	
��
� Dialout I Alvarado PO Box ��� Cave Junction� OR ��
��


	
��
�� Cordelie T Latrina PO Box ���� Robertsville� OH ��	��
����

�
� Ballarte Fortner PO Box ��
� Albuquerque� NM 
��


��
��
��
 Benham Y Jobes PO Box ��
� Cayey� PR �����

Table �� False�positives reported by the rule program

��



the transitive closure is also very small� but grows faster than each individual run alone�
This suggests that the transitive�closure may not be as accurate if the window size of each
constituent pass is very large#

Table � shows a sample of record�pairs marked as �similar� by the equational theory
even though they do not represent the same real�world entity� In all these cases� distances
computed were very close to the thresholds used by the equational theory in discriminating
similar data� We also notice that our equational theory does not have rules to handle the
special case of P�O� Boxes� For example� in the last case in table �� our equational theory
infers that the addresses are �close� based only on the small edit�distance between �PO Box


���� and �PO Box 
����� A better equational theory would consider other parts of the
address �e�g�� the city name� if it detects a P�O� Box that appears as the �street address��

The number of independent runs needed to obtain good results with the computation
of the transitive closure depends on how corrupt the data is and the keys selected� The
more corrupted the data� more runs might be needed to capture the matching records� The
transitive closure� however� is executed on pairs of tuple id�s� each at most �� bits� and fast
solutions to compute transitive closure exist �Agrawal and Jagadish� �
���� From observing
real world scenarios� the size of the data set over which the closure is computed is at least
one order of magnitude smaller than the corresponding database of records� and thus does
not contribute a large cost� But note we pay a heavy price due to the number of sorts or
clusterings of the original large data set� We address this issue in section ��

��� The Duplicate Elimination Method

We ran a series of experiments to evaluate the performance of the �duplicate elimination�
sorted�neighborhood method and compared it to the performance of the �naive� counterpart�
For the three experiments reported in this section� we started with the same database of
������� records and then allowed the generator to select ��" of the tuples for duplication
with modi	cations� In each experiment� the maximumnumber of times a selected record can
be duplicated varied ��� ��� and �� respectively�� Three runs of each sorted�neighborhood
method �naive and duplicate elimination� were executed� each run used a di�erent key� The
results of the three independent runs were then processed with a transitive closure phase to
improve the accuracy of the results� The size of the window for both the �naive� and the
�duplicate elimination� methods varied in the range ��� ���� The size of the �small� window
for the special 
rst window scan phase of the �duplicate elimination� method is � � ��
The results of the experiments are shown in 	gures �� �� and 
� Key 	 is the last name
followed by the 	rst name� Key 
 is the 	rst name followed by the last name� and Key � is
the street address followed by the last name 	eld�

First� notice that the accuracy of the �duplicate elimination� method closely follows the
accuracy of the �naive� method� In fact� although hard to see from the 	gures� in all cases
tested in this series of experiments� the accuracy of the �duplicate elimination� method edged
slightly higher than the accuracy of its counterpart� The reason for this small� but consistent
better performance of the �duplicate elimination� method can be understood by looking at
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% Found in duplicates list

% Found in non-duplicates list

% Not Found

51%

25% 24%

Key #1

51%

24% 26%

Key #2

38%

27%
35%

Key #3

61%

32%
7%

Multi-pass using all keys

Figure �� Percent of records identi	ed as �similar� by the �duplicate elimination� algorithm

	gure � again� Notice that the 
rst window scan 	nds a good number of duplicates� thus
removing a considerable number of records from the �middle� of the window used during
the second window scan phase� Thus� records that should �match� but fell outside the
window with the �naive� method� are closer together after removing duplicates and therefore
could be �matched� with a window of the same size as the one used unsuccessfully in the
�naive� method�

An important question is how many of the tuples identi	ed as �similar� are detected by
the 
rst window scan phase �window scan of a small window over the duplicates� and how
many are detected by the second window scan phase �window scan over the �returned� and
�no�duplicates� list of sorted records�� The pie charts in 	gure � show the percent of records
identi	ed as �similar� at each phase by the �duplicate elimination� method for the database
with � maximum duplicates per selected record
� In all cases� from ��" � �


�
���
� ���� to

almost ��" of the total number of records detected as �similar�� were detected during the

rst window scan phase� Thus� a large part of the �matching� work is being done during
the 
rst window scan� which uses a smaller window than the one used during the second
second window scan�

However� even though a large part of the work is being done during the 
rst window
scan� the duplicate elimination algorithm merges some of the tuples in the �duplicate list�
with those in the �no�duplicate list� to perform the �second window scan� phase� In fact� the
duplicate elimination algorithm contains more phases than the naive version of the sorted�
neighborhood method� Thus� the next question we must answer is whether or not the time
performance of the duplicate elimination algorithm is better than that of the naive algorithm�

The right�hand side of 	gures �� �� and 
 show the total time to run each algorithm
over di�erent keys for the three experimental databases described before� In all cases� notice
that the naive version of the sorted�neighborhood method did better than the duplicate
elimination version for small window sizes� Nevertheless� as the size of the window grows
�and� thus� the complexity of the window scan phase of the naive approach and the complexity
of the second window scan phase of the duplicate elimination approach grows as well�� the

�The charts of the other two experiments were similar and are not presented in this proposal
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duplicate elimination version starts doing better than the naive version� Notice also that�
as the number of possible duplicates per record increases� so does the total execution time
di�erence between the duplicate elimination and naive versions� This di�erence is explained
by recalling that a large portion of the duplicates will be matched and removed from further
consideration during the 
rst window scan of the duplicate elimination version which
always uses a constant sized window � �� � � on these experiments�� After duplicates are
eliminated� we are left with a database whose size does not change much for each experiment�
Thus� the time to apply the second window scan to this database is virtually the same
for each experiment �under the same window size�� Leaving the second window scan
window size 	xed� the increase in time of the duplicate elimination version is driven by the
increased number of duplicates being considered by the small window in the 
rst window
scan� On the other hand� the increase in time in the naive version is driven by the size of
the window� w� and the total size of the input database� It is therefore expected that the
duplicate elimination version of the sorted�neighborhood method would have a better time
performance than the �naive� version when w � �� It is also expected that the performance
of the two versions should be about the same when w � �� Figures ��
 clearly show these
relations to be true�

From these results we must conclude that the duplicate elimination version of the sorted�
neighborhood method is the version of choice for databases where the number of possible
duplicates per record is known to be large� In fact� carefully looking at 	gure �� we notice
that� for example� the time for w � � for the naive version is almost the same as the time for
w � �� for the duplicate elimination version� That is� for the same amount of time� a larger
window can be used with the duplicate elimination version providing a larger accuracy than
the naive version� On the other hand� when the number of duplicates per records is small� it
almost makes no di�erence which version of the sorted�neighborhood method is used if the
window size� w is relatively large �w � ���

��� The Clustering Method

To test the clustering method� we created a database with ������� records of which ��" of
the records were selected to add a maximumof � duplicates per selected record� The resulting
����
�� records database was analyzed using the naive sorted�neighborhood method and the
clustering method� We used the same three keys used above for the sorted�neighborhood
method and ran three independent runs� one for each key� Then the transitive closure over
the results of all independent runs was computed� Each run of the clustering method initially
divided the data into �� clusters� These number of clusters was chosen to match the �fan�
out� of the merge�sort algorithm of the �naive� method� This way we guarantee each cluster
	ts in memory� The results presented in this section were obtained on a Sun�s Sparc ��
running SunOS ����

Figure 
 compares the timing results of the �naive� and clustering versions of the sorted�
neighborhood method� As expected� the total time to execute each independent run �and�
thus� the multi�pass approach�� is lower when we partitioned the data 	rst into independent
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Figure 
� Time Results for the Sorted�Neighborhood and Clustering Methods on � processor
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clusters� Tables � and � show the actual timing results for each phase of both methods�
Compare� in particular� the reduction in time of the clustering phase with respect to the
sorting phase of the naive sorted�neighborhood method�

The graphs in 	gure �� show the accuracy results of both methods for this experiment	�
The left�hand side graph shows the accuracy obtained by each independent run of both
methods� In all cases the accuracy of the naive sorted�neighborhood edged higher than the
accuracy of the clustering method� The principal reason for this is the size of the key used
on each run� Even though the 	eld used to produce the key for each independent run was
the same under each method� the size of the key was not� As explained in section ���� the
clustering method uses the 	xed�sized key extracted during its clustering phase to later sort
each cluster independently� On the other hand� the naive sorted�neighborhood method used
the complete length of the strings in the key 	eld� making the size of the key used variable�
Records that should be merged are expected to end closer together in a sorted list the larger
the size of the key used� Since� for the case of this experiment� the average size of the key
used by the naive method is larger that the one used by the clustering method� we must
expect the naive method to produce more accurate results�

The right�hand side graph in 	gure �� shows how the accuracy improves after the multi�
pass approach is applied to the independent runs� As we saw in the previous section� when
we applied the closure to all pairs found to be similar with the three independent runs� the
accuracy jumped to over 
�" for w � �� In this graph we also present the accuracy of the
clustering method when the multi�pass approach is applied to only two independent runs
instead of three� For this particular experiment� under any of the three possible combinations
for a two run multi�pass approach� the performance remained near but under ��"�

��	 Analysis

The natural question to pose is when is the multi�pass approach superior to the single�pass
case� The answer to this question lies in the complexity of the two approaches for a �xed
accuracy rate �for the moment we consider the percentage of correctly found matches��

Here we consider this question in the context of a main�memory based sequential process�
The reason being that� as we shall see� clustering provides the opportunity to reduce the
problem of sorting the entire disk�resident database to a sequence of smaller� main�memory
based analysis tasks� The serial time complexity of the multi�pass approach �with r passes� is
given by the time to create the keys� the time to sort r times� the time to window scan r times
�of window size w� plus the time to compute the transitive closure� In our experiments� the
creation of the keys was integrated into the sorting phase� Therefore� we treat both phases
as one in this analysis� Under the simplifying assumption that all data is memory resident
�i�e�� we are not I�O bound��

Tmultipass � csortrN logN � cwscanrwN � Tclosuremp

�Note the di�erent y scales of both graphs
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where r is the number of passes and Tclosuremp is the time for the transitive closure� The
constants depict the costs for comparison only and are related as cwscan � 	csort� where
	 � �� From analyzing our experimental program� the window scanning phase contributes
a constant� cwscan� which is at least 	 � � times as large as the comparisons performed
in sorting� We replace the constants in term of the single constant c� The complexity
of the closure is directly related to the accuracy rate of each pass and depends upon the
duplication in the database� However� we assume the time to compute the transitive closure
on a database that is orders of magnitude smaller than the input database to be less than
the time to scan the input database once �i�e� it contributes a factor of cclosureN � N��
Therefore�

Tmultipass � crN logN � 	crwN � Tclosuremp

for a window size of w� The complexity of the single pass sorted�neighborhood approach is
similarly given by�

Tsinglepass � cN logN � 	cWN � Tclosuresp

for a window size of W�
For a 	xed accuracy rate� the question is then for what value of W of the single pass

sorted�neighborhood method does the multi�pass approach perform better in time� i�e�

cN logN � 	cWN � Tclosuresp � crN logN � 	crwN � Tclosuremp

or

W �
r � �

	
logN � rw �

�

	cN

�
Tclosuremp � Tclosuresp

�
To validate this model� we generated a small database of ���
�� records �
���� original

records� ��" selected for duplications� and � maximum duplicates per selected record� The
total size of the database in bytes was approximately � MByte� Once read� the database
stayed in core during all phases� We ran three independent single�pass runs using di�erent
keys and a multi�pass run using the results of the three single�pass runs� The parameters
for this experiment were N � ��
�� records and r � �� For the particular case were
w � ��� we have 	 
 �� c 
 ���� ���
� Tclosuresp � ���s� and Tclosuremp � 
� Thus� the
multi�pass approach dominates the single sort approach for these datasets when W � ���

Figure ���a� shows the time required to run each independent run of the sorted�neighborhood
method on one processor� and the total time required for the multi�pass approach while 	g�
ure ���b� shows the accuracy of each independent run as well as the accuracy of themulti�pass
approach �please note the logarithm scale�� For w � ��� 	gure ���a� shows that the multi�
pass approach needed ����s to produce an accuracy rate of 
���" �	gure ���b��� Looking
now at the times for each single�pass run� their total time is close to ��s for W � ���
slightly higher than estimated with the above model� But the accuracy of all single�pass
runs in 	gure ���b� at W � �� are from 
�" to ��"� well below the 
���" accuracy level
of the multi�pass approach� Moreover� no single�pass run reaches an accuracy of more than

�" until W � 
���� at which point �not shown in 	gure ���a�� their execution time are
over ����� seconds ��� minutes��
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Figure ���a� shows the time required to run each independent run of the sorted�neighborhood
method on one processor� and the total time required for the multi�pass approach� in the
case of the database we used in section ��� �������� records�� As illustrated in 	gure ��a��
the multi�pass approach produced an accuracy rate of ����" using a window size of w � ���
Using 	gure 
 to extrapolate the time performance of a single�pass run� we notice that it is
similar to the time performance of the multi�pass approach with a small window� w � ���
when W 
 ��� But similarly to the previous case with a smaller database� the accuracy of
all single�pass runs in 	gure ��a�� at W � ��� are from �
" to ��"� well below the ����"
accuracy level of the multi�pass approach� To study how large the window size W must be
for one of the single�pass runs to achieve the same accuracy level of the multi�pass approach
we replaced the rule based equational theory with a stub that quickly tells us if two records
within the window are actually equal according to the database generator �thus we study
the �ideal� performance�� The results� depicted in 	gure ���b��� show that any single�pass
run would need a window size larger than W � ����� to achieve the same accuracy level
as the multi�pass approach using w � ��� Thus� the multi�pass approach achieves dramatic
improvement in time and accuracy over a single pass approach�

Let us now consider the issue when the process is I�O bound rather than a compute�bound
main�memory process� We consider three cases� In the 	rst case� the sorted�neighborhood
method� one pass is needed to create keys� logN passes
� to globally sort the entire database�
and one 	nal pass for the window scanning phase� Thus� approximately � � logN passes
are necessary� In the second case� the clustering method� one pass is needed to assign the
records to clusters followed by another pass where each individual cluster is independently
processed by a main�memory sort and a window scanning phase� The clustering method�
with approximately only � passes� would dominate the global sorted�neighborhood method�
Nevertheless� notice that the actual di�erence in time� shown in 	gure 
� is small for the
case we considered� This is mainly due to the fact that the window�scanning phase is� for
the case of our equational�theory� much more expensive than the sorting or clustering phase
and thus any time advantage gained by 	rst clustering and then sorting becomes small with
respect to the overall time�

The third case� the multi�pass approach� would seem to be the worse of the lot� The
total number of passes will be a multiple of the number of passes required for the method we
chose to do each pass� For instance� if we use the clustering method for � passes� we should
expect at least � passes over the dataset �for each key� one pass to cluster and another pass
to window scan each cluster�� while if we use the sorted�neighborhood method� we should
expect � � �logN passes �� separate sorts�� Clearly then the multi�pass approach would
be the worst performer in time over the less expensive clustering method� Figure 
 clearly
shows this increase in time�

However� notice the large di�erence in accuracy in 	gure ��� Clearly the multi�pass

�The �real� performance lines in �gure 	��b� are those of �gure ��a�
 We included them here to give a
sense on how e�ective our rule�based equational theory is when compared with the ideal case


�In our experiments we used merge sort� as well as its parallel variant� which used a 	��way merge
algorithm to merge the sorted runs
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Figure ��� General shared�nothing architecture

approach has a larger accuracy than any of the two single�pass approaches� Thus� in a serial
environment� the user must weight this trade�o� between execution time and accuracy�

In the next section we explore parallel variants of the three basic techniques discussed
here to show that with suitable parallel hardware� we can speed�up the multi�pass approach
to a level comparable to the time to do a single�pass approach� but with a very high accuracy�
i�e� a few small windows ultimately wins�

� Parallel implementation

With the use of a centralized parallel or distributed shared�nothing multiprocessor computer
we seek to achieve a linear speedup over a serial computer� We brie�y sketch the means of
achieving this goal in this section�

The general architecture of the system used to implement the experiments detailed in
this section is shown if 	gure ��� A processor is selected as the coordinator processor in
charge of dividing the work and synchronizing each phase of the merge�purge process� We
assume� without lost of generality� that the results of the merging phase will be collected at
this coordinator site�

��� Single and Multi�pass sorted�neighborhood method

The parallel implementation of the sorted�neighborhood method is as follows� Let N be the
number of records in the database� P be the number of processors in our multiprocessor
environment� and w be the size �in number of records� of the merge phase window�

For the sort phase� the coordinator processor �CP� fragments the the input databases in
a round�robin fashion among all P sites� Each site then sorts its local fragment in parallel�
Then the CP does a P�way join� reading a block at a time �as needed� from each of the P
sites�

Conceptually� for the merge phase� we should start by partitioning the input database
into P fragments and assign each fragment to a di�erent processor� The fragment assigned
to processor i should replicate the last w�� records from the fragment assigned to site i���
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Figure ��� Partition of a sorted database with �bands� of replicated tuples�

for � � i � P � Similarly� for � � i � P � the fragment at site i should replicate the 	rst w��
records from the fragment at site i��� These small �bands� of replicated records are needed
to make the fragmentation of the database invisible when the window scanning process is
applied in parallel to each fragment� This fragmentation strategy is depicted in 	gure ���

For concreteness� we divide the database as follows� Let M be the number of records
that 	t in memory at each of the P sites� The CP reads a block of M records and send them
to site � which stores them in memory and starts applying the window scanning procedure�
The CP stores the last w � � of the block sent to site � and reads M � �w � �� records
from disk� for a total of M records which are then sent to site �� This algorithm is repeated
for each site in a round�robin order until there are no more records available at the input
database� Notice that the total number of replicated records is larger for this approach than
the method described in the beginning of this paragraph� Nevertheless� with this approach
the amount of time a processor is idle is reduced� and each site does not need to write the
received blocks into disk since its processing is in memory� In fact� as each site receives a
block of records� it applies the window scanning procedure to the records� sends the resulting
pairs �a pair of tuple id�s� back to the CP� discards the current block� and waits for the CP
to send another block�

The total number of replicated records can be estimated as follows� there are� at most�
w � � replicated records on each block and an approximate total of N

M��w��� blocks sent�

Thus� the number of replicated records sent is N�w���
M��w��� and the ratio of replicated records

to the total number of records sent is
N�w���
M��w���

N� N�w���
M��w���

� �w���
M

� Therefore� the window size must

be small with respect to the size of the block of records for the e�ect of the replication to be
negligible� In our system� typical values of M and w are �K and �� records� respectively�

We implemented this method on an HP cluster consisting of � HP
��� processors inter�
connected by a FDDI token�ring network� Figure �� shows the total time taken for each
of the three independent runs from 	gure ��a� as the number of processors increases� The
window size for all these runs was �� records� The 	gure also shows the time it will take
the sorted�neighborhood method to execute all three independent runs over three times the
number of processors and then the computation of the transitive closure of the results� Since
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Figure ��� Time Results for the Sorted�neighborhood and Clustering Methods

we do not have enough processors to actually run all sorted�neighborhood runs concurrently�
we must estimate this time using the results of each independent run� We ran all indepen�
dent runs in turn and stored the results on disk� We then computed the transitive closure
over the results stored on disk and measured the time for this operation� The total time� if
we run all runs concurrently� is approximately the maximum time taken by any independent
run plus the time to compute the closure� Notice that the speed�ups obtained as the number
of processors grows are sublinear� The obvious overhead is paid in the process of reading
and sending data to all processors�

��� Single and Multi�pass clustering method

The parallel implementation of the clustering method works as follows� Let N be the number
of records in the database� P the number of processors and C the number of clusters we
want to form per processor� Given a frequency distribution histogram� we divide its range
into C � P subranges as described in section ���� Each processor is assigned C of those
subranges� To cluster the data� the coordinator processor reads the database and sends each
record to the appropriate processor� Each processor saves the received records in the proper
local cluster� �Notice that we may precompute the cluster assignment of each record for the
alternative keys on the multi�pass approach in only a single pass over the data�� Once the
coordinator 	nishes reading and clustering the data among the processors� all processors sort
and apply the window scanning method to their local clusters� As in the sorted�neighborhood
method� resulting merge�pairs are reported to the coordinator process� Alternatively� to scale
the process up� multiple coordinators can be used to cluster the data in parallel� followed by
a 	nal �cluster merging phase��

Load balancing of the operation becomes an issue when we use more than one processor
and the histogram method does a bad job of partitioning the data� Our program attempts
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Figure ��� Time performance of the sorted�neighborhood and clustering methods for di�erent
size databases� � processors�run�

to do an initial static load balancing� The coordinator processor keeps track of how many
records it sent to each processor �and cluster� and therefore it knows� at the end of the
clustering stage� how balanced the partition is� It then redistributes the clusters among
processors using a longest processing time �rst �Graham� �
�
� strategy� That is� move the
largest job in an overloaded processor to the most underloaded processor� and repeat until
a �well� balanced load is obtained� In �Dewan et al�� �

�� we detailed the load balancing
algorithm in the context of parallel database joins and how it can deal with skewed data
distributions in a heterogenous processing environment�

The time results for the clustering method are depicted in 	gure ��� These results are for
the same database used to obtain the timing results for the sorted�neighborhood method� a
window size of �� records� and ��� clusters per processor� Comparing the results in 	gure ��
we note that the clustering method is� as expected� a faster parallel process than the sorted�
neighborhood method�

In all cases the multi�pass approach remained about ��" slower than all other single
passes� However� its accuracy was consistently ��" better �compare 	gures �a and ����
An alternative interpretation would be to consider how slow the single passes would be in
comparison to the multi�pass for the 	xed accuracy level of the multi�pass approach� In
section ��� we estimated for these data sets that a single pass would require a window size
of ������� Unfortunately� the amount of real time to verify this was far too much to justify
locking up the computing resources we had available for this study�

Su�ce it to say� that for very large databases of say � billion records� a ��" increase in
accuracy for a modest ��" decrease in performance translates to a huge number of found
duplicates with obvious advantages in business operation�

��� Scaling Up

Finally� we demonstrate that the sorted�neighborhood and clustering methods scale well as
the size of the database increases� Due to the limitations of our available disk space� we
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could only grow our databases to about ��������� records� We again ran three independent
runs of the sorted�neighborhood method �and the clustering method�� each with a di�erent
key� and then computed the transitive closure of the results� We did this for the �� databases
in table � and ran all the experiments assigning � processors to each independent run� �We
started with � �no�duplicate databases� and for each we scaled up by creating duplicates for
��"� ��"� and ��" of the records� for a total of �� distinct databases of varying complexity��
The results are shown in 	gure ��� As expected� the time increases linearly as the size of
the databases increase independent of the duplication factor�

Using the graphs in 	gure �� we can estimate how much time it will take to process �
billion records using both methods� We assume the time will keep growing linearly as the size
of the database increases� For the sorted�neighborhood method� let us consider the last point
of the ��" graph� Here� a database with ����
��
� records was processed in ��
� seconds
�including all the I�O time�� Thus� given a database with ������������� records� we will
need approximately ������ ����

�	��
��
s � ����
����
 s 
 �� days� Doing the same analysis

with the clustering method� we 	rst notice that a database of size ����
��
� records was
processed in ���� seconds� Thus� given a database with ������������� records� we will need
approximately �� ���� �	��

�	��
�� s � ������� ��
 s 
 
 days� Of course� doubling the speed
of the workstations and utilizing the various RAID�based striping optimizations to double
disk I�O speeds discussed in �Nyberg et al�� �

�� and elsewhere �which is certainly possible
today since the HP processors and disks used here are slow compared to� for example� Alpha
workstations with modern RAID�disk technology� would produce a total time that is at least
half the estimated time� i�e� within ��� days�

� Research Plan

In this thesis we propose to study the e�cient implementation of band joins where the
join conditions are user�de	ned predicates� To date� we have studied some algorithms and
implemented some solutions for the merge�purge problem� There are� however� several open
ends we would like to address as part of this thesis� This section provides a brief overview
of the immediate future direction we pursue� We start� 	rst� by describing the status of our
current implementation and results� We then describe some ideas about the purge phase of
the merge�purge procedure� Because of the many di�erences among application domains

��



over which a merge�purge process can be used� a tool is needed to guide the user in de	ning
all phases of the process� We provide some details of a tool we plan to build to elicit the
domain knowledge from the user prior to the application of the merge�purge facility� Finally�
to further demonstrate the utility of the techniques presented in this proposal� we plan to
implement at least two more applications from di�erent domains� The 	rst application�
ALEXSYS� is an expert system for allocating a mortgage pool into contracts� The second
application uses merge�purge to implement a well know spatial�databases algorithm�

	�� The Sorted�Neighborhood Implementation and Results

A large portion of the software needed to perform the sorted�neighborhood method is imple�
mented� The modules implementing the serial versions of the sorted�neighborhood method
need no major changes at this point� The modules implementing the parallel version� how�
ever� are several revisions behind the modules used for the serial version� Moreover� there is
no parallel version for the duplicate elimination version of the sorted�neighborhood method
yet� Work is underway to update the parallel version�

This thesis proposal presented a variety of results that were gathered over the past year�
Notice� however� that these results came from a variety of architectures �e�g�� Sun�s IPX run�
ning SunOS ������ Sun�s Sparc � running SunOS ��� � Solaris �� and HP
����
���s running
HP�UX 
���� and� thus� time performance of some experiments are not directly comparable
to others� Notice also that the sizes of the databases used during the experiments changed
depending on the architecture used� A set of results gathered over only one architecture is
needed and will probably replace the results presented in this proposal�

	�� The Purge Phase

In this proposal we have discussed a particular instance of the �instance identi	cation�
problem� We then addressed the most time consuming part of the merge�purge procedure�
namely� the merge phase� We have completely ignored� until now� the purge phase�

The purge phase is very application dependent� For the type of application illustrated
throughout this proposal� there could be many things the user of a merge�purge engine
would like to do with those tuples identi	ed as �similar�� A possible use of the purge phase
is duplicate elimination from the input datasets� However� the user might want to perform
an analysis of the �duplicates� before removing all but one� For example� in the case of a
mailing list� the user may want to remove all but the most recent instance� Another user
might want to merge the information in some duplicates and remove only duplicates that
contain redundant information� Moreover� some users might not want to eliminate duplicates
but rather �infer� new information form the pieces of information marked as �similar� or
�related� during the merge phase� In general� the uses of the purge phase can go from
simple duplicate elimination to complex operations like those used for knowledge discovery
in databases�
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In section ���� we showed that the equational theory can falsely identify data items as
�similar� �false positives�� Table � showed some examples of false positives for the example
application under study in this proposal� A study of the reasons why the equational theory
produced these false positives revealed that in most of the cases� various of the distance
functions used to determine equality among several 	elds were at their thresholds� This
suggests that when distance functions are returning borderline values� we must mark the
resulting pairs as �similar but possible false positive�� Then� a more complex and expensive
analysis of these possible false positive pairs can be executed during the purge phase�

As part of this thesis work� we plan to address the problem discussed here and provide
mechanisms for the user to de	ne the purge phase�

	�� A Generic User Interface for Merge
Purge

Many phases of the merge�phase procedure are application dependent� For the simple ex�
ample we studied in this proposal involving lists of persons� to execute the merge phase we
must decide which keys to use to sort the data� provide an equational theory which could
be expressed in a ruled�based form� provide functions that implement the distance functions
with the proper thresholds if they are necessary� decide the size of the windows� and the
number of independent runs if the multi�pass approach is used� Then� once the merge phase
is de	ned� the user must decide what to do with the �merged� tuples during the purge phase�
We discussed some example uses for the purge phase in the previous section� Needless to
say� setting up every part of the merge�purge procedure without any help from an interface
could be a major burden to the possible users of merge�purge facility�

As part of this thesis work� we plan to construct and demonstrate a generic graphical
user interface for a merge�purge engine� This user interface must� at least� help the user to�

�� De	ne the di�erent keys to be used at each independent run of the sorted�neighborhood
method� and provide a comparative evaluation of the utility of alternative key struc�
tures�

�� De	ne the �clustering� strategy to be used� if any� This clustering strategy could be
based on uniform partitioning� constant partitioning� range restrictions� hash parti�
tioning� or classi	cation�

�� De	ne an equational theory�

�a� Use a simple rule�based language to specify the equational theory �probably a
language resembling OPS���

�b� Provide a compiler for the rule�based language� Here we could use one of the
many public�domain OPS� compilers available� However we probably will have
to change them to output code that is optimized for the window�scanning phase
of the sorted�neighborhood method�
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�c� Provide a library of distance functions similar to those used by us in this proposal�
We should� of course� allow the user to add their own distance functions to the
library�

�� Test the equational theory� The interface must provide means of extracting samples
from the input databases to for testing purposes� The use of small databases permits
the quick prototyping of the equational theory� The user can quickly learn the e�ects of
adding�removing a rule to�from the equational theory� as well as changing a threshold
in any distance function� to the accuracy of the obtained results� As in some expert
system shells� a explanation facility must also be provided that would provide the user
with the reason behind the decision of merging �or not merging� a pair of records�

�� Con	gure the sorted�merged neighborhood method to run over the available hardware�
This is of particular importance when the system is run in a parallel environment�

The use of tools to elicit knowledge from the user resembles the procedure of eliciting
knowledge from an expert in the process of building an expert system �Hayes et al�� �
���� In
fact� there has been some recent tools that� confronted with the same problem as us �a variety
of domains from which applications can be chosen�� have created a knowledge acquisition
tool to help the user de	ne parameters and rules �e�g�� �Solotorevsky et al�� �

����

Toolkits for building user interfaces are widely available �comp�graphics FAQ� �

��� At
the moment of writing� no decision had been made regarding which toolkit to use�

	�� Other Applications of Merge
Purge

For this thesis proposal we implemented and studied one instance of the merge�purge prob�
lem� identifying duplicates in a database of names� Once we implement the interface de�
scribed in the previous section� it would be interesting to test it under other domains where
our solutions to the merge�purge problem can be bene	cial� In particular� we must look
for applications where uni	cation of related entities is not well de	ned and might require
an intensive inference process� To date� we have identi	ed two such instances� We describe
them here brie�y�

����� ALEXSYS� The Mortgage Pool Allocator Expert System

ALEXSYS �ALlocator EXpert SYStem� is a rule�based expert system for allocating mortgage�
backed securities� This allocation is a combinatorial optimization problem whose complexity
is known to be NP�complete� ALEXSYS� described elsewhere �Stolfo et al�� �

��� has become
a benchmark in the rule�base processing community �Neiman� �

�� and has also recently
been used as a test case in �Dewan� �

���

The ALEXSYS rule program works by combining sets of pools into sell contracts whose
sizes are controlled by Public Securities Administration �PSA� regulations� Ideally� we would
like to apply the PSA rules over the entire set of pools and extract the best allocations� Nev�
ertheless� since the number of pools can be quite large� the time required makes this approach

��



infeasible� ALEXSYS uses a set of heuristics to overcome this optimization complexity� For
example� ALEXSYS 	rst tries to allocate pools with the highest pro	tability into contracts�
Then� it allocates single pools that can almost exactly 	t into a contract� A complete list
of these heuristics and the reasoning behind them can be found in �Stolfo et al�� �

�� and
are outside the scope of this proposal� For now it su�ces to mention that the practical
idea behind the use of heuristics is to reduce the number of pools the rules must consider
at each step of its inference process� But when the number of pools is very large� even the
use of heuristics is not enough to reduce the complexity of matching the rules to the set of
pools� In this case� data partitioning techniques had been used to initially divide the data
into independent pieces� The inference rules are then independently applied to each distinct
subset of pools�

The above procedure is analogous to the sorted�neighborhood method presented on this
thesis proposal� The initial partition of the data into independent pieces is analogous to our
initial sort phase while the inference phase where pools are allocated can be implemented
using the window scan procedure where the PSA rules are the equational theory� In more
details� our implementation of ALEXSYS via the sorted�neighborhood method will work as
follows�

�� Sort the initial data by the size of the pools� By considering pools in this order� we
are implementing the 	rst heuristic mentioned above�

�� Use the window scan phase over the sorted data with a relatively �large� window� Use
the ALEXSYS rules to determine which pools can be allocated into contracts� Pools
allocated to contracts are purged from the list� In this case one or more pools will be
deemed �equivalent� to a �good�million� contract allocation�

�� At the end of the previous step� a sorted list of still unallocated pools will remain�
We apply step �� again� to the remaining data in an attempt to 	ll more contracts�
This procedure is repeated until either there is a pass in which no new allocation is
produced� or a time deadline is reached�

����� A Spatial Join Application

Spatial Joins is one of the most frequently used operations in a spatial database system
�Brinkho� et al�� �

��� Given a relation A whose i�th column is a spatial attribute and a
relation B whose j�th column is also a spatial attribute� then A �� B is a spatial join if � is
a spatial predicate involving the spatial attributes of A and B �G$unther� �

��� Consider a
database containing geometric information taken from a map of New York City� A spatial
join would be used to answer a query like �Is Central Park inside Manhattan��� This
particular type of spatial join is called an intersection join�

In �Brinkho� et al�� �

��� a procedure to process intersection joins over relations with
spatial attributes is described� We note analogies between their solution� which they call
the multi�step procedure of spatial joins� and our sorted�neighborhood method� The multi�
step procedure starts by applying spatial access methods which traditionally use an object
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bounding box locations as a geometric key� The key is used to select a set of possible
candidates objects that satisfy the spatial join predicate� This is analogous to our initial
sort with a key� The selected candidates are then examined closely using a geometric �lter
that actually determines which objects satisfy the spatial predicate� This second step is
analogous to the merge phase of the sorted�neighborhood method where the geometric 	lter
is analogous to our equational theory�

We plan to implement a simple spatial join using the user interface described in the previ�
ous section that would follow the multi�step procedure� Consider a simple image containing
only a large number of squares and circles� For every circle in the image� we want to 	nd all
rectangles that are �near� that circle� Traditional solutions to this problem would cluster
the objects around some centroids� But in this case� we would need each circle to become the
centroid of a cluster� Alternatively� we can use the sorted�neighborhood method as follows�

�� First pass� Sort all objects by their x position� Use a window scan procedure to only
consider a small set of objects and 	nd all rectangles that are �near� a circle�

�� Second pass� Sort all objects by their y position and again use the window scan
procedure to 	nd rectangles �near� the circle�

�� Use a �transitive closure� step to union the results obtained by the two passes�

	 Contributions

We claim the following contributions from this work once completed as a thesis�

�� An implementation of a general�purpose merge�purge facility� including a parallel im�
plementation targeted to a variety of parallel computing architectures�

�� A user interface as described in section ��� to help users de	ne the domain�dependent
components of the merge�purge process�

�� The sorted�neighborhood method with user�de	ned equational theory as a general�
ization of band joins� We will provide time and accuracy results of all our di�erent
approaches to the sorted�neighborhood method�

�� The multi�pass approach of the sorted neighborhood method� We use a transitive
closure phase after several independent runs of the single�pass sorted�neighborhood
method to obtain more accurate results in less time than it would take any single�pass
run to reach the same level of accuracy�

�� Comparative evaluations of a range of examples in di�erent domains to demonstrate
its general utility�

��




 Conclusion

The sorted�neighborhood method described in this proposal is expensive due to the sorting
phase� as well as the need to search in large windows for high accuracy� An alternative
method based on data clustering modestly improves the process in time� However� neither
achieves high accuracy without inspecting large neighborhoods of records� Of particular
interest is that performing the merge�purge process multiple times over small windows� fol�
lowed by the computation of the transitive closure� dominates in accuracy for either method�
While multiple passes with small windows increases the number of successful matches� small
windows also favor decreases in false positives� leading to high overall accuracy of the merge
phase# An alternative view is that a single pass approach would be far slower to achieve a
comparable accuracy as a multi�pass approach�

In this proposal we have only addressed the most time consuming and important part of
the merge�purge problem� namely� the merge phase� We have not addressed the purge phase�
In many applications the purge phase requires complex functions to extract or �deduce�
relevant information from merged records� including various statistical measures� The rule
base comes in handy here as well� The consequent of the rules can be programmed to
specify selective extraction� purging� and even deduction of information� i�e� �data�directed�
projections� selections and deductions can be speci	ed in the rule sets when matching records
are found�
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A OPS� version of the equational theory

�� Rules for the Merge�Purge Procedure

�� by� Mauricio A� Hernandez
�� Computer Science Department
�� Columbia University
��
�literalize window size max�windows top pid outpipe�

�literalize goal name�

�literalize merged id� id��
�literalize similar�ssns id� id��
�literalize similar�addrs id� id��
�literalize very�similar�addrs id� id��
�literalize similar�names id� id��

�literalize person id ruid ssn name addr fname minit
lname stnum stname aptm city state

zipcode status�

������������������������������������������������������������
�� The rules in this section of the program will be the one
�� perfroming the match between records and �nding
�� candidates to be merged�

�p �nd�similar�ssns
�goal �name initial�matches�
�person �status active �id �id �� �ssn f �s�� � � g�
�person �status active �id f �id �� � �id �� g

�ssn f �s�� � � �same ssn p �s�� �� g �
� �similar�ssns �id� �id �� �id� �id ���

���

�make similar�ssns �id� �id �� �id� �id ����

�p compare�names
�goal �name initial�matches�
�person �status active �id �id �� �name �name���
�person �status active �id f �id �� � �id �� g

�name �compare names �name����
� �similar�names �id� �id �� �id� �id ���

���

�make similar�names �id� �id �� �id� �id ����

�p compare�addresses
�goal �name initial�matches�
�person �status active �id �id �� �stnum �num��

�stname �addr���
�person �status active �id f �id �� � �id �� g

�stnum �num���
�person �status active �id �id ��

�stname �compare addresses
�addr�� �num�� �num����

� �similar�addrs �id� �id �� �id� �id ���
���

�make similar�addrs �id� �id �� �id� �id ����

�p closer�addresses�use�zips
�goal �name initial�matches�
�similar�addrs �id �id �� �id� �id ���
�person �status active �id �id �� �city �c�

�zipcode �z��
�person �status active �id �id ��

�city �same city �c��
�zipcode �same zipcode �z���

� �very�similar�addrs �id� �id �� �id� �id ���
���

�make very�similar�addrs �id� �id �� �id� �id ����

�p closer�addresses�use�states
�goal �name initial�matches�
�similar�addrs �id �id �� �id� �id ���

� �very�similar�addrs �id� �id �� �id� �id ���
�person �status active �id �id �� �city �c� �state �s��
�person �status active �id �id �� �city �same city �c��

�state �s��
���

�make very�similar�addrs �id� �id �� �id� �id ����

�p change�context��

�goal �name initial�matches�
���

�modify � �name second�matches��

����������������������������������������������������������������
��
�� Context� Second Matches

��

�� For those records that have very�close SSNs� use thier names
�� to determine if they are the same person� If so� declare the
�� records �MERGED���

�p compare�addresses�use�numbers�state
�goal �name second�matches�

�person �status active �id �id ��
�stnum f �num� � � g
�stname �addr� �aptm f �a� �� � g
�city �c� �state �s��

�person �status active �id f �id �� � �id �� g

�stnum �very close num �num��
�stname �close but not much �addr��

�aptm f �� � �very close str �a�� g
�city �same city �c�� �state �s��

� �similar�addrs �id� �id �� �id� �id ���
� �very�similar�addrs �id� �id �� �id� �id ���

���

�make similar�addrs �id� �id �� �id� �id ���
�make very�similar�addrs �id� �id ��

�id� �id ����

�




�p compare�addresses�use�numbers�zipcode
�goal �name second�matches�
�person �status active �id �id ��

�stnum f �num� � � g
�stname �addr� �aptm f �a� �� � g
�city �c� �zipcode �z��

�person �status active �id f �id �� � �id �� g

�stnum �very close num �num��
�stname �close but not much �addr��
�aptm f �� � �very close str �a�� g

�city �same city �c��
�zipcode �same zipcode �z���

� �similar�addrs �id� �id �� �id� �id ���
� �very�similar�addrs �id� �id �� �id� �id ���

���

�make similar�addrs �id� �id �� �id� �id ���
�make very�similar�addrs �id� �id ��

�id� �id ����

�p same�same�same�address�except�city
�goal �name second�matches�
�similar�addrs �id� �id �� �id� �id ���
� �very�similar�addrs �id� �id �� �id� �id ���
� �merged �id� �id �� �id� �id ���

�person �status active �id �id ��
�stnum f �num� � � g
�aptm f �a� �� � g
�zipcode �z��

�person �status active �id �id ��
�stnum �very close num �num��
�aptm f �� � �very close str �a�� g

�zipcode �same zipcode �z���
���

�make very�similar�addrs �id� �id ��
�id� �id ����

�p same�ssn�and�name
�goal �name second�matches�
f �similar�ssns �id� �id �� �id� �id ��� �ssns� g

f �similar�names �id� �id �� �id� �id ��� �names� g

� �merged �id� �id �� �id� �id ���
���

�remove �ssns� �names��
�make merged �id� �id �� �id� �id ����

�p same�ssn�and�address

�goal �name second�matches�
f �similar�ssns �id� �id �� �id� �id ��� �ssns� g

f �very�similar�addrs �id� �id �� �id� �id ��� �vsa� g

� �merged �id� �id �� �id� �id ���
���

�remove �ssns� �vsa��
�make merged �id� �id �� �id� �id ����

�p same�name�and�address
�goal �name second�matches�
f �similar�names �id� �id �� �id� �id ��� �names� g

f �very�similar�addrs �id� �id �� �id� �id ��� �vsa� g

� �merged �id� �id �� �id� �id ���
���

�remove �names� �vsa��

�make merged �id� �id �� �id� �id ����

�p change�context��
�goal �name second�matches�

���

�modify � �name third�matches��

��������������������������������������������������������������

�� Context� Third Matches
��

�p very�close�ssn�close�address
�goal �name third�matches�
�similar�addrs �id� �id �� �id� �id ���
�similar�ssns �id� �id �� �id� �id ���

� �similar�names �id� �id �� �id� �id ���
�person �status active �id �id �� �ssn �s���
�person �status active �id �id �� �ssn �same ssn p �s�� ���
� �merged �id� �id �� �id� �id ���

���

�make merged �id� �id �� �id� �id ����

�p hard�case��
�goal �name third�matches�
f �very�similar�addrs �id� �id �� �id� �id ��� �sa� g

�person �status active �id �id ��
�fname �fn�
�stname �addr��
�zipcode �z��

�person �status active �id �id ��
�fname �same name or initial �fn��
�stname �addr�� �zipcode �z��

� �merged �id� �id �� �id� �id ���
���

�remove �sa��
�make merged �id� �id �� �id� �id ����

�p goto�report
�goal �name third�matches�

���

�modify � �name do�report��

��



B C version of the equational theory

��
� rule program � number of tuples� �rst tuple� window size �
� Compare all tuples inside a window� If a match is found�
� call merge tuples���
��
void
rule program�int ntuples� int start� int wsize�
f
register int i� j�
register WindowEntry �person�� �person��
boolean similar ssns� similar names� similar addrs�
boolean similar city� similar state� similar zip�
boolean very similar addres� very close aptm�

very close stnum� not close�

�� For all tuples under consideration ��
for �j � start� j � ntuples� j��� f
�� person� points to the j�th tuple ��
person� � �tuples�j��
�� For all other tuples inside the window �wsize�	 tuples
� before the j�th tuple��
��
for �i � j � �� i � j�wsize �� i � �� i��� f
�� person	 points to the i�th tuple ��
person� � �tuples�i��

�� Compare person	 with person� ��

�� RULE
 �nd�similar�ssns ��
similar ssns � same ssn p�person��ssn�person��ssn����

�� RULE
 compare�names ��
similar names �
compare names �

person��name� person��name�
person��fname� person��minit� person��lname�
person��fname� person��minit� person��lname�
person��fname init� person��fname init
��

�� RULE
 same�ssn�and�name ��
if �similar ssns �� similar names� f
merge tuples�person�� person���
continue�

g

�� RULE
 compare�addresses ��
similar addrs � compare addresses�person��stname�

person��stname��

�� Compare other �elds of the address ��
similar city � same city�person��city� person��city��
similar zip � same zipcode�person��zipcode�

person��zipcode��
similar state �

�strcmp�person��state� person��state� �� ���

�� RULEs
 closer�addresses�use�zips and
� closer�address�use�states
��
very similar addrs �
�similar addrs �� similar city ��
�similar state jj similar zip���

�� RULEs
 same�ssn�and�address and
� same�name�and�address
��
if ��similar ssns jj similar names� ��

very similar addrs� f
merge tuples�person�� person���
continue�

g

not close � close but not much�person��stname�
person��stname��

if �person��stnum �� person��stnum�
very close stnum � very close num�person��stnum�

person��stnum��
else
very close stnum � FALSE�

if �person��aptm �� person��aptm�
very close aptm � very close str�person��aptm�

person��aptm��
else
very close aptm � FALSE�

�� RULEs
 compare�addresses�use�numbers�state�
� compare�addresses�use�numbers�zipcode� and
� same�address�except�city
��
if ��very close stnum �� not close �� very close aptm

�� similar city ��
�similar state jj similar zip� �� �similar addrs� jj
�similar addrs �� very close stnum ��
very close aptm �� similar zip�� f

very similar addrs � TRUE�

�� RULEs
 same�ssn�and�address and
� same�name�and�address �again� ��
if �similar ssns jj similar names� f
merge tuples�person�� person���
continue�
g

g

�� RULE
 very�close�ssn�close�address ��
if �similar addrs �� similar ssns �� �similar names�
if �same ssn p �person��ssn� person��ssn� ��� f
merge tuples�person�� person���
continue�

g

�� RULE
 hard�case�	 ��
if �similar ssns �� very similar addrs �� similar zip ��

same name or initial�person��fname�person��fname�� f
merge tuples�person�� person���
continue�

g

g
g

g

��


