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5.12.1 Introduction assumption of constant seafloor spreading in the

As new seafloor is created at the ridge crest, it cools
and acquires a thermoremanence that captures a
record of past geomagnetic field variations. The
dominant geomagnetic signal recorded in the ocean
crust is the pattern of field reversals; the juxtaposition
of normal and reverse polarity crust constitutes a
large magnetization contrast that generates readily
identifiable variations in the magnetic field measured
at the sea surface. The lineated and globally correla-
table sea-surface magnetic
anomalies has proven remarkably useful in docu-
menting the pattern of geomagnetic reversals since
~160 Ma. This reversal pattern, calibrated with sui-
table numerical ages, provides the basis for the
geomagnetic polarity timescale (GPTS) that has
broad reaching throughout Earth
sciences including mapping the age distribution of
the ocean floor constituting more than half of Earth’s
surface area.

The inferred pattern of geomagnetic reversals
has changed relatively little since the pioneering
work of Heirtzler er al (1968), who used an

character of these

applications

South Atlantic to derive the first GPTS. The stabi-
lity of polarity interval widths in subsequent
timescales testifies to the regularity of seafloor
spreading, at least for carefully chosen spreading
corridors. The anomaly profile in Figure 1, calcu-
lated from a simple block model with vertical
polarity boundaries and for a full spreading rate of
140 km My~ illustrates the optimal resolution that
is possible at the fastest spreading known from the
present ocean basins. Note that the terms slow-,
intermediate-, fast-, and superfast-spreading refer
to full spreading rates of <40kmMy ',
40-90km My ', 90-140km My ', >140km My,
respectively. This simple model highlights some
important aspects of magnetic anomalies measured
at the sea surface. First, the depth of magnetization
source (varying from about 2.6 km at the ridge crest
to 5.6km for the oldest seafloor (Stein and Stein,
1994) exerts a fundamental control on the wave-
lengths that can be resolved at the sea surface. The
depth and thickness of the magnetized layer act as a
bandpass filter (Earth filter of Schouten and

McCamy, 1972; with the least attenuation at
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Figure 1 Geomagnetic polarity timescale from marine magnetic anomalies for 0-160 Ma. After Lowrie and Kent (2004);
largely based on Cande and Kent (1995) and Channell et al. (1995). Filled and open blocks represent intervals of normal
and reverse geomagnetic field polarity. (Table 1); key chrons that were used as calibration tiepoints are identified above
the bar graph (C1n, C3n, etc.) and correlated positions of geologic period boundaries are indicated by ticks below the
bar graph (N/P, Neogene/Paleogene; P/K, Paleogene/Cretaceous, K/J, Cretaceous/Jurassic). Idealized magnetic anomaly
profile uses this polarity pattern in a 1km thick source layer that has a mean magnetization of 5AmM™" with gaussian
variation (0 =42% of mean) to mimic paleointensity variations, and vertical magnetization boundaries. The anomaly is
calculated at the pole (no skewness, magnetization and ambient field direction vertical) at a full-spreading rate of
140kmMy™", with depth to the upper surface that increases with age®® (Ma) (Stein and Stein, 1994). Note the amplitude
modulation, which primarily reflects the sequence effect since source properties otherwise stay constant other than
modest monotonic change in water depth, except for magnetization ramp from JQZ into M-sequence (dashed line; factor
of 5 increase from 157 Ma to 143 Ma) that is likely due to a systematic increase in geomagnetic intensity (Cande et al.,

1978; McElhinny and Larson, 2003).

wavelengths of 8—15km for typical seafloor depths).
Polarity intervals corresponding to these spatial
scales (~100-200ky for fast-spreading crust) are
particularly well represented in the sea-surface
anomaly profile (e.g, Anomaly 2; 1.77-1.95 Ma).
Significantly shorter polarity intervals (~10" years)
are also recognizable in high-resolution profiles
from fast-spreading ridges, although such brief mag-
netization changes appear as broader, substantially
attenuated anomalies at the sea surface. Thus, the
combination of rapid spreading and typical seafloor
depths of 3—4 km is well suited to capture essentially

all polarity intervals with durations exceeding ~10"
years in sea-surface anomaly data. Indeed, indepen-
dent magnetostratigraphic studies corroborate that
the GPTS can be viewed as essentially complete at
timescales greater than about 30 ky.

Establishing the origin and significance of anom-
aly fluctuations at scales both longer and shorter than
the dominant timescale of reversals (10*—10° years)
can potentially provide valuable additional insights
into geomagnetic field behavior. To the extent that
the magnetization of the ocean crust is a thermorem-
anence, the magnetization of the ocean crust might
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be expected to preserve a broad spectrum of
geomagnetic field variations, from brief (<10’ years)
excursions or intensity fluctuations to longer-
term variations on the scale of superchrons
(10’=10° years). Documenting the relative impor-
of geomagnetic field fluctuations in
controlling magnetic anomaly amplitudes has proven
difficult, however, since these anomalies are the end
product of the recording of a paleofield signal (e.g,
paleointensity variations, directional excursions, and

tance

polarity reversals), modulated by crustal accretionary
processes (e.g., variations in geochemistry or the pat-
tern of lava accumulation), and geometry of the
source region(s). Despite limitations in accounting
for the recording medium, significant progress has
been made in documenting short wavelength anom-
aly fluctuations that may be attributed to
geomagnetic field behavior. A key element in many
of these studies is the collection of anomaly data
nearer the magnetic source layer to preserve higher
frequency variations that are attenuated in sea-sur-
face anomaly data. The coherence among near-
bottom anomaly profiles and the similarity of these
coherent fluctuations with independent records of
field intensity from sediments suggest that a substan-
tial geomagnetic intensity signal may be preserved in
the ocean crustal magnetization.

Some longer-term variations in anomaly ampli-
tudes may likewise have a geomagnetic origin
although there has been less progress in differentiat-
ing this from other causes of variation in source
properties. For example, the gradual increase in
anomaly amplitudes following the Jurassic Quiet
Zone (JQZ; crust older than ~154Ma) has been
attributed to an increase in paleofield intensity
(Cande er al., 1978) whereas the amplitude envelope
observed over some ridge axes has long been inter-
preted as evidence of low-temperature alteration of
the source layer (e.g, Bleil and Petersen, 1983;
Raymond and LaBrecque, 1987). The particular
pattern of polarity reversals and the relative widths
of adjacent polarity intervals (sometimes termed the
sequence effect) can modulate anomaly amplitudes,
for example, the variations in amplitudes that are
apparent over the past 40 My in the simple model
shown in Figure 1, so recognition of long-term
trends 1s not straightforward. There are also first-
order geomagnetic questions about the marked con-
trast in the character of magnetic anomalies in the
Cretaceous Quiet Zone (KQZ; 83—120.6 Ma) and the
JQZ, the former often associated with large ampli-
tude anomalies and the latter with small amplitude

anomalies, which may be related to significant differ-
ences in mean field strength in the Jurassic and the
Cretaceous.

Despite more than 40 years of study, many aspects
of the magnetization source responsible for lineated
marine magnetic anomalies remain uncertain. Early
studies (Atwater and Mudie, 1973; Talwani et al,
1971) indicated that the source layer is thin and
dominated by extrusives whereas compilations of
lava magnetizations suggest that additional deeper
sources may be required and indeed in some cases
(e.g, near Ocean Drilling Program (ODP) Hole 735B;
Dick er al, 1991) recognizable anomaly lineations are
present where only the intrusive portion of the crust
is preserved. Since the last review of crustal magne-
tization (Smith, 1990), there has been significant
progress in sampling of the dikes, lower crustal gab-
bros, and upper mantle material exposed in tectonic
windows, and these studies indicate that dikes and
gabbros are likely significant contributors to sea-
surface magnetic anomalies. In addition to the need
for a fundamental characterization of possible mag-
within  the crust,
understanding of the details of the accretionary pro-
cess (e.g, width of the neovolcanic zone, off-axis
volcanism) is also essential since these provide an
intrinsic limit on the fidelity of the crustal recording
process. As our understanding of geomagnetic field
variations improves (particularly over timescales on
the order of 10* years over which much of the
ocean crust is constructed), near-bottom magnetic
anomaly data can be used to constrain aspects of
crustal accretion. Such studies can, in turn, be
useful in evaluating the timescales at which geo-
magnetic recovered from
magnetic anomaly records.

In this chapter we will focus primarily on the
promise and limitations of the ocean crust as a recor-

netization  sources some

information can be

der of geomagnetic field variations, emphasizing the
record of past geomagnetic field variations recorded
in anomalies (and therefore in source magnetization)
on timescales of 10° years (excursions) to 10"-10°
(reversals) and 10"-10° (superchrons). We review
the origin of the magnetization in the various crustal
source layers responsible for lineated magnetic
anomalies and conclude by mentioning some appli-
cations to deciphering how oceanic crust formed and
by speculating on future directions. The chapter is
based mostly on published literature that appeared
since the last major review of ocean crust magnetiza-
tion by Smith (1990).
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5.12.2 Magnetic Anomalies as
Records of Geomagnetic Field
Behavior

5.12.2.1 Polarity Reversals and the
Geomagnetic Polarity Timescale

Marine magnetic anomalies (Vine, 1966; Vine and
Matthews, 1963) provide a complete record of geo-
magnetic polarity reversals, making the age-
calibrated geomagnetic polarity sequence the basis
for global correlations and geochronology for the
past 160 My (Figure 1). The relative widths of the
magnetic polarity intervals for the Late Jurassic to
Recent were determined from magnetic profiles
initially by Heirtzler er al. (1968) for the Central
Anomaly (Anomaly 1) to Anomaly 32 (C-sequence)
and by Larson and Pitman (1972) for Anomalies
MI1-M22 (M-sequence). Larson and Pitman recog-
nized that the M-sequence anomalies were bracketed
by long intervals with apparently few or no reversals:
the KQZ between the M-sequence and the ridge
crest C-sequence of Heirtzler ez a/. (to which Larson
and Pitman added Anomalies 33 and 34) and the JQZ
prior to the M-sequence (which was soon extended
to MO at the younger end and to M25 at the older end
by Larson and Hilde (1975) and to M29 by Cande
et al. (1978). Key aspects of the geomagnetic inter-
pretations were verified by magnetostratigraphic
studies. For example, Helsley and Steiner (1969)
documented an interval of constant normal polarity
(the Cretaceous Normal Polarity Superchron,
CNPS) corresponding to the KQZ observed in mag-
netic anomaly profiles. Similarly, Lowrie and Alvarez
(1981) verified the overall correspondence between
magnetostratigraphic polarity intervals and the
~100My anomaly record from Anomaly 6C to
Anomaly M3 including the CNPS and KQZ, and
Ogg and Lowrie (1986) provided magnetostrati-
graphic confirmation for the central part of the
M-sequence. Correlations between anomaly inter-
pretations and magnetostratigraphy are being
refined in land sections and marine cores (e.g,
Billups er al., 2004; Channell ez 4/, 2003; Lanci et al.,
2004, 2005; Speranza er al, 2005) and provide the
linkage to numerical ages based on radioisotopic
dates or astronomical cyclicity in stratigraphic sec-
tions for age calibration of the anomaly sequence in
the construction of geomagnetic polarity timescales.

Standard geomagnetic polarity chron nomencla-
ture is based on the long-standing numbering
schemes (sometimes with lettered additions) for

prominent but irregularly spaced magnetic anomalies
(Larson and Pitman, 1972; Pitman and Heirtzler,
1966; Pitman et al, 1968). Polarity subdivisions for
the past ~5 My based on compilations of radiometric
dating of discrete lavas (Cox ez al, 1964) were initially
labeled after prominent geomagneticians (Brunhes,
Matuyama, Gauss, and Gilbert for chrons, formerly
called epochs; Anonymous, 1979) and type localities
(Jaramillo, Olduvai, Mammoth, etc., for subchrons,
formerly called events) but this nomenclature system
was impractical to be extended to the numerous
older polarity intervals delineated by magnetic
anomalies. By convention, identifiers usually refer
to positive anomalies, which correspond to normal
polarity for the C-sequence (Anomalies 1-34) but
mostly to reverse polarity intervals for the
M-sequence (M0-M29) because they formed in the
Southern Hemisphere but are now in the Northern
Hemisphere in the Pacific where the M-sequence is
well developed. A chron corresponds to the interval
from the younger boundary of the eponymous anom-
aly to the younger boundary of the preceding
anomaly and has the prefix ‘C’ (e.g, Chron C3A or
Chron CM20). However, each of these chrons is
usually subdivided into the two constituent intervals
of predominantly normal and reverse polarity, which
are designated by adding to the name the suffix ‘n’ for
normal polarity and ‘r’ for the preceding reverse
polarity interval (e.g, Chron C3An and Chron
C3Ar, or Chron CM20n and Chron CM20r). When
these polarity chrons are further subdivided into
shorter polarity intervals they are referred to as sub-
chrons and identified by appending, from youngest to
oldest, “.1’, .2’ etc,, to the polarity chron name, and
adding an ‘n’ for normal polarity or an ‘t’ for reverse
polarity (e.g., Chron C3An.1r, or Chron CM20n.1r).
Finally, the designation =17, ‘=2, etc., 1s used follow-
ing a chron or subchron name to denote apparently
brief geomagnetic features corresponding to short
wavelength anomalies or ‘tiny wiggles’, which, upon
calibration, convert to durations less than 30ky. In
view of their uncertain origin, these globally mapped
geomagnetic features are referred to as cryptochrons
(Cande and Kent, 1992a); they can be elevated to
subchron status by the addition of ‘n’ for normal
polarity and ‘" for reverse polarity if confirmed as
polarity intervals in magnetostratigraphic studies
(e.g, Chron Clr.2r-1n).

Anomaly spacings for the Central Anomaly
(Anomaly 1) to Anomaly 34 (younger end of KQZ)
were comprehensively refined by Cande and Kent
(1992a) and for the M-sequence (M0-M29) by
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Channell ez 4l. (1995). Cande and Kent (1992a) used a
combination of nine finite rotation poles to describe
seafloor spreading in the South Atlantic and 61
stacked profiles distributed over the finite rotation
pole intervals to develop a continuous framework for
the anomaly sequence; finer scale information was
derived from faster spreading rate ridges in the
Pacific and Indian Oceans and inserted into the
South Atlantic pattern. For age calibration, Cande
and Kent (1992a) assumed that spreading rates in
the South Atlantic were smoothly varying and fit a
cubic interpolation spline function to a set of nine
tepoints that link radioisotopic ages with distances of
correlative anomalies from the zero-age ridge axis to
derive a GPTS for 0-83Ma (Anomaly 34). The
revised GPTS of Cande and Kent (1995) (CK95)
includes astrochronological estimates for polarity
reversals for the past 523My (Hilgen, 1991;
Shackleton ez al., 1990), which are negligibly different
(within 0.03 My) from the most recent retuning by
Lourens ez al. (2004). For the M-sequence, Channell
et al. (1995) compared profiles from the Phoenix,
Japanese, and Hawaiian lineation sets and derived a
representative anomaly sequence for MO to M29
from a new block model for the Hawaiian lineations.
There are stll relatively few age-diagnostic data
available for calibration of M-sequence anomalies —
Channell er al. (1995) used only three tiepoints that
were regarded as reliable and consistent with con-
stant spreading on the new model of the Hawaiian
lineations to derive a GPTS (referred to by the
authors as CENT94) for 120.6Ma (MO) to
157.53 Ma (M29).

The listing of polarity intervals given in Table 1
is the same as used for statistical analysis by Lowrie
and Kent (2004) and is basically a combination of
CK95 for the C-sequence and CENT94 for the M-
sequence. This polarity sequence for the past 160 My
is believed to be complete to a resolution of better
than 30 ky and includes those relatively few crypto-
chrons that have been detected as short polarity
intervals in high-resolution magnetostratigraphic
studies and elevated to subchrons, mostly in the
Cenozoic (see summary by Krijgsman and Kent
2004). Small-scale magnetic anomalies have been
identified beyond M29 (Handschumacher et al,
1988), most recently to M41 with an apparent age
of ~167Ma (Sager er al, 1998; Tivey er al, 2000).
However, the character of the pre-M29 anomalies
resembles small-scale magnetic anomalies or tiny
wiggles in the Cenozoic, which have generally been
attributed to paleointensity variations rather than

geomagnetic reversals (e.g, Cande and Kent,
1992b). Accordingly, the pre-M29 anomalies along
with the cryptochrons in the Cenozoic that have not
been confirmed as polarity intervals are not included
in Table 1 or shown in Figure 1.

A recently published timescale (GTS2004:
Gradstein ef al., 2004) utilizes the distances to anoma-
lies in the South Atantic from Cande and Kent
(1992a, 1995) but with a somewhat different array of
age calibration tiepoints. The largest difference
between CK95 and GTS2004 is less than 1 My and
occurs at chron C6Cn.2n, which was set at
238+ 1Ma in CK95 but has been recalibrated
using astrochronology to 23.03+0.04 Ma (Lourens
et al., 2004; Shackleton ez 4/, 2000). CK95 also main-
tains age registry with the compilation of Cenozoic
cryptochrons by Cande and Kent (1992b), which
were not migrated to the chronology of GTS2004.
For the M-sequence, age calibration of M0 is a major
difference: GTS2004 sets the age of Chron
CMO (base of Aptan) at about 125Ma, which is
4My older than in the CENT94 tumescale of
Channell ez 4l. (1995) and needs to be corroborated
because of the profound implications for the rate of
seafloor spreading in the KQZ (e.g, Cogné and
Humler, 20006).

On a plot of the age of each reversal against the
order of its occurrence (Figure 2), the CENT94 data
define a straight line whereas the CK95 C-sequence
can be divided into two nearly linear segments that
intersect near Chron C12r at about 32 Ma. The 37.6
My-long CNPS is evident as an abrupt discontinuity
between the C-sequence and the M-sequence and is
the longest polarity interval in the entire ~160 My-
long sequence. Polarity intervals C33n and C33r that
immediately follow the CNPS are the 2" and 3™
longest chrons and may have a closer affinity to the
CNPS than to the rest of the reversal sequence.
Linear segments imply that the reversal process is
stationary and allow calculation of representative
statistical parameters for each of the reversal fre-
quency regimes. According to Lowrie and Kent
(2004), mean polarity interval lengths are 0.25 My
for Cln—Cl12r, 0.75My for C13n—C32r, and
0415 My for M0-M29. Despite the large differences
in mean polarity interval length and taking into
account a finite reversal transition time of a few
thousand vyears, the distributions of chron lengths
within each of the regimes are not significantly
different from a Poisson or exponential distribution
(Lowrie and Kent, 2004), which implies that the
reversal process is essentially free of memory (Cox,
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Table 1 Geomagnetic polarity chrons from marine magnetic anomalies

Age range (Ma)

Normal polarity Chrons

Age range (Ma)

Reverse polarity chrons

0.000-0.780
0.990-1.070
1.201-1.211
1.770-1.950
2.140-2.150
2.581-3.040
3.110-3.220
3.330-3.580
4.180-4.290
4.480-4.620
4.800-4.890
4.980-5.230
5.894-6.137
6.269-6.567
6.935-7.091
7.135-7.170
7.341-7.375
7.432-7.562
7.650-8.072
8.225-8.257
8.606-8.664
8.699-9.025
9.097-9.117
9.230-9.308
9.580-9.642
9.740-9.880
9.920-10.949
11.052-11.099
11.167-11.193
11.352-11.363
11.476-11.531
11.555-11.584
11.935-12.078
12.184-12.401
12.678-12.708
12.775-12.819
12.991-13.139
13.302-13.510
13.703-14.076
14.178-14.612
14.800-14.888
15.034-15.155
16.014-16.293
16.327-16.488
16.556-16.726
17.277-17.615
17.793-17.854
18.281-18.781
19.048-20.131
20.518-20.725
20.996-21.320
21.768-21.859
22.151-22.248
22.459-22.493
22.588-22.750
22.804-23.069
23.353-23.535
23.677-23.800

Cin
Cir.1n
Cir.2r-1n
C2n
C2r.1n
C2An.1n
C2An.2n
C2An.3n
C3n.1n
C3n.2n
C3n.3n
C3n.4n
C3An.1n
C3An.2n
C3Bn
C3Br.1n
C3Br.2n
C4n.1n
C4n.2n
C4r.1n
C4r.2r-1n
C4An
C4Ar.1r-1n
C4Ar.1n
C4Ar.2n
C5n.1n
Cb5n.2n
Cbr.1n
Cbr.2r-1n
Cbr.2r-2n
Cbr.2n
C5r.3r-1n
C5An.1n
C5An.2n
C5Ar.1n
C5Ar.2n
C5AAN
C5ABN
C5ACn
C5ADN
C5Bn.1n
C5Bn.2n
C5Cn.1n
C5Cn.2n
C5Cn.3n
C5Dn
C5Dr-1n
C5En
C6én
C6ANn.1n
C6An.2n
C6AAN
C6AAr.1n
C6AAr.2n
C6Bn.1n
C6Bn.2n
C6Cn.1n
C6Cn.2n

0.780-0.990
1.070-1.201
1.211-1.770
1.950-2.140
2.150-2.600
3.040-3.110
3.220-3.330
3.580-4.180
4.290-4.480
4.620-4.800
4.890-4.980
5.230-5.894
6.137-6.269
6.567-6.935
7.091-7.135
7.170-7.341
7.375-7.432
7.562-7.650
8.072-8.225
8.257-8.606
8.664-8.699
9.025-9.097
9.117-9.230
9.308-9.580
9.642-9.740
9.880-9.920
10.949-11.0562
11.099-11.167
11.193-11.352
11.363-11.476
11.5631-11.555
11.584-11.935
12.078-12.184
12.401-12.678
12.708-12.775
12.819-12.991
13.139-13.302
13.510-13.703
14.076-14.178
14.612-14.800
14.888-15.034
15.155-16.014
16.293-16.327
16.488-16.556
16.726-17.277
17.615-17.793
17.854-18.281
18.781-19.048
20.131-20.518
20.725-20.996
21.320-21.768
21.859-22.151
22.248-22.459
22.493-22.588
22.750-22.804
23.069-23.353
23.535-23.677
23.800-23.999

ClrAar
C1r.2r-
Cir.2r-
C2r.1r
Car.2r
C2An.1r
C2An.2r
C2Ar
C3n.1r
C3n.2r
C3n.3r
C3r
C3An.1r
C3Ar
C3Br.1r
C3Br.2r
C3Br.3r
Can.1r
CarAr
Cdr.2r«
C4r.2rx
CA4Ar.Arx
CAAr.Ar«
C4Ar.2r
C4Ar.3r
C5n.1r
Cbr.1Ar
C5r.2rx
C5r.2r«
Cbr.2r«
C5r.3rx
C5r.3rx
C5An.1r
C5Ar.1r
C5Ar.2r
C5Ar.3r
C5AAr
C5ABr
C5ACr
C5ADr
C5Bn.1r
C5Br
C5Cn.1r
C5Cn.2r
C5Cr
C5Dr+
C5Dr+
C5Er
Cér
C6AN.1r
C6Ar
C6AAr.1r
C6AAr.2r
C6AAr.3r
c6éBn.1r
C6Br
C6Cn.1r
CéCn.2r
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Table 1 (Continued)

Age range (Ma)

Normal polarity Chrons

Age range (Ma)

Reverse polarity chrons

23.999-24.118
24.730-24.781
24.835-25.183
25.496-25.648
25.678-25.705
25.823-25.951
25.992-26.554
27.027-27.972
28.283-28.512
28.578-28.745
29.401-29.662
29.765-30.098
30.479-30.939
33.058-33.545
34.655-34.940
35.343-35.526
35.685-36.341
36.618-37.473
37.604-37.848
37.920-38.113
38.426-39.552
39.631-40.130
41.257-41.521
42.536-43.789
46.264-47.906
49.037-49.714
50.778-50.946
51.047-51.743
52.364-52.663
52.757-52.801
52.903-583.347
55.904-56.391
57.554-57.911
60.920-61.276
62.499-63.634
63.976-64.745
65.578-67.610
67.735-68.737
71.071-71.338
71.587-73.004
73.291-73.374
73.619-79.075

83.00-120.60
121.00-123.19
123.55-124.05
125.67-126.57
126.91-127.11
127.23-127.49
127.79-128.07
128.34-128.62
128.93-129.25
129.63-129.91
129.95-130.22
130.24-130.49
130.84-131.50
131.71-131.73
131.91-132.35
132.40-132.47

C6Cn.3n
C7n.1n
C7n.2n
C7An
C7Ar-1n
C8n.1n
C8n.2n
C9n
C10n.1n
C10n.2n
C1in.1n
C11n.2n
C12n

C13n

C15n
Ci6n.1n
C16n.2n
C17n.1n
C17n.2n
C17n.3n
C18n.1n
C18n.2n
C19n

C20n

C21n

C22n
C23n.1n
C23n.2n
C24n.1n
C24n.2n
C24n.3n
C25n

C26n

C27n

C28n

C29n

C30n

C31n
C32n.1n
C32n.2n
C32r.1n
C33n

C34n (CNPS)
CM1n
CM2n
CMd4n
CMeén
CMT7n
CM8n
CM9n
CM10n
CM10Nn.1n
CM10Nn.2n
CM10NN.3n
CM11n
CM11r.1n
CM11An.1n
CM11An.2n

24.118-24.730
24.781-24.835
25.183-25.496
25.648-25.678
25.705-25.823
25.951-25.992
26.554-27.027
27.972-28.283
28.512-28.578
28.745-29.401
29.662-29.765
30.098-30.479
30.939-33.058
33.545-34.655
34.940-35.343
35.526-35.685
36.341-36.618
37.473-37.604
37.848-37.920
38.113-38.426
39.552-39.631
40.130-41.257
41.521-42.536
43.789-46.264
47.906-49.037
49.714-50.778
50.946-51.047
51.743-52.364
52.663-52.757
52.801-52.903
53.347-55.904
56.391-57.554
57.911-60.920
61.276-62.499
63.634-63.976
64.745-65.578
67.610-67.735
68.737-71.071
71.338-71.587
73.004-73.291
73.374-73.619
79.075-83.000
120.60-121.00
123.19-123.55
124.05-125.67
126.57-126.91
127.11-127.23
127.49-127.79
128.07-128.34
128.62-128.93
129.25-129.63
129.91-129.95
130.22-130.24
130.49-130.84
131.50-131.71
131.73-131.91
132.35-132.40
132.47-132.55

C6Cr
C7n.1r
C7r
C7Arx
C7Arx
C8n.1r
C8r

Cor
C10n.1r
C10r
C1in.dr
Cl1r
Cl2r
C13r
C15r
C16n.1r
C1ér
C17n.1r
C17n.2r
C17r
C18n.1r
C18r
C19r
C20r
C21r
C22r
C23n.1r
C23r
C24n.1r
C24n.2r
C24r
C25r
C26r
C27r
C28r
C29r
C30r
C31r
C32n.1r
C32r.1r
C32r.2r
C33r
CMor
CM1r
CMB3r
CM5r
CMeér
CMT7r
CM8r
CMOr
CM10r
CM10NnN.1r
CM10NnN.2r
CM10Nr
CM11r.1r
CM11r.2r
CM11An.1r
CM11Ar
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Table 1 (Continued)

Age range (Ma) Normal polarity Chrons

Age range (Ma) Reverse polarity chrons

132.55-132.76 CM12n
133.51-133.58 CM12r.1n
133.73-133.99 CM12An
134.08-134.27 CM13n
134.53-134.81 CM14n
135.57-135.96 CM15n
136.49-137.85 CM16n
138.50-138.89 CM17n
140.51-141.22 CM18n
141.63-141.78 CM19n.1n
141.88-143.07 CM19n
143.36-143.77 CM20n.1n
143.84-144.70 CM20n.2n
145.52-146.56 CM21n
147.06-148.57 CM22n.1n
148.62-148.67 CM22n.2n
148.72-148.79 CM22n.3n
149.49-149.72 CM22An
150.04-150.69 CM23n.1n
150.91-150.93 CM23n.2n
151.40-151.72 CM24n.1n
151.98-152.00 CM24n.2n
152.15-152.24 CM24An
152.43-153.13 CM24Bn
153.43-154.00 CM25n
154.31-155.32 CM26n
155.55-155.80 CM27n
156.05-156.19 CM28n
156.51-157.27 CM29n

132.76-133.51 CM12r.1r
133.58-133.73 CM12r.2r
133.99-134.08 CM12Ar
134.27-134.53 CM13r
134.81-135.57 CM14r
135.96-136.49 CM15r
137.85-138.50 CM16r
138.89-140.51 CM17r
141.22-141.63 CM18r
141.78-141.88 CM19n.1r
143.07-143.36 CM19r
143.77-143.84 CM20n.1r
144.70-145.52 CM20r
146.56-147.06 CM21r
148.57-148.62 CM22n.1r
148.67-148.72 CM22n.2r
148.79-149.49 CMm22r
149.72-150.04 CM22Ar
150.69-150.91 CM23n.1r
150.93-151.40 CM23r
151.72-151.98 CM24n.1r
152.00-152.15 CM24r
152.24-152.43 CM24Ar
153.13-153.43 CM24Br
154.00-154.31 CM25r
155.32-155.55 CM26r
155.80-156.05 CM27r
156.19-156.51 CM28r
157.27-157.53 CM29r

Geomagnetic polarity time scale tabulated from Cande and Kent (1995), with additional short subchrons summarized by Lowrie and Kent
(2004), for after the Cretaceous Normal Polarity Superchron (CNPS), which corresponds to the Cretaceous Quiet Zone, and from Channell
et al. (1995) for before the CNPS. The names of chrons marked by asterisks are repeated because the reverse polarity intervals contain one
or two cryptochrons that have been elevated to the status of new normal polarity subchrons.

1968). It has been suggested that the CNPS may
represent part of a continuous, long-term evolution
of reversal rate (McFadden and Merrill, 2000).
However, the lack of precursory field behavior that
might have heralded this superchron (Gallet and
Hulot, 1997; Lowrie and Kent, 2004) suggests that
the CNPS may represent either an abrupt
perturbation of the reversal process or a separate
(non)reversal regime.

5.12.2.2 Geomagnetic Intensity
Fluctuations

Sea-surface magnetic anomaly profiles from fast-
spreading ridges allow recognition of polarity inter-
vals as short as ~30ky. Yet the geomagnetic field is
known to fluctuate on significantly shorter time-
scales. For example, direct observations indicate

that the dipole field is decreasing at 15 nTyr ' so
that g} has decreased about 8% since 1832 when
Gauss first estimated the field intensity from a
spherical harmonic analysis (Jackson er al, 2000).
Absolute  paleointensities
materials suggest that field intensities at 1-3 ka
were approximately 40—50% higher than the present
field (Yang er 4l, 2000) although nondipolar field
variations undoubtedly result in considerable spatial
and Constable, 2005). On
somewhat longer timescales, more sparse absolute
intensity  data materials  (see
Chapter 1.13) provide evidence for extremely low
field values (~20% or less of the present value) at
approximately 40 ka associated with the Laschamp
excursion (Levi ez al, 1990; Roperch ez al., 1988).
Short-term  (~10°—10° years) fluctuations in
geomagnetic intensity, even if quite substantial, will

from archeomagnetic

variability  (Korte

from volcanic
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hardly be evident in sea-surface anomaly data.
Intensity variations on timescales of 10* years may
be detectable in sea-surface profiles from fast-spread-
ing ridges but will have greatly reduced amplitudes
and longer wavelengths as dictated by the Earth filter.
In order to document these higher-frequency anom-
reflect
geomagnetic field behavior), it is useful to make mag-
netic field observations nearer the magnetic source
(Larson and Spiess, 1969). One might well ask
whether much additional information can be gained

aly variadons (some of which may

from these near-bottom records since even polarity

intervals as short as 10" may be recorded, albeit in
filtered form, in sea-surface profiles from the fastest-
spreading ridges in the present ocean basins. The
answer 1s twofold. First, comparison of sea-surface
and near-bottom data can sometimes differentiate
between short wavelength anomalies due to short
reversals and those arising from intensity fluctuations.
For example, Bowers e /. (2001) have documented
that many of the coherent tiny wiggles in sea-surface
profiles from Anomaly 5 evolve into more complex,
but still lineated, anomalies near the seafloor, suggest-
ing these short wavelength anomalies represent
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geomagnetic intensity fluctuations rather than dis-
crete short polarity events (which should be
manifest by a higher amplitude and simpler anomaly
pattern). A second benefit of near-bottom data is that
two closely spaced short events (whether intensity
variatons or reversals) can be resolved as distinct
features but must be much more widely separated to
be differentiated in sea-surface anomaly data.

Near-bottom magnetic anomaly data from near the
axis of fast-spreading ridges are particularly useful for
assessing any geomagnetic signal, since they can
provide high temporal resolution over a time period
where independent estimates of geomagnetic intensity
fluctuations are best known. Such anomaly data from
fast-spreading ridges often show a short wavelength
(24km) axial anomaly high with a superimposed
anomaly minimum or notch of even shorter wavelength
(Gee et al, 2000; Perram et al, 1990; Shah et al, 2003).
Possible mechanisms that have been advanced to
explain this notch in the axial anomaly include: (1)
variations in the thickness of the magnetized layer, (2)
variations 1n magnetization intensity as a result of
alteration, and (3) geomagnetic intensity fluctuations
(Gee and Kent, 1994; Perram ez al, 1990; Tivey and
Johnson, 1987). Variations in the thickness of the extru-
sive magnetic source layer might arise from an axial
keel of less magnetic dikes or from elevated tempera-
ture that may exceed the Curie point of the Ti-rich
ttanomagnetite in the extrusives (Shah ez 4/, 2003). The
magnetization of seafloor basalts can be substanually
reduced by alteration in localized hydrothermal upflow
zones (e.g., Tivey et al, 1996; Tivey and Johnson, 2002).
As will be discussed further in Section 5.12.3.1, the long-
standing notion that low-temperature alteration of the
magnetic source is the dominant process in controlling
crustal magnetization has significantly influenced inter-
pretation of magnetic anomaly data both in the
near-ridge environment (e.g., Schouten ez al, 1999), as
well as on much longer timescales (eg, Bleil and
Petersen, 1983; Zhou et al, 2001).

Although a variety of mechanisms undoubtedly
influence magnetic anomaly amplitudes, near-bottom
anomaly data and associated absolute paleointensities
from the superfast-spreading southern East Pacific
Rise (EPR) illustrate that geomagnetic intensity varia-
tions are likely sufficient to account for much of the
near-ridge anomaly signal (Figure 3). Models of crus-
tal alteration predict a monotonic decrease in
magnetization intensity away from the ridge axis.
The inital increase in anomaly amplitudes on the
ridge flanks is thus apparently at odds with low-
temperature alteration being the dominant process
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Figure 3 Comparison of glass paleointensities (top) and
inversion magnetization solution (middle) for near-bottom
magnetic profile across East Pacific Rise at 19.75° S. For
source-layer geometries (bottom), both a constant-
thickness source (solid line) and a variable-thickness source
(dashed line) approximating off-axis doubling of seismic
layer 2A thickness produce inversions indicating that a
lower magnetization is required on-axis with flanking areas
of high magnetization. Modified from Gee et al. (2000).

controlling crustal magnetization. Thinning of the
extrusive magnetic source layer at the ridge axis may
also contribute to the axial anomaly notch (Shah ez 4/,
2003). However, even a factor of 2 thinner extrusive
source at the ridge axis, as suggested by seismic data
(e.g., Christeson ez al, 1992; Vera and Diebold, 1994), 1s
apparently not sufficient to account for the lower axial
magnetizaton (Figure 3). Absolute paleointensity
data from surface glass samples near the ridge axis
reveal a substantial variation in paleointensity
(Bowles er al, 2006; Gee er al, 2000, Mejia et al,
1996), with moderate paleointensity values at the
ridge axis higher values 1-2km off-axis and much
lower values farther from the ridge. This pattern 1s
remarkably similar to independent estimates of field
intensity variations established from archeomagnetic
and volcanic materials, which document a substantial
dipole moment increase from a low of ~2 x 10°* A m”
at ~40 ka to a peak of ~11 x 10** Am’, followed by a
rapid decrease to the present value of 7.9 x 10°* A m’
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(e.g, Merrill er al, 1996). The similarity of these
paleointensity data, both in magnitude and pattern,
and the near-bottom anomaly data strongly suggests
that geomagnetic intensity fluctuations are an impor-
tant, if not the dominant, factor controlling anomaly
amplitudes at many ridges.

Comparison of geomagnetic intensity variations
over the past 800 ky from sedimentary records and
near-bottom magnetic anomalies from the EPR at
19°S (Gee et al., 2000) (Figure 4) also points to the
potential importance of geomagnetic intensity varia-
tions in producing tiny wiggles. Absolute intensity
information from well-dated archeomagnetic and
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Figure 4 Comparison of geomagnetic intensity variations
over the past 800 ky from sedimentary records and in sea-
surface and near-bottom magnetic anomalies from the East
Pacific Rise at 19° S. (a) Stack of sea-surface anomaly
profiles coincident with near-bottom magnetic anomaly (b)
and inversion solution (c) stacks (see Gee et al., 2000 for
details of inversion). Ages calculated assuming constant
spreading rate and an age of 780 ky for Brunhes/Matuyama
(B/M) boundary. Lower panel (d), shows Sint800
sedimentary relative paleointensity stack for 10-800 ky
(Guyodo and Valet, 1999) combined with global
archeomagnetic data for past 10 ky (Merrill et al., 1996), all
scaled as virtual axial dipole moment (VADM). Modified from
Gee JS, Cande SC, Hildebrand JA, Donnelly K, and Parker
RL (2000) Geomagnetic intensity variations over the past
780 kyr obtained from near-seafloor magnetic anomalies.
Nature 408: 827-832.

volcanic materials are too sparse prior to about
50 ka to allow construction of a time series of field
intensity fluctuations. However, marine sediments
can provide continuous, globally distributed records
of relative paleointensity (see Chapter 5.12 for a dis-
cussion of these relative intensity records) over
longer timescales. A stack of sedimentary relative
paleointensity records spanning the Brunhes
(Guyodo and Valet, 1999) shows many similarities
with coherent anomaly (and magnetization) fluctua-
tions on eight profiles from the southern EPR.
Because these anomaly profiles are separated by up
to 60 km, it 1s unlikely that crustal accretionary vari-
ables (variations in the
geochemistry) would result in coherent anomaly var-
1ations. Thus, variations in geomagnetic intensity are
the most likely cause of the coherent fluctuations in

source thickness or

the near-bottom anomaly profiles.

The pattern of geomagnetic intensity fluctuations
in the near-bottom data is also recognizable in many
sea-surface anomaly profiles across the Central
Anomaly. At the superfast spreading southern EPR,
sea-surface anomalies reveal two broad minima at
~300 and ~550ky (Figure 4). A similar pattern is
discernible in many sea-surface profiles, particularly
from intermediate- and fast-spreading ridges
(Figure 5). The systematic variation of profiles of
the Central Anomaly with spreading rate and their
similarity to progressively smoothed records of
sediment-derived paleointensity suggest that the
short wavelength anomalies within the Central
Anomaly are global features representing filtered
variations in geomagnetic dipole intensity.

Near-bottom anomaly profiles of Anomaly 5 in the
northeast Pacific (Bowers ez 4/, 2001) and comparison
with the corresponding sea-surface anomaly data pro-
vide additional evidence that many short wavelength
anomalies reflect paleointensity variations rather than
short polarity reversals (Figure 6). Although the tiny
wiggles in sea-surface anomaly profiles can conveni-
ently be modeled as due to short reverse polarity
intervals (Blakely, 1974), these anomaly minima in
the sea-surface data correspond to more complex but
still lineated anomalies in the near-bottom data. For
example, the sea-surface minima labeled 5.4 corre-
sponds to a local anomaly maximum within a
broader low in the near-bottom data (Bowers ez al,
2001). Numerous lineated magnetic lows were found
in the 12 near-bottom profiles from the northeast
Pacific. If modeled as short polarity reversals, the
approximately ~1 My duration normal polarity inter-
val would be interrupted by 26 reverse polarity
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Figure 5 Sea-surface magnetic anomaly profiles illustrating the character of the Central Anomaly at different full spreading
rates and the similarity to synthetic profiles (heavier lines) based on sedimentary paleointensity variations. All profiles have
been reduced to the pole; actual profiles are identified by the location of the ridge crossing and the NDGC designations where
available. Modified from Gee J, Schneider DA, and Kent DV (1996) Marine magnetic anomalies as recorders of geomagnetic
intensity variations. Earth and Planetary Science Letters 144: 327-335.

intervals ranging from 1.2 to 19 ky in duration (Bowers
et al,, 2001). More than three-quarters of these would
have durations less than 10ky and so would be com-
parable to or less than the time needed for two
reversals (average reversal duration 7 ky; Clement,
2004). The implausibly large number and short dura-
tion of required reversed polarity intervals suggest
that most of the near-bottom anomaly fluctuations
reflect geomagnetic intensity fluctuations rather than
short polarity intervals. This interpretation is also
supported by the fact that some correlative sedimen-
tary records show no polarity reversals and yet have
relative intensity variations that appear to correlate
with the short wavelength anomaly features (Bowles
et al, 2003). Other sedimentary records, however,
reveal a small number of polarity fluctuations within
Chron C5n (eg, Evans and Channell, 2003; Evans
et al, 2004; Roberts and Lewin-Harris, 2000) though

the number, duration, and timing of these features 1s
often conflicting. In some cases, the inferred long
duration (eg, 23 and 28ky events identified by
Roberts and Lewin-Harris, 2000) is incompatible
with magnetic anomaly data (such long polarity inter-
vals would be readily apparent in profiles from fast-
spreading ridges). In other cases, proposed events are
sufficiently brief (5-11 ky) to not conflict with existing
anomaly data, though these events may represent
excursions rather than polarity subchrons (Evans
et al,, 2004). While the sedimentary data provide evi-
dence for a small number of polarity fluctuations, the
bulk of the variations evident in near-bottom anomaly
records are likely to reflect intensity variations rather
than short polarity reversals. A linkage between direc-
tional excursions and low intensities is also suggested
by a statistical model of the geomagnetic field (Tauxe
and Kent, 2004).
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Figure 6 Magnetic anomaly profiles for Anomaly 5. Top
shows sea-surface stack compared to representative near-
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moderate (84 km My~ full-rate) spreading seafloor in
Northeast Pacific; bottom shows sea-surface stack from
fast (180 km My~ full-rate) spreading seafloor on west flank
of the southern East Pacific Rise. Modified from Bowers NE,
Cande SC, Gee JS, Hildebrand JA, and Parker RL (2001)
Fluctuations of the paleomagnetic field during chron C5 as
recorded in near-bottom marine magnetic anomaly data.
Journal of Geophysical Research 106: 26379-26396.

The geomagnetic intensity signal documented in
the Central Anomaly and Anomaly 5 is likely to be a
more general feature of marine magnetic anomalies,
since the thermoremanence in the ocean crust should
record geomagnetic intensity as well as polarity
information. Apparently lineated, short-wavelength
magnetic anomalies that most plausibly represent
geomagnetic intensity fluctuations have indeed
been documented within several portions of the
C-sequence, for example, in sea-surface anomaly

profiles from Anomalies 12-13 (Cande and

LaBrecque, 1974) and Anomalies 24-27 (Cande and
Kent, 1992b). They are mostly attributed to intensity
fluctuations because attempts to find corresponding
short polarity intervals in sedimentary records have
generally not been successful (e.g., Bowles ez al., 2003;
Evans and Channell, 2003; Hartl e 4/, 1993; Lanci
and Lowrie, 1997; Schneider, 1995); these magnetos-
tratigraphic data were summarized by Krijgsman and
Kent (2004). Although the detailed pattern of pre-
Brunhes intensity variations is not known, the statis-
tical properties of the recent field (with ~40%
intensity fluctuations about the mean; Merrill ez al,
1996) provide a plausible model for generating short
wavelength anomaly variations (Cande and Kent,
1992b). The models shown in Figure 7 illustrate
that coherent short wavelength anomaly variations
are likely to be present throughout the marine mag-
netic anomaly sequence.

The amplitude and character of such short
wavelength anomaly fluctuations, particularly in anom-
alous intervals such as the KQZ and JQZ, may
therefore provide important clues about the origin of
the geomagnetic field (e.g, by testing proposed links
between reversal rate and geomagnetic intensity;
Tauxe and Hartl, 1997). Sea-surface magnetic anoma-
lies within the JQZ, arbitrarily delineated as older than
anomaly M25, typically have very low amplitudes and
there is a gradual increase in amplitude, extending from
at least M29 to around M19, which may be field related
(Cande er al, 1978, McElhinny and Larson, 2003)
(Figure 8(a)). Although the lineated nature of even
older M-sequence anomalies has been documented
over fast spreading crust and used for tectonic recon-
structions (Handschumacher er al, 1988; Nakanishi
et al, 1989; 1992; Nakanishi and Winterer, 1998),
magnetostratigraphic evidence for polarity reversals
over the time interval represented by the JQZ, that
1s, prior to ~M25, is still ambiguous (e.g, Channell
et al, 1984; Juarez er al, 1994; Steiner et al, 1985).
These older anomalies resemble the kind of short-
wavelength, low-amplitude anomalies observed in the
Cenozoic that have been attributed to paleointensity
variations (Cande and Kent, 1992b). In contrast, mag-
netic anomalies in the KQZ can often be of high
amplitude (e.g, Figure 8(b)) even though magnetos-
tratigraphic studies and paleomagnetic compilations
provide strong evidence that the KQZ formed during
predominantly normal geomagnetic polarity (e.g,
Irving and Pullaiah, 1976; Lowrie and Alvarez,
1981). It is not clear whether the anomalies in the
KQZ are field related (e.g, Cronin er al, 2001) but
their large amplitude does suggest that the field
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97: 15075-15083.

Treatise on Geophysics, vol. 5, pp. 455-507



Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale 469

@ oo - ==

500 \

& /

e d UM WS W

I W Magnetization

-10

Jurassic Quiet Zone (JQZ)

M|29 C1007
(Hawaiian)
F———50km
/ V3214
(Phoenix)

\ F—150km

V3214
(Japanese)

— 50 km

Model
—— 50 km

(b) Cretaceous Quiet Zone (KQZ)

(~95 Ma)

1Wwwmmwwmwvw

6 — T T T
-400 —-200

0 200 400

Distance (km)

Figure 8 A comparison of sea-surface magnetic profiles from the Jurassic Quiet Zone (JQZ) in the western Pacific (top;
after Cande et al., 1978) and the Cretaceous Quite Zone (KQZ) from the southwest Pacific (bottom; data from Pockalny et al.,
2002). Representative anomaly profiles from the JQZ from the Hawaiian, Phoenix, and Japanese lineation sets have been
reduced to the pole. Note the pronounced decrease in amplitude from anomaly M22 to M29, and the low (<100 nT)
amplitudes prior to M29. In contrast, many anomaly profiles within the KQZ show large amplitude variations that in some
cases are as large as known polarity reversals (e.g., anomaly 34y — young end of anomaly 34 (as for chrons in Table 1)).

intensity during the KQZ may have been high
(Tarduno er al, 2001; Tauxe and Staudigel, 2004),
especially compared to the JQZ, whose low-ampli-
tude anomalies might be indicative of low average
field intensity in the Jurassic (McElhinny and Larson,
2003; Prévot et al, 1990).

5.12.2.3 Anomaly Skewness and Nondipole
Field

In addition to the wealth of information on geomag-
netic intensity and polarity reversals, the shape
(skewness) of magnetic anomalies can also provide
an estimate of remanent inclination that can, in turn,
be used for tectonic or geomagnetic studies. The

skewness of a magnetic anomaly is a function of the
effective inclinations (ie., those projected in a plane
perpendicular to the azimuth of the magnetized
blocks) of the ambient field and of the remanence of
the source blocks (Schouten and Cande, 1976).
Skewness amounts to a uniform phase shift as a mea-
sure of the deviation in shape between the observed
magnetic anomalies and the ideal symmetric profile
that would be produced in a vertical field by verti-
cally oriented magnetizations separated by vertical
source boundaries. Determination of the skewness
from anomaly profiles, together with the known geo-
metry of the spreading lineation and ambient field,
allows the remanent inclination to be estimated. For
the Central Anomaly, Schneider (1988) applied this

type of skewness analysis to 14 magnetic
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anomaly profiles from the Galapagos Ridge to
derive a precise estimate of the mean remanent
inclination, which was found to differ by several
degrees from the expected field inclination and
indicated that there is a small but significant
(~5%)
quadrupole) contribution to the geocentric axial
dipole field (Figure 9). This result was confirmed
by an analysis of skewness in 203 profiles of the

—
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long-term  nondipole  (mainly  axial
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0=180°
T
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Figure 9 Representative sea-surface magnetic anomaly
profile from Galapagos spreading center illustrating
technique used to determine skewness of Central Anomaly.
Arrow points to approximate phase shift (¢ =207.5°)
required to match the shape of the Central Anomaly to the
model profile formed at the pole (bottom). Modified from
Schneider DA (1988) An estimate of the long-term non-
dipole field from marine magnetic anomalies. Geophysical
Research Letters 15: 1105-1108.

Central Anomaly from the global ridge system
(Acton et al., 1996).

In applications of the skewness method outside of
the Central Anomaly (or Brunhes), where both iso-
chronous boundaries of the source block contribute
and thus simplify interpretation of the anomaly shape,
other aspects of the source that may not be symme-
trically distributed to cancel out (e.g., sloping polarity
boundaries, tectonic rotations) need to be considered
for interpretation of field behavior (Cande and Kent,
1976). The skewness of magnetic anomalies that is not
accounted for by a simple block model is termed
anomalous skewness (Cande, 1976). While such anom-
alous skewness is a complicating factor in extracting
geomagnetic or tectonic information from magnetic
anomalies (e.g.,, Petronotis ez al, 1992), the details of
the anomaly shape provide strong constraints on the
geometry and tectonic deformation of the magnetiza-
tion source that will be discussed further in Section
5.124. Assessing the fidelity of the geomagnetic field
record in anomalies requires an understanding of both
these nonfield related variations in source properties
(e.g, transition zone width, geometry of polarity
boundaries), as well as the intrinsic magnetic proper-
ties of the various source layers. The nature and origin
of the remanent magnetization of these layers are the
subject of the following section.

5.12.3 Magnetic Source Regions

Analysis of sea-surface and near-bottom magnetic
anomalies suggest that most of the signal comes from
the extrusive layer (Figure 10). For example, Talwani
et al. (1971) determined the mean magnetization of
basement topography from sea-surface magnetic sur-
veys made along strike, which allowed an estimate of
the thickness of the layer responsible for the across-
strike (seafloor spreading) magnetic anomalies. The
analysis was made on the slow-spreading Reykjanes
Ridge and vyielded a thickness of about 500 m,
approximately the thickness of the volcanic layer.
Atwater and Mudie (1973) did a comparable analysis
using near-bottom magnetic profiles on the Gorda
Rise in the Pacific. They also found that a 500 m
thick source layer could account for the seafloor
spreading magnetic anomalies. Dredged and drilled
samples of oceanic basalts have remanent magnetiza-
tions that are more or less compatible with a relatively
thin source layer but firm conclusions are inhibited by
the several orders of magnitude range in the magneti-
zation values (Lowrie, 1977).
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High-temperature
nonmagnetic
region

Figure 10 3-D perspective cartoon of ocean crust (after Johnson et al., 1997), showing spreading centers separated by a
transform fault. Crust generated during normal/reverse geomagnetic polarity (shown as shaded/unshaded regions) can be
inferred from magnetic anomalies, for example, as measured from ship-towed magnetometers. Magnetization polarity
boundaries are expected to be vertical in sheeted dikes and are likely to slope but in opposite directions in extrusive basalt
layer (due to successive emplacement of lavas) and in intrusive gabbroic layer (due to progressive cooling with depth of

gabbros).

Thicker and even deeper sources have also
been invoked, usually as a counterbalance to suppo-
sedly altered and diminished shallower sources to
explain the apparent loss of fidelity in earlier
Cenozoic anomaly sequences (e.g., Blakely, 1976) or
to produce anomalous skewness from sloping block-
ing temperature isotherms (Cande and Kent, 1976).
Although broader transition zone widths (and conse-
quently some loss of short polarity events) might be
expected if the slowly cooled gabbroic layer is a
substantial contributor, the still older (M-sequence)
anomalies do not have markedly broader transition
zone widths (e.g., Cande er 4/, 1978) and magnetos-
tratigraphic data confirm that the reversal frequency
in the earlier Cenozoic was in fact lower (Lowrie and
Alvarez, 1981; Lowrie and Kent, 2004). Similarly, the
general absence of anomalous skewness for
Anomalies M0-M4 (Cande, 1978; Larson, 1977;
Larson and Chase, 1972) places limits on the contri-
bution from the gabbroic layer. These observations
suggest that contributions from deeper source layers
are not necessarily required, although they are also
not precluded (Harrison, 1987). Magnetic data
from samples of these deeper layers suggest that
they do indeed contribute significantly to magnetic
anomalies.

Below we summarize the magnetization of the
oceanic crust according to the main subdivisions:

extrusives, sheeted dikes, and gabbros, plus serpenti-
nized mantle peridotites, and show that sample
remanence and anomaly data can be reconciled by a
three-layer model, with relatively narrow transition
zones in lavas and dikes and broader polarity bound-
aries in the gabbros. Oceanic basement rocks acquire
a thermal remanent magnetization (TRM) during
initial cooling. The magnitude of the TRM is pro-
portional to the strength of ambient geomagnetic
field but also depends on the geochemistry (e.g.,
iron content) of the rocks and magnetic grain size.
The rocks may alter with age, which may also modify
the TRM. The resultant magnetization measured on
rock samples in the laboratory is referred to as the
natural remanent magnetization (NRM). In order to
facilitate comparison of magnetization values from
different locations (dipole intensity varies by a factor
of 2 from equator to pole), all magnetization values
are reported as equatorial values. Although the arith-
metic mean is most pertinent for comparison with
magnetic anomalies, most large magnetization data
sets are characterized by approximately lognormal
distributions. Geometric mean values are used
where possible (many authors do not specify how
mean values were calculated) for comparisons since
these are less influenced by extreme values in smaller
data sets that are typical of many studies of oceanic
rocks.
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5.12.3.1 Magnetization of Lavas

Mid-ocean ridge basalts that constitute the oceanic
extrusive layer have a magnetization that is charac-
teristically dominated by a strong stable remanence
compared to an induced component, making these
shallow seated rocks a traditional prime source of
seafloor spreading magnetic anomalies. Titanium-
rich titanomagnetite (Fe;_Ti,04, where x~0.6)
that has often undergone variable degrees of low-
temperature oxidation (maghemitization) is the prin-
cipal magnetic mineral. However, it was recognized
early on that the very wide range of observed NRM
intensities could not be explained by a mere variation
in low-temperature oxidation; instead, it is necessary
to invoke substantial variations in titanomagnetite
composition, concentration, and grain size (Lowrie,
1977).

5.12.3.1.1 Initial grain size and
composition
The rapidly chilled margins of submarine lavas pro-
duce a large gradient in cooling rate-dependent grain
size and compositional effects (Marshall and Cox,
1971). For example, detailed sampling perpendicular
to the chilled margin shows that the NRM and mag-
netic hysteresis parameters can vary systematically
by an order of magnitude on centimeter scales (Gee
and Kent, 1997, 1998, 1999; Kent and Gee, 1996;
Marshall and Cox, 1971) (Figure 11). Near the
chilled margin, hysteresis parameters indicate grain
sizes spanning the superparamagnetic/single domain
boundary (~30nm; Ozdemir and O'Reilly, 1981).
The presence of stable single domain grains, asso-
ciated with a peak in NRM intensity, presumably
accounts for much of the strong, stable remanence
associated with the extrusive layer. The pronounced
grain-size variation, however, presents a practical
problem in characterizing the magnetic properties
of oceanic basalts because random sampling of such
large within-flow variations can seriously bias esti-
mates of between-flow and between-site variations.
Unblocking temperatures of NRM as well as Curie
temperatures can also show a large systematic varia-
tion with depth in a flow (Grommé ez 4/, 1979; Ryall
and Ade-Hall, 1975), even in a zero-age pillow such as
is illustrated in Figure 11. The within-flow variation
in Curie temperatures in these and other studies has
usually been interpreted as reflecting progressive
low-temperature oxidation of an originally homoge-
neous titanomagnetite host (e.g., Kent and Gee, 1996).

However, transmission  electron  microscopic
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Figure 11 Within-lava flow variability in magnetic
properties that can be ascribed to cooling rate-dependent
grain size effects. (a) Variation in NRM, susceptibility (x),
saturation remanence (M,s) and saturation magnetization
(Ms) as a function of distance from glassy chilled margin in
New Flow (erupted 1993) pillow fragment R-1 from the Juan
de Fuca Ridge. (b) Variation in Curie temperature (T,) and
median demagnetizing temperature of NRM (Tmd) in the
same samples. Similar cooling-rate dependent variations in
magnetic properties in oceanic basalts have been
documented by Marshall and Cox (1971), Gee and Kent
(1997), and others. Modified from Kent DV and Gee J (1996)
Magnetic alteration of zero-age oceanic basalt. Geology 24:
703-706.

observations (Zhou ez al, 2000) on a zero-age pillow
fragment from the Juan de Fuca Ridge show no oxi-
dation and that the
titanomagnetite grains varies as a function of distance
from the chilled margin (Figure 12). The larger
grains in the interior have a more uniform composi-
tion of around x=0.6 whereas the smaller grains
toward the glassy margin have more variable compo-
sitions with a lower average x value of ~045.
Ultrafine magnetite (x~0) has been documented
both in interstitial glass, as well as in the chilled glassy

titanium  content  of
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Figure 12 Variation of composition parameter, x, of
titanomagnetite as a function of depth from the glassy
chilled margin in a New Flow (erupted 1993) pillow fragment
from the Juan de Fuca Ridge. Modified from Zhou W,

Van der Voo R, Peacor DR, and Zhang Y (2000) Variable
Ti-content and grain size of titanomagnetite as a function of
cooling rate in very young MORB. Earth and Planetary
Science Letters 179: 9-20.

margin (Pick and Tauxe, 1994; Zhou ez 4/, 1999b) and
these grains may remain unaltered for tens of millions
of years (Zhou ez al, 1999b). Kent and Gee (1996) also
documented trace amounts of low-T1 magnetite in
the crystalline interiors of very young flows.

A more general geochemical factor, iron and tita-
nium enrichment of basaltic melts, is expected to
exert a fundamental control on the magnetization of
oceanic basalts and has been conveniently cast in
terms of the magnetic telechemistry hypothesis
(Vogt and Johnson, 1973). The iron content of basaltic
melts increases during low-pressure fractionation

(e.g.,, Juster er al, 1989) and this iron enrichment
should be accompanied by increased abundance of
titanomagnetite, resulting in higher NRM and thus
in enhanced magnetic anomaly amplitudes. Several
attempts to test the magnetic telechemistry hypoth-
esis produced uncertain results, largely because of
large scatter in the magnetization data. For example,
Johnson and Tivey (1995) found a poor correlation
(R~ 0.2) between FeO™ (total iron expressed as FeO)
and NRM from the Juan de Fuca Ridge. However,
good linear correlations (R up to ~0.8) between NRM
and FeO™ were obtained from data from the southern
East Pacific Rise (EPR) (Gee and Kent, 1997, 1998)
(Figure 13(a)). The greatly improved correlations
can be attributed to detailed sampling that spanned
the full range of cooling-related magnetization
changes within a flow, as well as to the young age of
the axial samples, which effectively minimized age-
dependent magnetization changes. An inversion of
the axial magnetic anomaly profile shows a close
correspondence between the magnitude of the mag-
netization solution and the range of intensities
observed in the axial samples (Figure 13(b)). The
equivalent NRM values calculated from the mean
FeO™ content of each dredge using the linear regres-
sion also provide confirmation of the predicted link
between geochemistry and anomaly amplitude.

The geochemical dependence demonstrated on the
southern EPR indicates that the magnetzation of
oceanic basalts can vary by up to a factor of ~4 as a
function of their iron contents alone, from around
12Am™" for 9% FeO" to more than S0Am™" for
the highest FeO™ values (~15%; separation of early
crystallizing phases cause FeO™ to increase but at
higher degrees of fractionation FeO" decreases as
FeTi oxide phenocrysts begin crystallizing).
Geochemical variation 1s thus expected to exert a
fundamental control on the magnetization of basalt
and the source of magnetic anomalies, which should
vary more or less proportionately in amplitude as has
been observed on the southern EPR. Ridge crest dis-
continuities, where enhanced fractionation is
expected, are often accompanied by higher amplitude
magnetic anomalies (Bazin er af, 2001; Wilson and
Hey, 1995). In addition, the average degree of fractio-
nation of lavas appears to vary with spreading rate
(Sinton and Detrick, 1992). Slow-spreading ridges,
which lack steady magma chambers, have systemati-
cally less-evolved magmas with lower FeO® than
faster-spreading ridges, differences that might be
reflected in overall values of basalt magnetizations
and anomaly amplitudes.
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Figure 13 Magnetic and geochemical variations along the axis of the southern East Pacific Rise. (a) Variation in NRM as a
function of FeO~ (total Fe as FeO) for dredges from the southern East Pacific Rise. NRM values represent the arithmetic mean
intensity (+s.d.) of three or more flows/pillows, each with multiple subspecimens (Gee and Kent, 1997). Dredge mean FeO*
content (+s.d.) calculated from microprobe analysis of glass chips (Sinton et al., 1991) from samples used for magnetic study.
(b) Composite axial magnetic anomaly (prior to reduction to pole). (c) Magnetization inferred from profile inversion (heavy grey
line) and grid inversion (dashed, both left scale) is compared to FeO* content (filled circles, with larger circles indicating
dredges for which sample magnetizations are available), with the scaling and offset between the axes determined by the
regression result from panel (a). Prior to inversion, the axial anomaly was reduced to pole using an effective source thickness
of 375 m, corresponding to an extrusive layer that thickens from 250 to 500 m within approximately 2.5 km of the ridge crest. A
cosine-tapered band-pass filter was applied where wavelengths < 10 km and > 600 km were cut and wavelengths >20 km and
<300 km were passed unattenuated. Modified from Gee J and Kent DV (1998) Magnetic telechemistry and magmatic
segmentation on the southern East Pacific Rise. Earth and Planetary Science Letters 164: 379-385.

5.12.3.1.2 Low-temperature alteration low-temperature alteration include a fourfold reduc-
Low-temperature  oxidation of stoichiometric  tion in the saturation magnetization (for complete
titanium-rich titanomagnetite is widely considered oxidation; O’Reilly, 1984), as well as a significant

to be the dominant process of magnetic alteration of  increase in the Curie temperature (Xu ef 4/, 1996),
oceanic basalts. The magnetic consequences of such  with the possible acquisition of a chemical remanent
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magnetization (CRM) that might replace the initial
TRM (Raymond and LaBrecque, 1987). Substantial
(up to an order of magnitude) changes in the magne-
tization of the extrusive layer and the amplitude of
the associated magnetic anomalies have been attrib-
uted to low-temperature alteration (Bleil and
Petersen, 1983; Irving, 1970). As documented below,
zero-age lavas do have a remanence that is higher, by
a factor of 4, than that of older lava samples.
However, magnetic anomaly data and direct deter-
mination of the degree of low-temperature oxidation
suggest that this process is responsible for only about
half of this decrease in magnetization, with the
remaining discrepancy plausibly attributed to higher
paleofield intensity in the axial lavas. Moreover, the
heterogeneity of alteration makes definitive resolu-
tion of the relevant timescales difficult.

Sea-surface magnetic profiles and inversion solu-
tions from fast-spreading ridges like the Pacific-
Antarctic Ridge (Figure 14(a)) record a short
(~10km) wavelength axial Central Anomaly mag-
netic high (CAMH) (Klitgord, 1976). Near-bottom
anomaly data from fast-spreading ridges indicate that
the width of this high magnetization zone is ~2-3 km
(Figure 3). At slow-spreading ridges, the CAMH
occupies a larger proportion of the Central
Anomaly and consequently may not be readily dis-
tinguishable in sea-surface profiles from the Central
Anomaly (Figure 14(b)). In concert with a dominant
Central Anomaly (e.g., Vine, 1966), the evidence for a
decay in basalt magnetizations has traditionally come
from the slow-spreading ridges in the Atlantic Ocean
where oceanic basalts have been thought to suffer
decay related to aging and alteration with a time
constant on the order of 0.5My (Irving, 1970;
Johnson and Atwater, 1977). Alteration-induced
magnetization decay has also often been linked to
the CAMH (Klitgord, 1976), although this would
require very different time constants for fast- and
slow-spreading ridges. For example, profiles from
the fast spreading EPR at 12°N suggest that the
magnetization contrast must occur over a much
shorter timescale to balance a presumed negative
magnetic anomaly that would result from the thick-
ening of Layer 2A deduced from seismic imaging
(Figure 15).

Although originally interpreted as reflecting low-
temperature alteration on rapid timescales (Gee and
Kent, 1994), remanence data from near-ridge basalts
at the EPR at 12°N do not require a substantial
decay in magnetization related to alteration. This is
because low NRM intensities and magnetic
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Figure 14 Sea-surface magnetic profiles, inversion
solutions, and bathymetric profiles from (a) the fast-
spreading Pacific-Antarctic Ridge and (b) the slow-
spreading Gorda Rise illustrating the short (~10km)
wavelength axial Central Anomaly magnetic high (CAMH,
vertical shading). The CAMH occupies a larger proportion of
the Central Anomaly at slow-spreading ridges where it is not
readily distinguishable in sea-surface profiles from the
Central Anomaly because the wavelengths become similar.
Modified from Klitgord KD (1976) Sea-floor spreading: The
central anomaly magnetization high. Earth and Planetary
Science Letters 29: 201-209.

susceptibilities and high Curie temperatures, which
might be an indication of alteration, occur at the
ridge axis (zero age) and as well as off-axis
(Figure 16). Indeed, efforts to induce alteration of
young oceanic basalts in the laboratory have gener-
ally failed (e.g., Kent and Gee, 1994). Instead, it now
appears that the high magnetization values on-axis
producing the contrast that accounts for the CAMH
on fast-spreading ridges is mostly due to a paleoin-
tensity signal, which is also suggested by the central
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Figure 15 (a) Forward models illustrating the axial
magnetic anomaly minimum generated by off-axis
thickening of a uniformly magnetized extrusive layer or
cooling of deeper layers as shown in (b), compared to the
observed sea-surface profile at 19.5° S on the East Pacific
Rise. (b) Source models based on seismic data from near
19.5° S. (c) Wide aperture seismic profile from East Pacific
Rise near 14° S (Detrick et al., 1993) that illustrates rapid
thickening of Layer 2A and presence of axial magma
chamber (AMC). Modified from Gee J and Kent DV (1994)
Variations in layer 2A thickness and the origin of the central
anomaly magnetic high. Geophysical Research Letters 21:
297-300.

notch in the CAMH in near-bottom profiles over
faster-spreading rate ridges (Gee ez al, 2000; Perram
et al., 1990) (Figure 3).

Evidence has also been sought for longer-term
changes in oceanic basalt magnetic properties that
could be attributed to the effects of alteration to
explain an apparent envelope of decreasing anomaly
amplitudes with distance from the ridge axis. Several
magnetic anomaly inversion studies have suggested a
decrease in magnetization by a factor of 2—3 within
about 10 My of the ridge axis (Sayanagi and Tamaki,
1992; Wittpenn ez al., 1989). However, it 1s difficult to
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Figure 16 (a) Natural remanent magnetization (NRM), and
(b) magnetic susceptibility for samples of dredged oceanic
basalts from 12° N on the East Pacific Rise as a function of
distance from the ridge axis (or nominal age based on full
spreading rate of 98 km My ™). Each data point (+ s.d.) is the
average of 3-6 specimens collected within 5-8 cm of the
glassy margin. Exponential magnetization decay curves
with time constants of 0.5 My and 0.02 My are shown for
reference but the large variability in the magnetization data,
as well as in the previously unpublished Curie temperature
data shown in (b) for these samples do not make a
compelling case for any simple decay scheme. Modified
from Gee J and Kent DV (1994) Variations in layer 2A
thickness and the origin of the central anomaly magnetic
high. Geophysical Research Letters 21: 297-300.

evaluate the effects of various potential artifacts asso-
ciated with data processing (filtering, gridding) and
the sequence effect in biasing the results, for example,
in producing the apparent substantial (factor of 3-5)
increase in magnetization with increasing age beyond
10 Ma and into the KQZ. An influential and more
direct analysis in this regard was the compilation of
oceanic basalt magnetizations from Deep Sea
Drilling Project (DSDP) sites by Bleil and Petersen
(1983), who proposed that the data showed an initial
sharp decrease in NRM to minimum values at
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around 20 Ma followed by a gradual increase to ages
of around 120 Ma. Subsequent compilations (Furuta,
1993; Johnson and Pariso, 1993) (Figure 17) show a
similar pattern of variation with age although the
data quality is highly variable with more than one-
third of the sites represented by 10 or fewer samples
(e.g., six sites have only one sample!). The overall
arithmetic mean NRM intensity for all 64 site means
reduced to the equator is 44 A m™'; high values of
around 10 Am™~" occur at both very young ages as
well as at around 120 Ma, whereas values of 1 Am ™"
or less occur at around 40 Ma. There is considerable
scatter throughout with only a handful of sites older
than 40 Ma penetrating more than 50 m of basalt or
represented by more than a nominal number (20-30)
of samples. Because of the typically small number of
samples, as well as the lack of control on geochemical
variations, within-flow grain size variations, or geo-
that  strongly
influence remanent intensity, suggestions of any tem-

magnetic  intensity fluctuations
poral trends in magnetization intensity of seafloor
lavas from such plots should be regarded as tentative.

A more robust estimate of age-dependent changes
can be obtained by comparing the distribution of

NRM values for a large collection of near-axis
(zero-age) samples from the southern EPR with
histograms of NRM values for the best characterized
DSDP/ODP drill sites that have the deepest pene-
tration and are represented by about 100 or more
samples (Figure 18). The NRM distributions
are reasonably approximated by log-normal distribu-
tions. The zero-age southern EPR samples have
a geometric mean NRM of 189 Am™'. This is vir-
tually identical to the geometric mean NRM
intensity of 18 Am~' for the axial samples from
12° N on the EPR, which were mostly taken within
about 3 km of the axis and thus are less than ~50 ky
old (Gee and Kent, 1994). Published data from the
youngest drill site with significant penetration
(DSDP Site 482, which was sited on ~0.4 Ma crust,
Lewis e al., 1983) indicate NRM intensities of about
SAm~ ", almost a factor of 4 less than the axial
samples. Still older drill sites have geometric mean
NRM intensities that range from 2.3 Am™~" for Site
395 (7.8 Ma) to 141 Am™" for Site 1256 (15.4 Ma)
although the data at this latter site may be biased to
higher NRM values by a particularly strong drilling
remanence (Wilson ez 4/, 2003). Nevertheless, there
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Figure 17 Compilation of equatorial NRM of oceanic basalts recovered from DSDP and ODP drill sites as a function of
crustal age and sorted by depth of basement penetration. Lower plot shows number of sample measurements available for
calculation of site mean (from references listed in Johnson and Pariso, 1993); histogram at right is for all site mean NRM
values. NRM data are from compilation of Johnson and Pariso (1993) with some corrections (e.g., deletion of data for samples
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and Channell et al. (1995).
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Figure 18 Histograms of equatorial NRM for oceanic
basalts for sites with largest datasets, including from the
axial zone of the southern EPR versus off-axis drill sites —
Sites 482, 483, 504B/896, 395, 1256, 417/418, and 801C
(see Table 2 for data sources). Geometric mean (GM) is
indicated by red arrow for each distribution. The green
arrow for Hole 1256D indicates average NRM for samples
with initial inclinations <30° and >-30° that should be least
affected by drilling remanence.

does not appear to be an obvious age-dependent
trend in the drillsite-mean NRM values since the
oldest sites (Site 417/418 at 121 Ma and Hole 801C
at 169 Ma) have about the same average NRM inten-
sities as some of the youngest drill sites (e.g., Sites
482,483 at 2.3 Ma, and Hole 504B at ~6.8 Ma), which
are all between about 4-6 A m™~'. What does seem
significant is the factor of almost 4 decrease in mean
NRM intensity from the axial zone to older sites; if

the entire reduction is ascribed to alteration, the time
constant must be considerably shorter than about 0.4
My, the age of the youngest off-axis site (Site 482)
with reduced magnetization. A similar pattern of mag-
netization change was observed in the FAMOUS area
(37°N on the slow-spreading Mid-Adantic Ridge)
based on the magnetization of topography derived
from near-bottom observations (Macdonald, 1977).
Direct observations of the degree of low-
temperature alteration suggest that the fourfold
difference in intensity of axial lavas and older drill
sites cannot be attributed solely to maghemitiza-
tion. The oxidation parameter (0 < z < 1, where 1
indicates complete oxidation to titanomaghemite;
O’Reilly, 1984) has now been estimated from lattice
spacing and composition using transmission and
analytical electron microscopy on small titanomag-
netite grains in fine-grained oceanic basalts over a
broad age range (Wang ez al., 2005; Wang ez al., 2006;
Zhou et al., 2001). The development and application
of microanalytical techniques (Zhou er al, 1999a)
represent a major advance in the study of oceanic
basalts because they allow more direct characteri-
zation of the important fine-grained magnetic
carriers that previously had to be inferred from
larger magnetic grains or bulk properties.
Although  there is  considerable  scatter
(Figure 19), the oxidation parameter data are con-
sistent with an initial, very rapid increase in
alteration such that z values up to 0.8 occur in
basalts less than 1 My old, as suggested by Bleil
and Petersen (1983). Much less convincing is any
systematic long-term trend because although
values of z greater than 0.8 do tend to occur in
samples older than about 30 Ma, the oldest sample
measured (Hole 801C, 169 Ma) has a z value of only
~0.2. Thus, while low-temperature alteration evi-
dently can occur rapidly, the extrusive layer is not
uniformly oxidized even for the oldest seafloor.
Since complete oxidation would be required to
account for a factor of 4 reduction in saturation
magnetization (O’Reilly, 1984), some additional
parameter is apparently required to explain the
factor of 4 difference in magnetization of axial
lavas and older drilled basalts. Paleofield changes
might explain the difference if the present field is
unusually high and it is worth noting that
magnetization variations over long timescales
have been attributed by some authors to paleofield
variations (e.g., Wang er al., 2005; Juarez et al., 1998).
Even the traditional model of alteration-related
variations in saturation magnetization (Ms) is still
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Figure 19 Variation in oxidation parameter (and hysteresis
ratio, M,s/Ms) of oceanic basalts samples as a function of
crustal age (log scale in (a) and linear scale in (b)). Data are
from Wang et al. (2005, 2006) and Zhou et al. (2001). The plot
shows no obvious evidence of any systematic evolution of
magnetic properties that could be ascribed to low-
temperature alteration, for example, the basalt samples from
Site 801C, which are the oldest at 169 Ma, have an oxidation
parameter value of only 0.2.

possible, for example, Matzka er 4l (2003) argue
that the low NRM values for 10-40 Ma samples
are primarily due to the reduction in saturation
magnetization accompanying maghemitization,
similar to the model of Bleil and Petersen (1983).
Some other alternative explanations are described
below.

Xu er al. (1997¢) have suggested a model of pre-
ferential dissolution with time of the finest-grained
titanomagnetites as the major process contributing
to long-term temporal changes in remanent intensity
of mid-ocean ridge basalts. If widespread, such dis-
solution could enhance the effect of the reduction
in saturation magnetization accompanying low-tem-
perature oxidation. However, the data in Figure 19
show no obvious coarsening in magnetic grain
size with age or alteration, for example, some of
the highest M,/ M values (i.e., high ratios of satura-
tion remanence to saturation magnetization indicate

the finest magnetic grain sizes) are associated with
the highest z values (greatest low-temperature oxida-
tion) in ~30-My-old samples. Instead, the results in
Figure 19 are consistent with the more voluminous
hysteresis data shown in Figure 20 that illustrate that
substantial intra-sample variability in oceanic basalts
precludes recognition of any systematic trend in
magnetic grain size with age from DSDP/ODP drill
sites (Gee and Kent, 1999).

Directional changes associated with low-tempera-
ture alteration might also contribute to reduction in
seafloor basalt magnetization with time if a CRM 1is
acquired in a direction that opposes the initial ther-
moremanence. Several early studies (eg. Ryall and
Ade-Hall, 1975; Marshall and Cox, 1972) concluded
that the remanence direction was unaffected by low-
temperature alteration since the oxidized titanoma-
ghemite would inherit the original TRM direction.
These results are not conclusive, however, since these
studies were conducted on young Brunhes-age sam-
ples where no large directional difference would be
expected. More extensive studies on altered lavas
from a range of ages (Beske-Diehl, 1990) were also
interpreted as reflecting no alteration-related direc-
tional changes since the observed directional shifts
could also be attributed to viscous remanence acqui-
sition. Although the low Curie point of TM60 makes
direct experimental investigation of seafloor oxida-
tion difficult, Kelso er al. (1991) found that CRM in
synthetic TM40 grains was acquired parallel to the
applied field direction, with secondary magnetiza-
tions particularly enhanced at lower pH values. If
broadly applicable, such field-parallel CRM acquisi-
tion coupled with the pattern of geomagnetic polarity
reversals could provide a mechanism for long-term
variations in NRM intensity as suggested by
Raymond and Labrecque (1987).

In addition, low-temperature oxidation has been
suggested as a possible mechanism by which partial
self-reversal might occur, leading to the acquisition
of an antipodal overprint that could significantly
reduce the NRM intensity (Doubrovine and
Tarduno, 2004). These authors found that the major-
ity of thermally demagnetized samples from Detroit
Seamount had two nearly antipodal remanence com-
ponents. Some samples showed a maximum in the
Ms(T) curves above room temperature that might be
indicative of N-type ferromagnetic behavior and par-
tial self-reversal (Doubrovine and Tarduno, 2004). A
similar peak in Ms(T') and importantly a correspond-
ing reversible peak in NRM above room temperature
were reported for 1040 Ma oceanic basalts (Matzka
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Figure 20 Variation of M,s/Mg with age in oceanic basalt samples. Data acquired from systematic sampling relative to the
chilled flow margin (labeled slabs) include samples from the southern East Pacific Rise (SEPR), Phoenix dredge collection,
and DSDP sites (see Gee and Kent, 1999 and references therein). Other DSDP/ODP designates additional hysteresis data
from isolated samples used in this same compilation. More recent hysteresis data (Recent DSDP/ODP) includes data from

Wang et al. (2005, 2006) and Zhou et al. (2001).

et al., 2003). Krasa er al. (2005) provided compelling
documentation for partial self-reversal associated
with titanomaghemite in subaerial lavas, although
they argue that the ‘low-temperature’ oxidation
occurred at temperatures above the blocking tem-
peratures of the original titanomagnetite phase
during initial cooling. Thus, while such partial self-
reversals may occur, the importance of this process in
generating long-term changes in seafloor magnetiza-
tion remains to be demonstrated.

A common motivation for seeking evidence of a
time-dependent change in the magnetization of ocea-
nic basalts is the widespread perception of a
decreasing amplitude envelope for ridge crest
anomalies. This concept stems largely from long-
standing observations that the Central Anomaly in
the slow-spreading Atlantic and Indian Oceans tends
to be anomalously high (e.g.,, Vine, 1966). For exam-
ple, Bleil and Petersen (1983) show a magnetic
profile across the North Atlantic as evidence of this
phenomenon, which had also been described to occur
over some sectors of the Australia—Antarctic Ridge
by Weissel and Hayes (1972). However, the Central
Anomaly is not such a pronounced feature in mag-
netic profiles from the faster-spreading sectors of the
East Pacific, which are also typically described as
showing only a gradual decrease in amplitude on
the ridge flanks (e.g, Pitman and Heirtzler, 1966;
Pitman er al, 1968). Indeed, the prominence of the

Central Anomaly (and the associated amplitude
envelope) appears to be closely tied to spreading
rate (Figure 21; Cande and Gee, 2001).

The fact that neither a prominent Central Anomaly
nor a pronounced anomaly envelope are present on
all ridge systems places limits on systematic time-
dependent processes that are expected to affect the
magnetization of all oceanic basalts, such as long-term
changes in paleointensity and alteration. Suggested
time constants of magnetic alteration, assuming an
exponential decay, have ranged over several orders of
magnitude, from ~0.05 My (Gee and Kent, 1994) to
~0.5My (Johnson and Atwater, 1977, Macdonald,
1977), and to ~5My or longer (Bleil and Petersen,
1983; Raymond and LaBrecque, 1987, Xu e al,
1997b; Zhou ez al, 2001). We use these order of magni-
tude increments in the estimated time constants to
model the expected effects on magnetic anomalies in
Figure 22. For fast-spreading ridges (Figure 22(a)),
models using a factor of 4 decay in magnetization,
corresponding to the nominal decrease in NRM from
the ridge axis to off-axis drill sites (Figure 18), are
virtually precluded over the various timescales. These
models produce either a very prominent axial high at a
short (0.05My) decay constant or an obvious ampli-
tude envelope at a long (5 My) decay constant, but
neither of these features 1s compatible with the repre-
sentative Pacific-Antarctic Ridge profile shown in
Figure 21. This comparison suggests that the effective
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magnetization reduction from alteration is likely much
smaller than a factor of 4, perhaps reflecting the het-
erogeneous nature of low-temperature oxidation in the
crust. Indeed, models using a 2x factor of decay in
magnetization at a variety of decay constants for fast-
spreading ridges (Figure 22(a)) cannot be excluded as
resembling the observed Pacific-Antarctic Ridge
profile. Models for different decay factors and time
constants for a slow-spreading ridge (Figure 22(b)),
on the other hand, seem to favor a larger decay (e.g,
compare 4x models to observed Central Atlantic or
Southwest Indian Ridge profiles in Figure 21).

The independent evidence for rapid changes in
oxidation parameter (Figure 19) favors a fast decay
time constant, although the entire observed decrease
in NRM intensity may not be entirely due to altera-
tion. For example, the NRM of the near-axis samples
may be biased by high paleointensities over the past
few thousand years that were up to a factor of 2
higher than today’s field and perhaps a factor of 4
higher than the average long-term paleofield
intensity (Selkin and Tauxe, 2000). Absolute paleoin-
tensity data, which show a 3x change near the ridge
axis (Bowles er al., 2006; Gee et al., 2000), are a power-
ful indication that a large part of that near-ridge
signal is field-related. A factor of 2 decrease in
NRM intensity due to alteration might be a reason-
able estimate for oceanic basalts, with a possibly
larger contrast in the slow-spreading ridges due to
more intense near-axis tectonics, for example.

5.12.3.2 Magnetization of Dikes

One of the most significant changes in our under-
standing of the magnetization of oceanic crust since
the review by Smith (1990) has been in the role of
dikes, which some earlier compilations based on
ophiolites and dredge metabasalt samples from frac-
ture zones suggested were characterized by weak,
rather unstable remanences (e.g., Kent er 4/, 1978).
The penetration, albeit with limited recovery, of
~1000m section of dike rocks at Site 504B
(Figure 23) has allowed the documentation of the
physical and magnetic properties of this important
constituent of oceanic crust in a more typical setting.
An ~100 m-thick transition between pillow lavas and
dikes (at ~1000 mbsf) does have weak magnetiza-
tions, 0.1 Am~" and less, although they have very
high coercivities. Deeper levels in the sheeted dike
complex have moderate NRM (~2 A m™~") and mod-
erate median demagnetizing fields. Moreover,
analysis of logging data suggests that, due to void
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Figure 22 Magnetic anomaly models illustrating the effect of alteration-related exponential decay in magnetization for

(a) intermediate-spreading crust (full rate of 80 km My™") and (b) slow-spreading crust (full rate of 20 km My™). For each
spreading rate, anomaly profiles are shown for a fourfold decrease in magnetization (20Am~" to 5Am™") and a twofold
decrease in magnetization (10 Am™ to 5 Am™") for a range of decay time constants. The magnetization model (block diagram)
and model with constant remanence intensity are shown for comparison. In all models, the anomaly is calculated for a 1 km
thick source layer, with the depth to the upper surface that increases with age®® (Ma) (Stein and Stein, 1994). A gaussian filter

has been applied to the magnetization (¢ =0.5km and o= 1.0 km for the intermediate- and slow-spreading ridges,
respectively) to simulate the transition zone width in the extrusive layer.

spaces, the effective NRM of the lavas from Hole
504B may be only 3Am™' rather than the SAm™'
based on sample measurements (Worm ez al, 1996),
which would further reduce the magnetization con-
trast with the dike complex.

Dike samples obtained by both dredges and sub-
mersible sampling also highlight the importance of
dikes to crustal magnetization. Submersible sampling
of ~1.2 my-old fast-spread crust exposed at Hess
Deep provides a direct comparison of magnetic prop-
erties of extrusives, dikes, and gabbros (Figure 24).
Here, lavas and dikes have comparable NRM values
(~4Am™"). Dredged dike samples from ~2 my crust
exposed along the Blanco Fracture Zone also have
moderately strong magnetizations (~1.7 Am~" when
reduced to equatorial value; Johnson and Salem,
1994), although this is substantially less than the
magnetization of extrusives (~64Am~") inferred
from near-bottom magnetic anomaly surveys in this
area (Tivey, 1996; Tivey er al, 1998a). Although
samples of the dike complex are sull limited, it

appears that they may have a remanence that is
significant relative to that of the extrusive layer.

A major difference from the pillows, however, is the
magnetic mineralogy, which in pillows 1s variably
maghemitized titanomagnetite (Curie temperatures
typically 200400°C) whereas in the dikes it is domi-
nated by nearly pure magnetite (Curie temperatures
>550°C; Figures 23 and 24). The origin of the magne-
tite 18 critical to assessing role of dikes as a source of
seafloor spreading magnetic anomalies. If magnetite is
primarily produced by alteration at temperatures below
the Curie point, as some have suggested, then the
remanence may be largely chemical in origin and may
be acquired significantly later than that of the extrusive
layer (e.g,, Hall and Muzzatti, 1999). Based on a trans-
mission electron microscopy study of dike samples
from Hole 504B, Shau ez 4l. (2000) documented mula-
ple pathways for formation of magnetite (Figure 25).
Initial oxyexsolution, at temperatures > 600°C, would
have produced only slightly Ti-depleted titanomagne-
tite, with a Curie temperature too low to acquire a
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Figure 24 Histograms of NRM intensities (left) and Curie temperatures (right) for dive samples of volcanics, dikes and
gabbros from ~1.2 Ma fast-spread oceanic crust at Hess Deep (data from Gee et al., 1992; Varga et al., 2004). Note that the
mean NRM intensity for dikes is higher than reported at Hole 504B and is more similar to the volcanics, suggesting that the
dikes are an important source of magnetic anomalies at least in the Hess Deep area.

remanence at these elevated temperatures. Further oxi-  chemical remanence (Shau er 4/, 2000). While the
daton or true exsolution and reduction, likely at  remanence in dikes maybe, at least in part, chemical
temperatures of ~500—400°C, then produces the fine  in origin, the temperatures at which the alteration
Ti-poor magnetite that acquires a thermal and/or  occurs imply that remanence would be acquired very
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near the ridge axis. This result is confirmed by the
consistent (reverse) polarity in the lavas and dikes
inferred from magnetic logging data at Hole 504B
(Worm and Bach, 1996).

5.12.3.3 Magnetization of Gabbros

Early estimates of the gabbroic contribution to mar-
ine magnetic anomalies relied on dredged samples
and studies of ophiolites, with the results from ophio-
lites yielding variable and sometimes contradictory
results (Banerjee, 1980). For example, Swift and
Johnson (1984) concluded from the low remanent
intensities and K6nigsberger ratios (the ratio of rema-
nent to induced magnetization) of unaltered gabbros
from the Bay of Islands ophiolite that only the altered
intrusive portion of the crust (characterized by
higher magnetization values) would contribute to
magnetic anomalies. In contrast, results from dredges
and other ophiolites (Kent er 4/, 1978; Vine and
Moores, 1972) indicated that gabbros had significant
magnetization (~1Am~ ") and high Konigsberger
ratios and likely would contribute to magnetic
anomalies.

At the ume of the last review of ocean crustal
magnetization (Smith, 1990), relatvely little direct
information was available on the magnetic properties
of oceanic gabbros. Initial results from the first signifi-
cant drillcore penetration of gabbros (500 m at Hole
735B; Robinson ez al, 1989) indicated highly variable
NRM intensities, with some FeTi oxide gabbros

having extremely high values. With only a single drill-
core, however, it was difficult to evaluate whether
these magnetic (and petrologic) results were generally
applicable. In the intervening time, lower crustal gab-
bros have been sampled by drilling at three portions of
the slow-spreading Mid-Atlantic Ridge (Mid-Atlantic
Ridge near the Kane Fracture Zone or MARK area at
23°N (Cannat er al, 1995), near the 15° 20" Fracture
Zone (Kelemen ez al, 2004), Atlantis Massif (Blackman
et al., 2006)), at fast-spreading crust at Hess Deep (Gillis
et al, 1993), and Hole 735B has been deepened by an
additional kilometer (Dick ez 4, 1999) and supplemen-
ted by additional drilling on the Adands Bank
(Allerton and Tivey, 2001; Pettigrew er al, 1999).
Although these sites all made use of tectonic exposures,
recent drilling in the Guatemala Basin (Wilson ez 4/,
2006) penetrated lavas, dikes, and a small amount of
gabbro; continued drilling at this site could provide the
first zn situ gabbroic section from the ocean crust.
These various drill sites into lower crustal
gabbros provide a remarkably consistent average mag-
netization of ~1-2Am~" (Table 2), suggesting that
these rocks should constitute an important magnetiza-
tion source for magnetic anomalies. Although average
magnetic properties are similar, gabbroic sections (par-
ticularly at slow-spreading ridges) exhibit substantial
variability both in lithology and magnetic properties as
exemplified by results from Hole 735B (Figure 26).
FeTi oxide gabbros with >2% (and occasionally
>10%) oxide minerals constitute a significant fraction
of the core from Hole 735B. Magnetic susceptibility
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Table 2 Equatorial natural remanent magnetization values for oceanic crustal rocks

Age A.M. std. G.M. std
Site Sample type (Ma) n (Am™) (Am™) (Am™) (log) Ref.
Lavas
EPR Dredge 0 2178 24.68 15.54 18.94 0.38 1
Hess Deep Dive 1.2 619 5.37 5.70 3.56 0.40 2,3
Site 482 Drill 0.4 133 6.20 4.19 4.98 0.30 4,5
Site 483 Drill 2.3 89 7.42 6.49 4.99 0.40 4,5
Hole 504B/896° Drill 6.8 430 6.15 4.95 4.23 0.42 6-12
Site 395°¢ Drill 7.8 90 2.95 2.01 2.23 0.35 15
Site 12567 Drill 15.4 184 18.36 12.22 14.06 0.35 16
Sites 417/418 Drill 121 878 9.22 8.03 6.15 0.44 17
Hole 801C° Drill 168 203 4.92 3.89 3.43 0.45 18,19
Deep Drillholes Drill - 7 7.89 5.01 4.92 0.25
Dikes
Hess Deep Dive 1.2 1287 5.27 4.50 3.91 0.35 2,3
Hole 504B° Drill 6.8 171 2.1 1.67 1.32 0.53 9-14
All - - 2 3.69 2.23 2.27 0.33
Gabbros
Hess Deep Dive 1.2 478 1.40 117 1.08 0.31 2,3
Hole 735B Drill 12 600 3.34 8.42 1.19 0.57 20, 21
Leg 2099 Drill 0.5-2.0 61 6.15 6.23 2.36 0.78 22
Leg 153" ) Drill ~1 252 1.19 1.74 0.62 0.53 23,24
Hole 894G’ Drill ~1 87 2.25 1.56 1.65 0.41 25
Exp. 304/305 Drill ~1 472 3.1 6.28 0.56 0.97 26
All Drillholes Drill - 5 2.91 1.81 1.09 0.24
Peridotites
Oufi compilation® Drill - 234 5.84 5.05 3.15 0.62 27
Leg 209 Drill 0.5-2.0 99 2.75 3.57 0.79 0.99 22
All Drill - 333 4.92 4.86 2.09 0.79

4Each sample value based on three or more specimens.

bAverage based on Hole 504B lava samples above 898 mbsf (corresponding to low-temperature altered zone of Pariso and Johnson,

1991) and all lava samples from Site 896.
°Excludes gabbro and peridotites recovered at this site.

9Average based on shipboard data from 252-749 mbsf. Wilson et al. (2003) note particularly large drilling induced remanence.
°Average based on samples from 551-933 mbsf (excluding younger alkalic lavas and hydrothermal deposits).

fAverage based on samples deeper than 1055 mbsf (dike/lava transition zone [878-1055 mbsf] excluded).

9Average based on all gabbroic samples from Sites 1268-1275 (near 15° 20’ N Fracture Zone).

Average based on all gabbroic samples from Sites 921-924 (MARK Area).

’:Minor recovery of gabbroic material in other drillsites at Hess Deep not included.

/Includes gabbroic samples from Holes 1309B and 1309D (excluding diabase and ultramafic samples).

“Compilation of peridotite samples from DSDP/ODP drilling up to and including Leg 153.

'Average based on all peridotite samples from Sites 1268-1274 (near 15° 20’ N Fracture Zone).

AM., arithmetic mean; G.M., geometric mean.

References: 1, Gee and Kent (1997); 2, Varga et al. (2004); 3, Gee et al. (1992); 4, Day et al. (1983); 5, Pechersky et al. (1983b); 6, Allerton
etal. (1996); 7, Furuta and Levi (1983); 8, Pechersky et al. (1983a); 9, Kinoshita et al. (1985); 10, Facey et al. (1985); 11, Smith and Banerjee
(1985); 12, Smith and Banerjee (1986); 13, Pariso and Johnson (1989); 14, Pariso et al. (1995); 15, Johnson (1978); 16, JANUS database
for ODP Leg 206 (Wilson et al., 2003); 17, Levi (1980); 18, JANUS database for ODP Legs 129 (Lancelot et al., 1990) and 185 (Plank et al.,
2000); 19, Wallick and Steiner (1992); 20, Kikawa and Pariso (1991); 21, Dick et al. (1999); 22, Kelemen et al. (2004); 23, Gee et al. (1997);
24, Cannat et al. (1995); 25, Pariso et al. (19964a); 26, Blackman et al. (2006); 27, Oufi et al. (2002).

data indicate the presence of several hundred oxide-rich
zones, ranging from centimeter to several meters in
thickness, throughout the core (Natland, 2002). These
oxide-rich intervals may be associated with extremely
high NRM values (in some cases >10° A m™'; Robinson
et al, 1989) though these high values likely reflect a

substantial drilling induced overprint and thus are not
representative of the i situ magnetization. Borehole
magnetic data from the upper 500m of Hole 735B
indicate an #z siru equatorial remanence of 44 Am™'
for oxide-rich gabbros and 1.8 Am ™" for other gabbroic
rocks (Pariso and Johnson, 1993a). Although NRM
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Figure 26 Depth variation in lithology and magnetic properties (NRM, Q calculated for 30Am™ field, stable remanent
inclination and MDF, median demagnetization field) for samples of gabbroic section in oceanic crust at ODP Hole 735B.
Magnetic data compiled from Kikawa and Pariso (1991) and Dick et al. (1999); lithology column from Dick et al. (2000). Heavy
line in inclination plot is expected dipole value. Magnetization data have not been reduced to equatorial values (open circles
and + symbols represent the intensity after removal of the drilling-induced remanence and NRM, respectively).

intensities show significant variability, results from both
drillcore and submersible samples (Table 2) suggest
that an average intensity of ~1 Am™" is typical for
oceanic gabbroic rocks.

Although less compelling than for lavas, there
appears to be a weak correlation between more frac-
tionated (Fe-rich) gabbros and higher NRM intensities
(Gee et al, 1997, Kikawa and Ozawa, 1992). For a
subset of gabbroic rocks from the MARK area, Hess
Deep, and Hole 735B (Figure 27(a)), the lowest NRM
values are exclusively associated with the least evolved
gabbros (with high Mg# =Mg""/(Fe’" + Mg’ ).
Kikawa and Ozawa (1992) have noted a comparable
broad increase in remanent intensity from Hole 735B
samples as fractionation proceeds from troctolite to
olivine gabbro. These same authors have suggested

that gabbro magnetization values also may be reduced
by up to an order of magnitude as a result of alteration
(as measured by the percentage of secondary mafic
minerals). This trend is less obvious in a more qualita-
tive comparison of NRM and shipboard estimates of
alteration from MARK area gabbros (Figure 27(b)).
Nonetheless, it appears that earlier suggestions of
increasing remanent intensity with degree of alteration
(Swift and Johnson, 1984) are not generally applicable
to oceanic gabbros.

Curie temperatures of gabbroic samples are uni-
formly near 580°C (e.g, Gee er al, 1997; Pariso and
Johnson, 1993b; Worm, 2001), indicating that Ti-poor
magnetite is the dominant remanence carrying phase.
Primary discrete magnetite (associated with more
abundant ilmenite) is abundant in Fe'T1 oxide gabbros
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but rare in the less-evolved rocks that constitute the
bulk of the gabbroic material. In these latter samples,
much of the stable remanence may be carried by fine-
grained magnetite enclosed in silicate grains. Fine-
grained oxides are present in olivine, pyroxene, and
plagioclase in nearly all troctolites and olivine gabbros
from Hole 735B (Natland, 2002). Magnette along
cracks in olivine is attributed to amphibolite—granulite
facies alteration at temperatures of 500-700°C (Pariso
and Johnson, 1993b). Crystallographically oriented
elongate magnetite within pyroxene is demonstrably
a high temperature (~800°C) ‘exsolution’ product
in some cases (Renne ez 4/, 2002). A similar exsolution
origin for crystallographically controlled magnetite
in plagioclase has also been suggested (Natland,
2002; Selkin ez al,, 2000; Xu e al., 1997a). Silicate-hosted
magnetite, at least in plagioclase and pyroxene, appears
to be a common feature in oceanic gabbros (Gee and
Meurer, 2002) and may be responsible for much of the
stable remanence in these rocks. Hysteresis and Curie
temperature data from single plagioclase crystals from
gabbros at the MARK area and from Leg 209
(Figure 28) illustrate that these fine-grained magnetite
grains may have substantal coercivities.

With the exception of FeTi oxide gabbros, most
oceanic gabbros have high stability magnetizations
and Kénigsberger ratios (Q) > 1, indicating that they
may constitute an ideal magnetization source. For
example, Konigsberger ratios for gabbros from Hole
735B are essentially all >1 and exceed 10 for much of
the lower kilometer of the section (Figure 26). The
increase in Q_downhole is paralleled by a general
increase in coercivity, as measured by the median
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Figure 28 Example of silicate hosted magnetite in plagioclase from gabbro sampled during Leg 209, near 15°20’ N
Fracture Zone Left, photomicrograph (25X, oil immersion) of plagioclase with elongate magnetite; center, hysteresis loop; and

right, Curie temperature curve for a single plagioclase crystal.
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destructive field (MDF). Oxide-rich gabbros are
characterized by lower stabilities, as might be
expected from the abundance of coarse-grained mag-
netite grains that are particularly susceptible to
acquiring a drilling-induced remanence. The olivine
gabbros and gabbros that constitute the bulk of the
material from Hole 735B are characterized by sig-
nificantly higher MDF values (several 10’s mT).
Comparable MDF values (average ~30 mT) have
been reported for gabbros from Hess Deep (Pariso
et al.,, 1996b) and for the ~1400 m of gabbro sampled
from the Atlantis Massif (Blackman er 4/, 20006).

The variability of inclination values in gabbroic
rocks (Figure 26) is considerably less than for extru-
sive sections and presumably reflects significant
averaging of secular variation during slow cooling.
For the lowermost 1000m of Hole 735B sampled
during Leg 176, the directional dispersion parameter
(kappa =59, n=339) is approximately 1.6 times the
value expected from the paleosecular variation
model of McFadden er al. (1988). The higher value
of kappa indicates tighter grouping of the inclination
data and the implied time averaging during slow
cooling is a necessary prerequisite for using the aver-
age inclination data to infer tectonic tilts. Although
the inclinations from Hole 735B are offset from the
expected dipole value due to tilting, the uniform
polarity and relatively high magnetization of this
1500 m gabbroic section (where lavas and dikes
have been tectonically removed) are sufficient to
account for the sea-surface anomaly amplitudes at
the site (Dick er 4/, 2000). While uniform polarity is
likely the norm, it should be noted that complex
multcomponent remanences and dual polarities
within a site have been reported from gabbros from
the MARK area and the Atlants Massif (Cannat ez 4/,
1995; Gee and Meurer, 2002; Blackman ez al., 2006).
These complex remanence characteristics have been
attributed to crustal accretion and cooling spanning
multiple polarity intervals (Gee and Meurer, 2002)
and, if more generally applicable, would serve
to reduce the gabbroic contribution to the magnetic
anomalies.

5.12.3.4 Mantle-Derived Peridotites

Although pristine ultramafic rocks are nonmagnetic
(containing only paramagnetic silicates and spinels),
serpentinization results in the production of magne-
tite (e.g, Toft er al, 1990) and magnetizations that are
sufficient to constitute a potential significant source
for marine magnetic anomalies (e.g., Nazarova, 1994).

Well-documented exposures of serpentinized peri-
dotite at slow-spreading ridges (Cannat, 1993;
Cannat ez 4/, 1997) indicate that such upper mantle
material undoubtedly contributes, at least locally, to
magnetic anomalies. Serpentinization of peridotites
and lower crustal gabbros has also been suggested as
the cause of higher anomalous skewness of anomalies
at slow-spreading ridges (Dyment and Arkani-
Hamed, 1995; Dyment ez 4/, 1997). In addition, the
enhanced positive magnetization (both for normal
and reverse polarity crust) at the ends of slow-
spreading ridge segments has been attributed to
induced magnetization of serpentinized peridotites
and gabbros (Pariso er al, 1996b; Pockalny er al,
1995; Tivey and Tucholke, 1998).

As with sampling of the gabbroic portion of the
ocean crust, drilling at tectonic exposures (Site 895 at
Hess Deep (Gillis er 4, 1993); Sites 670 and 920 in
the MARK area (Cannat er al, 1995; Detrick et al,
1988); and near the 15° 20" Fracture Zone (Kelemen
er al, 2004)) has significantly enhanced our under-
standing of the magnetic properties of oceanic
ultramafic rocks. Minor amounts of serpentinized peri-
dotite were also (unexpectedly) recovered from a
number of Atlantic drillsites (Sites 334, 395, 556, 558,
560) designed to sample oceanic lavas. Oufi ez 4/. (2002)
provide a thorough analysis and review of magnetic
studies on serpentinized peridotites up to and includ-
ing Leg 153 drilling in the MARK area. These results
and the more recent remanence data from Leg 209
(Kelemen ez al,, 2004) are summarized in Table 2.

Magnetizations of serpentinized peridotites,
whether obtained by dredging or drilling, vary from
<0.1 Am~" to values higher than 30 Am™" that are
comparable to typical values for older oceanic basalts
(Figure 29; Table 2). The magnetite content, sus-
ceptibility, and magnetization of ultramafic rocks
increases with the degree of serpentinization, though
this increase is not linear and depends on the parti-
cular alteration phases produced (Toft er al, 1990).
The degree of serpentinization may be estimated
from the sample density (Miller and Christensen
(1997), with a correction for the amount of substan-
dally denser magnetite (Oufi er al, 2002)), and
Figure 30 shows that relatively little magnetite is
produced untl the serpentinization exceeds 50%.
This nonlinear behavior may be attributed to the
FeO content of the silicate alteration phases. For
<75% serpentinization, early FeO-rich lizardite is
formed and with continued alteration this lizardite
is replaced by more FeO-poor chrysotile, with a
concomitant release of iron and production of
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corrected density (dc) of serpentinized peridotite samples
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Horen H (2002) Magnetic properties of variably serpentinized
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magnetite (Oufi er al, 2002). Alteration assemblages
that include even more FeO-rich brucite may further
suppress magnetite production, as evident in some of
the lower magnetization samples from Sites 895 and

670 (Figure 29). Most dredged peridotites and some
drillcore samples (particularly from breccias or fault
zones) have experienced post-serpentinization low-
temperature oxidation, as evidenced by the presence
of maghemite (e.g,, Nazarova ez al, 2000). Although
magnetic properties may vary considerably, the geo-
metric mean intensity (2.1 Am~' equatorial value
including results from Leg 209; Table 2) and average
Koénigsberger ratio of ~2 suggest that both remanent
and induced magnetization from oceanic serpenti-
nized peridotites may contribute significantly to
magnetic anomalies. The influence of serpentinized
peridotites on the anomaly pattern, however, may
largely be limited to fracture zones and slow-spread-
ing ridges mantle-derived  peridotite
exposures are relatively common.

Although many serpentinites may predominantly
have a viscous remanence, the origin of the

where

remanence in oceanic serpentinized peridotites is
likely to include a chemical remanence and perhaps
also a partial thermoremanence as demonstrated
by remanence directions that deviate substantially
from the present field direction (e.g, Garces
and Gee, 2007). Temperature estimates for serpenti-
nization based on oxygen isotope fractionation
between magnetite and serpentine vary widely,
though most serpentinites from Hess Deep and the
MARK area yield temperatures conservatively esti-
mated as >350°C (Agrinier and Cannat, 1997; Friih-
Green er al, 1996). Based on these relatively high
temperatures and the simple demagnetization beha-
vior of MARK area peridotites, Lawrence e al. (2002)
suggested that much of remanence might be thermal
in origin. While coarse-grained magnetite is abun-
dant, values of M.,/ Mj as high as 0.4, as well as direct
grain size estimates from image analysis indicate that
relatively fine-grain magnetite is also present
(Lawrence er al, 2002; Oufi er al, 2002). These
finer particles are presumably responsible for the
relatively stable remanence in the MARK area peri-
dotites, which was used to infer that little tlting
occurred during uplift and exposure (Lawrence
et al., 2002).

5.12.4 Crustal Accretion and
Structure of the Magnetic Source

Crustal accretionary processes exert a fundamental
control on the spatal distribution of magnetization
sources, limiting the temporal resolution of the
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geomagnetic signal resolvable from marine magnetic
anomalies and, in some cases, modulating their shape
(skewness). In addition, the remanent magnetization
vector may be rotated during accretion (e.g, tilt due to
lava loading) or by subsequent tectonic deformation.
Any tectonic rotation of the magnetic source layer
about a ridge-parallel rotation axis will result in an
equivalent phase shift of the magnetic anomaly
(Cande and Kent, 1985). Anomalous skewness, the
phase shift not accounted for by a standard thin layer
block model (Cande, 1976), therefore provides a
strong constraint on any tectonic tilt of the magnetiza-
tion source, as well as nonvertical polarity boundaries.
In the discussion below, we address the consequences
of the (generally accepted) pattern of nonvertical mag-
netic boundaries separately from the effects related to
(more speculative) rotation of the magnetic source.

5.12.4.1 Nonvertical Magnetic Boundaries

The pattern of magnetization boundaries (isochrons)
in the ocean crust is shown schematically in
Figure 31. Isochrons within the extrusive layer are
expected to dip toward the ridge (e.g., Kidd, 1977) as
new lavas progressively cover pre-existing flows. The
resulting sloping (sigmoidal) magnetization boundary
in the extrusives can be conveniently modeled by a
gaussian filter applied to the standard magnetization
block model. The transition zone width, the width
over which 90% of the magnetization change occurs,
is approximately four times the standard deviation (o)
of the gaussian filter (Atwater and Mudie, 1973). In a
classic survey at 21° N on the EPR, Macdonald er 4/.
(1983) documented both the validity of this general
model, as well as the spatial extent of lava spillover
onto pre-existing flows by comparing the location of
the reversal boundary inferred from near-bottom
magnetic anomaly data and the polarity of individual
volcanic features at the surface from submersible
observations. The surface polarity boundary was dis-
placed (away from the ridge) by 250-500 m relative to
the vertically averaged polarity boundary determined
from the near-bottom anomaly data, suggesting a
transition zone width of 1.4-1.8 km at this intermedi-
ate (60 mmyr ' full rate) spreading rate (Macdonald
et al, 1983). Comparable transition zone widths
(~1.5-3.0 km) have been determined from near-bot-
tom anomaly data at intermediate to superfast (up to
150 mmyr~ ' full rate) spreading ridges (Bowers ez al,
2001; Sempere ez al, 1987). Less focused accretion at
slow-spreading ridges likely results in broader

transition zones (Sempere ¢f al, 1987), though the
spreading rate dependence has not been well
established.

The narrow (1-3km) transition zone widths
(which represent an upper bound due to the effects
of minor extension and the ~7ky (Clement, 2004)
necessary for the field to reverse) imply a relatively
high-fidelity recording process at intermediate-
and fast-spreading ridges, compatible with the recog-
nition of short polarity events (e.g,, the ~10 ky Cobb
Mountain or Reunion events; Table 1) in anomaly
profiles at these spreading rates. These estimates
are also consistent with independent estimates of
the width over which lavas accumulate. Submersible
observations at intermediate- and fast-spreading
ridges suggest that most volcanic activity is concen-
trated within 1km of the axis (Karson er al, 2002;
Perfit and Chadwick, 1998). Flows erupted off-
axis or transported downslope may extend for a few
kilometers from the ridge (Fornari e 4/, 1998; Perfit
et al, 1994) and off-axis accumulation of lavas
can significantly affect the pattern of magnetic
anomalies (Gee et al, 2000, Schouten et al., 1999).
The off-axis thickening of seismic Layer 2A (com-
monly interpreted as corresponding to the extrusive
layer) within 1-3 km of the axis (e.g, Harding ez 4/,
1993; Vera and Diebold, 1994) also suggests that
lava accumulation occurs over a narrow zone com-
parable to the transition zone widths inferred from
anomaly data.

The pattern of magnetization contrasts in the
sheeted dikes and gabbros is less well constrained.
The zone of dike intrusion, where mixed polarity
dikes would occur (Figure 31), is likely much nar-
rower than for the lava flows. In order to match
seismic constraints and the sharp extrusive/dike
boundary observed in ophiolites, Hooft er al. (1996)
found that the zone of dike intrusion at the EPR must
be less than a few hundred meters wide (1o of 10—
50m). To the extent that the lower crust is conduc-
tively cooled, polarity boundaries in the gabbroic
portion of the crust should approximately follow
the shape of the 580°C isotherm (Cande and Kent,
1976) (Figure 32). Half-space conductive cooling
models (Oxburgh and Twurcotte, 1969; Sclater and
Francheteau, 1970) predict that magnetization iso-
chrons in the gabbroic layer should dip away from
the ridge at 4-30° (for full spreading rates from 150 to
16km My ™", respectively). Near-bottom magnetic
anomaly data from tectonic exposures of lower crus-
tal gabbro at Atlantis Bank, together with inclination
data from wireline rock drill samples and from the
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Figure 31 Schematic illustration of magnetization boundaries in oceanic crust (bottom) and magnetic anomaly models for
these magnetic source bodies (top). The magnetization values of the three layers are based on the overall geometric mean
values in Table 2. Anomalies are calculated for vertical magnetization and ambient field for a full spreading rate of 80 km My ™.
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1.5km penetration at Hole 735B, have been inter-
preted as indicating the presence of a sloping
isochron with a present day dip of ~25° (Allerton
and Tivey, 2001). However, the well-determined
remanent inclination (—71°; Figure 26) from Hole
735B suggests an outward tilt of about 20°, so that the
original dip of this isochron was approximately 5°.
While the dip direction is away from the ridge, as
expected, the very shallow dip angle is difficult to
reconcile with that expected (~30°) from conductive
cooling (John er al, 2004) at this slow-spreading
ridge.

The effect of nonvertical magnetization bound-
aries on the shape and amplitude of anomalies should
be minor for lavas and dikes but is significant for the
gabbroic portion of the crust (Figure 31). For 1-3 km
wide transitions in the extrusive layer, the corre-
sponding anomaly is shifted slightly away from the
ridge but there is little detectable effect on the anom-
aly shape or amplitude. Based on vertical magnetic
profiling data from intermediate-spreading crust
exposed at the Blanco escarpment, substantially
broader (~10km) transition zone widths have been

suggested (Tivey, 1996; Tivey er al, 1998a). While
this novel profiling technique has considerable pro-
mise in mapping the distribution of polarities, the
very broad transitions at the Blanco escarpment pre-
dict substantial changes in anomaly amplitude and
shape that are not generally apparent. The narrow
polarity transition in the sheeted dikes (Ogires <<
Ofows) 18 likewise not expected to significantly aftect
the anomaly shape or amplitude.

In contrast, the gently sloping boundaries in the
gabbroic lower crust should give rise to significant
anomalous skewness (Cande and Kent, 1976).
Anomalies generated by such gently dipping polarity
boundaries are illustrated in Figure 32 for a range of
polarity interval lengths and spreading rates. The
resulting anomalous skewness is most easily recog-
nized for broad polarity intervals and amounts to a
phase shift of ~45° in the same sense as global
observations of anomalous skewness. The distortion
is not a pure phase shift, however, as evidenced by
the asymmetric shoulder at the older edge that coin-
cides with the magnetization contrast at the base of
the gabbroic layer. Although the anomaly shapes for
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tilts. Left, conductively cooled magnetization boundaries in the gabbroic layer are illustrated for three different length polarity
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Ridgeward or outward tilting of 16° (the average tilt implied by lava accumulation over ~2 km) results in an equivalent amount

of anomalous skewness.

narrow intervals or at different spreading rates
appear quite different, the anomalous skewness intro-
duced by a conductively cooled gabbroic layer is
essentially independent of spreading rate. A three-

layer source model (with subequal contributions
from the lavas, dikes, and gabbros as indicated by
the average remanence of these layers and their
thickness and depth; Table 2) illustrates that the
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anomalous skewness imparted by the gabbroic layer
results in an overall anomalous skewness of ~10°
(Figure 31). This value is well within the range
(5-25° for a full spreading rate of 80 km My ") deter-
mined from global compilations of anomalous
skewness data (e.g, Roest et al, 1992; Petronotis
et al, 1992). Although rotations of the magnetic
remanence direction (which are not included in the
model shown in Figure 31) may result in additional
anomalous skewness, such rotations are apparently
not required to explain the modest anomalous
skewness at intermediate and faster spreading rates.

5.12.4.2 Rotations of the Magnetic
Source Layer

Normal faulting is an integral part of extensional
seafloor spreading and therefore rotations, either
toward or away from the ridge, about ridge parallel
axes are not unexpected. Inward (toward ridge)
dipping faults are dominant at all but the fastest
spreading rates (Carbotte and Macdonald, 1990;
Kriner ez al, 2006), and even at superfast spreading
rates these faults accommodate most of the strain
(Bohnenstiehl and Carbotte, 2001). These inward
dipping faults should result in outward tilt of the
magnetic source layer, which will produce a phase
shift (1° for each 1° of tilt) of the anomalies that is
compatible with the observed sense of anomalous
skewness (Figure 32; Cande, 1978).

Tilting in response to lava loading has recently
been suggested as a potential way of rotating the
remanence vector of seafloor lavas (Schouten and
Denham, 2000; Schouten er al, 1999; Tivey et 4l
2005). In these models, the sloping isochrons within
the extrusive layer are taken as also reflecting the
inward alt of individual lava flows. The resulting
downbhole distribution of inclinations (possibly mod-
ified by later block rotation) can then be used to infer
the average pattern of lava accumulation. This type
of model requires that the remanence in relatively
small intervals within the extrusive layer represent
the time-averaged field direction, so that downhole
trends in the average inclination can be detected. If
prevalent, such lava loading would produce systema-
tic inward tilt of the lavas and anomalous skewness in
the opposite sense of that observed. The relatively
thin extrusive layer and the generally narrow region
over which flows accumulate limit the amount of
tilting expected from lava loading. For accumulation
of a 0.5 km thick extrusive layer over a typical transi-
tion zone width of ~2km, the average dip of the

isochrons (and therefore inward tilt of the rema-
nence) 18 ~16°, which is accompanied by a readily
observable anomalous skewness of 16° (Figure 32).

A significant number of drill sites sampling the
extrusive layer have inclinations that deviate from
expected values, and block rotations and/or lava
loading undoubtedly contribute to some of these
deviations. In the most recent (although 30 years
ago) compilation of inclination results from drillcore
data, Lowrie (1977) found that observed inclination
values were well correlated with expected values,
though the results exhibit appreciable scatter about
the ideal 1:1 line. Although no significant bias toward
either shallower or steeper inclinations was found,
two aspects of the drill core data make it unlikely that
any systematic bias (whether from block rotations or
lava loading) would be evident. First, paleosecular
variation can result in significant scatter even when
the entire lava section is sampled (eg, 504B;
Figure 23) and so average inclination results from
shallow penetration holes should be viewed with
caution. Second, the lack of azimuthal orientation of
the drillcore samples precludes recognition of a sys-
tematic sense for ridges that strike nearly N-S, as
does much of the Pacific and Atlantic ridge system. In
principle, E-W striking ridges might provide infor-
mation on systematic tilt in the extrusives though it is
unclear whether sufficient data exist to conduct such
an analysis.

Magnetic anomaly shapes provide the most robust
estimate of the average tilt of the magnetization
source. Comparison of drillcore data from three
relatively deep penetration holes in Cretaceous
(MO age) crust (Figure 33) and correlative anomaly
shapes (Figure 34) illustrate how models of block
tilting and lava loading can be independently evalu-
ated. The mean inclinations in Holes 417A and 418A
(where there is a polarity reversal at 500 mbsf) are
eminently compatible with expected inclinations
from Early Cretaceous paleopoles for the North
America plate (Bosum and Scott, 1988; Levi, 1980).
The inclinations from the upper portion of Hole
417D are steeper and have been attributed to tectonic
tilting by some authors (Verosub and Moores, 1981),
although Levi (1980) argues that the inclination data
are compatible with paleosecular variation and do
not demand any tectonic rotation. Schouten (2002)
interprets the Hole 417A data (with reverse polarity
inclination very similar to the expected value) as
reflecting two oppositely directed tectonic tilts: a
large initial tilt toward the ridge axis as function of
lava loading (requiring the bulk of the lavas to
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Figure 33 Stable remanent inclinations (i.e., after partial demagnetization to remove spurious components) from discrete
samples from seafloor lavas at DSDP Holes 417A, 417D, and 418A. The heavy lines indicate the expected Cretaceous

inclination values at the site. Data from Levi (1980).

accumulate within 300 m of the axis), followed by 41°
outward block tilting (Figure 34). Magnetic anomaly
data across Anomaly MO, including from the
immediate vicinity of Sites 417/418 (Figure 34,
Cande and Kent, 1985), indicate the M0-age crust
from both ridge flanks is characterized by little or no
anomalous skewness and therefore little or no net tilt
of the magnetic source. While such fortuitous
offsetting tilts could, of course, explain the lack of
anomalous skewness near Sites 417 and 418, this is
unlikely to be generally applicable. The magnitude
and sense of anomalous skewness indicate that
substantial tlting (whether from lava loading or
block rotation) is not generally applicable, at least
for fast- and intermediate-spreading ridges where
anomalous skewness magnitudes are generally small.

Relatively few observations are available that con-
strain possible rotations of the intrusive portion of the
crust. Based on submersible studies of tectonic expo-
sures of fast-spread crust at Hess Deep, much of the
sheeted dike complex appears to have a systematic dip
(~60°) away from the ridge (Karson er al, 2002)
although areas with approximately vertical dikes are

also present (Francheteau er al, 1992). As with the
lavas, anomalous skewness constraints suggest that
such inward tilting of the sheeted dikes is unlikely to
be a general feature, provided that the dike remanence
is a significant contributor to the magnetic anomalies
as available data seem to now indicate. Substantial
rotations of the gabbroic layer have been documented
at slow-spreading ridges. For example, tectonic tilts of
~20° have been well documented for gabbros at the
Atlantis Bank (Dick ez al, 1999) and even larger rota-
tions (40—80°) have been reported from gabbros (and
associated serpentinized peridotites) from the vicinity
of the 15° 20" N Fracture Zone in the Atlantic (Garces
and Gee, 2007; Kelemen er al, 2004). The outward
rotation of the gabbroic sections, presumably from
flexural /isostatic adjustment in response to unloading,
is compatible with the sense of anomalous skewness
data. Although the magnitude of anomalous skewness
appears to increase at slower spreading rates (Roest
et al, 1992), the very large rotatons noted from the
15°20" N area exceed the largest values of anomalous
skewness and thus are unlikely to be representative of
more typical slow spread crust.
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5.12.5 Future Directions

There is increasing evidence that marine magnetic
anomalies are capable of recording a broad spectrum
of geomagnetic field behavior, ranging from
millennial-scale paleointensity variations to polarity
reversals to apparent polar wander to, more specula-
tvely, long-term changes in average field strength as
suggested, for example, by the ramp in anomaly
amplitudes at the older end of the M-sequence.
However, because of the inherent ambiguity in
determining source properties from potential field
data, independent geomagnetic field estimates will

be needed to guide and calibrate inferences

made from magnetic anomalies. Here we highlight
some general approaches — the use of autonomous
vehicles, oriented samples, absolute paleointensity
of near-ridge lavas, and measurements of the vector
anomalous field — that are likely to significantly
advance our understanding of the geomagnetic
signal recorded in the oceanic crust, as well as our
ability to utilize this information in addressing out-
standing problems in crustal accretion processes.
One general area that is ripe for further develop-
ment and applications is near-bottom observations,
which are required to obtain high spatiotemporal reso-
lution. Such near-bottom observations from towed
systems (often incorporating side scan sonar or other
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instrument packages as well) have already provided
seminal contributions in our understanding of the fine
structure of anomalies and source geometries (e.g,
Atwater and Mudie, 1973; Larson and Spiess, 1969).
More recently, near-bottom data have been used to
demonstrate the lineated (i.e, geomagnetic) nature of
small-scale magnetic anomalies, which have been
shown to mainly reflect paleointensity variations
(Bowers er al, 2001; Bowles et al, 2003; Gee er al,
2000), and to examine crustal accretionary processes
(e.g., Hussenoeder ez al, 1996; Smith ez al, 1999; Tivey
et al., 2003). These towed packages are robust, proven
marine geophysics tools but tend to be used sparingly
because such wireline deployments require a dedicated
vessel and slow towing speeds. An exciting recently
developed alternative is ABE (Autonomous Benthic
Explorer), which can be operated simultaneously
with other shipboard programs. ABE is capable of
following preprogrammed, closely spaced track lines
at low altitudes (5-40 m above the seafloor) to yield
fine-scale bathymetry and high-resolution magnetic
data. An example of an ABE survey at 17°S on the
EPR (Shah e al, 2003) is shown in Figure 35. In this
study, a magnetic field low was found extending sev-
eral kilometers along the axial trough, which was

interpreted as reflecting the presence of a few-hun-
dred-meter-wide region of weakly or nonmagnetic
shallow dikes (Shah er 4/, 2003) but might also deline-
ate lavas erupted during the recent (relative)
geomagnetic intensity low (Figure 3). When combined
with the submeter resolution bathymetry, ABE mag-
netic anomaly data also provide a powerful technique
to examine the relationship between individual volca-
nic features and their corresponding anomaly
signatures (e.g.,, Tivey er al, 1998b). Similar high-reso-
lution anomaly data can also be obtained with the new
generation of tethered vehicles, that allow far more
motion control than towed systems and also may incor-
porate high-resolution swath mapping and sampling
capabilities. Such high-resolution mapping on the
Endeavor segment of the Juan de Fuca ridge has
revealed circular (~100m diameter) anomaly lows
that correlate with present-day and fossil hydrothermal
upflow zones (Figure 36; Tivey and Johnson, 2002).
The more detailed magnetic anomaly observations
that are possible with tethered vehicles, ABE, and
manned submersibles are nicely complemented by
the availability of high-resolution sampling techniques
that allow collection of fully oriented samples. Block
samples oriented with the Geocompass (which uses a
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Figure 35 High resolution bathymetric (left) and magnetic data (center) obtained by an Autonomous Benthic Explorer (ABE)
survey (tracks on right) on the East Pacific Rise at 17° S. Note the presence of lower anomaly amplitudes along the axial
summit trough (heavy lines in center figure). Modified from Shah AK, Cormier M-H, and Ryan WBF et al. (2003) Episodic dike
swarms inferred from near-bottom magnetic anomaly maps at the southern East Pacific Rise. Journal of Geophysical

Research 108(B2): 2097 (doi:10.1029/2001JB000564).
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compass and digital tilt meters to measure attitude)
have been collected from submersible (Cogne er 4,
1995; Hurst er al, 1994; Varga et al, 2004) and this
technique has also been successfully used with tethered
remotely operated vehicles (ROVs). Oriented samples
from a wireline rockdrill (Allerton and Tivey, 2001)
further expand the range of seafloor outcrops that can
be sampled to address tectonic problems. Indirect
information on the remanence direction can also be
obtained from borehole magnetometer measurements
with gyro-oriented logging (Bosum and Scott, 1988).
Such borehole measurements have substantial advan-
tages in characterizing the magnetic source region,
since they can provide representative magnetization
values by avoiding drilling-induced remanence and
directly account for void and porosity effects on assess-
ments of discrete sample values.

Our understanding of the neovolcanic zone at fast-
spreading ridges, especially the EPR, has evolved and
become increasingly sophisticated in recent years as
higher-resolution observations, such as with ABE,
became available. Placing accurate age constraints to

determine eruptive recurrence intervals on near-axis
lava flows have become increasingly important given
the structural and volcanic complexity of the neovol-
canic zone. In this regard, geomagnetic paleointensity
of submarine basaltic glass (Pick and Tauxe, 1993)
holds particular promise for placing quantitative age
constraints on near-axis flows. For example, mult-
specimen Thellier paleointensity results from four
independent samples distributed over several kilo-
meters from a single (Animal Farm) flow on the
EPR at ~18° S were found to be in excellent mutual
agreement (35.6+ 1.0 puT), and by comparison to a
geomagnetic reference curve projected to the site
location, the Animal Farm paleointensity value indi-
cated a fairly recent time of eruption (AD 1910 % 20)
in general agreement with other observations (Carlut
and Kent, 2000) (Figure 37). An integrated bathy-
metric, geochemical, and paleointensity study of
adjacent and contrasting ridge segments at ~15°N
on the EPR (Carlut ez 4/, 2004) and one at 9-10° N
that involved the analysis of what may be the largest
published dataset of absolute (Thellier) paleointensity
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determinations (551 accepted of 991 basalt glass sam-
ples analyzed; Bowles er al, 2006), further illustrate
the potential for dating lavas and more generally, for
discriminating whether eruptions were synchronous.
A cooling rate bias in Thellier paleointensities was
shown not to be as important as initially suspected in
rapidly cooled submarine basaltic glasses (Bowles
et al, 2005). However, terrain effects may be an
important source of uncertainty in absolute plaeoin-
tensity values in some settings, such as the Juan de
Fuca Ridge where there are large amplitude magnetic
anomalies (Carlut and Kent, 2000). Ultimately, the
reliability of paleointensities for dating depends on
the reference field model, which could be improved
considerably with higher quality (and better dated)
Thellier data on archeological and geologic materials.
This would also allow better calibration of sedimen-
tary relative paleointensity records, which are used
for making comparisons over time intervals beyond
the radiocarbon-dated record (e.g., Gee ez al., 2000).
Marine magnetic surveys have traditonally used
total field sensors that rely on well-established physi-
cal constants (e.g. the proton gyromagnetic ratio for
proton precession magnetometer) and thus provide
accurate (~1nT) field intensity data with negligible

drift. The utlity of such total field measurements,
however, is limited in certain geometries (N\S
spreading ridges near the magnetic equator generate
very low amplitude total field anomalies) and external
field variations, particularly at low magnetic latitudes,
may further inhibit the identfication of spreading-
related anomalies. The use of total field magnetic
gradiometers, two sensors typically deployed with a
horizontal separation of >100m, allow recognition
and removal of a significant portion of the external
field variations (e.g., Roeser e al, 2002). With the
development of high resolution (~0.01nT) total
field sensors, this technique shows considerable pro-
mise for facilitating the recognition of low-amplitude
anomalies at equatorial latitudes. Measurement of the
vector components of the anomalous field also pro-
vides two distinct advantages that may aid in
recognition of lineated (geomagnetic) anomalies.
Perhaps the most useful attribute of vector anomaly
data is the ability to characterize, with a single profile,
the degree to which the magnetic source is two
(Blakely er al, 1973; Parker and
O’Brien, 1997). Aeromagnetic vector profiles, where

dimensional

the sensor is typically mounted on a gyro-stabilized
platform, have been used to estimate the spreading
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Anomaly data from a surface towed vector magnetometer and plot of amplitude ratio of vector components

relative to total field anomalies (Gee and Cande, 2002). (a) Comparison of vector anomalies measured by aircraft and with
towed vector magnetometer. Upper panel shows comparison of total field anomaly from proton precession magnetometer
(PPM) and vector magnetometer (MRUB6). Bz and Bx are the vertical and along track vector anomalies. (b) Ratio of amplitudes
of vector components and total field anomaly (contours) for a perfectly two-dimensional source. This ratio depends on the
angular difference between the spreading lineation and the ambient field declination, as well as the remanent inclination. The
boxes delineate the range of these parameters for the equatorial Pacific-Nazca (P-N), Pacific-Cocos (P-C) and Mid-Atlantic

Ridge (MAR) ridge systems.

lineation direction and to map low-amplitude anoma-
lies in the equatorial Pacific (Horner-Johnson and
Gordon, 2003; Parker and O’Brien, 1997). Shipboard
three axis magnetometers have also been used to
determine the location and azimuth of magnetization
contrasts in several areas (e.g., Korenaga, 1995; Seama
et al, 1993; Yamamoto et 4l, 2005). Towed vector
magnetometer systems can effectively eliminate the
ship effect and resolve vector anomalies on the order
of 30-50nT (Figure 38; Gee and Cande, 2002).
Although many high-resolution magnetic studies
are conducted near the ridge crest, emerging tech-
nologies may also allow documentation of the
seafloor geomagnetic signal throughout the ocean
basins. A relevant new platform for vector and total
field magnetic instruments would be on unmanned
aerial vehicles (UAVs) for surveying in the marine
environment. Deployments of UAVs from oceano-
graphic research vessels would allow multfold
increases in magnetic coverage at spatial resolutions
comparable to sea-surface data. High-density mag-
netic data are necessary to quantitatively evaluate the
relative contributions from a lineated or coherent
geomagnetic source and nonlineated heterogeneities

in the recording medium originating from crustal
accretionary processes. Of particular interest are
regions like the ~25% of the ocean floor that is
encompassed by the KQZ (~84-122Ma), which
remain virtually uncharted in terms of fundamental
properties such as spreading history and the possible
presence of lineations that might be related to geo-
magnetic variations. There are also virtually no deep
crustal drill holes in the KQZ to document the mag-
netization of oceanic crust that formed in this
unusual time interval of no geomagnetic reversals.
Tools are thus available that should allow us to sig-
nificantly increase our understanding of the source of
oceanic magnetic anomalies and geomagnetic varia-
tions over timescales ranging from 10° to 10° years.
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