
Predictive Dynamic Load Balancing of Parallel and Distributed Rule

and Query Processing �

Hasanat M� Dewan Salvatore J� Stolfo

Mauricio Hern�andez Jae�Jun Hwang

Department of Computer Science

Columbia University� New York� NY ����	

CUCS���
���

�This paper appeared in the Proceedings of the ���� ACM SIGMOD Conference��

Abstract

Expert Databases are environments that support the pro�
cessing of rule programs against a disk resident database�
They occupy a position intermediate between active and de�
ductive databases� with respect to the level of abstraction
of the underlying rule language� The operational semantics
of the rule language in	uences the problem solving strategy�
while the architecture of the processing environment deter�
mines e
ciency and scalability�
In this paper� we present elements of the PARADISER

architecture and its kernel rule language� PARULEL� The
PARADISER environment provides support for parallel and
distributed evaluation of rule programs� as well as static
and dynamic load balancing protocols that predictively
balance a computation at runtime� This combination of
features results in a scalable database rule and complex
query processing architecture� We validate our claims by
analyzing the performance of the system for two realistic
test cases� In particular� we show how the performance of a
parallel implementation of transitive closure is signi�cantly
improved by predictive dynamic load balancing�

� Introduction

A considerable body of prior work has been done to
achieve high performance� complex query processing
over large databases by parallel and distributed pro�
cessing ��� ��� ��� 	
� We study this problem in the
context of rule program processing� in which produc�
tion rules comprising an expert database application
are evaluated against a large database of facts stored
in an RDBMS� The condition and action parts of the
rules typically translate into complex queries over the
underlying database� The operational semantics of the
underlying rule language favor an evaluation policy in
which all processing sites are synchronized at every in�
ference cycle� However� under a synchronous processing
policy� an e�cient distributed processing ensemble re�
quires that we achieve a balanced� computation� In
other words� we require uniform completion times for

�This work has been supported in part by the New York

State Science and Technology Foundation through the Center for

Advanced Technology under contract NYSSTFCU��������� and

in part by NSF CISE grant CDA�����	�
��

matching the rules in a rule program at every processing
cycle to minimize the total amount of idle time over all
the sites� It is often stated that asynchronous evaluation
schemes are more e�cient over synchronous schemes
for this very reason� However� asynchrony also leads
to database and inference concurrency control problems
that we seek to entirely avoid ��
�

There is a limited amount of work that addresses
the workload partitioning problem for knowledge�base
systems� Existing work may be broadly characterized
as static� compile time analyses that attempt to intel�
ligently guess about runtime behavior� and to sched�
ule a number of relational queries accordingly� What
is needed is a dynamic component to account for the
actual time evolution of the underlying database dur�
ing inference and changes in the computing environment
during the lifetime of a particular program� as proposed
herein� In addition� we aim to remedy the problems as�
sociated with tuple�oriented languages by providing an
e�cient implementation of a set�oriented rule language�
The PARULEL language has parallel� set�oriented ex�
ecution semantics and a programmable con�ict resolu�
tion capability through the use of programmer speci�ed
metarules� as well as a context� mechanism to group
rules into structured modules for control�

The task partitioning problem is addressed as follows�
We use the copy�and�constrain ��	
 technique as the ba�
sic partitioning tool for data reduction� and compute a
number of restricted versions of the original rule pro�
gram that are applied in parallel to reduced databases�
To ensure balanced operation over an ensemble of pro�
cessors� we monitor runtime performance and dynami�
cally adjust the constraints or restrictions� on the pro�
gram versions to limit the size of the database selected
by a program version during rule processing� The dy�
namic adjustment of restrictions also requires commu�
nication among the sites� The communication require�
ments may be organized into a number of distinct dy�
namic load balancing protocols�

Our approach is a combination of the following two
techniques�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� statically computed restrictions on the rules of a rule
program for initially partitioning the workload of
rule evaluation among an arbitrary number of rule
program replicas evaluated at distinct processing
sites� and

� predictive dynamic load balancing �PDLB� protocols
that update and reorganize the distribution of
workload at runtime by modifying the restrictions
on versions of the rule program�

The techniques are predictive meaning we aim to bal�
ance the load of distributed processing based upon es�
timates of future workload of each program replica and
available processing resources� Our techniques utilize
meta�data�� i�e�� statistics gathered on relations �e�g�
cardinality� discrete frequency distributions� etc��� in the
algorithms that predict future resource requirements�
The evaluation of a PARULEL program is carried
out within PARADISER �PARAllel and DIStributed
Environment for Rules�� Both the PARULEL language
and the PARADISER architecture have been detailed
elsewhere ���� �� �
� For completeness� we include brief
descriptions in subsequent sections�

The contribution of this paper is a description of the
implementation and measured performance of two ap�
plications written in PARULEL� Speci�cally� we demon�
strate the e�ectiveness of an initial implementation of
PDLB for two test programs consisting of up to �� rules
and databases consisting of up to ������ tuples �in both
base and derived relations�� One of these programs is
a variant of transitive closure� For our test databases�
the improvement in parallel match time under PDLB
over a purely static partitioning ranged from ������
for one application� and ������ for the other� Further�
more� the measured overhead of PDLB was shown to
be under �� in most cases� Only one PDLB protocol
is presently provided by PARADISER� We claim that
the software component that implements the dynamic
load balancing feature will be widely applicable to gen�
eral �complex� relational query processing� of which rule
processing is one example� and is applicable to much
larger databases�

The rest of this paper is organized as follows� In Sec�
tion �� we discuss related work� In Section � and �� we
brie�y describe the essentials of the PARULEL rule lan�
guage and its supporting environment� PARADISER�
including its predictive dynamic load balancing compo�
nent� which establishes the context for the remainder of
the paper� Section � introduces two expert database ap�
plications written in PARULEL� presents performance
data� and demonstrates improved performance due to
the predictive dynamic load balancing techniques em�
ployed� Section � outlines the applicability of our results
to the case of balanced evaluation of complex queries in
parallel� In Section �� we summarize our conclusions�

�Elements of this paper have appeared elsewhere and
are included for completeness wherever necessary��

� Related Work

In this work� we depart from the traditional thrust of
research in high�performance expert systems� i�e�� new
and improved match algorithms and extracting rule�
level parallelism by exhaustive compile�time analysis�
We focus instead on disk�based systems coupled with
distributed and parallel processing for scalability�
Related work occurs in the general class of database

rule processing systems under the deductive� active� or
expert database labels� The work in active databases
���� ��� ��� ��
 tends to emphasize rule systems that
provide the means for accomplishing internal database
tasks such as database constraint maintenance� while
deductive databases ���� ��� ��
 are suited to building
knowledge�based applications that have natural expres�
sion in logic� Recent work in expert databases ��� ��

addresses the problem of e�ciently determining the set
of active �or instantiated� rules using various index�
ing techniques� However� the associated match algo�
rithm� namely lazy match�� uses a rather restrictive
semantics for generating instances� Speci�cally� only
a single best� instance is generated per cycle� where
the notion of best� is hardwired into the match al�
gorithms� Moreover� issues of scaling by parallel pro�
cessing are not addressed� Thus� while interesting� this
work leaves open many of the most pressing concerns of
this paradigm� i�e�� the need to support a general opera�
tional semantics� and the scaling issues associated with
increasing database size� Our work provides for a gen�
eral programmable operational semantics� and scaling
opportunities through distributed and parallel process�
ing� Moreover� we develop measures that enable us to
test the improvement in performance in a systematic
manner�
Most of the existing work that addresses the dynamic

workload partitioning problem for distributed rule or
query processing can be characterized as static� compile
time analyses that attempt to intelligently guess about
runtime behavior� There also exists work on purely run�
time scheduling of asynchronous parallel rule �ring sys�
tems ���
� where load balancing is essentially unneces�
sary� In the latter� asynchronous parallel execution of
rules is made possible by a data locking protocol suited
to rule processing� There is a centralized lock manager
for this purpose� While this allows for asynchronous
parallel execution of rules� it does not guarantee serial�
izable programs in the presence of negated condition el�
ements� That burden is shifted to the programmer who
must be careful in developing correct� programs us�
ing special constructs that the language provides� This
approach di�ers from ours in that we support a syn�
chronous rule execution policy� where con�icting rule

instantiations are �ltered using a metarule facility� and
the potential imbalance among the processing sites due
to synchronous operation is corrected through the pre�
dictive dynamic load balancing facility� This last point
is the focus of this paper�

� The PARULEL Language

Here� we review the main features of PARULEL to lay
the groundwork for our subsequent discussion�

��� Syntax

PARULEL syntax is derived from OPS�� while its
operational semantics resemble those of Datalog�� ��� �
�
�As in Datalog��� PARULEL is capable of set�oriented
updates involving all rule actions that do not con�ict
according to certain criteria� The relationship between
PARULEL and Datalog�� is discussed at length in ��
��
PARULEL programs consist of object�level� produc�

tion rules� metarules� for a programmable operational
semantics� and a database of facts� Object�level rules
consist of a conjunctive left�hand side �LHS� of condi�
tions which are matched against the database of facts
forming rule instances� and a right�hand side �RHS� of
actions to be performed on the database� The LHS
corresponds to rule bodies of Datalog�style languages�
and the RHS corresponds to rule heads� The object�
level rules encode the basic problem solving knowledge�
The language also supports arbitrary arithmetic pred�
icates on the left hand side of rules� increasing expres�
siveness� For managing large applications� PARULEL
provides a context� construct whereby all object level
rules relevant to a particular stage of problem solving
are grouped together by annotating rule names by the
name of the context they belong to� This familiar no�
tion allows rule programs to be structured in a natu�
ral way� The user speci�es a directed context switch
graph� �CSG� �possibly cyclic�� which delineates the se�
quencing of contexts� The runtime system processes the
rules in a given context until �xpoint� and then moves
on to the next context as determined by the CSG �ex�
plicit jumps between contexts is possible under program
control�� Global �xpoint is detected when� during a
full traversal of the CSG� no context produces rule in�
stances� The metarules are written separately for each
context and only applicable metarules are used at every
stage when �ltering the instances produced by match�
ing rules in a particular context� The metarules are
also written in production rule style� with rule names
forming the condition classes�

��� Operational Semantics

The programmable� con�ict resolution strategy is
realized via meta�level rules� that express domain�
dependent relationships among the rule instantiations
in the con�ict set at any given cycle� These metarules

specify what speci�c types of interactions among rule
instances indicate a con�ict� The action of these
metarules is to remove� or redact� one or more of the
con�icting rule instances from the con�ict set� The
post�redaction con�ict set is considered to be con�ict�
free� and can be �red concurrently� realizing set�oriented
database updates� The metarules provide a mechanism
for resolving inconsistencies implicit in the original rule
set as execution progresses� The operational semantics
or con�ict resolution strategies can themselves be
declaratively speci�ed� separating the logic of a program
from its control� The generalized operational semantics
of PARULEL is displayed in Figure ��

PARULEL Operational Semantics

MARK the root node of the CSG as ACTIVE�

WHILE there are ACTIVE contexts DO in parallel

BEGIN

� set of ACTIVE contexts�

For every C � DO in parallel

BEGIN

�� MATCH all rules in C against the database in parallel�

�� IF there are no instances� MARK C as INACTIVE�

MARK all of its successors in the CSG as ACTIVE�

and PLACE these in the set of ACTIVE contexts� �

OTHERWISE� FILTER the generated instances with

the appropriate metarules for this context�

�� EXECUTE the RHS operations of the �ltered set of

instances from all ACTIVE contexts� in parallel�

END

END

Figure �� Operational Semantics of PARULEL

� PARADISER Components

The operational semantics of PARULEL removes the
inherent sequentiality of traditional rule languages by
adopting set oriented database updates� Moreover�
for e�cient operation of any distributed processing
scheme� issues of data �load� partitioning� both static
and dynamic� must be addressed in a comprehensive
manner� The PARADISER environment provides these
facilities for PARULEL programs� The task partitioning
and load balancing techniques used in PARADISER has
been the subject of other reports ��� �� �
� Here we
provide an outline appropriate for the present paper�

��� Memory Model

The database support for PARULEL programs is pro�
vided by an RDBMS� rather than the LISP environment
of typical AI rule languages such as OPS�� Within the
PARADISER environment� PARULEL rules are com�
piled into an intermediate form consisting of relational

expressions which are processed by a runtime evaluation
system that is loosely coupled with the database man�
agement system via client server interactions� Thus�
PARULEL rules may be processed against a very large
store of persistent data that is managed by DBMS stor�
age and access managers� Since both the LHS and the
RHS of PARULEL rules may be expressed as relational
Select�Project�Join �SPJ� queries� rule matching and
rule �ring translates into a series of SPJ queries to form
rule instances� followed by a series of updates on the
database� respectively�

��� Rule Matching in Parallel

We use the copy�and�constrain paradigm ��	� ��
 as
the basic mechanism for matching rules in parallel�
In this paradigm� rules are replicated with additional
constraints attached to each copy� Such restricted rules
can be matched in parallel� thus providing a speedup
���� �
� To illustrate� let rule r be�

r � C� �C� � � � � �Cn � A�� � � � � Am n�m � �

where the Ci� i � � � � �n are conditions selecting a subset
of the database tuples� and Aj � j � � � � �m comprise a
set of m actions �updates to the database�� Let R�Ci�
denote the tuples selected by Ci� The work� W �r�� to
process r is bounded by the size of the cross product of
the tuples selected on the LHS of r�

W �r� � j R�C�� j � j R�C�� j � � � �� j R�Cn� j

Suppose we choose to copy�and�constrain rule r on con�
dition Ci to produce k new conditions fC�

i � C
�
i � � � � � C

k
i g�

and k new replicas of r� fr�� r�� � � � � rkg� where each
replica has Ci replaced by Cl

i� l � � � � �k� on the LHS�
If the new conditions are chosen such that j R�Cl

i� j

	 jR�Ci�j
k

� l � � � � �k�
Tk

l��R�C
l
i� �
� and

Sk

l�� R�C
l
i� � R�Ci�� then

W �r�� 	 � � � 	 W �rk� 	 j R�C�� j � � � � �� jR�Ci�j
k

��

� � �� j R�Cn� j	
W �r�
k

For appropriately constructed restriction conditions on
a uniformly distributed restriction attribute �RA�� each
of the k replicas require �

k
th the amount of work as the

original rule r to process� forming the same set of in�
stantiations� If the replicas are processed in parallel� the
evaluation of r will be sped up by a factor of k� As an
intuitive example� consider a relation AUTO� describing
cars with only �ve colors �black� white� red� blue�

green�� If the colors are uniformly distributed� then
copying the relation AUTO to �ve processors and con�
straining the color attribute to a distinct color will re�
duce the e�ort of processing queries involving AUTO to
about a �fth of the original e�ort involving the uncon�
strained relation� Note that the restriction predicates

de�ned in terms of the RA produce a logical view of the
restricted relation that is similar to a relation fragment
in a horizontally fragmented database�
It is possible to estimate workload accurately at

compile time from statistics on extensional or input
databases� Clearly� this may not be true for derived or
intensional databases formed during inference� It is this
workload that we wish to balance at runtime in the face
of di�ering processor characteristics� i�e� to adjust �and
possibly readjust as necessary� the chosen conditions on
the RA that determines equal workload at every site�
It is important to note that we study this problem

in the context of a replicated database con�guration�
Since we replicate the database at every site� the
workload at every site to update the database is uniform
at every inference cycle� Thus� we can factor out
database update in our cost models and in the load
balancing algorithms� The use of a replicated database
con�guration allows us to simplify one dimension of
the problem �i�e�� dynamic load balancing� in order
to study fundamental techniques via the simplicity of
copy�and�constraining� For example� redistribution of
workload at runtime is implemented solely by passing
messages to various sites that simply contain new
bounds on the ranges of the constraints on the RA�s�
On a fully distributed database con�guration� the
match operation of distributed rule programs must
be redesigned entirely� and database update likewise
enters into the load balancing techniques signi�cantly�
For example� database tuple communication costs must
be accounted for as part of the workload partitioning
process� We address these issues brie�y in Section ��

��� Workload Partitioning by
Copy�and�Constrain

In a synchronous parallel rule �ring environment�
disparities in the processing time among the sites can
reduce the e�ciency of the ensemble by reducing the
overall performance to that of the slowest processor
at every cycle� A dynamic component is necessary to
account for the actual time evolution of the underlying
database during processing� and to account for any
changes in the computing environment during the
lifetime of a particular program� To summarize� the
processing of a rule program may become unbalanced
at some cycle due to any of the following reasons�

� heterogeneity among the computing elements of the
ensemble�

� data characteristics� such as a skewed data distri�
bution which results in some sites generating larger
fragments of the intensional database than others�
or

� poor initial static partitions� i�e�� initial load opti�
mizers guessed incorrectly�

We thus provide in PARADISER both initial �static�
and runtime �dynamic� workload partitioning via the
RA and dynamic load balancing methods� If the RA is
not uniformly distributed� the e�ects of data skew will
render simple range partitioning ine�ective� Moreover�
the available processing sites may not have identical
resources �especially in heterogeneous or wide�area
environments�� We represent the processing potential
of the available processing sites by a vector of loading
weights�� To handle skewed distributions we generalize
the copy�and�constrain scheme as follows�
For each rule� a restricted relation and an RA that

selects that relation are chosen heuristically ��
 at com�
pile time� The database environment is con�gured au�
tomatically by the runtime system to maintain statistics
on the RA of each rule by means of appropriately de�
�ned triggers� Discrete frequency distributions �DFDs�
are maintained by the triggers that are installed for
each RA� The weighted range splitting �WRS� algo�
rithm� initially reported in ��
� embodies a technique
for both static and dynamic workload assignment� It
is designed to handle skewed distribution of the restric�
tion attribute� as well as providing a means to construct
restrictions that take into account the processing po�
tential of each processing site at any given time based
upon the vector of loading weights corresponding to the
sites� WRS computes the bounds on the value of an RA
according to a weight that models the desired level of
loading due to some rule at some site� WRS utilizes the
DFD of an RA to compute the restrictions on any given
rule for each site of the ensemble�
The static workload assignment algorithm is called

isoweight copy�and�constrain �ICC�� It uses the WRS
technique to compute the initial restrictions by using
an initial set of loading weights �which may be either
uniform� or determined by an initial probe of the dis�
tributed sites�� In contrast� the dynamic workload ad�
justment algorithm� called dynamic restriction adjust�
ment �DRA�� attempts to adjust the rule restrictions at
runtime if the initial processing allocation fails to attain
a balanced load� It uses the WRS algorithm and com�
putes the bounds on rule restrictions using a loading
schedule that is computed from observed performance
of the sites during previous cycles� as well as statistical
meta�data on the database�

��� Balancing the Distributed Computation
by Predictive Dynamic Load Balancing
�PDLB� Protocols

The DRA algorithm is applied as part of a predictive
dynamic load balancing �PDLB� protocol for detecting
and correcting an unbalanced system� The particular
PDLB protocol for detecting imbalance and the DRA
algorithm for correcting it constitute overhead not paid
in the sequential case� The former of these sources
deserves attention in that� as the number of sites is

scaled up� the communication costs for determining
imbalance of the ensemble can display fast growth� and
may dominate the overhead costs� Thus� the choice of
PDLB protocol is crucial for minimizing this overhead�

In previous work ��
� we have shown� through isoe��
ciency analysis� that the family of PDLB protocols we
consider have some members with slow�growing isoe��
ciency functions� An isoe�ciency function shows how
the total task size for a distributed computation must
grow with the number of processing sites in order to
keep the e�ciency of the parallel ensemble at a con�
stant value� It is a measure of scalability for parallel
algorithms whose overhead increases with the number
of processors� A perfect isoe�ciency function is linear
in the number of processors� which is not attainable in
practice� One protocol we have studied is the Global Co�
ordinator �GC� protocol� which has been implemented
in the current PARADISER system as a base case� and
is outlined below�

GC PDLB Protocol	

�� At every processing cycle� each of the P sites keeps
track of its local program and rule completion times�
At most log�P � steps after the last site completes�
a distinguished coordinator� site receives the val�
ues of the maximumand minimumcompletion times
�MAX and MIN� respectively� among all the sites us�
ing a tournament selection method� The imbalance
is de�ned to be I �jMAX �MIN j�

�� If I � C �system�wide threshold�� the global coor�
dinator broadcasts a BALANCE message� All sites
then send rule and program completion times to the
coordinator� For each rule at every site� the coordi�
nator computes adjustments to the restrictions using
the DRA algorithm� The DRA algorithm computes
the percentage deviation of the completion time for
each rule relative to the system average� If the abso�
lute value of the relative deviation exceeds a thresh�
old� then the current loading weight for the site with
respect to the rule is adjusted �either increased or de�
creased� based upon the sign and magnitude of the
deviation�� The adjusted weights are predictors of
future performance of the sites over the short term�
and are used to dynamically recompute the restric�
tions on the rule for each site� The new restrictions
are then incorporated into the local program repli�
cas� We mention that initially� all restrictions are
computed assuming equal weights for every site� Af�
ter incorporation of the new restrictions� the coordi�
nator broadcasts a CYCLE message�

Otherwise� if there is no imbalance� the coordinator
simply broadcasts a CYCLE message�

�� On receiving a broadcast CYCLE message� each site
begins a new processing cycle� beginning with the
match phase�

�� Termination is detected by the coordinator when
every site reaches a �xpoint�

The GC protocol has an isoe�ciency function of the
form�

W � f�P � � �P log�P � � �P �

where W and P are total work load and the number
of processors� respectively� and �� � are constants�
Intuitively� this expression indicates that as the number
of processors P is scaled up� the e�ciency of the
distributed processing system can be kept at a �xed
value if the total work load grows as the function f�P ��
The function f is also a measure of the cost of the
protocol� To see this� assume that the system runs with
no work to be performed in rule matching or database
updates� Then the incurred costs arise only from the
PDLB protocol� and in the case of the GC protocol�
takes the form shown above� If load balancing occurs
infrequently� then � 	 �� and we get f�P � 	 �P log�P ��
In simulations� we have veri�ed that the cost of GC is
indeed quite low and its growth rate is approximately
cP log�P �� for some constant c� For fast workstation
clusters such as the HP	��� cluster� the protocol cost
incurred by GC for �� sites is less than a fraction of a
second� This is acceptable when inference cycle times
tend to be large by comparison� as is the case when large
databases are involved�
A dynamic load balancing protocol is predictive if it

attempts to predict unbalanced behavior at runtime and
takes preventive remedial action� rather than simply
responding to system imbalance as it occurs� In
PARADISER� the dynamic load balancing protocols
initiate load balancing when at any cycle� completion
time disparity between any two sites exceed some
threshold� The typical approach to load balancing in
distributed computing is based upon demand�driven
techniques that use information about the current
state of the system� what resources are available� and
what resources are requested� They then schedule
the resources accordingly to reduce heavy loads �high
demands� at certain sites� In PARADISER� if the
current system state indicates that an overloaded
processing site exists� then we attempt to reduce
the load at that site on the next processing cycle
by reallocating the entire computation over all sites�
During every cycle� statistics on the extensional and
intensional relations are updated with the aid of triggers
whenever any database table is modi�ed� These
statistics are used to estimate the amount of workload
for rule processing in future cycles� i�e� how many
tuples should be allocated from the restricted relation
for matching a given rule at each site� and thus how to

compute the restrictions on the RA of each rule for each
program replica�

If the dynamic load balancing protocol determines at
any cycle that load balancing should be initiated� then
the loading weights are adjusted by observing the past
performance of each site� New weights are computed
as a function of the weights in the k previous cycles�
where k is a system tuning parameter� The exact
algorithm for weight adjustment has been reported
elsewhere ��� �
� Here we mention that the adjusted
loading weights are used as a measure of predicted
future resource requirements at each site� The actual
load balancing phase� embodied in the DRA �Dynamic
Restriction Adjustment� algorithm� uses these loading
weights to construct new restrictions on the rules of
the rule program versions at each site� This dynamic
load balancing method attempts to predict future loads
based upon the current state and the assumption that
the most recently computed loading weights will be
stable and will re�ect the processing activity in the near
future �this assumption is similar to locality principles
used in paging algorithms��

This assumption is justi�ed by the following two ob�
servations� First� if the load imbalance was due to exter�
nal events causing processing sites to be overloaded� and
if the average duration of such external loads is greater
than the basic cycle time� then we presume that they
will continue to be loaded again on the next cycle� Sec�
ond� if the load imbalance at a site was due instead to
having spent signi�cantly more than the average com�
pletion time at some site in rule processing� then we may
presume that the same site is likely to have produced
more updates to its logical partition of the restricted
relation than the average� and thus will continue to be
heavily loaded again� If either or both situations occur�
the assumptions will hold� and dynamic load balancing
will be e�ective� If we guess wrong� and the prediction
fails� then we rebalance again on the next cycle� repair�
ing the faulty prediction�

In order to improve the predictive properties of the
dynamic load balancing protocols� we can additionally
use meta�data to predict imminent system imbalance� as
opposed to actually detecting imbalance at some cycle
and then attempt to correct it beforehand� For this
purpose� statistical meta�data on all relevant relations
are maintained� If update activity results in a skewed
distribution of values in some database table� the
protocols attempt to predict the cost of evaluating the
rule program at all sites using a cost model of the
rule program version at each site� Given a reasonably
accurate model� this method would allow imbalance
detection before it actually occurs� This last technique
has not yet been fully implemented� and forms a major
part of our future work�

� Applications and Performance
Analysis

There is a large range of applications to which the dis�
tributed rule processing and load balancing technique
may be applied� In this section� we detail two applica�
tions to demonstrate the e�cacy of the method� In the
following analysis� we distinguish between performance
measured under one�time� static load allocation� utiliz�
ing only the ICC algorithm� and performance under pre�
dictive dynamic load balancing� utilizing both the ICC
and DRA algorithms� These two modes are referred to
as SLB �static load balancing� and PDLB �predictive
dynamic load balancing� modes� respectively� The ex�
perimental data reported here pertain to an actual im�
plementation of PARADISER� running on Sun SPARC�
stations� The underlying DBMS is Sybase�

�� ROUTE	 a variant of transitive closure

The �rst application is a variant of the well�studied tran�
sitive closure problem� Our version� called ROUTE��
�nds a route between two nodes in a directed graph with
colored� arcs whenever a path may be constructed by
conjoining adjacent arcs with the same color� Every arc
has a value for its color attribute drawn from a �nite set�
This slight variation on transitive closure allows us to
control the total number of routes generated by adjust�
ing the distribution of the color attribute on the arcs�
thus providing the opportunity to evaluate performance
for di�erent databases with varying characteristics �the
databases are generated by a parametrized data gener�
ator�� The input database consists of a directed acyclic
graph with colored arcs� ROUTE �nds all the routes in
such a graph� It uses a strati�cation on the length of the
routes to limit search� The PARULEL implementation
of ROUTE is shown below� This example also serves to
illustrate the syntax and structure of PARULEL pro�
grams�

�scheme arc

�int ep�� �int ep�� �varchar color��

�scheme route

�int ep�� �int ep�� �int len� �varchar color��

�scheme length �int len��

�scheme active�contexts �varchar name��

�defcontext FIRST �SECOND��

�defcontext SECOND�

�defcontext FINISH�

�p ��FIRST��create�routes

�arc �	ep�
x� 	ep�
y� 	color
c��

���

�make route 	ep�
x� 	ep�
y� 	color
c� 	len ���

�p ��FIRST��change�context

��

���

�gocontext SECOND��

�p ��SECOND��closure

�length 	len
l��

�route 	ep�
x� 	ep�
y� 	color
c� 	len
l��

�arc �	ep�
y� 	ep�
z� 	color
c��

���

�make route 	ep�
x� 	ep�
z� 	color
c�

	len �compute
l� � ����

�p ��SECOND��increment�len

�length 	len
l��

���

�modify � 	len �compute
l� � ����

�p ��SECOND��finish

�length 	len
n��

��route 	len
n��

���

�gocontext FINISH��

Some syntactic similarities with OPS� are obvious�
e�g�� production rule names are written in list form
and begin with a p� while attribute names of relations
are preceded by a caret� There are also several
di�erences� e�g�� the � symbol before an attribute name
indicates an RA explicitly� The scheme declarations
de�ne the relational schema� The arc relation has
two endpoints and a color attribute� while the route

relation has the same attributes as well as a length
attribute� The defcontext declarations de�ne the three
contexts FIRST� SECOND and FINISH� and also implicitly
the structure of the CSG �the declaration defcontext

FIRST �SECOND� says that control goes to SECOND after
FIRST has been processed to �xpoint��

The rule ��FIRST��create�routes creates routes of
length � in context FIRST for every arc in the database�
and assigns to them the same color as the corresponding
arcs� The rule ��FIRST��change�context forces a con�
text change to SECOND after FIRST has been processed�
All instances of ��FIRST��create�routes and a single
instance of ��FIRST��change�context are �red at the
end of processing context FIRST� in the �rst inference
cycle�

The rule ��SECOND��closure is the transitive closure
rule� It extends routes of length n to routes of
length n � � whenever an adjoining arc exists having
the same color� The extended route preserves its
former color� The rule ��SECOND��increment�len

increments the current length in the database table
length� and thus sets up for the next round of
processing� Rule ��SECOND��finish forces a switch
to the special� globally recognized �nishing context�
FINISH� when no route exists in the database with
length equal to the last updated value in the length

relation� When in the FINISH context� the system
terminates program evaluation� We mention that this
PARULEL program does not require any metarules�
and all matched instances at every cycle are �red
concurrently to update the database�

The compiled template form �SQL� of the LHS of the
rule ��SECOND��closure is as follows�

select �

from length length��

route route��

arc arc��

active�contexts �ac

where �d
� arc��ep� and arc��ep�
 �d

and route��len � length��len

and arc��ep� � route��ep�

and arc��color � route��color

and �ac�name � ��SECOND��

Notice that the WHERE clause contains a constraint or
restriction� namely the selection condition�

�d 	
 arc��ep� and arc��ep� 	 �d

on the ep� attribute of the arc relation� which is the
RA speci�ed in the PARULEL source for this rule�
The occurrence of the string �d� in this template
indicate placeholders� which specify that the bounds of
the restriction are dynamically �lled in at each site by
the runtime system during program evaluation�
As mentioned previously� the ICC algorithm com�

putes the restrictions for initial partitioning �assuming
equal weights�� and the DRA algorithm computes the
restrictions dynamically using weights computed from
observing runtime performance� Both algorithms use
the basic WRS method to divide the DFD �discrete fre�
quency distribution� for the purpose of computing the
restrictions� A stylized and abbreviated version of the
database trigger de�ned on ARCEP� is shown below�
It updates the DFD that is used by WRS to compute
the restrictions� The actual code is too involved to be
reproduced here�

create trigger arc�ep��trigger on arc

for insert� delete� update as

begin

�actual code to maintain DFD�

end

In Figure �� we display the DFD for a ����� arc
database� Suppose the loading weights at some cycle
are computed by PDLB to be f���� ���� ���� ���� ���g
for � sites �P���� fp�� p�� p�� p�� p�g� respectively� There
are �� bins �heuristically determined�� hence the bin size
is ���� The bins are de�ned on the ep� attribute of the
arc relation �ARCEP���
The DRA algorithm computes the following ranges

of bins for the � sites respectively� ���	� ������ ������
�	���� ����	
� The total number of arcs in each of these
ranges are ����� ����� ����� ����� and ���� respectively�
which can be veri�ed by summing the frequencies for
each range� These are in the proportion f����� �����
����� ����� ����g� which closely matches the weight
vector f���� ���� ���� ���� ���g� The translation from
bounds on the bin numbers to bounds on the value of

170

180

190

200

210

220

230

240

250

260

0 9 22 28 43 49

Fr
eq

ue
nc

y
(N

um
. o

f a
rc

s)

Bin Number (Restriction Attibute: ARC.EP1, Bin Size = 200)

DFD for 10000 arcs: Bins Partitioned for Weights = {.18, .25, .12, .30, .15}

arc.10000.dfd

Figure �� Range of Bins for Each Site

the ep� attribute of the arc relation is straightforward�
Knowing bin size ������ we get the actual restrictions by
multiplying the corresponding bin ranges by ���� Thus�
the bounds on ep� corresponding to the bin range for
site p� ��	���� are ep� �
 ���� and ep� 	 ����� The
runtime version of the compiled template for the rule
��SECOND��closure shown above would then have the
placeholders �lled in as follows�

���� 	
 arc��ep� and arc��ep� 	 ����

In order to measure the performance of the PDLB
protocol� we executed several runs of ROUTE with
varying database size on an ensemble of � �P��� sites�
The databases were generated randomly� We plot
the normalized standard deviation of the match times
�cumulative over all inference cycles� over all the sites�
in both SLB and PDLB modes� as a function of database
size in Figure ��

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
. S

D
 o

f C
um

. M
at

ch
 T

im
e

Database Size (Initial Arcs)

Normalized SD of Cum. Match Time vs. DB Size

PDLB
SLB

Figure �� Normalized SD of Match Time vs� DB Size

We notice that the normalized standard deviation of
match times is consistently lower for PDLB mode rel�
ative to SLB mode� indicating that PDLB successfully
reduces the completion time disparities among the sites�
resulting in overall e�ciency� To see how this translates

into improved performance� we plot the actual match
time for an ensemble of � sites �P��� as the database
is scaled up in Figure �� The graph shows that match
time in PDLB mode is signi�cantly lower �up to ���
less� relative to SLB mode� for all database sizes in our
experimental suite� In all cases� the cost of the proto�
col itself is a very small fraction of the total match time
�less than �� in most cases�� and this fraction decreases
as the database is scaled up�

50

100

150

200

250

300

350

400

2000 3000 4000 5000 6000 7000 8000 9000 10000

M
at

ch
 T

im
e

(s
ec

s.
)

Database Size (Initial Arcs)

Match Time vs. DB Size

PDLB
SLB

Figure �� Match Time vs� DB Size

�� Merge�Purge

The second application is called merge�purge �abbrevi�
ated MP henceforth�� Merging and coalescing multiple
sources of information into one uni�ed database requires
more than structurally integrating diverse database ac�
cess methods and data models� In applications where
the data is corrupted �incorrect or ambiguous�� the
problem of integrating multiple databases is particu�
larly challenging� We call this the merge�purge prob�
lem� The key to successful merging of information in
this case depends on semantic integration which re�
quires a means of identifying similar data from diverse
sources� The determination that two pieces of informa�
tion are similar� and that they represent some aspect of
the same domain entity� depends on sophisticated infer�
ence techniques and knowledge of the domain� We im�
plemented a PARULEL rule program that declaratively
speci�es an equational domain theory for this purpose�
This application �nds a natural �t with the features
of PARADISER� since it involves inference over large
databases� Furthermore� the size of databases involved
may be very large �as is the case in commercial sys�
tems designed to perform this task� where hundreds of
millions of records are common�� Thus� e�cient imple�
mentations of MP are highly desirable�
The PARULEL program that implements the equa�

tional domain theory to solve the MP problem contains
�� rules and � metarules� divided over � contexts� For
brevity� we will only mention the organization of the
contexts and their intended function without describing

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55

S
ta

nd
ar

d
D

ev
ia

tio
n

(s
ec

s.
)

Cycles

Standard Deviation(SD) vs. Cycles: DB = 1000

PDLB
SLB

Figure �� Standard Deviation of SLB vs� PDLB

the rules contained therein� The database consists of
a single extensional relation� PERSON� whose scheme
consists of several attributes� such as a unique identi�er�
social security number� �rst� last� and middle names�
street address� city� state� and zipcode� The database
contains di�erent records which are semantically the
same� but structurally and syntactically di�erent� For
instance� two records may be identical except for a large
variation in the last name �eld� We assume that a pre�
processing sorting phase clusters the records so that se�
mantically close� records are in close proximity to each
other�
To reduce the computational complexity� the MP ap�

plication is coded in PARULEL so that the compu�
tation is based on a sliding window over the exten�
sional database �the PERSON relation�� which de�nes
the virtual� database over which the merged rela�
tion is computed� The rules compute the cross prod�
uct of this virtual database� and �lters them with the
constraints speci�ed by the equational theory� Paral�
lelism is achieved by allocating a portion of the virtual
database to each processing site by means of restrictions
on the RA� while load balancing is achieved by adjust�
ing the size of the allocations at runtime� The program
terminates when a complete pass over the PERSON re�
lation has been completed by the sliding window� This
approach is justi�ed since potentially mergeable records
are expected to appear in the same neighborhood as a
result of the preprocessing� The PARADISER environ�
ment distributes the window�based computation of the
PARULEL program over a number of sites using the
workload partitioning and load balancing techniques de�
tailed earlier� The performance is measured while run�
ning the system in SLB and PDLB modes�
To demonstrate the e�cacy of the load balancing fea�

tures of PARADISER� we plot the standard deviation
of match times at each cycle among the sites of an en�
semble of processors �P��� for a run of MP on a ����
person database in Figure �� Two superposed graphs�
one for SLB and the other for PDLB mode operation�

are displayed�

600

800

1000

1200

1400

1600

1800

2 3 4 5 6 7

M
at

ch
 T

im
e

(s
ec

s.
)

Number of Sites (P)

Match Time vs. Sites (P): DB = 1000

PDLB
SLB

Figure �� Match Times in SLB mode vs� PDLB mode

We notice that the graph is periodic with respect to
the processing cycle� with the SLB standard deviation
being consistently higher than that of PDLB� The peri�
odic spikes and subsequent reduction in standard devi�
ation are explained as follows� The spikes occur every
time control enters a context which computes initial
matches� on the sliding window� This context generates
the largest set of possibly mergeable records among all
the contexts� The intensional relation thus produced is
reduced by the rules in the successive contexts� Since
this context is computationally intensive� the inherent
disparities among the sites become prominent� In PDLB
mode� an attempt is made at runtime to redistribute the
load so that the standard deviation is lower than in SLB
mode� where no such attempt is made� Notice also that
as the computation becomes less intensive �control goes
to other contexts�� the loads are again spread out more
or less equally among the sites� so that when the system
enters the initial match context again� it again takes a
large performance hit� But PDLB reduces this e�ect
signi�cantly over all cycles of the inference process�
The graph in Figure � shows the cumulative match

times over all cycles for SLB and PDLB modes� for a
���� person database� We notice that in PDLB mode�
cumulative match time decreases in a virtually linear
fashion as the number of sites �P � is increased� However�
in SLB mode� this is not the case� In fact� cumulative
match time remains essentially the same� and is always
signi�cantly higher than the corresponding values for
PDLB mode� We conclude that PDLB mode o�ers
much higher linearity in speedup performance� and that
speedup in SLB mode is negligible� The overhead of the
PDLB protocol is observed to be a small percentage of
the total match� and match time in PDLB mode is up
to ��� less than in SLB mode�
In Figure �� we plot the normalized standard devia�

tion of the cumulative match times over all cycles as a
function of the number of processing sites� P � The nor�
malized SD for PDLB mode is found to be well below

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6 7

N
or

m
al

iz
ed

 S
D

 (s
ec

s.
)

Number of Sites (P)

Normalized Standard Deviation vs. Sites (P): DB = 1000

PDLB
SLB

Figure �� Normalized SD vs� Number of Sites �P �

that for SLB mode� for values of P in the range ����
�
Moreover� the normalized SD curve for SLB mode gen�
erally has a steeper slope than for PDLB� This indicates
that PDLB mode is scalable in the number of proces�
sors� i�e�� as we increase P � we can expect PDLB to
consistently reduce runtime variance among the sites�
while for SLB mode� the disparities grow with the value
of P �

� Application to Balanced Parallel
Query Processing

In Section ���� we mentioned that the fundamental prin�
ciples established in the simpler context of replicated
data and the copy�and�constrain technique may be ex�
tended to the case of a fully distributed database� In
this Section� we outline the process which achieves that
end�
In the last decade� many researchers have focused on

developing database machine architectures for fast ex�
ecution of complex SPJ queries� Many of these e�orts
have resulted in the development of e�cient parallel join
algorithms for shared�nothing multiprocessor environ�
ments ��� ��� ��
� These algorithms are parallel versions
of sort�merge or hash�based joins previously developed
for centralized uniprocessor database machines� While
there are many subtle di�erences� they all assume a ho�
mogeneous ensemble of processors� which do not exhibit
performance variations over time� Another class of par�
allel join algorithms have been described in the liter�
ature to address the problems introduced when data
skew is present ���
� However� in this case as in the pre�
vious ones� the underlying processing resources are as�
sumed to be homogeneous and time�invariant� Because
of these assumptions� work to date on parallel joins have
not been concerned with dynamic load balancing� since
a good initial allocation of tasks to processors su�ces
under those conditions�
In contrast� we consider parallel and distributed

processing of rules and SPJ queries over heterogeneous

resources� where any site of the ensemble may deviate
from its nominal rated performance for any period of
time due to external loads that are not related to the
processing of the query in question� In this section� we
brie�y show how the PDLB protocols of PARADISER
may be utilized to achieve this goal�

The relations to be joined� say R and S� are
fragmented in round�robin fashion over all available
disks� where they reside� When a join is computed� any
selection predicates are applied to local fragments of R
and S at each site� and the �ltered tuples are hashed
into bucket �les� Given large enough base relations� the
number of hash buckets� N � is heuristically chosen to
be large relative to the number of sites� P � Portions of
each bucket for either relation may reside over all the
sites�

Balanced operation over a heterogeneous ensemble
may be achieved as follows� A small fraction of the
N buckets from both relations are �rst distributed
among the P sites so that every site has the same
number of bucket pairs �equal loading weights for all
sites�� This is the sampling phase�� Corresponding
buckets are joined at each site to which they have been
allocated by either a nested�loop or hash�probe method�
The PDLB protocol being used �say the GC protocol�
then determines the degree of imbalance� if any� by
examining the performance for the sampling phase and
computes new loading weights� �Thus� the allocated
buckets correspond to the weighted range partitioning
speci�ed by the RA�s in our previous formalism�� The
next batch of bucket pairs �another small fraction of
the remaining unprocessed buckets� are then allocated
among the sites according to the computed weights�
The joins are computed for this new batch of bucket
pairs� and the protocol measures imbalance and again
recomputes loading weights� This process is repeated
until all buckets have been processed� The fraction of N
in each batch is a tuning parameter and may depend on
the size of the relations� the physical memory available
at each site� and P � This method makes it possible to
detect overpopulated� buckets� indicating skewed data�
Skewed buckets are handled separately using a simple
extension of the basic scheme�

This algorithm is suitable for parallel rule languages
by simply extending single query processing to parallel
processing of a join queue� that represents all the
rules in a rule program� For this purpose� a high level
scheduler is needed to schedule di�erent join tasks over
the processors concurrently� whenever possible� This
algorithm is the subject of a forthcoming report ��

that analyzes the performance and design issues in
the parallel processing of rule languages over a fully
distributed database architecture�

� Conclusion

We believe this architecture provides a su�ciently rich
model for general balanced processing of rules or queries
in a parallel and distributed environment� Indeed�
PARADISER compiles rules into complex queries for
subsequent parallel and distributed processing under
the operational semantics of PARULEL� Thus� any
optimizations and load balancing protocols tested in
this environment are generally applicable to the case
of processing complex queries as well�
We have shown� using transitive closure and merge�

purge as examples� that PDLB� with a low�cost pro�
tocol� produces substantial performance improvements
over naive parallel evaluation� In particular� we have
demonstrated the e�cacy and utility of predictive dy�
namic load balancing�
Previous published work established the isoe�ciency

of a suite of possible load balancing protocols� To date�
only the Global Coordinator protocol is available in
PARADISER as a base case� and its isoe�ciency func�
tion is considerably worse than several others we have
analyzed� Even so� the implementation reported here
establishes that its overall overhead costs are not sub�
stantially high in a parallel or distributed processing
environment with a relatively modest number of pro�
cessors� However� to scale to very large numbers of pro�
cessors� future work is aimed at reducing PDLB over�
head even further without sacri�cing the quality of the
achieved load balance by utilizing the other protocols
we have developed�
We have recently constructed a simulator to test

PDLB under the various protocols and varying database
sizes� data distribution schemes� and data skew condi�
tions for large numbers of �up to ���� processors� The
results will be reported in a forthcoming paper on the
performance of PDLB on arbitrarily complex queries�

References

��
 S� Abiteboul and E� Simon� Fundamental prop�
erties of deterministic and nondeterministic exten�
sions of datalog�� Journal of Theoretical Computer
Science� �		��

��
 D�A� Brant and D�P� Miranker� Index Support for
Rule Activation� In To appear in the proceedings of
ACM�SIGMOD� Intl� Conf� on the Management of
Data� �		��

��
 G� Copeland� W� Alexander� E� Boughter� and
T� Keller� Data Placement in Bubba� In Proceed�
ings of the ACM SIGMOD ����� Intl� Conf� on the
Management of Data� ACM Press� �	���

��
 H� M� Dewan� Runtime Reorganization of Par�
allel and Distributed Expert Database Systems�

Technical report� Department of Computer Sci�
ence� Columbia University� April �		�� Ph�D� The�
sis�

��
 H� M� Dewan� D� Ohsie� S�J� Stolfo� O� Wolfson�
and S� DaSilva� Incremental Database Rule Pro�
cessing in PARADISER� Journal of Intelligent In�
formation Systems� ���� October �		��

��
 H�M� Dewan and S�J� Stolfo� System Reorganiza�
tion and Load Balancing of Parallel Database Rule
Processing� In Proceedings of the 	th International
Symposium on Methodologies for Intelligent Sys�
tems
ISMIS����� pages �����	�� Trondheim� Nor�
way� June �		��

��
 H�M� Dewan and S�J� Stolfo� The Distributed
Evaluation of Rules in PARADISER� Technical
Report In Preparation� Department of Computer
Science� Columbia University� May �expected�
�		��

��
 H�M� Dewan� S�J� Stolfo� and L� Woodbury� Scal�
able Parallel and Distributed Expert Database Sys�
tems with Predictive Load Balancing� J� Parallel
and Distrib� Computing� special issue on scalable
systems� �		�� Submitted�

�	
 D� DeWitt and J� Gray� Parallel Database Sys�
tems� The Future of High Performance Database
Systems� In Communications of the ACM� ACM�
June �		��

���
 Tandem Performance Group� A Benchmark of
Non�Stop SQL on the Debit Credit Transactin� In
Proceedings of the ACM SIGMOD ����� Intl� Conf�
on the Management of Data� ACM Press� �	���

���
 E�N� Hanson� Rule condition testing and action
execution in Ariel� In In proceedings of ACM�
SIGMOD� Intl� Conf� on the Management of Data�
June �		��

���
 D�R� McCarthy and U� Dayal� The architecture
of an active database management system� In In
proceedings of ACM�SIGMOD� Intl� Conf� on the
Management of Data� June �	�	�

���
 D�P� Miranker� D� Brant� B� Lofaso� and D� Gad�
bois� On the Performance of Lazy Matching in Pro�
duction Systems� In Proceedings of the ��� Na�
tional Conference on Arti�cial Intelligence� pages
�����	�� �		��

���
 K� Morris� J�D� Ullman� and A� Van Gelder� Design
Overview of the NAIL� System� In Proceedings of
the third Intl� Conference on Logic Programming�
pages �������� �	���

���
 D� Neiman� Issues in the Design and Control of
Parallel Rule�Firing Production Systems� PhD the�
sis� University of Massachusetts� Amherst� Com�
puter Science Dept�� September �		��

���
 A� Pasik� Improving Production System Per�
formance on Parallel Architectures by Creating
Constrained Copies of Rules� Technical Report
CUCS�������� Department of Computer Science�
Columbia University� �	���

���
 R� Ramakrishnan� P� Seshadri� D� Srivastave� and
S� Sudarshan� An Overview of CORAL� Technical
report� Department of Computer Science� Univer�
sity of Wisconsin�Madison� �	�	�

���
 D�A� Schneider and D�J� DeWitt� A Performance
Evaluation of Four Parallel Join Algorithms in a
Shared�Nothing Multiprocessor Environment� In
Proceedings of the ACM SIGMOD ����� Intl� Conf�
on the Management of Data� ACM Press� �	�	�

��	
 S� Stolfo� D�P� Miranker� and R� Mills� A Sim�
ple Processing Scheme to Extract and Load Bal�
ance Implicit Parallelism in the Concurrent Match
of Production Rules� In Proc� of the AFIPS Sym�
posium on Fifth Generation Computing� �	���

���
 S� J� Stolfo� H�M� Dewan� and O� Wolfson� The
PARULEL parallel rule language� In Proceedings
of the IEEE International Conference on Parallel
Processing� pages II������� IEEE� �		��

���
 M� Stonebraker and G� Kemnitz� The POSTGRES
next�generation DBMS� In Communications of the
ACM� Oct� �		��

���
 S� Tsur and C� Zaniolo� LDL� A logic�based
data�language� pages ������ �	��� In proc� Intl�
Conference on Very Large Databases�

���
 J� Widom� R�J� Cochrane� and B�G� Lindsay�
Implementing set�oriented production rules as an
extension to Starburst� �		�� In proc� ��th Intl�
Conference on Very Large Databases�

���
 J�L� Wolf� D�M� Dias� P�S� Yu� and J� Turek�
Comparative Performance of Parallel Join Algo�
rithms� In First Intl� Conference on Parallel and
Distributed Systems� pages ������ IEEE� �		��

���
 O� Wolfson and A� Ozeri� A New Paradigm for
Parallel and Distributed Rule�processing� In Proc�
ACM�SIGMOD� �		��

